If not already uploaded into the online portal, please file the permits for P&A of all wells in the well

file online.

REVIEWED Review of the Site Characterization

By Mike Buchanan at 2:23 pm, Jan 08, 2024 Report for WLSU #8: Content Satisfactory

Characterization Report

prescribed by NMOCDSU #8 In order to achieve

consecutive monitoring Case No. 1RP-2457

County, New Mexico

events must be me below the NM WQCC standards 20.6.2.3103 of NMAC

2. Continue to conduct

groundwater 5116 monitoring events as

3. Please submit the 2023 Annual Groundwater

Monitoring Report by a red for or before April 1, 2024.

Energen Resources Corporation Midland, Texas

Prepared by

6020 Academy NE, Suite 100 Albuquerque, New Mexico 87109 www.dbstephens.com DB22.1348

May 30, 2023

Table of Contents

1.	Introduction					
2.	Background	1 2				
3.	September 2021 Nested Monitor Well Installations	4				
4.	March 2022 Groundwater Monitoring	6				
5.	Groundwater Characteristics	7 8				
6.	Conclusions and Recommendation	10				
Refe	ferences	11				

List of Figures

- 1 Site Layout and Monitor Well Locations
- 2 Monitor Well Hydrographs and Chloride Concentrations
- 3 Groundwater Level Elevations and Flow Direction, March 2022
- 4 Rose Diagram of Historical Groundwater Flow Directions
- 5 Chloride Concentrations at WLSU #8 Site Monitor Wells, March 2022
- 6 Regional Groundwater Chloride Distribution, March 2022
- 7 ATRANS Simulated Chloride Distribution in Regional Groundwater

List of Tables

- 1 Monitor Well Survey Information, November 2021
- 2 Completion Information of Monitor Well Nests
- 3 Chloride Concentrations of Primary and Split Samples, March 2022

List of Appendices

- A C-141 Forms
- B Monitor Well Logs
- C Well Survey Report, November 2022
- D November 2021 and March 2022 Laboratory Reports
- E Historical Data

1. Introduction

Daniel B. Stephens & Associates, Inc. (DBS&A) prepared this site characterization report on behalf of Energen Resources Corporation (Energen) regarding New Mexico Energy, Minerals and Natural Resources Department (NMEMNRD) Oil Conservation Division (OCD) case number 1RP-2457—a chloride release at West Lovington Strawn Unit (WLSU) #8 in Lea County, New Mexico (the site). Energen, the former unit operator, identified the release in 2009.

This report details investigative actions undertaken by Energen since the incident's discovery, and provides a characterization of the site. The investigative actions demonstrate that the extent of chloride impacts to groundwater is limited to the area immediately east of WLSU #8. Water quality data show that chloride concentrations at the site's monitor wells are stable.

Section 2 provides a physical description of the site, and summarizes its operational and investigative histories. Section 3 describes the installation of three monitor well nests in 2021, which were added to the site's existing monitor well network to further define the lateral and vertical extents of impacts to groundwater. Section 4 describes groundwater monitoring activities conducted at the site subsequent to the installation of the additional monitor well nests. Section 5 discusses groundwater conditions at and downgradient of the site based on both historical and recent monitoring data. It also presents the results of contaminant transport modeling. Concluding remarks are provided in Section 6.

2. Background

The following subsections describe the physical layout of the site and summarize its operational and groundwater investigative histories.

2.1 Physical Description

The site is located in Section 34, Township 15 South, Range 35 East in OCD unit letter 'L,' approximately 2.5 miles northwest of the city of Lovington, New Mexico. The site is situated on an approximately 2.4-acre footprint. The WLSU #8-R injection well is located near the center of the site (Figure 1). A battery of seven aboveground storage tanks (ASTs) is situated on the eastern edge of the site. A network of aboveground pipe spans the site's perimeter, including permanent pipelines and flexible temporary tubing.

The WLSU #8 water well was located north of the tank battery near the northeast corner of the site (Figure 1). It was plugged and abandoned in 2015.

The site is constructed on Ogallala Formation, which is locally about 190 feet thick and predominantly composed of well-sorted, poorly to well-consolidated fine sand. A surficial layer of caliche is present throughout the site. It is 1.8 feet to more than 7.5 feet thick. The Ogallala Formation comprises the primary regional aquifer system in the area. It can be locally characterized as an unconfined aquifer with approximately 130 feet of saturated thickness based on site data. The water table is approximately 60 feet below ground surface (bgs). The Ogallala Formation locally overlies the Triassic Dockum Group, which behaves as an effective confining layer.

2.2 Operational History

The WLSU #8 well (formerly known as the Snyder F Com well) was initially drilled as a production well in 1994 (NMOCD, 1994). It was drilled to a depth of 11,872 feet bgs and into the Strawn Formation. The well is triple cased and cemented to the surface, including 391 feet of 13.375-inch surface casing set in Class 3 cement.

In 2001, Energen became the unit operator of the West Lovington Strawn Unit and continued production of the WLSU #8 well. In 2006, the WLSU #8 well was sidetracked and recompleted from approximately 4,800 to 11,887 feet bgs due to downhole problems (NMOCD, 2006a). A pit was constructed at the northeast corner of the site immediately north of the former WLSU #8 water well location to support drilling operations. OCD approved the pit's closure on October 10, 2006 (NMOCD, 2006b). Energen ceased production at the site in 2008 and converted the WLSU #8 production well into an injection well for enhanced oil recovery. Injection operations commenced in January 2010, at which point the well was redesignated as WLSU #8-R.

The WLSU #8 water well is believed to have been drilled in 1995 by an unknown driller (Terracon, 2016). Although a drilling application for the water well was submitted and approved by the Office of the State Engineer (OSE), the well was never registered (GST, 2013). The water well was plugged and abandoned in 2015.

2.3 Release Discovery and Response

In March 2009, Energen collected water quality samples from existing water wells in the WLSU #8 vicinity, as required by OCD before they could commence injection at WLSU #8-R.

These wells included the Battery "A" water well, the WLSU #11 windmill, the WLSU #20 water well, and the WLSU #8 water well. Concentrations of all analytes sampled for were below the New Mexico Water Quality Control Commission (NMWQCC) standards numerated in Section 3103 of 20.6.2 NMAC (Section 3103 standards), with the exception of chloride concentration at the WLSU #8 water well. The chloride concentration at this well was 298 milligrams per liter (mg/L), just above the standard of 250 mg/L.

Energen submitted a release notification and corrective action form (C-141) to OCD on October 26, 2009 that outlined the discovery of the elevated chloride concentration at the WLSU #8 water well and requested permission to investigate the release (Appendix A). On December 22, 2009, Energen performed a pumping test at the WLSU #8 water well with permission from OCD (per Case No. 14356, Order No. R10448-E) and the Roswell District Office of the OSE. During the initial 10 days of pumping, 15,464 barrels of water was extracted, and the chloride concentration decreased from 3,692 to 1,420 mg/L, as documented in a January 11, 2010 e-mail from Andy Cobb to Larry Johnson (NMEMNRD) (Energen, 2010).

In 2012, Energen had five monitor wells installed at the site (MW-1 through MW-5) (Figure 1). Well logs are provided in Appendix B. Soil samples were collected from the boreholes for the monitor wells, and water quality samples were collected from the monitor wells after their construction (GST, 2013). The samples were submitted to Hall Environmental Analysis Laboratory, Inc. (HEAL) in Albuquerque, New Mexico. The soil and water quality samples were analyzed for chloride and hydrocarbon concentrations (volatile organic compounds [VOCs] and polycyclic aromatic hydrocarbons [PAHs]). The water quality samples were also analyzed for major ion and metal concentrations. The maximum soil chloride concentration was 63 milligrams per kilogram (mg/kg), recorded at MW-4 at 0 to 2 feet bgs. This concentration is well below the closure criteria of 10,000 mg/kg for soils where depth to groundwater is 51 to 100 feet bgs, as specified in 19.15.29.12 NMAC. With the exception of MW-2 and MW-4, water quality samples collected from the monitor wells were at background levels (less than 50 mg/L), and meet the Section 3103 standard for chloride. Chloride concentrations at MW-2 and MW-4 were 130 and 390 mg/L, respectively (Figure 2). Chloride was the only analyte detected at a concentration above a Section 3103 standard. GeoScience Technologies (GST, 2013) submitted a monitor well completion and initial site characterization report to OCD on May 29, 2013 documenting the monitor well installations.

On September 24, 2015, the WLSU #8 water well was plugged and abandoned, and MW-6 was installed approximately 10 feet east of the water well's former location. These activities were

conducted in accordance with a proposal submitted to and approved by OCD (Terracon, 2015). The well log for MW-6 is provided in Appendix B. Soil samples were collected during the drilling of the borehole for MW-6 and were submitted to XENCO Laboratories, Inc. in Midland, Texas for analysis. The maximum soil chloride concentration was 14.5 mg/kg, measured at a depth of 5 feet bgs. Terracon (2017) documented the activities and laboratory analytical results in a report submitted to OCD on March 29, 2017. The report also provided results of 2016 quarterly groundwater monitoring. A similar monitoring report documenting quarterly 2017 quarterly groundwater monitoring was submitted to OCD on March 27, 2018 (Terracon, 2018). Water quality at MW-2 and MW-6 continually exceeded the Section 3103 standard for chloride between 2015 and 2018, while the water quality results at MW-4 exceeded it only once (Figure 2).

In September 2021, Energen had nested monitor wells MW-7, MW-8, and MW-9 installed upgradient and downgradient (Figure 1) of the site to further define the lateral and vertical extents of chloride impacts to groundwater. CMB Environmental and Geological Services, Inc. (CMB) provided oversight of the drilling and construction activities. Installation of these wells is documented in Section 3.

3. September 2021 Nested Monitor Well Installations

In September 2021, three monitor well nests (MW-7, MW-8, and MW-9) were installed to supplement the existing WLSU #8 monitor well network and further characterize groundwater conditions. The monitor well nests were sited and constructed in accordance with a work plan that was submitted to OCD (Price, 2021).

Cascade Drilling of Peralta, New Mexico drilled boreholes for and constructed the monitor well nests. The boreholes were drilled using the sonic drilling method. At each drilling site, a single borehole was advanced to the bottom of the Ogallala Aquifer (approximately 190 feet bgs). The upper portions of the boreholes were advanced using a 10-inch-diameter drill bit, while the lower portions of the boreholes were advanced using an 8-inch-diameter drill bit. Three 2-inch-diameter monitor wells were constructed within each borehole to establish a nest.

The monitor wells are constructed of 2-inch-diameter, Schedule (SCH) 40 polyvinyl chloride (PVC) casings with 0.020-inch slotted screens and 2-foot sumps. Monitor well screens are set at

different discrete depths to allow for water quality sampling at the top, middle, and bottom of the aquifer. Individual monitor wells of each nest are distinguished by an 's' for shallow, 'm' for middle, and 'd' for deep in the well ID (e.g., MW-7s, MW-7m, MW-7d). The shallow wells are completed across the water table with 20-foot screens. The middle and deep wells have 15-foot screens. Filter pack consisting of 10/20 silica sand is placed within the annulus across each screen interval. The filter packs are isolated from one another by hydrated bentonite. The surface completions include concrete pads and locking steel risers.

Locations of the three monitor well nests are shown in Figure 1. Well logs are provided in Appendix B, and descriptions are summarized as follow:

- *MW-7 (downgradient)*: The location of this monitor well nest is approximately 80 feet north and 575 feet east of the former WLSU #8 water well location. The borehole was advanced to a total depth 197.5 feet bgs. The Triassic Dockum Group was encountered at 188 feet bgs. The shallow well is screened from 50.0 to 70.0 feet bgs, the middle well is screened from 126.0 to 141.0 feet bgs, and the deep well is screened from 173.5 to 188.5 feet bgs.
- *MW-8 (downgradient):* The location of this monitor well nest is approximately 350 feet south and 575 feet east of the former WLSU #8 water well location. The borehole was advanced to a total depth of 197.5 feet bgs. The Triassic Dockum Group was encountered at 191 feet bgs. The shallow well is screened from 50.0 to 70.0 feet bgs, the middle well is screened from 129.5 to 144.5 feet bgs, and the deep well is screened from 176.5 to 191.5 feet bgs.
- *MW-9 (upgradient):* The location of this monitor well nest is approximately 225 feet north and 510 feet west of the former WLSU #8 water well location. The borehole was advanced to a total depth of 197.5 feet bgs. The Triassic Dockum Group was encountered at 190 feet bgs. The shallow well is screened from 50.0 to 70.0 feet bgs, the middle well is screened from 128.0 to 143.0 feet bgs, and the deep well is screened from 175.0 to 190.0 feet bgs.

Surveyed coordinates and top of casing elevations for the monitor well nests and other WLSU #8 monitor wells are reported in Table 1. John West Surveying Company surveyed all the monitor wells on November 16, 2022 (Appendix C). Well construction information and initial depth to water measurements for the monitor well nests are provided in Table 2.

Soil samples were collected from the boreholes for the nested monitor wells at regular intervals and submitted to HEAL. Chloride was not detected in any of the soil samples at a reporting limit of 60 mg/kg (Appendix D).

4. March 2022 Groundwater Monitoring

On March 15 and 16, 2022, CMB conducted groundwater monitoring at the WLSU #8 wells (including the three new nests) and nearby supply wells. Water quality samples were collected and submitted to HEAL. Water quality results for samples from MW-2 and MW-6 exceeded the Section 3103 standard for chloride, with chloride concentrations of 1,200 and 1,000 mg/L, respectively. Water quality results for samples from the other site monitor wells meet the Section 3103 standard for chloride, including the samples collected at downgradient monitor well nests MW-7 and MW-8. The chloride concentration of the water quality sample collected from MW-4 was 230 mg/L.

Water quality samples collected from the three nearby supply wells meet the Section 3103 standard for chloride, with chloride concentrations at background levels (less than 50 mg/L). The three nearby supply wells include (1) the WLSU #11 windmill, located approximately 0.6 mile northwest of the site, (2) a pond well, and (3) a house well located approximately 0.7 mile southeast of the site at Mr. Daniel Fields's residence. The WLSU #11 windmill had a chloride concentration of 24 mg/L, and both the pond and domestic wells had a chloride concentration of 32 mg/L.

Samples from the WLSU #8 monitor well network collected during the March 2022 monitoring event were split with Mr. Daniel Fields's consultant, who submitted them to Envirotech, Inc. (Envirotech) for analyses. The analytical results for the split samples are similar to those of the primary samples that CMB submitted to HEAL. For example, with the exception of the chloride results for the sample collected from MW-9D, the differences in the chloride results between the two laboratories are less than 15 percent (Table 3). The chloride results for the sample collected from MW-9D differ by 42 percent (i.e., 29 mg/L vs. 44.4 mg/L); these two chloride concentrations are at background levels.

Appendix D provides the HEAL and Envirotech analytical laboratory reports for the primary and split samples.

5. Groundwater Characteristics

DBS&A compiled available groundwater level and water quality data for the site. These data are presented as hydrographs and in time-series plots of chloride concentrations (Figure 2). The compiled data are also provided in Appendix E. These data were used to support the

evaluations presented in Section 5.1 and 5.2. Section 5.3 describes advection-dispersion modeling that was conducted to provide additional characterization of groundwater flow and chloride transport at the site.

5.1 Groundwater Flow Direction and Velocity

Figure 3 is a potentiometric surface map constructed from March 2022 water level measurements. The water level data presented in the potentiometric surface map show that the groundwater gradient is toward the east-southeast at 0.0035 foot per foot (ft/ft). This groundwater flow direction and gradient are consistent with those of previous monitoring events that were conducted in 2016 and 2017 (Terracon, 2017 and 2018).

DBS&A evaluated variability of the groundwater flow direction and gradient by preparing a rose diagram based on historical water level data at the WLSU #8 site monitor wells (Figure 4). The rose diagram shows the historical groundwater flow direction and magnitude of hydraulic gradient for the period 2012 to 2022. The direction and gradient were calculated for combinations of three monitor wells, as follows: (1) MW-1, MW-2, and MW-5, (2) MW-2, MW-4, and MW-5, (3) MW-2, MW-4, and MW-6, and (4) MW-3, MW-4, and MW-5. Except for two calculations based on 2012 water level measurements that appear anomalous, the direction of groundwater flow is consistently to the east-southeast at a gradient of approximately 0.002 to 0.004 ft/ft.

The average linear groundwater flow velocity was calculated using Darcy's Law, as follows:

$$v = \frac{K}{n_e} \frac{(h_1 - h_2)}{l} \tag{1}$$

where v = average linear velocity (feet per day [ft/d])

K = hydraulic conductivity (ft/d)

n_e = effective porosity (dimensionless)

 h_2 = hydraulic head (elevation) downgradient (feet)

 h_1 = hydraulic head (elevation) upgradient (feet)

 $I = distance between h_1 and h_2 (feet)$

The hydraulic gradient is 0.0035 ft/ft based on the March 2022 potentiometric surface map (Figure 3). The hydraulic conductivity (K) of 22 feet per day (ft/d) and effective porosity (n_e) of 0.25 are taken from the OSE's groundwater model for Lea County (Musharrafieh and Chudnoff, 1999). Based on these parameter values, the calculated groundwater flow velocity is 0.3 ft/d

(110 feet per year [ft/yr]). The hydraulic conductivity of the Ogallala Aquifer is variable, and the average linear groundwater flow velocity could be lower, or as high as several feet per day.

5.2 Groundwater Chloride Distribution

Chloride concentrations in regional groundwater have historically been elevated in the area of the former location of the WLSU #8 water well (i.e., at MW-2 and MW-6). The chloride concentration at MW-4 has also occasionally exceeded the Section 3103 standard for chloride, with concentrations ranging from 123 to 390 mg/L (Figure 2). Figure 5 shows the current vertical and horizontal distributions of chloride at the site. Wells MW-2 and MW-6 are the only wells with chloride concentrations above the Section 3103 standard of 250 mg/L. These two wells are located immediately downgradient of the former location of the WLSU #8 water well. Wells MW-2 and MW-6 are approximately 120 feet southeast and 10 feet east, respectively, of the former location of the WLSU #8 water well. The chloride concentration at MW-4 is typically around the Section 3103 standard, and was 230 mg/L in March 2022. Well MW-4 is approximately 225 feet south-southeast of the former location of the WLSU #8 water well. The chloride concentrations at the WLSU #8 site monitor wells appear stable (Figure 2).

The extent of chloride impacts to groundwater is limited to the area immediately east of the former location of the WLSU #8 water well (Figure 5). Monitor well nests MW-7 and MW-8 were installed downgradient of the former location of the WLSU #8 water well, MW-2, and MW-6. The water quality samples collected from these nests meet Section 3103 standards, with chloride concentrations ranging from 20 to 46 mg/L (Figure 5). This range is typical of background levels, and similar to chloride concentrations recorded at upgradient monitor wells (i.e., MW-1, MW-5, and MW-9). The absence of elevated chloride concentrations at MW-7 and MW-8 indicates that chloride impacts to regional groundwater are limited to the vicinity of the former location of the WLSU #8 water well.

The chloride concentrations of the March 2022 water quality samples collected at the nested monitor wells are similar (Figure 5). For instance, the chloride concentrations at MW-8 were 20 mg/L (shallow), 46 mg/L (middle), and 40 mg/L (deep). Similar trends were seen at MW-7 and MW-9 (Figure 5). These water quality data demonstrate that density stratification of chloride is not present.

Figure 6 shows the chloride concentrations at the three Fields water wells, in addition to those at the WLSU #8 site. The water wells are the WLSU #11 windmill (upgradient) and the pond and house wells (both downgradient). The chloride concentrations at the three water wells are at

background levels (less than 50 mg/L) and meet Section 3103 standards (Appendix D). The analytical results therefore do not exhibit adverse impacts at these wells.

The calculated average linear groundwater flow velocity is 0.3 ft/d (110 ft/yr) (Section 5.1). Based on this velocity, groundwater impacts from the former location of the WLSU #8 water well would have reached MW-7 by now. Chloride is a conservative ion, meaning that it typically does not interact with other dissolved ions or aquifer materials, and therefore travels at about the same rate as groundwater. Well MW-7 is 690 feet southeast (downgradient) of the former WLSU #8 water well location, where elevated chloride concentrations were first observed in 2009. Given the distance to MW-7 (690 feet) and flow velocity (110 ft/yr), chloride-impacted groundwater would have reached MW-7 in approximately 6 years (by 2016). The absence of increased chloride concentrations at MW-7 suggests that chloride-impacted groundwater is diluted to background chloride concentrations through mixing (i.e., diffusion and dispersion) before reaching MW-7. The travel-time calculation presented here does not include processes such as diffusion and dispersion that can cause concentrations of dissolved constituents to decrease with distance from a source area.

5.3 Advection-Dispersion Modeling

DBS&A simulated the transport of chloride-impacted groundwater in the WLSU #8 vicinity using ATRANS-EXCEL (ATRANS). ATRANS is a three-dimensional advection dispersion model that uses analytical transport solutions to determine the concentration of dissolved constituents across time and distance away from a source (S.S. Papadopulos, 2016). It can be used to consider advection, dispersion, sorption, and first-order transformation reaction processes, and assumes that groundwater flow is steady and uniform. DBS&A used ATRANS to evaluate the degree to which elevated chloride concentrations could become natural diluted as groundwater travels away from the former location of the WLSU #8 water well.

DBS&A parameterized the ATRANS model using the same hydraulic properties as the calculation of the average linear groundwater flow velocity (Section 5.2): (1) hydraulic conductivity of 22 ft/d, (2) effective porosity of 0.25, and (3) hydraulic gradient to the southeast at 0.0035 ft/ft. The model domain was set at 1,000 square-feet with 800 cells. Longitudinal, transverse, and vertical dispersity values were assigned values of 10⁻², 10⁻³, and 10⁻⁴ feet. The effective diffusion coefficient was set to zero. The chloride source was simulated as a two-dimensional rectangular patch placed near the former location of the WLSU #8 water well location (20 feet wide and 5 feet deep) with a constant chloride concentration of 2,500 mg/L. The model was run at 1-year timesteps until a steady-state condition was achieved.

ATRANS simulated results are presented in Figure 7. Steady-state conditions were achieved at the site within 10 years. The simulated results show that dispersion effectively dilutes chloride concentrations to less than 250 mg/L 230 feet downgradient of the source, and to background levels 840 feet downgradient of the source (Figure 7). The ATRANS simulated results generally agree with the box model presented in Price (2021), which showed that chloride would attenuate to background levels within 600 feet of the source.

Despite some uncertainty about the timing and extent of the chloride release at the WLSU #8 site, the ATRANS simulated results demonstrate that elevated chloride concentrations are attenuated by dispersion to background levels within several hundred feet of the site. This is consistent with the water quality data collected to date at the existing monitor wells.

6. Conclusions and Recommendation

In March 2009, Energen (the former WLSU #8 operator) sampled several water wells in the vicinity of the WLSU #8 site. Chloride was detected at the WLSU #8 water well at a concentration of 298 mg/L, above the Section 3103 standard of 250 mg/L. Energen submitted a C-141 form to OCD in October 2009 notifying them of the elevated chloride concentration at the WLSU #8 water well. Since the discovery of the elevated chloride concentration, Energen has installed a total of nine monitor wells at the site. Five monitor wells were installed in 2012 (MW-1 through MW-5), one monitor well was installed in 2016 (MW-6), and three monitor well nests were installed in 2021 (MW-7 through MW-9). The WLSU #8 water well was plugged and abandoned in 2015.

The monitor well nests were installed in 2021 to supplement the exiting WLSU #8 monitor well network and further characterize groundwater conditions upgradient and downgradient of the site. They are also used to monitor the vertical distribution of chloride. The new monitor well nests, along with the other monitor wells and three Fields water wells, were sampled in March 2022. Water quality at the wells show that chloride impacts to groundwater are limited to the area immediately east of the WLSU #8 site (Figure 6). Wells MW-2 and MW-6 were the only wells in March 2022 with water quality results that exceed the Section 3103 standard for chloride. Chloride concentrations at downgradient monitor wells MW-7 and MW-8 met the Section 3103 standard for chloride and were at background level (less than 50 mg/L). This includes each of the screened intervals of the two monitor wells nests (MW-7 and MW-8).

Chloride concentrations at the site's monitor wells appear stable (Figure 2). The absence of increased chloride concentrations at downgradient monitor wells MW-7 and MW-8 and general stability of chloride concentrations at the site monitor wells suggest that the chloride impacts to groundwater are being naturally attenuated (through diffusion and dispersion) to background levels several hundred feet downgradient of the site.

DBS&A recommends annual groundwater monitoring at the nine site wells to help confirm that the chloride plume is stable and not migrating further from the site.

References

- Energen Resources Corporation (Energen). 2010. E-mail from Andy Cobb to Larry Johnson, Energy, Minerals and Natural Resources Department, regarding Water well sampling. January 11, 2010.
- GeoScience Technologies (GST). 2013. Geological and hydrogeological evaluation of borings and monitor wells at and around Energen Energy Corporation, Well #8-R West Lovington Strawn Unit, API 30-025-32291, 1980' FSL & 600' FWL, Section 34, Township 15 South, Range 35 East, Lea County, New Mexico. Prepared for Energen Resources Corporation, Midland, Texas. May 29, 2013.
- Musharrafieh, G. and M. Chudnoff. 1999. *Numerical simulation of groundwater flow for water rights administration in the Lea County underground water basin New Mexico*. New Mexico Office of the State Engineer Technical Report 99-1. January 1999.
- New Mexico Oil Conservation Division (NMOCD). 1994. Well completion report and log for oil well installed by Charles B. Gillespie, Jr., Unit Letter L: 1980 feet from the south line and 660 feet from the west line, Section 34, Township 15-S, Range 35-E, Lea County. Well API No. 30-025-32291. March 25, 1994.
- NMOCD. 2006a. Sundry notices and reports on wells for oil well operated by Energen Resources Corporation, Unit Letter L: 1980 feet from the south line and 660 feet from the west line, Section 34, Township 15S, Range 35E, Lea County. Well API No. 30-025-32291. August 7, 2006.
- NMOCD. 2006b. Pit or below-grade tank registration or closure form for WLSU 8R, operated by Energen Resources Corp. Well API No. 30-025-32291. October 10, 2006.

- Price LLC (Price). 2021. Letter report from Wayne Price to Brad Billings, New Mexico Oil Conservation Division, regarding Delineation of groundwater. January 5, 2021.
- S.S. Papadopulos & Associates, Inc. (S.S. Papadopulos). 2016. *ATRANS-EXCEL version 1.10*. July 4, 2016.
- Terracon Consultants, Inc. (Terracon). 2015. Limited groundwater investigation proposal, West Lovington Strawn Unit #8, NMOCD Reference No. 1RP-2457, Unit Letter "L", Section 34, Township 15 South, Range 35 East, Lea County, New Mexico. Prepared for Energen Resources Corp., Midland, Texas. Terracon Project No. AR157026. August 3, 2015.
- Terracon. 2016. Limited groundwater investigation summary and proposed activities, West Lovington Strawn Unit #8, NMOCD Reference No. 1RP-2457, Unit Letter "L", Section 34, Township 15 South, Range 35 East, Lea County, New Mexico. Prepared for Energen Resources Corp., Midland, Texas. Terracon Project No. AR157026. March 9, 2016.
- Terracon. 2017. 2016 Annual groundwater monitoring report, West Lovington Strawn Unit #8, Lea County, New Mexico. Prepared for Energen Resources Corporation, Midland, Texas. Terracon Project No. AR157026. March 29, 2017.
- Terracon. 2018. 2017 Annual groundwater monitoring report, West Lovington Strawn Unit #8, Lea County, New Mexico. Prepared for Energen Resources Corporation, Midland, Texas. Terracon Project No. AR157026. March 27, 2018.

Figures

- **2016-03-18**
- 2016-06-16
- 2016-08-23
- 2016-12-30
- 2017-03-09
- 2017-06-28
- 2017-09-14
- 2017-11-30
- 2022-03-15

Monitor Well Combination

- MW-1, MW-2, MW-5
- MW-2, MW-4, MW-5
- MW-2, MW-4, MW-6
- MW-3, MW-4, MW-5

Note: Gradient and direction of groundwater flow calculated between various sets of three monitor wells throughout the period of record. The radial axis corresponds to the magnitude of the hydraulic gradient (ft/ft).

Rose Diagramor Historic Grandwater Flow Direction

Tables

Table 1. Monitor Well Survey Information, November 2021

			Coordinates ^a (feet)		Ground Surface	Top of Casing	
Designation	OSE Permit No.	Completion Date	Northing	Easting	Elevation ^b (feet msl)	Elevation ^b (feet msl)	
MW-1	L-13218-POD1	12/12/2012	718754.5	826775.5	3,973.05	3,975.52	
MW-2	L-13218-POD2	12/12/2012	718624.4	827284.4	3,972.55	3,974.76	
MW-3	L-13218-POD3	12/12/2012	718751.1	827254.9	3,973.86	3,976.67	
MW-4	L-13218-POD5	12/13/2012	718462.6	827262.2	3,971.80	3,974.52	
MW-5	L-13218-POD4	12/13/2012	718446.9	826735.6	3,971.78	3,974.43	
MW-6	L-13218-POD6	9/14/2015	718672.3	827195.6	3,972.74	3,976.17	
MW-7	L-15194-POD1	9/22/2021	718301.7	827766.4	3,969.65	3,969.41 (deep) 3,969.43 (middle) 3,969.45 (shallow)	
MW-8	L-15194-POD2	9/18/2021	718728.7	827755.9	3,969.75	3,969.29 (deep) 3,969.30 (middle) 3,969.47 (shallow)	
MW-9	L-15194-POD3	9/14/2021	718914.0	826662.6	3,972.15	3,971.82 (deep) 3,971.85 (middle) 3,971.80 (shallow)	

^a NAD 1983 - New Mexico East Zone.

OSE = Office of the State Engineer

msl = Above mean sea level

^b NAD 1998 Vertical Datum

Table 2. Completion Information of Monitor Well Nests

Designation	Casing Material and Diameter	Screen Inter	val (feet bgs) Bottom	Total Borehole Depth (feet bgs)	Total Well Depth (feet bgs)	Depth to Water (feet btoc)	Depth to Water Measurement Date
MW-7S	2-inch SCH 40 PVC blank casing and	50.0	70.0	197.5	72.0	54.85	9/24/2021
MW-SM	2-inch SCH 40 PVC 0.020-inch slotted screen	126.0	141.0		143.0	54.70	9/24/2021
MW-7D		173.5	188.5		190.5	54.80	9/24/2021
MW-8S		50.0	70.0	197.5	72.0	54.20	9/24/2021
MW-8M		129.5	144.5		146.5	54.20	9/24/2021
MW-8D		176.5	191.5		193.5	54.20	9/24/2021
MW-9S		50.0	70.0	197.5	72.0	52.68	9/24/2021
MW-9M		128.0	143.0		145.0	52.70	9/24/2021
MW-9D		175.0	190.0		192.0	52.13	9/24/2021

bgs = Below ground surface

btoc = Below top of casing SCH = Schedule

PVC = Polyvinyl chloride

Table 3. March 2022 Split Sample Chloride Concentration Comparison

Sample	Sample	Hall Environmental Analysis Laboratory		Envirotech L	aboratory	Difference in Concentration	Chloride Percent
Location	Date	Chloride ^a (mg/L)	Analysis Date	Chloride ^b (mg/L)	Analysis Date	(mg/L)	Difference
MW-1	3/15/2022	26	3/21/2022	29.4	3/19/2022	-3.4	12.3 %
MW-2	3/16/2022	1,200	3/21/2022	1,350	3/19/2022	-150.0	11.8%
MW-3	3/15/2022	25	3/21/2022	27.9	3/19/2022	-2.9	11.0 %
MW-4	3/16/2022	230	3/21/2022	260	3/19/2022	-30.0	12.2%
MW-5	3/15/2022	25	3/21/2022	29	3/19/2022	-4.0	14.8 %
MW-6	3/15/2022	1,000	3/21/2022	1,140	3/19/2022	-140	13.1 %
MW-7D	3/16/2022	34	3/21/2022	38.5	3/19/2022	-4.5	12.4%
MW-7S	3/16/2022	38	3/21/2022	40.5	3/19/2022	-2.5	6.4%
MW-8D	3/16/2022	40	3/21/2022	44.6	3/19/2022	-4.6	10.9%
MW-8M	3/16/2022	46	3/21/2022	50.5	3/19/2022	-4.5	9.3%
MW-8S	3/16/2022	20	3/21/2022	22.8	3/19/2022	-2.8	13.1%
MW-9D	3/15/2022	29	3/21/2022	44.4	3/19/2022	-15.4	42.0 %
MW-9M	3/15/2022	46	3/21/2022	51.5	3/19/2022	-5.5	11.3 %
MW-9S	3/15/2022	27	3/21/2022	29.4	3/19/2022	-2.4	8.5 %

^a Analyzed using U.S. Environmental Protection Agency (EPA) method 300.0

mg/L = Milligrams per liter

^b Analyzed using EPA method 300.0/9056A

Appendix A C-141 Forms

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV

State of New Mexico Energy Minerals and Natural Resources

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised October 10, 2003

Submit 2 Copies to appropriate
District Office in accordance
with Rule 116 on back
side of form

IRP#10.3.2457

1220 S. St. Francis Dr., Santa Fe, NM 87505 Release Notification and Corrective Action Initial Report **OPERATOR** Final Report Name of Company: Energen Resources Corporation Contact: Andrew Cobb Address: 3300 North A St. Bldg.4, Ste. 100 Midland, Tx. 79705 Telephone No.432-687-1155 Facility Type: Fresh Water Well @ WLSU #8 well 30.025.3229 Facility Name: West Lovington Strawn Unit Mineral Owner: N/A Surface Owner: Dan Field Lease No. N/A API LOCATION OF RELEASE Unit Letter Section Township Range Feet from the North/South Line Feet from the East/West Line County FNL 34 15S 35E 1980 660 FWI. Lea WIRSS! Latitude 32° 58'19.1" Longitude 103° 24' 06.5" NATURE OF RELEASE Type of Release: Unknown Volume of Release Volume Recovered Date and Hour of Occurrence Source of Release Date and Hour of Discovery Was Immediate Notice Given? If YES, To Whom? ☐ Yes ☐ No ☐ Not Required By Whom? Date and Hour Was a Watercourse Reached? If YES, Volume Impacting the Watercourse. ☐ Yes ☐ No If a Watercourse was Impacted, Describe Fully.* Describe Cause of Problem and Remedial Action Taken.* Sampling of fresh water well near the WLSU #8 well shows elevated chloride levels. Describe Area Affected and Cleanup Action Taken.* Will begin investigation into cause of the elevated levels and remediate to approved standard. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Signature: Approved by District Supervisor NMENTAL ENGINEER Printed Name: Andrew Cobb Expiration Date: 5.19.10 Title:Sr. Safety & Environmental Specialist Approval Date: 3.19.10 E-mail Address:andy.cobb@energen.com Conditions of Approval: Attached

10-26-09

Phone: 432-686-3599

Date: Jan 29, 2021

Ramona Marquez New Mexico Oil Conservation Division

RE: Energen Resources Corporation West Lovington Strawn Unit No. 8
UL "L" Section 34-Township 15 South, Range 35 East, Lea County New Mexico
OCD No. 1RP-2457
Delineation of Ground Water

Dear Ms. Marquez:

I write this letter at the request of Brad Billings of the New Mexico Oil Conservation Division to provide evidence of authorization of Wayne Price of Price, LLC to, consistent with the understanding set forth in this letter, represent and submit documents on behalf of Energen Resources Corporation ("Energen"). Energen is a wholly owned subsidiary of Diamondback Energy, Inc.

Mr. Price has been retained by Energen to consult and advise concerning claims of groundwater contamination associated with the West Lovington Strawn Unit No. 8. In that regard he has been authorized to submit documents on behalf of Energen to the New Mexico Oil Conservation Division, and in particular to submit those documents necessary to obtain approval for the installation of four additional ground water monitoring wells, as set forth in his letter of January 4, 2021 to Mr. Brad Billings and subsequent communication between he and Mr. Billings.

I trust that this gives you the information necessary to properly document the authorization of Mr. Price to act on behalf of Energen.

Very truly yours,

Andy Cobb

From: Wayne Price wayneprice@q.com

Subject: 1RP-2457 Amended

Date: January 19, 2021 at 8:25 AM

To: EMNRD Billings Bradford Bradford Billings@state.nm.us

Cc: Wayne Price wayneprice@q.com, Richard Olson rolson@hinklelawfirm.com, Clayton Barnhill cmbenviro@gmail.com

Dear Brad,

Please find attached the amended plan pursuit to our recent telephone conference call. I will also insert this E-mail and aerial view showing the additional MW-10 down-gradient well and the moved location of the up-gradient MW-9 well in your new electronic submittal system. Per your phone instructions we may begin the project.

Thank you for your assistance.

Wayne Price-Price LLC 7 SYCAMORE LANE GLENWOOD NM 88039 wayneprice@q.com 505-715-2809

January 05, 2021

Mr. Brad Billings-NMOCD-Albuquerque Office, 5200 Oakland Avenue, N.E. Suite 100, 87113

Via E-mail: EMNRD Billings Bradford <Bradford.Billings@state.nm.us

Reference:

Energen Resources Corporation West Lovington Strawn Unit#8 UL "L" Sec 34-TS15S Rg 35E

Lea County, NM OCD Case # 1RP-2457

Subject: Delineation of Groundwater

Dear Brad,

On behalf of the Energen Resources Corporation Project, Price LLC (Wayne Price) request OCD approval to install three (3) additional groundwater monitoring wells at the above reference location. The objective is to further define the vertical and horizontal extent of contamination at the site.

Our plan is to install an up-gradient well and two additional down-gradient wells. Please refer to the attached aerial plat for approximate locations. The attachment includes a simple dilution box model that assisted in determining the down-gradient distance for these wells. The estimated depth was taken from area wells logs and "Triassic" Red Bed maps for the area. (REF: USGS Hydrologic Investigation Atlas HA-62) complete report enclosed for reference.

The down-gradient well locations were place in order to assure future protection of known fresh water resources in the area.

Each well will be an EPA approved type nested well containing three isolated 2" well bores with isolation seals and proper sand/gravel pack, all completed in a 6" PVC casing. The top well will be equipped with 20 foot slotted screen, 5 feet above he current water level and 15 ft. below. The second well will be similar in construction and will have 15 feet of screen in the mid-range of the aquifer, and the third well will have 15 feet of screen for monitoring the bottom of the aquifer.

This will allow_samples to be collected at the top, middle and bottom of the aquifer to pick up floating hydrocarbons or density gradient constituents such as chlorides.

Before installation of additional monitor wells, we plan on collecting water samples from each existing monitor well for WQCC volatiles, semi -volatiles, metals, and

inorganic constituents to establish a new baseline and constituents of concern (COC's).

The first round of sampling of the three new wells will also include these COC's. Attached is the most recent water analysis that was collected in 2018 with up-dated site plat. The 2019 event is missing, and we will report the next results in the first quarter of 2021.

Once the new wells have been installed, levels measured, we will utilize EPA protocols, properly purge with Ph., Conductivity, and Temperature measurements to ensure we are obtaining a stabilized sample before collecting, preserve, and then analyzed at an approved Laboratory.

A report will be sent to you with findings, conclusions and recommendations.

If you have any questions, concerns or comments please contact me at wayneprice@q.com or 505-715-2809.

Sincerely,

2 Pro

Wayne Price-Price LLC 7 Sycamore Ln Glenwood, NM 88039

CC: Richard Olson-Hinkle Shanor LLP
Bill B. Caraway-Deputy General Counsel Diamondback Energy
Andy Cobb-Diamondback Energy Inc.
Clay Barnhill-CMB Environmental & Geological Services
Wayne Price-Jr BSME Environmental Engineer

Attachments:

- 1- Aerial view of proposed wells.
- 2-GW Model.
- 3- USGS- Geography, Geology and Groundwater and Histoy.
- 4- Annotated Site Map with most recent Chlorides.
- 5- Nov 2018 analytical result report

Dilution Box Model Energen Resources-W. Lov. Strawn Unit #8 UL I-Sec 34-Ts15S-R34E OCD 1RP-2457

Model Objective:

To determine a reasonable distance for installing down-gradient monitor wells to define the outer limit of the contamination

Model Description:

A simple volumetric dilution model that compares the estimated source volume at certain worst case concentration of Chlorides, to an estimated volume of down-gradient fresh water, and calculates the DAF (Diluton Attenuation Factor) for the site. By varing the down-gradient length (a manuel reiterative process), then the assumptions provides a calculated distance for the installation of down-gradient wells. Model assumtions for the initial source area was taken from the site diagram and initial depth estimated. The mixing zone lateral width of 100 feet was used as several EPA DAF models use this default dimension. The depth was determine from the estimated depth of the first confinin layer in the Ogalla aquifer in this area.

Model Limitations:

This model is for estimation of MW placement, and only provides an Initial starting point. Depending upon future sampling results

will actul determine future delineation work.

Model Results:

The model results indicate that the wells can be approximately 600 ft down-gradient and still maintain a Chloride level of the natural

VOL Ft3 125000 Gal/ft3 932,500 Diluted Volume Down-Gradient 100 170 10200000 76,092,000 81.6 DAF Source Diluted down Gradient 2500 PPM 31 PPM 2,500 ppm 2500/Daf= Estimated Chlorides within statistical range for background

CONTRACTOR SAVAR CONTRACT AND DAY

Plat copied from OCD Well File Annotated by Price LLC to show the Nov 2018 chloride sample results: Analysis attached herein. Jan 05, 2021

Certificate of Analysis Summary 606107

Terracon Lubbock, Lubbock, TX Project Name: West Lovington Strawn Unit #8

Project Id:

AR157026

Contact: **Project Location:**

Brett Dennis

Date Received in Lab: Tue Nov-20-18 08:45 am

Report Date: 29-NOV-18

Project Manager: Kelsey Brooks

Chloride	Omis/KL:	26.4	12.5	1240	250	26.5	12.5	187	25.0	25.9	12.5	983	250
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
	Analyzed:	Nov-28-18	16:21	Nov-28-18 1	6:59	Nov-28-18 1	7:11	Nov-28-18 I	7:23	Nov-28-18	17:36	Nov-28-18 1	17:48
Chloride by EPA 300	Extracted:	Nov-28-18	15:00	Nov-28-18 1	5:00	Nov-28-18 1	5:00	Nov-28-18 1	5:00	Nov-28-18	15:00	Nov-28-18 1	15:00
	Sampled:	Nov-19-18	13:25	Nov-19-18	14:45	Nov-19-18 1	14:15	Nov-19-18	13:50	Nov-19-18	12:55	Nov-19-18	15:20
ysis requested	Depth: Matrix:	WATE	R	WATE	₹	WATER	₹	WATER	2	WATE	R	WATE	2
Analysis Requested	Field Id:	MW-1	2/8/	MW-2	5000	MW-3		MW-4	3	MW-5		MW-6	
	Lab Id:	606107-0	001	606107-0	02	606107-0	03	606107-0	04	606107-0	05	606107-0	06

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks

606107

Lubbock

Office Location

amr		Bre	ett Der	inis			SRS #:					1 2	- 1	1 1	E.	1	Page1 of1_
	oler's Name	Bre	ett Der	nnis			Sampler's Sig	natup	e /	7		Jul 300	200 200				
roje	ct Number	R157026		P	roject Name	lost Louings	et		11/	No. Typ	of Container	A Metho					
Matrix	Date	Time	Comp	Grab		ring Marks of S	Strawn Unit #8	Start Depth	End Depth	250 ml Poly		Chloride (EPA Method 300)	200				
w	11/19/2018	13:25		x		MW-1		-8-	- w	1	+	X		+	-	++	Lab Sample ID
w	11/19/2018	14:45		x		MW-2		1		1	+	- x		++	+	++	+
w	11/19/2018	14:15		x		MW-3		1	-	1	+	T _X		++	+	++	3
w	11/19/2018	13:50		х		MW-4				1	+	\ \ \ \ \ \	_	++	-	+	1 3
w	11/19/2018	12:55		х		MW-5		1		1	++	X	-	++	+	++	+ 2
w	11/19/2018	15:20		Х		MW-6				1		X	_		+	+++	1-3
4							- ISHU					1	1	T	1		
+				1			_										
+			1	_	-19						100		T				
+			\vdash	\perp													
IRNA	ROUND TIME			No													
inquist	od by (Signature)	()	_	NO NO	Date:	lour Rush	Received by (Signature)	-	TRRP	Laborato	ry Review Ch	Yimic	-	NOTES:	s 🗆	No No	
noluish	ed by (Signature)	100	-		11-20-1	8 8:45	Received by (Signature)	0			1/2019	8 8	345				
					J. 2002.	100000	received by (signature)				Darge /	Time		e-mail re			
nquish	ed by (Signature)	L-11 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			Date:	Time	Received by (Signature)				Date:	Time		1			erracon.com
nquishe	ed by (Signature)	TV CASTONIA PARTIES	1-72-19		Date:	Time:	Received by (Signature)		-		Date:	Time:		1	krist	ina.kohl@	Oterracon.com
u aner		Vastewater 60 ml vsal		V - Water	5-508	L-rin	und A - Air Bag	£ - Charcoa	Itube	51 - 5	udge						
	- AOA	ou me visi	-	/G - Amber C		Glass wide mouth	7 50th Street, Su										

Laboratory:

Address:

Phone:

Xenco

6701 Aberdeen

Lubbock, Texas 79424

Page 39 of 376

Received by OCD: 6/28/2023 4:21:05 PM

606107

CHAIN OF CUSTODY RECORD

LAB USE ONLY

TEMP OF COOLER
WHEN RECEIVED (°C)

DUE DATE:

ANALYSIS

REQUESTED

Appendix B Monitor Well Logs

mind Client west Lovington Strawn Unit # 8

Energy Resources Corp OCD case #IRP -2457 WELL COMPLETION MW-9 SCHEMATIC OF TRIPLE NESTED MW-9: mw-9 (Deep) + mrs-9 (middle) + mw-9 (Shallow) 8-in borchole white walker 11-40'= bentonite cement great to 73 695 40'-45'=3/8"bentonite chips soal 45- 40: 10/20 sand pieter pack 0,020 BEHORVE LR9/14/21 -50'-70' = 2' SCH 40 PVC 0.020" slotted screen 60 73-123'=3/8" bentonitechips seal 96 100 110 123-147'= 10/20 sand pilkspack (PE -128'-143' = 2"SCH 40 PVC 0.020" sea Head screen 130 143-145' = 2'sump + endcap 140 147'-170'=3/8" bentonite chips soul 160 170'-194'=10/20 sand filter pack 170 175'- 190'=2"SCH 40 PVC 0,020" scottad screan 180 : tigo - 192'= sumpt endcap 190 :: 10:10:2: A. A. a. P. 194'- 197.5' = seough 111.5 bas NOT TO SCALE -

			-	Energen R	Lesoures och	16	
	oject:				1RP-2457	She	eet: 4 4
	catio	n:			ovington Strawn Unit 8		4,3
	ent:			Dian	nondback Energy	Job	number:
Dri	iller:			Trey C	ain	Tot	tal depth: 197.5' bas
Dri	illing i	meth	od:	Some	ore (L5-600 Roto Sonic)	Bori	ring diameter: 10-in to 73 ftlas; 8-in to
Bo	ring o	date:			- 9/23/21	Log	gged by: D. Brdeson
Wa	ater le	evel:				Dat	te measured:
	1	SAMPL	F		CON DESCRIPTION	_	COUNTRITE
(3)	-		L	standard	SOIL DESCRIPTION	Pic P	COMMENTS
depth (ft)	interval	number	recovery (inches)	test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	graphic	Monitoring well installation, geotechnical properties, analytical tests, instrumentation
		Soil	50	0-0.717	1/5:0/ 100-1		
-	1	-01	_	+	opsoil: fine sand/silf/clay torga caliche at 0.5 bes; dry	nic.	
			55		-7.5; caliche sandstone; ver	4	0-7.5': PD = 5,4ppm
				+, +	use brown (104R 8/2); fein to radium sand; well indurated,	does	
				+ + 1	.5'-12.5': sandstons / caliche	1 3	7,5'-12.5' PID=5,1ppm
			55	+++ 2	- same as above -		
				++			
1			55	++			
-	1			+++!	2.5'-17.5': sandstone /celid	e	12.5'-17.5': PID=0.3ppm
1 -	-			+,	- same as above -		
1 .			55	++ +	المراجع المراجع المراجع المراجع المراجع المراجع		17.5'-20.0'-PD=3.0ppm
				+++1-	7.5'-20.0' sounds lone / caliche - same as above-		
			Vana		0.0'-25.0'; sand stone / caliche		20.0 -25.0'. PID - 2.2 ppm
			55	T +	-same as above -		1-
-				+ + +			25.0-30.0: PID=2.8 ppm
-	1			+ = 2	5.0'-30.0', 55/caliche		25.0 - 30.0 11 13 - 21 0 pm
+	-		55	+ + +	- same as above -		-
-				+ +	22 21 21 21	1	
-			sp		0.0'-32.0' = sugarlike sand; eig rown (7.54 R 6/4); feingrained, u	-00	30.0'-37.5: PND = 3.6 ppm
					ortedi moist.		
		1	55/ /SP	1,-1 3.	2.0 - 37.5 1 sand with them 55-le	yes,	
	10		/SP	7 1	S slightly culcareous; damp.	ud;	7
-					2,0-37.51 same as above (7.54R7)	10-0	
	-	-		3	ubungulas to subrounded	PIL	n'ej
-	1		55/	1 1 1 3	7.5'-45.0'=5ame as above		
	1		ISP	:	+4'-45' colcaseous sandstone la	per.	
	1				151-4811 same as above		
1							
-				1	481- 52.5: sugareile sand, eight	1.	
			SP		reddish brown (53R6/4); well sort	mois	51 49'-51'= caniona . A . a o (=1241)
-				: 4	+491-515 way moist		51 49'-51'= capillary fingl (= voy mo
-					AT 51 53,5 gray (motted) (no	odo	or detected), wet. 52,5-53,5: PD-14,6
1			in		50 -60.0 : Sugarlila line sand.	1	1
	4		SP	:	reddish yellow (54R 6/6); well surfed; subrounded; irregulas thin 55 layers which are sligh		
					sorted subrounded irregulas	10.	
)					calcaeous, saturated.	Py	

	_	ect:			Case 7	RESOURCES UCD 4 1RP2457	Shee	t:	2014	
(Loc Clie Drill		n:		Djam.	ovene ton Stewn Unit # 5 on deck Energy Cain	Job i	number: I depth:	197.5' bes	-
1	Bor	ing o	met date evel	:	Sonic C	- 9/23/21	Borir Logg	ng diameter: ned by: measured:	10-un to 73 ft bgs	8-in ho1
Γ	2		SAMP	PLE	standard	SOIL DESCRIPTION		COM	MENTS	
	depth (ft)	interval	number	recovery (inches)	penetration test results	Color, soil type, relative density or consistent mineralogy, USGS classification moisture conte			stallation, geotechnical al tests, instrumentation	
	1 1 1 1			SP		reddish yellow C54R6/6); sub rounded; well sorted; irregular thin layers of slightly calcarous sand saturated				
	1 1 1 1			sp		70'-80': sugarlike same.	dj'			
	-			50 50 50 50 50		80'-85': Sugarille sand - Same as above (83'-84'= cal carous Sano 85.0-87.5': sugarlile samo - Same as above - At 86,5-87.5': calcarous	(stone)			
				SP.	37.77	87.5-97.5' supartike send reddish yellowo 59 R 6/6); su well sorted; the , satura CSS very rare to non-exist 47.5-107.5' = suparcike san — same as above —	brounded hed.	;		
	1 1 1 1			sp	さんだい	107.5'-117.5'. sugarlike son	d			
-	1 . 1			sp	- A	A+ 112.5'-114.0': greyund thing	moted	·		
1				SP	- 1	At 115,0 -115,5 = calcarous;	Sound ST8h	e		

.00	ject: catio			west 1	245 Desouvees OCD Case # 1RP- oven ston Strawn Unit # 8	Shee	1.7	
	ent:			Diamo	ondback Energy	Job	number:	100
Dril	ler:			Trey		Tota	depth: 197,5 695	
Dril	ling i	meth	od:		ore CLS- 600 Roto .		ng diameter: 10 4 73 bes and	04, 107
	ing o				21 - 9/23/21	Logg	ged by:	A 40171.
	ter le			11171	21 = 7/25/21			
						Date	measured:	
		SAMPL	_		CON DECODOTION			
3				standard	SOIL DESCRIPTION	Ų.	COMMENTS	
depth (ft)	interval	number	recovery (inches)	penetration test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	graphic	Monitoring well installation, geotechnical properties, analytical tests, instrumentation	
			SP		-			
-			- 1				4	
-		0						
		9			127.5-137.5': sugartile sand reddiohyellowcssa 6/6); fine		1	
-			SP	1	reddish yellowc55R 616); fine		H	
-	-		-	- '	saturated.			
		-	1000	. 11				
			SP	1	NO ss atall		7	
-				. * .			1	
-					1 1175.5 01/1		4	
				1.	137.51 - 147.5 : sugarlike sama	١		
			SP	* 1	same as above		7	
		-				-		
-			SP				1	
		1					Not: 147.5-148.5 above -	
			SP	1 3	A+ 147.5-148.5: 55 ; to very have	1	the 55 gray sugarsand	
_					with grow staining above		PID:	-4
-			55	. , ,	149.5'-157.5': sugarlike sand;		PID: 2.4 ppm Vinyl-odo	
		-	10		fine sand subrounded, well		المرابع المراب	
10			SP		sorted; wet,			
- 7					A+155' some very fine sound wi	Hour	-	
-	1	1			distinkt contact; looks more		Η.	
4			SP		distinkt contact; looks more yellowish red than reddish yell	Pow L	53R(6(6)-7(53R5/6)	
140					157.5'-167.5 = sugareille sand;			
					fine sand, subrounded, well		1	
-					sorted, wet; has trace of verei for	100		
-	1		SP		sand and silt day; getting of	Greses		
_					4,0			
		1			167.5'-177 5's sugarcike sand;	1	. 7	
-	1	1	-		more yellowish red looking the	ee	1	
-	1		SP		reddish y ellow; some very fine so	1	-	
					silt/clay in matix, wet to ve	y me	ist;	
					very dense.			
	1		SP	. ,		1	1	
	-	1	1		177.5-1860: sugastile sand	1		
+		1		,	- asabove -			
			SP		A+ 183': drilles reports very dens	52	1	
-	1	1	1	. ' .	Roumation; slightly more very fin	e	-	
					sand/siet/ clay with increasion			

Clie Drill Drill Bori	er: ing i	meth	nod:	Diam Trey Sonic	1RP-26 In Resources OCD casett Louington Strawn Unit the sondback Energy Cain Core CLS-600 Roto Service) [21 - 9/23 21	Shee Job Tota Bori Log	number: al depth: ng diameter: left 40 f 4 197.5 f 6 197.5 f 6 20 by: e measured:	95 and 8"
depth (ft)		AMPL B		standard penetration test results	SOIL DESCRIPTION	graphic	COMMENTS	7
deb	interval	number	(inches)	test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	8	Monitoring well installation, geotechnical properties, analytical tests, instrumentation	
-					see previous p. 3 , continued!			
-					occasional mm-size rounded rock fragment/ pelable voug moist]
-			60/		186.0'-188.0': very fine sand (trace	Pines		
-			SP/SM		madium sand; color more to substitute	44	Carous NOTE: 188'b	-
-	_		SME		subangular to subrounded : slight 5-7 % silt clay; was to maidy	Tense	"TRIMSSIC" R	
-			01/		188.0 - 195.0 = voy fine sand with sich	1 - de	be Hom some	1-219
-			150		matrix; color more to reddish hus; slightly calcalous with mothed an	1000		188.5
-				tstone	slightly calcaeous with motted app very dense moist (lacking the pebbles from previous wells).	rock	fragments)	+
-			ML					+
	7				sand/sill clay; eight greenish a (GLEY 1 / 7.1); moist to dam	mu		=
1					(GLEY 1/7.1); moist to dam	p.]		1
			1		196.0'-197.5' \ siet; siehy-clay	Sall .	ery	7
					fine (subangular) sand; rares	Tam	7/1	7
					dettil 1 1 06 · · · · · ·			7
					with bedding planes (2) sim previous wells withhorizon to along irregulat this class to	ieas	to	
1			. 1		along irregular thin clay la	eser	churing]
-	٠,				7	0		
4					**			1
\vdash						- 2		
-								4
1								+
-			-					+
-						g A	,	-
								1
								1
. 7	100					1		-

lie ril	ject: ation ent: ler:	n:		west Diamo	Resources OCD LAP- 2457 Lovington Strown Unit # and back Energy Maples	Job number: Total depth:				
Bor		meth date: evel:		Sonicc 9/15/21	ore CLS-600 Roto Sonic) - 9/17/21	Log	ng diameter: ged by: e measured:	L. Anderson		
3		SAMPL	E.	standard	SOIL DESCRIPTION	1	СОМ	MENTS		
depth (ft)	interval	number	recovery (inches)	penetration test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	graphic	Monitoring well ins properties, analytica	tallation, geotechnical I tests, instrumentation		
-			45	+ + +	pine sound with silt cloud to organi ma Hes; dry; white calliche frages 0-7.3 : caliche with	2015	0-2.5'.F	-		
1		1	SP	- SPI	any, very hard	1	7.5'-15.0	': PID =		
-			SP	9.2	medium songrained; well industrial - 12,5; sugarlik sand; pi	w/col		-		
			55/50	55/sp	(54 (2 7/4); very fine to fine so subrounded to subconqueer, d 5% caliche no dules, well sorte	wal ;	15.0-17.5	:':PiD=		
-			WV	=	1215 Soundstone; pinkish u	1:4		-		
			54/5/	35/50	C7.54 R 8/2); layers of 55 wir very fine to fine 5 and layers; caliche cemented (calcare our very hard, dry, (171-271 55 les	+4	word).			
			SP	-	27:0- <49.0) = Sound (pink					
1 1 1 1			st		rey fine to fine, sub angulo to sub rounded grains, well sorted; sporadic Line gular calcaeous ss-layers, day. The transition to sugarsand is	0	3			
-			sp		gradual 47.5-50ftdamp reddish yellow(546/4)			-		
171					491- = sugarsundipiuk	4		= wery moist = -		
1 1 1	*		SP	'SP	(55/27/4); finegrained, sub- rounded i well sorted, 50/525 very moist = capolilary for 52'-55'- wet At 55'=5 a turated At 51-52: moderate/ eight gre	ge.	52.0-52.0 52.0-55.0 52.0-55.0 50.0 PIDGO-52 peoloration	wed]		

-		-	-			Geological Services, Inc.	STATE OF THE PARTY NAMED IN	ring ID:	Mw-8
r	Drai				-	1 RP-245			2011
	-	ect:				n Resources OCD Case #	Shee	et:	2 of 4
		ation	1:		west	Lovington Strawn Unit#8			·
(Clie	nt:			Djamo	molback Energy		number:	
-	Drill	er:			Tustis	maples / Treu Cain	Tota	depth:	
I	Drill	ing r	neth	od:	Sonice	nMaples / Trey Cain Core (LS-600 Roto Sonic)	Borin	ng diameter:	
-	Bori	ng d	ate:		9/15/2	21-9/17/21	Logo	ged by:	L. Anderso
1	Wat	er le	vel:					measured:	
									Sale III
	_	S	AMPL	E	standard	SOIL DESCRIPTION		СОМ	MENTS
	Septh (ft)	100	Je C	y (8	penetration		graphic		
1	dept	nterval	number	(inches)	test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	DE O		staffation, geotechnical If tests, instrumentation
-	-	,=	-	5 5					
1						continued from p. 1			
1	7			SP		subrounded pine sand;			
1	-					saturated deuses than abou	e,		
	+				1,1	saturated, deuses than about some thin layers of sandstof same fine sand intersper	one		
5	1	- 1		_		of same Pine sand intersper	sool		
1						67.5-77.5'! sugaround			
						game as above			
1	4			SP		come irregular layers			
1	4			21	- 1	some irregular layers with calcarous comentate	m		
						BI I TO THE COLOR OF THE STATE		(
1	7								
	7				1 : 1	77,5 - 87,51: Sugarsound			
_	-	-	-	-	×	same as above	-	200	
1	4				, 1	et 78'-80': medium gray		701 01	PIN-Lan
					· + .	dis coloration		18 -00 =	PID=69pp
1	7			SP		as cotoranon		b	
1	-				1. :				
	-				1.1	87.5-97.5 > sugarsand			
0 -					111				
						some as a bove			
1	7					At 93' no more 55 indus	sions		
	-			10		F. 12	1		
	4	. 1		SP				-	
1						-7 -			
						97,5-107,5: sugarsand			
) -						Same as above	-		
	-								
	-) 1		-0	* .				
				50	-				
-									
	-					107.5-117.5' Sugarand			3
) -	-		-		11		-		
			1		-	sound as above		,	
1	*			-	:1	minor to touch cours			
	7	g-1		SP	1 1	->at 112.0' -11) 2'1.			
1	-	- 1				->at 112.0' -112.3' 695			
	-			1	-	The little was			
						117.5'-127.5 sugarand			
) -						Same as above			

						Geological Services, Inc.					
		ect:		_	caseA	1 1 P - 2457	She	et:	3064		
		ation	1:			Covington Strawn Unit 48	,		0:-		
(Clie	nt:				and back Energy		number:			
I	Drill	er:			Trey	Cain	Tota	al depth:	pth:		
L	Orill	ing r	neth	nod:	Sonoc	Core (LS-600 Roto Sonic)	Bori	ng diameter:			
E	Bori	ng d	ate:		9/15/	21 - 9/18/21 9/17/21	Log	ged by:	by: L. Anderso		
V	Nat	er le	vel:				Date	e measured:			
		-	AMO	-		201 000000					
	3		AMPL	-	standard penetration	SOIL DESCRIPTION	hic	COM	IMENTS		
	depth	interval	number	recovery (inches)	test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	graphic		stallation, geotechnical al tests, instrumentation		
	-	.5	=	2 5				properties, analytic	ar tests, instrumentation		
				SP	; .	117.5 - 127.5 on brevious page					
				-		1.3					
						127.5- 137.5' = sugarsand					
	=			SP		reddish ye coo C54R 6/6); Pine					
-	-		-		,	127.5- 137.5' = sugarsand reddish yellow (54R 6/6); fine sand; subrounded, well sorted; wet					
	-			-	** • .	sorrea , was					
	-			SP	, ,						
		-			. ,						
						137.5'-145.0'; sugarsand,	1				
				SP		same as above					
						A+ 138'-140' medium gray		NOTE: 13	8'-140'=gray s		
	7			SP	3.	overall hand dilling 484			0 0		
	1				1, 1	overall hand drilling to	36 15	-140	-		
	-				1, 1,	145'-155'= sugassand					
	-			Sp	A A A	74					
-	-			EA	7-VIAV	VI					
	-			SP	, ,						
	+				1,1	155'-157.5' = sugarsand		9-			
	-			1	; '						
				SP		157.5-167.5; sugarsand					
Ī						color slightly more to ward	5	-			
	7			sp	. ,1 ,	yellowish read probably due	9				
	-			-	1	trace of clay (1%), but shel					
	-			1		fine sand, subrounded, hard dilling; wel; well sorted.	-				
	=			co		163 d 137 C'					
			-	SP		167.5-177.5' 1 Sugarsand					
				SP	1	with 1% day, reddish yellow (54R 616); well sorted, wet, getting denser still	1				
				36	,	(5 yk 616); well sorted;					
		9				wer gering densers the					
	-				٠	177.5-187.5 on page 4 of 4 (see below!)			1.3		
		- 1				177 - 107 - 1					

						245	7		
	Loc	ject: ation	า:		West	Resources OCD Case#1RP-	Shee		4094
	Clie				Diamo	ondback Enorgy	ner .	number:	107 -11
		ling r	neth	nod:	Trey (one (LS-600 Roto Sonic)		ıl depth:	197.51 6
		ing o				21 - 9/17/21	Logg	ged by:	L, Anderso
	Wat	ter le	evel:				Date	measured:	
	2	S	AMPL	E	standard	SOIL DESCRIPTION		COM	MENTS
	depth (ft)	interval	number	very nes)	penetration test results	Color, soil type, relative density or consistency,	graphic	Monitoring well in	stallation, geotechnical
. 00	dep	inte	nun	recovery (inches)		mineralogy, USGS classification moisture content	ð		al tests, instrumentatio
180	-			sp	.,:,	177.5'-187.0' sugareila fine sauce reddish yellow (5486/6); densa, wellow	1		
70	-			sp		A+181 = 1% mm-site rounded rockfrogs Eome von Pine sand; 2% siet/clay=s increase with depth	lowey		
87				sp/sn		187.0'-191.0'= very fine sand (trace his 5-7% silt/clay: slightly calcareous; 100 caliche hodules; dense Charldnill	dium	sand),	
901-	-			sp/sn	,	westomoist,	-	AL 1918+1	25
(-			SM		191.0 - 194.5'; very fine sand with sile clayer matrix; color changes to m reddish hues; small voids filed with fine "sugarlike" sand slightly calcar	y/	TRIASSIC bottom of	"Red Bed screen @ 191.5"
14.5'-	-			ML		Fine "sugarlike" scend; slightly calcan with a motted texture; 1-2% round subrounded rock page pebblos and a nodules; moist; very haddrilling.	fool		
97.5				ML					
	-					194.5-197,5's silt; stely-clayers angular very fine sand; red (2,54	5/0		
	-					10% small pebbles and largequast	grain	s, ·	
	-					dry; very hard drilling; separates hori zen falley along irregular thin			
	-					layers of clay (irregular bedding	plane	s?)	
	-								
	-			-7.					
	-	4							
	-								
	-								
	-			-					
	-								
	-	141				. 15			
	-								

					1 RP	-245	7	
oje	ect:			Energen	Resources OCD Caset	Shee		194
ca	tion	:		west	ovington Strang Unit #8			
ier	it:			Diam	ondidack Energy	Job	number:	
ille	er:				m maples	Tota	l depth:	197,5 1695
illi	ng n	neth	od:	_	Core (LS-600 Rotosonic)	Borin	ng diameter:	10-in to 70' and
rir	ng d	ate:			1-9/13/21	-	ged by:	2. Andoson
at	er le	vel:					measured:	
	S	AMPL	E	standacat	SOIL DESCRIPTION	1	COM	MENTS
	Nal	ber	es)	penetration test results	Color, soil type, relative density or consistency,	graphic	Manitoring well ins	tallation, geotechnical
	interval	number	(inches)	CA	mineralogy, USGS classification moisture content	6		I tests, instrumentation
+	-	-	-		-0.71 August 11/	263		
1				caliche -	-0.71 :top soil; dark brown (7.53R) madium/him sand sict, clay, roots	5/3)		4
					madium/fine sand siet, clay, roots Louse, moist. At 0.5 start mm-size		2.5'-10 10	PID=2.1 ppm
			55	L' + . + . ' .	caliche hodules (white) 0.7'-2.5!, caliche, white, dry			
1					1.5'-7.5' : calcareous SS; piulcishadi	Lwhi	te	
1				L 1 1 1	LOUD DISTINGHAM 1'chiand	1.0		
+				+ + + +0	som diam; pea-size awarded to	undo	deravel Ctr	ace)
1				1 1	SI-2451	neoli	well sorted.	
1		1		+ 1	1.5' - 2315; calcareous SS;		101-20. DI	D=0.4ppm_
1		- 0	55	+ -	- same as above -	1	10 -2017	D. 0. 11 P. 1
1	1			+	* calcium carbonate cement	ed		-
4	- 4			+++	Sandstone			4
-			_		19.5-52,51:			
1				ETP	sandstone SS; pink (54R7/3			
1			35/	++	with irregular			7
1			SP	1	equers of well sorted sp.			-
1					the se visible in the SS an	4		+
1				_, -	trace of mm - size subrounds	el	1	
1					rock fragments, cacos cement	ed.		
1				'	cali che fragments less tha	4		
1			55/	-:	10 % ; Dry			-
1			1SP		- W			
-							3-11	
1				7	and the second second	1		
1				~'I	4+39-50 pinkishgray CSYR7/2			7
1			54	1, 1	dry.	1		
1			/sp	7. 7	0			-
1								-
1								
1								
1			55/		1449 moist formation: well	Score	ol	7
+		-	Isp		sugar sand with small irregu	yes-		00 -00 0
4			1.31		lenses of ss; fine subrounded	1	52.5-55.0	PID = 99.9 ppm
7				1	Sand is the same	00-	55,0 -57.	D' PID=145.8 ppm
1	.00				52,5' - 57,0'= very moist = cap;	ware	mige C	OILS IR 744)
1			SP		At 52' saturated	-		-
4					54.5-60.0') gray discoloral 60.0-61.0' and "vinyl"-016	TON,		1
			1		- MANN Ahus - Oil	a land on	400 11	THE PARTY OF THE P

Pro	ject:			Energe	Passuras Comp OCN Case	1RP2457 Shee		2004	
	atio			West	Resources Corp OCD Case.	1/48		2014	
Clie				Diam	molback Energy	Job	number:		100
Dril	ler:			Tus	ten mapas	Tota	depth:	197.5	
Dril	ling i	meth	od:	Sonic Co	re (LS-600 Roto soni	c) Borin	ng diameter:	10 in to 70 and	18-into1
Bor	ing c	late:		9/9/21	-9/13/21	Logg	ged by:	L. Anderson	
Wa	ter le	evel:				Date	measured:		
_		SAMPL	F		SOIL DESCRIPTION		COM	MENTS	1
depth (ft)	Interval	number	recovery (inches)	penetration test results	Color, soil type, relative density or consist mineralogy, USGS classification moisture of		Monitoring well in	stallation, geotechnical al tests, instrumentation	
-	-12	-	2 3						
-					59'- 67 = sugar sand			-	
-			SP	. sp	reddish gallow & y p	6/6)		-	
-		Ross	-1	67 175	67.0-77.5: Lost 0.5f.	sample			
-				-	A+67.5 Pl; sugarsand, Pr Sorked; yellowish red CS	na well	dich wollow	-	
					soft, saturated; less th	an 1%	w		
-				1	of mm-tocm-size suc	mounded		~	
-				SP.	gravel / salcareous san	dstone		-	
-				MARA	concretions. At 72,5'-73,0/approxima	tely		-	
- 1					6" layer of calcareous sone in calcareous fin	sand sad	-te-	-	1
-	-				(Nodules).	esand.			1
				.5p		above			
-				5P-	77.5-87.5: same a	6)			-
-				1	At 78.5'-79.0'? calcareo At 84.0'-84.5') Sundson	us		13	-
-				SP'	(as above). in fines	and matrix		-	-
					37,5-97.5- same as a	Love	-		+
-	-			. ,2 b.	reddish yellow	6) .			-
-	1			50 5	The second of th	Des		0-	
-			,		94.3-94.7 approximates 5" of calcarcous sands	tone .			-
-	0	10	Aces	A MACA	in fine sand many	Cas assure			
		-			17.5 - 107.5 : same as a				
				- 1 re	dash yellow (542 5/6) At 104-104.5'= calc, node			1	-
-				spi.					-
					A+ 105.5-106,2 = calcinda	papore)			-
-					107.5-117.5 = same a	above			-
		-		SP	Freddish yellow	6)			-
-	,			1	4+1/2,1-112,7'= calcinodul	2555			-
	-			10	in non-calc. fine sund	4			-
- (4		1		3	A+ 115,2'-115, 5'= calc, nod	was 55			-
			200	SP	in non-calc fine sauce	d		-	
			T		1 Sugarsan	di	ut.		
		Q-107		-	ed at the second	150,000			

Project:					Resources Corp.	Char		3# of 4
100	cation	٦٠				Shee	er;	3 4 4
	ent:	1.		Diana	Lovington Strawn Unit *8	loh	number	
	ller:			Diamo	ndback Energy		number:	
		1.	1.	Jus	ten maples		al depth:	197.56
	lling r		oa:		The state of the s		ng diameter	10" to 70g
	ring d			9/9/2	1 - 9/13/21		ged by:	L. Ando
vva	ter le	evel:				Date	measured:	-
	1 0	AMPL	F		SOIL DESCRIPTION		CO	MMENTS
5-1-1-		_	penetration	SOLE DESCRIPTION	phic g	CO	MINERALO	
		(inches)	test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	graphic	Monitoring well installation, geotechnical properties, analytical tests, instrumentation		
				4. '.	117.5-127.5' sugars and reddish			
1					4 coloro C54R 6/6): mostly fine			
-				·SP	count subrounded well sorred			
-	-				saturated (No more calcareous			
				,	nodulas present.)			
					127.5-137.5: same as above			
				: '.				
	-							
				sp'				
					137.5'-147.5' , same asabou	e		
	-	-	-					
	1							
				CA				
1					147.5- 157.5' same as above			
-	1							
-	-	-		,	from approximately 152,5			
				. , , ,	still sugars and but slight/a	nao	lual	
				25	gellow to yellowish red (5412.	5/1)	-	
1	1		-	SP.	also trace amount of silliday	10/	7	
1	4				also trace amount of sill clay in matrix and subrounded to			
1 .				1	sub angulas grains; saturate	d.		
					157,5'-167,5' = as above			
				- 1 1				
1	1		1					
1	+	1						
	-	-		SP.	167,5'-177,5: sugarsand			
1		1		1 :			1	
	1				as above but a lot olenser			
	1	-			had had a some graduall	4		
1	4		1	1:	getting denser.	_		
1	1		1	1	177.5'-182,5' asabovebuta	6-1		
1	140			SP.	denser, hardes drilling, wet.	-	1	
1	7		-	1 1	nouse, nover aree, no wet.			
1.	+			1 -1				
4	1		1			1		

	Loc Clie Dril Dril Bor	ler: ling (n: meth late:	od:	Diamo Juste Sonice	1 RP- 1 Resources Corp OCD Case* 18 1 rington Strawn Unit # 8 1 md back Energy 1 maples Core CLS-600 Roto Sonic) 1 - 9/13/21	Job Tota Borin	
ſ	-	S	SAMPL	.E	standard	SOIL DESCRIPTION		COMMENTS
	depth (ft)	interval	number	recovery (inches)	penetration test results	Color, soil type, relative density or consistency, mineralogy, USGS classification moisture content	graphic	Monitoring well installation, geotechnical properties, analytical tests, instrumentation
6	1 1 1			SP SP/ SP/ Sm		182.5 - 186.0 1 fine sugarlike sa yellowish red to reddish yellow, u sorted; subrounded, but siet/clo about 2% and in creasing with de 1% mm-size rounded rockfragment	offer.	
)				SW/SC		lage quategrains; saturated.	d;	At 198 ft bas:
,	1 1 1 1			ML ML		-subangulos, clay siet 5-7%, sie culcarcous; wet 190.0'-193.0'; mestey very fine son subangulos; yellowish red C54R5 5-7% siet clay; calcaeous wi	a;	Cooton scrown at 190'bgs
56	195 - - -					mottled appearance; moist filly-clayed angular fine sand; red (2.54R 5) trace rounded pebbles and graves to 35 mm chameter; matrix slical calcaveous; very small crustal comagneties), very hard, day,	dany	
						Separates hor zon ally alon irregul	45	
	1 1 1 1			-				
	-					. *		

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

1 2013 JAN 10 1A 10: 30

1. GENERAL AND WELL LOCATION	MW-1 WELL OWNI Energen WELL OWNI 904 MOOI WELL LOCATIO (FROM GP	Resources REMAILING A TE AVENUE N LATTE S) LONG RELATING WE	Corporation DEGREES TUDE 32 GITUDE 103 LL LOCATION TO STREE	ES MINUTES SECONDS 58' 21.48" N 24" 09.32" W EET ADDRESS AND COMMON LANDMARKS - PLSS (SECTION, TO) WHITE COMMON LANDMARKS - PLSS (SECTION) TO SECTION			* DATUM REQUIRED: WGS 84 TOWNSHIP, RANGE) WHERE AVAILABLE of Section 34, T15S-R35E, Lea County				
	LICENSE NU WD1222		NAME OF LICENSED Lee Peterson	DRILLER				NAME OF WELL DR			
:	DRILLING S			Dentu Or count 1279	DEPTH OF COMPLETED WELL (FF) BORE HOLE DEPTH (FT)				g & Testing, Inc.		
	12/11/12		DRILLING ENDED 2/12/12	69.6	71			DEPTH WATER FIRS	STERCOUNTERED (FT)		
	COMPLETE	WELL IS: (ARTESIAN	O DRY HOLE	SHALLOW (UNC	ONFINED)	STATIC WATER LEVEL IN COMPLETED WELL (FT)				
Tior	DRILLING FI	LUID: (AIR	C MUD	ADDITIVES - SPI	CIFY:		-	· <u> </u>		
RMA	DRILLING METHOD:										
DRILLING & CASING INFORMATION	DEPTH (feet bgl) FROM TO		BORE HOLE DIAM (inches)	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen)		CASING CONNECTION TYPE		CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)	
2	0	49	6 1/2	PVC Casing		FJ		2	Sch 40		
N.	49	69	6 1/2	PVC Screening		FJ		2	Sch 40	0.010	
2. DRILJ											
İ	DEPTH FROM	(feet bgl)	BORE HOLE DIAM, (inches)		NULAR SEAL M. ACK SIZE-RANG			AMOUNT (cubic feet)	METHO PLACEN		
ERL	0	40	6 1/2	Grout				·	Tremie		
MAT	40	45	6 1/2	Bentonite Chir)S				Tremie		
ARI	45 69.6 61/2 8/16 Sand								Tremie		
3. ANNULAR MATERIAL											
FOR	OSE INTER	NAL USE							& LOG (Version 06/0	8/2012)	
	NUMBER				POD NUMBER		TRN	NUMBER 51	7451		
roc	CATION								PAGE	1 OF 2	

					_		
	DEPTH (feet bgl)		COLOR AND TYPE OF MATERIAL ENCOUNTERED) <u>.</u>	WATER	ESTIMATED
			THICKNESS	INCLUDE WATER-BEARING CAVITIES OR FRACTURE		WATER BEARING?	YIELD FOR WATER-
	FROM	то	(feet)	(attach supplemental sheets to fully describe all units		(YES / NO)	BEARING
					<u></u>		ZONES (gpm)
	0	30	30	Tannish White Clayey Sand with Caliche		$O_{A} \odot N$	
	30	35	5	Tannish Brown Hard Sandstone		OYON	
	35	71	36	Tannish Brown Medium to Fine Sugar Sand		CYON	
	· · · · · · · · · · · · · · · · · · ·		 			CYON	··
						OYON	
						OYON	
ELL		ļ				0 0	
<u> </u>					_	10 10	
105	 					OYON	
07						OYON	
31C						$O^{Y}O^{N}$	
ro						$O^{Y} O^{N}$	
350						OYON	
4. HYDROGEOLOGIC LOG OF WELL						CYCN	
Q.A.I						CYCN	
4.1		 				CY CN	
						OY ON	
						() ()	
}						\mathcal{O}	
						$O \cdot O \cdot$	
١ ، إ						OYON	
						CY CN	
	METHOD U	JSED TO ES	STIMATE YIELD	OF WATER-BEARING STRATA: CF PUMP		AL ESTIMATED	
	() AIR LIF	т 💿	BAILER (OTHER - SPECIFY:	WE	LL YIELD (gpm):	
					<u> </u>		
~	WELL TES	TEST	RESULTS - ATT	ACH A COPY OF DATA COLLECTED DURING WELL TESTIN ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOW	IG, INCLUD 'N OVER TH	ING DISCHARGE I IE TESTING PERIC	METHOD,
SION	_	!					<u>, S</u>
₹VI9	MISCELLA	NEOUS IN	FORMATION:				ñΑ Sei
JPE1						<u></u>	200
ะระ						-	<u>ීලි</u> .
TEST; RIG SUPERVI						0	
EST	PRINT NAM	AE(S) OF D	RILL RIG SUPEI	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WEL	L CONSTRU	CTION OTHER TH	IAN LICENSEE:
5. T		` ,		. ,		5	<u> </u>
							三
	THE UNDE	RSIGNED	HEREBY CERTII	FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND	BELIEF, T	HE FOREGOING IS	A TRUE AND
IRE				DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS W 20 DAYS AFTER COMPLETION OF WELL DRILLING:	ELL RECOR	RD WITH THE STA	TE ENGINEER
۸TC	e.j.) (. ,
SIGNATURE	7.	<u> </u>		- 100 DETERMENT		110/12	
6. SI	/_/		TULO_	LOC PORTEON		1 6 1 1 2	
		SIGNAT	URE OF DRILLE	ER / PRINT SIGNEE NAME		/ DATE	
FA1	OCC INTER	MAL HEE		wo a	on well be	CORD & LOG (Ve	reion 06/08/2012\
_	R OSE INTER E NUMBER	NAL USE			NUMBER	COND & LOG (Ve	131011 00/00/2012)
	CATION			1 - 2 - 3		<u>_</u>	PAGE 2 OF 2
1 ~~`						_	

OFFICE OF THE STATE ENGINEER

	OSE POD NU	JMBER (W	/ELL N	(UMBER)				OSÉ FILE NU		<u>=</u>		
ĺįĝ	MW-2		·/O	· <u> </u>				L-13218	to Do	≺		
CAT	ľ			Corporation				PRONE (OPTI	ONAL)			
9	WELLOWN			•				CITY		STAT	TE -	ZIP
GENERAL AND WELL LOCATION	904 Mooi							Roswell	. <u></u> !	NM		1-1144
S	WELL			DEGREES		SECOND	S					
AL.	LOCATIO	تل ``	<u> </u>		58'	19.10"	N_	Į.	REQUIRED: ONE TEN	TH OF .	A SECOND	
E	(FROM GP	2S) L	ONGI	TUDE 103	24"	03.08"	w	• DATUM REG	QUIRED: WGS 84			
E I	DESCRIPTION	N RELATIN	G WELI	LOCATION TO STREE	TADDRESS AND COMMON	LANDMARKS - PLS	S (SECTION, T	OWNSHJIP, RANG	E) WHERE AVAILABLE			
1	l				wn Unit Location	1980' FSL & 6	60' FWL a	of Section 34			<u> </u>	
	WD1222	IMBER		NAME OF LICENSED Lee Peterson	DRILLER				NAME OF WELL DR Peterson Drillin			
	DRILLING S	TARTED	ı	ORILLING ENDED	DEPTH OF COMPLETES	WELL (FT)	BORE HO	LE DEPTH (FT)	DEPTH WATER FIR	_	-	
	12/11/12		1		69.6		70					
Z	COMPLETE	D WELL IS	s: C) ARTESIAN	O DRY HOLE	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN	CÓMPLETED WEI	LL (FT)
CASING INFORMATION	DRILLING F	LUID:	•	AIR	C MUD	ADDITIVES - SPE	CIFY:		·			
SMA.	DRILLING M				O HAMMER O	С отня	ER – SPECIFY:					
10	DEPTH	(feet bgl	=	BORE HOLE	CASING MATER	IAL AND/OR			CASING	<u> </u>	GD1G 32441	
	FROM TO DIAM				GRAE	DE		ASING NECTION	INSIDE DIAM.		SING WALL HICKNESS	SLOT SIZE
NIS	(inches)				(include each casi note sections		1	ГҮРЕ	(inches)		(inches)	(inches)
Ü	0	49.6	_	6 1/2	PVC Casing		FJ		2	Sc	h 40	
DRILLING &	49.6	69.6		6 1/2	PVC Screening	PVC Screening FJ			2	Sc	h 40	0.010
13												
DRI		<u> </u>								<u> </u>		<u> </u>
, ~		<u> </u>					<u> </u>			<u> -</u>	ROS	
•		<u> </u>								13	- <u>SEM</u>	
<u> </u>	}	 	-	 _	 		 		 	E		
, ;		 -					 	 -		==	NO INC	
					 		 -			=	کے آگیے۔ - آگی	-
<u> </u>	DEPTH	(feet bgl		DODE US: T	1 IOT AND	ULAR SEAL M	ATEDIAL	A ND	AMOUNT	<u> </u>	5	D.OF
1-1	<u> </u>	(TO		BORE HOLE DIAM. (inches)	\	OLAK SEAL M. CK SIZE-RANO			(cubic feet)	ŧ	METHO PLACEM	IENT
R.	FROM 0	43	<u>, </u>	61/2	Grout				<u> </u>		remie m	·
ATE	43	46		6 1/2	Bentonite Chips				 		Tremie	<u> </u>
K X	46	70		6 1/2	8/16 Sand				 		Tremie	
3	 								 			
ANNULAR MATERIAL	 -				 				 			
3. A.		 			 				1			
FOF	R OSE INTER	RNAL U	SE	· · · · · · · · · · · · · · · · · · ·				WR-2	0 WELL RECORD	& LO	G (Version 06/0	8/2012)
	E NUMBER					POD NUMBER	2		NUMBER 5 /			
LO	CATION											I OF 2

	DCDW1/	1 1				COTTLA ATTO				
	DEPTH (I	TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)				
İ	0	30	30	Tannish White Clayey Sand with Caliche	CYON					
1	30	35	5	Tannish Brown Hard Sandstone	OY ON					
}	35	70	35	Tannish Brown Medium to Fine Sugar Sand	OY @ N					
		···			OYON					
Ì					OY ON					
ا ج					OY ON					
/ELJ					OY ON					
<u> </u>					CYON					
90					OYON					
пэ					CYCN					
190'					OY ON					
EOL					O Y O N					
200					O Y O N	_				
4. HYDROGEOLOGIC LOG OF WELL					$O_{\Lambda} O_{\Lambda}$					
4. H			<u>-</u>		O Y O N					
					$O^{Y}O^{N}$					
					$O^{Y}O^{N}$					
					- V - N					
					$\begin{array}{c c} O & O & \bullet \\ \hline O & O & \bullet \\ \hline \end{array}$					
			. <u>. </u>		$O^{Y}O^{N}$					
					CYCN					
	METHOD U	ISED TO ES	I TIMATE YIELD	OF WATER-BEARING STRATA: C PUMP	TOTAL ESTIMATED					
	O AIR LIF		BAILER O		WELL YIELD (gpm):					
	C) AIR CIP	' (9)	BAILER ()	OTTER-STEEL T.						
NO	WELL TES	T TEST STAR	RESULTS - ATT T TIME, END TI	ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCL ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER	LUDING DISCHARGE I R THE TESTING PERIC	METHOD, DD.				
TEST; RIG SUPERVISION	MISCELLA	NEOUS IN	ORMATION:			_S : 1				
PER					- 13	ROSE				
SUI					=	SEE .				
RIG					E E					
EST;	PRINT NAM	Æ(S) OF D	RILL RIG SUPER	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS	TRUCTION OTHER TH	IAN LIGENSEE				
5. T		(-, -, -, -,			-	ER				
RE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 20 DAYS AFTER COMPLETION OF WELL DRILLING:									
SIGNATURE	1,)	1	_	1 4					
S.			14	- 100 Deroposil	1/2/12	(
6. S				LAL NATIONALE NAME		·				
oxdot		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAME	DATE					
	FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/08/2012)									

POD NUMBER

TRN NUMBER

PAGE 2 OF 2

FILE NUMBER

OFFICE OF THE STATE ENGINEER

								2013 IAN I O L	Д	U: 30	
- [OSE POD NU	MBER (WEL	L NUMBER)	 _			OSE FILE NU	MBER(S)	7 1 1		
Ž.	MW-3					i	L-13218	Pads	>		
'A'TI	WELL OWN						PHONE (OPT)	ONAL)			
00	_		s Corporation								
GENERAL AND WELL LOCATION	904 Moo		ADDRESS				Roswell		STATI MI		7.17 1-1144
Λα			DEGREES	MINUTES	SECOND	s	<u> </u>				
15	LOCATIO	N LAT	TTUDE 32	58'	20.90	N	• ACCURACY	REQUIRED: ONE TEN	TH OF A	SECOND	
ERAI	(FROM GF	100.00	GITUDE 103	24'	03.66"	w	• DATUM RE	QUIRED: WGS 84			
G	DESCRIPTION	RELATING W	ELL LOCATION TO STREET	ADDRESS AND COMMON	LANDMARKS - PLS	S (SECTION, TO	OWNSHJIP, RANG	E) WHERE AVAILABLE			
-	Energen	#8-R Wes	t Lovington Strav	vn Unit Location	1980' FSL & 6	60' FWL o	of Section 34	4, T15S-R35E, Lea	Cour	nty	
	LICENSE NU	MREP	NAME OF LICENSED	DRILLED				I NAME OF WELL DR	LLING	COMPANY	
	WD1222	MIDER	Lee Peterson	DAIGLER				NAME OF WELL DRILLING COMPANY Peterson Drilling & Testing, Inc.			
	DRILLING S			DEPTH OF COMPLETE	D WELL (FT)		LE DEPTH (FT)	DEPTH WATER FIRS	T ENC	OUNTERED (FT)	
[; ;	12/11/12	.	12/12/12	71.5		73		i			
	COMPLETE	WELL IS:	() ARTESIAN	O DRY HOLE	SHALLOW (UNC	ONFINED)		STATIC WATER LEV	EL IN C	COMPLETED WE	LL (FT)
<u>S</u>			♠ AIR	C MUD				<u> </u>		 -	
Μ.	DRILLING F				ADDITIVES - SPI					 -	
S S	DRILLING N		● ROTARY		CABLE TOOL	Сотн	ER - SPECIFY:			_:	
E		(feet bgl)	BORE HOLE	CASING MATER GRAI			ASING	CASING		SING WALL	SLOT
O	FROM	ТО	DIAM	(include each cas	ing string, and	1	NECTION TYPE	INSIDE DIAM. (inches)	111	(inches)	SIZE (inches)
CASING INFORMATION			(inches)	note sections	of screen)	ļ <u>.</u>		<u> </u>			<u> </u>
જ	0	51	6 1/2	PVC Casing		FJ	<u> </u>	2 Sch			
	51	71	6 1/2	PVC Screeing		FJ		2	Sch	140	0.010
DRILLING &		<u> </u>				<u> </u>			-		
i iii				\ 		 		 			
7		<u> </u>				 -		 	 		
		<u> </u>				 		 	-		
	ļ					 					
		 				†		 			[
						1					
	ДЕРТН	(feet bgl)	BORE HOLE	LIST ANN	ULAR SEAL M	ATERIAL A	AND	AMOUNT		метно	D OF
ا برا	FROM	TO	DIAM. (inches)		CK SIZE-RANC	_		(cubic feet)	\	PLACEN	
RIA	0	43	6 1/2	Grout			····	 		Tremie	
ATE	43	48	6 1/2	Bentonite Chip	5			 		Tremie	
M.	48	71.5	6 1/2	8/16 Sand				 		Tremie	
ַבַּן	'	+	- 		<u> </u>		··	 	-		_
ANNULAR MATERIAL	 	 	- 					 			
3. A?		 									
		 	- 	<u> </u>					\neg		
<u> </u>	R OSE INTER	NAL USE		·	····		WR-2	20 WELL RECORD	& LOC	G (Version 06/0	8/2012)
	E NUMBER	<u> </u>			POD NUMBER	3		NUMBER 51	7 /	451	
<u> </u>	CATION						<u>_</u> l.			PAGE	1 OF 2

PAGE 2 OF 2

				······································		
	DEPTH (feet bgl)		COLOR AND TYPE OF MATERIAL ENCOUNTERED -	WATER	ESTIMATED YIELD FOR
	FROM	то	THICKNESS (feet)	INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONE (attach supplemental sheets to fully describe all units)		WATER- BEARING
	0	30	30	Tannish White Clayey Sand with Caliche	C Y (a) N	ZONES (gpm)
	30	35	5	Tannish Brown Hard Sandstone	C Y 🕞 N	
	35	73	38	Tannish Brown Medium to Fine Sugar Sand	CY @ N	<u></u>
	-				OYON	
					CYCN	
,					CYCN	
4. HYDROGEOLOGIC LOG OF WELL					OY ON	
F W	<u> </u>				CYON	
) 9C					O Y O N	
CLC						34
OGI						ROS M
30L					<u> </u>	— ——
OCI						<u> </u>
YDR					<u> </u>	- 達
4. H				*		:::::::::::::::::::::::::::::::::::::::
,						<u> </u>
					- 10	<u>: H</u>
						, <u>, , , , , , , , , , , , , , , , , , </u>
					OY ON	
					OY ON	
			 		CY ON	
					$O^{Y}O^{N}$	
			TIMATE YIELD	OF WATER-BEARING STRATA: C PUMP	TOTAL ESTIMATED WELL YIELD (gpm):	,
	C AIR LIF	г 🖭	BAILER (OTHER - SPECIFY:	WELL FIELD (gpm):	
NC	WELL TES			ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INC ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVI		
VISION	MISCELLA	NEOUS INF	ORMATION:			
TEST; RIG SUPERV						
SUF						
RIG						
ST;	DDIN'T NAA	AE(S) OF D	DILL DIC SHEE	VISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CON	СТРИСТІЛЫ ЛТИЕР ТИ	AN LICENSEE:
S. TE	FRINT NAM	ic(3) Or Di	NILL KIO SUFER	(VISON(S) THAT PROVIDED ONSTRESOFER VISION OF WELL CON		AN LICENSEE.
	Mark India		IED ED V GEDEUR	THE THE TO THE OPEN OF THE OPE	en Tue conconie in	4 MOLIE AND
Œ	CORRECTY	RECORDO	F THE ABOVE D	TIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELI DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL R	er, the foregoing is ECORD with the Sta	TE ENGINEER
TÜR	AND THE P	EMMIT HO	DER WITHIN 2	0 DAYS AFTER COMPLETION OF WELL DRILLING:		
SIGNATURE	1	ノヽ	/ 1	D - /	1 /	
	Ve	\sim \mathcal{H}	B	- LEK YETEKOW	1/2//3	
بن (ا		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAME	DATE	
FOR	OSE INTER	NAL USE		WR.20 WF	LL RECORD & LOG (Ver	sion 06/08/2012)
	E NUMBER			POD NUMBER TRN NUMB	· · · · · · · · · · · · · · · · · · ·	

OFFICE OF THE STATE ENGINEER

STATE ENGINEER OFFICE

www.ose.state.nm.us <u> 2017 JAN 10 | A 1</u>0: 31 | OSE POD NUMBER (WELL NUMBER) OSE FILE NUMBER(S) GENERAL AND WELL LOCATION MW-4 L-13218 WELL OWNER NAME(S) PHONE (OPTIONAL) **Energen Resources Corporation** WELL OWNER MAILING ADDRESS CITY STATE 904 Moore Ave Roswell NM 88201-1144 DEGREES MINUTES SECONDS WELL 58 17.54" * ACCURACY REQUIRED: ONE TENTH OF A SECOND 32 LOCATION N DATUM REQUIRED: WGS 84 (FROM GPS) 24 04.64" w LONGITUDE 103 DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS - PLSS (SECTION, TOWNSHJIP, RANGE) WHERE AVAILABLE Energen #8-R West Lovington Strawn Unit Location 1980' FSL & 660' FWL of Section 34, T15S-R35£, Lea County LICENSE NUMBER NAME OF LICENSED DRILLER NAME OF WELL DRILLING COMPANY WD1222 Lee Peterson Peterson Drilling & Testing, Inc. DRILLING ENDED DEPTH WATER FIRST ENCOUNTERED (FT) DRILLING STARTED DEPTH OF COMPLETED WELL (FT) BORE HOLE DEPTH (FT) 12/12/12 12/13/12 70.2 73 STATIC WATER LEVEL IN COMPLETED WELL (FT) COMPLETED WELL IS: C ARTESIAN O DRY HOLE SHALLOW (UNCONFINED) DRILLING & CASING INFORMATION ◉ Омир DRILLING FLUID: ADDITIVES - SPECIFY: AIR **(**) C HAMMER C CABLETOOL \circ OTHER - SPECIFY: DRILLING METHOD: ROTARY CASING MATERIAL AND/OR DEPTH (feet bgl) CASING BORE HOLE CASING WALL SLOT CASING GRADE THICKNESS FROM CONNECTION TO DIAM INSIDE DIAM. SIZE (include each casing string, and TYPE (inches) (inches) (inches) (inches) note sections of screen) FJ 2 Sch 40 **PVC Casing** 49.7 6 1/2 FJ 2 Sch 40 0.010 49.7 69.7 6 1/2 **PVC Screeing** 7 DEPTH (feet bgl) LIST ANNULAR SEAL MATERIAL AND AMOUNT METHOD OF **BORE HOLE** PLACEMENT DIAM. (inches) GRAVEL PACK SIZE-RANGE BY INTERVAL (cubic feet) ANNULAR MATERIAL FROM TO Tremie 6 1/2 Grout 40.5 Tremie 40.5 46 6 1/2 **Bentonite Chips** 70.2 6 1/2 8/16 Sand Tremie 46 FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/08/2012)

POD NUMBER

TRN NUMBER

745

PAGE I OF 2

FILE NUMBER

	DEPTH (feet bgl)				ESTIMATED				
	FROM	то	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES / NO)	YIELD FOR WATER- BEARING				
	0	30	30	Tannish White Clayey Sand with Caliche	CYGN	ZONES (gpm)				
	30	35	5	Tannish Brown Hard Sandstone	C Y @ N					
i	35	73	38	Tannish Brown Medium to Fine Sugar Sand	+ = = =					
	<i>33</i>		30	Tallillan blown Mediam to the Sugar Sand						
					1					
	-									
:rr					<u> </u>					
4. HYDROGEOLOGIC LOG OF WELL					OYON					
0.5					$O \times O N$					
ΓΟ					OYON					
cic					OYON					
TO					O Y O N					
CEC					OYON					
RO					OYON	_				
HYI					OYON					
4					OYON.	: \				
					CYGN	ST				
				·	C Y CEN	ns.				
					CY CLN	70				
					CY C	GI				
					OY OB	- (F)				
					OY OB	FR.				
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARING STRATA: C PUMP TOT	AL ESTIMATED	THE THE				
	C AIR LIF		BAILER O	we we	LL YIELD (gpm):	S SICE				
	C AIR CIF		BAILER (,)	OTHER - SIZER T	<u></u>	2 04				
ISION	WELL TES	TEST STAR	RESULTS - ATT I TIME, END TI	ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUD ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER TH	ING DISCHARGE NEED TESTING PERIC	METHOD, DD.				
	MISCELLA	NEOUS INF	ORMATION:			·				
ER										
SUF										
RIG										
TEST; RIG SUPERV	DDINT NAA	(E/S) OF DI	ZILL DIC SUPER	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRU	ICTION OTHER TH	IAN LICENSEE:				
S. TI	TIGHT WAN	15(0) 01 151	NIEL KIG 501 EI	(130NO) THAT THOUSE OF STATE OF SEASON OF THE SEASON OF TH						
	THE UNDE	RSIGNED H	IEREBY CERTIF	TIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, T	HE FOREGOING IS	A TRUE AND				
RE.	AARDER - AAARD AAARD AAAA AAAAA AAAAA AAAAA AAAAAAA AAAAAAA									
SIGNATURE		2	77		, 4					
IGN.	<i>\</i>	-, 1	4	Lee Deromanil	1/2/12					
9.5		JU¶		UCL MENERSOW	1/6/13					
	SIGNATURE OF DRILLER / PRINT SIGNEE NAME DATE									
FOF	FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/08/2012)									

POD NUMBER

TRN NUMBER

PAGE 2 OF 2

FILE NUMBER LOCATION

OFFICE OF THE STATE ENGINEER

									TOT NAT FIRE	<u> </u>
1		MBER (WELL	NUMBER)				OSE FILE NUI	MBER(S)		
NO.	MW-5						L-13218	ronz		<u></u>
AT	WELL OWN		Cornoration				PHONE (OPTI	ONAL)		-
ĕ	1 -		Corporation				- Company		(Mar. 1997)	- No.
GENERAL AND WELL LOCATION	904 Mooi	er Mailing A re Ave	ADDRESS				Roswell		NM 8820	71-1144
S	WELL	Ţ	DEGREES		SECOND	S		····	<u></u> :	
LA	LOCATIO	N LATE	TUDE 32	58'	16.74"	N	4	REQUIRED: ONE TEM	TH OF A SECOND	
ERA	(FROM GP	S) LONG	ertupe 103	24'	08.02"	W	DATUM REG	QUIRED: WGS 84		
GEN	DESCRIPTION			ADDRESS AND COMMO	N LANDMARKS - PLS	S (SECTION, T	OWNSHJIP, RANG	E) WHERE AVAILABLE		
<u> </u>	Energen	#8-R West	Lovington Strav	vn Unit Location	1980' FSL & 60	60' FWL a	of Section 34	4, T15S-R35E, Lea	County	
	LICENSE NU		NAME OF LICENSED	DRILLER				NAME OF WELL DR		
1 1	WD1222	İ	Lee Peterson						ng & Testing, Inc.	
, 1	DRILLING ST 12/12/12			DEPTH OF COMPLETE	D WELL (FT)	BORE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUNTERED (FT)
	12/12/12		2/13/12			<u> </u>		CTATIC MARCH LE	VEL IN COMPLETED WI	Ti (m)
, [COMPLETE	WELL IS:	ARTESIAN 1	O DRY HOLE	SHALLOW (UNC	ONFINED)		STATIC WATER CEN	VEL IN COMPLETED WI	SCC(FI)
Ŏ.			● AIR	O MUD			···	<u> </u>		- .
Z	DRILLING F		<u> </u>		ADDITIVES - SPI					
OR.	DRILLING M		ROTARY			() OTHE	ER - SPECIFY:			
Z		(feet bgl)	BORE HOLE	CASING MATER GRAI			ASING	CASING	CASING WALL THICKNESS	SLOT
ING	FROM	ТО	DIAM (inches)	(include each cas			NECTION TYPE	INSIDE DIAM. (inches)	(inches)	SIZE (inches)
DRILLING & CASING INFORMATION	0			PVC Casing	oi screen)	FJ	-	2	Sch 40	
2	47.5	67.5	6 1/2	PVC Screeing		FJ		2	Sch 40	0.010
I S		07.15	<u> </u>	Tre servering						1
RII										
2.1										
						ļ				
										<u> </u>
						 		 	 	
<u> </u>	}	<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>	1
	DEPTH	(feet bgl)	BORE HOLE	,	NULAR SEAL M			AMOUNT	METH(PLACE	
IAL	FROM	ТО	DIAM. (inches)		CK SIZE-RANG	EBI IN I		(cubic feet)		
TER	0	39	6 1/2	Grout				 	Tremie	_
MA	39	44	6 1/2	Bentonite Chip	5		<u></u>		Tremie	
AR	44 68 6 1/2 8/16 Sand								Tremie	
ANNULAR MATERIAL								ļ		
			· 	 				 	 	_
κ.	 						 _	<u> </u>		
i .	OOF Differ	N. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		<u> </u>	<u> </u>		11/D 3	I DECORD	& LOC (Version 05#	18/20121
	R OSE INTER E NUMBER	MAL USE			POD NUMBER	4		NUMBER A	& LOG (Version 06/6)	3012012)
	CATION									1 OF 2

PAGE 2 OF 2

	DEPTH (feet bgi)		COLOR AND TYPE OF MATERIAL ENCOUNTERED -	WATER	ESTIMATED
		~~	THICKNESS	INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES	BEARING?	YIELD FOR WATER-
	FROM	ТО	(feet)	(attach supplemental sheets to fully describe all units)	(YES/NO)	BEARING ZONES (gpm)
	0	30	30	Tannish White Clayey Sand with Caliche	OY @ N	
	30	35	5	Tannish Brown Hard Sandstone	CY © N	
	35	71	36	Tannish Brown Medium to Fine Sugar Sand	C Y 💿 N	
ĺ					OYON	
					CYCN	
-					OYON	
HYDROGEOLOGIC LOG OF WELL					CYCN	
OF					O Y	
.007					C Y C N	
1215					OYON	
707					OYON	
SEO				OYON		
RO.					OYON	
1 E					OYON	
4.					OYON	S
					OY ONE	100 E
					CYON	2 200
					OYON	HG HG
					$O^{Y} O^{N}$	证
					$O^{Y} O^{N}$	ER
			-		$C^{Y}C^{N}$	7 39
	METHOD L	SED TO ES	STIMATE YIELD	*	OTAL ESTIMATED	0. 3. FICE
	O AIR LIF	т 👰	BAILER (OTHER – SPECIFY:	VELL YIELD (gpm):	m 94
z	WELL TES	T TEST STAR	RESULTS - ATT T TIME, END TI	ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER	JDING DISCHARGE I THE TESTING PERIC	METHOD, DD.
NOISI	MISCELLA	NEOUS IN	FORMATION:			
TEST; RIG SUPERV	oczaci.	712000 1111				
SUP						
RIG						
ST;		(5(0) 00 0	DV L DIG CURE	NUMBER OF THE TRANSPORT OF THE CHREDWIND OF THE LOCALET	DUCTION OTHER TH	LANTIĞENETE.
S. TE	PRINT NAM	AE(S) OF D	KILL KIG SUPEI	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONST	RUCTION OTHER TE	IAN LICENSEE.
"			•			
	THE UNDE	RSIGNED I	HEREBY CERTII	FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF,	THE FOREGOING IS	S A TRUE AND
RE	CORRECT:	RECORD C	OF THE ABOVE I	DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL REC 20 DAYS AFTER COMPLETION OF WELL DRILLING:	ORD WITH THE STA	TE ENGINEER
SIGNATURE	1	$\sum_{i=1}^{n}$)1	_	1 4	
CN	1	· \	AL	- Lee Determi	1/2//:	z
6.5		SIGNAT	TIRE OF DRILL	ER / PRINT SIGNEE NAME	DATE	
		SIGNAL	OKE OF DRILLI	N. 1. MALL OLDING COME	DATE	
FOI	R OSE INTER	NAL USE			RECORD & LOG (Ve	rsion 06/08/2012)
FIL	E NUMBER			POD NUMBER TRN NUMBER		

OFFICE OF THE STATE ENGINEER

	OSE POD N	JMBER (V	ELL NUM	BER)				OSE FILE NU	MBER(S)		
O	(POD6) V	VLSU 81	R MW-6	1				L-13218			
Ę	WELL OWN							PHONE (OPT)	ONAL)		
0	ENERGE	N RESO	URCES (CORPORAT	ION						
	WELL OWN	ER MAILI	NG ADDRE	SS		· · · · · · · · · · · · · · · · · · ·		CITY		STATE	ZIP
E	3300 NO	RTH A S	ST BLDG	4 STE 100				MIDLAND)	TX 797	05
5				DEGREES	S MINUTE	S SECONI	 PC	<u> </u>			
AN	WELL			32	58	20		* ACCURACY	Y REQUIRED: ONE TEN	TH OF A SECOND	
M	LOCATIO (FROM GI	<u> </u>	ATITUDE				N w	4	QUIRED: WGS 84		
GENERAL AND WELL LOCATION	(I'KON'O	I	ONGITUD!	E 103	24	05		Dirion No.	Q		
	DESCRIPTIO	N RELATIN	G WELL LOC	ATION TO STREE	T ADDRESS AND COM	MON LANDMARKS - PLS	S (SECTION, T	OWNSHJIP, RANG	E) WHERE AVAILABLE		
-	CORNER	OF 17T	'H AND	W GUM AV	E & TURN INTO	GATE FOLLOW	CALICHE	RD. UNIT L,	SEC 34, TWP 15	S, R 35E	
====	LICENSE N	JMBER	NAMI	E OF LICENSED	DRILLER				NAME OF WELL DR	ILLING COMPANY	
	WD-1711		ı	ARD BRYA					STRAUB CORPO	ORATION	
	DRILLING S	TARTED	DRILI	LING ENDED	DEPTH OF COMPLE	TED WELL (FT)	BORE HO	LE DEPTH (FT)	DEPTH WATER FIR	ST ENCOUNTERED (FI	")
	9-24-15		9-24-1		70'		70'	,	N/A	•	•
							<u> </u>		STATIC WATER LEV	VEL IN COMPLETED W	ELL (FT)
_	COMPLETE	D WELL IS	S: C A	RTESIAN	C DRY HOLE	SHALLOW (UNC	ONFINED)		N/A	,,	(,
DRILLING & CASING INFORMATION											
#AT	DRILLING F	LUID:			C MUD	ADDITIVES - SPI	ECIFY:				
8	DRILLING N	METHOD:	(€ R	OTARY		CABLE TOOL	(отн	ER - SPECIFY:			
Z.	DEPTH	(feet bgl) B	ORE HOLE		ERIAL AND/OR	C	ASING	CASING	CASING WALL	SLOT
قِ ا	FROM	ТО		DIAM	1	ADE casing string, and	CON	NECTION	INSIDE DIAM.	THICKNESS	SIZE
SI			ļ	(inches)		ons of screen)] 7	ГҮРЕ	(inches)	(inches)	(inches)
رز	70' 50'		6"		SCH 40 .010 S	SCREEN	FJ		2"	0.154	.010
و	50'	+43"	6"		SCH 40 RISER		FJ		2"	0.154	RISER
T.						-					1
RI							· ·				
2. D	***										
							 				
									 		
			-								
						•	-				1
				 · · · · · · · · · · · · · · · · · 							
===	DERTU	(feet bg!									<u> </u>
ر ا			, 2.	ORE HOLE AM. (inches)		NNULAR SEAL M. PACK SIZE-RANG			AMOUNT (cubic feet)	METH(PLACE	
[₹	FROM	TO		in (menes)			E DI INIE	CRVAL	(cubic feet)		
I E	70'	48'	б"		11 BAGS OF 2					TOPLOAD	
MA.	48'	2'	6"		12 BAG OF 3/	8 HOLEPLUG				TOPLOAD	
AR A								•		ł	
n n						-					
ANNULAR MATERIAL											
3. A											
FOR	OSE INTER	NAI IIS	F	•				13/0.2	A WELL PECOPD	& LOG (Version 06/	 08/2012\
	E NUMBER	/	_ /3	3210		POD NUMBER			NUMBER 5		
	ATION		mn	1010					,213	7	E 1 OF 2
		/	Mor	1			5, 35	E,21	<u> </u>	IAGE	

	DEPTH (feet bg!) THICKNESS FROM TO (feet)			COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES/NO)	ESTIMATED YIELD FOR WATER- BEARING				
	0	3'	3'	TAN VERY FINE SAND - CALICHE WITH CLAY	CYGN	ZONES (gpm)				
	3'	12'	9'	LIGHT TAN VERY FINE SAND - CLAICHE CEMENT SANDSTONE	 	N/A				
	12'	19'	7'	TAN VERY FINE SAND - SOFT SANDSTONE	C Y 6 N	N/A				
	19'	30'	11'	TAN FINE SAND - SILICEOUS SANDSTONE	CYGN	N/A				
	30'	61'	31'	TAN VERY FINE SAND - SOFT SANDSTONE	CYGN	N/A				
	61'	70'	9'	TAN VERY FINE SAND	CY 6 N	N/A				
ELL	TD	70'		TAN VERT TIME SAME	CYGN	N/A				
4. HYDROGEOLOGIC LOG OF WELL	<u> </u>	70				14/7				
050					CYCN					
). 			<u> </u>		GYCN					
25			ļ. 		CYCN					
OCC					CYCN					
e e		<u></u>			- V - N					
ě		<u> </u>			$\begin{array}{c c} C & C & N \\ \hline \end{array}$					
E					CYCN					
,					CYCN					
		<u> </u>			CYCN					
					CYCN					
			_		C Y C N					
		-			CYCN					
		<u> </u>	<u> </u>		$C \cdot C \cdot N$					
) CONTION I	10ED 20 E6	TAL ESTIMATED							
	METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA: PUMP TOTAL ESTIMATED WELL YIELD (gpm):									
	WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.									
TEST; RIG SUPERVISION	START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.									
SV IS	MISCELLANEOUS INFORMATION:									
OPE	4X4X60 HIGH RISE									
S S	2X2 PAD LEA COUNTY NM									
.; 2										
resi	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:									
vi										
	THE POPULATION OF THE POPULATI									
国	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER									
SIGNATURE	AND THE PERMIT HOLDER WITHIN 20 DAYS AFTER COMPLETION OF WELL DRILLING:									
NA.	6 7 2									
6. SIC	21-20. Egan Elware Frysk					13915				
L		SIGNAT	DATE							
FOR OSE INTERNAL USE WR-20 WELL RECORD & LOG (Version 06/08/2012)										
FILE NUMBER / -1321 8 POD NUMBER G TRN NUMBER 57050 2										
	CATION	m		155,35E,34,213		PAGE 2 OF 2				
1		1 4	* /	10,		 				

Appendix C

Well Survey Report November 2022

COORDINATE TABLE

COORDINATES VALUES SHOWN ARE RELATIVE TO THE NORTH AMERICAN DATUM 1983, "NEW MEXICO EAST ZONE". ELEVATIONS ARE RELATIVE TO THE NORTH AMERICAN VERTICAL DATUM 1988

WELL	COORDINATES	ELEVATIONS
MW #1	718754.5 N 826775.5 E	NATURAL GROUND - 3973.05' TOP OF CONCRETE - 3973.15' TOP OF PVC - 3975.52'
MW #2	718624.4 N 827284.4 E	NATURAL GROUND - 3972.55' TOP OF CONCRETE - 3972.52' TOP OF PVC - 3974.76'
MW #3	718751.1 N 827254.9 E	NATURAL GROUND - 3973.86' TOP OF CONCRETE - 3973.92' TOP OF PVC - 3976.67'
MW #4	718462.6 N 827262.2 E	NATURAL GROUND - 3971.80' TOP OF CONCRETE - 3971.91' TOP OF PVC - 3974.52'
MW #5	718446.9 N 826735.6 E	NATURAL GROUND - 3971.78' TOP OF CONCRETE - 3971.82' TOP OF PVC - 3974.43'
MW #6	718672.3 N 827195.6 E	NATURAL GROUND - 3972.74' TOP OF CONCRETE - 3973.13' TOP OF PVC - 3976.17'
MW #7	718301.7 N 827766.4 E	NATURAL GROUND - 3969.65' TOP OF CONCRETE -3969.83' TOP OF PVC DEEP -3969.41' TOP OF PVC MEDIUM -3969.43' TOP OF PVC SHALLOW -3969.45'
MW #8	718728.7 N 827755.9 E	NATURAL GROUND - 3969.75' TOP OF CONCRETE - 3970.03' TOP OF PVC DEEP - 3969.29' TOP OF PVC MEDIUM -3969.30' TOP OF PVC SHALLOW -3969.47'
MW #9	718914.0 N 826662.6 E	NATURAL GROUND - 3972.15' TOP OF CONCRETE - 3972.44' TOP OF PVC DEEP - 3971.82' TOP OF PVC MEDIUM -3971.85' TOP OF PVC SHALLOW -3971.80'

SURVEYOR'S CERTIFICATE:

I, RONALD J. EIDSON, NEW MEXICO PROFESSIONAL SURVEYOR
No. 3239, DO HEREBY CERTIFY THAT THIS SURVEY PLAT AND THE
ACTUAL SURVEY ON THE GROUND UPON WHICH IT IS BASED
WERE PERFORMED BY ME OR UNDER MY DIRECT SUPERVISION;
THAT I AM RESPONSIBLE FOR THIS SURVEY; THAT THIS SURVEY
MEETS THE MINIMUM STANDARDS FOR SURVEYING IN NEW
MEXICO; AND THAT IT IS TRUE AND CORRECT TO THE BEST OF MY
KNOWLEDGE AND BELIEF.

Konald Cideon

PROVIDING SURVEYING SERVICES

SINCE 1946

JOHN WEST SURVEYING COMPANY

412 N. DAL PASO HOBBS, N.M. 88240 (575) 393-3117 www.jwsc.biz TBPLS# 10021000

© V:\2022\22110410 MONITOR WELLS\DRAFTING

LEGEND:

DENOTES MONITOR WELL

- DENOTES BENCHMARK 5/8" STL. ROD W/2" A.C.

DIAMONDBACK ENERGY

MONITOR WELL LOCATIONS IN NW/4 SW/4 SECTION 34, TOWNSHIP 15 SOUTH, RANGE 35 EAST, N.M.P.M., LEA COUNTY, NEW MEXICO

ľ	Survey Date:		11/16/2022	CAD Date:		11/17/2022	Drawn By:		ACK
人	W.O. No.:	22110410	Rev:	0	Rel. V	<i>N</i> .O.:		Sheet 1	of 1

Appendix D

November 2021 and March 2022 Laboratory Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

October 13, 2021

Wayne Price

Richard Olsone Hinkle Shanor Law Firm

P.O. Box 10

Roswell, NM 88202 TEL: (575) 622-6510

FAX

RE: Energy Resources Corp West Lovington Strawn Unit 8 Unit L OrderNo.: 2109D96

Sec 34 T 15S R 34E Lea Co. NM

Dear Wayne Price:

Hall Environmental Analysis Laboratory received 28 sample(s) on 9/23/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2109D96

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (0.0'-7.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/19/2021 1:32:00 PM

Lab ID: 2109D96-001 **Matrix:** SOIL **Received Date:** 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 12:08:08 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	SB
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	9/28/2021 9:44:54 PM	62841
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/28/2021 9:44:54 PM	62841
Surr: DNOP	74.4	70-130	%Rec	1	9/28/2021 9:44:54 PM	62841
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/29/2021 12:23:32 AM	62835
Surr: BFB	108	70-130	%Rec	1	9/29/2021 12:23:32 AM	62835
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.024	mg/Kg	1	9/29/2021 12:23:32 AM	62835
Toluene	ND	0.049	mg/Kg	1	9/29/2021 12:23:32 AM	62835
Ethylbenzene	ND	0.049	mg/Kg	1	9/29/2021 12:23:32 AM	62835
Xylenes, Total	ND	0.097	mg/Kg	1	9/29/2021 12:23:32 AM	62835
Surr: 4-Bromofluorobenzene	94.2	70-130	%Rec	1	9/29/2021 12:23:32 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (7.5' - 12.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/19/2021 2:02:00 PM

Lab ID: 2109D96-002

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 12:20:32 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	GANICS				Analyst	SB
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	9/28/2021 10:09:09 PM	62841
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/28/2021 10:09:09 PM	62841
Surr: DNOP	72.5	70-130	%Rec	1	9/28/2021 10:09:09 PM	62841
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/29/2021 12:47:12 AM	62835
Surr: BFB	109	70-130	%Rec	1	9/29/2021 12:47:12 AM	62835
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.024	mg/Kg	1	9/29/2021 12:47:12 AM	62835
Toluene	ND	0.049	mg/Kg	1	9/29/2021 12:47:12 AM	62835
Ethylbenzene	ND	0.049	mg/Kg	1	9/29/2021 12:47:12 AM	62835
Xylenes, Total	ND	0.098	mg/Kg	1	9/29/2021 12:47:12 AM	62835
Surr: 4-Bromofluorobenzene	95.4	70-130	%Rec	1	9/29/2021 12:47:12 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (12.5' - 17.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/17/2021 2:30:00 PM

Lab ID: 2109D96-003

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 12:32:57 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	SANICS				Analyst	: SB
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	9/28/2021 10:33:34 PM	62841
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/28/2021 10:33:34 PM	62841
Surr: DNOP	70.9	70-130	%Rec	1	9/28/2021 10:33:34 PM	62841
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/29/2021 1:10:44 AM	62835
Surr: BFB	105	70-130	%Rec	1	9/29/2021 1:10:44 AM	62835
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.025	mg/Kg	1	9/29/2021 1:10:44 AM	62835
Toluene	ND	0.049	mg/Kg	1	9/29/2021 1:10:44 AM	62835
Ethylbenzene	ND	0.049	mg/Kg	1	9/29/2021 1:10:44 AM	62835
Xylenes, Total	ND	0.099	mg/Kg	1	9/29/2021 1:10:44 AM	62835
Surr: 4-Bromofluorobenzene	91.2	70-130	%Rec	1	9/29/2021 1:10:44 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-7 (17.5' - 20.0')Project:Energy Resources Corp West LovingtonCollection Date: 9/19/2021 3:25:00 PMLab ID:2109D96-004Matrix: SOILReceived Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: VP
Chloride	ND	60		mg/Kg	20	9/29/2021 12:45:22 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	SB
Diesel Range Organics (DRO)	ND	9.8		mg/Kg	1	9/28/2021 10:57:51 PM	62841
Motor Oil Range Organics (MRO)	ND	49		mg/Kg	1	9/28/2021 10:57:51 PM	62841
Surr: DNOP	60.1	70-130	S	%Rec	1	9/28/2021 10:57:51 PM	62841
EPA METHOD 8015D: GASOLINE RANGE						Analyst	NSB
Gasoline Range Organics (GRO)	ND	5.0		mg/Kg	1	9/29/2021 1:34:18 AM	62835
Surr: BFB	106	70-130		%Rec	1	9/29/2021 1:34:18 AM	62835
EPA METHOD 8021B: VOLATILES						Analyst	NSB
Benzene	ND	0.025		mg/Kg	1	9/29/2021 1:34:18 AM	62835
Toluene	ND	0.050		mg/Kg	1	9/29/2021 1:34:18 AM	62835
Ethylbenzene	ND	0.050		mg/Kg	1	9/29/2021 1:34:18 AM	62835
Xylenes, Total	ND	0.099		mg/Kg	1	9/29/2021 1:34:18 AM	62835
Surr: 4-Bromofluorobenzene	92.0	70-130		%Rec	1	9/29/2021 1:34:18 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (20.0' - 25.0')

Project: Energy Resources Corp West Lovington

Collection Date: 9/19/2021 4:30:00 PM

Lab ID: 2109D96-005

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: VP
Chloride	ND	60		mg/Kg	20	9/29/2021 1:22:37 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS					Analyst	: SB
Diesel Range Organics (DRO)	ND	9.6		mg/Kg	1	9/28/2021 11:22:07 PM	62841
Motor Oil Range Organics (MRO)	ND	48		mg/Kg	1	9/28/2021 11:22:07 PM	62841
Surr: DNOP	63.8	70-130	S	%Rec	1	9/28/2021 11:22:07 PM	62841
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8		mg/Kg	1	9/29/2021 1:57:46 AM	62835
Surr: BFB	107	70-130		%Rec	1	9/29/2021 1:57:46 AM	62835
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.024		mg/Kg	1	9/29/2021 1:57:46 AM	62835
Toluene	ND	0.048		mg/Kg	1	9/29/2021 1:57:46 AM	62835
Ethylbenzene	ND	0.048		mg/Kg	1	9/29/2021 1:57:46 AM	62835
Xylenes, Total	ND	0.096		mg/Kg	1	9/29/2021 1:57:46 AM	62835
Surr: 4-Bromofluorobenzene	92.7	70-130		%Rec	1	9/29/2021 1:57:46 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-7 (25.0' - 30.0')Project:Energy Resources Corp West LovingtonCollection Date: 9/19/2021 4:40:00 PMLab ID:2109D96-006Matrix: SOILReceived Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: VP
Chloride	ND	60		mg/Kg	20	9/29/2021 1:35:02 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	SANICS					Analyst	: SB
Diesel Range Organics (DRO)	ND	9.7		mg/Kg	1	9/28/2021 11:46:19 PM	62841
Motor Oil Range Organics (MRO)	ND	49		mg/Kg	1	9/28/2021 11:46:19 PM	62841
Surr: DNOP	57.9	70-130	S	%Rec	1	9/28/2021 11:46:19 PM	62841
EPA METHOD 8015D: GASOLINE RANGE						Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8		mg/Kg	1	9/29/2021 2:21:20 AM	62835
Surr: BFB	109	70-130		%Rec	1	9/29/2021 2:21:20 AM	62835
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	0.024		mg/Kg	1	9/29/2021 2:21:20 AM	62835
Toluene	ND	0.048		mg/Kg	1	9/29/2021 2:21:20 AM	62835
Ethylbenzene	ND	0.048		mg/Kg	1	9/29/2021 2:21:20 AM	62835
Xylenes, Total	ND	0.096		mg/Kg	1	9/29/2021 2:21:20 AM	62835
Surr: 4-Bromofluorobenzene	94.6	70-130		%Rec	1	9/29/2021 2:21:20 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (37.5' - 45.0')

Project: Energy Resources Corp West Lovington

Collection Date: 9/20/2021 7:42:00 AM

Lab ID: 2109D96-008

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 1:47:27 PM	A 62898

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (45.0' - 50.0')

Project: Energy Resources Corp West Lovington

Collection Date: 9/20/2021 9:59:00 AM

Lab ID: 2109D96-009

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 1:59:52 PM	M 62898

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-7 (50.0' - 52.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/20/2021 8:02:00 AMLab ID:2109D96-010Matrix: SOILReceived Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 2:12:17 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	SB
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	9/29/2021 12:10:41 AM	62841
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/29/2021 12:10:41 AM	62841
Surr: DNOP	73.6	70-130	%Rec	1	9/29/2021 12:10:41 AM	62841
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/29/2021 4:18:54 AM	62835
Surr: BFB	105	70-130	%Rec	1	9/29/2021 4:18:54 AM	62835
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.025	mg/Kg	1	9/29/2021 4:18:54 AM	62835
Toluene	ND	0.049	mg/Kg	1	9/29/2021 4:18:54 AM	62835
Ethylbenzene	ND	0.049	mg/Kg	1	9/29/2021 4:18:54 AM	62835
Xylenes, Total	ND	0.098	mg/Kg	1	9/29/2021 4:18:54 AM	62835
Surr: 4-Bromofluorobenzene	90.3	70-130	%Rec	1	9/29/2021 4:18:54 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (52.5' - 55.0')

Project: Energy Resources Corp West Lovington

Collection Date: 9/20/2021 9:05:00 AM

Lab ID: 2109D96-011

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 2:24:41 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	SANICS				Analyst	: SB
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	9/29/2021 12:34:51 AM	62841
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	9/29/2021 12:34:51 AM	62841
Surr: DNOP	73.6	70-130	%Rec	1	9/29/2021 12:34:51 AM	62841
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/29/2021 4:42:26 AM	62835
Surr: BFB	107	70-130	%Rec	1	9/29/2021 4:42:26 AM	62835
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.025	mg/Kg	1	9/29/2021 4:42:26 AM	62835
Toluene	ND	0.050	mg/Kg	1	9/29/2021 4:42:26 AM	62835
Ethylbenzene	ND	0.050	mg/Kg	1	9/29/2021 4:42:26 AM	62835
Xylenes, Total	ND	0.10	mg/Kg	1	9/29/2021 4:42:26 AM	62835
Surr: 4-Bromofluorobenzene	93.2	70-130	%Rec	1	9/29/2021 4:42:26 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (55.0' - 65.0')

Project: Energy Resources Corp West Lovington

Lab ID: 2109D96-012

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 2:37:05 PM	1 62898

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
Client Sample ID: MW-7 (65.0' - 75.0')

Project: Energy Resources Corp West Lovington
Collection Date: 9/20/2021 10:50:00 AM

Lab ID: 2109D96-013
Matrix: SOIL
Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 2:49:30 PM	1 62898

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (75.0' - 85.0')

Project: Energy Resources Corp West Lovington

Collection Date: 9/20/2021 11:13:00 AM

Lab ID: 2109D96-014

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 3:01:55 PM	1 62898

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
Client Sample ID: MW-7 (85.0' - 87.5')

Project: Energy Resources Corp West Lovington
Collection Date: 9/20/2021 11:55:00 AM

Lab ID: 2109D96-015
Matrix: SOIL
Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	rst: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 3:14:20 PM	M 62898

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (87.5' - 97.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/20/2021 2:18:00 PM

Lab ID: 2109D96-016

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analys	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 3:51:33 PM	1 62898

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-7 (97.5' - 107.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/20/2021 2:50:00 PMLab ID:2109D96-017Matrix: SOILReceived Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 4:28:47 PM	62898
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	SB
Diesel Range Organics (DRO)	ND	8.3	mg/Kg	1	9/29/2021 12:59:08 AM	62841
Motor Oil Range Organics (MRO)	ND	41	mg/Kg	1	9/29/2021 12:59:08 AM	62841
Surr: DNOP	78.3	70-130	%Rec	1	9/29/2021 12:59:08 AM	62841
EPA METHOD 8015D: GASOLINE RANGE					Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/29/2021 5:05:58 AM	62835
Surr: BFB	108	70-130	%Rec	1	9/29/2021 5:05:58 AM	62835
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.025	mg/Kg	1	9/29/2021 5:05:58 AM	62835
Toluene	ND	0.049	mg/Kg	1	9/29/2021 5:05:58 AM	62835
Ethylbenzene	ND	0.049	mg/Kg	1	9/29/2021 5:05:58 AM	62835
Xylenes, Total	ND	0.098	mg/Kg	1	9/29/2021 5:05:58 AM	62835
Surr: 4-Bromofluorobenzene	94.4	70-130	%Rec	1	9/29/2021 5:05:58 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-7 (107.5' - 117.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/20/2021 3:45:00 PMLab ID:2109D96-018Matrix: SOILReceived Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 5:30:51 PM	d 62900

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109D96-019
 Matrix: SOIL
 Client Sample ID: MW-7 (117.5' - 127.5')
 Collection Date: 9/20/2021 4:36:00 PM
 Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	59	mg/Kg	20	9/29/2021 5:43:16 PM	A 62900

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109D96-020
 Matrix: SOIL
 Client Sample ID: MW-7 (127.5' - 137.5')
 Collection Date: 9/20/2021 5:15:00 PM
 Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 6:20:30 PM	A 62900

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (137.5' - 147.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/21/2021 8:38:00 AM

Lab ID: 2109D96-021

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 6:32:55 PM	A 62900

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (148.5' - 157.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/21/2021 1:55:00 PM

Lab ID: 2109D96-022

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 6:45:20 PM	62900
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	: SB
Diesel Range Organics (DRO)	ND	8.1	mg/Kg	1	9/29/2021 1:23:22 AM	62841
Motor Oil Range Organics (MRO)	ND	40	mg/Kg	1	9/29/2021 1:23:22 AM	62841
Surr: DNOP	80.4	70-130	%Rec	1	9/29/2021 1:23:22 AM	62841
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/29/2021 9:09:01 AM	62835
Surr: BFB	105	70-130	%Rec	1	9/29/2021 9:09:01 AM	62835
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	9/29/2021 9:09:01 AM	62835
Toluene	ND	0.049	mg/Kg	1	9/29/2021 9:09:01 AM	62835
Ethylbenzene	ND	0.049	mg/Kg	1	9/29/2021 9:09:01 AM	62835
Xylenes, Total	ND	0.097	mg/Kg	1	9/29/2021 9:09:01 AM	62835
Surr: 4-Bromofluorobenzene	91.2	70-130	%Rec	1	9/29/2021 9:09:01 AM	62835

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109D96-023
 Matrix: SOIL
 Client Sample ID: MW-7 (147.5' - 148.5')
 Collection Date: 9/21/2021 1:57:00 PM
 Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	59	mg/Kg	20	9/29/2021 6:57:45 PM	62900
EPA METHOD 8015M/D: DIESEL RANGE ORGA	ANICS				Analyst	SB
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	9/29/2021 2:36:19 AM	62842
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/29/2021 2:36:19 AM	62842
Surr: DNOP	79.1	70-130	%Rec	1	9/29/2021 2:36:19 AM	62842
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/28/2021 9:51:00 PM	62836
Surr: BFB	96.6	70-130	%Rec	1	9/28/2021 9:51:00 PM	62836
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.024	mg/Kg	1	9/28/2021 9:51:00 PM	62836
Toluene	ND	0.049	mg/Kg	1	9/28/2021 9:51:00 PM	62836
Ethylbenzene	ND	0.049	mg/Kg	1	9/28/2021 9:51:00 PM	62836
Xylenes, Total	ND	0.098	mg/Kg	1	9/28/2021 9:51:00 PM	62836
Surr: 4-Bromofluorobenzene	79.6	70-130	%Rec	1	9/28/2021 9:51:00 PM	62836

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm **Client Sample ID:** MW-7 (157.5' - 167.5') **Energy Resources Corp West Lovington** Collection Date: 9/22/2021 8:00:00 AM Lab ID: 2109D96-024 Matrix: SOIL Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	61	mg/Kg	20	9/29/2021 7:10:10 PM	A 62900

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits
- P Sample pH Not In Range
- Reporting Limit RL

Page 23 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-7 (167.5' - 177.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/22/2021 8:40:00 AM

Lab ID: 2109D96-025

Matrix: SOIL

Received Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 7:22:34 PM	Л 62900

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-7 (177.5' - 187.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/22/2021 9:30:00 AMLab ID:2109D96-026Matrix: SOILReceived Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	st: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 7:34:58 PM	A 62900

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-7 (187.5' - 197.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/22/2021 10:20:00 AMLab ID:2109D96-027Matrix: SOILReceived Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	: VP
Chloride	ND	60	mg/Kg	20	9/29/2021 7:47:23 PM	62900
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst	SB
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	9/29/2021 3:49:04 AM	62842
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	9/29/2021 3:49:04 AM	62842
Surr: DNOP	87.6	70-130	%Rec	1	9/29/2021 3:49:04 AM	62842
EPA METHOD 8015D: GASOLINE RANGE					Analyst	RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/28/2021 10:50:00 PM	62836
Surr: BFB	90.5	70-130	%Rec	1	9/28/2021 10:50:00 PM	62836
EPA METHOD 8021B: VOLATILES					Analyst	RAA
Benzene	ND	0.024	mg/Kg	1	9/28/2021 10:50:00 PM	62836
Toluene	ND	0.048	mg/Kg	1	9/28/2021 10:50:00 PM	62836
Ethylbenzene	ND	0.048	mg/Kg	1	9/28/2021 10:50:00 PM	62836
Xylenes, Total	ND	0.096	mg/Kg	1	9/28/2021 10:50:00 PM	62836
Surr: 4-Bromofluorobenzene	78.2	70-130	%Rec	1	9/28/2021 10:50:00 PM	62836

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 34

Date Reported: 10/13/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm Client Sample ID: Field Blank

Project:Energy Resources Corp West LovingtonCollection Date: 9/22/2021 2:30:00 PMLab ID:2109D96-028Matrix: AQUEOUSReceived Date: 9/23/2021 9:10:00 AM

Analyses	Result	PQL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analys	t: RAA
Benzene	ND	1.0	μg/L	1	9/25/2021 9:04:00 PM	BW8160
Toluene	ND	1.0	μg/L	1	9/25/2021 9:04:00 PM	BW8160
Ethylbenzene	ND	1.0	μg/L	1	9/25/2021 9:04:00 PM	BW8160
Xylenes, Total	ND	2.0	μg/L	1	9/25/2021 9:04:00 PM	BW8160
Surr: 4-Bromofluorobenzene	85.2	70-130	%Rec	1	9/25/2021 9:04:00 PM	BW8160

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 34

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D96**

13-Oct-21

Client: Richard Olsone Hinkle Shanor Law Firm

Project: Energy Resources Corp West Lovington Strawn

Sample ID: MB-62898 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 62898 RunNo: 81677

Prep Date: 9/29/2021 Analysis Date: 9/29/2021 SegNo: 2886749 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID: LCS-62898 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 62898 RunNo: 81677

Prep Date: 9/29/2021 Analysis Date: 9/29/2021 SeqNo: 2886750 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 93.5 90 110

Sample ID: MB-62900 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 62900 RunNo: 81677

Prep Date: 9/29/2021 Analysis Date: 9/29/2021 SeqNo: 2886779 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID: LCS-62900 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 62900 RunNo: 81677

Prep Date: 9/29/2021 Analysis Date: 9/29/2021 SeqNo: 2886780 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 96.4 90 110

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 28 of 34

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D96**

13-Oct-21

Client: Richard Olsone Hinkle Shanor Law Firm

Project: Energy Resources Corp West Lovington Strawn

3.3

Sample ID: MB-62842	SampT	SampType: MBLK TestCode: EPA Method 8					8015M/D: Die	esel Range	e Organics	
Client ID: PBS	Batch	ID: 62 8	342	F	RunNo: 8	1656				
Prep Date: 9/27/2021	Analysis D	ate: 9/ 2	29/2021	9	SeqNo: 28	386339	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	7.6		10.00		76.4	70	130			
Sample ID: 2109D96-023AMS	SampT	ype: MS	i	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: MW-7 (147.5' - 14	8.5' Batch	ID: 62 8	342	F	RunNo: 8	1656				
Prep Date: 9/27/2021	Analysis D	ate: 9/2	29/2021	9	SeqNo: 28	888222	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	9.3	46.43	0	101	39.3	155	•		

Sample ID: 2109D96-023AMSD SampType: MSD TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: MW-7 (147.5' - 148.5' Batch ID: 62842 RunNo: 81656 Prep Date: 9/27/2021 Analysis Date: 9/29/2021 SeqNo: 2888223 Units: mg/Kg **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual 39.3 Diesel Range Organics (DRO) 49 9.9 49.41 100 155 4.92 23.4 Surr: DNOP 3.5 4.941 71.8 70 130 0 n

71.9

130

4.643

Sample ID: LCS-62841 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: LCSS Batch ID: 62841 RunNo: 81656 Analysis Date: 9/28/2021 SeqNo: 2888240 Prep Date: 9/27/2021 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Qual Diesel Range Organics (DRO) 50.00 49 98.3 68.9 135 Surr: DNOP 4.2 5.000 84.6 70 130

Sample ID: MB-62841 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 62841 RunNo: 81656 Prep Date: 9/27/2021 Analysis Date: 9/28/2021 SeqNo: 2888241 Units: mg/Kg Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 9.0 10.00 89.8 70 130

Qualifiers:

Surr: DNOP

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 34

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D96**

13-Oct-21

Client: Richard Olsone Hinkle Shanor Law Firm
Project: Energy Resources Corp West Lovington Strawn

Project: Energy	Resources Corp w	est Lovingi	on Strawn						
Sample ID: mb-62835	SampType: M	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batch ID: 62	2835	F	RunNo: 8	1634				
Prep Date: 9/26/2021	Analysis Date: 9	/29/2021	9	SeqNo: 2	885093	Units: mg/K	(g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0								
Surr: BFB	1100	1000		110	70	130			
Sample ID: Ics-62835	SampType: L (cs	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: LCSS	Batch ID: 62	2835	F	RunNo: 8	1634				
Prep Date: 9/26/2021	Analysis Date: 9	/29/2021	5	SeqNo: 2	885094	Units: mg/K	(g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	28 5.0		0	111	78.6	131			
Surr: BFB	1200	1000		120	70	130			
Sample ID: Ics-62836	SampType: L0	cs	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: LCSS	Batch ID: 62	2836	F	RunNo: 8	1641				
Prep Date: 9/26/2021	Analysis Date: 9	/28/2021	5	SeqNo: 2	885614	Units: mg/K	(g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	27 5.0		0	107	78.6	131			
Surr: BFB	1100	1000		106	70	130			
Sample ID: mb-62836	SampType: M	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: PBS	Batch ID: 62	2836	F	RunNo: 8	1641				
Prep Date: 9/26/2021	Analysis Date: 9	/28/2021	5	SeqNo: 28	885615	Units: mg/K	(g		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND 5.0								
Surr: BFB	880	1000		87.6	70	130			
Sample ID: 2109d96-023ams	SampType: M	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	е	
Client ID: MW-7 (147.5' - 14	48.5' Batch ID: 62	2836	F	RunNo: 8	1641				
Prep Date: 9/26/2021	Analysis Date: 9	/28/2021	5	SeqNo: 2	885617	Units: mg/K	ζg		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	27 4.9		0	110	61.3	114			
Surr: BFB	1000	989.1		104	70	130			

Qualifiers:

Analyte

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Sample ID: 2109d96-023amsd

Client ID: MW-7 (147.5' - 148.5'

SampType: MSD

Batch ID: 62836

Analysis Date: 9/28/2021

PQL Practical Quanitative Limit

Prep Date: 9/26/2021

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

RunNo: 81641

SeqNo: 2885618

%REC LowLimit

TestCode: EPA Method 8015D: Gasoline Range

Units: mg/Kg

%RPD

HighLimit

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

SPK value SPK Ref Val

Page 30 of 34

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D96**

13-Oct-21

Client: Richard Olsone Hinkle Shanor Law Firm

Project: Energy Resources Corp West Lovington Strawn

 Sample ID: 2109d96-023amsd
 SampType: MSD
 TestCode: EPA Method 8015D: Gasoline Range

 Client ID: MW-7 (147.5' - 148.5')
 Batch ID: 62836
 RunNo: 81641

Prep Date: 9/26/2021 Analysis Date: 9/28/2021 SeqNo: 2885618 Units: mg/Kg

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	28	4.9	24.63	0	112	61.3	114	1.80	20	
Surr: BFB	1100		985.2		108	70	130	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 31 of 34

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D96**

13-Oct-21

Client: Richard Olsone Hinkle Shanor Law Firm
Project: Energy Resources Corp West Lovington Strawn

Sample ID: mb-62835	Sampl	уре: МЕ	BLK	Tes	tCode: El	iles				
Client ID: PBS	Batcl	n ID: 62 8	835	F	RunNo: 8	1634				
Prep Date: 9/26/2021	Analysis D	Date: 9/	29/2021	5	SeqNo: 2	885143	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.96		1.000		96.0	70	130			

Sample ID: LCS-62835	Sampl	ype: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSS	Batcl	h ID: 62 8	835	F	RunNo: 8	1634				
Prep Date: 9/26/2021	Analysis D	Date: 9/ 2	29/2021	8	SeqNo: 2	885144	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.98	0.025	1.000	0	98.0	80	120			
Toluene	0.99	0.050	1.000	0	98.9	80	120			
Ethylbenzene	0.96	0.050	1.000	0	96.4	80	120			
Xylenes, Total	2.9	0.10	3.000	0	95.1	80	120			
Surr: 4-Bromofluorobenzene	0.92		1.000		91.9	70	130			

Sample ID: Ics-62836	SampT	ype: LC	LCS TestCode: EPA Method 8021B: Volatiles								
Client ID: LCSS	Batch	n ID: 62 8	836	F	RunNo: 8	1641					
Prep Date: 9/26/2021	Analysis D	Date: 9/	28/2021	8	SeqNo: 2	885656	Units: mg/K	(g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	0.94	0.025	1.000	0	94.3	80	120				
Toluene	0.93	0.050	1.000	0	92.6	80	120				
Ethylbenzene	0.93	0.050	1.000	0	93.3	80	120				
Xylenes, Total	2.8	0.10	3.000	0	93.7	80	120				
Surr: 4-Bromofluorobenzene	0.81		1.000		81.2	70	130				

Sample ID: mb-62836	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBS	Batch	n ID: 62	836	R	RunNo: 8	1641				
Prep Date: 9/26/2021	Analysis D	ate: 9/	28/2021	S	SeqNo: 2	885657	Units: mg/K	ίg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.76		1.000		76.0	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 34

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D96**

13-Oct-21

Client: Richard Olsone Hinkle Shanor Law Firm

Project: Energy Resources Corp West Lovington Strawn

Sample ID: 2109d96-027am	•	Гуре: М S					8021B: Volat	iles		
Client ID: MW-7 (187.5' - 1	97.5' Batcl	h ID: 628	836	F	RunNo: 8	1641				
Prep Date: 9/26/2021	Analysis D	Date: 9/	28/2021	5	SeqNo: 2	885660	Units: mg/K			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.88	0.025	0.9804	0	90.2	80	120			
Toluene	0.89	0.049	0.9804	0	91.2	80	120			
Ethylbenzene	0.90	0.049	0.9804	0	92.2	80	120			
Xylenes, Total	2.7	0.098	2.941	0	92.5	80	120			
Surr: 4-Bromofluorobenzene	0.76		0.9804		77.6	70	130			

Sample ID: 2109d96-027am	sd SampT	уре: М	SD	TestCode: EPA Method 8021B: Volatiles						
Client ID: MW-7 (187.5' - 1	1 97.5' Batch	ID: 62	836	F	RunNo: 8	1641				
Prep Date: 9/26/2021	Analysis D	ate: 9/	28/2021	5						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.87	0.025	0.9891	0	88.3	80	120	1.22	20	
Toluene	0.86	0.049	0.9891	0	87.2	80	120	3.66	20	
Ethylbenzene	0.87	0.049	0.9891	0	88.1	80	120	3.60	20	
Xylenes, Total	2.6	0.099	2.967	0	88.3	80	120	3.68	20	
Surr: 4-Bromofluorobenzene	0.80		0.9891		80.6	70	130	0	0	

Qualifiers:

Page 33 of 34

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **2109D96**

13-Oct-21

Client: Richard Olsone Hinkle Shanor Law Firm

Project: Energy Resources Corp West Lovington Strawn

Sample ID: 100ng BTEX Ics	SampT	ype: LC	s	Tes	TestCode: EPA Method 8021B: Volatiles					
Client ID: LCSW	Batcl	n ID: BV	V81606	F	RunNo: 8	1606				
Prep Date:	Analysis D	Date: 9/ 2	25/2021	9	SeqNo: 2	883874	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	94.0	80	120			
Toluene	19	1.0	20.00	0	95.1	80	120			
Ethylbenzene	20	1.0	20.00	0	98.3	80	120			
Xylenes, Total	59	2.0	60.00	0	99.2	80	120			
Surr: 4-Bromofluorobenzene	18		20.00		89.2	70	130			

Sample ID: mb	SampType: MBLK			Tes						
Client ID: PBW	Batch ID: BW81606			F	RunNo: 8	1606				
Prep Date:	Analysis Date: 9/25/2021		SeqNo: 2883875			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	18		20.00		89.4	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 34

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Received By: Tracy Casarrubias 9/23/2021 9:10:00 AM	
Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? 8. Was preservative added to bottles? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 10. Were any sample containers received broken? 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 12. Are matrices correctly identified on Chain of Custody? 13. Is it clear what analyses were requested? 14. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified: Date: By Whom: Ves No No Not Present No No Not Present No No No NA NA NA Ves No No No NA NA NA **Checked by Jr. Q. 20 NA **In Person NA **In Person NA **In Person NA **In Person NA **In Person Na Person Notified: Date: By Whom: Via:eMailPhoneFaxIn Person	
Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0°C 5. Sample(s) in proper container(s)? 7. Are samples (except VOA and ONG) property preserved? 8. Was preservative added to bottles? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 10. Were any sample containers received broken? 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 12. Are matrices correctly identified on Chain of Custody? 13. Is it clear what analyses were requested? 14. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified: Date: By Whom: Via:eMailPhoneFaxIn Person	
1. Is Chain of Custody complete? 2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples?	
2. How was the sample delivered? Log In 3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0° C to 6.0° C 4. Were all samples received at a temperature of >0° C to 6.0° C 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? 8. Was preservative added to bottles? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 10. Were any sample containers received broken? 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) Decial Handling (if applicable) 15. Was client notified of all discrepancies with this order? Person Notified: By Whom: Via:eMailPhoneFaxIn Person	
A. Were all samples received at a temperature of >0° C to 6.0° C 4. Were all samples received at a temperature of >0° C to 6.0° C 4. Were all samples received at a temperature of >0° C to 6.0° C 4. Were all samples received at a temperature of >0° C to 6.0° C 4. Were all samples received at a temperature of >0° C to 6.0° C 4. Were all samples (except volume for indicated test(s)? 5. Sample(s) in proper container(s)? 6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? 8. Was preservative added to bottles? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 10. Were any sample containers received broken? 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) 5. Peccial Handling (if applicable) 15. Was client notified of all discrepancies with this order? Person Notified: Date: Via:eMailPhoneFaxIn Person	
3. Was an attempt made to cool the samples? 4. Were all samples received at a temperature of >0°C to 6.0°C 4. Were all samples received at a temperature of >0°C to 6.0°C 4. Were all samples received at a temperature of >0°C to 6.0°C 4. Were all samples received at a temperature of >0°C to 6.0°C 4. Were all samples (some container (s)? 4. Were amples (except VOA and ONG) properly preserved? 5. Sample(s) in proper container (s)? 7. Are samples (except VOA and ONG) properly preserved? 8. Was preservative added to bottles? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 1. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) 5. Pecial Handling (if applicable) 15. Was client notified: By Whom: Via: Date: Via: D	
4. Were all samples received at a temperature of >0° C to 6.0°C	
5. Sample(s) in proper container(s)? Yes No 6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? 8. Was preservative added to bottles? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 10. Were any sample containers received broken? 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Person Notified: Date: By Whom: Via: eMail Phone Fax In Person	
6. Sufficient sample volume for indicated test(s)? 7. Are samples (except VOA and ONG) properly preserved? 8. Was preservative added to bottles? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 10. Were any sample containers received broken? 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Person Notified: By Whom: Via:eMailPhoneFaxIn Person	
7. Are samples (except VOA and ONG) properly preserved? 8. Was preservative added to bottles? 9. Received at least 1 vial with headspace <1/4" for AQ VOA? 10. Were any sample containers received broken? 11. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) 15. Was client notified of all discrepancies with this order? Person Notified: By Whom: Ves V No No No No No No No No No No No No No	
8. Was preservative added to bottles? Yes No No NA 9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes No No NA 10. Were any sample containers received broken? Yes No Mo Mo Ma Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo Mo	
9. Received at least 1 vial with headspace <1/4" for AQ VOA? Yes	
10. Were any sample containers received broken?	
# of preserved bottles checked for pH: (Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) **pecial Handling (if applicable)* S. Was client notified of all discrepancies with this order? Person Notified: Date:	
1. Does paperwork match bottle labels? (Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) **Peccial Handling (if applicable)* 15. Was client notified of all discrepancies with this order? Person Notified: By Whom: Date: Dat	
(Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Custody? 3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) **Special Handling (if applicable)* 15. Was client notified of all discrepancies with this order? Person Notified: By Whom: (<2 or >12 unless note Adjusted? No Adjusted?	
3. Is it clear what analyses were requested? 4. Were all holding times able to be met? (If no, notify customer for authorization.) **Pecial Handling (if applicable)* 15. Was client notified of all discrepancies with this order? Person Notified: By Whom: Via:eMailPhoneFaxIn Person	ted)
4. Were all holding times able to be met? (If no, notify customer for authorization.) pecial Handling (if applicable) 5. Was client notified of all discrepancies with this order? Person Notified: By Whom: Via:eMailPhoneFaxIn Person	
(If no, notify customer for authorization.) pecial Handling (if applicable) 5. Was client notified of all discrepancies with this order?	.10
Person Notified: By Whom: Date: Via:eMailPhoneFax In Person	1/2
Person Notified: Date: By Whom: Via: eMail Phone Fax In Person	
By Whom: Via: eMail Phone Fax In Person	
Regarding:	
Client Instructions:	
16. Additional remarks:	
17. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By 1 5.3 Good	

Chain-of-Custody Record Client: HINKE SHANOR UP ATTN: Richard Olson, Esa, Mailing Address: PO Box 10				Turn-Around		h				HA	ALL		N	/IF	20		1E	NT/	1277
				Project Name: Energy Resources Corp West Lovington Strawn Unst #8 Unit L Sec. 34, T. 155.R34E, June Project #: Deliveration of Coundwater Tel. 505-345-3975 Fax 505-345-4107										OCD: 9/2					
			88202-0010 2.6510	Project #: De	elication CO Case	+ Countwater		Te	1. 505	5-345-		-	_	505- Req	_	-4107			8/2023
3:10:03 P	r Fax#: ; Package: dard	rolson likyne Hoobe	Chinklelaw firm, Coi Price Q. Quy a fidmonbackenevgg Devel 4 (Full Validation)	Project Mana Cory Wa	ager: Eyne Pri	ice	's (8021)	TPH (Gas only)	Sas/Diesel)				,PO4,SO4)	2 PCB's					M.J. CO.17:
□ NELAP □ Other			Sampler: Landevsen & Ap CMBarnhill, Pt On Ice: Yes No Sample Temperature: 5.2 +0.1:5.3			E + TMB	+ TPH	30T5B(C	418.1)	PAH)	<u>s</u>	JO3,NO2	ss / 8082		OA)			or N	
□ EDD	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type		BIEX+ MTBE	BTEX + MTBE	TPH Method 8015B	TPH (Method 418.1) FDB (Method 504.1)	8310 (PNA or PAH)	RCRA 8 Metals	Anions (F,CINO3,NO2,PO4,	8081 Pesticides / 8082	8260B (VOA)	8270 (Semi-VOA)			Air Bubbles (Y
9/20/21	1050	Soic	MW-7 (650'-750')	1402 G	None	013	爱	-	X.	1			X					100	
19/20/21	1113		MW-7(750-85,0)		014							X						
19/20/21	1155		MW-7 (85.0-87.5)			015							X						
19/20/21	1418		MW-7 (875'-975)			016							X						
29/20/21	1450		MW-7 (97.5'-107.5')			017	X		X				X						
9/20/21	1545		MW7 (107.5'-117.5)			018							X						
19/20/21	1636		MN7 (11751-127.5)			019							X						
09/20/21	1715		MW-7 (127.5'-137.5')			000							X	1					
19/2//21	0838		MW-7(137.5'-147.5	1)		021							X						
19/2//21	1355		MW-7 (1485-157.5	5		022	X		X		1		X						
09/21/21	1357		MW-7 (147.5-148.5	1)		023	X		X				X						
09/22/21	0800	V	MW-7 (157.5-169.5)		7 40	024							K.					110	
Date: Date:	144 Time:	Relinguishe	the .	Received by:															SC meat 3+3 envired 75.626 1615

Client:	VKLE, TTN: Address She	ISHAN BICH PO E	NOR LL MRP Olso BOX 10	1 ESR, 202-0010	Project #:	Rush Exercise of United Str Sec. 34	Resources Cocy fawn Unit #8 T. 155 R. 34,E in OF GROUNDARI #1 RP-2457	ER	Te	el. 50	awkii 05-34	ww.	LI halle E - A		/IF S L men ierqu 505-	AE tal.co	NN 30 om M 87	1EI RA 109	TO	or many	Received by OCD: 0/28/20/23 4
QA/QC I Stan Accredi DEDD	Package: dard tation AP	Hayne	price & & diam Level 4	e law firm, cong corg with back energy, ((Full Validation)	Sampler: LAM On Ice:	yne Prio	/Cm Barnh:11 /Ph □ No 2+0.1 = S.3	BTEX+ MTBE + TMB's(8021)	+ TPH	TPH Method 8015B (Gas/Diesel)	TPH (Method 418.1)	00	8310 (PNA or PAH)	Anions (FC)NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pesticides / 8082 PCB's	8260B (VOA)	0 (Semi-VOA)			Air Bulday VV solding	Subbles (Y or IN) M.d. CO:17:
09/22/21	0930 10:20	SOIL	mw-7 mw-7	(167.5-177.5) (171.5'-187.5 (187.5-197.5)	1 402/6 Fax) \	None	2109096 025 026 029	X	BTE	Y X	TPF	EDE	831	X X Anic	808	826	8270			<	All
09 <u> 23 31</u> 	7430	1130	710,	ld Blank	344 Vanis	Hev	028														
Date:	Time:	Relinquishe	Maille ed by:	vironmental may be subco	Received by:		Date Time 9.23.21 Date Time as. This serves as notice of		-	_		-	-			_				esc. est 7 gmail con 26,14,	Lage Loy of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

OrderNo.: 2109B07

September 29, 2021

Wayne Price Richard Olsone Hinkle Shanor Law Firm P.O. Box 10 Roswell, NM 88202

TEL: (575) 622-6510

FAX:

RE: Energy Resources Corp West Lovington Strown Unit 8

Unit L Sec 34 T 15S R 34E

Dear Wayne Price:

Hall Environmental Analysis Laboratory received 28 sample(s) on 9/21/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-8 (0'-2.5')

Project: Energy Resources Corp West Lovington Collection Date: 9/15/2021 5:00:00 PM

Lab ID: 2109B07-001 Matrix: SOIL Received Date: 9/21/2021 9:23:00 AM

Result **MCL RL Qual Units** DF Analyses **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB Diesel Range Organics (DRO) ND 9/23/2021 9.0 mg/Kg 1 Motor Oil Range Organics (MRO) ND 45 mg/Kg 1 9/23/2021 Surr: DNOP 76.8 70-130 %Rec 1 9/23/2021 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: mb Gasoline Range Organics (GRO) ND 9/23/2021 4.9 mg/Kg 1 Surr: BFB 87.1 70-130 %Rec 1 9/23/2021 **EPA METHOD 8021B: VOLATILES** Analyst: mb Benzene ND 9/23/2021 0.024 mg/Kg 1 Toluene ND 0.049 mg/Kg 1 9/23/2021 Ethylbenzene ND 0.049 mg/Kg 9/23/2021 Xylenes, Total 9/23/2021 ND 0.098 mg/Kg 1 Surr: 4-Bromofluorobenzene 75.6 70-130 %Rec 9/23/2021 1 **EPA METHOD 300.0: ANIONS** Analyst: VP Chloride ND 60 mg/Kg 20 9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 1 of 28

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/29/2021

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (2.5' - 7.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/15/2021 5:10:00 PMLab ID:2109B07-002Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/23/2021
Surr: DNOP	82.9	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	9/23/2021
Surr: BFB	93.5	70-130	%Rec	1	9/23/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/23/2021
Toluene	ND	0.047	mg/Kg	1	9/23/2021
Ethylbenzene	ND	0.047	mg/Kg	1	9/23/2021
Xylenes, Total	ND	0.094	mg/Kg	1	9/23/2021
Surr: 4-Bromofluorobenzene	79.4	70-130	%Rec	1	9/23/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	61	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 2 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-003
 Matrix: SOIL
 Client Sample ID: MW-8 (7.5' - 15.0')
 Collection Date: 9/15/2021 5:17:00 PM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/23/2021
Surr: DNOP	87.4	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/23/2021
Surr: BFB	90.8	70-130	%Rec	1	9/23/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/23/2021
Toluene	ND	0.048	mg/Kg	1	9/23/2021
Ethylbenzene	ND	0.048	mg/Kg	1	9/23/2021
Xylenes, Total	ND	0.095	mg/Kg	1	9/23/2021
Surr: 4-Bromofluorobenzene	78.4	70-130	%Rec	1	9/23/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 3 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (15.0' - 17.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/15/2021 5:35:00 PMLab ID:2109B07-004Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/23/2021
Surr: DNOP	72.7	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/24/2021
Surr: BFB	89.4	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.025	mg/Kg	1	9/24/2021
Toluene	ND	0.050	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.050	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.10	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	76.0	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 4 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-005
 Matrix: SOIL
 Client Sample ID: MW-8 (17.5' - 23.5')
 Collection Date: 9/16/2021 8:16:00 AM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RANG	SE ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	9/23/2021		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/23/2021		
Surr: DNOP	78.9	70-130	%Rec	1	9/23/2021		
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst: mb		
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/24/2021		
Surr: BFB	91.0	70-130	%Rec	1	9/24/2021		
EPA METHOD 8021B: VOLATILES					Analyst: mb		
Benzene	ND	0.024	mg/Kg	1	9/24/2021		
Toluene	ND	0.049	mg/Kg	1	9/24/2021		
Ethylbenzene	ND	0.049	mg/Kg	1	9/24/2021		
Xylenes, Total	ND	0.097	mg/Kg	1	9/24/2021		
Surr: 4-Bromofluorobenzene	77.2	70-130	%Rec	1	9/24/2021		
EPA METHOD 300.0: ANIONS Analyst: VP							
Chloride	ND	60	mg/Kg	20	9/24/2021		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 5 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-8 (23.5' - 27.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/16/2021 8:30:00 AM

Lab ID: 2109B07-006

Matrix: SOIL

Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/23/2021
Surr: DNOP	84.4	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	9/24/2021
Surr: BFB	89.7	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.023	mg/Kg	1	9/24/2021
Toluene	ND	0.046	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.046	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.091	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	78.7	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 6 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-8 (27.5' - 35.0')

Project: Energy Resources Corp West Lovington

Collection Date: 9/16/2021 8:37:00 AM

Lab ID: 2109B07-007

Matrix: SOIL

Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/23/2021
Surr: DNOP	79.4	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	9/24/2021
Surr: BFB	93.8	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/24/2021
Toluene	ND	0.047	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.047	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.094	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	79.1	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 7 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-008
 Matrix: SOIL
 Client Sample ID: MW-8 (35.0' - 40.0')
 Collection Date: 9/16/2021 8:45:00 AM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/23/2021
Surr: DNOP	80.6	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	9/24/2021
Surr: BFB	89.0	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.023	mg/Kg	1	9/24/2021
Toluene	ND	0.046	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.046	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.091	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	77.1	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 8 of 28

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/29/2021

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (40.0' - 47.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/16/2021 9:50:00 AMLab ID:2109B07-009Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 9 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-8 (47.5' - 51.0')

Project: Energy Resources Corp West Lovington

Collection Date: 9/16/2021 10:13:00 AM

Lab ID: 2109B07-010

Matrix: SOIL

Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/23/2021
Surr: DNOP	87.7	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/24/2021
Surr: BFB	86.3	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.025	mg/Kg	1	9/24/2021
Toluene	ND	0.050	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.050	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.099	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	74.8	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 10 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-011
 Matrix: SOIL
 Client Sample ID: MW-8 (51.0' - 52.0')
 Collection Date: 9/16/2021 10:15:00 AM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANG	GE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/23/2021
Surr: DNOP	85.3	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RAN	IGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	9/24/2021
Surr: BFB	88.6	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/24/2021
Toluene	ND	0.047	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.047	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.095	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	77.6	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 11 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-8 (52.0' - 57.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/16/2021 10:17:00 AM

Lab ID: 2109B07-012

Matrix: SOIL

Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAN	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	7.7	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	39	mg/Kg	1	9/23/2021
Surr: DNOP	86.8	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/24/2021
Surr: BFB	88.6	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/24/2021
Toluene	ND	0.048	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.048	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.096	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	77.0	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	59	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 12 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-8 (57.5' - 67.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/16/2021 2:14:00 PM

Lab ID: 2109B07-013

Matrix: SOIL

Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 13 of 28

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/29/2021

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (67.5' - 77.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/16/2021 2:35:00 PMLab ID:2109B07-014Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 14 of 28

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/29/2021

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (80.0' - 87.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/16/2021 2:56:00 PMLab ID:2109B07-015Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 15 of 28

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/29/2021

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (87.5' - 97.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/16/2021 3:53:00 PMLab ID:2109B07-016Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 16 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (97.5' - 107.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/16/2021 4:22:00 PMLab ID:2109B07-017Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAN	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/23/2021
Surr: DNOP	88.3	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	9/24/2021
Surr: BFB	89.1	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.023	mg/Kg	1	9/24/2021
Toluene	ND	0.047	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.047	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.094	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	77.9	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	61	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 17 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (107.5' - 117.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/16/2021 5:03:00 PMLab ID:2109B07-018Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 18 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (117.5' - 127.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/17/2021 7:58:00 AMLab ID:2109B07-019Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 19 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-020
 Matrix: SOIL
 Client Sample ID: MW-8 (127.5' - 137.5')
 Collection Date: 9/17/2021 8:30:00 AM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 20 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-021
 Matrix: SOIL
 Client Sample ID: MW-8 (137.5' - 145.0')
 Collection Date: 9/17/2021 9:13:00 AM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 21 of 28

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/29/2021

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-022
 Matrix: SOIL
 Client Sample ID: MW-8 (145.0' - 155.0')
 Collection Date: 9/17/2021 9:54:00 AM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	8.5	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	43	mg/Kg	1	9/23/2021
Surr: DNOP	88.9	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	9/24/2021
Surr: BFB	92.1	70-130	%Rec	1	9/24/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/24/2021
Toluene	ND	0.047	mg/Kg	1	9/24/2021
Ethylbenzene	ND	0.047	mg/Kg	1	9/24/2021
Xylenes, Total	ND	0.095	mg/Kg	1	9/24/2021
Surr: 4-Bromofluorobenzene	80.0	70-130	%Rec	1	9/24/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 22 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-8 (155.0' - 157.5')

Project: Energy Resources Corp West Lovington

Collection Date: 9/17/2021 10:34:00 AM

Lab ID: 2109B07-023

Matrix: SOIL

Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 23 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-024
 Matrix: SOIL
 Client Sample ID: MW-8 (157.5' - 167.5')
 Collection Date: 9/17/2021 11:59:00 AM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 24 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-025
 Matrix: SOIL
 Client Sample ID: MW-8 (167.5' - 177.5')
 Collection Date: 9/17/2021 12:27:00 PM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/24/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 25 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-8 (177.5' - 187.5')Project:Energy Resources Corp West LovingtonCollection Date: 9/17/2021 1:25:00 PMLab ID:2109B07-026Matrix: SOILReceived Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qua	l Units	DF	Date Analyzed	
EPA METHOD 300.0: ANIONS						Analyst: VP	_
Chloride	ND		60	mg/Kg	20	9/25/2021	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 26 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-027
 Matrix: SOIL
 Client Sample ID: MW-8 (187.5' - 197.5')
 Collection Date: 9/17/2021 2:55:00 PM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAM	IGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	9/24/2021
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/24/2021
Surr: DNOP	96.2	70-130	%Rec	1	9/24/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/23/2021
Surr: BFB	102	70-130	%Rec	1	9/23/2021
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.024	mg/Kg	1	9/23/2021
Toluene	ND	0.049	mg/Kg	1	9/23/2021
Ethylbenzene	ND	0.049	mg/Kg	1	9/23/2021
Xylenes, Total	ND	0.097	mg/Kg	1	9/23/2021
Surr: 4-Bromofluorobenzene	90.0	70-130	%Rec	1	9/23/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/25/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 27 of 28

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energy Resources Corp West Lovington
 Lab ID: 2109B07-028
 Matrix: AQUEOUS
 Client Sample ID: MW-8 Field Blank
 Collection Date: 9/20/2021 1:20:00 PM
 Received Date: 9/21/2021 9:23:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES						Analyst: RAA
Benzene	ND		1.0	μg/L	1	9/25/2021
Toluene	ND		1.0	μg/L	1	9/25/2021
Ethylbenzene	ND		1.0	μg/L	1	9/25/2021
Xylenes, Total	ND		2.0	μg/L	1	9/25/2021
Surr: 4-Bromofluorobenzene	82.3		70-130	%Rec	1	9/25/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 28 of 28

Hall Environmental Analysis Laboratory 4901 Hawkins NE

Website: clients.hallenvironmental.com

Sample Log-In Check List Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Client Name: Richard Olsone Hinkle Shanor Law Firm	Work Order No	umber: 210	9B07		RcptNo	p: 1
Received By: Kasandra Payan	9/21/2021 9:23:0	00 AM		HE		
Completed By: Isaiah Ortiz	9/21/2021 9:45:1	I2 AM		7-	04	
Reviewed By: 489 9/2	1/21			-		
Chain of Custody						
1. Is Chain of Custody complete?		Yes	V	No I	Not Present	
2. How was the sample delivered?		UPS				
Log In						
Was an attempt made to cool the samp	oles?	Yes	V	No [NA □	
4. Were all samples received at a tempera	ature of >0° C to 6.0°C	Yes	~	No [NA 🗆	
5. Sample(s) in proper container(s)?		Yes	✓	No [
6. Sufficient sample volume for indicated to	est(s)?	Yes	V	No [1	
7_{\cdot} Are samples (except VOA and ONG) pro	operly preserved?	Yes	V	No 🗆		
8. Was preservative added to bottles?		Yes		No 🗸	NA 🗆	
9. Received at least 1 vial with headspace	<1/4" for AQ VOA?	Yes		No 🗆	NA 🗹	
10. Were any sample containers received b	roken?	Yes		No 🗸		
					# of preserved bottles checked	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody	\	Yes	V	No 🗆		2 12lean
12. Are matrices correctly identified on Chair		Yes	V	No 🗌	Adjusted?	r >12 unless noted)
13. Is it clear what analyses were requested			V	No 🗆		
14. Were all holding times able to be met?			V	No 🗆	Checked by:	TU 9.21-
(If no, notify customer for authorization.)			700			11000
Special Handling (if applicable)				1		
15. Was client notified of all discrepancies v	with this order?	Yes		No [NA 🗸	
Person Notified:	Da	te:				
By Whom:	Via		ail 🖂	Phone Fa	ax In Person	
Regarding:				- monte	IN Clour	
Client Instructions:						
16. Additional remarks:						
17. Cooler Information Cooler No Temp °C Condition 1 5.9 Good	Seal Intact Seal No	Seal Da	ate	Signed By		

C	hain	-of-Cu	stody Record	Turn-Around	l Time:		1 .										01		есет
Client:	VKLE	1sta	nox UP	Standard	d □ Rush												EN		0
AT	TN:		and Alson Esq.	Project Nam West Lo	e: Energe Nington S. Sec. 34,	n Resources Corporation of Second Water				W	ww.ha	allen	viron	men	ital.co	om	TAS	UK	EW OCD:
			88212-0010	Project #: Z	elneation	y of Goundwith	E.			awkin: 5-345						M 871 -4107	09		28/2
Phone	#: 57	5.62	2.6510	OCD	Case #	IRP-2457			1. 50	J-345	_	-	-		uest	-			3 4
email o	r Fax#: / Package:	ro/50%	chinkle lawfirm. Cong price Q. Cong b o diament backene Level 4 (Full Validation)	Project Mana	ager: Wayn	e Price	TMB's (8021)	(PH:8013D(GRO) (DRO)	PCB's	1)		PO ₄ , SO ₄			Total Coliform (Present/Absent)				W.J. CO. 17
Accred		☐ Az Co☐ Other	mpliance		Anderson, 1	PHD CM Barnh: 11 Pho No	TMB	O'GR	/8082	14.1)		NO ₂ ,		7	reser				
	(Type)	- Other		# of Coolers:		LI NO	3E /	GRO	des/	d 50	als	033		00	n (F				
						3+0.1=5.9 (°C)		3013D(8081 Pesticides/8082	EDB (Method 504.1)	RCRA 8 Metals	(C), F, Br, NO ₃ ,	8260 (VOA)	8270 (Semi-VOA)	Colifor				
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO. 2109BO7	BTEX	(PH.8	8081	EDB	RCR/	(A)	8260	8270	Total				
1/15/21	1700	SOIL	MW-8(0'-2,51)	1407 Jan	None	Mol	X	Y				X				±2[]			
1/5/21	17-10	SOIC	MW-8(2.5'-7,5')	1		ZCX).	X	X				X							
9/15/21	1717	SOIL	mw-8(7.5'-15,0')			003	X	X				X							
9/15/21	1735	SOIL	mu & (15,0'-17,5')			064	X	X	177			X							
1/16/21	0816	SOIL	mw-8 (17,5'-23,5')			005	X	X				X							
1/16/21	0830	Soil	mu-8(23,5'-27,5')			026	X	X		i i		X							
16/21	0837	SOIL	mw-8(27,5 - 35,0)			007	X	X			YE	X							HE.
9/16/21	0845	SOIL	mio-8(35.0'-4010')			008	X	X				X							
1/16/21	0950	Soil	11.00			009						X							
1/16/21	1013	SIN	mu-8 (47,5'-51,0')			016	X	X				X							
1/16/21	1015	SOIL	Muo-8 (51,0'-52,0')			011	X	X				X							
1/16/21	1017		Mu-8(52.0-57.51)	V	V	012	X	X				X				= 1:			
Date:	13:30	Relinquishe	Toursa PG	Received by		Date Time 21 21 9:23	Rem	narks	F	lease	Sinri	no a	Re	sal	15	to	On Pall	18	Page
Jaile:	Time:	Relinquishe	ea by:	Received by:	Via:	Date Time			6	CI	nBO	- 5	1145	5-6	126	1. 16.	11-		140 of 3
	f necessary.	samples sub	mitted to Hall Environmental may be subc	ontracted to other a	ccredited laboratorie	es. This serves as notice of this	possil	oility A	nv suh	-contrac	ed data	will be	clear	v nota	ted on	the anal	tical ren	ort	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

September 29, 2021

Wayne Price Richard Olsone Hinkle Shanor Law Firm P.O. Box 10 Roswell, NM 88202

TEL: (575) 622-6510

FAX:

RE: Energen Resource Corp West Lovington Strown Unit 8 OrderNo.: 2109970

Unit L Sec 34T15SR35E Lea Co NM

Dear Wayne Price:

Hall Environmental Analysis Laboratory received 24 sample(s) on 9/16/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2109970

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (2.0'-10.0')

Project: Energen Resource Corp West Lovington

Collection Date: 9/9/2021 10:45:00 AM

Lab ID: 2109970-001

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	9/21/2021
Surr: DNOP	105	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/21/2021
Surr: BFB	95.5	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/21/2021
Toluene	ND	0.049	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.049	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.098	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	80.0	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 1 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (10.0' - 20.0')

Project: Energen Resource Corp West Lovington

Collection Date: 9/9/2021 11:14:00 AM

Lab ID: 2109970-002

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/21/2021
Surr: DNOP	84.1	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/21/2021
Surr: BFB	93.5	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/21/2021
Toluene	ND	0.048	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.048	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.097	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	78.8	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 2 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (20.0' - 30.0')

Project: Energen Resource Corp West Lovington

Collection Date: 9/9/2021 11:26:00 AM

Lab ID: 2109970-003

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAM	IGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/21/2021
Surr: DNOP	89.0	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/21/2021
Surr: BFB	92.7	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.025	mg/Kg	1	9/21/2021
Toluene	ND	0.050	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.050	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.099	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	78.6	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	59	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 3 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (30.0' - 39.0')

Project: Energen Resource Corp West Lovington

Collection Date: 9/9/2021 11:47:00 AM

Lab ID: 2109970-004

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	8.7	mg/Kg	1	9/23/2021
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	9/23/2021
Surr: DNOP	78.0	70-130	%Rec	1	9/23/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/21/2021
Surr: BFB	94.0	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/21/2021
Toluene	ND	0.049	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.049	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.098	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	80.5	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * = Va

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 4 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (39.0' - 50.0')

Project: Energen Resource Corp West Lovington

Collection Date: 9/9/2021 1:35:00 PM

Lab ID: 2109970-005

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND		61	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 5 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (50.0' - 54.5')

Project: Energen Resource Corp West Lovington

Collection Date: 9/9/2021 1:58:00 PM

Lab ID: 2109970-006

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/21/2021
Surr: DNOP	93.2	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/21/2021
Surr: BFB	91.8	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/21/2021
Toluene	ND	0.049	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.049	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.098	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	78.6	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 6 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (54.5' - 55.0')

Project: Energen Resource Corp West Lovington

Collection Date: 9/9/2021 2:00:00 PM

Lab ID: 2109970-007

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	51	mg/Kg	1	9/21/2021
Surr: DNOP	91.5	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	9/21/2021
Surr: BFB	92.8	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/21/2021
Toluene	ND	0.048	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.048	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.097	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	79.2	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 7 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (55.0' - 59.0')

Project: Energen Resource Corp West Lovington

Lab ID: 2109970-008

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	9/21/2021
Surr: DNOP	97.3	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/21/2021
Surr: BFB	91.5	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.025	mg/Kg	1	9/21/2021
Toluene	ND	0.049	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.049	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.098	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	78.0	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 8 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (59.0' - 67.0')

Project: Energen Resource Corp West Lovington

Collection Date: 9/9/2021 2:12:00 PM

Lab ID: 2109970-009

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAM	IGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/21/2021
Surr: DNOP	95.3	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/21/2021
Surr: BFB	95.2	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/21/2021
Toluene	ND	0.049	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.049	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.098	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	77.8	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 9 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energen Resource Corp West Lovington
 Lab ID: 2109970-010
 Matrix: SOIL
 Client Sample ID: MW-9 (67.5' - 77.5')
 Collection Date: 9/10/2021 2:34:00 PM
 Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND		60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 10 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energen Resource Corp West Lovington
 Lab ID: 2109970-011
 Matrix: SOIL
 Client Sample ID: MW-9 (77.5' - 87.5')
 Collection Date: 9/10/2021 2:48:00 PM
 Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND		60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 11 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-9 (87.5' - 97.5')Project:Energen Resource Corp West LovingtonCollection Date: 9/10/2021 4:00:00 PMLab ID:2109970-012Matrix: SOILReceived Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND		60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 12 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
Client Sample ID: MW-9 (97.5' - 107.5')

Project: Energen Resource Corp West Lovington
Collection Date: 9/10/2021 4:32:00 PM

Lab ID: 2109970-013
Matrix: SOIL
Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAM	IGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.1	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	9/21/2021
Surr: DNOP	96.3	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/21/2021
Surr: BFB	90.7	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.025	mg/Kg	1	9/21/2021
Toluene	ND	0.050	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.050	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.099	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	77.6	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 13 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-9 (107.5 - 117.5)Project:Energen Resource Corp West LovingtonCollection Date: 9/10/2021 4:46:00 PMLab ID:2109970-014Matrix: SOILReceived Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed	
EPA METHOD 300.0: ANIONS						Analyst: CAS	
Chloride	ND		60	mg/Kg	20	9/22/2021	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 14 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energen Resource Corp West Lovington
 Lab ID: 2109970-015
 Matrix: SOIL
 Client Sample ID: MW-9 (117.5 - 127.5')
 Collection Date: 9/10/2021 5:34:00 PM
 Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND		60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 15 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (127.5' - 137.5')

Project: Energen Resource Corp West Lovington

Collection Date: 9/11/2021 10:15:00 AM

Lab ID: 2109970-016

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND		60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 16 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (137.5' - 147.5')

Project: Energen Resource Corp West Lovington

Collection Date: 9/11/2021 10:38:00 AM

Lab ID: 2109970-017

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed	
EPA METHOD 300.0: ANIONS						Analyst: CAS	
Chloride	ND		60	mg/Kg	20	9/22/2021	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 17 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm

Client Sample ID: MW-9 (147.5' - 157.5)

Project: Energen Resource Corp West Lovington

Collection Date: 9/12/2021 9:56:00 AM

Lab ID: 2109970-018

Matrix: SOIL

Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	8.8	mg/Kg	1	9/21/2021
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	9/21/2021
Surr: DNOP	97.0	70-130	%Rec	1	9/21/2021
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/21/2021
Surr: BFB	90.6	70-130	%Rec	1	9/21/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.024	mg/Kg	1	9/21/2021
Toluene	ND	0.049	mg/Kg	1	9/21/2021
Ethylbenzene	ND	0.049	mg/Kg	1	9/21/2021
Xylenes, Total	ND	0.098	mg/Kg	1	9/21/2021
Surr: 4-Bromofluorobenzene	77.6	70-130	%Rec	1	9/21/2021
EPA METHOD 300.0: ANIONS					Analyst: CAS
Chloride	ND	60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 18 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energen Resource Corp West Lovington
 Lab ID: 2109970-019
 Matrix: SOIL
 Client Sample ID: MW-9 (157.5' - 167.5')
 Collection Date: 9/12/2021 2:20:00 PM
 Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND		61	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 19 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energen Resource Corp West Lovington
 Lab ID: 2109970-020
 Matrix: SOIL
 Client Sample ID: MW-9 (167.5' - 177.5')
 Collection Date: 9/13/2021 2:10:00 PM
 Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed	
EPA METHOD 300.0: ANIONS						Analyst: CAS	_
Chloride	ND		60	mg/Kg	20	9/22/2021	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 20 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-9 (177.5' - 187.5')Project:Energen Resource Corp West LovingtonCollection Date: 9/13/2021 4:17:00 PMLab ID:2109970-021Matrix: SOILReceived Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: CAS
Chloride	ND		60	mg/Kg	20	9/22/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 21 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Richard Olsone Hinkle Shanor Law Firm
 Project: Energen Resource Corp West Lovington
 Lab ID: 2109970-022
 Matrix: SOIL
 Client Sample ID: MW-9 (187.5' - 190.0')
 Collection Date: 9/13/2021 5:02:00 PM
 Received Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qua	Units	DF	Date Analyzed	
EPA METHOD 300.0: ANIONS						Analyst: VP	
Chloride	ND		60	mg/Kg	20	9/23/2021	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceeded

ND = Not Detected at the RL

B = Analyte detected in the associated Method Blank

P = Sample pH Not in Range Page 22 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-9 (190.0' - 190.4')Project:Energen Resource Corp West LovingtonCollection Date: 9/13/2021 5:05:00 PMLab ID:2109970-023Matrix: SOILReceived Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL	RL Qual	Units	DF	Date Analyzed
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	ND		60	mg/Kg	20	9/23/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 23 of 24

Date Reported: 9/29/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Richard Olsone Hinkle Shanor Law FirmClient Sample ID: MW-9 (190.4' - 197.5')Project:Energen Resource Corp West LovingtonCollection Date: 9/13/2021 5:08:00 PMLab ID:2109970-024Matrix: SOILReceived Date: 9/16/2021 9:30:00 AM

Analyses	Result	MCL RL	Qual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	8.8	mg/Kg	1	9/24/2021
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	9/24/2021
Surr: DNOP	102	70-130	%Rec	1	9/24/2021
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: mb
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	9/22/2021
Surr: BFB	91.8	70-130	%Rec	1	9/22/2021
EPA METHOD 8021B: VOLATILES					Analyst: mb
Benzene	ND	0.025	mg/Kg	1	9/22/2021
Toluene	ND	0.049	mg/Kg	1	9/22/2021
Ethylbenzene	ND	0.049	mg/Kg	1	9/22/2021
Xylenes, Total	ND	0.099	mg/Kg	1	9/22/2021
Surr: 4-Bromofluorobenzene	79.8	70-130	%Rec	1	9/22/2021
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	9/23/2021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* = Value exeeds Maximum Contaminant Level(MCL)

MCL = EPA Maximum Contamination Level

RL = Reporting Limit: Laboratory Detection Level

H = Holding times for preparation or analysis exceded

ND = Not Detected at the RL

 $B = Analyte \ detected \ in \ the \ associated \ Method \ Blank$

P = Sample pH Not in Range Page 24 of 24

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name: Richard Olse Shanor Law		er Number:	2109	970			RcptNo: 1
Received By: Juan Rojas	9/16/2021 9:	30:00 AM			Mair	39	
Completed By: Isaiah Ortiz	9/17/2021 3:	52:38 PM			Juan	1	2-1
Reviewed By: JU9'Z							-(-
Chain of Custody							
 Is Chain of Custody complet 	ete?		Yes	V	No		Not Present
2. How was the sample delive	red?		<u>UPS</u>				
Log In							
3. Was an attempt made to co	ol the samples?		Yes	V	No		NA 🗆
4. Were all samples received a	at a temperature of >0° C to 6.0	ı°C	Yes	V	No		NA 🗆
5. Sample(s) in proper contain	er(s)?		Yes	V	No		
5. Sufficient sample volume for	r indicated test(s)?		Yes	V	No		
7. Are samples (except VOA ar	nd ONG) properly preserved?	-	Yes	V	No		
3. Was preservative added to b	pottles?	-	Yes		No	V	NA 🗆
9. Received at least 1 vial with	headspace <1/4" for AQ VOA?		Yes		No		NA 🗹
0. Were any sample containers	s received broken?		Yes		No	~	w de constant
							# of preserved bottles checked
 Does paperwork match bottle (Note discrepancies on chair 		,	Yes	V	No l		for pH: (<2 or >12 unless noted)
2. Are matrices correctly identif		-	/es	V	No [Adjusted?
3. Is it clear what analyses were				V	No [
 Were all holding times able t (If no, notify customer for aut 		3	r'es	V	No [Officked by: JR 9/20/2
pecial Handling (if appli							
5. Was client notified of all disc			Yes		No		NA 🗹
Person Notified:		Date:	-	_		-	
By Whom:		Via:	eMa	il 🗍	Phone	Fax	In Person
Regarding:							
Client Instructions:							
6. Additional remarks:							
7. Cooler Information Cooler No Temp °C 1 3.4	Condition Seal Intact Sea	l No Se	al Da	te	Signed B	у	

None

None

None

Nonc

Tax

Received by:

Received by:

MW-9(67.5'-77.5

Soil MW-9/87.5

Relinquished by:

Relinquished by:

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Remarks: Any Questions? Plase Call ams 0575.626.1618 Also Send Copy of Results to embonviron gmail. Com

Date

009

016

011

510

Chain-of-Custody Record	Turn-Around Time:	Kece
Client:	HALL ENVIRONMENT	TAL R
Richard Olson, Hinkle /Shann LLP	Standard Rush ANALYSIS LABORATO	DRY 3
PO BOX 10	Project Name: Energentlescarces Copp. West Lovington Strawn Unit # 8 Whith Sec. 34 7155. R.35 E 4901 Hawkins NF - Albuquerque NM 87109	CD
Mailing Address:	The state of the s	6/2
Floshell, NM 88202-0010	Project #: Delineation of 600 and Water Tel. 505-345-3975 Fax 505-345-4107	8/20
Phone #: 575, 622, 6510	OCD Case # 1RP-2457 Analysis Request	23 4
email or Fax#: rolseya hinkle lowfiry. co.	Project Manager: Wayne Price SB 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	:21:
QA/QC Package: Wagne Price & Con A Cobb & diamond beck energy Standard \(\subseteq \text{Level 4 (Full Validation)'}		05 PM
Accreditation: Az Compliance	Sampler: CM Barnh Pt / IMBs ON S S ON ON ON ON ON	
□ NELAC □ Other	On Ice: Yes I No PHD See See See See See See See See See S	
	# of Cooler Lemb(ivoring ce): (NoA) (Semi-VO) (Semi-VO) (Semi-VO) (Semi-VO)	
	Sor (No.) (No.) (Net Least 191000	
Date Time Matrix Sample Name		
09/10/21 16:32 SOL MW-9(97.5-1075) fac None 013 XX	
02/10/21 16:46 Soil MW-9(107.5 -117.5	Tan None NY	
8/10/21 17:34 Soil MW-9 (117.5-127.5	Tac None OIS	
8/11/21 09:56 SOIL MW-9 (127.5'-137.5'	Jan None Ollo X	
8/11/21 10:38 Soil MW-9 (137.5-147.5	Fan None OL7	
4/2/21 0956 SOIL MW-9 (147.5-1575	Tax None 018 XX	
16/21 1420 Soil MW-9 (157.5-167.5)	Take None 019	
9/13/21 1410 SOIL MW-9(167.5'-177.5'	Tou None NO X	
9/13/21 1617 SOIC MW-9 (177.5'-1875')	149th None OZI	
VISIS, 17:02 Soil MW-4 187.5'- 190,0')	Tau None 022	
4/15/21 17:05 Soil MW-9 (190:0 -190.4')	Jac Nove 023	
V13/21 17:08 SOIL MW-9(190,4'-197.5'	140 t 1/200 074XX	
Date: Time: Relinquished by: Blance	Received by: Via: How Date Time Remarks: Send Results to: Combonviros Avy Questions Plase Received by: Via: Date Time Call CmBa 575-626.16/	egmail.
Date: Time: Relinquisted by:	VORIS Pagained by West cons Please	age
Vista 0830 United by:	Received by: Via: Date Time Call CmB a	
1 19 Septe of Care	intracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	

Report to:

Natalie Gladden

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Newell Law Firm

Project Name: W Lovington Strawn U. #8

Work Order: E203110

Job Number: 20046-0001

Received: 3/18/2022

Revision: 2

Report Reviewed By:

Walter Hinchman Laboratory Director 3/24/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979)

Date Reported: 3/24/22

Natalie Gladden 10 W Adams Ave Ste E Lovington, NM 88260

Project Name: W Lovington Strawn U. #8

Workorder: E203110

Date Received: 3/18/2022 8:15:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 3/18/2022 8:15:00AM, under the Project Name: W Lovington Strawn U. #8.

The analytical test results summarized in this report with the Project Name: W Lovington Strawn U. #8 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman

Laboratory Director Office: 505-632-1881

Cell: 775-287-1762

whinchman@envirotech-inc.com

Raina Schwanz

Laboratory Administrator Office: 505-632-1881

rainaschwanz@envirotech-inc.com

Alexa Michaels

Sample Custody Officer Office: 505-632-1881

labadmin@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services

Office: 505-421-LABS(5227)

Cell: 505-320-4759

ljarboe@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan

Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
MW - 9S	6
MW - 9M	10
MW - 9D	14
MW - 1	18
MW - 5	22
MW - 6	26
MW - 3	30
QC Summary Data	34
QC - Volatile Organic Compounds by EPA 8260B	34
QC - Wet Chem/Gravimetric by SM2540C	37
QC - Wet Chemistry by 9040C/4500H+B	38
QC - Wet Chemistry by SM2320B	39
QC - Wet Chemistry by 9050A/2510B	40
QC - Nonhalogenated Organics by EPA 8015D - GRO	41
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	42
QC - Total Metals by EPA 6010C	43
QC - Dissolved Metals by EPA 6010C	44
QC - Anions by EPA 300.0/9056A	45
QC - Total Mercury by EPA 7470A	46
Definitions and Notes	/17

Table of Contents (continued)

Chain of Custody etc. 48

Page 4 of 49

Sample Summary

ı	Newell Law Firm	Project Name:	W Lovington Strawn U. #8	Reported:
l	10 W Adams Ave Ste E	Project Number:	20046-0001	Keporteu.
l	Lovington NM, 88260	Project Manager:	Natalie Gladden	03/24/22 18:26

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
MW - 9S	E203110-01A	Aqueous	03/15/22	03/18/22	Poly 500mL
	E203110-01B	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
	E203110-01C	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
	E203110-01D	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
MW - 9M	E203110-02A	Aqueous	03/15/22	03/18/22	Poly 500mL
	E203110-02B	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
	E203110-02C	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
MW - 9D	E203110-03A	Aqueous	03/15/22	03/18/22	Poly 500mL
	E203110-03B	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
	E203110-03C	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
MW - 1	E203110-04A	Aqueous	03/15/22	03/18/22	Poly 250mL
	E203110-04B	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
	E203110-04C	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
MW - 5	E203110-05A	Aqueous	03/15/22	03/18/22	Poly 250mL
	E203110-05B	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
	E203110-05C	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
MW - 6	E203110-06A	Aqueous	03/15/22	03/18/22	Poly 250mL
	E203110-06B	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
	E203110-06C	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
MW - 3	E203110-07A	Aqueous	03/15/22	03/18/22	Poly 250mL
	E203110-07B	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl
	E203110-07C	Aqueous	03/15/22	03/18/22	VOA Vial, 40mL; HCl

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

	-	2203110-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst	: IY		Batch: 2212089
Acetone	ND	80.0	2	03/19/22	03/19/22	
Benzene	ND	2.00	2	03/19/22	03/19/22	
Bromobenzene	ND	2.00	2	03/19/22	03/19/22	
Bromochloromethane	ND	2.00	2	03/19/22	03/19/22	
Bromodichloromethane	ND	2.00	2	03/19/22	03/19/22	
Bromoform	ND	2.00	2	03/19/22	03/19/22	
Bromomethane	ND	4.00	2	03/19/22	03/19/22	
n-Butyl Benzene	ND	2.00	2	03/19/22	03/19/22	
sec-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
tert-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
Carbon Tetrachloride	ND	2.00	2	03/19/22	03/19/22	
Chlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Chloroethane	ND	4.00	2	03/19/22	03/19/22	
Chloroform	ND	10.0	2	03/19/22	03/19/22	
Chloromethane	ND	4.00	2	03/19/22	03/19/22	
2-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
4-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
Dibromochloromethane	ND	2.00	2	03/19/22	03/19/22	
1,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/19/22	03/19/22	
1,2-Dibromoethane (EDB)	ND	4.00	2	03/19/22	03/19/22	
Dibromomethane	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
1,3-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
1,4-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/19/22	03/19/22	
1,1-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
1.1-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
cis-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
trans-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
1,3-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
2,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
1,1-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
cis-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
trans-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
Diisopropyl Ether (DIPE)	ND	2.00	2	03/19/22	03/19/22	
Ethylbenzene	ND	2.00	2	03/19/22	03/19/22	
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/19/22	03/19/22	
Hexachlorobutadiene	ND	10.0	2	03/19/22	03/19/22	
2-Hexanone	ND	40.0	2	03/19/22	03/19/22	
	ND ND	2.00	2	03/19/22	03/19/22	
Isopropyltelyone	ND ND	2.00	2	03/19/22	03/19/22	
4-Isopropyltoluene	ND ND	40.0	2	03/19/22	03/19/22	
2-Butanone (MEK)			2	03/19/22	03/19/22	
Methylene Chloride	ND	4.00	4	03/17/22	03/17/22	

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

		Reportin	g			
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analy	yst: IY		Batch: 2212089
1-Methylnaphthalene	ND	20.0	2	03/19/22	03/19/22	
2-Methylnaphthalene	ND	20.0	2	03/19/22	03/19/22	
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/19/22	03/19/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/19/22	03/19/22	
Naphthalene	ND	10.0	2	03/19/22	03/19/22	
n-Propyl Benzene	ND	2.00	2	03/19/22	03/19/22	
Styrene	ND	2.00	2	03/19/22	03/19/22	
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/19/22	03/19/22	
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
Tetrachloroethene	ND	2.00	2	03/19/22	03/19/22	
1,2,3-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,2,4-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,1,1-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
Trichloroethene	ND	2.00	2	03/19/22	03/19/22	
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/19/22	03/19/22	
1,2,3-Trichloropropane	ND	4.00	2	03/19/22	03/19/22	
1,2,4-Trimethylbenzene	ND	10.0	2	03/19/22	03/19/22	
1,3,5-Trimethylbenzene	ND	2.00	2	03/19/22	03/19/22	
Toluene	ND	2.00	2	03/19/22	03/19/22	
Vinyl chloride	ND	4.00	2	03/19/22	03/19/22	
o-Xylene	ND	2.00	2	03/19/22	03/19/22	
p,m-Xylene	ND	4.00	2	03/19/22	03/19/22	
Total Xylenes	ND	2.00	2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		95.1 %	70-130	03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130	03/19/22	03/19/22	
Surrogate: Toluene-d8		96.7 %	70-130	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

Wet Chemistry by 9040C/4500H+B pH Units pH Units pH Units nalyst: L Batch: 2213006 H5 pH @25°C 7.85 l ng/L Analyst: RAS 03/21/22 08:37 03/21/22 10:26 H5 Wet Chemistry by SM2320B mg/L mg/L Analyst: RAS 03/21/22 03/21/22 Batch: 2213016 Wet Chemistry by 9050A/2510B uS/cm uS/cm Analyst: RAS Batch: 2213007 Specific Conductance (@ 25 C) 657 10.0 1 03/21/22 03/21/22 Batch: 2213008 Nonhalogenated Organics by EPA 8015D - GRO mg/L mg/L Analyst: L Batch: 2213007 Batch: 2213007 Surrogate: Bronofluorobenemed 95.1% 70-130 03/19/22 03/19/22 Batch: 2213007 Surrogate: I.2-Dichlorochame-44 99.7 % 70-130 03/19/22 03/19/22 03/19/22 Surrogate: Toluen-d8 MD 1.00 1 03/21/22 03/21/22 Dicisel Range Organics (C10-C28) ND 1.00 1 03/21/22 03/21/22 Oil Range Orga			2200110 01					
Met Chem/Gravimetric by SM2540C mg/L mg/L Analyst: RAS Batch: 2212068 Total Dissolved Solids 228 40.0 1 03/17/22 03/21/22 Met Chemistry by 9040C/4500H+B pH Units pH Units pH Units nmg/L Analyst: KL Batch: 2213006 PH @25°C 7.85 1 03/21/22 08:37 03/21/22 10:26 H5 Met Chemistry by SM2320B mg/L mg/L Analyst: RAS Batch: 2213016 Total Alkalinity (as CaCO3 at pH 4.5) 277 10.0 1 03/21/22 03/21/22 Met Chemistry by 9050A/2510B uS/cm uS/cm uS/cm Analyst: RAS Batch: 2213009 Specific Conductance (@ 25 C) 657 10.0 1 03/21/22 03/21/22 Monhalogenated Organics by EPA 8015D - GRO mg/L mg/L Analyst: V Batch: 2212089 Gasoline Range Organics (C6-C10) ND 0.200 2 03/19/22 03/19/22 Surrogate: Romafiluorobensene 95.1 % 70-130 03/19/22 03/19/22 Surrogate: Romafiluorobensene 95.1 % 70-130 03/19/22 03/19/22 Surrogate: Romafiluorobensene 96.7 % 70-130 03/19/22 03/19/22 Surrogate: Romafiluorobensene 96.7 % 70-130 03/19/22 03/19/22 Surrogate: Romafiluorobensene 96.7 % 70-130 03/19/22 03/19/22 Surrogate: Romafiluorobensene 95.2 % 70-130 03/19/22 03/19/22 Surrogate: Romafiluorobensene 95.2 % 50-200 03/19/22 03/19/22 Surrogate: Romafiluorobensene 95.2 % 50-200 03/21/22 03/21/22 Surrogate: Nonhalogenated Organics by EPA 8015D - DRO/ORO mg/L mg/L Analyst: Batch: 2213017 Diesel Range Organics (C10-C28) ND 2.00 1 03/19/22 03/21/22 Surrogate: Nonhalogenated Organics by EPA 8015D - DRO/ORO mg/L mg/L Analyst: Batch: 2213017 Surrogate: Nonhalogenated Organics (C28-C36) ND 2.00 1 03/19/22 03/21/22 Surrogate: Nonhalogenated Organics (C28-C36) ND 2.00 1 03/19/22 03/21/22 Surrogate: Nonhalogenated Organics (C28-C36) ND 0.0200 1 03/19/22 03/20/22 Surrogate: Nonhalogenated Organics (C28-C36) ND 0.0200 1 03/19/22 03/20/22 Surrogate: Nonh	Analyte	Result		D	ilution	Prepared	Analyzed	Notes
Total Dissolved Solids 228 40.0 1 03/17/22 03/22/2 15 16 16 16 16 16 16 16		mg/L	mg/L		Analys	•		Batch: 2212068
Propertion of the propertion	Total Dissolved Solids				1		03/22/22	
Met Chemistry by SM2320B mg/L mg/L Analyst: RAS Batch: 2213016 Total Alkalimity (as CaCO3 at pH 4.5) 277 10.0 1 03/21/22 03/21/22 Met Chemistry by 9050A/2510B uS/cm uS/cm Analyst: RAS Batch: 2213009 Specific Conductance (@ 25 C) 657 10.0 1 03/21/22 03/21/22 Nonhalogenated Organics by EPA 8015D - GRO mg/L mg/L Analyst: IY Batch: 2212089 Gasoline Range Organics (C6-C10) ND 0.200 2 03/19/22 03/19/22 Surrogate: Bromofluorobenzene 95.1 % 70-130 03/19/22 03/19/22 Surrogate: Toluene-d8 99.7 % 70-130 03/19/22 03/19/22 Nonhalogenated Organics by EPA 8015D - DRO/ORO mg/L mg/L Analyst: JL Batch: 2213017 Diesel Range Organics (C10-C28) ND 1.00 1 03/21/22 03/21/22 Oil Range Organics (C28-C36) ND 2.00 1 03/21/22 03/21/22 Surrogate: n-Nonane 95.2 % 50-200 03/21/22 03/21/22 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Batch: 2212087 Total Metals by EPA 6010C mg/L mg/L Analyst: RS Mg/L mg/L m	Wet Chemistry by 9040C/4500H+B	pH Units	pH Units		Analys	st: KL		Batch: 2213006
Note Chemistry by 9050A/2510B US/cm US/cm US/cm US/cm Analyst: RAS Batch: 2213009	рН @25°C	7.85			1	03/21/22 08:37	03/21/22 10:26	H5
Met Chemistry by 9050A/2510B uS/cm uS/cm uS/cm Analyst: RAS Batch: 2213009	Wet Chemistry by SM2320B	mg/L	mg/L		Analys	st: RAS		Batch: 2213016
Specific Conductance (@ 25 C) 657 10.0 1 03/21/22 03/21/22	Total Alkalinity (as CaCO3 at pH 4.5)	277	10.0		1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO mg/L mg/L Analyst: IY Batch: 2212089	Wet Chemistry by 9050A/2510B	uS/cm	uS/cm		Analys	st: RAS		Batch: 2213009
Gasoline Range Organics (C6-C10) ND 0.200 2 03/19/22 03/19/22 03/19/22 Surrogate: Bromofluorobenzene 95.1 % 70-130 03/19/22 03/19/22 03/19/22 03/19/22 Surrogate: 1,2-Dichloroethane-d4 99.7 % 70-130 03/19/22 03/19/22 03/19/22 03/19/22 Surrogate: Toluene-d8 96.7 % 70-130 03/19/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 Total Metals by EPA 6010C mg/L mg/L mg/L mg/L mg/L mg/L Analyst: RKS Batch: 2212087 Analyst: RKS Batch: 221208 Analyst: RKS Batch: 221208 Analyst: RKS Batch:	Specific Conductance (@ 25 C)	657	10.0		1	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene 95.1 % 70-130 03/19/22 03/19	Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L		Analys	st: IY		Batch: 2212089
Surrogate: 1,2-Dichloroethane-d4 99.7 % 70-130 03/19/22 03	Gasoline Range Organics (C6-C10)	ND	0.200		2	03/19/22	03/19/22	
Surrogate: Toluene-d8 96.7 % 70-130 03/19/22 03/19/22	Surrogate: Bromofluorobenzene		95.1 %	70-130		03/19/22	03/19/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO mg/L mg/L Analyst: JL Batch: 2213017	Surrogate: 1,2-Dichloroethane-d4		99.7 %	70-130		03/19/22	03/19/22	
Diesel Range Organics (C10-C28) ND 1.00 1 03/21/22 03/21/22 Oil Range Organics (C28-C36) ND 2.00 1 03/21/22 03/21/22 Surrogate: n-Nonane 95.2 % 50-200 03/21/22 03/21/22 Total Metals by EPA 6010C mg/L mg/L Analyst: RKS Batch: 2212087 Arsenic ND 0.0200 1 03/19/22 03/20/22 Barium ND 0.250 1 03/19/22 03/20/22 Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 Cadmium ND 0.0100 1 03/19/22 03/20/22	Surrogate: Toluene-d8		96.7 %	70-130		03/19/22	03/19/22	
Distribution Distribution<	Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L		Analys	st: JL		Batch: 2213017
Surrogate: n-Nonane 95.2 % 50-200 03/21/22 03/21/22 Total Metals by EPA 6010C mg/L mg/L Analyst: RKS Batch: 2212087 Arsenic ND 0.0200 1 03/19/22 03/20/22 Barium ND 0.250 1 03/19/22 03/20/22 Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 Chead ND 0.0100 1 03/19/22 03/20/22 Selenium ND 0.0500 1 03/19/22 03/20/22	Diesel Range Organics (C10-C28)	ND	1.00		1	03/21/22	03/21/22	
Total Metals by EPA 6010C mg/L mg/L Analyst: RKS Batch: 2212087 Arsenic ND 0.0200 1 03/19/22 03/20/22 Barium ND 0.250 1 03/19/22 03/20/22 Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 Lead ND 0.0100 1 03/19/22 03/20/22 Selenium ND 0.0500 1 03/19/22 03/20/22	Oil Range Organics (C28-C36)	ND	2.00		1	03/21/22	03/21/22	
Arsenic ND 0.0200 1 03/19/22 03/20/22 Barium ND 0.250 1 03/19/22 03/20/22 Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 Lead ND 0.0100 1 03/19/22 03/20/22 Selenium ND 0.0500 1 03/19/22 03/20/22	Surrogate: n-Nonane		95.2 %	50-200		03/21/22	03/21/22	
Particular ND 0.250 1 03/19/22 03/20/22 Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 Lead ND 0.0100 1 03/19/22 03/20/22 Selenium ND 0.0500 1 03/19/22 03/20/22	Total Metals by EPA 6010C	mg/L	mg/L		Analys	st: RKS		Batch: 2212087
Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 Lead ND 0.0100 1 03/19/22 03/20/22 Selenium ND 0.0500 1 03/19/22 03/20/22	Arsenic	ND	0.0200		1	03/19/22	03/20/22	
Chromium ND 0.0200 1 03/19/22 03/20/22 Lead ND 0.0100 1 03/19/22 03/20/22 Selenium ND 0.0500 1 03/19/22 03/20/22	Barium	ND	0.250		1	03/19/22	03/20/22	
Lead ND 0.0100 1 03/19/22 03/20/22 Selenium ND 0.0500 1 03/19/22 03/20/22	Cadmium	ND	0.0100		1	03/19/22	03/20/22	
Selenium ND 0.0500 1 03/19/22 03/20/22	Chromium	ND	0.0200		1	03/19/22	03/20/22	
Section 1.2 viscos	Lead	ND	0.0100		1	03/19/22		
Silver ND 0.0100 1 03/19/22 03/20/22	Selenium	ND	0.0500		1	03/19/22	03/20/22	
	Silver	ND	0.0100		1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analys	st: RKS		Batch: 2212080
Calcium	62.2	1.00	1	03/18/22	03/19/22	
Iron	ND	2.00	1	03/18/22	03/19/22	
Magnesium	10.4	1.00	1	03/18/22	03/19/22	
Potassium	2.46	1.00	1	03/18/22	03/19/22	
Sodium	47.7	2.00	1	03/18/22	03/19/22	
Sodium Absorption Ratio (CALC)	1.47		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analyst: RAS			Batch: 2212086
Fluoride	1.12	0.250	1	03/19/22	03/19/22	
Chloride	29.4	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 11:45	H1
Nitrate-N	0.631	0.250	1	03/19/22 07:59	03/19/22 11:45	H1
DI I D	ND	0.250	1	03/19/22 07:59	03/19/22 11:45	H1
o-Phosphate-P					00/40/00	
-	69.0	2.00	1	03/19/22	03/19/22	
o-Priospinate-P Sulfate Total Mercury by EPA 7470A	69.0 ug/L	2.00 ug/L	l Analys	03/19/22 st: RKS	03/19/22	Batch: 2212088

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

	r	E203110-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst:	: IY		Batch: 2212089
Acetone	ND	80.0	2	03/19/22	03/19/22	
Benzene	ND	2.00	2	03/19/22	03/19/22	
Bromobenzene	ND	2.00	2	03/19/22	03/19/22	
Bromochloromethane	ND	2.00	2	03/19/22	03/19/22	
Bromodichloromethane	ND	2.00	2	03/19/22	03/19/22	
Bromoform	ND	2.00	2	03/19/22	03/19/22	
Bromomethane	ND	4.00	2	03/19/22	03/19/22	
n-Butyl Benzene	ND	2.00	2	03/19/22	03/19/22	
sec-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
tert-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
Carbon Tetrachloride	ND	2.00	2	03/19/22	03/19/22	
Chlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Chloroethane	ND	4.00	2	03/19/22	03/19/22	
Chloroform	ND	10.0	2	03/19/22	03/19/22	
Chloromethane	ND	4.00	2	03/19/22	03/19/22	
2-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
4-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
Dibromochloromethane	ND	2.00	2	03/19/22	03/19/22	
1,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/19/22	03/19/22	
1,2-Dibromoethane (EDB)	ND	4.00	2	03/19/22	03/19/22	
Dibromomethane (200)	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
1,3-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
1,4-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/19/22	03/19/22	
1,1-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
cis-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
trans-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
1,3-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
2,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
	ND	2.00	2	03/19/22	03/19/22	
1,1-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
cis-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
trans-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
Diisopropyl Ether (DIPE)	ND ND	2.00	2	03/19/22	03/19/22	
Ethylbenzene	ND ND	2.00	2	03/19/22	03/19/22	
Ethyl tert-Butyl Ether (ETBE)	ND ND	10.0	2	03/19/22	03/19/22	
Hexachlorobutadiene	ND ND	40.0	2	03/19/22	03/19/22	
2-Hexanone	ND ND		2	03/19/22	03/19/22	
Isopropylbenzene		2.00	2	03/19/22	03/19/22	
4-Isopropyltoluene	ND ND	2.00	2	03/19/22	03/19/22	
2-Butanone (MEK)	ND ND	40.0		03/19/22	03/19/22	
Methylene Chloride	ND	4.00	2			
1-Methylnaphthalene	ND	20.0	2	03/19/22	03/19/22	
2-Methylnaphthalene	ND	20.0	2	03/19/22	03/19/22	

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

		Reportin	g			
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analy	Analyst: IY		Batch: 2212089
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/19/22	03/19/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/19/22	03/19/22	
Naphthalene	ND	10.0	2	03/19/22	03/19/22	
n-Propyl Benzene	ND	2.00	2	03/19/22	03/19/22	
Styrene	ND	2.00	2	03/19/22	03/19/22	
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/19/22	03/19/22	
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
Tetrachloroethene	ND	2.00	2	03/19/22	03/19/22	
1,2,3-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,2,4-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,1,1-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
Trichloroethene	ND	2.00	2	03/19/22	03/19/22	
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/19/22	03/19/22	
1,2,3-Trichloropropane	ND	4.00	2	03/19/22	03/19/22	
1,2,4-Trimethylbenzene	ND	10.0	2	03/19/22	03/19/22	
1,3,5-Trimethylbenzene	ND	2.00	2	03/19/22	03/19/22	
Toluene	ND	2.00	2	03/19/22	03/19/22	
Vinyl chloride	ND	4.00	2	03/19/22	03/19/22	
o-Xylene	ND	2.00	2	03/19/22	03/19/22	
p,m-Xylene	ND	4.00	2	03/19/22	03/19/22	
Total Xylenes	ND	2.00	2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		95.7 %	70-130	03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	03/19/22	03/19/22	
Surrogate: Toluene-d8		98.4 %	70-130	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

Wet Chemistry by 9040C/4500H+B pH Units pH Units pH Units Analyst: RAS Batch: 2213016 bit (a)25°C 8,02 mg/L mg/L Analyst: RAS Batch: 2213016 Wet Chemistry by SM2320B mg/L 10.0 1 03/21/22 03/21/22 Batch: 2213016 Getal Alkalinity (as CaCO3 at pH 4.5) 162 10.0 1 03/21/22 03/21/22 Batch: 2213009 Specific Conductance (@ 25 C) 736 10.0 1 03/21/22 03/21/22 Batch: 2213009 Specific Conductance (@ 25 C) 736 10.0 1 03/21/22 03/21/22 Batch: 2213009 Specific Conductance (@ 25 C) 736 10.0 1 03/21/22 03/21/22 Batch: 2213009 Specific Conductance (@ 25 C) 736 10.20 2 03/19/22 03/19/22 Batch: 2213009 Starting Engle Conductance (@ 25 C) 736 10.20 2 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 <th></th> <th></th> <th>2200110 02</th> <th></th> <th></th> <th></th> <th></th> <th></th>			2200110 02					
Met Chem/Gravimetric by SM2540C mg/L mg/L Analyst: RAS Batch: 2212068 Total Dissolved Solids 294 14.3 1 03/11/22 03/21/22 Met Chemistry by 9040C/4500H+B pH Units pH Units Analyst: KL Batch: 2213006 Higher Chemistry by 9040C/4500H+B mg/L mg/L Analyst: RAS Batch: 2213006 Higher Chemistry by SM2320B mg/L mg/L Analyst: RAS Batch: 2213016 Total Alkalinity (as CaCO3 at pH 4.5) 162 10.0 1 03/21/22 03/21/22 Met Chemistry by 9050A/2510B uS/cm uS/cm uS/cm Analyst: RAS Batch: 2213009 Specific Conductance (@ 25 C) 736 10.0 1 03/21/22 03/21/22 Nonhalogenated Organics by EPA 8015D - GRO mg/L mg/L Analyst: IV Batch: 2212089 Gasoline Range Organics (C6-C10) ND 0.200 2 03/19/22 03/19/22 Nonhalogenated Organics by EPA 8015D - DRO/ORO mg/L mg/L Analyst: IV Batch: 2212089 Higher Chemistry by 9050A/2510B uS/cm mg/L Analyst: IV Batch: 2212089 Higher Chemistry by 9050A/2510B uS/cm	Analyte	Result		D	ilution	Prepared	Analyzed	Notes
Part Part	, ·	mg/L	mg/L		Analys	•		Batch: 2212068
No.	Total Dissolved Solids						03/22/22	7,00
March Marc	Wet Chemistry by 9040C/4500H+B	pH Units	pH Units		Analys	st: KL		Batch: 2213006
Total Alkalinity (as CaCO3 at pH 4.5) 162 10.0 1 03/21/22 03/21/22 03/21/22	рН @25°C	8.02			1	03/21/22 08:37	03/21/22 10:26	Н5
Met Chemistry by 9050A/2510B uS/cm uS/cm uS/cm Analyst: RAS Batch: 2213009	Wet Chemistry by SM2320B	mg/L	mg/L		Analys	st: RAS		Batch: 2213016
Specific Conductance (@ 25 C) 736 10.0 1 03/21/22 03/21/22 03/21/22	Total Alkalinity (as CaCO3 at pH 4.5)	162	10.0		1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO mg/L mg/L Analyst: IY Batch: 2212089	Wet Chemistry by 9050A/2510B	uS/cm	uS/cm		Analys	st: RAS		Batch: 2213009
ND 0.200 2 03/19/22 03/	Specific Conductance (@ 25 C)	736	10.0		1	03/21/22	03/21/22	
ND 0.200 2 03/19/22 03/	Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L		Analys	st: IY		Batch: 2212089
101 % 70-130 03/19/22 03/19	Gasoline Range Organics (C6-C10)	ND	0.200		2	03/19/22	03/19/22	-
Surrogate: Toluene-d8 98.4 % 70-130 03/19/22 03/19/22 03/19/22 Nonhalogenated Organics by EPA 8015D - DRO/ORO mg/L mg/L Analyst: JL Batch: 2213017 Diesel Range Organics (C10-C28) 2.56 1.00 1 03/21/22 03/21/22 Dil Range Organics (C28-C36) ND 2.00 1 03/21/22 03/21/22 Surrogate: n-Nonane 105 % 50-200 03/21/22 03/21/22 Total Metals by EPA 6010C mg/L mg/L Analyst: RKS Batch: 2212087 Arsenic ND 0.0200 1 03/19/22 03/20/22 Barium ND 0.250 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 C4, C6 Caded ND 0.0100 1 03/19/22 03/20/22 C4, C6 Caded ND 0.0500 1 03/19/22 03/20/22 C4, C6 Caded	Surrogate: Bromofluorobenzene		95.7 %	70-130		03/19/22	03/19/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO mg/L mg/L Analyst: JL Batch: 2213017 Diesel Range Organics (C10-C28) 2.56 1.00 1 03/21/22 03/21/22 Dil Range Organics (C28-C36) ND 2.00 1 03/21/22 03/21/22 Dil Range Organics (C28-C36) ND 2.00 1 03/21/22 03/21/22 Diana Metals by EPA 6010C mg/L mg/L Analyst: RKS Batch: 2212087 Arsenic ND 0.0200 1 03/19/22 03/20/22 Barium ND 0.250 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0100 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0200 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0200 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0100 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0500 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0	Surrogate: 1,2-Dichloroethane-d4		101 %	70-130		03/19/22	03/19/22	
Diesel Range Organics (C10-C28) 2.56 1.00 1 03/21/22 0	Surrogate: Toluene-d8		98.4 %	70-130		03/19/22	03/19/22	
ND 2.00 1 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/20/22 03/2	Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L		Analys	st: JL		Batch: 2213017
Surrogate: n-Nonane	Diesel Range Organics (C10-C28)	2.56	1.00		1	03/21/22	03/21/22	
Flotal Metals by EPA 6010C mg/L mg/L Analyst: RKS Batch: 2212087 Arsenic ND 0.0200 1 03/19/22 03/20/22 Barium ND 0.250 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0100 1 03/19/22 03/20/22 C4, C6 Chromium ND 0.0200 1 03/19/22 03/20/22 C4, C6 Lead ND 0.0100 1 03/19/22 03/20/22 C4, C6 Selenium ND 0.0500 1 03/19/22 03/20/22 C4, C6	Oil Range Organics (C28-C36)	ND	2.00		1	03/21/22	03/21/22	
Arsenic ND 0.0200 1 03/19/22 03/20/22 C4, C6 Barium ND 0.250 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 C4, C6 Lead ND 0.0100 1 03/19/22 03/20/22 C4, C6 Selenium ND 0.0500 1 03/19/22 03/20/22 C4, C6 ND 0.0500 1 03/19/22 03/20/22 C4, C6 ND 0.0500 1 03/19/22 03/20/22	Surrogate: n-Nonane		105 %	50-200		03/21/22	03/21/22	
Arsenic ND 0.0200 1 03/19/22 03/20/22 C4, C6 Barium ND 0.250 1 03/19/22 03/20/22 C4, C6 Cadmium ND 0.0100 1 03/19/22 03/20/22 C4, C6 Chromium ND 0.0200 1 03/19/22 03/20/22 C4, C6 Lead ND 0.0100 1 03/19/22 03/20/22 C4, C6 Selenium ND 0.0500 1 03/19/22 03/20/22 C4, C6	Total Metals by EPA 6010C	mg/L	mg/L		Analys	st: RKS		Batch: 2212087
Cadmium ND 0.0100 1 03/19/22 03/20/22 Chromium ND 0.0200 1 03/19/22 03/20/22 C4, C6 Lead ND 0.0100 1 03/19/22 03/20/22 C4, C6 Selenium ND 0.0500 1 03/19/22 03/20/22 C4, C6	Arsenic	ND	0.0200		1	03/19/22	03/20/22	
ND 0.0200 1 03/19/22 03/20/22 C4, C6 Lead ND 0.0100 1 03/19/22 03/20/22 C4, C6 Selenium ND 0.0500 1 03/19/22 03/20/22 C4, C6	Barium	ND	0.250		1	03/19/22	03/20/22	C4, C6
Lead ND 0.0100 1 03/19/22 03/20/22 C4, C6 Selenium ND 0.0500 1 03/19/22 03/20/22	Cadmium	ND	0.0100		1	03/19/22	03/20/22	
Selenium ND 0.0500 1 03/19/22 03/20/22	Chromium	ND	0.0200		1	03/19/22	03/20/22	C4, C6
Scientific 12 0.000	Lead	ND	0.0100		1	03/19/22	03/20/22	C4, C6
Silver ND 0.0100 1 03/19/22 03/20/22	Selenium	ND	0.0500		1	03/19/22	03/20/22	
	Silver	ND	0.0100		1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

	_	Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analys	st: RKS		Batch: 2212080
Calcium	49.9	1.00	1	03/18/22	03/19/22	
Iron	ND	2.00	1	03/18/22	03/19/22	
Magnesium	14.2	1.00	1	03/18/22	03/19/22	
Potassium	3.51	1.00	1	03/18/22	03/19/22	
Sodium	71.3	2.00	1	03/18/22	03/19/22	
Sodium Absorption Ratio (CALC)	2.29		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analys	st: RAS		Batch: 2212086
Fluoride	1.09	0.250	1	03/19/22	03/19/22	
Chloride	51.5	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 12:06	H1
Nitrate-N	0.466	0.250	1	03/19/22 07:59	03/19/22 12:06	H1
o-Phosphate-P	ND	0.250	1	03/19/22 07:59	03/19/22 12:06	H1
Sulfate	120	2.00	1	03/19/22	03/19/22	
Total Mercury by EPA 7470A	ug/L	ug/L	Analys	st: RKS		Batch: 2212088
Mercury	ND	0.200	1	03/19/22	03/20/22	

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

E203110-03								
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes		
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst: IY			Batch: 2212089		
Acetone	ND	80.0	2	03/19/22	03/19/22			
Benzene	ND	2.00	2	03/19/22	03/19/22			
Bromobenzene	ND	2.00	2	03/19/22	03/19/22			
Bromochloromethane	ND	2.00	2	03/19/22	03/19/22			
Bromodichloromethane	ND	2.00	2	03/19/22	03/19/22			
Bromoform	ND	2.00	2	03/19/22	03/19/22			
Bromomethane	ND	4.00	2	03/19/22	03/19/22			
-Butyl Benzene	ND	2.00	2	03/19/22	03/19/22			
ec-Butylbenzene	ND	2.00	2	03/19/22	03/19/22			
ert-Butylbenzene	ND	2.00	2	03/19/22	03/19/22			
Carbon Tetrachloride	ND	2.00	2	03/19/22	03/19/22			
Chlorobenzene	ND	2.00	2	03/19/22	03/19/22			
Chloroethane	ND	4.00	2	03/19/22	03/19/22			
Chloroform	ND	10.0	2	03/19/22	03/19/22			
Chloromethane	ND	4.00	2	03/19/22	03/19/22			
-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22			
-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22			
Dibromochloromethane	ND	2.00	2	03/19/22	03/19/22			
,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/19/22	03/19/22			
,2-Dibromoethane (EDB)	ND	4.00	2	03/19/22	03/19/22			
Dibromomethane	ND	2.00	2	03/19/22	03/19/22			
,2-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22			
"3-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22			
,4-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22			
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/19/22	03/19/22			
,1-Dichloroethane	ND	2.00	2	03/19/22	03/19/22			
,2-Dichloroethane	ND	2.00	2	03/19/22	03/19/22			
,1-Dichloroethene	ND	2.00	2	03/19/22	03/19/22			
is-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22			
rans-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22			
,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22			
,3-Dichloropropane	ND	2.00	2	03/19/22	03/19/22			
,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22			
,1-Dichloropropene	ND	2.00	2	03/19/22	03/19/22			
is-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22			
rans-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22			
Diisopropyl Ether (DIPE)	ND	2.00	2	03/19/22	03/19/22			
Ethylbenzene	ND	2.00	2	03/19/22	03/19/22			
thyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/19/22	03/19/22			
(exachlorobutadiene	ND	10.0	2	03/19/22	03/19/22			
-Hexanone	ND	40.0	2	03/19/22	03/19/22			
sopropylbenzene	ND	2.00	2	03/19/22	03/19/22			
-Isopropyltoluene	ND	2.00	2	03/19/22	03/19/22			
-Butanone (MEK)	ND	40.0	2	03/19/22	03/19/22			
	ND ND	4.00	2	03/19/22	03/19/22			
Methylpene Chloride	ND ND	20.0	2	03/19/22	03/19/22			
-Methylnaphthalene -Methylnaphthalene	ND ND	20.0	2	03/19/22	03/19/22			

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

		Reportin	g			
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analy	Analyst: IY		Batch: 2212089
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/19/22	03/19/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/19/22	03/19/22	
Naphthalene	ND	10.0	2	03/19/22	03/19/22	
n-Propyl Benzene	ND	2.00	2	03/19/22	03/19/22	
Styrene	ND	2.00	2	03/19/22	03/19/22	
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/19/22	03/19/22	
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
Tetrachloroethene	ND	2.00	2	03/19/22	03/19/22	
1,2,3-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,2,4-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,1,1-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
Trichloroethene	ND	2.00	2	03/19/22	03/19/22	
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/19/22	03/19/22	
1,2,3-Trichloropropane	ND	4.00	2	03/19/22	03/19/22	
1,2,4-Trimethylbenzene	ND	10.0	2	03/19/22	03/19/22	
1,3,5-Trimethylbenzene	ND	2.00	2	03/19/22	03/19/22	
Toluene	ND	2.00	2	03/19/22	03/19/22	
Vinyl chloride	ND	4.00	2	03/19/22	03/19/22	
o-Xylene	ND	2.00	2	03/19/22	03/19/22	
p,m-Xylene	ND	4.00	2	03/19/22	03/19/22	
Total Xylenes	ND	2.00	2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		95.0 %	70-130	03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	03/19/22	03/19/22	
Surrogate: Toluene-d8		96.9 %	70-130	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

		2200110 00					
		Reporting			_		
Analyte	Result	Limit	Di	lution	Prepared	Analyzed	Notes
Wet Chem/Gravimetric by SM2540C	mg/L	mg/L		Analys	st: RAS		Batch: 2212068
Total Dissolved Solids	289	10.0		1	03/17/22	03/22/22	
Wet Chemistry by 9040C/4500H+B	pH Units	pH Units		Analys	st: KL		Batch: 2213006
рН @25°С	7.77			1	03/21/22 08:37	03/21/22 10:26	Н5
Wet Chemistry by 9050A/2510B	uS/cm	uS/cm		Analys	st: RAS		Batch: 2213009
Specific Conductance (@ 25 C)	616	10.0		1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L		Analys	st: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200		2	03/19/22	03/19/22	_
Surrogate: Bromofluorobenzene		95.0 %	70-130		03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		03/19/22	03/19/22	
Surrogate: Toluene-d8		96.9 %	70-130		03/19/22	03/19/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L		Analys	st: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	ND	1.00		1	03/21/22	03/21/22	
Oil Range Organics (C28-C36)	ND	2.00		1	03/21/22	03/21/22	
Surrogate: n-Nonane		103 %	50-200		03/21/22	03/21/22	
Total Metals by EPA 6010C	mg/L	mg/L		Analys	st: RKS		Batch: 2212087
Arsenic	ND	0.0200		1	03/19/22	03/20/22	
Barium	ND	0.250		1	03/19/22	03/20/22	C4, C6
Cadmium	ND	0.0100		1	03/19/22	03/20/22	
Chromium	ND	0.0200		1	03/19/22	03/20/22	C4, C6
Lead	ND	0.0100		1	03/19/22	03/20/22	C4, C6
Selenium	ND	0.0500		1	03/19/22	03/20/22	
Silver	ND	0.0100		1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analys	st: RKS		Batch: 2212080
Calcium	48.4	1.00	1	03/18/22	03/19/22	
fron	ND	2.00	1	03/18/22	03/19/22	
Magnesium	14.0	1.00	1	03/18/22	03/19/22	
Potassium	3.23	1.00	1	03/18/22	03/19/22	
Sodium	48.4	2.00	1	03/18/22	03/19/22	
Sodium Absorption Ratio (CALC)	1.58		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analys	st: RAS		Batch: 2212086
Fluoride	0.830	0.250	1	03/19/22	03/19/22	
Chloride	44.4	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 12:28	H1
Nitrate-N	0.417	0.250	1	03/19/22 07:59	03/19/22 12:28	H1
o-Phosphate-P	ND	0.250	1	03/19/22 07:59	03/19/22 12:28	H1
Sulfate	93.4	2.00	1	03/19/22	03/19/22	
Total Mercury by EPA 7470A	ug/L	ug/L	Analys	st: RKS		Batch: 2212088
Mercury	ND	0.200	1	03/19/22	03/20/22	

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/20226:26:08PM

MW - 1 E203110-04

Acetome		<u>r</u>	E203110-04				
Notatic Organic Compounds by EPA 8260B Ug/L Ug/L Analyst IV Basics 2212089			Reporting				
Deciminary No.	Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Procedure ND 2.00 2 031922	Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst: IY			Batch: 2212089
March Marc	Acetone	ND	80.0	2	03/19/22	03/19/22	
Demonshipromethane ND 2.00 2 0319422	Benzene	ND	2.00	2	03/19/22	03/19/22	
December ND 2.00 2 031922 0	Bromobenzene	ND	2.00	2	03/19/22	03/19/22	
Part	Bromochloromethane	ND	2.00	2	03/19/22	03/19/22	
No.	Bromodichloromethane	ND	2.00	2	03/19/22	03/19/22	
No. No.	Bromoform	ND	2.00	2	03/19/22	03/19/22	
see-Burylbenzene ND 2.00 2 0319922 0319922 Ietr-Burylbenzene ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 4.00 2 0319922 0319922 Chlorochrane ND 10.0 2 0319922 0319922 Chlorochrane ND 10.0 2 0319922 0319922 Chlorochrane ND 10.0 2 0319922 0319922 Chlorochrane ND 10.0 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane (EDB) ND 4.00 2 0319922 0319922 Chlorochrane (EDB) ND 4.00 2 0319922 0319922 Chlorochrane (EDB) ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922 031922 Chlorochrane ND 2.00 2 0319922 0319922 Chlorochrane ND 2.00 2 0319922	Bromomethane	ND	4.00	2	03/19/22	03/19/22	
International Contro	n-Butyl Benzene	ND	2.00	2	03/19/22	03/19/22	
Carbon Tetraelloride ND 2.00 2 031/922	sec-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
Chlorobenzene	tert-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
Chlorochane	Carbon Tetrachloride	ND	2.00	2	03/19/22	03/19/22	
Chloroform	Chlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Chloromethane	Chloroethane	ND	4.00	2	03/19/22	03/19/22	
Carchiorotoluene ND 2.00 2 03/19/2	Chloroform	ND	10.0	2	03/19/22	03/19/22	
2-Chlorotoluene		ND	4.00	2	03/19/22	03/19/22	
A-Chlorotoluene ND 2.00 2 03/19/22 03/19/22 03/19/22 1.2-Dibromochloromethane ND 2.00 2 03/19/22 03/19/22 03/19/22 1.2-Dibromochloromethane (EDB) ND 10.0 2 03/19/22 03/19/22 03/19/22 1.2-Dibromethane (EDB) ND 4.00 2 03/19/22 03/19/22 03/19/22 1.2-Dibromethane ND 2.00 2 03/19/22 03/19/22 03/19/22 1.3-Dichlorobenzene ND 2.00 2 03/19/22	2-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
Difference ND 2.00 2 03/19/22 03/19/22 03/19/22 1.2-Difference -1chloropropane (DBCP) ND 10.0 2 03/19/22 0				2	03/19/22	03/19/22	
1,2-Dibromo-3-chloropropane (DBCP)				2	03/19/22	03/19/22	
1,2-Dibromoethane (EDB)				2	03/19/22	03/19/22	
Dibromomethane							
1,2-Dichlorobenzene							
1,3-Dichlorobenzene ND 2,00 2 03/19/22 03/19/22 1,4-Dichlorodifluoromethane (Freon-12) ND 4,00 2 03/19/22 03/19/22 1,1-Dichlorodifluoromethane (Freon-12) ND 4,00 2 03/19/22 03/19/22 1,1-Dichloroethane ND 2,00 2 03/19/22 03/19/22 1,1-Dichloroethane ND 2,00 2 03/19/22 03/19/22 1,1-Dichloroethene ND 2,00 2 03/19/22 03/19/22 1,1-Dichloroethene ND 2,00 2 03/19/22 03/19/22 1,1-Dichloroethene ND 2,00 2 03/19/22 03/19/22 1,1-Dichloroptopane ND 2,00 2 03/19/22 03/19/22 2,1-Dichloroptopane ND							
1,4-Dichlorobenzene							
Dichlorodifluoromethane (Freon-12)							
1,1-Dichloroethane ND 2,00 2,03/19/22 03/19/22 03/19/22 1,1-Dichloroethane ND 2,00 2,03/19/22 03/19/2							
1,2-Dichloroethane ND 2,00 2 03/19/22 03/19/22 03/19/22 1,1-Dichloroethene ND 2,00 2 03/19/22 03/19/22 03/19/22 1,2-Dichloroethene ND 2,00 2 03/19/22 03/19/22 03/19/22 1,2-Dichloroptopane ND 2,00 2 03/19/22 03/19/22 03/19/22 1,3-Dichloropropane ND 2,00 2 03/19/22							
1,1-Dichloroethene ND 2.00 2 03/19/22 03/19/22 cis-1,2-Dichloroethene ND 2.00 2 03/19/22 03/19/22 trans-1,2-Dichloroethene ND 2.00 2 03/19/22 03/19/22 1,2-Dichloropropane ND 2.00 2 03/19/22 03/19/22 1,3-Dichloropropane ND 2.00 2 03/19/22 03/19/22 2,2-Dichloropropane ND 2.00 2 03/19/22 03/19/22 1,1-Dichloropropene ND 2.00 2 03/19/22 03/19/22 cis-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 cis-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 cis-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 Disopropyle Ether (DIPE) ND 2.00 2 03/19/22 03/19/22 Ethyl terr. Butyl Ether (ETBE) ND 2.00 2 03/19/22 03/19/22 Hexachlorobutadiene ND 40.0 2 03/19/							
ND 2.00 2 03/19/22 03/19/22 1,2-Dichloroethene ND 2.00 2 03/19/22 03/19/22 1,2-Dichloroptopane ND 2.00 2 03/19/22 03/19/22 1,3-Dichloroptopane ND 2.00 2 03/19/22 03/19/22 1,3-Dichloroptopane ND 2.00 2 03/19/22 03/19/22 1,3-Dichloroptopane ND 2.00 2 03/19/22 03/19/22 1,1-Dichloroptopane ND 2.00 2 03/19/22 03/19/22 1,1-Dichloroptopane ND 2.00 2 03/19/22 03/19/22 1,1-Dichloroptopene ND 2.00 2 03/19/22 03/19/22 1,3-Dichloroptopene ND 2.00 2 03/19/22 03/19/22 1,3-Dichloroptopene ND 2.00 2 03/19/22 03/19/22 1,1-Dichloroptopene ND							
trans-1,2-Dichloroethene ND 2.00 2 03/19/22 03/19/22 03/19/22 1,3-Dichloropropane ND 2.00 2 03/19/22 0							
1,2-Dichloropropane ND 2.00 2 03/19/22 03/19/22 1,3-Dichloropropane ND 2.00 2 03/19/22 03/19/22 2,2-Dichloropropane ND 2.00 2 03/19/22 03/19/22 1,1-Dichloropropene ND 2.00 2 03/19/22 03/19/22 cis-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 trans-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 Diisopropyl Ether (DIPE) ND 2.00 2 03/19/22 03/19/22 Ethyl benzene ND 2.00 2 03/19/22 03/19/22 Ethyl tert-Butyl Ether (ETBE) ND 2.00 2 03/19/22 03/19/22 Hexachlorobutadiene ND 10.0 2 03/19/22 03/19/22 2-Hexanone ND 40.0 2 03/19/22 03/19/22 Isopropylbenzene ND 2.00 2 03/19/22 03/19/22 4-Isopropyltoluene ND 40.0 2 03/19/22 03/19/22 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
ND 2.00 2 03/19/22 03/1							
2,2-Dichloropropane ND 2.00 2 03/19/22 03/19/22 1,1-Dichloropropene ND 2.00 2 03/19/22 03/19/22 cis-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 trans-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 Unisopropyl Ether (DIPE) ND 2.00 2 03/19/22 03/19/22 Unisopropyl Ether (DIPE) ND 2.00 2 03/19/22 Unisopropyl Ether (ETBE) ND 10.0 2 03/19/22 Unisopropyl Ether (ETBE) Unisopropyl Ether (ETBE) Unisopropyl Ether (ETBE) Unisopropyl Ether (ETBE) Unisopropyl Ether (ETBE) Unisopropyl Ether (ETBE) Unisopropyl Ether (ETBE) Unisopropyl Ether (ETBE) Unisopropyl Unisopropyl Ether (ETBE) Unisopropyl Unisop							
1,1-Dichloropropene ND 2.00 2 03/19/22 03/19/22 cis-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 trans-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 Diisopropyl Ether (DIPE) ND 2.00 2 03/19/22 03/19/22 Ethylbenzene ND 2.00 2 03/19/22 03/19/22 Ethyl tert-Butyl Ether (ETBE) ND 2.00 2 03/19/22 03/19/22 Hexachlorobutadiene ND 10.0 2 03/19/22 03/19/22 2-Hexanone ND 40.0 2 03/19/22 03/19/22 Isopropylbenzene ND 2.00 2 03/19/22 03/19/22 4-Isopropyltoluene ND 2.00 2 03/19/22 03/19/22 2-Butanone (MEK) ND 40.0 2 03/19/22 03/19/22 Methylene Chloride ND 4.00 2 03/19/22 03/19/22 1-Methylnaphthalene ND 20.0 2 03/19/22 03/19/22							
ND 2.00 2 03/19/22 03/1				=			
trans-1,3-Dichloropropene ND 2.00 2 03/19/22 03/19/22 Diisopropyl Ether (DIPE) ND 2.00 2 03/19/22 03/19/22 Diisopropyl Ether (DIPE) ND 2.00 2 03/19/22 03/19/22 Disopropyl Ether (ETBE) ND 2.00 2 03/19/22 03/19/22 Disopropyl Ether (ETBE) ND 2.00 2 03/19/22 03/19/22 Disopropyl Ether (ETBE) ND 10.0 2 03/19/22 03/19/22 Disopropyl Ether (ETBE) ND 40.0 2 03/19/22 03/19/22 Disopropyl Ether (ETBE) ND 2.00 2 03/19/22 03/19/22 Disopropyl Ether (ETBE) ND 2.00 2 03/19/22 03/19/22 Disopropyl Ether (ETBE) ND 2.00 2 03/19/22 03/19/22 Disopropyl Ether (ETBE) ND 40.0 2 03/19/22 Disopropyl Ether (ETBE) ND 40.0 2 03/19/22 Disopropyl Ether (ETBE) ND 40.0 2 03/19/22 Disopropyl Ether (ETBE) ND 40.0 2 03/19/22 Disopropyl Ether (ETBE) ND 40.0 2 03/19/22 Disopro							
Diisopropyl Ether (DIPE) ND 2.00 2 03/19/22 03/19/22 03/19/22 Ethyl benzene ND 2.00 2 03/19/22							
Ethyl tert-Butyl Ether (ETBE) ND 2.00 2 03/19/22							
Ethyl tert-Butyl Ether (ETBE) ND 2.00 2 03/19/22							
Hexachlorobutadiene ND 10.0 2 03/19/22 03/19/22 2-Hexanone ND 40.0 2 03/19/22 03/19/22 1sopropylbenzene ND 2.00 2 03/19/22 03/19/22 03/19/22 4-Isopropyltoluene ND 2.00 2 03/19/22 03/19/22 2-Butanone (MEK) ND 40.0 2 03/19/22 03/19/22 03/19/22 1-Methylnaphthalene ND 20.0 2 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22	•						
2-Hexanone ND 40.0 2 03/19/22 03/19/22 Isopropylbenzene ND 2.00 2 03/19/22 03/19/22 03/19/22 4-Isopropyltoluene ND 2.00 2 03/19/22 03/19/22 2-Butanone (MEK) ND 40.0 2 03/19/22 03/19/22 03/19/22 Methylene Chloride ND 4.00 2 03/19/22 03/19/22 1-Methylnaphthalene ND 20.0 2 03/19/22 03/19/22 03/19/22							
ND 2.00 2 03/19/22 03/19/22 03/19/22 04-Isopropyltoluene ND 2.00 2 03/19/22	Hexachlorobutadiene						
4-Isopropyltoluene ND 2.00 2 03/19/22 03/19/22 2-Butanone (MEK) ND 40.0 2 03/19/22 03/19/22 Methylene Chloride ND 4.00 2 03/19/22 03/19/22 1-Methylnaphthalene ND 20.0 2 03/19/22 03/19/22	2-Hexanone						
2-Butanone (MEK) ND 40.0 2 03/19/22 03/19/22 03/19/22 03/19/22 1-Methylnaphthalene ND 40.0 2 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22 03/19/22	Isopropylbenzene						
Methylene Chloride ND 4.00 2 03/19/22 03/19/22 1-Methylnaphthalene ND 20.0 2 03/19/22 03/19/22	4-Isopropyltoluene						
1-Methylnaphthalene ND 20.0 2 03/19/22 03/19/22	2-Butanone (MEK)						
. Meny map must be a second of the second of	Methylene Chloride						
2-Methylnaphthalene ND 20.0 2 03/19/22 03/19/22	1-Methylnaphthalene						
	2-Methylnaphthalene	ND	20.0	2	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 1 E203110-04

Reporting							
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analys	t: IY		Batch: 2212089	
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/19/22	03/19/22		
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/19/22	03/19/22		
Naphthalene	ND	10.0	2	03/19/22	03/19/22		
n-Propyl Benzene	ND	2.00	2	03/19/22	03/19/22		
Styrene	ND	2.00	2	03/19/22	03/19/22		
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/19/22	03/19/22		
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22		
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22		
Tetrachloroethene	ND	2.00	2	03/19/22	03/19/22		
1,2,3-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22		
1,2,4-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22		
1,1,1-Trichloroethane	ND	2.00	2	03/19/22	03/19/22		
1,1,2-Trichloroethane	ND	2.00	2	03/19/22	03/19/22		
Trichloroethene	ND	2.00	2	03/19/22	03/19/22		
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/19/22	03/19/22		
1,2,3-Trichloropropane	ND	4.00	2	03/19/22	03/19/22		
1,2,4-Trimethylbenzene	ND	10.0	2	03/19/22	03/19/22		
1,3,5-Trimethylbenzene	ND	2.00	2	03/19/22	03/19/22		
Toluene	ND	2.00	2	03/19/22	03/19/22		
Vinyl chloride	ND	4.00	2	03/19/22	03/19/22		
o-Xylene	ND	2.00	2	03/19/22	03/19/22		
p,m-Xylene	ND	4.00	2	03/19/22	03/19/22		
Total Xylenes	ND	2.00	2	03/19/22	03/19/22		
Surrogate: Bromofluorobenzene		95.1 %	70-130	03/19/22	03/19/22		
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	03/19/22	03/19/22		
Surrogate: Toluene-d8		98.4 %	70-130	03/19/22	03/19/22		

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 1

E203110-04

		Reporting				
Analyte	Result	Limit	Dilut	ion Prepared	Analyzed	Notes
Wet Chem/Gravimetric by SM2540C	mg/L	mg/L	I	Analyst: RAS		Batch: 2212068
Total Dissolved Solids	352	25.0	1	03/17/22	03/22/22	
Wet Chemistry by 9040C/4500H+B	pH Units	pH Units	A	Analyst: KL		Batch: 2213006
pH @25°C	7.81		1	03/21/22 08:37	03/21/22 10:26	Н5
Wet Chemistry by 9050A/2510B	uS/cm	uS/cm	A	Analyst: RAS		Batch: 2213009
Specific Conductance (@ 25 C)	614	10.0	1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L	I	Analyst: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200	2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		95.1 %	70-130	03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	03/19/22	03/19/22	
Surrogate: Toluene-d8		98.4 %	70-130	03/19/22	03/19/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L	A	Analyst: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	ND	1.00	1	03/21/22	03/21/22	
Oil Range Organics (C28-C36)	ND	2.00	1	03/21/22	03/21/22	
Surrogate: n-Nonane		85.9 %	50-200	03/21/22	03/21/22	
Total Metals by EPA 6010C	mg/L	mg/L	A	Analyst: RKS		Batch: 2212087
Arsenic	ND	0.0200	1	03/19/22	03/20/22	<u> </u>
Barium	ND	0.250	1	03/19/22	03/20/22	C4, C6
Cadmium	ND	0.0100	1	03/19/22	03/20/22	
Chromium	ND	0.0200	1	03/19/22	03/20/22	C4, C6
Lead	ND	0.0100	1	03/19/22	03/20/22	C4, C6
Selenium	ND	0.0500	1	03/19/22	03/20/22	
Silver	ND	0.0100	1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 1 E203110-04

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analy	st: RKS		Batch: 2212080
Calcium	68.4	1.00	1	03/18/22	03/19/22	
ron	ND	2.00	1	03/18/22	03/19/22	
Magnesium	9.79	1.00	1	03/18/22	03/19/22	
Potassium	1.23	1.00	1	03/18/22	03/19/22	
Sodium	38.4	2.00	1	03/18/22	03/19/22	
Sodium Absorption Ratio (CALC)	1.15		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analy	st: RAS		Batch: 2212086
Fluoride	1.10	0.250	1	03/19/22	03/19/22	
Chloride	29.4	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 12:49	H1
Nitrate-N	1.61	0.250	1	03/19/22 07:59	03/19/22 12:49	H1
-Phosphate-P	ND	0.250	1	03/19/22 07:59	03/19/22 12:49	H1
Sulfate	83.2	2.00	1	03/19/22	03/19/22	
Total Mercury by EPA 7470A	ug/L	ug/L	Analy	st: RKS		Batch: 2212088

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/20226:26:08PM

MW - 5 E203110-05

	Г	E203110-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst:	IY		Batch: 2212089
Acetone	ND	80.0	2	03/19/22	03/19/22	
Benzene	ND	2.00	2	03/19/22	03/19/22	
Bromobenzene	ND	2.00	2	03/19/22	03/19/22	
Bromochloromethane	ND	2.00	2	03/19/22	03/19/22	
Bromodichloromethane	ND	2.00	2	03/19/22	03/19/22	
Bromoform	ND	2.00	2	03/19/22	03/19/22	
Bromomethane	ND	4.00	2	03/19/22	03/19/22	
n-Butyl Benzene	ND	2.00	2	03/19/22	03/19/22	
sec-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
tert-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
Carbon Tetrachloride	ND	2.00	2	03/19/22	03/19/22	
Chlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Chloroethane	ND	4.00	2	03/19/22	03/19/22	
Chloroform	ND	10.0	2	03/19/22	03/19/22	
Chloromethane	ND	4.00	2	03/19/22	03/19/22	
2-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
4-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
Dibromochloromethane	ND	2.00	2	03/19/22	03/19/22	
1,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/19/22	03/19/22	
1,2-Dibromoethane (EDB)	ND	4.00	2	03/19/22	03/19/22	
Dibromomethane (200)	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
1,3-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
1,4-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/19/22	03/19/22	
1,1-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
cis-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
trans-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
1,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
1,3-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
	ND	2.00	2	03/19/22	03/19/22	
2,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
1,1-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
cis-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
trans-1,3-Dichloropropene			2	03/19/22	03/19/22	
Diisopropyl Ether (DIPE)	ND ND	2.00	2	03/19/22	03/19/22	
Ethylbenzene	ND	2.00	2	03/19/22	03/19/22	
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/19/22	03/19/22	
Hexachlorobutadiene	ND ND	10.0	2	03/19/22	03/19/22	
2-Hexanone	ND	40.0				
Isopropylbenzene	ND	2.00	2	03/19/22	03/19/22	
4-Isopropyltoluene	ND	2.00	2	03/19/22	03/19/22	
2-Butanone (MEK)	ND	40.0	2	03/19/22	03/19/22	
Methylene Chloride	ND	4.00	2	03/19/22	03/19/22	
1-Methylnaphthalene	ND	20.0	2	03/19/22	03/19/22	
2-Methylnaphthalene	ND	20.0	2	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 5 E203110-05

Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analys	st: IY		Batch: 2212089
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/19/22	03/19/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/19/22	03/19/22	
Naphthalene	ND	10.0	2	03/19/22	03/19/22	
n-Propyl Benzene	ND	2.00	2	03/19/22	03/19/22	
Styrene	ND	2.00	2	03/19/22	03/19/22	
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/19/22	03/19/22	
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
Tetrachloroethene	ND	2.00	2	03/19/22	03/19/22	
1,2,3-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,2,4-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,1,1-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
Trichloroethene	ND	2.00	2	03/19/22	03/19/22	
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/19/22	03/19/22	
1,2,3-Trichloropropane	ND	4.00	2	03/19/22	03/19/22	
1,2,4-Trimethylbenzene	ND	10.0	2	03/19/22	03/19/22	
1,3,5-Trimethylbenzene	ND	2.00	2	03/19/22	03/19/22	
Toluene	ND	2.00	2	03/19/22	03/19/22	
Vinyl chloride	ND	4.00	2	03/19/22	03/19/22	
o-Xylene	ND	2.00	2	03/19/22	03/19/22	
p,m-Xylene	ND	4.00	2	03/19/22	03/19/22	
Total Xylenes	ND	2.00	2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		94.3 %	70-130	03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	70-130	03/19/22	03/19/22	
Surrogate: Toluene-d8		97.8 %	70-130	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 5

E203110-05

		Reporting				
Analyte	Result	Limit	Dilut	ion Prepared	Analyzed	Notes
Wet Chem/Gravimetric by SM2540C	mg/L	mg/L	P	Analyst: RAS		Batch: 2212068
Total Dissolved Solids	178	20.0	1	03/17/22	03/22/22	
Wet Chemistry by 9040C/4500H+B	pH Units	pH Units	A	Analyst: KL		Batch: 2213006
рН @25°C	7.73		1	03/21/22 08:37	03/21/22 10:26	Н5
Wet Chemistry by 9050A/2510B	uS/cm	uS/cm	A	Analyst: RAS		Batch: 2213009
Specific Conductance (@ 25 C)	628	10.0	1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L	A	Analyst: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200	2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		94.3 %	70-130	03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		98.9 %	70-130	03/19/22	03/19/22	
Surrogate: Toluene-d8		97.8 %	70-130	03/19/22	03/19/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L	A	Analyst: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	ND	1.00	1	03/21/22	03/21/22	
Oil Range Organics (C28-C36)	ND	2.00	1	03/21/22	03/21/22	
Surrogate: n-Nonane		104 %	50-200	03/21/22	03/21/22	
Total Metals by EPA 6010C	mg/L	mg/L	A	Analyst: RKS		Batch: 2212087
Arsenic	ND	0.0200	1	03/19/22	03/20/22	
Barium	ND	0.250	1	03/19/22	03/20/22	C4, C6
Cadmium	ND	0.0100	1	03/19/22	03/20/22	
Chromium	ND	0.0200	1	03/19/22	03/20/22	C4, C6
Lead	ND	0.0100	1	03/19/22	03/20/22	C4, C6
Selenium	ND	0.0500	1	03/19/22	03/20/22	
Silver	ND	0.0100	1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 5 E203110-05

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analys	st: RKS		Batch: 2212080
Calcium	72.1	1.00	1	03/18/22	03/23/22	
ron	ND	2.00	1	03/18/22	03/23/22	
Magnesium	9.56	1.00	1	03/18/22	03/23/22	
Potassium	1.69	1.00	1	03/18/22	03/23/22	C1, C6
Sodium	45.6	2.00	1	03/18/22	03/23/22	
Sodium Absorption Ratio (CALC)	1.34		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analys	st: RAS		Batch: 2212086
Fluoride	1.24	0.250	1	03/19/22	03/19/22	
Chloride	29.0	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 13:11	H1
Nitrate-N	2.03	0.250	1	03/19/22 07:59	03/19/22 13:11	H1
o-Phosphate-P	ND	0.250	1	03/19/22 07:59	03/19/22 13:11	H1
Sulfate	81.1	2.00	1	03/19/22	03/19/22	
Total Mercury by EPA 7470A	ug/L	ug/L	Analys	st: RKS		Batch: 2212088
Mercury	ND	0.200	1	03/19/22	03/20/22	

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/20226:26:08PM

MW - 6 E203110-06

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
olatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst:	IY		Batch: 2212089
cetone	ND	80.0	2	03/19/22	03/19/22	
Benzene	ND	2.00	2	03/19/22	03/19/22	
romobenzene	ND	2.00	2	03/19/22	03/19/22	
romochloromethane	ND	2.00	2	03/19/22	03/19/22	
Fromodichloromethane	ND	2.00	2	03/19/22	03/19/22	
Fromoform	ND	2.00	2	03/19/22	03/19/22	
Fromomethane	ND	4.00	2	03/19/22	03/19/22	
-Butyl Benzene	ND	2.00	2	03/19/22	03/19/22	
ec-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
ert-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
Carbon Tetrachloride	ND	2.00	2	03/19/22	03/19/22	
Chlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Chloroethane	ND	4.00	2	03/19/22	03/19/22	
Chloroform	ND	10.0	2	03/19/22	03/19/22	
Chloromethane	ND	4.00	2	03/19/22	03/19/22	
-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
Dibromochloromethane	ND	2.00	2	03/19/22	03/19/22	
,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/19/22	03/19/22	
,2-Dibromoethane (EDB)	ND	4.00	2	03/19/22	03/19/22	
Dibromomethane	ND	2.00	2	03/19/22	03/19/22	
,2-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
,3-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
,4-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/19/22	03/19/22	
,1-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
,2-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
,1-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
is-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
rans-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
,3-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
,1-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
is-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
* *	ND	2.00	2	03/19/22	03/19/22	
rans-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
Disopropyl Ether (DIPE)	ND ND	2.00	2	03/19/22	03/19/22	
thylbenzene thyl text Putul Ether (ETPE)	ND ND	2.00	2	03/19/22	03/19/22	
thyl tert-Butyl Ether (ETBE)	ND ND	10.0	2	03/19/22	03/19/22	
Iexachlorobutadiene	ND ND	40.0	2	03/19/22	03/19/22	
-Hexanone	ND ND	2.00	2	03/19/22	03/19/22	
sopropylbenzene			2	03/19/22	03/19/22	
-Isopropyltoluene	ND	2.00	2	03/19/22	03/19/22	
-Butanone (MEK)	ND	40.0				
Methylene Chloride	ND	4.00	2	03/19/22	03/19/22	
-Methylnaphthalene	ND	20.0	2	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 6 E203110-06

		Reportin	g			
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analys	t: IY		Batch: 2212089
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/19/22	03/19/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/19/22	03/19/22	
Naphthalene	ND	10.0	2	03/19/22	03/19/22	
n-Propyl Benzene	ND	2.00	2	03/19/22	03/19/22	
Styrene	ND	2.00	2	03/19/22	03/19/22	
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/19/22	03/19/22	
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/19/22	03/19/22	
Tetrachloroethene	ND	2.00	2	03/19/22	03/19/22	
1,2,3-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,2,4-Trichlorobenzene	ND	10.0	2	03/19/22	03/19/22	
1,1,1-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
1,1,2-Trichloroethane	ND	2.00	2	03/19/22	03/19/22	
Trichloroethene	ND	2.00	2	03/19/22	03/19/22	
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/19/22	03/19/22	
1,2,3-Trichloropropane	ND	4.00	2	03/19/22	03/19/22	
1,2,4-Trimethylbenzene	ND	10.0	2	03/19/22	03/19/22	
1,3,5-Trimethylbenzene	ND	2.00	2	03/19/22	03/19/22	
Toluene	ND	2.00	2	03/19/22	03/19/22	
Vinyl chloride	ND	4.00	2	03/19/22	03/19/22	
o-Xylene	ND	2.00	2	03/19/22	03/19/22	
p,m-Xylene	ND	4.00	2	03/19/22	03/19/22	
Total Xylenes	ND	2.00	2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		94.7 %	70-130	03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		107 %	70-130	03/19/22	03/19/22	
Surrogate: Toluene-d8		97.1 %	70-130	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 6

		E203110-06					
Analyte	Result	Reporting Limit	D	ilution	Prepared	Analyzed	Notes
Wet Chem/Gravimetric by SM2540C	mg/L	mg/L		Analy	st: RAS		Batch: 2212068
Total Dissolved Solids	2360	25.0		1	03/17/22	03/22/22	
Wet Chemistry by 9040C/4500H+B	pH Units	pH Units		Analy	st: KL		Batch: 2213006
рН @25°C	7.78			1	03/21/22 08:37	03/21/22 10:26	Н5
Wet Chemistry by 9050A/2510B	uS/cm	uS/cm		Analy	st: RAS		Batch: 2213009
Specific Conductance (@ 25 C)	4190	10.0		1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L		Analy	st: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200		2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		94.7 %	70-130		03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		107 %	70-130		03/19/22	03/19/22	
Surrogate: Toluene-d8		97.1 %	70-130		03/19/22	03/19/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L		Analy	st: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	ND	1.00		1	03/21/22	03/21/22	
Oil Range Organics (C28-C36)	ND	2.00		1	03/21/22	03/21/22	
Surrogate: n-Nonane		108 %	50-200		03/21/22	03/21/22	
Total Metals by EPA 6010C	mg/L	mg/L		Analy	st: RKS		Batch: 2212087
Arsenic	0.0369	0.0200		1	03/19/22	03/20/22	
Barium	ND	0.250		1	03/19/22	03/20/22	C4, C6
Cadmium	ND	0.0100		1	03/19/22	03/20/22	
Chromium	ND	0.0200		1	03/19/22	03/20/22	C4, C6
Lead	ND	0.0100		1	03/19/22	03/20/22	C4, C6
Selenium	ND	0.0500		1	03/19/22	03/20/22	
Silver	ND	0.0100		1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 6 E203110-06

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analys	st: RKS		Batch: 2212080
Calcium	78.5	1.00	1	03/18/22	03/23/22	
Iron	ND	2.00	1	03/18/22	03/23/22	
Magnesium	5.34	1.00	1	03/18/22	03/23/22	
Potassium	4.83	1.00	1	03/18/22	03/23/22	C1, C6
Sodium	856	20.0	10	03/18/22	03/23/22	C4, C6
Sodium Absorption Ratio (CALC)	25.2		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analys	st: RAS		Batch: 2212086
Fluoride	ND	5.00	20	03/19/22	03/19/22	
Chloride	1140	40.0	20	03/19/22	03/19/22	
Nitrite-N	ND	5.00	20	03/19/22 07:59	03/19/22 13:32	H1
Nitrate-N	ND	5.00	20	03/19/22 07:59	03/19/22 13:32	H1
o-Phosphate-P	ND	5.00	20	03/19/22 07:59	03/19/22 13:32	H1
	230	40.0	20	03/19/22	03/19/22	
Sulfate	230					
Sulfate Total Mercury by EPA 7470A	ug/L	ug/L	Analys	st: RKS		Batch: 2212088

Newell Law FirmProject Name:W Lovington Strawn U. #810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/24/20226:26:08PM

MW - 3 E203110-07

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst	: IY		Batch: 2212089
Acetone	ND	80.0	2	03/19/22	03/19/22	
Benzene	ND	2.00	2	03/19/22	03/19/22	
Bromobenzene	ND	2.00	2	03/19/22	03/19/22	
Bromochloromethane	ND	2.00	2	03/19/22	03/19/22	
Bromodichloromethane	ND	2.00	2	03/19/22	03/19/22	
Bromoform	ND	2.00	2	03/19/22	03/19/22	
Bromomethane	ND	4.00	2	03/19/22	03/19/22	
-Butyl Benzene	ND	2.00	2	03/19/22	03/19/22	
ec-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
ert-Butylbenzene	ND	2.00	2	03/19/22	03/19/22	
Carbon Tetrachloride	ND	2.00	2	03/19/22	03/19/22	
Chlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Chloroethane	ND	4.00	2	03/19/22	03/19/22	
Chloroform	ND	10.0	2	03/19/22	03/19/22	
Chloromethane	ND	4.00	2	03/19/22	03/19/22	
2-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
-Chlorotoluene	ND	2.00	2	03/19/22	03/19/22	
Dibromochloromethane	ND	2.00	2	03/19/22	03/19/22	
,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/19/22	03/19/22	
,2-Dibromoethane (EDB)	ND	4.00	2	03/19/22	03/19/22	
Dibromomethane	ND	2.00	2	03/19/22	03/19/22	
,2-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
,3-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
,4-Dichlorobenzene	ND	2.00	2	03/19/22	03/19/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/19/22	03/19/22	
,1-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
,2-Dichloroethane	ND	2.00	2	03/19/22	03/19/22	
.1-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
ris-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
rans-1,2-Dichloroethene	ND	2.00	2	03/19/22	03/19/22	
,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
,3-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
2,2-Dichloropropane	ND	2.00	2	03/19/22	03/19/22	
,1-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
is-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
rans-1,3-Dichloropropene	ND	2.00	2	03/19/22	03/19/22	
Diisopropyl Ether (DIPE)	ND	2.00	2	03/19/22	03/19/22	
Ethylbenzene	ND	2.00	2	03/19/22	03/19/22	
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/19/22	03/19/22	
lexachlorobutadiene	ND	10.0	2	03/19/22	03/19/22	
-Hexanone	ND	40.0	2	03/19/22	03/19/22	
-riexanone sopropylbenzene	ND	2.00	2	03/19/22	03/19/22	
sopropytoenzene I-Isopropyttoluene	ND ND	2.00	2	03/19/22	03/19/22	
	ND ND	40.0	2	03/19/22	03/19/22	
2-Butanone (MEK)	ND ND	4.00	2	03/19/22	03/19/22	
Methylene Chloride	ND ND	20.0	2	03/19/22	03/19/22	
-Methylnaphthalene 2-Methylnaphthalene	ND ND	20.0	2	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 3 E203110-07

	Reportin	g			_
Analyte Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B ug/L	ug/L	Ana	lyst: IY		Batch: 2212089
4-Methyl-2-pentanone (MIBK) ND	40.0	2	03/19/22	03/19/22	
Methyl tert-Butyl Ether (MTBE)	2.00	2	03/19/22	03/19/22	
Naphthalene ND	10.0	2	03/19/22	03/19/22	
n-Propyl Benzene ND	2.00	2	03/19/22	03/19/22	
Styrene ND	2.00	2	03/19/22	03/19/22	
tert-Amyl Methyl ether (TAME) ND	2.00	2	03/19/22	03/19/22	
1,1,1,2-Tetrachloroethane ND	2.00	2	03/19/22	03/19/22	
1,1,2,2-Tetrachloroethane ND	2.00	2	03/19/22	03/19/22	
Tetrachloroethene ND	2.00	2	03/19/22	03/19/22	
1,2,3-Trichlorobenzene ND	10.0	2	03/19/22	03/19/22	
1,2,4-Trichlorobenzene ND	10.0	2	03/19/22	03/19/22	
1,1,1-Trichloroethane ND	2.00	2	03/19/22	03/19/22	
1,1,2-Trichloroethane ND	2.00	2	03/19/22	03/19/22	
Trichloroethene ND	2.00	2	03/19/22	03/19/22	
Trichlorofluoromethane (Freon-11) ND	4.00	2	03/19/22	03/19/22	
1,2,3-Trichloropropane ND	4.00	2	03/19/22	03/19/22	
1,2,4-Trimethylbenzene ND	10.0	2	03/19/22	03/19/22	
1,3,5-Trimethylbenzene ND	2.00	2	03/19/22	03/19/22	
Toluene ND	2.00	2	03/19/22	03/19/22	
Vinyl chloride ND	4.00	2	03/19/22	03/19/22	
o-Xylene ND	2.00	2	03/19/22	03/19/22	
p,m-Xylene ND	4.00	2	03/19/22	03/19/22	
Total Xylenes ND	2.00	2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene	94.0 %	70-130	03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4	105 %	70-130	03/19/22	03/19/22	
Surrogate: Toluene-d8	96.7 %	70-130	03/19/22	03/19/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 3

		E203110-07					
Analyte	Result	Reporting Limit	D	ilution	Prepared	Analyzed	Notes
Wet Chem/Gravimetric by SM2540C	mg/L	mg/L		Analyst: RAS			Batch: 2212068
Total Dissolved Solids	455	25.0		1	03/17/22	03/22/22	
Wet Chemistry by 9040C/4500H+B	pH Units	pH Units		Analyst: KL			Batch: 2213006
рН @25°С	7.82			1	03/21/22 08:37	03/21/22 10:26	Н5
Wet Chemistry by 9050A/2510B	uS/cm	uS/cm		Analyst: RAS			Batch: 2213009
Specific Conductance (@ 25 C)	625	10.0		1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L		Analy	st: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200		2	03/19/22	03/19/22	
Surrogate: Bromofluorobenzene		94.0 %	70-130		03/19/22	03/19/22	
Surrogate: 1,2-Dichloroethane-d4		105 %	70-130		03/19/22	03/19/22	
Surrogate: Toluene-d8		96.7 %	70-130		03/19/22	03/19/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L		Analy	st: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	ND	1.00		1	03/21/22	03/21/22	
Oil Range Organics (C28-C36)	ND	2.00		1	03/21/22	03/21/22	
Surrogate: n-Nonane		83.2 %	50-200		03/21/22	03/21/22	
Total Metals by EPA 6010C	mg/L	mg/L		Analyst: RKS			Batch: 2212087
Arsenic	ND	0.0200		1	03/19/22	03/20/22	
Barium	ND	0.250		1	03/19/22	03/20/22	C4, C6
Cadmium	ND	0.0100		1	03/19/22	03/20/22	
Chromium	ND	0.0200		1	03/19/22	03/20/22	C4, C6
Lead	ND	0.0100		1	03/19/22	03/20/22	C4, C6
Selenium	ND	0.0500		1	03/19/22	03/20/22	
Silver	ND	0.0100		1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

MW - 3 E203110-07

Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes	
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analyst: RKS		<u> </u>	Batch: 2212080	
Calcium	72.8	1.00	1	03/18/22	03/23/22		
Iron	ND	2.00	1	03/18/22	03/23/22		
Magnesium	10.1	1.00	1	03/18/22	03/23/22		
Potassium	ND	1.00	1	03/18/22	03/23/22		
Sodium	37.1	2.00	1	03/18/22	03/23/22		
Sodium Absorption Ratio (CALC)	1.08		1	03/24/22	03/24/22		
Anions by EPA 300.0/9056A	mg/L	mg/L	Analyst: RAS			Batch: 2212086	
Fluoride	1.38	0.250	1	03/19/22	03/19/22		
Chloride	27.9	2.00	1	03/19/22	03/19/22		
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 13:54	H1	
Nitrate-N	1.69	0.250	1	03/19/22 07:59	03/19/22 13:54	H1	
o-Phosphate-P	ND	0.250	1	03/19/22 07:59	03/19/22 13:54	H1	
Sulfate	72.8	2.00	1	03/19/22	03/19/22		
Total Mercury by EPA 7470A	ug/L	ug/L	Analys	st: RKS		Batch: 2212088	
Mercury	ND	0.200	1	03/19/22	03/20/22		

QC Summary Data

Newell Law FirmProject Name:W Lovington Strawn U. #8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

Volatile Organic Compounds by EPA 8260B

Analyst: IY

Prepared: 03/19/22 Analyzed: 03/19/22

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	ug/L	ug/L	ug/L	ug/L	%	%	%	%	Notes

	ug L	45.2
Blank (2212089-BLK1)		
Acetone	ND	40.0
Benzene	ND	1.00
Bromobenzene	ND	1.00
Bromochloromethane	ND	1.00
Bromodichloromethane	ND	1.00
Bromoform	ND	1.00
Bromomethane	ND	2.00
n-Butyl Benzene	ND ND	1.00
sec-Butylbenzene	ND ND	1.00
tert-Butylbenzene Carbon Tetrachloride	ND ND	1.00 1.00
Chlorobenzene	ND	1.00
Chloroethane	ND	2.00
Chloroform	ND	5.00
Chloromethane	ND	2.00
2-Chlorotoluene	ND	1.00
4-Chlorotoluene	ND	1.00
Dibromochloromethane	ND	1.00
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.00
1,2-Dibromoethane (EDB)	ND	2.00
Dibromomethane	ND	1.00
1,2-Dichlorobenzene	ND	1.00
1,3-Dichlorobenzene	ND	1.00
1,4-Dichlorobenzene	ND	1.00
Dichlorodifluoromethane (Freon-12)	ND	2.00
1,1-Dichloroethane	ND	1.00
1,2-Dichloroethane	ND	1.00
1,1-Dichloroethene	ND	1.00
cis-1,2-Dichloroethene	ND	1.00
trans-1,2-Dichloroethene	ND	1.00
1,2-Dichloropropane	ND ND	1.00
1,3-Dichloropropane 2,2-Dichloropropane	ND ND	1.00 1.00
1,1-Dichloropropene	ND	1.00
cis-1,3-Dichloropropene	ND	1.00
trans-1,3-Dichloropropene	ND	1.00
Diisopropyl Ether (DIPE)	ND	1.00
Ethylbenzene	ND	1.00
Ethyl tert-Butyl Ether (ETBE)	ND	1.00
Hexachlorobutadiene	ND	5.00
2-Hexanone	ND	20.0
Isopropylbenzene	ND	1.00
4-Isopropyltoluene	ND	1.00
2-Butanone (MEK)	ND	20.0
Methylene Chloride	ND	2.00
1-Methylnaphthalene	ND	10.0
2-Methylnaphthalene	ND	10.0
4-Methyl-2-pentanone (MIBK)	ND ND	20.0
Methyl tert-Butyl Ether (MTBE)	ND ND	1.00
Naphthalene n-Propyl Benzene	ND ND	5.00
Styrene	ND	1.00 1.00
tert-Amyl Methyl ether (TAME)	ND	1.00
1,1,1,2-Tetrachloroethane	ND	1.00
1,1,2,2-Tetrachloroethane	ND	1.00
Tetrachloroethene	ND	1.00
1,2,3-Trichlorobenzene	ND	5.00
1,2,4-Trichlorobenzene	ND	5.00
1,1,1-Trichloroethane	ND	1.00
1,1,2-Trichloroethane	ND	1.00
Trichloroethene	ND	1.00
Trichlorofluoromethane (Freon-11)	ND	2.00
1,2,3-Trichloropropane	ND	2.00
1,2,4-Trimethylbenzene	ND	5.00

QC Summary Data

Newell Law FirmProject Name:W Lovington Strawn U. #8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

10 W Adams Ave Ste E		Project Number:	20	0046-0001					_
Lovington NM, 88260		Project Manager:	Na Na	atalie Gladden				3	3/24/2022 6:26:08PM
	V	Volatile Organic	c Compo	unds by EP	A 8260I	3			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	ug/L	ug/L	ug/L	ug/L	%	%	%	%	Notes
Blank (2212089-BLK1)							Prepared: 0	3/19/22 An	alyzed: 03/19/22
,3,5-Trimethylbenzene	ND	1.00							
Toluene	ND	1.00							
Vinyl chloride	ND ND	2.00							
o-Xylene o,m-Xylene	ND ND	1.00 2.00							
Otal Xylenes	ND	1.00							
'urrogate: Bromofluorobenzene	9.62		10.0		96.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	10.1		10.0		101	70-130			
'urrogate: Toluene-d8	9.93		10.0		99.3	70-130			
	2.23		10.0		77.5	, 0 130			
LCS (2212089-BS1)			50.0		02.2	70 12C	Prepared: 0	3/19/22 An	alyzed: 03/19/22
Benzene	46.7 45.1	1.00	50.0 50.0		93.3 90.1	70-130 70-130			
Bromochloromethane ert-Butylbenzene	45.1 42.6	1.00 1.00	50.0		90.1 85.2	70-130 70-130			
Chlorobenzene	46.9	1.00	50.0		93.7	70-130			
,2-Dibromo-3-chloropropane (DBCP)	38.3	5.00	50.0		76.6	65-135			
,4-Dichlorobenzene	44.0	1.00	50.0		88.0	70-130			
,1-Dichloroethene	44.3	1.00	50.0		88.6	80-120			
,2-Dichloropropane	48.7	1.00	50.0		97.4	80-120			
Diisopropyl Ether (DIPE)	47.0 47.0	1.00	50.0 50.0		94.0 93.9	65-135 80-120			
Ethylbenzene Methylene Chloride	46.2	1.00 2.00	50.0		93.9	70-130			
l-Methyl-2-pentanone (MIBK)	85.5	20.0	100		85.5	50-160			
Methyl tert-Butyl Ether (MTBE)	83.3	1.00	100		83.3	70-130			
-Propyl Benzene	47.3	1.00	50.0		94.6	70-130			
,1,1,2-Tetrachloroethane	43.8	1.00	50.0		87.6	70-130			
Tetrachloroethene	44.4	1.00	50.0		88.7	70-130			
,2,3-Trichlorobenzene ,1,1-Trichloroethane	39.1 40.7	5.00 1.00	50.0 50.0		78.3 81.4	70-140 70-130			
,1,2-Trichloroethane	44.9	1.00	50.0		89.8	70-130			
Crichloroethene	44.5	1.00	50.0		88.9	70-130			
Coluene	46.7	1.00	50.0		93.4	80-120			
Vinyl chloride	54.7	2.00	50.0		109	80-120			
-Xylene	45.5	1.00	50.0		91.0	70-130			
,m-Xylene	90.9	2.00	100		90.9	70-130			
otal Xylenes	136	1.00	150		90.9	70-130			
urrogate: Bromofluorobenzene	10.1					70-130			
Surrogate: 1,2-Dichloroethane-d4	9.99		10.0		99.9 100	70-130			
'urrogate: Toluene-d8	10.0		10.0		100	70-130			
LCS Dup (2212089-BSD1)							*		alyzed: 03/19/22
denzene	51.2	1.00	50.0		102	70-130	9.28	20	
Bromochloromethane ert-Butylbenzene	48.8 47.2	1.00 1.00	50.0 50.0		97.7 94.4	70-130 70-130	8.07 10.2	20 20	
Chlorobenzene	52.1	1.00	50.0		104	70-130	10.6	20	
,2-Dibromo-3-chloropropane (DBCP)	41.6	5.00	50.0		83.2	65-135	8.33	30	
,4-Dichlorobenzene	49.6	1.00	50.0		99.2	70-130	12.0	20	
,1-Dichloroethene	48.9	1.00	50.0		97.9	80-120	9.95	20	
,2-Dichloropropane	53.9	1.00	50.0		108	80-120	10.2	20	
Diisopropyl Ether (DIPE) Ethylbenzene	51.4 52.1	1.00 1.00	50.0 50.0		103 104	65-135 80-120	8.91 10.3	20 20	
Aethylene Chloride	50.5	2.00	50.0		104	70-130	8.92	20	
-Methyl-2-pentanone (MIBK)	91.5	20.0	100		91.5	50-160	6.78	30	
Methyl tert-Butyl Ether (MTBE)	88.9	1.00	100		88.9	70-130	6.56	20	
n-Propyl Benzene	52.6	1.00	50.0		105	70-130	10.7	20	
,1,1,2-Tetrachloroethane	48.8	1.00	50.0		97.7	70-130	10.9	20	
etrachloroethene	49.8	1.00	50.0		99.6	70-130	11.5	20	
,2,3-Trichlorobenzene	43.7	5.00	50.0		87.4 90.9	70-140 70-130	11.0	20	
,1,1-Trichloroethane	45.4 48.9	1.00 1.00	50.0 50.0		90.9 97.8	70-130 70-130	11.0 8.49	20 20	
1,1,2-Trichloroethane	70.7	1.00	50.0		100	70-130	0. 4 7	20	

20

100

70-130

11.9

50.0

1.00

50.1

Trichloroethene

Surrogate: Toluene-d8

QC Summary Data

Newell Law FirmProject Name:W Lovington Strawn U. #8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/24/20226:26:08PM

Lovington NM, 88260		Project Number Project Manage		atalie Gladder	1				3/24/2022 6:26:08PM
	V	olatile Organ	ic Compo	unds by EI	PA 82601	3			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	ug/L	ug/L	ug/L	ug/L	%	%	%	%	Notes
LCS Dup (2212089-BSD1)						1	Prepared: 0	3/19/22 A	nalyzed: 03/19/22
Toluene	52.0	1.00	50.0		104	80-120	10.7	20	
Vinyl chloride	60.2	2.00	50.0		120	80-120	9.59	30	
o-Xylene	50.7	1.00	50.0		101	70-130	10.8	20	
p,m-Xylene	101	2.00	100		101	70-130	10.5	20	
Total Xylenes	152	1.00	150		101	70-130	10.6	20	
Surrogate: Bromofluorobenzene	9.98		10.0		99.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	9.97		10.0		99.7	70-130			

10.0

10.2

102

70-130

Total Dissolved Solids

QC Summary Data

Newell Law Firm 10 W Adams Ave Ste E	Project Name: Project Number:	W Lovington Strawn U. #8 20046-0001	Reported:						
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM						
W. G. 10 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2									

Lovington NM, 88260		Project Manage	r: Na	ıtalie Gladder	1			3/2	24/2022 6:26:08PM	
		Wet Chem/Gravimetric by SM2540C						Analyst: RAS		
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes	
Blank (2212068-BLK1)							Prepared: 0	3/17/22 Ana	lyzed: 03/18/22	
Total Dissolved Solids	ND	10.0								
LCS (2212068-BS1)							Prepared: 0	3/17/22 Ana	lyzed: 03/18/22	
Total Dissolved Solids	88.0	10.0	100		88.0	55-134				
Duplicate (2212068-DUP1)				Source:	E203079-	01	Prepared: 0	3/17/22 Ana	lyzed: 03/18/22	
Total Dissolved Solids	43200	200		42100			2.39	5		
Duplicate (2212068-DUP2)				Source:	E203111-0)7	Prepared: 0	3/17/22 Ana	lyzed: 03/22/22	

10.0

QC Summary Data

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

71Ct Chemistry by 7040C/450011 1		Wet	Chemistry	by	9040C/4500H+B
----------------------------------	--	-----	-----------	----	---------------

Analyst: KL

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	pH Units	pH Units	pH Units	pH Units	%	%	%	%	Notes

LCS (2213006-BS1)				Prepared: 03	3/21/22 Analyzed: 03/21/22
рН	8.00	8.00	100 98.7	5-101.25	
Duplicate (2213006-DUP1)		So	urce: E203111-07	Prepared: 03	3/21/22 Analyzed: 03/21/22
pH	7.87	7	78	1.15	20

Analyte

QC Summary Data

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

		Wet Ch	nemistry b	y SM23201	В			Analyst: RAS			
	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit			
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes		
DC1)							Duamanadi O	2/21/22 Amola	1. 02/21/22		

LCS (2213016-BS1)					P	repared: 03	3/21/22 Analy	zed: 03/21/22	
Total Alkalinity (as CaCO3 at pH 4.5)	246	10.0	250	98.4	70-130				
LCS Dup (2213016-BSD1)					P	repared: 03	3/21/22 Analy	zed: 03/21/22	
Total Alkalinity (as CaCO3 at pH 4.5)	242	10.0	250	96.8	70-130	1.64	20		

QC Summary Data

Newell Law Firm 10 W Adams Ave Ste E	Project Name: Project Number:	W Lovington Strawn U. #8 20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

Lovington NM, 88260		Project Manager	r: Na	atalie Gladder	1			3	3/24/2022 6:26:08PM	
		Wet Chemistry by 9050A/2510B						Analyst: R		
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	uS/cm	uS/cm	uS/cm	uS/cm	%	%	%	%	Notes	
Blank (2213009-BLK1)							Prepared: 0	3/21/22 An	alyzed: 03/21/22	
Specific Conductance (@ 25 C)	ND	10.0								
LCS (2213009-BS1)							Prepared: 0	3/21/22 An	alyzed: 03/21/22	
Specific Conductance (@ 25 C)	1410	10.0	1410		99.8	98-102				
Duplicate (2213009-DUP1)				Source:	E203110-0	03	Prepared: 0	3/21/22 An	alyzed: 03/21/22	
Specific Conductance (@ 25 C)	616	10.0		616			0.00	20		

QC Summary Data

Newell Law FirmProject Name:W Lovington Strawn U. #8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/24/2022 6:26:08PM

Nonhalogenated Organic	S by EPA	. 8015D -	GRO
------------------------	----------	-----------	-----

Analyst: IY

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes

Blank (2212089-BLK1)						Prepared: 03	3/19/22 Ar	nalyzed: 03/19/22
Gasoline Range Organics (C6-C10)	ND	0.100						
Surrogate: Bromofluorobenzene	0.00962		0.0100	96.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0101		0.0100	101	70-130			
Surrogate: Toluene-d8	0.00993		0.0100	99.3	70-130			
LCS (2212089-BS2)						Prepared: 03	/19/22 Ar	nalyzed: 03/19/22
Gasoline Range Organics (C6-C10)	1.10	0.100	1.00	110	70-130			
Surrogate: Bromofluorobenzene	0.00970		0.0100	97.0	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.00975		0.0100	97.5	70-130			
Surrogate: Toluene-d8	0.00998		0.0100	99.8	70-130			
LCS Dup (2212089-BSD2)						Prepared: 03	3/19/22 Ar	nalyzed: 03/19/22
Gasoline Range Organics (C6-C10)	1.15	0.100	1.00	115	70-130	4.95	20	
Surrogate: Bromofluorobenzene	0.00983		0.0100	98.3	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.00976		0.0100	97.6	70-130			
Surrogate: Toluene-d8	0.00995		0.0100	99.5	70-130			

QC Summary Data

W Lovington Strawn U. #8 Newell Law Firm Project Name: Reported: 10~W Adams Ave Ste $\rm E$ Project Number: 20046-0001

Lovington NM, 88260		Project Manager	r: Na	ıtalie Gladder	1			3	3/24/2022 6:26:08PM	
	Nonhal	ogenated Or	ganics by l	EPA 8015I) - DRO	/ORO		Analyst: JL		
Analyte	Result mg/L	Reporting Limit mg/L	Spike Level mg/L	Source Result mg/L	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes	
Blank (2213017-BLK1)							Prepared: 0	3/21/22 An	alyzed: 03/22/22	
Diesel Range Organics (C10-C28)	ND	1.00								
Dil Range Organics (C28-C36)	ND	2.00								
Surrogate: n-Nonane	2.65		2.50		106	50-200				
LCS (2213017-BS1)							Prepared: 0	3/21/22 An	alyzed: 03/22/22	
Diesel Range Organics (C10-C28)	8.23	1.00	12.5		65.9	36-132				
Surrogate: n-Nonane	2.49		2.50		99.7	50-200				
LCS Dup (2213017-BSD1)							Prepared: 0	3/21/22 An	alyzed: 03/22/22	
Diesel Range Organics (C10-C28)	8.60	1.00	12.5		68.8	36-132	4.29	20	-	
Surrogate: n-Nonane	2.54		2.50		101	50-200				

QC Summary Data

Newell Law Firm 10 W Adams Ave Ste E	Project Name: Project Number:	W Lovington Strawn U. #8 20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

Lovington NM, 88260		Project Manager:	Na	ntalie Gladden					3/24/2022 6:26:08PM
		Total Metals by EPA 6010 C					Analyst: RK		
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes
Blank (2212087-BLK1)							Prepared: 0	3/19/22 Ar	nalyzed: 03/20/22
Arsenic	ND	0.0200							
Barium	ND	0.250							
Cadmium	ND	0.0100							
Chromium	ND	0.0200							
Lead	ND	0.0100							
Selenium	ND	0.0500							
Silver	ND	0.0100							
LCS (2212087-BS1)							Prepared: 02	3/19/22 Ar	nalyzed: 03/20/22
Arsenic	0.444	0.0200	0.500		88.8	80-120			
Barium	11.4	0.250	12.5		91.0	80-120			
Cadmium	0.236	0.0100	0.250		94.4	80-120			
Chromium	0.939	0.0200	1.00		93.9	80-120			
Lead	0.241	0.0100	0.250		96.2	80-120			
Selenium	1.14	0.0500	1.25		91.2	80-120			
Silver	0.0854	0.0100	0.100		85.4	80-120			
Matrix Spike (2212087-MS1)				Source: E	203093-	01	Prepared: 0	3/19/22 Ar	nalyzed: 03/20/22
Arsenic	4.36	0.200	5.00	ND	87.2	75-125			
Barium	111	2.50	125	ND	88.6	75-125			
Cadmium	2.23	0.100	2.50	ND	89.3	75-125			
Chromium	8.90	0.200	10.0	ND	89.0	75-125			
Lead	2.28	0.100	2.50	ND	91.4	75-125			
Selenium	11.2	0.500	12.5	ND	89.5	75-125			
Silver	0.815	0.100	1.00	ND	81.5	75-125			
Matrix Spike Dup (2212087-MSD1)				Source: E	203093-	01	Prepared: 0.	3/19/22 Ar	nalyzed: 03/20/22
Arsenic	4.38	0.200	5.00	ND	87.5	75-125	0.389	20	
Barium	110	2.50	125	ND	87.7	75-125	1.09	20	
Cadmium	2.27	0.100	2.50	ND	90.7	75-125	1.51	20	
Chromium	8.97	0.200	10.0	ND	89.7	75-125	0.851	20	
Lead	2.31	0.100	2.50	ND	92.5	75-125	1.22	20	
	11.2	0.500	12.5	ND	89.6	75-125	0.0893	20	

0.100

Silver

Sodium

QC Summary Data

Newell Law Firm	Project Name:	W Lovington Strawn U. #8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	•
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/24/2022 6:26:08PM

Lovington NM, 88260		Project Number. Project Manager:		atalie Gladden					3/24/2022 6:26:08PM
		Dissolved	Metals b	y EPA 6010	C				Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes
Blank (2212080-BLK1)							Prepared: 0	3/18/22 A1	nalyzed: 03/19/22
Calcium	ND	1.00							
Iron	ND	2.00							
Magnesium	ND	1.00							
Potassium	ND	1.00							
Sodium	ND	2.00							
LCS (2212080-BS1)							Prepared: 0	3/18/22 Aı	nalyzed: 03/19/22
Calcium	48.3	1.00	50.0		96.6	80-120			
ron	101	2.00	100		101	80-120			
Magnesium	49.9	1.00	50.0		99.9	80-120			
Potassium	4.68	1.00	5.00		93.6	80-120			
Sodium	17.9	2.00	20.0		89.6	80-120			
Matrix Spike (2212080-MS1)				Source: I	E 203110- 0	03	Prepared: 0	3/18/22 Aı	nalyzed: 03/19/22
Calcium	91.6	1.00	50.0	48.4	86.4	75-125			
ron	99.6	2.00	100	ND	99.6	75-125			
Magnesium	63.8	1.00	50.0	14.0	99.7	75-125			
Potassium	8.12	1.00	5.00	3.23	97.6	75-125			
Sodium	67.2	2.00	20.0	48.4	93.8	75-125			
Matrix Spike Dup (2212080-MSD1)				Source: I	E 20311 0-0	03	Prepared: 0	3/18/22 Aı	nalyzed: 03/19/22
Calcium	95.1	1.00	50.0	48.4	93.3	75-125	3.74	20	·
ron	100	2.00	100	ND	100	75-125	0.481	20	
Magnesium	63.9	1.00	50.0	14.0	99.9	75-125	0.188	20	
Potassium	8.46	1.00	5.00	3.23	104	75-125	4.12	20	

75-125

69.0

2.00

LCS (2212086-BS1)

Fluoride

Chloride

Nitrite-N

Prepared: 03/19/22 Analyzed: 03/19/22

90-110

90-110

90-110

103

99.5

109

QC Summary Data

Newell Law FirmProject Name:W Lovington Strawn U. #8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/24/20226:26:08PM

Anions by EPA 300.0/9056A								Analyst: RAS		
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes	
Blank (2212086-BLK1)						I	Prepared: 0	3/19/22 Anal	yzed: 03/19/22	
Fluoride	ND	0.250								
Chloride	ND	2.00								
Nitrite-N	ND	0.250								
Nitrate-N	ND	0.250								
o-Phosphate-P	ND	0.250								
Sulfate	ND	2.00								

Nitrate-N	2.58	0.250	2.50	103	90-110			
o-Phosphate-P	12.4	0.250	12.5	99.1	90-110			
Sulfate	24.9	2.00	25.0	99.5	90-110			
LCS Dup (2212086-BSD1)						Prepared: 03	/19/22 Analyz	zed: 03/19/22
Fluoride	2.56	0.250	2.50	102	90-110	0.312	20	
Chloride	24.8	2.00	25.0	99.0	90-110	0.552	20	
Nitrite-N	2.54	0.250	2.50	102	90-110	6.95	20	
Nitrate-N	2.58	0.250	2.50	103	90-110	0.271	20	
o-Phosphate-P	12.3	0.250	12.5	98.7	90-110	0.404	20	
Sulfate	24.7	2.00	25.0	98.9	90-110	0.524	20	

2.50

25.0

2.50

0.250

2.00

0.250

2.57

24.9

2.73

QC Summary Data

Newell Law Firm 10 W Adams Ave Ste E Lovington NM, 88260		Project Name: Project Number: Project Manager:	2	W Lovington Str 20046-0001 Natalie Gladden					Reported: 3/24/2022 6:26:08PM		
,	Total Mercury by EPA 7470A								Analyst: RKS		
Analyte	Result ug/L	Reporting Limit ug/L	Spike Level ug/L	Source Result ug/L	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes		
Blank (2212088-BLK1)							Prepared: 03	3/19/22	Analyzed: 03/20/22		
Mercury	ND	0.200									
LCS (2212088-BS1)							Prepared: 03	3/19/22	Analyzed: 03/20/22		
Mercury	1.82	0.200	2.00		91.2	80-120					
Matrix Spike (2212088-MS1)				Source: 1	E203110-0	2	Prepared: 03	3/19/22	Analyzed: 03/20/22		
Mercury	1.77	0.200	2.00	ND	88.7	75-125					
Matrix Spike Dup (2212088-MSD1)				Source: 1	E203110-0	2	Prepared: 03	3/19/22	Analyzed: 03/20/22		
Mercury	1.76	0.200	2.00	ND	88.2	75-125	0.578	20			

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

ſ	Newell Law Firm	Project Name:	W Lovington Strawn U. #8	
١	10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
l	Lovington NM, 88260	Project Manager:	Natalie Gladden	03/24/22 18:26

C1	The CV recovery was	above method	l acceptance limits.
----	---------------------	--------------	----------------------

C4 The CV recovery was below method acceptance limits.

C6 The CV recovery was outside acceptance limits. The sample was analyzed multiple times all with similar bracketing CV results.

H1 Sample was received past holding time and analyzed per client request.

H5 pH is specified to be performed in the field within 15 minutes of sampling. The sample was performed as quickly as possible.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

lient: 1	Vewel	1 / (1)	Fire	n		Bill T	0			ala.	La	b Us	e On	ly					TAT		EPA P	ogram
roject: \	N LOVI	naton	Strau	nu. #	8 At	tention: ESS		_	Lab '	wo#			Job I			, 10) 2	D	3D	Standard	CWA	SDWA
roject M	lanager:	Mike	News	2))	Ac	dress: 2427 W	Country		Eó	203	3110)			-000			\times				
Address:						y, State, Zip Hobbs	NM							sis ar	nd Met	hod	-	-				RCRA
ity, State	e, Zip					one:							RA								Chaha	
hone:					<u>En</u>	nail:			3015	8015			RC							NIMI CO	State UT AZ	TV
mail:	to the second		-	-					by 8	by 8	3021	260	010	300.0	A	Z		×		NIVITCO	UT AZ	17
eport d				_				Lab	/ORC	/DRC	BTEX by 8021	by 8	als 60	Chloride 300.0	-	2	3	20				
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID			ı	Number	DRO/ORO by 8015	GRO/DRO by	BTEX	VOC by 8260	Metals 6010 RCRA 8	Chlo	0	Banoc	3	BGDOC			Remarks	
9:53	3/15	A	1	MW	-95							X	X		X	>	\					
10:46	1	,	1	WW	-9M			2				1	1		1							
11:51		/		MW	- 9D			3				1)					
14:15				MW	- 1			4														
14:53				MW				5														
15:40				MW				Le				1										9
16:33		1		MW	-3			7					1									
	5							10.2					1		1		5					
																5						
			1									1				5						
Addition	nal Instru	ctions:	1	-									-			-1.						
1965-10					mple. I am awa	e that tampering with or intent	tionally mislabelling	the sampl	e locati	ion,			100							ved on ice the day on subsequent da		ed or received
13.00	ned by: (Sign	THE STATE OF A CO.	Dat		Time	Received by: #Signature). /	3·17 ·	22	Time	44	5	Rec	oivo	d on ic	٥.		Uso N	e Only			.==:
	ned by: (Sign	nature)	Dat		Time 1730	Received by: (Signature) [3/18/	1	Time			T1	CIVE	. 01110					<u>T3</u>		
Relinquish	ned by: 15ig	nature)	Dat		Time	Received by: (Signature		Date	00	Time				To-	np °C_	111				. ,5		
Samela Ma	triu C Call	Cd - Colld Ca	- Sludgo A	Varieons O C	ther			Containe	r Typ	6. g -	place	n-n					lass	. V - V	VOA			_
100	A P S I WAS CILL TO S I S I S			Aqueous, O - C		ther arrangements are mad			_									_		ort for the an	alvsis of the	above
Management Court of the						with this COC. The liability o											,,,,,				,	

Page 219 of 376

Printed: 3/24/2022 6:09:32PM

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Instructions: Please take note of any NO checkmarks.

If we receive no response concerning these items within 24 hours of the date of this notice, all the samples will be analyzed as requested.

03/17/22 03/24/22 Yes Yes	17:38 17:00 (4 day TAT)	Logged In By: Caitlin Christian
Yes	17:00 (4 day TAT)	
Yes		
Yes	Carrier: <u>C</u>	Carrier
Yes		-
Yes		
	Г	Comments/Resolution
		Samples recieved expired for Nitrite,
Yes		- · · · · · · · · · · · · · · · · · · ·
		Nitrate and O-Phosphate. Alkalinity was
Yes		unable to be analyzed for Samples
Yes		-03,-04,-05,-06 and -07 due to insufficient
Yes		sample amount.
No		sample amount.
NA		
Yes		
<u> </u>		
No		
NA		
NA		
NA		
Yes		
Yes		
Yes		
No	L	
No		
3 7		
Yes		
No		
NA		
No		
NA	Subcontract Lab	: na
	Yes Yes Yes Yes Yes No NA Yes No NA NA Yes Yes No No No Yes Yes No No No No No No No No No No No No No	Yes Yes Yes Yes Yes Yes No NA Yes Yes Yes No NA NA NA Yes Yes Yes Yes No No No No No No No No No N

Report to:

Natalie Gladden

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Newell Law Firm

Project Name: West Lovington Strawn Unit 8

Work Order: E203111

Job Number: 20046-0001

Received: 3/18/2022

Revision: 2

Report Reviewed By:

Walter Hinchman Laboratory Director 3/25/22

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Envirotech Inc, holds the NM SDWA certification for data reported. (Lab #NM00979)

Date Reported: 3/25/22

Natalie Gladden 10 W Adams Ave Ste E Lovington, NM 88260

Project Name: West Lovington Strawn Unit 8

Workorder: E203111

Date Received: 3/18/2022 8:15:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 3/18/2022 8:15:00AM, under the Project Name: West Lovington Strawn Unit 8.

The analytical test results summarized in this report with the Project Name: West Lovington Strawn Unit 8 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman

Laboratory Director Office: 505-632-1881

Cell: 775-287-1762

whinchman@envirotech-inc.com

Raina Schwanz

Laboratory Administrator Office: 505-632-1881

rainaschwanz@envirotech-inc.com

Alexa Michaels

Sample Custody Officer Office: 505-632-1881

labadmin@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services

Office: 505-421-LABS(5227)

Cell: 505-320-4759

ljarboe@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative

Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	5
Sample Data	6
MW - 2	6
MW - 4	10
MW - 8S	14
MW - 8M	18
MW - 80	22
MW - 7S	26
MW - 7D	30
QC Summary Data	34
QC - Volatile Organic Compounds by EPA 8260B	34
QC - Wet Chem/Gravimetric by SM2540C	37
QC - Wet Chemistry by 9040C/4500H+B	38
QC - Wet Chemistry by SM2320B	39
QC - Wet Chemistry by 9050A/2510B	40
QC - Nonhalogenated Organics by EPA 8015D - GRO	41
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	42
QC - Total Metals by EPA 6010C	43
QC - Dissolved Metals by EPA 6010C	44
QC - Anions by EPA 300.0/9056A	45
QC - Total Mercury by EPA 7470A	46
Definitions and Notes	47

Table of Contents (continued)

Chain of Custody etc. 48

Page 4 of 49

Sample Summary

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	Donoutode
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	03/25/22 16:10

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
MW - 2	E203111-01A	Aqueous	03/16/22	03/18/22	Poly 500mL
	E203111-01B	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-01C	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-01D	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
MW - 4	E203111-02A	Aqueous	03/16/22	03/18/22	Poly 250mL
	E203111-02B	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-02C	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
MW - 8S	E203111-03A	Aqueous	03/16/22	03/18/22	Poly 250mL
	E203111-03B	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-03C	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
MW - 8M	E203111-04A	Aqueous	03/16/22	03/18/22	Poly 250mL
	E203111-04B	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-04C	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
MW - 8O	E203111-05A	Aqueous	03/16/22	03/18/22	Poly 250mL
	E203111-05B	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-05C	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
MW - 7S	E203111-06A	Aqueous	03/16/22	03/18/22	Poly 250mL
	E203111-06B	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-06C	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
MW - 7D	E203111-07A	Aqueous	03/16/22	03/18/22	Poly 500mL
	E203111-07B	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-07C	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl
	E203111-07D	Aqueous	03/16/22	03/18/22	VOA Vial, 40mL; HCl

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

MW - 2 E203111-01

Reporting Result Limit Dilution Prepared Analyzed Notes
atile Organic Compounds by EPA 8260B ug/L ug/L Analyst: IY Batch: 2212089 tone ND 80.0 2 03/21/22 03/21/22 zene ND 2.00 2 03/21/22 03/21/22 mobenzene ND 2.00 2 03/21/22 03/21/22 mobel compounds by EPA 8260B ND 2.00 2 03/21/22 03/21/22 word ND 2.00 2 03/21/22 03/21/22 mobenzene ND 2.00 2 03/21/22 03/21/22 modichloromethane ND 2.00 2 03/21/22 03/21/22 morticle ND 2.00 </th
tone ND 80.0 2 03/21/22 03/21/22 zene ND 2.00 2 03/21/22 03/21/22 mobenzene ND 2.00 2 03/21/22 03/21/22 mobenzene ND 2.00 2 03/21/22 03/21/22 modichloromethane ND 2.00 2 03/21/22 03/21/22 buryl Benzene ND 2.00 2 03/21/22 03/21/22 buryl Benzene ND 2.00
ND 2.00 2 03/21/22 03/2
ND 2.00 2 03/21/22 03/2
ND 2.00 2 03/21/22 03/2
ND 2.00 2 03/21/22 03/2
ND 2.00 2 03/21/22 03/2
ND A.00 2 03/21/22 03/2
ND 2.00 2 03/21/22 03/2
Butylbenzene ND 2.00 2 03/21/22 03/21/22 Department ND 2.00 2 03/21/22 Department ND 2.00 2 03/21/22 Department ND 2.00 2 03/21/22 Department ND 2.00 2 03/21/22 Department ND 2.00 2 03/21/22 Department ND 4.00 2 03/21/22 Department ND 2.00 2 03/2
Butylbenzene ND 2.00 2 03/21/22 03/21/22 03/21/22 07/21/2
ND 2.00 2 03/21/22 03/2
ND 2.00 2 03/21/22 03/21/22 probenzene ND 4.00 2 03/21/22 03/21/22 proform ND 10.0 2 03/21/22 03/21/22 promethane ND 4.00 2 03/21/22 03/21/22 promotoluene ND 2.00 2 03/21/22 03/21/22 promochloromethane ND 2.00 2 03/21/22 03/21/22
oroethane ND 4.00 2 03/21/22 03/21/22 oroform ND 10.0 2 03/21/22 03/21/22 oromethane ND 4.00 2 03/21/22 03/21/22 oromethane ND 2.00 2 03/21/22 03/21/22 oromochloromethane ND 2.00 2 03/21/22 03/21/22 oromochloromethane ND 2.00 2 03/21/22 03/21/22
oroform ND 10.0 2 03/21/22 03/21/22 oromethane ND 4.00 2 03/21/22 03/21/22 obscription ND 2.00 2 03/21/22 03/21/22
bromethane ND 4.00 2 03/21/22 03/21/22 hlorotoluene ND 2.00 2 03/21/22 03/21/22 hlorotoluene ND 2.00 2 03/21/22 03/21/22 comochloromethane ND 2.00 2 03/21/22 03/21/22 comochloromethane
hlorotoluene ND 2.00 2 03/21/22 03/21/22 hlorotoluene ND 2.00 2 03/21/22 03/21/22 comochloromethane ND 2.00 2 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22
hlorotoluene ND 2.00 2 03/21/22 03/21/22 romochloromethane ND 2.00 2 03/21/22 03/21/22
romochloromethane ND 2.00 2 03/21/22 03/21/22
ionicentermane 3.2 2.00
Dibroms 2 chlorograpus (DDCD) ND 10.0 2 03/21/22 03/21/22
Dioromo-3-chioropropane (DBCP) ND 10.0 2 03/21/22 03/21/22
Dibromoethane (EDB) ND 4.00 2 03/21/22 03/21/22
romomethane ND 2.00 2 03/21/22 03/21/22
Dichlorobenzene ND 2.00 2 03/21/22 03/21/22
Dichlorobenzene ND 2.00 2 03/21/22 03/21/22
Dichlorobenzene ND 2.00 2 03/21/22 03/21/22
nlorodifluoromethane (Freon-12) ND 4.00 2 03/21/22 03/21/22
Dichloroethane ND 2.00 2 03/21/22 03/21/22
Dichloroethane ND 2.00 2 03/21/22 03/21/22
Dichloroethene ND 2.00 2 03/21/22 03/21/22
1,2-Dichloroethene ND 2.00 2 03/21/22 03/21/22
s-1,2-Dichloroethene ND 2.00 2 03/21/22 03/21/22
Dichloropropane ND 2.00 2 03/21/22 03/21/22
Dichloropropane ND 2.00 2 03/21/22 03/21/22
Dichloropropane ND 2.00 2 03/21/22 03/21/22
Dichloropropene ND 2.00 2 03/21/22 03/21/22
1,3-Dichloropropene ND 2.00 2 03/21/22 03/21/22
s-1,3-Dichloropropene ND 2.00 2 03/21/22 03/21/22
opropyl Ether (DIPE) ND 2.00 2 03/21/22 03/21/22
/lbenzene ND 2.00 2 03/21/22 03/21/22
Al tert-Butyl Ether (ETBE) ND 2.00 2 03/21/22 03/21/22
achlorobutadiene ND 10.0 2 03/21/22 03/21/22
exanone ND 40.0 2 03/21/22 03/21/22
Topy to the top to the
epi-opy-normalis
(11212)
hylene Chloride ND 4.00 2 03/21/22 03/21/22

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

MW - 2 E203111-01

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analys	t: IY		Batch: 2212089
1-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	
2-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/21/22	03/21/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/21/22	03/21/22	
Naphthalene	ND	10.0	2	03/21/22	03/21/22	
n-Propyl Benzene	ND	2.00	2	03/21/22	03/21/22	
Styrene	ND	2.00	2	03/21/22	03/21/22	
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/21/22	03/21/22	
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22	
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22	
Tetrachloroethene	ND	2.00	2	03/21/22	03/21/22	
1,2,3-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22	
1,2,4-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22	
1,1,1-Trichloroethane	ND	2.00	2	03/21/22	03/21/22	
1,1,2-Trichloroethane	ND	2.00	2	03/21/22	03/21/22	
Trichloroethene	ND	2.00	2	03/21/22	03/21/22	
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/21/22	03/21/22	
1,2,3-Trichloropropane	ND	4.00	2	03/21/22	03/21/22	
1,2,4-Trimethylbenzene	ND	10.0	2	03/21/22	03/21/22	
1,3,5-Trimethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Toluene	ND	2.00	2	03/21/22	03/21/22	
Vinyl chloride	ND	4.00	2	03/21/22	03/21/22	
o-Xylene	ND	2.00	2	03/21/22	03/21/22	
p,m-Xylene	ND	4.00	2	03/21/22	03/21/22	
Total Xylenes	ND	2.00	2	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene		96.3 %	70-130	03/21/22	03/21/22	
Surrogate: 1,2-Dichloroethane-d4		98.1 %	70-130	03/21/22	03/21/22	
Surrogate: Toluene-d8		97.0 %	70-130	03/21/22	03/21/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

MW - 2

E203111-01

		2200111 01					
Analyte	Result	Reporting Limit	Di	ilution	Prepared	Analyzed	Notes
· ·	mg/L	mg/L			t: RAS	111111,200	Batch: 2212068
Wet Chem/Gravimetric by SM2540C Total Dissolved Solids	2490	25.0		1	03/17/22	03/22/22	Dateii. 2212006
Total Dissolved Solids	2490	25.0		1	03/17/22	03/22/22	
Wet Chemistry by 9040C/4500H+B	pH Units	pH Units		Analys	t: KL		Batch: 2213006
pH @25°C	7.67			1	03/21/22 08:37	03/21/22 10:26	Н5
Wet Chemistry by SM2320B	mg/L	mg/L		Analys	t: RAS		Batch: 2213016
Total Alkalinity (as CaCO3 at pH 4.5)	568	10.0		1	03/21/22	03/21/22	
Wet Chemistry by 9050A/2510B	uS/cm	uS/cm		Analys	t: RAS		Batch: 2213009
Specific Conductance (@ 25 C)	4600	10.0		1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L		Analys	t: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200		2	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene		96.3 %	70-130		03/21/22	03/21/22	
Surrogate: 1,2-Dichloroethane-d4		98.1 %	70-130		03/21/22	03/21/22	
Surrogate: Toluene-d8		97.0 %	70-130		03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L		Analys	t: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	ND	1.00		1	03/21/22	03/21/22	
Oil Range Organics (C28-C36)	ND	2.00		1	03/21/22	03/21/22	
Surrogate: n-Nonane		100 %	50-200		03/21/22	03/21/22	
Total Metals by EPA 6010C	mg/L	mg/L		Analys	t: RKS		Batch: 2212087
Arsenic	ND	0.0200		1	03/19/22	03/20/22	
Barium	ND	0.250		1	03/19/22	03/20/22	C4, C6
Cadmium	ND	0.0100		1	03/19/22	03/20/22	
Chromium	ND	0.0200		1	03/19/22	03/20/22	C4, C6
Lead	ND	0.0100		1	03/19/22	03/20/22	C4, C6
Selenium	ND	0.0500		1	03/19/22	03/20/22	
Silver	ND	0.0100		1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

MW - 2 E203111-01

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analys	st: RKS		Batch: 2212080
Calcium	137	1.00	1	03/18/22	03/23/22	
Iron	ND	2.00	1	03/18/22	03/23/22	
Magnesium	18.5	1.00	1	03/18/22	03/23/22	
Potassium	4.31	1.00	1	03/18/22	03/23/22	C1, C6
Sodium	827	20.0	10	03/18/22	03/23/22	C4, C6
Sodium Absorption Ratio (CALC)	17.6		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analys	st: RAS		Batch: 2212086
Fluoride	ND	5.00	20	03/19/22	03/19/22	
Chloride	1350	40.0	20	03/19/22	03/19/22	
Nitrite-N	ND	5.00	20	03/19/22 07:59	03/19/22 14:15	H2
Nitrate-N	ND	5.00	20	03/19/22 07:59	03/19/22 14:15	H2
o-Phosphate-P	ND	5.00	20	03/19/22 07:59	03/19/22 14:15	H2
Sulfate	200	40.0	20	03/19/22	03/19/22	
T 4 134 1 EDA 7470 4	ug/L	ug/L	Analys	st: RKS		Batch: 2212088
Total Mercury by EPA 7470A			-			

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

MW - 4 E203111-02

		E203111-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst	: IY		Batch: 2212089
Acetone	ND	80.0	2	03/21/22	03/21/22	
Benzene	ND	2.00	2	03/21/22	03/21/22	
Bromobenzene	ND	2.00	2	03/21/22	03/21/22	
Bromochloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromodichloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromoform	ND	2.00	2	03/21/22	03/21/22	
Bromomethane	ND	4.00	2	03/21/22	03/21/22	
n-Butyl Benzene	ND	2.00	2	03/21/22	03/21/22	
sec-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
ert-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
Carbon Tetrachloride	ND	2.00	2	03/21/22	03/21/22	
Chlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Chloroethane	ND	4.00	2	03/21/22	03/21/22	
Chloroform	ND	10.0	2	03/21/22	03/21/22	
Chloromethane	ND	4.00	2	03/21/22	03/21/22	
2-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
1-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
Dibromochloromethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/21/22	03/21/22	
,2-Dibromoethane (EDB)	ND	4.00	2	03/21/22	03/21/22	
Dibromomethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
,3-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
1,4-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/21/22	03/21/22	
1,1-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
	ND ND	2.00	2	03/21/22	03/21/22	
1,1-Dichloroethene	ND ND	2.00	2	03/21/22	03/21/22	
cis-1,2-Dichloroethene			2	03/21/22	03/21/22	
rans-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichloropropane	ND	2.00				
1,3-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
2,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
1,1-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
cis-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
rans-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
Diisopropyl Ether (DIPE)	ND	2.00	2	03/21/22	03/21/22	
Ethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/21/22	03/21/22	
Hexachlorobutadiene	ND	10.0	2	03/21/22	03/21/22	
2-Hexanone	ND	40.0	2	03/21/22	03/21/22	
sopropylbenzene	ND	2.00	2	03/21/22	03/21/22	
1-Isopropyltoluene	ND	2.00	2	03/21/22	03/21/22	
2-Butanone (MEK)	ND	40.0	2	03/21/22	03/21/22	
Methylene Chloride	ND	4.00	2	03/21/22	03/21/22	
1-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	
2-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

MW - 4 E203111-02

Reporting							
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analys	t: IY		Batch: 2212089	
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/21/22	03/21/22		
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/21/22	03/21/22		
Naphthalene	ND	10.0	2	03/21/22	03/21/22		
n-Propyl Benzene	ND	2.00	2	03/21/22	03/21/22		
Styrene	ND	2.00	2	03/21/22	03/21/22		
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/21/22	03/21/22		
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22		
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22		
Tetrachloroethene	ND	2.00	2	03/21/22	03/21/22		
1,2,3-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22		
1,2,4-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22		
1,1,1-Trichloroethane	ND	2.00	2	03/21/22	03/21/22		
1,1,2-Trichloroethane	ND	2.00	2	03/21/22	03/21/22		
Trichloroethene	ND	2.00	2	03/21/22	03/21/22		
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/21/22	03/21/22		
1,2,3-Trichloropropane	ND	4.00	2	03/21/22	03/21/22		
1,2,4-Trimethylbenzene	ND	10.0	2	03/21/22	03/21/22		
1,3,5-Trimethylbenzene	ND	2.00	2	03/21/22	03/21/22		
Toluene	ND	2.00	2	03/21/22	03/21/22		
Vinyl chloride	ND	4.00	2	03/21/22	03/21/22		
o-Xylene	ND	2.00	2	03/21/22	03/21/22		
p,m-Xylene	ND	4.00	2	03/21/22	03/21/22		
Total Xylenes	ND	2.00	2	03/21/22	03/21/22		
Surrogate: Bromofluorobenzene		94.9 %	70-130	03/21/22	03/21/22		
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130	03/21/22	03/21/22		
Surrogate: Toluene-d8		97.3 %	70-130	03/21/22	03/21/22		

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

MW - 4

E203111-02

		Reporting					
Analyte	Result	Limit	Dilı	ution	Prepared	Analyzed	Notes
Wet Chem/Gravimetric by SM2540C	mg/L	mg/L		Analys	t: RAS		Batch: 2212068
Total Dissolved Solids	830	25.0		1	03/17/22	03/22/22	
Wet Chemistry by 9040C/4500H+B	pH Units	pH Units		Analys	t: KL		Batch: 2213006
рН @25°C	7.64			1	03/21/22 08:37	03/21/22 10:26	Н5
Wet Chemistry by 9050A/2510B	uS/cm	uS/cm		Analys	t: RAS		Batch: 2213009
Specific Conductance (@ 25 C)	1620	10.0		1	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L		Analys	t: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200		2	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene		94.9 %	70-130		03/21/22	03/21/22	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-130		03/21/22	03/21/22	
Surrogate: Toluene-d8		97.3 %	70-130		03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L		Analys	t: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	ND	1.00		1	03/21/22	03/21/22	
Oil Range Organics (C28-C36)	ND	2.00		1	03/21/22	03/21/22	
Surrogate: n-Nonane		107 %	50-200		03/21/22	03/21/22	
Total Metals by EPA 6010C	mg/L	mg/L		Analys	t: RKS		Batch: 2212087
Arsenic	ND	0.0200		1	03/19/22	03/20/22	
Barium	ND	0.250		1	03/19/22	03/20/22	C4, C6
Cadmium	ND	0.0100		1	03/19/22	03/20/22	
Chromium	ND	0.0200		1	03/19/22	03/20/22	C4, C6
Lead	ND	0.0100		1	03/19/22	03/20/22	C4, C6
Selenium	ND	0.0500		1	03/19/22	03/20/22	
Silver	ND	0.0100		1	03/19/22	03/20/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

MW - 4

E203111-02

Result mg/L 171	Limit mg/L	Dilution	Prepared	Analyzed	Notes
	mg/L				
171		Analys	st: RKS		Batch: 2212080
1/1	1.00	1	03/18/22	03/23/22	C4, C6
ND	2.00	1	03/18/22	03/23/22	
21.6	1.00	1	03/18/22	03/23/22	
2.71	1.00	1	03/18/22	03/23/22	C1, C6
132	2.00	1	03/18/22	03/23/22	C4, C6
2.53		1	03/24/22	03/24/22	
mg/L	mg/L	Analys	st: RAS		Batch: 2212086
0.720	0.500	2	03/19/22	03/19/22	
260	4.00	2	03/19/22	03/19/22	
ND	0.500	2	03/19/22 07:59	03/19/22 14:37	H2
6.20	0.500	2	03/19/22 07:59	03/19/22 14:37	H2
ND	0.500	2	03/19/22 07:59	03/19/22 14:37	H2
119	4.00	2	03/19/22	03/19/22	
ug/L	ug/L	Analys	st: RKS		Batch: 2212088
ND	0.200	1	03/19/22	03/20/22	
	21.6 2.71 132 2.53 mg/L 0.720 260 ND 6.20 ND 119 ug/L	21.6 1.00 2.71 1.00 132 2.00 2.53 mg/L mg/L 0.720 0.500 260 4.00 ND 0.500 6.20 0.500 ND 0.500 119 4.00 ug/L ug/L	21.6 1.00 1 2.71 1.00 1 132 2.00 1 2.53 1 mg/L mg/L Analys 0.720 0.500 2 260 4.00 2 ND 0.500 2 6.20 0.500 2 ND 0.500 2 ND 0.500 2 119 4.00 2 ug/L ug/L Analys	21.6 1.00 1 03/18/22 2.71 1.00 1 03/18/22 132 2.00 1 03/18/22 2.53 1 03/24/22 mg/L mg/L Analyst: RAS 0.720 0.500 2 03/19/22 260 4.00 2 03/19/22 07:59 ND 0.500 2 03/19/22 07:59 Analyst: RKS	21.6 1.00 1 03/18/22 03/23/22 2.71 1.00 1 03/18/22 03/23/22 132 2.00 1 03/18/22 03/23/22 2.53 1 03/24/22 03/24/22 mg/L mg/L Analyst: RAS 0.720 0.500 2 03/19/22

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

	1	E203111-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst:	: IY		Batch: 2212089
Acetone	ND	80.0	2	03/21/22	03/21/22	
Benzene	ND	2.00	2	03/21/22	03/21/22	
Bromobenzene	ND	2.00	2	03/21/22	03/21/22	
Bromochloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromodichloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromoform	ND	2.00	2	03/21/22	03/21/22	
Bromomethane	ND	4.00	2	03/21/22	03/21/22	
n-Butyl Benzene	ND	2.00	2	03/21/22	03/21/22	
sec-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
tert-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
Carbon Tetrachloride	ND	2.00	2	03/21/22	03/21/22	
Chlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Chloroethane	ND	4.00	2	03/21/22	03/21/22	
Chloroform	ND	10.0	2	03/21/22	03/21/22	
Chloromethane	ND	4.00	2	03/21/22	03/21/22	
2-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
4-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
Dibromochloromethane	ND	2.00	2	03/21/22	03/21/22	
1,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/21/22	03/21/22	
1,2-Dibromoethane (EDB)	ND	4.00	2	03/21/22	03/21/22	
Dibromomethane (EBB)	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
1,3-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
1,4-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/21/22	03/21/22	
1,1-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichloroethane	ND ND	2.00	2	03/21/22	03/21/22	
1,1-Dichloroethene	ND ND	2.00	2	03/21/22	03/21/22	
cis-1,2-Dichloroethene	ND ND		2	03/21/22	03/21/22	
trans-1,2-Dichloroethene		2.00	2	03/21/22	03/21/22	
1,2-Dichloropropane	ND	2.00				
1,3-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
2,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
1,1-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
cis-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
trans-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
Diisopropyl Ether (DIPE)	ND	2.00	2	03/21/22	03/21/22	
Ethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/21/22	03/21/22	
Hexachlorobutadiene	ND	10.0	2	03/21/22	03/21/22	
2-Hexanone	ND	40.0	2	03/21/22	03/21/22	
Isopropylbenzene	ND	2.00	2	03/21/22	03/21/22	
4-Isopropyltoluene	ND	2.00	2	03/21/22	03/21/22	
2-Butanone (MEK)	ND	40.0	2	03/21/22	03/21/22	
Methylene Chloride	ND	4.00	2	03/21/22	03/21/22	
1-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	
2-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Reporting							
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analys	t: IY		Batch: 2212089	
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/21/22	03/21/22		
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/21/22	03/21/22		
Naphthalene	ND	10.0	2	03/21/22	03/21/22		
n-Propyl Benzene	ND	2.00	2	03/21/22	03/21/22		
Styrene	ND	2.00	2	03/21/22	03/21/22		
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/21/22	03/21/22		
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22		
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22		
Tetrachloroethene	ND	2.00	2	03/21/22	03/21/22		
1,2,3-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22		
1,2,4-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22		
1,1,1-Trichloroethane	ND	2.00	2	03/21/22	03/21/22		
1,1,2-Trichloroethane	ND	2.00	2	03/21/22	03/21/22		
Trichloroethene	ND	2.00	2	03/21/22	03/21/22		
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/21/22	03/21/22		
1,2,3-Trichloropropane	ND	4.00	2	03/21/22	03/21/22		
1,2,4-Trimethylbenzene	ND	10.0	2	03/21/22	03/21/22		
1,3,5-Trimethylbenzene	ND	2.00	2	03/21/22	03/21/22		
Toluene	ND	2.00	2	03/21/22	03/21/22		
Vinyl chloride	ND	4.00	2	03/21/22	03/21/22		
p-Xylene	ND	2.00	2	03/21/22	03/21/22		
p,m-Xylene	ND	4.00	2	03/21/22	03/21/22		
Total Xylenes	ND	2.00	2	03/21/22	03/21/22		
Surrogate: Bromofluorobenzene		94.9 %	70-130	03/21/22	03/21/22		
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	03/21/22	03/21/22		
Surrogate: Toluene-d8		96.7 %	70-130	03/21/22	03/21/22		

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

	E203111-03					
	Reporting					
Result	Limit	Di	ilution	Prepared	Analyzed	Notes
mg/L	mg/L		Analys	st: RAS		Batch: 2212068
908	25.0		1	03/17/22	03/22/22	
pH Units	pH Units		Analys	st: KL		Batch: 2213006
7.90			1	03/21/22 08:37	03/21/22 10:26	Н5
uS/cm	uS/cm		Analys	st: RAS		Batch: 2213009
613	10.0		1	03/21/22	03/21/22	
mg/L	mg/L		Analys	st: IY		Batch: 2212089
ND	0.200		2	03/21/22	03/21/22	
	94.9 %	70-130		03/21/22	03/21/22	
	101 %	70-130		03/21/22	03/21/22	
	96.7 %	70-130		03/21/22	03/21/22	
mg/L	mg/L		Analys	st: JL		Batch: 2213017
ND	1.00		1	03/21/22	03/21/22	
ND	2.00		1	03/21/22	03/21/22	
	103 %	50-200		03/21/22	03/21/22	
mg/L	mg/L		Analyst: RKS			Batch: 2212087
ND	0.0200		1	03/19/22	03/20/22	
ND	0.250		1	03/19/22	03/20/22	C4, C6
ND	0.0100		1	03/19/22	03/20/22	
ND	0.0200		1	03/19/22	03/20/22	C4, C6
ND	0.0100		1	03/19/22	03/20/22	C4, C6
ND	0.0500		1	03/19/22	03/20/22	
ND	0.0100		1	03/19/22	03/20/22	
	mg/L 908 pH Units 7.90 uS/cm 613 mg/L ND MD ND ND ND ND ND ND ND ND ND ND ND	Result Reporting Limit mg/L mg/L 908 25.0 pH Units pH Units 7.90 uS/cm 613 10.0 mg/L mg/L ND 0.200 94.9 % 101 % 96.7 % mg/L ND 1.00 ND 2.00 IO3 % mg/L MD 0.0200 ND 0.0200 ND 0.0200 ND 0.0100 ND 0.0200 ND 0.0200 ND 0.0200 ND 0.0100 ND 0.0200 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0500	Result Limit Display	Reporting Limit Dilution mg/L mg/L Analys 908 25.0 1 pH Units pH Units Analys 7.90 1 1 uS/cm uS/cm Analys 613 10.0 1 mg/L mg/L Analys ND 0.200 2 94.9 % 70-130 70-130 101 % 70-130 70-130 mg/L mg/L Analys ND 1.00 1 ND 2.00 1 ND 50-200 mg/L mg/L Analys ND 0.0200 1 ND 0.0200 1 ND 0.0200 1 ND 0.0100 1 ND 0.0200 1 ND 0.0200 1 ND 0.0200 1 ND 0.0100 1	Reporting Limit Dilution Prepared mg/L mg/L Analyst: RAS 908 25.0 1 03/17/22 pH Units Analyst: KL To 3/21/22 08:37 uS/cm uS/cm Analyst: RAS 613 10.0 1 03/21/22 mg/L mg/L Analyst: JV ND 0.200 2 03/21/22 101 % 70-130 03/21/22 96.7 % 70-130 03/21/22 mg/L mg/L Analyst: JL ND 1.00 1 03/21/22 mg/L mg/L Analyst: JL ND 1.00 1 03/21/22 ND 1.00 1 03/21/22 mg/L mg/L Analyst: JL ND 0.0200 1 03/21/22 ND 0.0200 1 03/21/22 ND 0.0200 1 03/19/22 ND 0.0100 1	Reporting Limit Dilution Prepared Analyzed mg/L mg/L Analyst: RAS O3/21/22 O3/22/22 pH Units pH Units Analyst: KL O3/21/22 08:37 O3/21/22 10:26 uS/cm uS/cm Analyst: RAS 613 10.0 1 03/21/22 03/21/22 mg/L mg/L Analyst: IY ND 0.200 2 03/21/22 03/21/22 94.9 % 70-130 03/21/22 03/21/22 94.9 % 70-130 03/21/22 03/21/22 96.7 % 70-130 03/21/22 03/21/22 mg/L mg/L Analyst: JL ND 1.00 1 03/21/22 03/21/22 ND 2.00 1 03/21/22 03/21/22 mg/L

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

	Reporting				
Result	Limit	Dilution	Prepared	Analyzed	Notes
mg/L	mg/L	Analys	st: RKS		Batch: 2212080
68.9	1.00	1	03/18/22	03/23/22	C4, C6
ND	2.00	1	03/18/22	03/23/22	
10.5	1.00	1	03/18/22	03/23/22	
2.33	1.00	1	03/18/22	03/23/22	C1, C6
41.0	2.00	1	03/18/22	03/23/22	C4, C6
1.22		1	03/24/22	03/24/22	
mg/L	mg/L	Analys	st: RAS		Batch: 2212086
1.15	0.250	1	03/19/22	03/19/22	
22.8	2.00	1	03/19/22	03/19/22	
ND	0.250	1	03/19/22 07:59	03/19/22 14:59	H2
0.472	0.250	1	03/19/22 07:59	03/19/22 14:59	H2
ND	0.250	1	03/19/22 07:59	03/19/22 14:59	H2
			02 (10 (22	03/19/22	
52.4	2.00	1	03/19/22	03/19/22	
52.4 ug/L	2.00 ug/L	I Analys	03/19/22 st: RKS	03/19/22	Batch: 2212088
	mg/L 68.9 ND 10.5 2.33 41.0 1.22 mg/L 1.15 22.8 ND 0.472	Result Limit mg/L mg/L 68.9 1.00 ND 2.00 10.5 1.00 2.33 1.00 41.0 2.00 1.22 mg/L mg/L mg/L 1.15 0.250 22.8 2.00 ND 0.250 0.472 0.250	Result Limit Dilution mg/L mg/L Analys 68.9 1.00 1 ND 2.00 1 10.5 1.00 1 2.33 1.00 1 41.0 2.00 1 1.22 1 mg/L mg/L Analys 1.15 0.250 1 22.8 2.00 1 ND 0.250 1 0.472 0.250 1	Result Limit Dilution Prepared mg/L mg/L Analyst: RKS 68.9 1.00 1 03/18/22 ND 2.00 1 03/18/22 10.5 1.00 1 03/18/22 2.33 1.00 1 03/18/22 41.0 2.00 1 03/18/22 1.22 1 03/24/22 mg/L Analyst: RAS 1.15 0.250 1 03/19/22 2.8 2.00 1 03/19/22 ND 0.250 1 03/19/22 07:59 0.472 0.250 1 03/19/22 07:59	Result Limit Dilution Prepared Analyzed mg/L mg/L Analyst: RKS 68.9 1.00 1 03/18/22 03/23/22 ND 2.00 1 03/18/22 03/23/22 10.5 1.00 1 03/18/22 03/23/22 2.33 1.00 1 03/18/22 03/23/22 41.0 2.00 1 03/18/22 03/23/22 1.22 1 03/18/22 03/24/22 mg/L Analyst: RAS 1.15 0.250 1 03/19/22 03/19/22 2.8 2.00 1 03/19/22 03/19/22 ND 0.250 1 03/19/22 07:59 03/19/22 14:59 0.472 0.250 1 03/19/22 07:59 03/19/22 14:59

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst	IY		Batch: 2212089
Acetone	ND	80.0	2	03/21/22	03/21/22	
Benzene	ND	2.00	2	03/21/22	03/21/22	
Bromobenzene	ND	2.00	2	03/21/22	03/21/22	
Bromochloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromodichloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromoform	ND	2.00	2	03/21/22	03/21/22	
Bromomethane	ND	4.00	2	03/21/22	03/21/22	
-Butyl Benzene	ND	2.00	2	03/21/22	03/21/22	
ec-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
ert-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
Carbon Tetrachloride	ND	2.00	2	03/21/22	03/21/22	
Chlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Chloroethane	ND	4.00	2	03/21/22	03/21/22	
Chloroform	ND	10.0	2	03/21/22	03/21/22	
Chloromethane	ND	4.00	2	03/21/22	03/21/22	
2-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
Dibromochloromethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/21/22	03/21/22	
,2-Dibromoethane (EDB)	ND	4.00	2	03/21/22	03/21/22	
Dibromomethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
,3-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
,4-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/21/22	03/21/22	
,1-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
.1-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
ris-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
rans-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
,3-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
2,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
,1-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
is-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
rans-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
Diisopropyl Ether (DIPE)	ND	2.00	2	03/21/22	03/21/22	
Ethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/21/22	03/21/22	
Lexachlorobutadiene	ND ND	10.0	2	03/21/22	03/21/22	
-Hexanone	ND ND	40.0	2	03/21/22	03/21/22	
	ND ND	2.00	2	03/21/22	03/21/22	
sopropylbenzene	ND ND	2.00	2	03/21/22	03/21/22	
-Isopropyltoluene			2	03/21/22	03/21/22	
2-Butanone (MEK)	ND ND	40.0		03/21/22	03/21/22	
Methylene Chloride	ND	4.00	2			
-Methylnaphthalene	ND	20.0 20.0	2 2	03/21/22 03/21/22	03/21/22 03/21/22	

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

Reporting							
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Anal	lyst: IY		Batch: 2212089	
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/21/22	03/21/22		
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/21/22	03/21/22		
Naphthalene	ND	10.0	2	03/21/22	03/21/22		
n-Propyl Benzene	ND	2.00	2	03/21/22	03/21/22		
Styrene	ND	2.00	2	03/21/22	03/21/22		
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/21/22	03/21/22		
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22		
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22		
Tetrachloroethene	ND	2.00	2	03/21/22	03/21/22		
1,2,3-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22		
1,2,4-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22		
1,1,1-Trichloroethane	ND	2.00	2	03/21/22	03/21/22		
1,1,2-Trichloroethane	ND	2.00	2	03/21/22	03/21/22		
Trichloroethene	ND	2.00	2	03/21/22	03/21/22		
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/21/22	03/21/22		
1,2,3-Trichloropropane	ND	4.00	2	03/21/22	03/21/22		
1,2,4-Trimethylbenzene	ND	10.0	2	03/21/22	03/21/22		
1,3,5-Trimethylbenzene	ND	2.00	2	03/21/22	03/21/22		
Toluene	ND	2.00	2	03/21/22	03/21/22		
Vinyl chloride	ND	4.00	2	03/21/22	03/21/22		
o-Xylene	ND	2.00	2	03/21/22	03/21/22		
p,m-Xylene	ND	4.00	2	03/21/22	03/21/22		
Total Xylenes	ND	2.00	2	03/21/22	03/21/22		
Surrogate: Bromofluorobenzene		93.1 %	70-130	03/21/22	03/21/22		
Surrogate: 1,2-Dichloroethane-d4		104 %	70-130	03/21/22	03/21/22		
Surrogate: Toluene-d8		96.0 %	70-130	03/21/22	03/21/22		

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

		E205111-04				
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
Maye				•	rmaryzed	
Wet Chem/Gravimetric by SM2540C	mg/L	mg/L	Analy	yst: RAS		Batch: 2212068
Total Dissolved Solids	583	10.0	1	03/17/22	03/22/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L	Anal	yst: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200	2	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene		93.1 %	70-130	03/21/22	03/21/22	
Surrogate: 1,2-Dichloroethane-d4		104 %	70-130	03/21/22	03/21/22	
Surrogate: Toluene-d8		96.0 %	70-130	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L	Anal	yst: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	1.45	1.00	1	03/21/22	03/21/22	T17
Oil Range Organics (C28-C36)	ND	2.00	1	03/21/22	03/21/22	
Surrogate: n-Nonane		103 %	50-200	03/21/22	03/21/22	
Total Metals by EPA 6010C	mg/L	mg/L	Analy	Analyst: RKS		Batch: 2212087
Arsenic	ND	0.0200	1	03/19/22	03/20/22	
Barium	ND	0.250	1	03/19/22	03/20/22	C4, C6
Cadmium	ND	0.0100	1	03/19/22	03/20/22	
Chromium	ND	0.0200	1	03/19/22	03/20/22	C4, C6
Lead	ND	0.0100	1	03/19/22	03/20/22	C4, C6
Selenium	ND	0.0500	1	03/19/22	03/20/22	
Silver	ND	0.0100	1	03/19/22	03/20/22	
Dissolved Metals by EPA 6010C	mg/L	mg/L	Anal	yst: RKS		Batch: 2212080
Calcium	104	1.00	1	03/18/22	03/23/22	C4, C6
Iron	ND	2.00	1	03/18/22	03/23/22	
Magnesium	25.3	1.00	1	03/18/22	03/23/22	
Potassium	3.57	1.00	1	03/18/22	03/23/22	C1, C6
Sodium	55.0	2.00	1	03/18/22	03/23/22	C4, C6
Sodium Absorption Ratio (CALC)	1.25		1	03/24/22	03/24/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
Anions by EPA 300.0/9056A	mg/L	mg/L	Analys	st: RAS		Batch: 2212086
Fluoride	0.851	0.250	1	03/19/22	03/19/22	
Chloride	50.5	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 16:03	H2
Nitrate-N	1.16	0.250	1	03/19/22 07:59	03/19/22 16:03	H2
o-Phosphate-P	ND	0.250	1	03/19/22 07:59	03/19/22 16:03	H2
Sulfate	198	2.00	1	03/19/22	03/19/22	
Total Mercury by EPA 7470A	ug/L	ug/L	Analys	st: RKS		Batch: 2212088
Mercury	ND	0.200	1	03/19/22	03/20/22	

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst	IY		Batch: 2212089
Acetone	ND	80.0	2	03/21/22	03/21/22	
Benzene	ND	2.00	2	03/21/22	03/21/22	
Bromobenzene	ND	2.00	2	03/21/22	03/21/22	
Bromochloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromodichloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromoform	ND	2.00	2	03/21/22	03/21/22	
Bromomethane	ND	4.00	2	03/21/22	03/21/22	
-Butyl Benzene	ND	2.00	2	03/21/22	03/21/22	
ec-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
ert-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
Carbon Tetrachloride	ND	2.00	2	03/21/22	03/21/22	
Chlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Chloroethane	ND	4.00	2	03/21/22	03/21/22	
Chloroform	ND	10.0	2	03/21/22	03/21/22	
Chloromethane	ND	4.00	2	03/21/22	03/21/22	
2-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
l-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
Dibromochloromethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/21/22	03/21/22	
,2-Dibromoethane (EDB)	ND	4.00	2	03/21/22	03/21/22	
Dibromomethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
,3-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
,4-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/21/22	03/21/22	
,1-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
,1-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
sis-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
rans-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
1,3-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
2,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
,1-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
sis-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
rans-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
Diisopropyl Ether (DIPE)	ND	2.00	2	03/21/22	03/21/22	
Ethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/21/22	03/21/22	
Hexachlorobutadiene	ND	10.0	2	03/21/22	03/21/22	
-Hexanone	ND	40.0	2	03/21/22	03/21/22	
sopropylbenzene	ND	2.00	2	03/21/22	03/21/22	
i-Isopropyltoluene	ND	2.00	2	03/21/22	03/21/22	
2-Butanone (MEK)	ND	40.0	2	03/21/22	03/21/22	
Methylene Chloride	ND	4.00	2	03/21/22	03/21/22	
-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	
-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Reporting						
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analy	st: IY		Batch: 2212089
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/21/22	03/21/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/21/22	03/21/22	
Naphthalene	ND	10.0	2	03/21/22	03/21/22	
n-Propyl Benzene	ND	2.00	2	03/21/22	03/21/22	
Styrene	ND	2.00	2	03/21/22	03/21/22	
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/21/22	03/21/22	
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22	
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22	
Tetrachloroethene	ND	2.00	2	03/21/22	03/21/22	
1,2,3-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22	
1,2,4-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22	
1,1,1-Trichloroethane	ND	2.00	2	03/21/22	03/21/22	
1,1,2-Trichloroethane	ND	2.00	2	03/21/22	03/21/22	
Trichloroethene	ND	2.00	2	03/21/22	03/21/22	
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/21/22	03/21/22	
1,2,3-Trichloropropane	ND	4.00	2	03/21/22	03/21/22	
1,2,4-Trimethylbenzene	ND	10.0	2	03/21/22	03/21/22	
1,3,5-Trimethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Toluene	ND	2.00	2	03/21/22	03/21/22	
Vinyl chloride	ND	4.00	2	03/21/22	03/21/22	
o-Xylene	ND	2.00	2	03/21/22	03/21/22	
p,m-Xylene	ND	4.00	2	03/21/22	03/21/22	
Total Xylenes	ND	2.00	2	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene		94.1 %	70-130	03/21/22	03/21/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130	03/21/22	03/21/22	
Surrogate: Toluene-d8		96.2 %	70-130	03/21/22	03/21/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

		E205111-05				
Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
				•	rmaryzod	
Wet Chem/Gravimetric by SM2540C	mg/L	mg/L	Anal	yst: RAS		Batch: 2212068
Total Dissolved Solids	472	11.1	1	03/17/22	03/22/22	
Nonhalogenated Organics by EPA 8015D - GRO	mg/L	mg/L	Anal	yst: IY		Batch: 2212089
Gasoline Range Organics (C6-C10)	ND	0.200	2	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene		94.1 %	70-130	03/21/22	03/21/22	
Surrogate: 1,2-Dichloroethane-d4		100 %	70-130	03/21/22	03/21/22	
Surrogate: Toluene-d8		96.2 %	70-130	03/21/22	03/21/22	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/L	mg/L	Anal	yst: JL		Batch: 2213017
Diesel Range Organics (C10-C28)	ND	1.00	1	03/21/22	03/22/22	
Oil Range Organics (C28-C36)	ND	2.00	1	03/21/22	03/22/22	
Surrogate: n-Nonane		106 %	50-200	03/21/22	03/22/22	
Total Metals by EPA 6010C	mg/L	mg/L	Analyst: RKS			Batch: 2212087
Arsenic	ND	0.0200	1	03/19/22	03/24/22	
Barium	ND	0.250	1	03/19/22	03/24/22	
Cadmium	ND	0.0100	1	03/19/22	03/24/22	
Chromium	ND	0.0200	1	03/19/22	03/24/22	
Lead	ND	0.0100	1	03/19/22	03/24/22	
Selenium	ND	0.0500	1	03/19/22	03/24/22	
Silver	ND	0.0100	1	03/19/22	03/24/22	
Dissolved Metals by EPA 6010C	mg/L	mg/L	Anal	yst: RKS		Batch: 2212080
Calcium	74.4	1.00	1	03/18/22	03/23/22	C4, C6
Iron	ND	2.00	1	03/18/22	03/23/22	
Magnesium	19.7	1.00	1	03/18/22	03/23/22	
Potassium	4.71	1.00	1	03/18/22	03/23/22	C1, C6
Sodium	53.8	2.00	1	03/18/22	03/23/22	C4, C6
Sodium Absorption Ratio (CALC)	1.43		1	03/24/22	03/24/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Analyte	Result	Reporting Limit	Dilution	Prepared	Analyzed	Notes
Anions by EPA 300.0/9056A	mg/L	mg/L	Analys	st: RAS		Batch: 2212086
Fluoride	0.818	0.250	1	03/19/22	03/19/22	
Chloride	44.6	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 16:25	H2
Nitrate-N	0.520	0.250	1	03/19/22 07:59	03/19/22 16:25	H2
o-Phosphate-P	ND	0.250	1	03/19/22 07:59	03/19/22 16:25	H2
Sulfate	141	2.00	1	03/19/22	03/19/22	
Total Mercury by EPA 7470A	ug/L	ug/L	Analys	st: RKS		Batch: 2212088
Mercury	ND	0.200	1	03/19/22	03/20/22	

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

	r	E203111-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analyst:	IY		Batch: 2212089
Acetone	ND	80.0	2	03/21/22	03/21/22	
Benzene	ND	2.00	2	03/21/22	03/21/22	
Bromobenzene	ND	2.00	2	03/21/22	03/21/22	
Bromochloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromodichloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromoform	ND	2.00	2	03/21/22	03/21/22	
Bromomethane	ND	4.00	2	03/21/22	03/21/22	
n-Butyl Benzene	ND	2.00	2	03/21/22	03/21/22	
sec-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
tert-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
Carbon Tetrachloride	ND	2.00	2	03/21/22	03/21/22	
Chlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Chloroethane	ND	4.00	2	03/21/22	03/21/22	
Chloroform	ND	10.0	2	03/21/22	03/21/22	
Chloromethane	ND	4.00	2	03/21/22	03/21/22	
2-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
4-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
Dibromochloromethane	ND	2.00	2	03/21/22	03/21/22	
1,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/21/22	03/21/22	
1,2-Dibromoethane (EDB)	ND	4.00	2	03/21/22	03/21/22	
Dibromomethane (EBB)	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
1.3-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
1,4-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/21/22	03/21/22	
1,1-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
1,1-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
cis-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
trans-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
	ND	2.00	2	03/21/22	03/21/22	
1,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
1,3-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
2,2-Dichloropropane	ND ND	2.00	2	03/21/22	03/21/22	
1,1-Dichloropropene			2	03/21/22	03/21/22	
cis-1,3-Dichloropropene	ND ND	2.00	2	03/21/22	03/21/22	
trans-1,3-Dichloropropene	ND	2.00			03/21/22	
Diisopropyl Ether (DIPE)	ND	2.00	2	03/21/22 03/21/22	03/21/22	
Ethylbenzene	ND	2.00	2			
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/21/22	03/21/22	
Hexachlorobutadiene	ND	10.0	2	03/21/22	03/21/22 03/21/22	
2-Hexanone	ND	40.0	2	03/21/22		
Isopropylbenzene	ND	2.00	2	03/21/22	03/21/22	
4-Isopropyltoluene	ND	2.00	2	03/21/22	03/21/22	
2-Butanone (MEK)	ND	40.0	2	03/21/22	03/21/22	
Methylene Chloride	ND	4.00	2	03/21/22	03/21/22	
1-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	
2-Methylnaphthalene	ND	20.0	2	03/21/22	03/21/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Reporting						
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analys	st: IY		Batch: 2212089
4-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/21/22	03/21/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/21/22	03/21/22	
Naphthalene	ND	10.0	2	03/21/22	03/21/22	
n-Propyl Benzene	ND	2.00	2	03/21/22	03/21/22	
Styrene	ND	2.00	2	03/21/22	03/21/22	
tert-Amyl Methyl ether (TAME)	ND	2.00	2	03/21/22	03/21/22	
1,1,1,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22	
1,1,2,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22	
Tetrachloroethene	ND	2.00	2	03/21/22	03/21/22	
1,2,3-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22	
1,2,4-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22	
1,1,1-Trichloroethane	ND	2.00	2	03/21/22	03/21/22	
1,1,2-Trichloroethane	ND	2.00	2	03/21/22	03/21/22	
Trichloroethene	ND	2.00	2	03/21/22	03/21/22	
Trichlorofluoromethane (Freon-11)	ND	4.00	2	03/21/22	03/21/22	
1,2,3-Trichloropropane	ND	4.00	2	03/21/22	03/21/22	
1,2,4-Trimethylbenzene	ND	10.0	2	03/21/22	03/21/22	
1,3,5-Trimethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Toluene	ND	2.00	2	03/21/22	03/21/22	
Vinyl chloride	ND	4.00	2	03/21/22	03/21/22	
o-Xylene	ND	2.00	2	03/21/22	03/21/22	
p,m-Xylene	ND	4.00	2	03/21/22	03/21/22	
Total Xylenes	ND	2.00	2	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene		95.2 %	70-130	03/21/22	03/21/22	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-130	03/21/22	03/21/22	
Surrogate: Toluene-d8		96.8 %	70-130	03/21/22	03/21/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

porting Limit Dilution Prepared Analyzed Notes ng/L Analyst: RAS Batch: 2212068
ng/L Analyst: RAS Batch: 2212068
00/45/00
33.3 1 03/17/22 03/22/22
Units Analyst: KL Batch: 2213006
1 03/21/22 08:37 03/21/22 10:26 H5
S/cm Analyst: RAS Batch: 2213009
10.0 1 03/21/22 03/21/22
ng/L Analyst: IY Batch: 2212089
.200 2 03/21/22 03/21/22
70-130 03/21/22 03/21/22
70-130 03/21/22 03/21/22
70-130 03/21/22 03/21/22
ng/L Analyst: JL Batch: 2213017
1.00 1 03/21/22 03/22/22
2.00 1 03/21/22 03/22/22
50-200 03/21/22 03/22/22
ng/L Analyst: RKS Batch: 2212087
0200 1 03/19/22 03/24/22
.250 1 03/19/22 03/24/22
0100 1 03/19/22 03/24/22
0200 1 03/19/22 03/24/22
0100 1 03/19/22 03/24/22
0500 1 03/19/22 03/24/22
0100 1 03/19/22 03/24/22

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analys	st: RKS		Batch: 2212080
Calcium	77.8	1.00	1	03/18/22	03/23/22	C4, C6
Iron	ND	2.00	1	03/18/22	03/23/22	
Magnesium	11.3	1.00	1	03/18/22	03/23/22	
Potassium	2.84	1.00	1	03/18/22	03/23/22	C1, C6
Sodium	43.2	2.00	1	03/18/22	03/23/22	C4, C6
Sodium Absorption Ratio (CALC)	1.21		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analyst: RAS			Batch: 2212086
Fluoride	1.09	0.250	1	03/19/22	03/19/22	
Chloride	40.5	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 16:46	H2
Nitrate-N	0.858	0.250	1	03/19/22 07:59	03/19/22 16:46	H2
o-Phosphate-P	ND	0.250	1	03/19/22 07:59	03/19/22 16:46	H2
Sulfate	80.0	2.00	1	03/19/22	03/19/22	
Total Mercury by EPA 7470A	ug/L	ug/L	Analys	st: RKS		Batch: 2212088
Mercury	ND	0.200	1	03/19/22	03/20/22	_

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L ug/L Analyst: IY		: IY		Batch: 2212089
Acetone	ND	80.0	2	03/21/22	03/21/22	
Benzene	ND	2.00	2	03/21/22	03/21/22	
Bromobenzene	ND	2.00	2	03/21/22	03/21/22	
Bromochloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromodichloromethane	ND	2.00	2	03/21/22	03/21/22	
Bromoform	ND	2.00	2	03/21/22	03/21/22	
Bromomethane	ND	4.00	2	03/21/22	03/21/22	
-Butyl Benzene	ND	2.00	2	03/21/22	03/21/22	
ec-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
ert-Butylbenzene	ND	2.00	2	03/21/22	03/21/22	
Carbon Tetrachloride	ND	2.00	2	03/21/22	03/21/22	
Chlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Chloroethane	ND	4.00	2	03/21/22	03/21/22	
Chloroform	ND	10.0	2	03/21/22	03/21/22	
Chloromethane	ND	4.00	2	03/21/22	03/21/22	
2-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
-Chlorotoluene	ND	2.00	2	03/21/22	03/21/22	
Dibromochloromethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dibromo-3-chloropropane (DBCP)	ND	10.0	2	03/21/22	03/21/22	
,2-Dibromoethane (EDB)	ND	4.00	2	03/21/22	03/21/22	
Dibromomethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
,3-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
,4-Dichlorobenzene	ND	2.00	2	03/21/22	03/21/22	
Dichlorodifluoromethane (Freon-12)	ND	4.00	2	03/21/22	03/21/22	
,1-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
,2-Dichloroethane	ND	2.00	2	03/21/22	03/21/22	
.1-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
ris-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
rans-1,2-Dichloroethene	ND	2.00	2	03/21/22	03/21/22	
,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
,3-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
2,2-Dichloropropane	ND	2.00	2	03/21/22	03/21/22	
,1-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
is-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
rans-1,3-Dichloropropene	ND	2.00	2	03/21/22	03/21/22	
Diisopropyl Ether (DIPE)	ND	2.00	2	03/21/22	03/21/22	
Ethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Ethyl tert-Butyl Ether (ETBE)	ND	2.00	2	03/21/22	03/21/22	
Hexachlorobutadiene	ND	10.0	2	03/21/22	03/21/22	
-Hexanone	ND	40.0	2	03/21/22	03/21/22	
-riexanone sopropylbenzene	ND	2.00	2	03/21/22	03/21/22	
sopropytoenzene I-Isopropyttoluene	ND ND	2.00	2	03/21/22	03/21/22	
	ND ND	40.0	2	03/21/22	03/21/22	
2-Butanone (MEK)	ND ND	4.00	2	03/21/22	03/21/22	
Methylene Chloride	ND ND	20.0	2	03/21/22	03/21/22	
-Methylnaphthalene	ND ND	20.0	2	03/21/22	03/21/22	

Newell Law FirmProject Name:West Lovington Strawn Unit 810 W Adams Ave Ste EProject Number:20046-0001Reported:Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

		Reporting	5			
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	ug/L	ug/L	Analys	Analyst: IY		Batch: 2212089
-Methyl-2-pentanone (MIBK)	ND	40.0	2	03/21/22	03/21/22	
Methyl tert-Butyl Ether (MTBE)	ND	2.00	2	03/21/22	03/21/22	
Naphthalene	ND	10.0	2	03/21/22	03/21/22	
-Propyl Benzene	ND	2.00	2	03/21/22	03/21/22	
Styrene	ND	2.00	2	03/21/22	03/21/22	
ert-Amyl Methyl ether (TAME)	ND	2.00	2	03/21/22	03/21/22	
,1,1,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22	
,1,2,2-Tetrachloroethane	ND	2.00	2	03/21/22	03/21/22	
Tetrachloroethene	ND	2.00	2	03/21/22	03/21/22	
,2,3-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22	
,2,4-Trichlorobenzene	ND	10.0	2	03/21/22	03/21/22	
,1,1-Trichloroethane	ND	2.00	2	03/21/22	03/21/22	
,1,2-Trichloroethane	ND	2.00	2	03/21/22	03/21/22	
Trichloroethene	ND	2.00	2	03/21/22	03/21/22	
Frichlorofluoromethane (Freon-11)	ND	4.00	2	03/21/22	03/21/22	
,2,3-Trichloropropane	ND	4.00	2	03/21/22	03/21/22	
,2,4-Trimethylbenzene	ND	10.0	2	03/21/22	03/21/22	
,3,5-Trimethylbenzene	ND	2.00	2	03/21/22	03/21/22	
Toluene	ND	2.00	2	03/21/22	03/21/22	
Vinyl chloride	ND	4.00	2	03/21/22	03/21/22	
-Xylene	ND	2.00	2	03/21/22	03/21/22	
o,m-Xylene	ND	4.00	2	03/21/22	03/21/22	
Total Xylenes	ND	2.00	2	03/21/22	03/21/22	
Surrogate: Bromofluorobenzene		93.5 %	70-130	03/21/22	03/21/22	
Surrogate: 1,2-Dichloroethane-d4		103 %	70-130	03/21/22	03/21/22	
Surrogate: Toluene-d8		96.1 %	70-130	03/21/22	03/21/22	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

	E203111-07					
	Reporting					
Result	Limit	Di	lution	Prepared	Analyzed	Notes
mg/L	mg/L		Analys	st: RAS		Batch: 2212068
333	25.0		1	03/17/22	03/22/22	
pH Units	pH Units		Analys	st: KL		Batch: 2213006
7.78			1	03/21/22 08:37	03/21/22 10:26	Н5
uS/cm	uS/cm		Analys	st: RAS		Batch: 2213009
604	10.0		1	03/21/22	03/21/22	
mg/L	mg/L		Analys	st: IY		Batch: 2212089
ND	0.200		2	03/21/22	03/21/22	
	93.5 %	70-130		03/21/22	03/21/22	
	103 %	70-130		03/21/22	03/21/22	
	96.1 %	70-130		03/21/22	03/21/22	
mg/L	mg/L		Analys	st: JL		Batch: 2213017
ND	1.00		1	03/21/22	03/22/22	
ND	2.00		1	03/21/22	03/22/22	
	103 %	50-200		03/21/22	03/22/22	
mg/L	mg/L		Analys	st: RKS		Batch: 2212087
ND	0.0200		1	03/19/22	03/24/22	
0.275	0.250		1	03/19/22	03/24/22	
ND	0.0100		1	03/19/22	03/24/22	
ND	0.0200		1	03/19/22	03/24/22	
ND	0.0100		1	03/19/22	03/24/22	
ND	0.0500		1	03/19/22	03/24/22	
ND	0.0100		1	03/19/22	03/24/22	
	mg/L 333 pH Units 7.78 uS/cm 604 mg/L ND MD MD MD ND ND ND ND ND ND ND ND ND	Result Reporting Limit mg/L mg/L 333 25.0 pH Units pH Units 7.78 uS/cm uS/cm uS/cm 604 10.0 mg/L mg/L ND 0.200 93.5 % 103 % 96.1 % 96.1 % mg/L mg/L ND 1.00 ND 2.00 103 % mg/L Mg/L mg/L ND 0.0200 0.275 0.250 ND 0.0100 ND 0.0200 ND 0.0100 ND 0.0200 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0500	Reporting Limit Di mg/L mg/L 333 25.0 pH Units pH Units 7.78 uS/cm uS/cm uS/cm 604 10.0 mg/L mg/L ND 0.200 93.5 % 70-130 103 % 70-130 96.1 % 70-130 mg/L mg/L ND 1.00 ND 2.00 mg/L mg/L ND 0.0200 0.275 0.250 ND 0.0100 ND 0.0200 ND 0.0200 ND 0.0100 ND 0.0100 ND 0.0100 ND 0.0500	Reporting Limit Dilution mg/L mg/L Analyst 333 25.0 1 pH Units pH Units Analyst 7.78 1 1 uS/cm uS/cm Analyst 604 10.0 1 mg/L mg/L Analyst ND 0.200 2 93.5 % 70-130 70-130 103 % 70-130 70-130 mg/L mg/L Analyst ND 1.00 1 ND 2.00 1 ND 50-200 mg/L mg/L Analyst ND 0.0200 1 ND 0.0200 1 ND 0.0100 1 ND 0.0200 1 ND 0.0100 1 ND 0.0200 1 ND 0.0100 1 ND 0.0100 1 <td>Reporting Limit Dilution Prepared mg/L mg/L Analyst: RAS 333 25.0 1 03/17/22 pH Units pH Units Analyst: KL 7.78 1 03/21/22 08:37 uS/cm uS/cm Analyst: RAS 604 10.0 1 03/21/22 mg/L mg/L Analyst: IV ND 0.200 2 03/21/22 103 % 70-130 03/21/22 96.1 % 70-130 03/21/22 mg/L mg/L Analyst: JL ND 1.00 1 03/21/22 mg/L mg/L Analyst: JL ND 2.00 1 03/21/22 mg/L mg/L Analyst: JL ND 0.0200 1 03/21/22 mg/L mg/L Analyst: JL ND 0.0200 1 03/19/22 ND 0.0100 1 03/19/22</td> <td>Reporting Limit Dilution Prepared Analyzed mg/L mg/L Analyst: RAS Analyst: RAS 333 25.0 1 03/17/22 03/22/22 pH Units pH Units Analyst: KL 7.78 1 03/21/22 08:37 03/21/22 10:26 uS/cm uS/cm Analyst: RAS 4 604 10.0 1 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/22/22 MD 1.00 1 03/21/22 03/22/22 03/22/22 MD 2.00 1 03/21/22 03/22/22 03/22/22 03/22/22 03/21/22 03/22/22 03/22/22 03/21/22 03/22/22 03/21/22 03/22/22 03/22/22 03/21/22 03/22/22 <th< td=""></th<></td>	Reporting Limit Dilution Prepared mg/L mg/L Analyst: RAS 333 25.0 1 03/17/22 pH Units pH Units Analyst: KL 7.78 1 03/21/22 08:37 uS/cm uS/cm Analyst: RAS 604 10.0 1 03/21/22 mg/L mg/L Analyst: IV ND 0.200 2 03/21/22 103 % 70-130 03/21/22 96.1 % 70-130 03/21/22 mg/L mg/L Analyst: JL ND 1.00 1 03/21/22 mg/L mg/L Analyst: JL ND 2.00 1 03/21/22 mg/L mg/L Analyst: JL ND 0.0200 1 03/21/22 mg/L mg/L Analyst: JL ND 0.0200 1 03/19/22 ND 0.0100 1 03/19/22	Reporting Limit Dilution Prepared Analyzed mg/L mg/L Analyst: RAS Analyst: RAS 333 25.0 1 03/17/22 03/22/22 pH Units pH Units Analyst: KL 7.78 1 03/21/22 08:37 03/21/22 10:26 uS/cm uS/cm Analyst: RAS 4 604 10.0 1 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/21/22 03/22/22 MD 1.00 1 03/21/22 03/22/22 03/22/22 MD 2.00 1 03/21/22 03/22/22 03/22/22 03/22/22 03/21/22 03/22/22 03/22/22 03/21/22 03/22/22 03/21/22 03/22/22 03/22/22 03/21/22 03/22/22 <th< td=""></th<>

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Dissolved Metals by EPA 6010C	mg/L	mg/L	Analyst: RKS			Batch: 2212080
Calcium	59.8	1.00	1	03/18/22	03/23/22	C4, C6
Iron	ND	2.00	1	03/18/22	03/23/22	
Magnesium	9.94	1.00	1	03/18/22	03/23/22	
Potassium	3.55	1.00	1	03/18/22	03/23/22	C1, C6
Sodium	47.5	2.00	1	03/18/22	03/23/22	C4, C6
Sodium Absorption Ratio (CALC)	1.50		1	03/24/22	03/24/22	
Anions by EPA 300.0/9056A	mg/L	mg/L	Analys	st: RAS		Batch: 2212086
Fluoride	0.995	0.250	1	03/19/22	03/19/22	
Chloride	38.5	2.00	1	03/19/22	03/19/22	
Nitrite-N	ND	0.250	1	03/19/22 07:59	03/19/22 17:08	H2
Nitrate-N	1.27	0.250	1	03/19/22 07:59	03/19/22 17:08	H2
o Dhaomhata D	ND	0.250	1	03/19/22 07:59	03/19/22 17:08	H2
o-Phosphate-P			_	004040	03/19/22	
-	65.3	2.00	I	03/19/22	03/19/22	
Sulfate Total Mercury by EPA 7470A	65.3 ug/L	2.00 ug/L	I Analys	03/19/22 st: RKS	03/19/22	Batch: 2212088

Newell Law FirmProject Name:West Lovington Strawn Unit 8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

Volatile Organic Compounds by EPA 8260B

Analyst: IY

Prepared: 03/19/22 Analyzed: 03/19/22

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	ug/L	ug/L	ug/L	ug/L	%	%	%	%	Notes

	ug L	45.2
Blank (2212089-BLK1)		
Acetone	ND	40.0
Benzene	ND	1.00
Bromobenzene	ND	1.00
Bromochloromethane	ND	1.00
Bromodichloromethane	ND	1.00
Bromoform	ND	1.00
Bromomethane	ND	2.00
n-Butyl Benzene	ND ND	1.00
sec-Butylbenzene	ND ND	1.00
tert-Butylbenzene Carbon Tetrachloride	ND ND	1.00 1.00
Chlorobenzene	ND	1.00
Chloroethane	ND	2.00
Chloroform	ND	5.00
Chloromethane	ND	2.00
2-Chlorotoluene	ND	1.00
4-Chlorotoluene	ND	1.00
Dibromochloromethane	ND	1.00
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.00
1,2-Dibromoethane (EDB)	ND	2.00
Dibromomethane	ND	1.00
1,2-Dichlorobenzene	ND	1.00
1,3-Dichlorobenzene	ND	1.00
1,4-Dichlorobenzene	ND	1.00
Dichlorodifluoromethane (Freon-12)	ND	2.00
1,1-Dichloroethane	ND	1.00
1,2-Dichloroethane	ND	1.00
1,1-Dichloroethene	ND	1.00
cis-1,2-Dichloroethene	ND	1.00
trans-1,2-Dichloroethene	ND	1.00
1,2-Dichloropropane	ND ND	1.00
1,3-Dichloropropane 2,2-Dichloropropane	ND ND	1.00 1.00
1,1-Dichloropropene	ND	1.00
cis-1,3-Dichloropropene	ND	1.00
trans-1,3-Dichloropropene	ND	1.00
Diisopropyl Ether (DIPE)	ND	1.00
Ethylbenzene	ND	1.00
Ethyl tert-Butyl Ether (ETBE)	ND	1.00
Hexachlorobutadiene	ND	5.00
2-Hexanone	ND	20.0
Isopropylbenzene	ND	1.00
4-Isopropyltoluene	ND	1.00
2-Butanone (MEK)	ND	20.0
Methylene Chloride	ND	2.00
1-Methylnaphthalene	ND	10.0
2-Methylnaphthalene	ND	10.0
4-Methyl-2-pentanone (MIBK)	ND ND	20.0
Methyl tert-Butyl Ether (MTBE)	ND ND	1.00
Naphthalene n-Propyl Benzene	ND ND	5.00
Styrene	ND	1.00 1.00
tert-Amyl Methyl ether (TAME)	ND	1.00
1,1,1,2-Tetrachloroethane	ND	1.00
1,1,2,2-Tetrachloroethane	ND	1.00
Tetrachloroethene	ND	1.00
1,2,3-Trichlorobenzene	ND	5.00
1,2,4-Trichlorobenzene	ND	5.00
1,1,1-Trichloroethane	ND	1.00
1,1,2-Trichloroethane	ND	1.00
Trichloroethene	ND	1.00
Trichlorofluoromethane (Freon-11)	ND	2.00
1,2,3-Trichloropropane	ND	2.00
1,2,4-Trimethylbenzene	ND	5.00

Newell Law FirmProject Name:West Lovington Strawn Unit 8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

10 W Adams Ave Ste E		Project Number:		0046-0001				2/2	- 5/2022 4:10:14P3
Lovington NM, 88260		Project Manager:	. Na	atalie Gladden				3/2:	5/2022 4:10:14PN
	V	olatile Organio	c Compo	unds by EP	A 8260I	3			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	ug/L	ug/L	ug/L	ug/L	%	%	%	%	Notes
Blank (2212089-BLK1)							Prepared: 0	3/19/22 Analy	yzed: 03/19/22
1,3,5-Trimethylbenzene	ND	1.00							
Toluene	ND	1.00							
Vinyl chloride	ND	2.00							
o-Xylene	ND ND	1.00							
o,m-Xylene Fotal Xylenes	ND ND	2.00 1.00							
Surrogate: Bromofluorobenzene	9.62	1.00	10.0		96.2	70-130			
			10.0		101	70-130			
Surrogate: 1,2-Dichloroethane-d4	10.1								
Surrogate: Toluene-d8	9.93		10.0		99.3	70-130			
LCS (2212089-BS1)							Prepared: 0	3/19/22 Analy	yzed: 03/19/22
Benzene	46.7	1.00	50.0		93.3	70-130			
Bromochloromethane	45.1	1.00	50.0		90.1	70-130			
ert-Butylbenzene	42.6	1.00	50.0		85.2	70-130			
Chlorobenzene ,2-Dibromo-3-chloropropane (DBCP)	46.9 38.3	1.00 5.00	50.0 50.0		93.7 76.6	70-130 65-135			
,2-Dibromo-3-chloropropane (DBCP) ,4-Dichlorobenzene	44.0	1.00	50.0		88.0	70-130			
,1-Dichloroethene	44.3	1.00	50.0		88.6	80-120			
,2-Dichloropropane	48.7	1.00	50.0		97.4	80-120			
Diisopropyl Ether (DIPE)	47.0	1.00	50.0		94.0	65-135			
Ethylbenzene	47.0	1.00	50.0		93.9	80-120			
Methylene Chloride	46.2	2.00	50.0		92.3	70-130			
-Methyl-2-pentanone (MIBK)	85.5	20.0	100		85.5	50-160			
Methyl tert-Butyl Ether (MTBE)	83.3 47.3	1.00	100 50.0		83.3 94.6	70-130 70-130			
-Propyl Benzene ,1,1,2-Tetrachloroethane	47.3	1.00 1.00	50.0		94.6 87.6	70-130			
Tetrachloroethene	44.4	1.00	50.0		88.7	70-130			
,2,3-Trichlorobenzene	39.1	5.00	50.0		78.3	70-140			
,1,1-Trichloroethane	40.7	1.00	50.0		81.4	70-130			
,1,2-Trichloroethane	44.9	1.00	50.0		89.8	70-130			
Trichloroethene	44.5	1.00	50.0		88.9	70-130			
Toluene	46.7	1.00	50.0		93.4	80-120			
Vinyl chloride	54.7 45.5	2.00	50.0 50.0		109 91.0	80-120 70-130			
o-Xylene o,m-Xylene	45.5 90.9	1.00 2.00	100		90.9	70-130 70-130			
otal Xylenes	136	1.00	150		90.9	70-130			
'urrogate: Bromofluorobenzene	10.1	1100	10.0		101	70-130			
Surrogate: 1,2-Dichloroethane-d4	9.99		10.0		99.9	70-130			
urrogate: 1,2-Dictioroeinane-u4 iurrogate: Toluene-d8	10.0		10.0		100	70-130			
	10.0		- 0.0			, 0 150	D 1.0	2/10/22	1 02/10/22
LCS Dup (2212089-BSD1)	51.2	1.00	50.0		102	70-130	9.28	20 Analy	yzed: 03/19/22
Bromochloromethane	48.8	1.00	50.0		97.7	70-130	8.07	20	
ert-Butylbenzene	47.2	1.00	50.0		94.4	70-130	10.2	20	
Chlorobenzene	52.1	1.00	50.0		104	70-130	10.6	20	
,2-Dibromo-3-chloropropane (DBCP)	41.6	5.00	50.0		83.2	65-135	8.33	30	
,4-Dichlorobenzene	49.6 48.9	1.00	50.0 50.0		99.2 97.9	70-130 80-120	12.0 9.95	20 20	
,1-Dichloroethene ,2-Dichloropropane	53.9	1.00 1.00	50.0		108	80-120 80-120	10.2	20	
isopropyl Ether (DIPE)	51.4	1.00	50.0		103	65-135	8.91	20	
thylbenzene	52.1	1.00	50.0		104	80-120	10.3	20	
Methylene Chloride	50.5	2.00	50.0		101	70-130	8.92	20	
-Methyl-2-pentanone (MIBK)	91.5	20.0	100		91.5	50-160	6.78	30	
Methyl tert-Butyl Ether (MTBE)	88.9	1.00	100		88.9	70-130	6.56	20	
-Propyl Benzene	52.6	1.00	50.0		105	70-130	10.7	20	
,1,1,2-Tetrachloroethane	48.8	1.00	50.0		97.7	70-130	10.9	20	
Tetrachloroethene	49.8	1.00	50.0		99.6 87.4	70-130	11.5	20	
,2,3-Trichlorobenzene ,1,1-Trichloroethane	43.7 45.4	5.00	50.0 50.0		87.4 90.9	70-140 70-130	11.0 11.0	20 20	
,1,1-1 richloroethane ,1,2-Trichloroethane	48.9	1.00 1.00	50.0		90.9	70-130	8.49	20	
richloroethene	50.1	1.00	50.0		100	70-130	11.9	20	

20

100

70-130

11.9

50.0

1.00

Trichloroethene

50.1

Analyte

QC Summary Data

Newell Law FirmProject Name:West Lovington Strawn Unit 8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

Vo	olatile Organ	ic Compo	unds by EF	A 82601	В			Analyst: IY
Result ug/L	Reporting Limit ug/L	Spike Level ug/L	Source Result ug/L	Rec %	Rec Limits	RPD %	RPD Limit %	Notes
						Prepared: ()	3/19/22 An	alvzed: 03/10

LCS Dup (2212089-BSD1)					P	repared: 03	3/19/22 Analyzed: 03/1	9/22
Toluene	52.0	1.00	50.0	104	80-120	10.7	20	
Vinyl chloride	60.2	2.00	50.0	120	80-120	9.59	30	
o-Xylene	50.7	1.00	50.0	101	70-130	10.8	20	
p,m-Xylene	101	2.00	100	101	70-130	10.5	20	
Total Xylenes	152	1.00	150	101	70-130	10.6	20	
Surrogate: Bromofluorobenzene	9.98		10.0	99.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	9.97		10.0	99.7	70-130			
Surrogate: Toluene-d8	10.2		10.0	102	70-130			

Newell Law Firm 10 W Adams Ave Ste E	Project Name: Project Number:	West Lovington Strawn Unit 8 20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Lovington NM, 88260		Project Manage	r: Na	talie Gladden					3/25/2022 4:10:14PM
		Wet Chem/	Gravimetı	ric by SM2	540C				Analyst: RAS
Analyte	Result mg/L	Reporting Limit mg/L	Spike Level mg/L	Source Result mg/L	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2212068-BLK1)							Prepared: 0	3/17/22 A	nalyzed: 03/18/22
Total Dissolved Solids	ND	10.0							
LCS (2212068-BS1)							Prepared: 0	3/17/22 A	nalyzed: 03/18/22
Total Dissolved Solids	88.0	10.0	100		88.0	55-134			
Duplicate (2212068-DUP1)				Source:	E203079-0)1	Prepared: 0	3/17/22 A	nalyzed: 03/18/22
Total Dissolved Solids	43200	200		42100			2.39	5	
Duplicate (2212068-DUP2)				Source:	E203111-0	7	Prepared: 0	3/17/22 A	nalyzed: 03/22/22
Total Dissolved Solids	345	10.0		333			3.69	5	

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

**Ct Chchilsti * D* 7040C/430011 * L	Wet	Chemistry	bv	9040C/4500H+B
--------------------------------------	-----	-----------	----	---------------

Analyst: KL

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	pH Units	pH Units	pH Units	pH Units	%	%	%	%	Notes

LCS (2213006-BS1)				Prepared: 03	/21/22 Analyzed: 03/21/22	2
pH	8.00	8.00	100 98.73	5-101.25		
Duplicate (2213006-DUP1)		So	urce: E203111-07	Prepared: 03	/21/22 Analyzed: 03/21/22	2
pН	7.87	7.	78	1.15	20	

Analyst: RAS

QC Summary Data

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Wet Chemistry	by	SM2320B	

Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes

LCS (2213016-BS1)					P	repared: 03	3/21/22 Analyzed: 03/21/2	2
Total Alkalinity (as CaCO3 at pH 4.5)	246	10.0	250	98.4	70-130			
LCS Dup (2213016-BSD1)					P	repared: 03	3/21/22 Analyzed: 03/21/2	2
Total Alkalinity (as CaCO3 at pH 4.5)	242	10.0	250	96.8	70-130	1.64	20	

QC Summary Data

Newell Law Firm 10 W Adams Ave Ste E	Project Name: Project Number:	West Lovington Strawn Unit 8 20046-0001	Reported:
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Lovington NM, 88260		Project Manager	r: Na	italie Gladder	1				3/25/2022 4:10:14PM	
		Wet Che	mistry by	9050A/251	0B			Analyst: RAS		
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	uS/cm	uS/cm	uS/cm	uS/cm	%	%	%	%	Notes	
Blank (2213009-BLK1)							Prepared: 0	3/21/22 A	Analyzed: 03/21/22	
Specific Conductance (@ 25 C)	ND	10.0								
LCS (2213009-BS1)							Prepared: 0	3/21/22 A	Analyzed: 03/21/22	
Specific Conductance (@ 25 C)	1410	10.0	1410		99.8	98-102				
Duplicate (2213009-DUP1)				Source:	E203110-0	03	Prepared: 0	3/21/22 A	Analyzed: 03/21/22	
Specific Conductance (@ 25 C)	616	10.0		616			0.00	20		

Newell Law FirmProject Name:West Lovington Strawn Unit 8Reported:10 W Adams Ave Ste EProject Number:20046-0001Lovington NM, 88260Project Manager:Natalie Gladden3/25/2022 4:10:14PM

Nonhalogenated	Organics by	EPA	.8015D -	GRO

Analyst: IY

Analyte Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes

Blank (2212089-BLK1)						Prepared: 03	3/19/22 Aı	nalyzed: 03/19/22
Gasoline Range Organics (C6-C10)	ND	0.100						
Surrogate: Bromofluorobenzene	0.00962		0.0100	96.2	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.0101		0.0100	101	70-130			
Surrogate: Toluene-d8	0.00993		0.0100	99.3	70-130			
LCS (2212089-BS2)						Prepared: 0	3/19/22 Aı	nalyzed: 03/19/22
Gasoline Range Organics (C6-C10)	1.10	0.100	1.00	110	70-130			
Surrogate: Bromofluorobenzene	0.00970		0.0100	97.0	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.00975		0.0100	97.5	70-130			
Surrogate: Toluene-d8	0.00998		0.0100	99.8	70-130			
LCS Dup (2212089-BSD2)						Prepared: 0	3/19/22 Aı	nalyzed: 03/19/22
Gasoline Range Organics (C6-C10)	1.15	0.100	1.00	115	70-130	4.95	20	
Surrogate: Bromofluorobenzene	0.00983		0.0100	98.3	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.00976		0.0100	97.6	70-130			
Surrogate: Toluene-d8	0.00995		0.0100	99.5	70-130			

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Lovington NM, 88260		Project Manager	r: Na	italie Gladder	1				3/25/2022 4:10:14PM		
	Nonha	logenated Or	ganics by l	EPA 8015I) - DRO	/ORO		Analyst: JL			
Analyte	Result mg/L	Reporting Limit mg/L	Spike Level mg/L	Source Result mg/L	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes		
Blank (2213017-BLK1)							Prepared: 0	3/21/22	Analyzed: 03/22/22		
Diesel Range Organics (C10-C28)	ND	1.00									
Oil Range Organics (C28-C36)	ND	2.00									
Surrogate: n-Nonane	2.65		2.50		106	50-200					
LCS (2213017-BS1)							Prepared: 0	3/21/22	Analyzed: 03/22/22		
Diesel Range Organics (C10-C28)	8.23	1.00	12.5		65.9	36-132					
Surrogate: n-Nonane	2.49		2.50		99.7	50-200					
LCS Dup (2213017-BSD1)							Prepared: 0	3/21/22	Analyzed: 03/22/22		
Diesel Range Organics (C10-C28)	8.60	1.00	12.5		68.8	36-132	4.29	20			
Surrogate: n-Nonane	2.54		2.50		101	50-200					

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Lovington NM, 88260		Project Manager:	N	atalie Gladden				3	/25/2022 4:10:14PM
		Total M	letals by	EPA 6010C					Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes
Blank (2212087-BLK1)							Prepared: 03	3/19/22 An	alyzed: 03/20/22
Arsenic	ND	0.0200							
Barium	ND	0.250							
Cadmium	ND	0.0100							
Chromium	ND	0.0200							
Lead	ND	0.0100							
Selenium	ND	0.0500							
ilver	ND	0.0100							
CS (2212087-BS1)							Prepared: 03	3/19/22 An	alyzed: 03/20/22
rsenic	0.444	0.0200	0.500		88.8	80-120			
arium	11.4	0.250	12.5		91.0	80-120			
admium	0.236	0.0100	0.250		94.4	80-120			
hromium	0.939	0.0200	1.00		93.9	80-120			
ead	0.241	0.0100	0.250		96.2	80-120			
elenium	1.14	0.0500	1.25		91.2	80-120			
ilver	0.0854	0.0100	0.100		85.4	80-120			
Matrix Spike (2212087-MS1)				Source: E	203093-	01	Prepared: 03	3/19/22 An	alyzed: 03/20/22
Arsenic	4.36	0.200	5.00	ND	87.2	75-125			
Sarium	111	2.50	125	ND	88.6	75-125			
Cadmium Cadmium	2.23	0.100	2.50	ND	89.3	75-125			
Chromium	8.90	0.200	10.0	ND	89.0	75-125			
ead	2.28	0.100	2.50	ND	91.4	75-125			
elenium	11.2	0.500	12.5	ND	89.5	75-125			
ilver	0.815	0.100	1.00	ND	81.5	75-125			
Matrix Spike Dup (2212087-MSD1)				Source: E	203093-	01	Prepared: 03	3/19/22 An	alyzed: 03/20/22
Arsenic	4.38	0.200	5.00	ND	87.5	75-125	0.389	20	
3arium	110	2.50	125	ND	87.7	75-125	1.09	20	
Cadmium	2.27	0.100	2.50	ND	90.7	75-125	1.51	20	
Chromium	8.97	0.200	10.0	ND	89.7	75-125	0.851	20	
ead	2.31	0.100	2.50	ND	92.5	75-125	1.22	20	
	11.0		10.5	NID	00.6	75 125	0.0003	20	

11.2

0.828

0.500

0.100

12.5

ND

89.6

75-125

75-125

0.0893

1.58

20

Selenium Silver

QC Summary Data

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	•
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Lovington NM, 88260		Project Manager:		atalie Gladden					3/25/2022 4:10:14PM
		Dissolved	Metals b	y EPA 6010	C				Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes
Blank (2212080-BLK1)							Prepared: 0	3/18/22 Ar	nalyzed: 03/19/22
Calcium	ND	1.00							
Iron	ND	2.00							
Magnesium	ND	1.00							
Potassium	ND	1.00							
Sodium	ND	2.00							
LCS (2212080-BS1)							Prepared: 0	3/18/22 Ar	nalyzed: 03/19/22
Calcium	48.3	1.00	50.0		96.6	80-120			
Iron	101	2.00	100		101	80-120			
Magnesium	49.9	1.00	50.0		99.9	80-120			
Potassium	4.68	1.00	5.00		93.6	80-120			
Sodium	17.9	2.00	20.0		89.6	80-120			
Matrix Spike (2212080-MS1)				Source: I	E 203110- ()3	Prepared: 0	3/18/22 Ar	nalyzed: 03/19/22
Calcium	91.6	1.00	50.0	48.4	86.4	75-125			
Iron	99.6	2.00	100	ND	99.6	75-125			
Magnesium	63.8	1.00	50.0	14.0	99.7	75-125			
Potassium	8.12	1.00	5.00	3.23	97.6	75-125			
Sodium	67.2	2.00	20.0	48.4	93.8	75-125			
Matrix Spike Dup (2212080-MSD1)				Source: I	E 203110- ()3	Prepared: 0	3/18/22 Ar	nalyzed: 03/19/22
Calcium	95.1	1.00	50.0	48.4	93.3	75-125	3.74	20	
Iron	100	2.00	100	ND	100	75-125	0.481	20	
Magnesium	63.9	1.00	50.0	14.0	99.9	75-125	0.188	20	
Potassium	8.46	1.00	5.00	3.23	104	75-125	4.12	20	
Sodium	69.0	2.00	20.0	48.4	103	75-125	2.67	20	

Sulfate

QC Summary Data

Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	Reported:
10 W Adams Ave Ste E	Project Number:	20046-0001	-
Lovington NM, 88260	Project Manager:	Natalie Gladden	3/25/2022 4:10:14PM

Lovington NM, 88260		Project Manager:		atalie Gladden					3/25/2022 4:10:14PM
		Anions l	by EPA 3	00.0/9056A					Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/L	mg/L	mg/L	mg/L	%	%	%	%	Notes
Blank (2212086-BLK1)							Prepared: 03	3/19/22 A1	nalyzed: 03/19/22
Fluoride	ND	0.250							
Chloride	ND	2.00							
Nitrite-N	ND	0.250							
Nitrate-N	ND	0.250							
o-Phosphate-P	ND	0.250							
Sulfate	ND	2.00							
LCS (2212086-BS1)							Prepared: 03	3/19/22 Aı	nalyzed: 03/19/22
Fluoride	2.57	0.250	2.50		103	90-110			
Chloride	24.9	2.00	25.0		99.5	90-110			
Nitrite-N	2.73	0.250	2.50		109	90-110			
Nitrate-N	2.58	0.250	2.50		103	90-110			
o-Phosphate-P	12.4	0.250	12.5		99.1	90-110			
Sulfate	24.9	2.00	25.0		99.5	90-110			
LCS Dup (2212086-BSD1)							Prepared: 03	3/19/22 Aı	nalyzed: 03/19/22
Fluoride	2.56	0.250	2.50		102	90-110	0.312	20	
Chloride	24.8	2.00	25.0		99.0	90-110	0.552	20	
Nitrite-N	2.54	0.250	2.50		102	90-110	6.95	20	
Nitrate-N	2.58	0.250	2.50		103	90-110	0.271	20	
o-Phosphate-P	12.3	0.250	12.5		98.7	90-110	0.404	20	
a 10 -	24.7	2.00	25.0		00.0	00.110	0.524	20	

25.0

2.00

90-110

98.9

0.524

20

24.7

Newell Law Firm 10 W Adams Ave Ste E		Project Name: Project Number:	2	Vest Lovington 0046-0001		Reported:			
Lovington NM, 88260		Project Manager:	N	latalie Gladder	1				3/25/2022 4:10:14PM
		Analyst: RKS							
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	ug/L	ug/L	ug/L	ug/L	%	%	%	%	Notes
Blank (2212088-BLK1)							Prepared: 03	3/19/22	Analyzed: 03/20/22
Mercury	ND	0.200							
LCS (2212088-BS1)							Prepared: 03	3/19/22	Analyzed: 03/20/22
Mercury	1.82	0.200	2.00		91.2	80-120			
Matrix Spike (2212088-MS1)				Source:	E203110-0)2	Prepared: 03	3/19/22	Analyzed: 03/20/22
Mercury	1.77	0.200	2.00	ND	88.7	75-125			
Matrix Spike Dup (2212088-MSD1)				Source:	E203110-0)2	Prepared: 03	3/19/22	Analyzed: 03/20/22
Mercury	1.76	0.200	2.00	ND	88.2	75-125	0.578	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

ſ	Newell Law Firm	Project Name:	West Lovington Strawn Unit 8	
١	10 W Adams Ave Ste E	Project Number:	20046-0001	Reported:
١	Lovington NM, 88260	Project Manager:	Natalie Gladden	03/25/22 16:10

C1 The CV recovery was above method acceptance limits	s.
---	----

C4 The CV recovery was below method acceptance limits.

C6 The CV recovery was outside acceptance limits. The sample was analyzed multiple times all with similar bracketing CV results.

H2 Sample was receive with an insufficient amount of time to prepare and analyze the sample within the method prescribed holding time

The analysis was performed as quickly as possible per client request.

H5 pH is specified to be performed in the field within 15 minutes of sampling. The sample was performed as quickly as possible.

T17 The sample chromatographic pattern does not resemble the typical fuel standard used for quantitation.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

lient: A	lewell	Lau	Fire	0		Bill To				La	ab Us	e Onl	У				TA	T	EPA P	rogram
roject: V	Vest L	oving	ton Str	awn Unit	8 Atte	ntion: ESS	11		WO#			Job N			1D	2D	3D	Standard	CWA	SDWA
	lanager:	Mille	Newe	1	Add	ress: 2427 County N State, Zip Hobbs, NM	. 0	Εò	203	3111				nd Metho	d	X				RCRA
ddress:	e, Zip	nuinal	ton N	M	Pho							Allaly	515 ai	iu ivietiio						KCKA
hone:	C) 2.19	09			-	il: Natalie		115	8015										State	
mail:								by 8015	by 80	021	09	9	0.00	-	Z	×		NM CO	UT AZ	TX
Report d							Lab	DRO/ORO	GRO/DRO by	втех by 802	VOC by 8260	ols 60	Chloride 300.0	1				X		
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID			Number	DRO/	GRO,	ВТЕХ	VOC	Metals 6010	Chlor	2	ВСБОС	верос			Remarks	
09:11	3/16	A	1	MW-2	2		14				X	X		X	X					
09:48	1	1	1	MW-	4		2				1	1		1	(
10:36				MW-			3													
11:30				MW-	8 M		4													
14:20				MW-			5													
15:11				MW-	75		6													*
16:32				MW-	7D		7				1			1	1					
		/					(FVE)													
	/		/												1					
Addition	nal Instru	tions:	1													-				
A STATE OF THE PARTY OF THE PAR				ticity of this sample		hat tampering with or intentionally misl		e locat	ion,			A 1877 A 1878		District of the Parket				eived on ice the day °C on subsequent da	table of almost devi-	ed or received
Relinguist	red by: (Sign	ature)	Date	Tim		Received by: (Signature)	Date 3.17.	ra	Time	144	5	Rece	eivec	on ice:		ab Us	se Onl	У		
	red by: (Sign		Date 3			Received by: (Signature)	Date 3/18/	t.	Time			T1						T3		
Relinguish	ned by: (Sign	ature)	Dat			Received by: (Signature)	Date		Time					np°C	7					
Sample Ma	triv: S - Soil 9	d - Solid Se	- Sludge A -	Aqueous, O - Other			Containe	r Tvp	e: g -	glass.	p - p	The second			er gla	SS, V -	VOA			
Note: San	nples are di	carded 30	days after r	esults are report	ed unless oth	er arrangements are made. Hazaro												port for the an	alysis of the	above

Page 268 of 376

Printed: 3/25/2022 3:13:34PM

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Instructions: Please take note of any NO checkmarks.

If we receive no response concerning these items within 24 hours of the date of this notice, all the samples will be analyzed as requested.

Client: Newell Law Firm Date Re	eceived: 03/1	8/22 08:15		Work Order ID: E203111
Phone: (575) 739-6395 Date Lo	gged In: 03/1	7/22 17:48		Logged In By: Caitlin Christian
Email: natalie@energystaffingllc.com Due Da		25/22 17:00 (5 d	lay TAT)	,
Chain of Custody (COC)				
I. Does the sample ID match the COC?	Y	es es		
2. Does the number of samples per sampling site location match the C	COC Y	'es		
3. Were samples dropped off by client or carrier?	Y	es (Carrier: C	Carrier
4. Was the COC complete, i.e., signatures, dates/times, requested analysis	yses? Y	'es		
 Were all samples received within holding time? Note: Analysis, such as pH which should be conducted in the field i.e, 15 minute hold time, are not included in this disucssion. 		'es		Comments/Resolution
Sample Turn Around Time (TAT)				
5. Did the COC indicate standard TAT, or Expedited TAT?	Y	'es		Samples recieved without enough time to
Sample Cooler				run within holding time for Nitrates,
7. Was a sample cooler received?	Y	'es		Nitrites, and O-Phosphates. Alkalinity was
3. If yes, was cooler received in good condition?	Y	'es		•
9. Was the sample(s) received intact, i.e., not broken?		es es		not analyzed for samples 2-7 due to
10. Were custody/security seals present?		lo No		insufficient sample amount. Sample 4 & 5
11. If yes, were custody/security seals intact?		IA		were not analyzed for Conductivity or pH
12. Was the sample received on ice? If yes, the recorded temp is 4°C, i.e., 6°±2. Note: Thermal preservation is not required, if samples are received minutes of sampling	2°C Y 1 w/i 15	es		as well.
13. If no visible ice, record the temperature. Actual sample temperature.	itule. <u>4 C</u>			
Sample Container	•	7		
14. Are aqueous VOC samples present?		'es 'es		
15. Are VOC samples collected in VOA Vials?				
16. Is the head space less than 6-8 mm (pea sized or less)?		es .		
17. Was a trip blank (TB) included for VOC analyses?		√o ,		
18. Are non-VOC samples collected in the correct containers?		es 		
19. Is the appropriate volume/weight or number of sample containers colle	ected? Y	'es		
F <u>ield Label</u> 20. Were field sample labels filled out with the minimum information				
Sample ID?		es es		
Date/Time Collected?		lo	L	
Collectors name?		No		
Sample Preservation				
21. Does the COC or field labels indicate the samples were preserved	? Y	'es		
22. Are sample(s) correctly preserved?	Y	es		
24. Is lab filteration required and/or requested for dissolved metals?	Y	'es		
Multiphase Sample Matrix				
26. Does the sample have more than one phase, i.e., multiphase?	N	No		
27. If yes, does the COC specify which phase(s) is to be analyzed?		ΙA		
Subcontract Laboratory	1			
· · ·	N	lo .		
			tract Lab	v: na
 Are samples required to get sent to a subcontract laboratory? Was a subcontract laboratory specified by the client and if so who 	, IN			

Date

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 2203A30

April 13, 2022

Clayton Barnhill

CMB Environmental

P. O. Box 2304

Roswell, NM 88202-2304

TEL: (575) 622-6510 FAX: (575) 625-0538

RE: Energy Resources Corp West Lovington

Strawn Unit 8 Unit L Sec. 34, T15, SR. 35E

Dear Clayton Barnhill:

Hall Environmental Analysis Laboratory received 19 sample(s) on 3/18/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT:CMB EnvironmentalClient Sample ID: W. Windmill Water WellProject:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 11:00:00 AMLab ID:2203A30-001Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 200.8: METALS						Analys	: DBK
Antimony	ND	0.0010		mg/L	1	4/1/2022 1:56:16 PM	A86914
Arsenic	0.0084	0.0010		mg/L	1	4/1/2022 1:56:16 PM	A86914
Beryllium	ND	0.0010		mg/L	1	4/1/2022 1:56:16 PM	A86914
Cadmium	ND	0.00050		mg/L	1	4/1/2022 1:56:16 PM	A86914
Selenium	0.0049	0.0010		mg/L	1	4/1/2022 8:01:12 PM	A86914
Thallium	ND	0.00025		mg/L	1	4/1/2022 1:56:16 PM	A86914
EPA METHOD 300.0: ANIONS						Analys	:: LRN
Chloride	24	5.0		mg/L	10	3/21/2022 11:19:54 AM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analys	: MRA
Conductivity	590	10		µmhos/c	: 1	3/22/2022 1:45:49 PM	R86681
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analys	:: KS
Total Dissolved Solids	367	20.0		mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analys	: MRA
рН	7.92		Н	pH units	1	3/22/2022 1:45:49 PM	R86681
EPA METHOD 200.7: METALS						Analys	: ELS
Barium	0.071	0.0030		mg/L	1	3/24/2022 8:57:55 AM	A86739
Chromium	ND	0.0060		mg/L	1	3/24/2022 8:57:55 AM	A86739
Nickel	ND	0.010		mg/L	1	3/24/2022 8:57:55 AM	A86739
Sodium	33	1.0		mg/L	1	3/24/2022 8:57:55 AM	A86739
Zinc	ND	0.010		mg/L	1	3/24/2022 8:57:55 AM	A86739
EPA METHOD 245.1: MERCURY						Analys	: VP
Mercury	ND	0.00020		mg/L	1	3/28/2022 3:14:15 PM	66425

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 100

Analytical Report Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: House Water Well

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 11:25:00 AMLab ID:2203A30-002Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 200.8: METALS						Analyst	: DBK
Antimony	ND	0.0010		mg/L	1	4/1/2022 2:01:35 PM	A86914
Arsenic	0.0078	0.0010		mg/L	1	4/1/2022 2:01:35 PM	A86914
Beryllium	ND	0.0010		mg/L	1	4/1/2022 2:01:35 PM	A86914
Cadmium	ND	0.00050		mg/L	1	4/1/2022 2:01:35 PM	A86914
Selenium	0.0047	0.0010		mg/L	1	4/1/2022 8:17:12 PM	A86914
Thallium	ND	0.00025		mg/L	1	4/1/2022 2:01:35 PM	A86914
EPA METHOD 300.0: ANIONS						Analyst	:: LRN
Chloride	32	5.0		mg/L	10	3/21/2022 12:11:19 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: MRA
Conductivity	700	10		µmhos/c	1	3/22/2022 1:50:21 PM	R86681
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	: KS
Total Dissolved Solids	438	20.0		mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst	: MRA
рН	7.69		Н	pH units	1	3/22/2022 1:50:21 PM	R86681
EPA METHOD 200.7: METALS						Analyst	: ELS
Barium	0.063	0.0030		mg/L	1	3/24/2022 9:04:41 AM	A86739
Chromium	ND	0.0060		mg/L	1	3/24/2022 9:04:41 AM	A86739
Nickel	ND	0.010		mg/L	1	3/24/2022 9:04:41 AM	A86739
Sodium	42	1.0		mg/L	1	3/24/2022 9:04:41 AM	A86739
Zinc	ND	0.010		mg/L	1	3/24/2022 9:04:41 AM	A86739
EPA METHOD 245.1: MERCURY						Analyst	: VP
Mercury	ND	0.00020		mg/L	1	3/28/2022 3:16:24 PM	66425

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 100

Analytical Report Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: Pond Water Well

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 11:30:00 AMLab ID:2203A30-003Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA 200.8: METALS						Analys	:: DBK
Antimony	ND	0.0010		mg/L	1	4/1/2022 2:23:12 PM	A86914
Arsenic	0.0067	0.0010		mg/L	1	4/1/2022 2:23:12 PM	A86914
Beryllium	ND	0.0010		mg/L	1	4/1/2022 2:23:12 PM	A86914
Cadmium	ND	0.00050		mg/L	1	4/1/2022 2:23:12 PM	A86914
Selenium	0.0041	0.0010		mg/L	1	4/1/2022 8:22:33 PM	A86914
Thallium	ND	0.00025		mg/L	1	4/1/2022 2:23:12 PM	A86914
EPA METHOD 300.0: ANIONS						Analys	:: LRN
Chloride	32	5.0		mg/L	10	3/21/2022 1:02:46 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analys	: MRA
Conductivity	700	10		µmhos/c	1	3/22/2022 1:54:48 PM	R86681
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analys	:: KS
Total Dissolved Solids	437	20.0		mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analys	: MRA
рН	7.94		Н	pH units	1	3/22/2022 1:54:48 PM	R86681
EPA METHOD 200.7: METALS						Analys	: ELS
Barium	0.098	0.0030		mg/L	1	3/24/2022 9:06:20 AM	A86739
Chromium	ND	0.0060		mg/L	1	3/24/2022 9:06:20 AM	A86739
Nickel	ND	0.010		mg/L	1	3/24/2022 9:06:20 AM	A86739
Sodium	38	1.0		mg/L	1	3/24/2022 9:06:20 AM	A86739
Zinc	ND	0.010		mg/L	1	3/24/2022 9:06:20 AM	A86739
EPA METHOD 245.1: MERCURY						Analys	:: VP
Mercury	ND	0.00020		mg/L	1	3/28/2022 3:18:32 PM	66425

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9S

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 9:41:00 AMLab ID:2203A30-004Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	27	5.0		mg/L	10	3/21/2022 1:28:32 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	640	10		µmhos/c	1	3/22/2022 2:03:11 PM	R86681
•	0.10	10		μιτιτου/ σ	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS			_			Analyst:	
Total Dissolved Solids	360	100	D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst:	MRA
рН	7.44		Н	pH units	1	3/22/2022 2:03:11 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Aniline	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Anthracene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Azobenzene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Benzoic acid	ND	20		μg/L	1	3/24/2022 8:45:17 PM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/24/2022 8:45:17 PM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Carbazole	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Chrysene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/24/2022 8:45:17 PM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/24/2022 8:45:17 PM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/24/2022 8:45:17 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9S

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 9:41:00 AMLab ID:2203A30-004Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	: DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Diethyl phthalate	ND	10	μg/L	1	3/24/2022 8:45:17 PM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/24/2022 8:45:17 PM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Fluoranthene	ND	10	μg/L	1	3/24/2022 8:45:17 PM	66307
Fluorene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Isophorone	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Naphthalene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Pentachlorophenol	ND	20	μg/L	1	3/24/2022 8:45:17 PM	66307
Phenanthrene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Phenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Pyrene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Pyridine	ND	10	μg/L	1	3/24/2022 8:45:17 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 100

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9S

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 9:41:00 AMLab ID:2203A30-004Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: DAM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	3/24/2022 8:45:17 PM	66307
Surr: 2-Fluorophenol	56.7	29.4-87.7	%Rec	1	3/24/2022 8:45:17 PM	66307
Surr: Phenol-d5	40.8	28.5-64.7	%Rec	1	3/24/2022 8:45:17 PM	66307
Surr: 2,4,6-Tribromophenol	86.2	18.6-129	%Rec	1	3/24/2022 8:45:17 PM	66307
Surr: Nitrobenzene-d5	64.2	36.9-103	%Rec	1	3/24/2022 8:45:17 PM	66307
Surr: 2-Fluorobiphenyl	62.7	38.1-99.9	%Rec	1	3/24/2022 8:45:17 PM	66307
Surr: 4-Terphenyl-d14	104	48-155	%Rec	1	3/24/2022 8:45:17 PM	66307
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Benzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Toluene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Ethylbenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Naphthalene	ND	2.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
1-Methylnaphthalene	ND	4.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
2-Methylnaphthalene	ND	4.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Acetone	ND	10	μg/L	1	3/23/2022 5:44:33 PM	R86690
Bromobenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Bromodichloromethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Bromoform	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Bromomethane	ND	3.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
2-Butanone	ND	10	μg/L	1	3/23/2022 5:44:33 PM	R86690
Carbon disulfide	ND	10	μg/L	1	3/23/2022 5:44:33 PM	R86690
Carbon Tetrachloride	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Chlorobenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Chloroethane	ND	2.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Chloroform	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Chloromethane	ND	3.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
2-Chlorotoluene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
4-Chlorotoluene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
cis-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/23/2022 5:44:33 PM	R86690
Dibromochloromethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9S

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 9:41:00 AMLab ID:2203A30-004Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	:: JR
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
Hexachlorobutadiene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
2-Hexanone	ND	10	μg/L	1	3/23/2022 5:44:33 PM	R8669
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
4-Isopropyltoluene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 5:44:33 PM	R8669
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
sec-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
Styrene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
tert-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 5:44:33 PM	R8669
Xylenes, Total	ND	1.5	μg/L	1	3/23/2022 5:44:33 PM	R8669
Surr: 1,2-Dichloroethane-d4	84.2	70-130	%Rec	1	3/23/2022 5:44:33 PM	R8669
Surr: 4-Bromofluorobenzene	99.3	70-130	%Rec	1	3/23/2022 5:44:33 PM	R8669
Surr: Dibromofluoromethane	87.9	70-130	%Rec	1	3/23/2022 5:44:33 PM	R8669

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9S

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 9:41:00 AMLab ID:2203A30-004Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	103	70-130	%Rec	1	3/23/2022 5:44:33 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 100

Analytical Report Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9M

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 10:38:00 AMLab ID:2203A30-005Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	46	5.0		mg/L	10	3/21/2022 1:54:15 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	720	10		µmhos/c	1	3/22/2022 2:07:40 PM	R86681
•	720	10		μιτιτου/ σ	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS			_			Analyst:	
Total Dissolved Solids	404	40.0	D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst:	MRA
рН	8.26		Н	pH units	1	3/22/2022 2:07:40 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Aniline	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Anthracene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Azobenzene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Benzoic acid	ND	20		μg/L	1	3/24/2022 9:27:13 PM	66307
Benzyl alcohol	5.2	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/24/2022 9:27:13 PM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Carbazole	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Chrysene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/24/2022 9:27:13 PM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/24/2022 9:27:13 PM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/24/2022 9:27:13 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9M

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 10:38:00 AMLab ID:2203A30-005Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	t: DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Diethyl phthalate	ND	10	μg/L	1	3/24/2022 9:27:13 PM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/24/2022 9:27:13 PM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Fluoranthene	ND	10	μg/L	1	3/24/2022 9:27:13 PM	66307
Fluorene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Isophorone	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Naphthalene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Pentachlorophenol	ND	20	μg/L	1	3/24/2022 9:27:13 PM	66307
Phenanthrene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Phenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Pyrene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Pyridine	ND	10	μg/L	1	3/24/2022 9:27:13 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9M

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 10:38:00 AMLab ID:2203A30-005Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

2,4,5-Trichlorophenol ND 5.0 µg/L 1 3/24/2022 9:27:13 PM 6 2,4,6-Trichlorophenol ND 5.0 µg/L 1 3/24/2022 9:27:13 PM 6 2,4-Trichlorophenol 81.6 29.4-87.7 %Rec 1 3/24/2022 9:27:13 PM 6 2,4-Trichlorophenol 81.6 18.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 3,2-Trichlorophenol 81.6 18.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 3,2-Trichlorophenol 81.6 18.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 3,2-Trichlorophenol 81.6 18.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 3,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 3,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 3,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 3,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 6:13:10 PM 7 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 6:13:10 PM 7 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 6:13:10 PM 7 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 6:13:10 PM 7 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 6:13:10 PM 7 4,2-Trichlorophenol 81.6 8.6-129 %Rec 1 3/24/2022 6:13:10 PM 7 4,	Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
2,4,5-Trichlorophenol ND 5.0 µg/L 1 3/24/2022 9:27:13 PM 6	EPA METHOD 8270C: SEMIVOLATILES					Analys	t: DAM
2,4,6-Trichlorophenol ND 5.0 µg/L 1 3/24/2022 9:27:13 PM 6 Surr: 2-Fluorophenol 34.4 29.4-87.7 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 2-Fluorophenol 34.6 28.5-64.7 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 2,4,6-Tribromophenol 81.6 18.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: Nitrobenzene-d5 41.1 36.9-103 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: Nitrobenzene-d5 41.1 36.9-103 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 6:13:10 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 6:13:10 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 6:13:10 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 6:13:10 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 6:13:10 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 6:13:10 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 6:13:10 PM 6 Surr: 4-Terphenyl-d14 98.0 48-15	1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Surr: 2-Fluorophenol 34.4 29.4-87.7 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: Phenol-d5 33.6 28.5-64.7 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 24,6-f Tibromophenol 81.6 18.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: Nitrobenzene-d5 41.1 36.9-103 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 2-Fluorobjphenyl 38.5 38.1-99.9 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/23/2022 6:13:10 PM 6 Surr: 4-Terphenyl-d14 3/23/2022 6:13:10 PM 6 Surr: 4-Terpheny	2,4,5-Trichlorophenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Surr: Phenol-d5 33.6 28.5-64.7 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 2,4.6-Tribromophenol 81.6 18.6-129 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 2-Fluorobiphenyl 38.5 38.1-99.9 %Rec 1 3/24/2022 9:27:13 PM 6 Surr: 4-Terphenyl-d14 98.0 48-155 %Rec 1 3/24/2022 9:27:13 PM 6 EPA METHOD 8260B: VOLATILES Benzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Toluene 2.9 1.0 µg/L 1 3/23/2022 6:13:10 PM F Ethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Ethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,24-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F <t< td=""><td>2,4,6-Trichlorophenol</td><td>ND</td><td>5.0</td><td>μg/L</td><td>1</td><td>3/24/2022 9:27:13 PM</td><td>66307</td></t<>	2,4,6-Trichlorophenol	ND	5.0	μg/L	1	3/24/2022 9:27:13 PM	66307
Surr: 2.4,6-Tribromophenol	Surr: 2-Fluorophenol	34.4	29.4-87.7	%Rec	1	3/24/2022 9:27:13 PM	66307
Surr: Nitrobenzene-d5	Surr: Phenol-d5	33.6	28.5-64.7	%Rec	1	3/24/2022 9:27:13 PM	66307
Surr: 2-Fluorobiphenyl 38.5 38.1-99.9 %Rec 1 3/24/2022 9:27:13 PM 6 EPA METHOD 8260B: VOLATILES Benzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Toluene 2.9 1.0 µg/L 1 3/23/2022 6:13:10 PM F Ethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-4-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dichloroethane (EDC) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F	Surr: 2,4,6-Tribromophenol	81.6	18.6-129	%Rec	1	3/24/2022 9:27:13 PM	66307
Surr: 4-Terphenyl-d14	Surr: Nitrobenzene-d5	41.1	36.9-103	%Rec	1	3/24/2022 9:27:13 PM	66307
Benzene	Surr: 2-Fluorobiphenyl	38.5	38.1-99.9	%Rec	1	3/24/2022 9:27:13 PM	66307
Benzene	Surr: 4-Terphenyl-d14	98.0	48-155	%Rec	1	3/24/2022 9:27:13 PM	66307
Toluene 2.9 1.0 µg/L 1 3/23/2022 6:13:10 PM FEthylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM FETHYlbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM FETHYLBEN ND 1.0 µg/L 1 3/23/2022 6:13:10 PM FETHYLBEN ND 1.0 µg/L 1 3/23/2022 6:13:10 PM FETHYLBENZENE ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F	EPA METHOD 8260B: VOLATILES					Analys	t: JR
Toluene 2.9 1.0 µg/L 1 3/23/2022 6:13:10 PM FEthylbenzene ND 4.0 µg/L 1	Benzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Ethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2,4-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,3,5-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dichloroethane (EDC) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Naphthalene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 </td <td>Toluene</td> <td>2.9</td> <td>1.0</td> <td></td> <td>1</td> <td>3/23/2022 6:13:10 PM</td> <td>R86690</td>	Toluene	2.9	1.0		1	3/23/2022 6:13:10 PM	R86690
Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2,4-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,3,5-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Diblroroethane (EDC) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibroroethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Naphthalene ND 2.0 µg/L 1 3/23/2022 6:13:10 PM F 1-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 4-Cetone ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 µg/L<	Ethylbenzene	ND	1.0		1	3/23/2022 6:13:10 PM	R86690
1,2,4-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,3,5-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibrolorethane (EDC) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Naphthalene ND 2.0 µg/L 1 3/23/2022 6:13:10 PM F 1-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F Acetone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Bromobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 µg/L 1	Methyl tert-butyl ether (MTBE)	ND	1.0		1	3/23/2022 6:13:10 PM	R86690
1,3,5-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dichloroethane (EDC) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Naphthalene ND 2.0 µg/L 1 3/23/2022 6:13:10 PM F 1-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F Acetone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Bromobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromomethane ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 1.0 µg/L 1	1,2,4-Trimethylbenzene	ND	1.0		1	3/23/2022 6:13:10 PM	R86690
1,2-Dichloroethane (EDC) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Naphthalene ND 2.0 µg/L 1 3/23/2022 6:13:10 PM F 1-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F Acetone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Bromobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromodichloromethane ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromomethane ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Carbon Tetrachloride ND 10 µg/L 1 3/23/2022 6:13:10 PM F Chloroethane ND 1.0	1,3,5-Trimethylbenzene	ND	1.0		1	3/23/2022 6:13:10 PM	R86690
1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:13:10 PM FRANCH FR	1,2-Dichloroethane (EDC)	ND	1.0		1	3/23/2022 6:13:10 PM	R86690
Naphthalene ND 2.0 µg/L 1 3/23/2022 6:13:10 PM F 1-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F Acetone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Bromobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromodichloromethane ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromomethane ND 3.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Carbon disulfide ND 10 µg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10	1,2-Dibromoethane (EDB)	ND	1.0		1	3/23/2022 6:13:10 PM	R86690
1-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F Acetone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Bromobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromodichloromethane ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromomethane ND 3.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 µg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Carbon disulfide ND 10 µg/L 1 3/23/2022 6:13:10 PM F Carbon Tetrachloride ND 1.0 µg/L 1 3/23/2022 6:1	Naphthalene	ND	2.0		1	3/23/2022 6:13:10 PM	R86690
2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:13:10 PM F Acetone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Bromobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromodichloromethane ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F Bromomethane ND 3.0 µg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 µg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 µg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 µg/L 1 3/23/2022 6:13:10 PM F Carbon disulfide ND 10 µg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM	1-Methylnaphthalene	ND	4.0		1	3/23/2022 6:13:10 PM	R86690
Bromobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Bromodichloromethane ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Bromomethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon disulfide ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon Tetrachloride ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroformethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:1	2-Methylnaphthalene	ND	4.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Bromodichloromethane ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Bromoform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Bromomethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon disulfide ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon Tetrachloride ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorotethane ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10	Acetone	ND	10	μg/L	1	3/23/2022 6:13:10 PM	R86690
Bromoform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Bromomethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon disulfide ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon Tetrachloride ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroethane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorotoluene ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM <td>Bromobenzene</td> <td>ND</td> <td>1.0</td> <td>μg/L</td> <td>1</td> <td>3/23/2022 6:13:10 PM</td> <td>R86690</td>	Bromobenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Bromomethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Butanone ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon disulfide ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon Tetrachloride ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorothane ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorothane ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorothane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorothane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM <td>Bromodichloromethane</td> <td>ND</td> <td>1.0</td> <td>μg/L</td> <td>1</td> <td>3/23/2022 6:13:10 PM</td> <td>R86690</td>	Bromodichloromethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
2-Butanone ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon disulfide ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon Tetrachloride ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorotethane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F Chloromethane ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	Bromoform	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Carbon disulfide ND 10 μg/L 1 3/23/2022 6:13:10 PM F Carbon Tetrachloride ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorotethane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorotorm ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorotoluene ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1	Bromomethane	ND	3.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Carbon Tetrachloride ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroethane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloromethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	2-Butanone	ND	10	μg/L	1	3/23/2022 6:13:10 PM	R86690
Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroethane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloromethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	Carbon disulfide	ND	10	μg/L	1	3/23/2022 6:13:10 PM	R86690
Chloroethane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F Chloroform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloromethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	Carbon Tetrachloride	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Chloroform ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F Chloromethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	Chlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Chloromethane ND 3.0 μg/L 1 3/23/2022 6:13:10 PM F 2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	Chloroethane	ND	2.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
2-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	Chloroform	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
4-Chlorotoluene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	Chloromethane	ND	3.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
cis-1,2-DCE ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/23/2022 6:13:10 PM F	2-Chlorotoluene	ND	1.0		1	3/23/2022 6:13:10 PM	R86690
cis-1,3-Dichloropropene ND 1.0 µg/L 1 3/23/2022 6:13:10 PM F 1,2-Dibromo-3-chloropropane ND 2.0 µg/L 1 3/23/2022 6:13:10 PM F	4-Chlorotoluene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,2-Dibromo-3-chloropropane ND 2.0 µg/L 1 3/23/2022 6:13:10 PM F	cis-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
	cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
B1 11 11 11 11 11 11 11 11 11 11 11 11 1	1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Dibromochloromethane ND 1.0 μg/L 1 3/23/2022 6:13:10 PM F	Dibromochloromethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9M

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 10:38:00 AMLab ID:2203A30-005Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Hexachlorobutadiene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
2-Hexanone	ND	10	μg/L	1	3/23/2022 6:13:10 PM	R86690
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
4-Isopropyltoluene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 6:13:10 PM	R86690
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
sec-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Styrene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
tert-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 6:13:10 PM	R86690
Xylenes, Total	ND	1.5	μg/L	1	3/23/2022 6:13:10 PM	R86690
Surr: 1,2-Dichloroethane-d4	87.7	70-130	%Rec	1	3/23/2022 6:13:10 PM	R86690
Surr: 4-Bromofluorobenzene	95.7	70-130	%Rec	1	3/23/2022 6:13:10 PM	R86690
Surr: Dibromofluoromethane	92.3	70-130	%Rec	1	3/23/2022 6:13:10 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9M

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 10:38:00 AMLab ID:2203A30-005Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	102	70-130	%Rec	1	3/23/2022 6:13:10 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 100

Lab Order **2203A30**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/13/2022

CLIENT: CMB Environmental Client Sample ID: MW-9D

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 11:45:00 AMLab ID:2203A30-006Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	29	5.0		mg/L	10	3/21/2022 2:19:58 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	530	10		µmhos/c	1	3/22/2022 2:11:44 PM	R86681
•	000	10		μιτιτου/ σ	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS			_			Analyst:	
Total Dissolved Solids	366	40.0	D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst:	MRA
рН	7.91		Н	pH units	1	3/22/2022 2:11:44 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Aniline	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Anthracene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Azobenzene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Benzoic acid	ND	20		μg/L	1	3/24/2022 10:08:57 PM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/24/2022 10:08:57 PM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Carbazole	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Chrysene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/24/2022 10:08:57 PM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/24/2022 10:08:57 PM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/24/2022 10:08:57 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9D

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 11:45:00 AMLab ID:2203A30-006Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	: DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Diethyl phthalate	ND	10	μg/L	1	3/24/2022 10:08:57 PM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/24/2022 10:08:57 PM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Fluoranthene	ND	10	μg/L	1	3/24/2022 10:08:57 PM	66307
Fluorene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Isophorone	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Naphthalene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Pentachlorophenol	ND	20	μg/L	1	3/24/2022 10:08:57 PM	66307
Phenanthrene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Phenol	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Pyrene	ND	5.0	μg/L	1	3/24/2022 10:08:57 PM	66307
Pyridine	ND	10	μg/L	1	3/24/2022 10:08:57 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9D

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 11:45:00 AMLab ID:2203A30-006Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

EPA METHOD 8270C: SEMIVOLATILES 1,2,4-Trichlorobenzene ND 5.0 μg/L 1 3/24/2022 10:: 2,4,5-Trichlorophenol ND 5.0 μg/L 1 3/24/2022 10:: 2,4,6-Trichlorophenol ND 5.0 μg/L 1 3/24/2022 10:: Surr: 2-Fluorophenol 38.7 29.4-87.7 %Rec 1 3/24/2022 10:: Surr: Phenol-d5 31.0 28.5-64.7 %Rec 1 3/24/2022 10:: Surr: 2,4,6-Tribromophenol 57.4 18.6-129 %Rec 1 3/24/2022 10:: Surr: Nitrobenzene-d5 45.6 36.9-103 %Rec 1 3/24/2022 10:: Surr: 2-Fluorobiphenyl 45.2 38.1-99.9 %Rec 1 3/24/2022 10:: Surr: 4-Terphenyl-d14 90.6 48-155 %Rec 1 3/24/2022 10::	08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM	66307 66307 66307 66307 66307 66307 66307 66307
2,4,5-Trichlorophenol ND 5.0 μg/L 1 3/24/2022 10:1 2,4,6-Trichlorophenol ND 5.0 μg/L 1 3/24/2022 10:1 Surr: 2-Fluorophenol 38.7 29.4-87.7 %Rec 1 3/24/2022 10:1 Surr: Phenol-d5 31.0 28.5-64.7 %Rec 1 3/24/2022 10:1 Surr: 2,4,6-Tribromophenol 57.4 18.6-129 %Rec 1 3/24/2022 10:1 Surr: Nitrobenzene-d5 45.6 36.9-103 %Rec 1 3/24/2022 10:1 Surr: 2-Fluorobiphenyl 45.2 38.1-99.9 %Rec 1 3/24/2022 10:1	08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM	66307 66307 66307 66307 66307
2,4,6-Trichlorophenol ND 5.0 μg/L 1 3/24/2022 10:1 Surr: 2-Fluorophenol 38.7 29.4-87.7 %Rec 1 3/24/2022 10:1 Surr: Phenol-d5 31.0 28.5-64.7 %Rec 1 3/24/2022 10:1 Surr: 2,4,6-Tribromophenol 57.4 18.6-129 %Rec 1 3/24/2022 10:1 Surr: Nitrobenzene-d5 45.6 36.9-103 %Rec 1 3/24/2022 10:1 Surr: 2-Fluorobiphenyl 45.2 38.1-99.9 %Rec 1 3/24/2022 10:1	08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM	66307 66307 66307 66307
Surr: 2-Fluorophenol 38.7 29.4-87.7 %Rec 1 3/24/2022 10: Surr: Phenol-d5 31.0 28.5-64.7 %Rec 1 3/24/2022 10: Surr: 2,4,6-Tribromophenol 57.4 18.6-129 %Rec 1 3/24/2022 10: Surr: Nitrobenzene-d5 45.6 36.9-103 %Rec 1 3/24/2022 10: Surr: 2-Fluorobiphenyl 45.2 38.1-99.9 %Rec 1 3/24/2022 10:	08:57 PM 08:57 PM 08:57 PM 08:57 PM 08:57 PM	66307 66307 66307
Surr: Phenol-d5 31.0 28.5-64.7 %Rec 1 3/24/2022 10:1 Surr: 2,4,6-Tribromophenol 57.4 18.6-129 %Rec 1 3/24/2022 10:1 Surr: Nitrobenzene-d5 45.6 36.9-103 %Rec 1 3/24/2022 10:1 Surr: 2-Fluorobiphenyl 45.2 38.1-99.9 %Rec 1 3/24/2022 10:1	08:57 PM 08:57 PM 08:57 PM 08:57 PM	66307 66307 66307
Surr: 2,4,6-Tribromophenol 57.4 18.6-129 %Rec 1 3/24/2022 10:1 Surr: Nitrobenzene-d5 45.6 36.9-103 %Rec 1 3/24/2022 10:1 Surr: 2-Fluorobiphenyl 45.2 38.1-99.9 %Rec 1 3/24/2022 10:1	08:57 PM 08:57 PM 08:57 PM	66307 66307
Surr: Nitrobenzene-d5 45.6 36.9-103 %Rec 1 3/24/2022 10:0 Surr: 2-Fluorobiphenyl 45.2 38.1-99.9 %Rec 1 3/24/2022 10:0	08:57 PM 08:57 PM	66307
Surr: 2-Fluorobiphenyl 45.2 38.1-99.9 %Rec 1 3/24/2022 10:	08:57 PM	
		66307
Surr 4 Torphond d14 90.6 49 155 9/ Poc 1 2/24/2022 10:	10.57 DM	
3uii. 4- Teiphenyi-u 14 90.0 40-100 /6/Nec 1 3/24/2022 10.0	10.31 FIVI	66307
EPA METHOD 8260B: VOLATILES	Analyst:	JR
Benzene ND 1.0 μg/L 1 3/23/2022 6:4	1:45 PM	R86690
Toluene 1.6 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Ethylbenzene ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Methyl tert-butyl ether (MTBE) ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
1,2,4-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
1,3,5-Trimethylbenzene ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
1,2-Dichloroethane (EDC) ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Naphthalene ND 2.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
1-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
2-Methylnaphthalene ND 4.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Acetone ND 10 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Bromobenzene ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Bromodichloromethane ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Bromoform ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Bromomethane ND 3.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
2-Butanone ND 10 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Carbon disulfide ND 10 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Carbon Tetrachloride ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Chlorobenzene ND 1.0 μg/L 1 3/23/2022 6:4	1:45 PM	R86690
Chloroethane ND 2.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Chloroform ND 1.0 μg/L 1 3/23/2022 6:4	1:45 PM	R86690
Chloromethane ND 3.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
2-Chlorotoluene ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
4-Chlorotoluene ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
cis-1,2-DCE ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
cis-1,3-Dichloropropene ND 1.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
1,2-Dibromo-3-chloropropane ND 2.0 µg/L 1 3/23/2022 6:4	1:45 PM	R86690
Dibromochloromethane ND 1.0 µg/L 1 3/23/2022 6:4	1:45 DM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9D

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 11:45:00 AMLab ID:2203A30-006Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analyst:		
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
Hexachlorobutadiene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
2-Hexanone	ND	10	μg/L	1	3/23/2022 6:41:45 PM	R86690
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
4-Isopropyltoluene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 6:41:45 PM	R86690
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
sec-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
Styrene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
tert-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 6:41:45 PM	R86690
Xylenes, Total	ND	1.5	μg/L	1	3/23/2022 6:41:45 PM	R86690
Surr: 1,2-Dichloroethane-d4	88.2	70-130	%Rec	1	3/23/2022 6:41:45 PM	R86690
Surr: 4-Bromofluorobenzene	98.8	70-130	%Rec	1	3/23/2022 6:41:45 PM	R86690
Surr: Dibromofluoromethane	93.0	70-130	%Rec	1	3/23/2022 6:41:45 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-9D

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 11:45:00 AMLab ID:2203A30-006Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	98.0	70-130	%Rec	1	3/23/2022 6:41:45 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 100

Analytical Report Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental

Client Sample ID: MW-1

Project: Energy Resources Corp West Lovington

Collection Date: 3/15/2022 2:10:00 PM

Lab ID: 2203A30-007

Received Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS Analyst: LRN							
Chloride	26	5.0		mg/L	10	3/21/2022 2:45:42 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: MRA
Conductivity	640	10		µmhos/c	- 1	3/22/2022 2:16:13 PM	R86681
•	040	10		μιτιιο5/ο	'		
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	
Total Dissolved Solids	390	100	D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst	: MRA
pH	7.74		Н	pH units	1	3/22/2022 2:16:13 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
Acenaphthene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Aniline	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Anthracene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Azobenzene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Benzoic acid	ND	20		μg/L	1	3/24/2022 10:50:42 PM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/24/2022 10:50:42 PM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Carbazole	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Chrysene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/24/2022 10:50:42 PM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/24/2022 10:50:42 PM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/24/2022 10:50:42 PM	66307

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-1

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:10:00 PMLab ID:2203A30-007Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Q	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	: DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Diethyl phthalate	ND	10	μg/L	1	3/24/2022 10:50:42 PM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/24/2022 10:50:42 PM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Fluoranthene	ND	10	μg/L	1	3/24/2022 10:50:42 PM	66307
Fluorene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Isophorone	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Naphthalene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Pentachlorophenol	ND	20	μg/L	1	3/24/2022 10:50:42 PM	66307
Phenanthrene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Phenol	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Pyrene	ND	5.0	μg/L	1	3/24/2022 10:50:42 PM	66307
Pyridine	ND	10	μg/L	1	3/24/2022 10:50:42 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-1

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:10:00 PMLab ID:2203A30-007Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Un	nits DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	: DAM
1,2,4-Trichlorobenzene	ND	5.0	μς	g/L 1	3/24/2022 10:50:42 PM	66307
2,4,5-Trichlorophenol	ND	5.0			3/24/2022 10:50:42 PM	66307
2,4,6-Trichlorophenol	ND	5.0	μς		3/24/2022 10:50:42 PM	66307
Surr: 2-Fluorophenol	52.6	29.4-87.7	%	Rec 1	3/24/2022 10:50:42 PM	66307
Surr: Phenol-d5	39.2	28.5-64.7	%	Rec 1	3/24/2022 10:50:42 PM	66307
Surr: 2,4,6-Tribromophenol	74.8	18.6-129	%	Rec 1	3/24/2022 10:50:42 PM	66307
Surr: Nitrobenzene-d5	66.1	36.9-103	%	Rec 1	3/24/2022 10:50:42 PM	66307
Surr: 2-Fluorobiphenyl	61.7	38.1-99.9	%	Rec 1	3/24/2022 10:50:42 PM	66307
Surr: 4-Terphenyl-d14	95.3	48-155	%	Rec 1	3/24/2022 10:50:42 PM	66307
EPA METHOD 8260B: VOLATILES					Analyst	: JR
Benzene	ND	1.0	μο	ı/L 1	3/23/2022 7:10:10 PM	R86690
Toluene	ND	1.0	μg		3/23/2022 7:10:10 PM	R86690
Ethylbenzene	ND	1.0	μg		3/23/2022 7:10:10 PM	R86690
Methyl tert-butyl ether (MTBE)	ND	1.0	μg		3/23/2022 7:10:10 PM	R86690
1,2,4-Trimethylbenzene	ND	1.0	μς		3/23/2022 7:10:10 PM	R86690
1,3,5-Trimethylbenzene	ND	1.0	μo		3/23/2022 7:10:10 PM	R86690
1,2-Dichloroethane (EDC)	ND	1.0	μς	•	3/23/2022 7:10:10 PM	R86690
1,2-Dibromoethane (EDB)	ND	1.0	μg		3/23/2022 7:10:10 PM	R86690
Naphthalene	ND	2.0			3/23/2022 7:10:10 PM	R86690
1-Methylnaphthalene	ND	4.0	μς		3/23/2022 7:10:10 PM	R86690
2-Methylnaphthalene	ND	4.0	μg		3/23/2022 7:10:10 PM	R86690
Acetone	ND	10	μg		3/23/2022 7:10:10 PM	R86690
Bromobenzene	ND	1.0	μο	, J/L 1	3/23/2022 7:10:10 PM	R86690
Bromodichloromethane	ND	1.0	μg		3/23/2022 7:10:10 PM	R86690
Bromoform	ND	1.0	μς	g/L 1	3/23/2022 7:10:10 PM	R86690
Bromomethane	ND	3.0	μς	g/L 1	3/23/2022 7:10:10 PM	R86690
2-Butanone	ND	10	μς	g/L 1	3/23/2022 7:10:10 PM	R86690
Carbon disulfide	ND	10	μς	y/L 1	3/23/2022 7:10:10 PM	R86690
Carbon Tetrachloride	ND	1.0	μς	y/L 1	3/23/2022 7:10:10 PM	R86690
Chlorobenzene	ND	1.0	μο	_J /L 1	3/23/2022 7:10:10 PM	R86690
Chloroethane	ND	2.0	μο	_J /L 1	3/23/2022 7:10:10 PM	R86690
Chloroform	ND	1.0	μο		3/23/2022 7:10:10 PM	R86690
Chloromethane	ND	3.0	μο	y/L 1	3/23/2022 7:10:10 PM	R86690
2-Chlorotoluene	ND	1.0	μς	y/L 1	3/23/2022 7:10:10 PM	R86690
4-Chlorotoluene	ND	1.0	μς	y/L 1	3/23/2022 7:10:10 PM	R86690
cis-1,2-DCE	ND	1.0	μο	j/L 1	3/23/2022 7:10:10 PM	R86690
cis-1,3-Dichloropropene	ND	1.0	μο		3/23/2022 7:10:10 PM	R86690
1,2-Dibromo-3-chloropropane	ND	2.0	μg		3/23/2022 7:10:10 PM	R86690
Dibromochloromethane	ND	1.0	μg		3/23/2022 7:10:10 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 100

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-1

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:10:00 PMLab ID:2203A30-007Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
Hexachlorobutadiene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
2-Hexanone	ND	10	μg/L	1	3/23/2022 7:10:10 PM	R86690
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
4-Isopropyltoluene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 7:10:10 PM	R86690
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
sec-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
Styrene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
tert-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 7:10:10 PM	R86690
Xylenes, Total	ND	1.5	μg/L	1	3/23/2022 7:10:10 PM	R86690
Surr: 1,2-Dichloroethane-d4	84.2	70-130	%Rec	1	3/23/2022 7:10:10 PM	R86690
Surr: 4-Bromofluorobenzene	99.6	70-130	%Rec	1	3/23/2022 7:10:10 PM	R86690
Surr: Dibromofluoromethane	93.3	70-130	%Rec	1	3/23/2022 7:10:10 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-1

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:10:00 PMLab ID:2203A30-007Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	100	70-130	%Rec	1	3/23/2022 7:10:10 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-5

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:46:00 PMLab ID:2203A30-008Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	25	5.0		mg/L	10	3/21/2022 3:37:09 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	640	10		µmhos/c	1	3/22/2022 2:20:42 PM	R86681
SM2540C MOD: TOTAL DISSOLVED SOLIDS				,	-		
	540	000	*5			Analyst:	
Total Dissolved Solids	510	200	*D	mg/L	1	3/24/2022 10:56:00 AM	
SM4500-H+B / 9040C: PH						Analyst:	MRA
рН	7.82		Н	pH units	1	3/22/2022 2:20:42 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Aniline	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Anthracene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Azobenzene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Benzoic acid	ND	20		μg/L	1	3/24/2022 11:32:14 PM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/24/2022 11:32:14 PM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Carbazole	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Chrysene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/24/2022 11:32:14 PM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/24/2022 11:32:14 PM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 100

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-5

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:46:00 PMLab ID:2203A30-008Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst:	DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Diethyl phthalate	ND	10	μg/L	1	3/24/2022 11:32:14 PM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/24/2022 11:32:14 PM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Fluoranthene	ND	10	μg/L	1	3/24/2022 11:32:14 PM	66307
Fluorene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Isophorone	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Naphthalene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Pentachlorophenol	ND	20	μg/L	1	3/24/2022 11:32:14 PM	66307
Phenanthrene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Phenol	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Pyrene	ND	5.0	μg/L	1	3/24/2022 11:32:14 PM	66307
Pyridine	ND	10	μg/L	1	3/24/2022 11:32:14 PM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-5

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:46:00 PMLab ID:2203A30-008Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
1,2,4-Trichlorobenzene	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
2,4,5-Trichlorophenol	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
2,4,6-Trichlorophenol	ND	5.0		μg/L	1	3/24/2022 11:32:14 PM	66307
Surr: 2-Fluorophenol	56.4	29.4-87.7		%Rec	1	3/24/2022 11:32:14 PM	66307
Surr: Phenol-d5	42.3	28.5-64.7		%Rec	1	3/24/2022 11:32:14 PM	66307
Surr: 2,4,6-Tribromophenol	72.5	18.6-129		%Rec	1	3/24/2022 11:32:14 PM	66307
Surr: Nitrobenzene-d5	68.2	36.9-103		%Rec	1	3/24/2022 11:32:14 PM	66307
Surr: 2-Fluorobiphenyl	66.8	38.1-99.9		%Rec	1	3/24/2022 11:32:14 PM	66307
Surr: 4-Terphenyl-d14	105	48-155		%Rec	1	3/24/2022 11:32:14 PM	66307
EPA METHOD 8260B: VOLATILES						Analyst	: JR
Benzene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Toluene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Ethylbenzene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Naphthalene	ND	2.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
1-Methylnaphthalene	ND	4.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
2-Methylnaphthalene	ND	4.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Acetone	ND	10		μg/L	1	3/23/2022 7:38:44 PM	R86690
Bromobenzene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Bromodichloromethane	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Bromoform	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Bromomethane	ND	3.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
2-Butanone	ND	10		μg/L	1	3/23/2022 7:38:44 PM	R86690
Carbon disulfide	ND	10		μg/L	1	3/23/2022 7:38:44 PM	R86690
Carbon Tetrachloride	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Chlorobenzene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Chloroethane	ND	2.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Chloroform	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Chloromethane	ND	3.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
2-Chlorotoluene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
4-Chlorotoluene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
cis-1,2-DCE	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	3/23/2022 7:38:44 PM	R86690
Dibromochloromethane	ND	1.0		μg/L	1	3/23/2022 7:38:44 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 26 of 100

Lab Order **2203A30**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 4/13/2022

CLIENT: CMB Environmental Client Sample ID: MW-5

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:46:00 PMLab ID:2203A30-008Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analys	t: JR	
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Hexachlorobutadiene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
2-Hexanone	ND	10	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
4-Isopropyltoluene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
sec-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Styrene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
tert-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Xylenes, Total	ND	1.5	μg/L	1	3/23/2022 7:38:44 PM	R86690	
Surr: 1,2-Dichloroethane-d4	90.0	70-130	%Rec	1	3/23/2022 7:38:44 PM	R86690	
Surr: 4-Bromofluorobenzene	98.1	70-130	%Rec	1	3/23/2022 7:38:44 PM	R86690	
Surr: Dibromofluoromethane	96.5	70-130	%Rec	1	3/23/2022 7:38:44 PM	R86690	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-5

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 2:46:00 PMLab ID:2203A30-008Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	103	70-130	%Rec	1	3/23/2022 7:38:44 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 28 of 100

Analytical Report Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-6

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 3:33:00 PMLab ID:2203A30-009Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: LRN
Chloride	1000	50	*	mg/L	100	3/21/2022 4:15:44 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst	: MRA
Conductivity	4500	10		µmhos/c	- 1	3/22/2022 2:25:12 PM	R86681
•	4000	10		μιτιτίοσ/ο	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	
Total Dissolved Solids	2510	100	*D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst	: MRA
рН	8.10		Н	pH units	1	3/22/2022 2:25:12 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
Acenaphthene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Aniline	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Anthracene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Azobenzene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Benzoic acid	ND	20		μg/L	1	3/25/2022 12:13:40 AM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/25/2022 12:13:40 AM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Carbazole	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Chrysene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/25/2022 12:13:40 AM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/25/2022 12:13:40 AM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/25/2022 12:13:40 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 100

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-6

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 3:33:00 PMLab ID:2203A30-009Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Diethyl phthalate	ND	10	μg/L	1	3/25/2022 12:13:40 AM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/25/2022 12:13:40 AM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Fluoranthene	ND	10	μg/L	1	3/25/2022 12:13:40 AM	66307
Fluorene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Isophorone	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Naphthalene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Pentachlorophenol	ND	20	μg/L	1	3/25/2022 12:13:40 AM	66307
Phenanthrene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Phenol	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Pyrene	ND	5.0	μg/L	1	3/25/2022 12:13:40 AM	66307
Pyridine	ND	10	μg/L	1	3/25/2022 12:13:40 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 30 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-6

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 3:33:00 PMLab ID:2203A30-009Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Uni	ts DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	: DAM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	. 1	3/25/2022 12:13:40 AM	66307
2,4,5-Trichlorophenol	ND	5.0	μg/L	. 1	3/25/2022 12:13:40 AM	66307
2,4,6-Trichlorophenol	ND	5.0	μg/L		3/25/2022 12:13:40 AM	66307
Surr: 2-Fluorophenol	52.6	29.4-87.7	%R	ec 1	3/25/2022 12:13:40 AM	66307
Surr: Phenol-d5	41.1	28.5-64.7	%R	ec 1	3/25/2022 12:13:40 AM	66307
Surr: 2,4,6-Tribromophenol	69.9	18.6-129	%R	ec 1	3/25/2022 12:13:40 AM	66307
Surr: Nitrobenzene-d5	62.1	36.9-103	%R	ec 1	3/25/2022 12:13:40 AM	66307
Surr: 2-Fluorobiphenyl	63.2	38.1-99.9	%R	ec 1	3/25/2022 12:13:40 AM	66307
Surr: 4-Terphenyl-d14	96.3	48-155	%R	ec 1	3/25/2022 12:13:40 AM	66307
EPA METHOD 8260B: VOLATILES					Analyst	: JR
Benzene	ND	1.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
Toluene	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
Ethylbenzene	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
1,2,4-Trimethylbenzene	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
1,3,5-Trimethylbenzene	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
1,2-Dichloroethane (EDC)	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
1,2-Dibromoethane (EDB)	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
Naphthalene	ND	2.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
1-Methylnaphthalene	ND	4.0	μg/L		3/23/2022 8:07:17 PM	R86690
2-Methylnaphthalene	ND	4.0	μg/L		3/23/2022 8:07:17 PM	R86690
Acetone	ND	10	μg/L		3/23/2022 8:07:17 PM	R86690
Bromobenzene	ND	1.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
Bromodichloromethane	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
Bromoform	ND	1.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
Bromomethane	ND	3.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
2-Butanone	ND	10	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
Carbon disulfide	ND	10	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
Carbon Tetrachloride	ND	1.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
Chlorobenzene	ND	1.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
Chloroethane	ND	2.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
Chloroform	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
Chloromethane	ND	3.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
2-Chlorotoluene	ND	1.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
4-Chlorotoluene	ND	1.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
cis-1,2-DCE	ND	1.0	μg/L	. 1	3/23/2022 8:07:17 PM	R86690
cis-1,3-Dichloropropene	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L		3/23/2022 8:07:17 PM	R86690
Dibromochloromethane	ND	1.0	μg/L		3/23/2022 8:07:17 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 31 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-6

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 3:33:00 PMLab ID:2203A30-009Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
Hexachlorobutadiene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
2-Hexanone	ND	10	μg/L	1	3/23/2022 8:07:17 PM	R86690
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
4-Isopropyltoluene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 8:07:17 PM	R86690
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
sec-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
Styrene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
tert-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 8:07:17 PM	R86690
Xylenes, Total	ND	1.5	μg/L	1	3/23/2022 8:07:17 PM	R86690
Surr: 1,2-Dichloroethane-d4	86.4	70-130	%Rec	1	3/23/2022 8:07:17 PM	R86690
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	3/23/2022 8:07:17 PM	R86690
Surr: Dibromofluoromethane	93.2	70-130	%Rec	1	3/23/2022 8:07:17 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 32 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-6

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 3:33:00 PMLab ID:2203A30-009Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	st: JR
Surr: Toluene-d8	98.5	70-130	%Rec	1	3/23/2022 8:07:17 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 100

Analytical Report Lab Order 2203A30

Client Sample ID: MW-3

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental

Project: Energy Resources Corp West Lovington Collection Date: 3/15/2022 4:30:00 PM

Lab ID: 2203A30-010 **Matrix:** AQUEOUS **Received Date:** 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: LRN
Chloride	25	5.0		mg/L	10	3/21/2022 4:28:35 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	620	10		µmhos/c	. 1	3/22/2022 2:29:19 PM	R86681
•	020	10		μιτιτίος/ο	' '		
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	KS
Total Dissolved Solids	550	200	*D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst	MRA
рН	7.61		Н	pH units	1	3/22/2022 2:29:19 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: JME
Acenaphthene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Acenaphthylene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Aniline	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Anthracene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Azobenzene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Benzoic acid	ND	20		μg/L	1	4/2/2022 1:22:22 AM	66307
Benzyl alcohol	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	4/2/2022 1:22:22 AM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Carbazole	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
4-Chloroaniline	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
2-Chlorophenol	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Chrysene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	4/2/2022 1:22:22 AM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	4/2/2022 1:22:22 AM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Dibenzofuran	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-3

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 4:30:00 PMLab ID:2203A30-010Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: JME
1,2-Dichlorobenzene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Diethyl phthalate	ND	10	μg/L	1	4/2/2022 1:22:22 AM	66307
Dimethyl phthalate	ND	10	μg/L	1	4/2/2022 1:22:22 AM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	4/2/2022 1:22:22 AM	66307
2,4-Dinitrophenol	ND	20	μg/L	1	4/2/2022 1:22:22 AM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Fluoranthene	ND	10	μg/L	1	4/2/2022 1:22:22 AM	66307
Fluorene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Hexachloroethane	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Isophorone	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
2-Methylphenol	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Naphthalene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
2-Nitroaniline	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
3-Nitroaniline	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
4-Nitroaniline	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Nitrobenzene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
2-Nitrophenol	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
4-Nitrophenol	ND	10	μg/L	1	4/2/2022 1:22:22 AM	66307
Pentachlorophenol	ND	20	μg/L	1	4/2/2022 1:22:22 AM	66307
Phenanthrene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Phenol	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Pyrene	ND	5.0	μg/L	1	4/2/2022 1:22:22 AM	66307
Pyridine	ND	10	μg/L	1	4/2/2022 1:22:22 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 35 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-3

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 4:30:00 PMLab ID:2203A30-010Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual 1	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analys	st: JME
1,2,4-Trichlorobenzene	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
2,4,5-Trichlorophenol	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
2,4,6-Trichlorophenol	ND	5.0		μg/L	1	4/2/2022 1:22:22 AM	66307
Surr: 2-Fluorophenol	49.4	29.4-87.7		%Rec	1	4/2/2022 1:22:22 AM	66307
Surr: Phenol-d5	39.4	28.5-64.7		%Rec	1	4/2/2022 1:22:22 AM	66307
Surr: 2,4,6-Tribromophenol	63.5	18.6-129		%Rec	1	4/2/2022 1:22:22 AM	66307
Surr: Nitrobenzene-d5	67.4	36.9-103		%Rec	1	4/2/2022 1:22:22 AM	66307
Surr: 2-Fluorobiphenyl	63.4	38.1-99.9		%Rec	1	4/2/2022 1:22:22 AM	66307
Surr: 4-Terphenyl-d14	85.4	48-155		%Rec	1	4/2/2022 1:22:22 AM	66307
EPA METHOD 8260B: VOLATILES						Analys	it: JR
Benzene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Toluene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Ethylbenzene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Naphthalene	ND	2.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
1-Methylnaphthalene	ND	4.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
2-Methylnaphthalene	ND	4.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Acetone	ND	10		μg/L	1	3/23/2022 8:35:51 PM	R86690
Bromobenzene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Bromodichloromethane	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Bromoform	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Bromomethane	ND	3.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
2-Butanone	ND	10		μg/L	1	3/23/2022 8:35:51 PM	R86690
Carbon disulfide	ND	10		μg/L	1	3/23/2022 8:35:51 PM	R86690
Carbon Tetrachloride	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Chlorobenzene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Chloroethane	ND	2.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Chloroform	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Chloromethane	ND	3.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
2-Chlorotoluene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
4-Chlorotoluene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
cis-1,2-DCE	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	3/23/2022 8:35:51 PM	R86690
Dibromochloromethane	ND	1.0		μg/L	1	3/23/2022 8:35:51 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 36 of 100

CLIENT: CMB Environmental

Analytical Report

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-3

Project: Energy Resources Corp West Lovington Collection Date: 3/15/2022 4:30:00 PM

Lab ID: 2203A30-010 **Matrix:** AQUEOUS **Received Date:** 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
Hexachlorobutadiene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
2-Hexanone	ND	10	μg/L	1	3/23/2022 8:35:51 PM	R86690
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
4-Isopropyltoluene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 8:35:51 PM	R86690
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
sec-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
Styrene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
tert-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 8:35:51 PM	R86690
Xylenes, Total	ND	1.5	μg/L	1	3/23/2022 8:35:51 PM	R86690
Surr: 1,2-Dichloroethane-d4	87.0	70-130	%Rec	1	3/23/2022 8:35:51 PM	R86690
Surr: 4-Bromofluorobenzene	96.2	70-130	%Rec	1	3/23/2022 8:35:51 PM	R86690
Surr: Dibromofluoromethane	91.2	70-130	%Rec	1	3/23/2022 8:35:51 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 37 of 100

CLIENT: CMB Environmental

Analytical Report

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-3

Project:Energy Resources Corp West LovingtonCollection Date: 3/15/2022 4:30:00 PMLab ID:2203A30-010Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

 Analyses
 Result
 RL
 Qual
 Units
 DF
 Date Analyzed
 Batch

 EPA METHOD 8260B: VOLATILES
 Analyst: JR

 Surr: Toluene-d8
 102
 70-130
 %Rec
 1
 3/23/2022 8:35:51 PM
 R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 38 of 100

Analytical Report Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-2

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:00:00 AMLab ID:2203A30-011Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	1200	50	*	mg/L	100	3/21/2022 5:07:10 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	4900	10		µmhos/c	1	3/22/2022 2:39:47 PM	R86681
•	1000	10		piriirioo/o	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	
Total Dissolved Solids	2930	200	*D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst:	MRA
рН	7.55		Н	pH units	1	3/22/2022 2:39:47 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	JME
Acenaphthene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Acenaphthylene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Aniline	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Anthracene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Azobenzene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Benzoic acid	ND	20		μg/L	1	4/2/2022 2:03:23 AM	66307
Benzyl alcohol	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	4/2/2022 2:03:23 AM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Carbazole	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
4-Chloroaniline	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
2-Chlorophenol	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Chrysene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	4/2/2022 2:03:23 AM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	4/2/2022 2:03:23 AM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307
Dibenzofuran	ND	5.0		μg/L	1	4/2/2022 2:03:23 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-2

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:00:00 AMLab ID:2203A30-011Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: JME
1,2-Dichlorobenzene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Diethyl phthalate	ND	10	μg/L	1	4/2/2022 2:03:23 AM	66307
Dimethyl phthalate	ND	10	μg/L	1	4/2/2022 2:03:23 AM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	4/2/2022 2:03:23 AM	66307
2,4-Dinitrophenol	ND	20	μg/L	1	4/2/2022 2:03:23 AM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Fluoranthene	ND	10	μg/L	1	4/2/2022 2:03:23 AM	66307
Fluorene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Hexachloroethane	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Isophorone	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
2-Methylphenol	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Naphthalene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
2-Nitroaniline	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
3-Nitroaniline	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
4-Nitroaniline	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Nitrobenzene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
2-Nitrophenol	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
4-Nitrophenol	ND	10	μg/L	1	4/2/2022 2:03:23 AM	66307
Pentachlorophenol	ND	20	μg/L	1	4/2/2022 2:03:23 AM	66307
Phenanthrene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Phenol	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Pyrene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Pyridine	ND	10	μg/L	1	4/2/2022 2:03:23 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 40 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-2

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:00:00 AMLab ID:2203A30-011Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	st: JME
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	4/2/2022 2:03:23 AM	66307
Surr: 2-Fluorophenol	46.9	29.4-87.7	%Rec	1	4/2/2022 2:03:23 AM	66307
Surr: Phenol-d5	38.4	28.5-64.7	%Rec	1	4/2/2022 2:03:23 AM	66307
Surr: 2,4,6-Tribromophenol	57.0	18.6-129	%Rec	1	4/2/2022 2:03:23 AM	66307
Surr: Nitrobenzene-d5	60.3	36.9-103	%Rec	1	4/2/2022 2:03:23 AM	66307
Surr: 2-Fluorobiphenyl	55.6	38.1-99.9	%Rec	1	4/2/2022 2:03:23 AM	66307
Surr: 4-Terphenyl-d14	91.6	48-155	%Rec	1	4/2/2022 2:03:23 AM	66307
EPA METHOD 8260B: VOLATILES					Analys	st: JR
Benzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Toluene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Ethylbenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Naphthalene	ND	2.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
1-Methylnaphthalene	ND	4.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
2-Methylnaphthalene	ND	4.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Acetone	ND	10	μg/L	1	3/23/2022 9:04:26 PM	R8669
Bromobenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Bromodichloromethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Bromoform	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Bromomethane	ND	3.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
2-Butanone	ND	10	μg/L	1	3/23/2022 9:04:26 PM	R8669
Carbon disulfide	ND	10	μg/L	1	3/23/2022 9:04:26 PM	R8669
Carbon Tetrachloride	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Chlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Chloroethane	ND	2.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Chloroform	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Chloromethane	ND	3.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
2-Chlorotoluene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
4-Chlorotoluene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
cis-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/23/2022 9:04:26 PM	R8669
Dibromochloromethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R8669

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 41 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-2

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:00:00 AMLab ID:2203A30-011Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,3-Dichlorobenzene	ND	1.0		1	3/23/2022 9:04:26 PM	R86690
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
Hexachlorobutadiene	ND	1.0		1	3/23/2022 9:04:26 PM	R86690
2-Hexanone	ND	10	μg/L	1	3/23/2022 9:04:26 PM	R86690
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
4-Isopropyltoluene	ND	1.0		1	3/23/2022 9:04:26 PM	R86690
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 9:04:26 PM	R86690
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
sec-Butylbenzene	ND	1.0		1	3/23/2022 9:04:26 PM	R86690
Styrene	ND	1.0		1	3/23/2022 9:04:26 PM	R86690
tert-Butylbenzene	ND	1.0		1	3/23/2022 9:04:26 PM	R86690
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,1,2,2-Tetrachloroethane	ND	2.0		1	3/23/2022 9:04:26 PM	R86690
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 9:04:26 PM	R86690
Xylenes, Total	ND	1.5		1	3/23/2022 9:04:26 PM	R86690
Surr: 1,2-Dichloroethane-d4	89.5	70-130	%Rec	1	3/23/2022 9:04:26 PM	R86690
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	1	3/23/2022 9:04:26 PM	R86690
Surr: Dibromofluoromethane	94.3	70-130	%Rec	1	3/23/2022 9:04:26 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 42 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-2

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:00:00 AMLab ID:2203A30-011Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	107	70-130	%Rec	1	3/23/2022 9:04:26 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 43 of 100

Analytical Report Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-4

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:40:00 AMLab ID:2203A30-012Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	230	50		mg/L	100	3/21/2022 5:32:54 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	1600	10		µmhos/c	1	3/22/2022 2:44:17 PM	R86681
•	1000	10		μιτιτοο/ο			
SM2540C MOD: TOTAL DISSOLVED SOLIDS				_		Analyst:	
Total Dissolved Solids	1100	200	*D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst:	MRA
pH	7.45		Н	pH units	1	3/22/2022 2:44:17 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Aniline	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Anthracene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Azobenzene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Benzoic acid	ND	20		μg/L	1	3/25/2022 2:17:27 AM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/25/2022 2:17:27 AM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Carbazole	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Chrysene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/25/2022 2:17:27 AM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/25/2022 2:17:27 AM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/25/2022 2:17:27 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 44 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-4

Project: Energy Resources Corp West Lovington Collection Date: 3/16/2022 9:40:00 AM

Lab ID: 2203A30-012 **Matrix:** AQUEOUS **Received Date:** 3/18/2022 10:10:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	:: DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Diethyl phthalate	ND	10	μg/L	1	3/25/2022 2:17:27 AM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/25/2022 2:17:27 AM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Fluoranthene	ND	10	μg/L	1	3/25/2022 2:17:27 AM	66307
Fluorene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Isophorone	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Naphthalene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Pentachlorophenol	ND	20	μg/L	1	3/25/2022 2:17:27 AM	66307
Phenanthrene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Phenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Pyrene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Pyridine	ND	10	μg/L	1	3/25/2022 2:17:27 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 45 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-4

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:40:00 AMLab ID:2203A30-012Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: DAM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	3/25/2022 2:17:27 AM	66307
Surr: 2-Fluorophenol	58.1	29.4-87.7	%Rec	1	3/25/2022 2:17:27 AM	66307
Surr: Phenol-d5	45.4	28.5-64.7	%Rec	1	3/25/2022 2:17:27 AM	66307
Surr: 2,4,6-Tribromophenol	71.9	18.6-129	%Rec	1	3/25/2022 2:17:27 AM	66307
Surr: Nitrobenzene-d5	70.0	36.9-103	%Rec	1	3/25/2022 2:17:27 AM	66307
Surr: 2-Fluorobiphenyl	70.9	38.1-99.9	%Rec	1	3/25/2022 2:17:27 AM	66307
Surr: 4-Terphenyl-d14	101	48-155	%Rec	1	3/25/2022 2:17:27 AM	66307
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Benzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Toluene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Ethylbenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Naphthalene	ND	2.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1-Methylnaphthalene	ND	4.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
2-Methylnaphthalene	ND	4.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Acetone	ND	10	μg/L	1	3/23/2022 9:32:57 PM	R86690
Bromobenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Bromodichloromethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Bromoform	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Bromomethane	ND	3.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
2-Butanone	ND	10	μg/L	1	3/23/2022 9:32:57 PM	R86690
Carbon disulfide	ND	10	μg/L	1	3/23/2022 9:32:57 PM	R86690
Carbon Tetrachloride	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Chlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Chloroethane	ND	2.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Chloroform	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Chloromethane	ND	3.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
2-Chlorotoluene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
4-Chlorotoluene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
cis-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Dibromochloromethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 46 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-4

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:40:00 AMLab ID:2203A30-012Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,1-Dichloroethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,1-Dichloroethene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,3-Dichloropropane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
2,2-Dichloropropane	ND	2.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,1-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Hexachlorobutadiene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
2-Hexanone	ND	10	μg/L	1	3/23/2022 9:32:57 PM	R86690
Isopropylbenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
4-Isopropyltoluene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
4-Methyl-2-pentanone	ND	10	μg/L	1	3/23/2022 9:32:57 PM	R86690
Methylene Chloride	ND	3.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
n-Butylbenzene	ND	3.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
n-Propylbenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
sec-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Styrene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
tert-Butylbenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
trans-1,2-DCE	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Trichlorofluoromethane	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Vinyl chloride	ND	1.0	μg/L	1	3/23/2022 9:32:57 PM	R86690
Xylenes, Total	ND	1.5	μg/L	1	3/23/2022 9:32:57 PM	R86690
Surr: 1,2-Dichloroethane-d4	87.5	70-130	%Rec	1	3/23/2022 9:32:57 PM	R86690
Surr: 4-Bromofluorobenzene	97.8	70-130	%Rec	1	3/23/2022 9:32:57 PM	R86690
Surr: Dibromofluoromethane	90.1	70-130	%Rec	1	3/23/2022 9:32:57 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 47 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-4

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 9:40:00 AMLab ID:2203A30-012Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	101	70-130	%Rec	1	3/23/2022 9:32:57 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 48 of 100

Lab Order 2203A30

Hall Environmental Analysis Laboratory, Inc. Date Reported: 4/13/2022

CLIENT: CMB Environmental Client Sample ID: MW-8S

Project: Energy Resources Corp West Lovington Collection Date: 3/16/2022 10:30:00 AM

Lab ID: 2203A30-013 Matrix: AQUEOUS Received Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	20	5.0		mg/L	10	3/21/2022 6:11:31 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	570	10		µmhos/c	1	3/22/2022 2:48:50 PM	R86681
•	0.0	10		μιτιτοο/ο	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS	470	200	_	4		Analyst:	
Total Dissolved Solids	470	200	D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst:	MRA
рН	7.76		Н	pH units	1	3/22/2022 2:48:50 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Aniline	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Anthracene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Azobenzene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Benzoic acid	ND	20		μg/L	1	3/25/2022 2:58:55 AM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/25/2022 2:58:55 AM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Carbazole	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Chrysene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/25/2022 2:58:55 AM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/25/2022 2:58:55 AM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/25/2022 2:58:55 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 49 of 100

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-8S

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 10:30:00 AMLab ID:2203A30-013Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	: DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Diethyl phthalate	ND	10	μg/L	1	3/25/2022 2:58:55 AM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/25/2022 2:58:55 AM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Fluoranthene	ND	10	μg/L	1	3/25/2022 2:58:55 AM	66307
Fluorene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Isophorone	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Naphthalene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Pentachlorophenol	ND	20	μg/L	1	3/25/2022 2:58:55 AM	66307
Phenanthrene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Phenol	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Pyrene	ND	5.0	μg/L	1	3/25/2022 2:58:55 AM	66307
Pyridine	ND	10	μg/L	1	3/25/2022 2:58:55 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 50 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-8S

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 10:30:00 AMLab ID:2203A30-013Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual U	J nits	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: DAM
1,2,4-Trichlorobenzene	ND	5.0	ŀ	µg/L	1	3/25/2022 2:58:55 AM	66307
2,4,5-Trichlorophenol	ND	5.0	ŀ	µg/L	1	3/25/2022 2:58:55 AM	66307
2,4,6-Trichlorophenol	ND	5.0		µg/L	1	3/25/2022 2:58:55 AM	66307
Surr: 2-Fluorophenol	54.6	29.4-87.7	Ç	%Rec	1	3/25/2022 2:58:55 AM	66307
Surr: Phenol-d5	41.7	28.5-64.7	Ç	%Rec	1	3/25/2022 2:58:55 AM	66307
Surr: 2,4,6-Tribromophenol	72.3	18.6-129	Ç	%Rec	1	3/25/2022 2:58:55 AM	66307
Surr: Nitrobenzene-d5	65.3	36.9-103	Ç	%Rec	1	3/25/2022 2:58:55 AM	66307
Surr: 2-Fluorobiphenyl	64.2	38.1-99.9	Ç	%Rec	1	3/25/2022 2:58:55 AM	66307
Surr: 4-Terphenyl-d14	98.3	48-155	Ç	%Rec	1	3/25/2022 2:58:55 AM	66307
EPA METHOD 8260B: VOLATILES						Analyst	: JR
Benzene	ND	2.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
Toluene	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
Ethylbenzene	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
Methyl tert-butyl ether (MTBE)	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
1,2,4-Trimethylbenzene	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
1,3,5-Trimethylbenzene	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
1,2-Dichloroethane (EDC)	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
1,2-Dibromoethane (EDB)	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
Naphthalene	ND	4.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
1-Methylnaphthalene	ND	8.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
2-Methylnaphthalene	ND	8.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
Acetone	ND	20		µg/L	2	3/23/2022 10:01:24 PM	R86690
Bromobenzene	ND	2.0		μg/L	2	3/23/2022 10:01:24 PM	R86690
Bromodichloromethane	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
Bromoform	ND	2.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
Bromomethane	ND	6.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
2-Butanone	ND	20	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
Carbon disulfide	ND	20	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
Carbon Tetrachloride	ND	2.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
Chlorobenzene	ND	2.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
Chloroethane	ND	4.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
Chloroform	ND	2.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
Chloromethane	ND	6.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
2-Chlorotoluene	ND	2.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
4-Chlorotoluene	ND	2.0	ŀ	µg/L	2	3/23/2022 10:01:24 PM	R86690
cis-1,2-DCE	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
cis-1,3-Dichloropropene	ND	2.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
1,2-Dibromo-3-chloropropane	ND	4.0		µg/L	2	3/23/2022 10:01:24 PM	R86690
Dibromochloromethane	ND	2.0	ļ	μg/L	2	3/23/2022 10:01:24 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 51 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-8S

Project: Energy Resources Corp West Lovington Collection Date: 3/16/2022 10:30:00 AM

Lab ID: 2203A30-013 Matrix: AQUEOUS Received Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JR
Dibromomethane	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,2-Dichlorobenzene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
1,3-Dichlorobenzene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
1,4-Dichlorobenzene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
Dichlorodifluoromethane	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,1-Dichloroethane	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,1-Dichloroethene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
1,2-Dichloropropane	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,3-Dichloropropane	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
2,2-Dichloropropane	ND	4.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,1-Dichloropropene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
Hexachlorobutadiene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
2-Hexanone	ND	20	μg/L	2	3/23/2022 10:01:24 PM	R86690
Isopropylbenzene	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
4-Isopropyltoluene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
4-Methyl-2-pentanone	ND	20	μg/L	2	3/23/2022 10:01:24 PM	R86690
Methylene Chloride	ND	6.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
n-Butylbenzene	ND	6.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
n-Propylbenzene	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
sec-Butylbenzene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
Styrene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
tert-Butylbenzene	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,1,2,2-Tetrachloroethane	ND	4.0		2	3/23/2022 10:01:24 PM	R86690
Tetrachloroethene (PCE)	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
trans-1,2-DCE	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,2,3-Trichlorobenzene	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,1,1-Trichloroethane	ND	2.0		2	3/23/2022 10:01:24 PM	R86690
1,1,2-Trichloroethane	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
Trichloroethene (TCE)	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
Trichlorofluoromethane	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
1,2,3-Trichloropropane	ND	4.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
Vinyl chloride	ND	2.0	μg/L	2	3/23/2022 10:01:24 PM	R86690
Xylenes, Total	ND	3.0		2	3/23/2022 10:01:24 PM	R86690
Surr: 1,2-Dichloroethane-d4	93.7	70-130	%Rec	2	3/23/2022 10:01:24 PM	R86690
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	2	3/23/2022 10:01:24 PM	R86690
Surr: Dibromofluoromethane	95.8	70-130	%Rec	2	3/23/2022 10:01:24 PM	R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 52 of 100

CLIENT: CMB Environmental

Analytical Report

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-8S

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 10:30:00 AMLab ID:2203A30-013Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	99.5	70-130	%Rec	2	3/23/2022 10:01:24 PI	M R86690

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 53 of 100

CLIENT: CMB Environmental

Analytical Report Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-8M

Project: Energy Resources Corp West Lovington Collection Date: 3/16/2022 11:23:00 AM

Lab ID: 2203A30-014 Matrix: AQUEOUS Received Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: LRN
Chloride	46	5.0		mg/L	10	3/21/2022 6:37:15 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst	MRA
Conductivity	920	10		µmhos/c	1	3/22/2022 2:57:27 PM	R86681
•	020	10		μιτιτου/ σ	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	
Total Dissolved Solids	610	40.0	*D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst	MRA
pH	7.50		Н	pH units	1	3/22/2022 2:57:27 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst	DAM
Acenaphthene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Aniline	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Anthracene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Azobenzene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Benzoic acid	ND	20		μg/L	1	3/25/2022 3:39:38 AM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/25/2022 3:39:38 AM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Carbazole	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Chrysene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/25/2022 3:39:38 AM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/25/2022 3:39:38 AM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 54 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-8M

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 11:23:00 AMLab ID:2203A30-014Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	t: DAM
1,2-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
1,3-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
1,4-Dichlorobenzene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Diethyl phthalate	ND	10	μg/L	1	3/25/2022 3:39:38 AM	66307
Dimethyl phthalate	ND	10	μg/L	1	3/25/2022 3:39:38 AM	66307
2,4-Dichlorophenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
2,4-Dimethylphenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
4,6-Dinitro-2-methylphenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
2,4-Dinitrophenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
2,4-Dinitrotoluene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
2,6-Dinitrotoluene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Fluoranthene	ND	10	μg/L	1	3/25/2022 3:39:38 AM	66307
Fluorene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Hexachlorobenzene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Hexachlorobutadiene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Hexachloroethane	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Isophorone	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
1-Methylnaphthalene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
2-Methylnaphthalene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
2-Methylphenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
3+4-Methylphenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
N-Nitrosodimethylamine	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Naphthalene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
2-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
3-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
4-Nitroaniline	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Nitrobenzene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
2-Nitrophenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
4-Nitrophenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Pentachlorophenol	ND	20	μg/L	1	3/25/2022 3:39:38 AM	66307
Phenanthrene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Phenol	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Pyrene	ND	5.0	μg/L	1	3/25/2022 3:39:38 AM	66307
Pyridine	ND	10	μg/L	1	3/25/2022 3:39:38 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 55 of 100

CLIENT: CMB Environmental

Analytical Report

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-8M

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 11:23:00 AMLab ID:2203A30-014Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES						Analys	: DAM
1,2,4-Trichlorobenzene	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
2,4,5-Trichlorophenol	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
2,4,6-Trichlorophenol	ND	5.0		μg/L	1	3/25/2022 3:39:38 AM	66307
Surr: 2-Fluorophenol	23.7	29.4-87.7	S	%Rec	1	3/25/2022 3:39:38 AM	66307
Surr: Phenol-d5	26.3	28.5-64.7	S	%Rec	1	3/25/2022 3:39:38 AM	66307
Surr: 2,4,6-Tribromophenol	27.3	18.6-129		%Rec	1	3/25/2022 3:39:38 AM	66307
Surr: Nitrobenzene-d5	28.7	36.9-103	S	%Rec	1	3/25/2022 3:39:38 AM	66307
Surr: 2-Fluorobiphenyl	25.2	38.1-99.9	S	%Rec	1	3/25/2022 3:39:38 AM	66307
Surr: 4-Terphenyl-d14	96.7	48-155		%Rec	1	3/25/2022 3:39:38 AM	66307
EPA METHOD 8260B: VOLATILES						Analys	t: JR
Benzene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Toluene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Ethylbenzene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Methyl tert-butyl ether (MTBE)	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2,4-Trimethylbenzene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
1,3,5-Trimethylbenzene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2-Dichloroethane (EDC)	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2-Dibromoethane (EDB)	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Naphthalene	ND	2.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
1-Methylnaphthalene	ND	4.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
2-Methylnaphthalene	ND	4.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Acetone	ND	10		μg/L	1	3/28/2022 6:46:22 PM	R86782
Bromobenzene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Bromodichloromethane	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Bromoform	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Bromomethane	ND	3.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
2-Butanone	ND	10		μg/L	1	3/28/2022 6:46:22 PM	R86782
Carbon disulfide	ND	10		μg/L	1	3/28/2022 6:46:22 PM	R86782
Carbon Tetrachloride	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Chlorobenzene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Chloroethane	ND	2.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Chloroform	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Chloromethane	ND	3.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
2-Chlorotoluene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
4-Chlorotoluene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
cis-1,2-DCE	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
cis-1,3-Dichloropropene	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2-Dibromo-3-chloropropane	ND	2.0		μg/L	1	3/28/2022 6:46:22 PM	R86782
Dibromochloromethane	ND	1.0		μg/L	1	3/28/2022 6:46:22 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 56 of 100

CLIENT: CMB Environmental

Analytical Report

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-8M

Project: Energy Resources Corp West Lovington Collection Date: 3/16/2022 11:23:00 AM

Lab ID: 2203A30-014 Matrix: AQUEOUS Received Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,1-Dichloroethane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,1-Dichloroethene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,3-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
2,2-Dichloropropane	ND	2.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,1-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
Hexachlorobutadiene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
2-Hexanone	ND	10	μg/L	1	3/28/2022 6:46:22 PM	R86782
Isopropylbenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
4-Isopropyltoluene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
4-Methyl-2-pentanone	ND	10	μg/L	1	3/28/2022 6:46:22 PM	R86782
Methylene Chloride	ND	3.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
n-Butylbenzene	ND	3.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
n-Propylbenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
sec-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
Styrene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
tert-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
trans-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
Trichlorofluoromethane	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
Vinyl chloride	ND	1.0	μg/L	1	3/28/2022 6:46:22 PM	R86782
Xylenes, Total	ND	1.5	μg/L	1	3/28/2022 6:46:22 PM	R86782
Surr: 1,2-Dichloroethane-d4	88.7	70-130	%Rec	1	3/28/2022 6:46:22 PM	R86782
Surr: 4-Bromofluorobenzene	94.4	70-130	%Rec	1	3/28/2022 6:46:22 PM	R86782
Surr: Dibromofluoromethane	93.9	70-130	%Rec	1	3/28/2022 6:46:22 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 57 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-8M

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 11:23:00 AMLab ID:2203A30-014Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	101	70-130	%Rec	1	3/28/2022 6:46:22 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 58 of 100

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-8D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 2:05:00 PMLab ID:2203A30-015Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	40	5.0		mg/L	10	3/21/2022 7:02:58 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	780	10		µmhos/c	1	3/22/2022 3:01:58 PM	R86681
•	.00	10		μιτιτου/ σ	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS			_			Analyst:	
Total Dissolved Solids	488	40.0	D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst:	MRA
рН	7.80		Н	pH units	1	3/22/2022 3:01:58 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	DAM
Acenaphthene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Acenaphthylene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Aniline	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Anthracene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Azobenzene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Benz(a)anthracene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Benzo(a)pyrene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Benzo(b)fluoranthene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Benzo(k)fluoranthene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Benzoic acid	ND	20		μg/L	1	3/25/2022 4:20:49 AM	66307
Benzyl alcohol	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	3/25/2022 4:20:49 AM	66307
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Butyl benzyl phthalate	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Carbazole	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
4-Chloroaniline	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
2-Chloronaphthalene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
2-Chlorophenol	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Chrysene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Di-n-butyl phthalate	ND	10		μg/L	1	3/25/2022 4:20:49 AM	66307
Di-n-octyl phthalate	ND	20		μg/L	1	3/25/2022 4:20:49 AM	66307
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307
Dibenzofuran	ND	5.0		μg/L	1	3/25/2022 4:20:49 AM	66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 59 of 100

CLIENT: CMB Environmental

Lab ID:

Analytical Report

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-8D

Project: Energy Resources Corp West Lovington Collection Date: 3/16/2022 2:05:00 PM 2203A30-015 Matrix: AQUEOUS Received Date: 3/18/2022 10:10:00 AM

Result **RL Qual Units DF** Date Analyzed **Batch** Analyses **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM ND 1.2-Dichlorobenzene 5.0 μg/L 1 3/25/2022 4:20:49 AM 66307 1,3-Dichlorobenzene ND 5.0 μg/L 1 3/25/2022 4:20:49 AM 66307 ND 5.0 1,4-Dichlorobenzene μg/L 1 3/25/2022 4:20:49 AM 66307 3,3'-Dichlorobenzidine ND 5.0 μg/L 1 3/25/2022 4:20:49 AM 66307 Diethyl phthalate ND 10 1 3/25/2022 4:20:49 AM 66307 µg/L Dimethyl phthalate ND 10 µg/L 1 3/25/2022 4:20:49 AM 66307 ND 5.0 2,4-Dichlorophenol µg/L 1 3/25/2022 4:20:49 AM 66307 2,4-Dimethylphenol ND 5.0 μg/L 1 3/25/2022 4:20:49 AM 66307 4,6-Dinitro-2-methylphenol ND 5.0 μg/L 1 3/25/2022 4:20:49 AM 66307 2,4-Dinitrophenol ND 5.0 3/25/2022 4:20:49 AM 66307 μg/L 1 2,4-Dinitrotoluene ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 2.6-Dinitrotoluene ND 5.0 μg/L 1 3/25/2022 4:20:49 AM 66307 Fluoranthene ND 10 1 3/25/2022 4:20:49 AM µg/L 66307 Fluorene NΠ 5.0 1 3/25/2022 4:20:49 AM μg/L 66307 Hexachlorobenzene ND 5.0 μg/L 1 3/25/2022 4:20:49 AM 66307 Hexachlorobutadiene ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 Hexachlorocyclopentadiene ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 Hexachloroethane ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 ND 5.0 1 Indeno(1,2,3-cd)pyrene µg/L 3/25/2022 4:20:49 AM 66307 Isophorone ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 ND 1-Methylnaphthalene 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 2-Methylnaphthalene ND 5.0 1 66307 µg/L 3/25/2022 4:20:49 AM 2-Methylphenol ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 3+4-Methylphenol ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 N-Nitrosodi-n-propylamine ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 N-Nitrosodimethylamine ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 N-Nitrosodiphenylamine ND 1 5.0 µg/L 3/25/2022 4:20:49 AM 66307 Naphthalene ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 2-Nitroaniline ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 3-Nitroaniline ND 5.0 1 µg/L 3/25/2022 4:20:49 AM 66307 4-Nitroaniline ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 Nitrobenzene ND 5.0 μg/L 1 3/25/2022 4:20:49 AM 66307 2-Nitrophenol ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 4-Nitrophenol ND 1 5.0 μg/L 3/25/2022 4:20:49 AM 66307 Pentachlorophenol ND 1 20 µg/L 3/25/2022 4:20:49 AM 66307 Phenanthrene ND 5.0 1 3/25/2022 4:20:49 AM 66307 μg/L Phenol ND 5.0 µg/L 1 3/25/2022 4:20:49 AM 66307 Pyrene ND 1 5.0 μg/L 3/25/2022 4:20:49 AM 66307 Pyridine ND 10 μg/L 3/25/2022 4:20:49 AM 66307

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Е Estimated value
- Analyte detected below quantitation limits
- RL Reporting Limit

Page 60 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-8D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 2:05:00 PMLab ID:2203A30-015Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: DAM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	3/25/2022 4:20:49 AM	66307
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	3/25/2022 4:20:49 AM	66307
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	3/25/2022 4:20:49 AM	66307
Surr: 2-Fluorophenol	36.6	29.4-87.7	%Rec	1	3/25/2022 4:20:49 AM	66307
Surr: Phenol-d5	30.1	28.5-64.7	%Rec	1	3/25/2022 4:20:49 AM	66307
Surr: 2,4,6-Tribromophenol	74.8	18.6-129	%Rec	1	3/25/2022 4:20:49 AM	66307
Surr: Nitrobenzene-d5	43.5	36.9-103	%Rec	1	3/25/2022 4:20:49 AM	66307
Surr: 2-Fluorobiphenyl	40.5	38.1-99.9	%Rec	1	3/25/2022 4:20:49 AM	66307
Surr: 4-Terphenyl-d14	96.8	48-155	%Rec	1	3/25/2022 4:20:49 AM	66307
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Benzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Toluene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Ethylbenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Naphthalene	ND	2.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
2-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Acetone	ND	10	μg/L	1	3/28/2022 8:11:54 PM	R86782
Bromobenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Bromodichloromethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Bromoform	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Bromomethane	ND	3.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
2-Butanone	ND	10	μg/L	1	3/28/2022 8:11:54 PM	R86782
Carbon disulfide	ND	10	μg/L	1	3/28/2022 8:11:54 PM	R86782
Carbon Tetrachloride	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Chlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Chloroethane	ND	2.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Chloroform	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Chloromethane	ND	3.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
2-Chlorotoluene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
4-Chlorotoluene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
cis-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Dibromochloromethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
				_		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 61 of 100

Lab Order **2203A30**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 4/13/2022

CLIENT: CMB Environmental Client Sample ID: MW-8D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 2:05:00 PMLab ID:2203A30-015Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,1-Dichloroethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,1-Dichloroethene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,3-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
2,2-Dichloropropane	ND	2.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,1-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Hexachlorobutadiene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
2-Hexanone	ND	10	μg/L	1	3/28/2022 8:11:54 PM	R86782
Isopropylbenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
4-Isopropyltoluene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
4-Methyl-2-pentanone	ND	10	μg/L	1	3/28/2022 8:11:54 PM	R86782
Methylene Chloride	ND	3.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
n-Butylbenzene	ND	3.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
n-Propylbenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
sec-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Styrene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
tert-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
trans-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Trichlorofluoromethane	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Vinyl chloride	ND	1.0	μg/L	1	3/28/2022 8:11:54 PM	R86782
Xylenes, Total	ND	1.5	μg/L	1	3/28/2022 8:11:54 PM	R86782
Surr: 1,2-Dichloroethane-d4	88.7	70-130	%Rec	1	3/28/2022 8:11:54 PM	R86782
Surr: 4-Bromofluorobenzene	98.5	70-130	%Rec	1	3/28/2022 8:11:54 PM	R86782
Surr: Dibromofluoromethane	95.8	70-130	%Rec	1	3/28/2022 8:11:54 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 62 of 100

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-8D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 2:05:00 PMLab ID:2203A30-015Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	99.1	70-130	%Rec	1	3/28/2022 8:11:54 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 63 of 100

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-7S

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 3:05:00 PMLab ID:2203A30-016Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	LRN
Chloride	38	5.0		mg/L	10	3/21/2022 7:28:40 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	700	10		µmhos/c	1	3/22/2022 3:06:33 PM	R86681
•	700	10		piriirioo/o	•		
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	
Total Dissolved Solids	550	200	*D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst:	MRA
рН	7.61		Н	pH units	1	3/22/2022 3:06:33 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst:	JME
Acenaphthene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Acenaphthylene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Aniline	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Anthracene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Azobenzene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Benz(a)anthracene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Benzo(a)pyrene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Benzo(b)fluoranthene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Benzo(k)fluoranthene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Benzoic acid	ND	20		μg/L	1	4/1/2022 6:17:41 PM	66325
Benzyl alcohol	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	4/1/2022 6:17:41 PM	66325
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Butyl benzyl phthalate	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Carbazole	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
4-Chloroaniline	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
2-Chloronaphthalene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
2-Chlorophenol	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Chrysene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Di-n-butyl phthalate	ND	10		μg/L	1	4/1/2022 6:17:41 PM	66325
Di-n-octyl phthalate	ND	20		μg/L	1	4/1/2022 6:17:41 PM	66325
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325
Dibenzofuran	ND	5.0		μg/L	1	4/1/2022 6:17:41 PM	66325

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 64 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-7S

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 3:05:00 PMLab ID:2203A30-016Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: JME
1,2-Dichlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
1,3-Dichlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
1,4-Dichlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Diethyl phthalate	ND	10	μg/L	1	4/1/2022 6:17:41 PM	66325
Dimethyl phthalate	ND	10	μg/L	1	4/1/2022 6:17:41 PM	66325
2,4-Dichlorophenol	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
2,4-Dimethylphenol	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	4/1/2022 6:17:41 PM	66325
2,4-Dinitrophenol	ND	20	μg/L	1	4/1/2022 6:17:41 PM	66325
2,4-Dinitrotoluene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
2,6-Dinitrotoluene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Fluoranthene	ND	10	μg/L	1	4/1/2022 6:17:41 PM	66325
Fluorene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Hexachlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Hexachlorobutadiene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Hexachloroethane	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Isophorone	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
1-Methylnaphthalene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
2-Methylnaphthalene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
2-Methylphenol	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
3+4-Methylphenol	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
N-Nitrosodimethylamine	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Naphthalene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
2-Nitroaniline	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
3-Nitroaniline	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
4-Nitroaniline	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Nitrobenzene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
2-Nitrophenol	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
4-Nitrophenol	ND	10	μg/L	1	4/1/2022 6:17:41 PM	66325
Pentachlorophenol	ND	20	μg/L	1	4/1/2022 6:17:41 PM	66325
Phenanthrene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Phenol	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Pyrene	ND	5.0	μg/L	1	4/1/2022 6:17:41 PM	66325
Pyridine	ND	10	μg/L	1	4/1/2022 6:17:41 PM	66325

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 65 of 100

CLIENT: CMB Environmental

Analytical Report

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-7S

Project: Energy Resources Corp West Lovington Collection Date: 3/16/2022 3:05:00 PM

Lab ID: 2203A30-016 Matrix: AQUEOUS Received Date: 3/18/2022 10:10:00 AM

Result **RL Qual Units DF** Date Analyzed Analyses **Batch EPA METHOD 8270C: SEMIVOLATILES** Analyst: JME ND 1.2.4-Trichlorobenzene 5.0 μg/L 1 4/1/2022 6:17:41 PM 66325 2,4,5-Trichlorophenol ND 5.0 μg/L 4/1/2022 6:17:41 PM 66325 2,4,6-Trichlorophenol ND 5.0 μg/L 1 4/1/2022 6:17:41 PM 66325 Surr: 2-Fluorophenol %Rec 48.7 29.4-87.7 1 4/1/2022 6:17:41 PM 66325 Surr: Phenol-d5 37.1 28.5-64.7 %Rec 1 66325 4/1/2022 6:17:41 PM Surr: 2.4.6-Tribromophenol 57.1 18.6-129 %Rec 1 4/1/2022 6:17:41 PM 66325 Surr: Nitrobenzene-d5 58.3 36.9-103 %Rec 1 4/1/2022 6:17:41 PM 66325 Surr: 2-Fluorobiphenvl 58.6 38.1-99.9 %Rec 1 4/1/2022 6:17:41 PM 66325 Surr: 4-Terphenyl-d14 78.3 48-155 %Rec 1 4/1/2022 6:17:41 PM 66325 **EPA METHOD 8260B: VOLATILES** Analyst: JR 3/28/2022 8:40:33 PM Benzene ND 1.0 µg/L 1 R86782 Toluene ND 1 1.0 µg/L 3/28/2022 8:40:33 PM R86782 Ethylbenzene ND 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 Methyl tert-butyl ether (MTBE) ND 1.0 μg/L 1 3/28/2022 8:40:33 PM R86782 1,2,4-Trimethylbenzene ND 1.0 1 3/28/2022 8:40:33 PM R86782 μg/L 1,3,5-Trimethylbenzene ND 1 3/28/2022 8:40:33 PM R86782 1.0 µg/L ND 1,2-Dichloroethane (EDC) 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 1,2-Dibromoethane (EDB) ND 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 Naphthalene ND 2.0 1 3/28/2022 8:40:33 PM µg/L R86782 1-Methylnaphthalene ND 4.0 µg/L 1 3/28/2022 8:40:33 PM R86782 2-Methylnaphthalene ND 4.0 µg/L 1 3/28/2022 8:40:33 PM R86782 Acetone ND 10 µg/L 1 3/28/2022 8:40:33 PM R86782 Bromobenzene ND 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 Bromodichloromethane ND 1.0 1 µg/L 3/28/2022 8:40:33 PM R86782 Bromoform ND 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 **Bromomethane** ND 3.0 μg/L 1 3/28/2022 8:40:33 PM R86782 ND 10 1 3/28/2022 8:40:33 PM R86782 2-Butanone µg/L ND Carbon disulfide 10 µg/L 1 3/28/2022 8:40:33 PM R86782 Carbon Tetrachloride ND 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 Chlorobenzene ND 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 Chloroethane ND 2.0 µg/L 1 3/28/2022 8:40:33 PM R86782 ND Chloroform 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 Chloromethane ND 3.0 μg/L 1 3/28/2022 8:40:33 PM R86782 2-Chlorotoluene ND 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 4-Chlorotoluene ND 1.0 3/28/2022 8:40:33 PM µg/L 1 R86782 cis-1,2-DCE ND 1.0 µg/L 1 3/28/2022 8:40:33 PM R86782 cis-1,3-Dichloropropene ND 1.0 μg/L 1 3/28/2022 8:40:33 PM R86782 1,2-Dibromo-3-chloropropane ND 2.0 μg/L 1 3/28/2022 8:40:33 PM R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

ND

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value

1.0

- J Analyte detected below quantitation limits
- P Sample pH Not In Rang

µg/L

RL Reporting Limit

Page 66 of 100

R86782

3/28/2022 8:40:33 PM

Dibromochloromethane

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-7S

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 3:05:00 PMLab ID:2203A30-016Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,1-Dichloroethane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,1-Dichloroethene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,2-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,3-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
2,2-Dichloropropane	ND	2.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,1-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
Hexachlorobutadiene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
2-Hexanone	ND	10	μg/L	1	3/28/2022 8:40:33 PM	R86782
Isopropylbenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
4-Isopropyltoluene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
4-Methyl-2-pentanone	ND	10	μg/L	1	3/28/2022 8:40:33 PM	R86782
Methylene Chloride	ND	3.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
n-Butylbenzene	ND	3.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
n-Propylbenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
sec-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
Styrene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
tert-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
trans-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
Trichlorofluoromethane	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
Vinyl chloride	ND	1.0	μg/L	1	3/28/2022 8:40:33 PM	R86782
Xylenes, Total	ND	1.5	μg/L	1	3/28/2022 8:40:33 PM	R86782
Surr: 1,2-Dichloroethane-d4	88.2	70-130	%Rec	1	3/28/2022 8:40:33 PM	R86782
Surr: 4-Bromofluorobenzene	93.9	70-130	%Rec	1	3/28/2022 8:40:33 PM	R86782
Surr: Dibromofluoromethane	94.4	70-130	%Rec	1	3/28/2022 8:40:33 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 67 of 100

CLIENT: CMB Environmental

Analytical Report

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-7S

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 3:05:00 PMLab ID:2203A30-016Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qı	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	99.7	70-130	%Rec	1	3/28/2022 8:40:33 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 68 of 100

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-7D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 4:25:00 PMLab ID:2203A30-017Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: LRN
Chloride	34	5.0		mg/L	10	3/21/2022 7:54:23 PM	R86662
SM2510B: SPECIFIC CONDUCTANCE						Analyst:	MRA
Conductivity	640	10		µmhos/c	. 1	3/22/2022 3:11:07 PM	R86681
•	040	10		μιτιιο5/ο	'		
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	
Total Dissolved Solids	400	100	D	mg/L	1	3/24/2022 10:56:00 AM	66320
SM4500-H+B / 9040C: PH						Analyst	MRA
рН	7.71		Н	pH units	1	3/22/2022 3:11:07 PM	R86681
EPA METHOD 8270C: SEMIVOLATILES						Analyst	: JME
Acenaphthene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Acenaphthylene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Aniline	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Anthracene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Azobenzene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Benz(a)anthracene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Benzo(a)pyrene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Benzo(b)fluoranthene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Benzo(g,h,i)perylene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Benzo(k)fluoranthene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Benzoic acid	ND	20		μg/L	1	4/1/2022 6:59:25 PM	66325
Benzyl alcohol	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Bis(2-chloroethoxy)methane	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Bis(2-chloroethyl)ether	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Bis(2-chloroisopropyl)ether	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Bis(2-ethylhexyl)phthalate	ND	10		μg/L	1	4/1/2022 6:59:25 PM	66325
4-Bromophenyl phenyl ether	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Butyl benzyl phthalate	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Carbazole	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
4-Chloro-3-methylphenol	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
4-Chloroaniline	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
2-Chloronaphthalene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
2-Chlorophenol	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
4-Chlorophenyl phenyl ether	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Chrysene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Di-n-butyl phthalate	ND	10		μg/L	1	4/1/2022 6:59:25 PM	66325
Di-n-octyl phthalate	ND	20		μg/L	1	4/1/2022 6:59:25 PM	66325
Dibenz(a,h)anthracene	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325
Dibenzofuran	ND	5.0		μg/L	1	4/1/2022 6:59:25 PM	66325

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 69 of 100

Lab Order **2203A30**Date Reported: **4/13/2022**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-7D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 4:25:00 PMLab ID:2203A30-017Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	t: JME
1,2-Dichlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
1,3-Dichlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
1,4-Dichlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
3,3´-Dichlorobenzidine	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Diethyl phthalate	ND	10	μg/L	1	4/1/2022 6:59:25 PM	66325
Dimethyl phthalate	ND	10	μg/L	1	4/1/2022 6:59:25 PM	66325
2,4-Dichlorophenol	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
2,4-Dimethylphenol	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	4/1/2022 6:59:25 PM	66325
2,4-Dinitrophenol	ND	20	μg/L	1	4/1/2022 6:59:25 PM	66325
2,4-Dinitrotoluene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
2,6-Dinitrotoluene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Fluoranthene	ND	10	μg/L	1	4/1/2022 6:59:25 PM	66325
Fluorene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Hexachlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Hexachlorobutadiene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Hexachlorocyclopentadiene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Hexachloroethane	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Indeno(1,2,3-cd)pyrene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Isophorone	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
1-Methylnaphthalene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
2-Methylnaphthalene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
2-Methylphenol	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
3+4-Methylphenol	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
N-Nitrosodi-n-propylamine	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
N-Nitrosodimethylamine	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
N-Nitrosodiphenylamine	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Naphthalene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
2-Nitroaniline	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
3-Nitroaniline	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
4-Nitroaniline	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Nitrobenzene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
2-Nitrophenol	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
4-Nitrophenol	ND	10	μg/L	1	4/1/2022 6:59:25 PM	66325
Pentachlorophenol	ND	20	μg/L	1	4/1/2022 6:59:25 PM	66325
Phenanthrene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Phenol	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Pyrene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Pyridine	ND	10	μg/L	1	4/1/2022 6:59:25 PM	66325

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 70 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-7D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 4:25:00 PMLab ID:2203A30-017Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analys	st: JME
1,2,4-Trichlorobenzene	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
2,4,5-Trichlorophenol	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
2,4,6-Trichlorophenol	ND	5.0	μg/L	1	4/1/2022 6:59:25 PM	66325
Surr: 2-Fluorophenol	59.3	29.4-87.7	%Rec	1	4/1/2022 6:59:25 PM	66325
Surr: Phenol-d5	43.4	28.5-64.7	%Rec	1	4/1/2022 6:59:25 PM	66325
Surr: 2,4,6-Tribromophenol	74.9	18.6-129	%Rec	1	4/1/2022 6:59:25 PM	66325
Surr: Nitrobenzene-d5	68.0	36.9-103	%Rec	1	4/1/2022 6:59:25 PM	66325
Surr: 2-Fluorobiphenyl	64.9	38.1-99.9	%Rec	1	4/1/2022 6:59:25 PM	66325
Surr: 4-Terphenyl-d14	99.6	48-155	%Rec	1	4/1/2022 6:59:25 PM	66325
EPA METHOD 8260B: VOLATILES					Analys	it: JR
Benzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Toluene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Ethylbenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Naphthalene	ND	2.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
1-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
2-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Acetone	ND	10	μg/L	1	3/28/2022 9:09:01 PM	R8678
Bromobenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Bromodichloromethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Bromoform	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Bromomethane	ND	3.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
2-Butanone	ND	10	μg/L	1	3/28/2022 9:09:01 PM	R8678
Carbon disulfide	ND	10	μg/L	1	3/28/2022 9:09:01 PM	R8678
Carbon Tetrachloride	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Chlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Chloroethane	ND	2.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Chloroform	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Chloromethane	ND	3.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
2-Chlorotoluene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
4-Chlorotoluene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
cis-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/28/2022 9:09:01 PM	R8678
Dibromochloromethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R8678

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 71 of 100

Lab Order **2203A30**

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-7D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 4:25:00 PMLab ID:2203A30-017Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t: JR
Dibromomethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,1-Dichloroethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,1-Dichloroethene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,2-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,3-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
2,2-Dichloropropane	ND	2.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,1-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
Hexachlorobutadiene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
2-Hexanone	ND	10	μg/L	1	3/28/2022 9:09:01 PM	R86782
Isopropylbenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
4-Isopropyltoluene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
4-Methyl-2-pentanone	ND	10	μg/L	1	3/28/2022 9:09:01 PM	R86782
Methylene Chloride	ND	3.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
n-Butylbenzene	ND	3.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
n-Propylbenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
sec-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
Styrene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
tert-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
trans-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
Trichlorofluoromethane	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
Vinyl chloride	ND	1.0	μg/L	1	3/28/2022 9:09:01 PM	R86782
Xylenes, Total	ND	1.5	μg/L	1	3/28/2022 9:09:01 PM	R86782
Surr: 1,2-Dichloroethane-d4	86.6	70-130	%Rec	1	3/28/2022 9:09:01 PM	R86782
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	3/28/2022 9:09:01 PM	R86782
Surr: Dibromofluoromethane	96.0	70-130	%Rec	1	3/28/2022 9:09:01 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 72 of 100

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: MW-7D

Project:Energy Resources Corp West LovingtonCollection Date: 3/16/2022 4:25:00 PMLab ID:2203A30-017Matrix: AQUEOUSReceived Date: 3/18/2022 10:10:00 AM

Analyses	Result	RL Qu	ıal Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analy	st: JR
Surr: Toluene-d8	99.8	70-130	%Rec	1	3/28/2022 9:09:01 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 73 of 100

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: Trip Blank

Project: Energy Resources Corp West Lovington Collection Date:

Lab ID: 2203A30-018 **Matrix:** TRIP BLANK **Received Date:** 3/18/2022 10:10:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	:: JR
Benzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Toluene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Ethylbenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Naphthalene	ND	2.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
2-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Acetone	ND	10	μg/L	1	3/28/2022 9:37:34 PM	R86782
Bromobenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Bromodichloromethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Bromoform	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Bromomethane	ND	3.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
2-Butanone	ND	10	μg/L	1	3/28/2022 9:37:34 PM	R86782
Carbon disulfide	ND	10	μg/L	1	3/28/2022 9:37:34 PM	R86782
Carbon Tetrachloride	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Chlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Chloroethane	ND	2.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Chloroform	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Chloromethane	ND	3.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
2-Chlorotoluene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
4-Chlorotoluene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
cis-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Dibromochloromethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Dibromomethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,1-Dichloroethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,1-Dichloroethene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,3-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
2,2-Dichloropropane	ND	2.0	μg/L	1	3/28/2022 9:37:34 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 74 of 100

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: Trip Blank

Project: Energy Resources Corp West Lovington Collection Date:

Lab ID: 2203A30-018 **Matrix:** TRIP BLANK **Received Date:** 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	:: JR
1,1-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Hexachlorobutadiene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
2-Hexanone	ND	10	μg/L	1	3/28/2022 9:37:34 PM	R86782
Isopropylbenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
4-Isopropyltoluene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
4-Methyl-2-pentanone	ND	10	μg/L	1	3/28/2022 9:37:34 PM	R86782
Methylene Chloride	ND	3.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
n-Butylbenzene	ND	3.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
n-Propylbenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
sec-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Styrene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
tert-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
trans-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Trichlorofluoromethane	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Vinyl chloride	ND	1.0	μg/L	1	3/28/2022 9:37:34 PM	R86782
Xylenes, Total	ND	1.5	μg/L	1	3/28/2022 9:37:34 PM	R86782
Surr: 1,2-Dichloroethane-d4	92.3	70-130	%Rec	1	3/28/2022 9:37:34 PM	R86782
Surr: 4-Bromofluorobenzene	98.4	70-130	%Rec	1	3/28/2022 9:37:34 PM	R86782
Surr: Dibromofluoromethane	99.5	70-130	%Rec	1	3/28/2022 9:37:34 PM	R86782
Surr: Toluene-d8	98.8	70-130	%Rec	1	3/28/2022 9:37:34 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 75 of 100

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: Trip Blank 2

Project: Energy Resources Corp West Lovington Collection Date:

Lab ID: 2203A30-019 **Matrix:** TRIP BLANK **Received Date:** 3/18/2022 10:10:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JR
Benzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Toluene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Ethylbenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Naphthalene	ND	2.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
2-Methylnaphthalene	ND	4.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Acetone	ND	10	μg/L	1	3/28/2022 10:06:12 PM	R86782
Bromobenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Bromodichloromethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Bromoform	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Bromomethane	ND	3.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
2-Butanone	ND	10	μg/L	1	3/28/2022 10:06:12 PM	R86782
Carbon disulfide	ND	10	μg/L	1	3/28/2022 10:06:12 PM	R86782
Carbon Tetrachloride	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Chlorobenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Chloroethane	ND	2.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Chloroform	3.0	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Chloromethane	ND	3.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
2-Chlorotoluene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
4-Chlorotoluene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
cis-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Dibromochloromethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Dibromomethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,3-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,4-Dichlorobenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Dichlorodifluoromethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,1-Dichloroethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,1-Dichloroethene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,3-Dichloropropane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
2,2-Dichloropropane	ND	2.0	μg/L	1	3/28/2022 10:06:12 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 76 of 100

Lab Order 2203A30

Date Reported: 4/13/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: CMB Environmental Client Sample ID: Trip Blank 2

Project: Energy Resources Corp West Lovington Collection Date:

Lab ID: 2203A30-019 **Matrix:** TRIP BLANK **Received Date:** 3/18/2022 10:10:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	: JR
1,1-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Hexachlorobutadiene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
2-Hexanone	ND	10	μg/L	1	3/28/2022 10:06:12 PM	R86782
Isopropylbenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
4-Isopropyltoluene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
4-Methyl-2-pentanone	ND	10	μg/L	1	3/28/2022 10:06:12 PM	R86782
Methylene Chloride	ND	3.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
n-Butylbenzene	ND	3.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
n-Propylbenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
sec-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Styrene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
tert-Butylbenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
trans-1,2-DCE	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,1,1-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,1,2-Trichloroethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Trichloroethene (TCE)	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Trichlorofluoromethane	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
1,2,3-Trichloropropane	ND	2.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Vinyl chloride	ND	1.0	μg/L	1	3/28/2022 10:06:12 PM	R86782
Xylenes, Total	ND	1.5	μg/L	1	3/28/2022 10:06:12 PM	R86782
Surr: 1,2-Dichloroethane-d4	83.8	70-130	%Rec	1	3/28/2022 10:06:12 PM	R86782
Surr: 4-Bromofluorobenzene	99.0	70-130	%Rec	1	3/28/2022 10:06:12 PM	R86782
Surr: Dibromofluoromethane	96.7	70-130	%Rec	1	3/28/2022 10:06:12 PM	R86782
Surr: Toluene-d8	102	70-130	%Rec	1	3/28/2022 10:06:12 PM	R86782

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 77 of 100

Hall Environmental Analysis Laboratory, Inc.

2203A30 13-Apr-22

WO#:

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: MB	Samp	Туре: м е	BLK	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: PBW	Bato	ch ID: A8	6739	F	RunNo: 80	6739				
Prep Date:	Analysis	Date: 3/	24/2022	5	SeqNo: 30	062599	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.0030								
Chromium	ND	0.0060								
Nickel	ND	0.010								
Sodium	ND	1.0								
Zinc.	ND	0.010								

Sample ID: LLLCS	Samp	Type: LC:	SLL	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: BatchQC	Bato	ch ID: A86	6739	F	RunNo: 86	6739				
Prep Date:	Analysis	Date: 3/2	24/2022	9	SeqNo: 30	062600	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.0030	0.002000	0	86.2	50	150			
Chromium	ND	0.0060	0.006000	0	97.6	50	150			
Nickel	ND	0.010	0.005000	0	99.3	50	150			
Sodium	ND	1.0	0.5000	0	97.5	50	150			
Zinc	ND	0.010	0.01000	0	98.4	50	150			

Sample ID: LCS	Samp	Type: LC	S	Tes	tCode: EF	PA Method	200.7: Metals			
Client ID: LCSW	Bato	ch ID: A80	6739	F	RunNo: 86	6739				
Prep Date:	Analysis	Date: 3/2	24/2022	5	SeqNo: 30	062601	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.48	0.0030	0.5000	0	96.0	85	115			
Chromium	0.48	0.0060	0.5000	0	96.2	85	115			
Nickel	0.47	0.010	0.5000	0	93.3	85	115			
Sodium	51	1.0	50.00	0	102	85	115			
Zinc	0.48	0.010	0.5000	0	95.2	85	115			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 78 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: MB	SampType: MBLK	TestCode: EPA 200.8: Metal	ds
Client ID: PBW	Batch ID: A86914	RunNo: 86914	
Prep Date:	Analysis Date: 4/1/2022	SeqNo: 3070726 Uni	nits: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit H	lighLimit %RPD RPDLimit Qual
Antimony	ND 0.0010		
Arsenic	ND 0.0010		
Beryllium	ND 0.0010		
Cadmium	ND 0.00050		
Selenium	ND 0.0010		
Thallium	ND 0.00025		
Sample ID: LLLCS-TL	SampType: LCSLL	TestCode: EPA 200.8: Metal	ls
Client ID: BatchQC	Batch ID: A86914	RunNo: 86914	
Prep Date:	Analysis Date: 4/1/2022	SeqNo: 3070727 Uni	nits: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit H	lighLimit %RPD RPDLimit Qual
Thallium	0.00025 0.00025 0.0002500	0 100 50	150

Sample ID: LLLCS	Sam	оТуре: LC	SLL	Tes	tCode: EF	PA 200.8: N	letals			
Client ID: BatchQC	Bat	ch ID: A8	6914	F	RunNo: 86	6914				
Prep Date:	Analysis	Date: 4/	1/2022	5	SeqNo: 30	070728	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	ND	0.0010	0.001000	0	97.5	50	150			
Arsenic	ND	0.0010	0.001000	0	100	50	150			
Beryllium	ND	0.0010	0.001000	0	100	50	150			
Cadmium	0.00051	0.00050	0.0005000	0	101	50	150			
Selenium	0.0011	0.0010	0.001000	0	112	50	150			

Sample ID: LCS	SampTy	ype: LCS	3	Tes	tCode: EP	A 200.8: M				
Client ID: LCSW	Batch	ID: A86	914	R	RunNo: 86	914				
Prep Date:	Analysis Da	ate: 4/1	/2022	S	SeqNo: 30	70729	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony	0.024	0.0010	0.02500	0	96.0	85	115			
Arsenic	0.027	0.0010	0.02500	0	108	85	115			
Beryllium	0.025	0.0010	0.02500	0	98.8	85	115			
Cadmium	0.013 0	.00050	0.01250	0	101	85	115			
Selenium	0.027	0.0010	0.02500	0	107	85	115			
Thallium	0.012 0	.00025	0.01250	0	99.9	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 79 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: MB-66425 SampType: MBLK TestCode: EPA Method 245.1: Mercury

Client ID: PBW Batch ID: 66425 RunNo: 86790

Prep Date: 3/28/2022 Analysis Date: 3/28/2022 SeqNo: 3064662 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020

Sample ID: LCSLL-66425 SampType: LCSLL TestCode: EPA Method 245.1: Mercury

Client ID: BatchQC Batch ID: 66425 RunNo: 86790

Prep Date: 3/28/2022 Analysis Date: 3/28/2022 SeqNo: 3064663 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.00020 0.0001500 0 107 50 150

Sample ID: LCS-66425 SampType: LCS TestCode: EPA Method 245.1: Mercury

Client ID: LCSW Batch ID: 66425 RunNo: 86790

Prep Date: 3/28/2022 Analysis Date: 3/28/2022 SeqNo: 3064664 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.0049 0.00020 0.005000 0 98.0 85 115

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quantitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 80 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30**

13-Apr-22

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: MB SampType: mblk TestCode: EPA Method 300.0: Anions

Client ID: PBW Batch ID: R86662 RunNo: 86662

Prep Date: Analysis Date: 3/21/2022 SeqNo: 3059554 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 0.50

Sample ID: LCS SampType: Ics TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R86662 RunNo: 86662

Prep Date: Analysis Date: 3/21/2022 SeqNo: 3059555 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 4.8 0.50 5.000 0 95.1 90 110

Sample ID: 2203A30-001AMS SampType: ms TestCode: EPA Method 300.0: Anions

Client ID: W. Windmill Water Batch ID: R86662 RunNo: 86662

Prep Date: Analysis Date: 3/21/2022 SeqNo: 3059557 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 71 5.0 50.00 23.62 95.3 86.3 11

Sample ID: 2203A30-001AMSD SampType: msd TestCode: EPA Method 300.0: Anions

Client ID: W. Windmill Water Batch ID: R86662 RunNo: 86662

Prep Date: Analysis Date: 3/21/2022 SeqNo: 3059558 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 71 5.0 50.00 23.62 95.1 86.3 114 0.107 20

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 81 of 100

Hall Environmental Analysis Laboratory, Inc.

ND

ND

1.0

1.0

WO#: 2203A30 13-Apr-22

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: 100ng Ics	SampT	ype: LC	S	TestCode: EPA Method 8260B: VOLATILES							
Client ID: LCSW	Batch	n ID: R8 0	6690	F	RunNo: 86						
Prep Date:	Analysis D	Date: 3/2	23/2022	9	SeqNo: 30	061080	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	18	1.0	20.00	0	91.2	70	130				
Toluene	21	1.0	20.00	0	104	70	130				
Chlorobenzene	22	1.0	20.00	0	110	70	130				
1,1-Dichloroethene	18	1.0	20.00	0	91.0	70	130				
Trichloroethene (TCE)	16	1.0	20.00	0	79.2	70	130				
Surr: 1,2-Dichloroethane-d4	8.9		10.00		88.9	70	130				
Surr: 4-Bromofluorobenzene	9.7		10.00		97.2	70	130				
Surr: Dibromofluoromethane	9.0		10.00		89.8	70	130				
Surr: Toluene-d8	9.8		10.00		97.7	70	130				

Sample ID: mb	SampT	ype: MB	LK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	ID: R86	6690	F	RunNo: 86	6690				
Prep Date:	Analysis D	ate: 3/2	23/2022	5	SeqNo: 30	061105	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Ethylbenzene	ND	1.0
Methyl tert-butyl ether (MTBE)	ND	1.0
1,2,4-Trimethylbenzene	ND	1.0
1,3,5-Trimethylbenzene	ND	1.0
1,2-Dichloroethane (EDC)	ND	1.0
1,2-Dibromoethane (EDB)	ND	1.0
Naphthalene	ND	2.0
1-Methylnaphthalene	ND	4.0
2-Methylnaphthalene	ND	4.0
Acetone	ND	10
Bromobenzene	ND	1.0
Bromodichloromethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	3.0
2-Butanone	ND	10
Carbon disulfide	ND	10
Carbon Tetrachloride	ND	1.0
Chlorobenzene	ND	1.0
Chloroethane	ND	2.0
Chloroform	ND	1.0
Chloromethane	ND	3.0
2-Chlorotoluene	ND	1.0

Qualifiers:

Benzene

Toluene

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank
- Estimated value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 82 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: mb	Samp1	уре: МЕ	LK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batcl	n ID: R8	6690	F	RunNo: 86	6690				
Prep Date:	Analysis [Date: 3/2	23/2022	5	SeqNo: 30	061105	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 83 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: mb	Samp ⁻	Гуре: МЕ	BLK	Tes	stCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batc	h ID: R8	6690	F	RunNo: 86	6690				
Prep Date:	Analysis [Date: 3/ 3	23/2022	;	SeqNo: 30	061105	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.0		10.00		90.1	70	130			
Surr: 4-Bromofluorobenzene	9.4		10.00		93.9	70	130			
Surr: Dibromofluoromethane	9.3		10.00		92.6	70	130			
Surr: Toluene-d8	10		10.00		103	70	130			

Sample ID: mb	SampT	Гуре: МВ	LK	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batcl	h ID: R8 0	6782	F	RunNo: 86	6782				
Prep Date:	Analysis D	Date: 3/2	28/2022	5	SeqNo: 30	65298	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 84 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: mb	Samp ¹	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batc	h ID: R8	6782	F	RunNo: 80	6782				
Prep Date:	Analysis [Date: 3/ 2	28/2022	S	SeqNo: 30	065298	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.4		10.00		84.5	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 85 of 100

Hall Environmental Analysis Laboratory, Inc.

SampType: LCS4

WO#: **2203A30**

13-Apr-22

Client: CMB Environmental

Sample ID: 100ng lcs4

Project: Energy Resources Corp West Lovington

Sample ID: mb	SampT	уре: МЕ	BLK	Tes						
Client ID: PBW	Batch	Batch ID: R86782			RunNo: 86	5782				
Prep Date:	Analysis D)ate: 3/ 2	28/2022	5	SeqNo: 30	065298	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	9.9		10.00		99.5	70	130			
Surr: Dibromofluoromethane	9.4		10.00		93.5	70	130			
Surr: Toluene-d8	10		10.00		101	70	130			

TestCode: EPA Method 8260B: VOLATILES

'	•	••								
Client ID: BatchQC	Batcl	h ID: R8	6782	F	RunNo: 86	6782				
Prep Date:	Analysis [Date: 3/2	28/2022	5	SeqNo: 30	065317	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	88.4	70	130			
Toluene	20	1.0	20.00	0	99.1	70	130			
Ethylbenzene	20	1.0	20.00	0	100	70	130			
Methyl tert-butyl ether (MTBE)	37	1.0	40.00	0	92.3	70	130			
1,2,4-Trimethylbenzene	20	1.0	20.00	0	102	70	130			
1,3,5-Trimethylbenzene	20	1.0	20.00	0	98.7	70	130			
1,2-Dichloroethane (EDC)	18	1.0	20.00	0	90.3	70	130			
1,2-Dibromoethane (EDB)	20	1.0	20.00	0	97.9	70	130			
Naphthalene	19	2.0	20.00	0	96.3	70	130			
1-Methylnaphthalene	20	4.0	20.00	0	100	60.3	126			
2-Methylnaphthalene	20	4.0	20.00	0	98.7	59	127			
Acetone	30	10	40.00	0	74.8	53.2	126			
Bromobenzene	19	1.0	20.00	0	93.4	70	130			
Bromodichloromethane	19	1.0	20.00	0	96.8	70	130			
Bromoform	18	1.0	20.00	0	88.7	70	130			
Bromomethane	15	3.0	20.00	0	74.0	15	213			
2-Butanone	32	10	40.00	0	80.8	59.4	136			
Carbon disulfide	36	10	40.00	0	89.5	70	130			
Carbon Tetrachloride	18	1.0	20.00	0	90.5	70	130			
Chlorobenzene	20	1.0	20.00	0	102	70	130			
Chloroethane	19	2.0	20.00	0	92.7	69.5	131			
Chloroform	17	1.0	20.00	0	86.7	70	130			
Chloromethane	21	3.0	20.00	0	106	56.9	143			
2-Chlorotoluene	20	1.0	20.00	0	97.8	70	130			
4-Chlorotoluene	18	1.0	20.00	0	92.4	70	130			
cis-1,2-DCE	18	1.0	20.00	0	90.9	70	130			
cis-1,3-Dichloropropene	20	1.0	20.00	0	100	70	130			
1,2-Dibromo-3-chloropropane	17	2.0	20.00	0	84.4	62.3	135			
Dibromochloromethane	19	1.0	20.00	0	92.6	70	130			
Dibromomethane	20	1.0	20.00	0	102	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 86 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30**

13-Apr-22

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: 100ng lcs4	SampT	ype: LC	S4	Tes	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: BatchQC	Batch	n ID: R8	6782	F	RunNo: 86	6782				
Prep Date:	Analysis D	Date: 3/ 2	28/2022	9	SeqNo: 30	065317	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,2-Dichlorobenzene	19	1.0	20.00	0	93.3	70	130			
1,3-Dichlorobenzene	19	1.0	20.00	0	93.8	70	130			
1,4-Dichlorobenzene	19	1.0	20.00	0	94.3	70	130			
Dichlorodifluoromethane	22	1.0	20.00	0	110	41	159			
1,1-Dichloroethane	17	1.0	20.00	0	87.4	70	130			
1,1-Dichloroethene	18	1.0	20.00	0	91.2	70	130			
1,2-Dichloropropane	17	1.0	20.00	0	85.7	70	130			
1,3-Dichloropropane	20	1.0	20.00	0	98.2	70	130			
2,2-Dichloropropane	19	2.0	20.00	0	94.5	70	130			
1,1-Dichloropropene	18	1.0	20.00	0	90.7	70	130			
Hexachlorobutadiene	19	1.0	20.00	0	96.8	63.6	129			
2-Hexanone	36	10	40.00	0	90.1	63.2	130			
Isopropylbenzene	21	1.0	20.00	0	107	70	130			
4-Isopropyltoluene	19	1.0	20.00	0	97.0	70	130			
4-Methyl-2-pentanone	38	10	40.00	0	95.2	64.7	132			
Methylene Chloride	18	3.0	20.00	0	88.5	70	130			
n-Butylbenzene	20	3.0	20.00	0	98.6	70	130			
n-Propylbenzene	20	1.0	20.00	0	97.9	70	130			
sec-Butylbenzene	20	1.0	20.00	0	99.8	70	130			
Styrene	19	1.0	20.00	0	97.4	70	130			
tert-Butylbenzene	20	1.0	20.00	0	99.8	70	130			
1,1,1,2-Tetrachloroethane	21	1.0	20.00	0	104	70	130			
1,1,2,2-Tetrachloroethane	19	2.0	20.00	0	93.3	65.8	138			
Tetrachloroethene (PCE)	21	1.0	20.00	0	103	70	130			
trans-1,2-DCE	18	1.0	20.00	0	89.4	70	130			
trans-1,3-Dichloropropene	21	1.0	20.00	0	105	70	130			
1,2,3-Trichlorobenzene	19	1.0	20.00	0	95.7	70	130			
1,2,4-Trichlorobenzene	20	1.0	20.00	0	100	70	130			
1,1,1-Trichloroethane	17	1.0	20.00	0	86.1	70	130			
1,1,2-Trichloroethane	20	1.0	20.00	0	99.5	70	130			
Trichloroethene (TCE)	17	1.0	20.00	0	83.0	70	130			
Trichlorofluoromethane	19	1.0	20.00	0	95.5	70	130			
1,2,3-Trichloropropane	19	2.0	20.00	0	97.3	70	130			
Vinyl chloride	21	1.0	20.00	0	103	70	130			
Xylenes, Total	60	1.5	60.00	0	99.3	70	130			
Surr: 1,2-Dichloroethane-d4	8.8	1.5	10.00	U	87.6	70	130			
Surr: 4-Bromofluorobenzene	9.2		10.00		91.9					
Surr: A-Bromofluoropenzene Surr: Dibromofluoromethane			10.00		89.7	70 70	130			
Surr: Dibromotiuorometnane Surr: Toluene-d8	9.0					70 70	130			
ouii. Toluene-uŏ	9.7		10.00		96.6	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 87 of 100

Hall Environmental Analysis Laboratory, Inc.

2203A30 13-Apr-22

WO#:

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: mb-66307 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 66307 RunNo: 86737 Units: µg/L Prep Date: 3/22/2022 Analysis Date: 3/24/2022 SeqNo: 3062572 **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Acenaphthene ND 5.0 Acenaphthylene ND 5.0 ND Aniline 5.0 Anthracene ND 5.0 Azobenzene ND 5.0 ND Benz(a)anthracene 5.0 Benzo(a)pyrene ND 5.0 Benzo(b)fluoranthene ND 5.0 Benzo(g,h,i)perylene ND 5.0 ND Benzo(k)fluoranthene 5.0 Benzoic acid ND 20 5.0 Benzyl alcohol ND Bis(2-chloroethoxy)methane ND 5.0 Bis(2-chloroethyl)ether ND 5.0 Bis(2-chloroisopropyl)ether ND 5.0 Bis(2-ethylhexyl)phthalate ND 10 ND 4-Bromophenyl phenyl ether 5.0 Butyl benzyl phthalate ND 5.0 Carbazole ND 5.0 4-Chloro-3-methylphenol ND 5.0 ND 4-Chloroaniline 5.0 2-Chloronaphthalene ND 5.0 2-Chlorophenol ND 5.0 ND 5.0 4-Chlorophenyl phenyl ether Chrysene ND 5.0 ND 10 Di-n-butyl phthalate Di-n-octyl phthalate ND 20 Dibenz(a,h)anthracene ND 5.0 Dibenzofuran ND 5.0 1,2-Dichlorobenzene ND 5.0 1.3-Dichlorobenzene ND 5.0 ND 5.0 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine ND 5.0 Diethyl phthalate ND 10 ND 10 Dimethyl phthalate 2,4-Dichlorophenol ND 5.0 2,4-Dimethylphenol ND 5.0 4,6-Dinitro-2-methylphenol ND 5.0 2,4-Dinitrophenol ND 5.0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 88 of 100

Hall Environmental Analysis Laboratory, Inc.

2203A30 13-Apr-22

WO#:

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: mb-66307	SampTy	pe: MBLK	Tes	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch I	ID: 66307	I	RunNo: 86737						
Prep Date: 3/22/2022		ite: 3/24/2022		SeqNo: 3062572	Units: µg/L					
Analyte	Result	PQL SPK valu		%REC LowLim		%RPD	RPDLimit	Qual		
2,4-Dinitrotoluene	ND	5.0								
2,6-Dinitrotoluene	ND	5.0								
Fluoranthene	ND	10								
Fluorene	ND	5.0								
Hexachlorobenzene	ND	5.0								
Hexachlorobutadiene	ND	5.0								
Hexachlorocyclopentadiene	ND	5.0								
Hexachloroethane	ND	5.0								
Indeno(1,2,3-cd)pyrene	ND	5.0								
Isophorone	ND	5.0								
1-Methylnaphthalene	ND	5.0								
2-Methylnaphthalene	ND	5.0								
2-Methylphenol	ND	5.0								
3+4-Methylphenol	ND	5.0								
N-Nitrosodi-n-propylamine	ND	5.0								
N-Nitrosodimethylamine	ND	5.0								
N-Nitrosodiphenylamine	ND	5.0								
Naphthalene	ND	5.0								
2-Nitroaniline	ND	5.0								
3-Nitroaniline	ND	5.0								
4-Nitroaniline	ND	5.0								
Nitrobenzene	ND	5.0								
2-Nitrophenol	ND	5.0								
4-Nitrophenol	ND	5.0								
Pentachlorophenol	ND	20								
Phenanthrene	ND	5.0								
Phenol	ND	5.0								
Pyrene	ND	5.0								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	5.0								
2,4,5-Trichlorophenol	ND	5.0								
2,4,6-Trichlorophenol	ND	5.0								
Surr: 2-Fluorophenol	110	200.0		56.7 29						
Surr: Phenol-d5	86	200.0		43.0 28						
Surr: 2,4,6-Tribromophenol	160	200.0		79.5 18						
Surr: Nitrobenzene-d5	64	100.0		64.3 36						
Surr: 2-Fluorobiphenyl	65	100.0		65.2 38						
Surr: 4-Terphenyl-d14	97	100.0)	96.7	8 155					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 89 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: Ics-66307	Samp	Гуре: LC :	s	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: LCSW	Batch ID: 66307			RunNo: 86737						
Prep Date: 3/22/2022	Analysis Date: 3/24/2022			SeqNo: 3062573 Units:						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	75	5.0	100.0	0	75.5	28	101			
4-Chloro-3-methylphenol	150	5.0	200.0	0	75.8	28.3	103			
2-Chlorophenol	140	5.0	200.0	0	69.5	29.3	105			
1,4-Dichlorobenzene	60	5.0	100.0	0	60.1	15	87.6			
2,4-Dinitrotoluene	60	5.0	100.0	0	59.5	23.6	90.9			
N-Nitrosodi-n-propylamine	75	5.0	100.0	0	74.5	23.1	94.6			
4-Nitrophenol	92	5.0	200.0	0	46.1	15	77			
Pentachlorophenol	140	20	200.0	0	70.1	21	111			
Phenol	82	5.0	200.0	0	40.9	16.8	70.5			
Pyrene	91	5.0	100.0	0	90.7	30.5	129			
1,2,4-Trichlorobenzene	63	5.0	100.0	0	62.8	15	88.2			
Surr: 2-Fluorophenol	110		200.0		53.8	29.4	87.7			
Surr: Phenol-d5	81		200.0		40.5	28.5	64.7			
Surr: 2,4,6-Tribromophenol	170		200.0		85.8	18.6	129			
Surr: Nitrobenzene-d5	66		100.0		65.9	36.9	103			
Surr: 2-Fluorobiphenyl	67		100.0		66.7	38.1	99.9			
Surr: 4-Terphenyl-d14	99		100.0		99.0	48	155			

Sample ID: Icsd-66307	D: Icsd-66307 SampType: LCSD				TestCode: EPA Method 8270C: Semivolatiles						
Client ID: LCSS02	Batch ID: 66307 Analysis Date: 3/24/2022			RunNo: 86737							
Prep Date: 3/22/2022 Analyte				SeqNo: 3062574			Units: µg/L				
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	59	5.0	100.0	0	59.3	28	101	24.0	41.2		
4-Chloro-3-methylphenol	120	5.0	200.0	0	60.5	28.3	103	22.4	44.7		
2-Chlorophenol	110	5.0	200.0	0	57.5	29.3	105	19.0	35.6		
1,4-Dichlorobenzene	51	5.0	100.0	0	51.3	15	87.6	15.7	30.4		
2,4-Dinitrotoluene	54	5.0	100.0	0	53.8	23.6	90.9	10.1	53.1		
N-Nitrosodi-n-propylamine	61	5.0	100.0	0	60.6	23.1	94.6	20.6	31.1		
4-Nitrophenol	90	5.0	200.0	0	45.2	15	77	1.93	52.4		
Pentachlorophenol	140	20	200.0	0	70.5	21	111	0.603	71.6		
Phenol	67	5.0	200.0	0	33.4	16.8	70.5	20.2	37.2		
Pyrene	93	5.0	100.0	0	92.9	30.5	129	2.44	51.3		
1,2,4-Trichlorobenzene	50	5.0	100.0	0	50.0	15	88.2	22.7	31.8		
Surr: 2-Fluorophenol	88		200.0		44.1	29.4	87.7	0	0		
Surr: Phenol-d5	69		200.0		34.5	28.5	64.7	0	0		
Surr: 2,4,6-Tribromophenol	140		200.0		71.4	18.6	129	0	0		
Surr: Nitrobenzene-d5	54		100.0		54.5	36.9	103	0	0		
Surr: 2-Fluorobiphenyl	54		100.0		53.9	38.1	99.9	0	0		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 90 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30**

13-Apr-22

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: Icsd-66307 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles

Client ID: LCSS02 Batch ID: 66307 RunNo: 86737

Prep Date: 3/22/2022 Analysis Date: 3/24/2022 SeqNo: 3062574 Units: µg/L

SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual Surr: 4-Terphenyl-d14 100 100.0 102 48 155 n 0

TestCode: EPA Method 8270C: Semivolatiles Sample ID: mb-66325 SampType: MBLK PBW Client ID: Batch ID: 66325 RunNo: 86930 Prep Date: 3/22/2022 Analysis Date: 4/1/2022 SeqNo: 3071396 Units: µq/L PQL SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result LowLimit HighLimit Qual Acenaphthene ND 5.0 Acenaphthylene ND 5.0 Aniline ND 5.0 Anthracene ND 5.0 ND Azobenzene 5.0 Benz(a)anthracene ND 5.0 ND 5.0 Benzo(a)pyrene Benzo(b)fluoranthene ND 5.0 Benzo(g,h,i)perylene ND 5.0 Benzo(k)fluoranthene ND 5.0 Benzoic acid ND 20 ND Benzyl alcohol 5.0 Bis(2-chloroethoxy)methane ND 5.0 Bis(2-chloroethyl)ether ND 5.0 Bis(2-chloroisopropyl)ether ND 5.0 Bis(2-ethylhexyl)phthalate ND 10 4-Bromophenyl phenyl ether ND 5.0 Butyl benzyl phthalate ND 5.0 Carbazole ND 5.0 4-Chloro-3-methylphenol ND 5.0 4-Chloroaniline ND 5.0 2-Chloronaphthalene ND 5.0 ND 2-Chlorophenol 5.0 4-Chlorophenyl phenyl ether ND 5.0 Chrysene ND 5.0 Di-n-butyl phthalate ND 10 ND 20 Di-n-octyl phthalate Dibenz(a,h)anthracene ND 5.0 ND 5.0 Dibenzofuran 1,2-Dichlorobenzene ND 5.0 1,3-Dichlorobenzene ND 5.0 1.4-Dichlorobenzene ND 5.0

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 91 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30**

13-Apr-22

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: mb-66325	SampT	ype: MBL	K	Tes	tCode: EP	PA Method	8270C: Semiv	olatiles		
Client ID: PBW	Batch	ID: 6632	5	F	RunNo: 86	6930				
Prep Date: 3/22/2022	Analysis D				SeqNo: 30		Units: µg/L			
Analyte	Result	PQL :	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
3,3'-Dichlorobenzidine	ND	5.0								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	5.0								
2,4-Dimethylphenol	ND	5.0								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								
2,4-Dinitrotoluene	ND	5.0								
2,6-Dinitrotoluene	ND	5.0								
Fluoranthene	ND	10								
Fluorene	ND	5.0								
Hexachlorobenzene	ND	5.0								
Hexachlorobutadiene	ND	5.0								
Hexachlorocyclopentadiene	ND	5.0								
Hexachloroethane	ND	5.0								
Indeno(1,2,3-cd)pyrene	ND	5.0								
Isophorone	ND	5.0								
1-Methylnaphthalene	ND	5.0								
2-Methylnaphthalene	ND	5.0								
2-Methylphenol	ND	5.0								
3+4-Methylphenol	ND	5.0								
N-Nitrosodi-n-propylamine	ND	5.0								
N-Nitrosodimethylamine	ND	5.0								
N-Nitrosodiphenylamine	ND	5.0								
Naphthalene	ND	5.0								
2-Nitroaniline	ND	5.0								
3-Nitroaniline	ND	5.0								
4-Nitroaniline	ND	5.0								
Nitrobenzene	ND	5.0								
2-Nitrophenol	ND	5.0								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	5.0								
Phenol	ND	5.0								
Pyrene	ND	5.0								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	5.0								
2,4,5-Trichlorophenol	ND	5.0								
2,4,6-Trichlorophenol	ND	5.0								
2, 1,0 Thornorophonol	ND	5.0								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 92 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: mb-66325	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8270C: Semiv	olatiles		
Client ID: PBW	Batch	ID: 663	325	F	RunNo: 86	6930				
Prep Date: 3/22/2022	Analysis D	ate: 4/	1/2022	9	SeqNo: 30	071396	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	120		200.0		61.7	29.4	87.7			
Surr: Phenol-d5	95		200.0		47.4	28.5	64.7			
Surr: 2,4,6-Tribromophenol	120		200.0		61.6	18.6	129			
Surr: Nitrobenzene-d5	65		100.0		64.8	36.9	103			
Surr: 2-Fluorobiphenyl	60		100.0		60.1	38.1	99.9			
Surr: 4-Terphenyl-d14	98		100.0		97.6	48	155			

Sample ID: Ics-66325	SampT	ype: LC	S	Tes	tCode: EP	A Method	8270C: Semiv	olatiles		
Client ID: LCSW	Batch	n ID: 663	325	F	RunNo: 86	930				
Prep Date: 3/22/2022	Analysis D	ate: 4/ 1	1/2022	5	SeqNo: 30	71397	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	48	5.0	100.0	0	47.5	28	101			
4-Chloro-3-methylphenol	62	5.0	100.0	0	62.1	28.3	103			
2-Chlorophenol	56	5.0	100.0	0	56.4	29.3	105			
1,4-Dichlorobenzene	22	5.0	100.0	0	22.0	15	87.6			
2,4-Dinitrotoluene	69	5.0	100.0	0	68.9	23.6	90.9			
N-Nitrosodi-n-propylamine	62	5.0	100.0	0	62.2	23.1	94.6			
4-Nitrophenol	47	10	100.0	0	46.9	15	77			
Pentachlorophenol	55	20	100.0	0	54.8	21	111			
Phenol	38	5.0	100.0	0	37.6	16.8	70.5			
Pyrene	88	5.0	100.0	0	87.9	30.5	129			
1,2,4-Trichlorobenzene	20	5.0	100.0	0	20.2	15	88.2			
Surr: 2-Fluorophenol	150		300.0		49.4	29.4	87.7			
Surr: Phenol-d5	120		300.0		40.1	28.5	64.7			
Surr: 2,4,6-Tribromophenol	230		300.0		75.8	18.6	129			
Surr: Nitrobenzene-d5	110		200.0		56.8	36.9	103			
Surr: 2-Fluorobiphenyl	89		200.0		44.4	38.1	99.9			
Surr: 4-Terphenyl-d14	170		200.0		86.3	48	155			

Sample ID: Icsr-66325	SampT	SampType: LCSD			TestCode: EPA Method 8270C: Semivolatiles						
Client ID: LCSS02	Batch	1D: 663	325	F	RunNo: 80	6930					
Prep Date:	Analysis D	ate: 4/ 1	1/2022	9	SeqNo: 30	071398	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	47	5.0	100.0	0	47.3	28	101	0.519	41.2		
4-Chloro-3-methylphenol	63	5.0	100.0	0	62.5	28.3	103	0.721	44.7		
2-Chlorophenol	57	5.0	100.0	0	56.9	29.3	105	0.771	35.6		
1,4-Dichlorobenzene	23	5.0	100.0	0	23.4	15	87.6	6.30	30.4		
2,4-Dinitrotoluene	70	5.0	100.0	0	69.7	23.6	90.9	1.29	53.1		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 93 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: Icsr-66325	SampT	ype: LC :	SD	Tes	tCode: EF	PA Method	8270C: Semiv	olatiles		
Client ID: LCSS02	Batch	Batch ID: 66325			RunNo: 86					
Prep Date:	Analysis D	Date: 4/ 1	1/2022	9	SeqNo: 30	71398	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
N-Nitrosodi-n-propylamine	64	5.0	100.0	0	63.7	23.1	94.6	2.52	31.1	
4-Nitrophenol	47	10	100.0	0	47.5	15	77	1.13	52.4	
Pentachlorophenol	55	20	100.0	0	54.7	21	111	0.187	71.6	
Phenol	36	5.0	100.0	0	36.0	16.8	70.5	4.33	37.2	
Pyrene	90	5.0	100.0	0	89.5	30.5	129	1.84	51.3	
1,2,4-Trichlorobenzene	20	5.0	100.0	0	20.4	15	88.2	0.904	31.8	
Surr: 2-Fluorophenol	150		300.0		50.6	29.4	87.7	0	0	
Surr: Phenol-d5	120		300.0		39.6	28.5	64.7	0	0	
Surr: 2,4,6-Tribromophenol	230		300.0		77.0	18.6	129	0	0	
Surr: Nitrobenzene-d5	120		200.0		58.1	36.9	103	0	0	
Surr: 2-Fluorobiphenyl	85		200.0		42.3	38.1	99.9	0	0	
Surr: 4-Terphenyl-d14	170		200.0		83.2	48	155	0	0	

Sample ID: Ics-66355	SampT	ype: LC	S	Tes	tCode: EF	olatiles				
Client ID: LCSW	Batch	n ID: 663	355	F	RunNo: 86	6930				
Prep Date: 3/23/2022	Analysis D	oate: 4/	1/2022	5	SeqNo: 30	71399	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	110		200.0	_	52.9	29.4	87.7			
Surr: Phenol-d5	82		200.0		41.1	28.5	64.7			
Surr: 2,4,6-Tribromophenol	110		200.0		57.4	18.6	129			
Surr: Nitrobenzene-d5	65		100.0		65.2	36.9	103			
Surr: 2-Fluorobiphenyl	61		100.0		60.7	38.1	99.9			
Surr: 4-Terphenyl-d14	88		100.0		88.5	48	155			

Sample ID: Icsd-66355	SampT	ype: LC	SD	Tes	tCode: EF	olatiles				
Client ID: LCSS02	Batch	ID: 663	355	F	RunNo: 86	3930				
Prep Date: 3/23/2022	Analysis D	ate: 4/	1/2022	5	SeqNo: 30)71400	Units: %Rec			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	81		200.0	<u>, </u>	40.3	29.4	87.7	0	0	
Surr: Phenol-d5	67		200.0		33.7	28.5	64.7	0	0	
Surr: 2,4,6-Tribromophenol	120		200.0		59.1	18.6	129	0	0	
Surr: Nitrobenzene-d5	55		100.0		55.4	36.9	103	0	0	
Surr: 2-Fluorobiphenyl	50		100.0		50.0	38.1	99.9	0	0	
Surr: 4-Terphenyl-d14	90		100.0		89.7	48	155	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 94 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: Ics-66325	Samp	SampType: LCS4 TestCode: EPA Method 8270C: Semivolatiles											
Client ID: BatchQC	Batcl	h ID: 663	325	F	RunNo: 86	6930							
Prep Date: 3/22/2022	Analysis [Date: 4/ 1	1/2022	\$	SeqNo: 30	071466	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Acenaphthene	48	5.0	100.0	0	47.5	35.1	135						
Acenaphthylene	49	5.0	100.0	0	49.0	36.1	131						
Aniline	55	5.0	100.0	0	54.7	15	128						
Anthracene	79	5.0	100.0	0	79.2	59.2	129						
Azobenzene	70	5.0	100.0	0	69.5	54.7	134						
Benz(a)anthracene	90	5.0	100.0	0	89.6	60.3	130						
Benzo(a)pyrene	87	5.0	100.0	0	86.9	60.6	145						
Benzo(b)fluoranthene	88	5.0	100.0	0	87.6	59.3	146						
Benzo(g,h,i)perylene	86	5.0	100.0	0	86.2	57.6	146						
Benzo(k)fluoranthene	86	5.0	100.0	0	86.3	55	151						
Benzoic acid	45	20	100.0	0	44.6	21.8	98.2						
Benzyl alcohol	63	5.0	100.0	0	63.0	22.7	145						
Bis(2-chloroethoxy)methane	57	5.0	100.0	0	56.9	25.2	134						
Bis(2-chloroethyl)ether	61	5.0	100.0	0	61.1	19.8	141						
Bis(2-chloroisopropyl)ether	56	5.0	100.0	0	56.1	16.1	137						
Bis(2-ethylhexyl)phthalate	90	10	100.0	0	90.2	69	132						
-Bromophenyl phenyl ether	71	5.0	100.0	0	71.0	52.1	138						
Butyl benzyl phthalate	90	5.0	100.0	0	90.0	70.1	128						
Carbazole	75	5.0	100.0	0	75.4	63.9	128						
I-Chloro-3-methylphenol	62	5.0	100.0	0	62.1	53.9	129						
-Chloroaniline	59	5.0	100.0	0	59.0	19.4	143						
2-Chloronaphthalene	38	5.0	100.0	0	38.1	25.6	133						
2-Chlorophenol	56	5.0	100.0	0	56.4	16.1	144						
I-Chlorophenyl phenyl ether	61	5.0	100.0	0	60.6	49	131						
Chrysene	90	5.0	100.0	0	89.6	60.9	135						
Di-n-butyl phthalate	83	10	100.0	0	82.9	63.2	136						
Di-n-octyl phthalate	92	20	100.0	0	91.6	67.9	132						
Dibenz(a,h)anthracene	84	5.0	100.0	0	84.1	59.5	145						
Dibenzofuran	58	5.0	100.0	0	58.0	40.2	136						
,2-Dichlorobenzene	23	5.0	100.0	0	23.3	15	106						
1,3-Dichlorobenzene	21	5.0	100.0	0	21.4	15	100						
1,4-Dichlorobenzene	22	5.0	100.0	0	22.0	15	99.1						
3,3'-Dichlorobenzidine	ND	5.0	100.0	0	4.28	72.3	127			S			
Diethyl phthalate	77	10	100.0	0	77.3	55.9	140						
Dimethyl phthalate	68	10	100.0	0	67.8	57.1	133						
2,4-Dichlorophenol	59	5.0	100.0	0	58.7	24.2	138						
2,4-Dimethylphenol	47	5.0	100.0	0	47.1	23.3	135						
4,6-Dinitro-2-methylphenol	 77	20	100.0	0	77.1	45.4	138						
2,4-Dinitrophenol	59	20	100.0	0	59.2	44.4	126						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 95 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: Ics-66325	SampT	ype: LC	S4	Tes	tCode: EF	PA Method	8270C: Semiv	olatiles		
Client ID: BatchQC	Batch	ID: 663	325	F	RunNo: 80	6930				
Prep Date: 3/22/2022	Analysis D	ate: 4/ 1	1/2022	5	SeqNo: 30	071466	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	69	5.0	100.0	0	68.9	63.8	136			
2,6-Dinitrotoluene	59	5.0	100.0	0	59.1	55.8	135			
Fluoranthene	83	10	100.0	0	83.3	63.9	137			
Fluorene	62	5.0	100.0	0	61.9	51.8	131			
Hexachlorobenzene	68	5.0	100.0	0	68.0	43.7	146			
Hexachlorobutadiene	13	5.0	100.0	0	12.9	15	109			S
Hexachlorocyclopentadiene	21	5.0	100.0	0	20.8	15	112			
Hexachloroethane	16	5.0	100.0	0	16.0	15	89.4			
Indeno(1,2,3-cd)pyrene	83	5.0	100.0	0	83.1	61.6	140			
Isophorone	62	5.0	100.0	0	61.5	24.8	121			
1-Methylnaphthalene	31	5.0	100.0	0	31.0	32.9	124			S
2-Methylnaphthalene	30	5.0	100.0	0	29.6	20.4	129			
2-Methylphenol	57	5.0	100.0	0	56.6	18.7	143			
3+4-Methylphenol	58	5.0	100.0	0	57.8	19.4	138			
N-Nitrosodi-n-propylamine	62	5.0	100.0	0	62.2	22.3	137			
N-Nitrosodimethylamine	58	5.0	100.0	0	58.0	15	124			
N-Nitrosodiphenylamine	65	5.0	100.0	0	64.5	54.5	131			
Naphthalene	31	5.0	100.0	0	31.0	15	124			
2-Nitroaniline	64	5.0	100.0	0	64.3	55.1	134			
3-Nitroaniline	69	5.0	100.0	0	68.5	15	229			
4-Nitroaniline	75	5.0	100.0	0	74.8	63.3	136			
Nitrobenzene	60	5.0	100.0	0	59.5	21.8	134			
2-Nitrophenol	54	5.0	100.0	0	54.1	21.4	140			
4-Nitrophenol	47	10	100.0	0	46.9	39.7	84.3			
Pentachlorophenol	55	20	100.0	0	54.8	52.6	146			
Phenanthrene	80	5.0	100.0	0	79.9	63.1	130			
Phenol	38	5.0	100.0	0	37.6	15	88.4			
Pyrene	88	5.0	100.0	0	87.9	59.5	135			
Pyridine	36	10	100.0	0	36.0	15	116			
1,2,4-Trichlorobenzene	20	5.0	100.0	0	20.2	15	115			
2,4,5-Trichlorophenol	53	5.0	100.0	0	53.4	47.2	132			
2,4,6-Trichlorophenol	53	5.0	100.0	0	52.5	41.7	134			
Surr: 2-Fluorophenol	150		300.0		49.4	29.4	87.7			
Surr: Phenol-d5	120		300.0		40.1	28.5	64.7			
Surr: 2,4,6-Tribromophenol	230		300.0		75.8	18.6	129			
Surr: Nitrobenzene-d5	110		200.0		56.8	36.9	103			
Surr: 2-Fluorobiphenyl	89		200.0		44.4	38.1	99.9			
Surr: 4-Terphenyl-d14	170		200.0		86.3	48	155			
- r - J										

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 96 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: Icsr-66325	Samp	SampType: LCSD4 TestCode: EPA Method 8270C: Semivolatiles									
Client ID: BatchQC	Batcl	h ID: 663	325	F	RunNo: 86	6930					
Prep Date:	Analysis [Date: 4/ 1	1/2022	9	SeqNo: 30	071467	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	47	5.0	100.0	0	47.3	35.1	135	0.519	20		
Acenaphthylene	47	5.0	100.0	0	47.2	36.1	131	3.56	20		
Aniline	53	5.0	100.0	0	53.3	15	128	2.51	20		
Anthracene	81	5.0	100.0	0	81.3	59.2	129	2.65	20		
Azobenzene	73	5.0	100.0	0	72.8	54.7	134	4.57	20		
Benz(a)anthracene	88	5.0	100.0	0	87.6	60.3	130	2.25	20		
Benzo(a)pyrene	88	5.0	100.0	0	88.3	60.6	145	1.56	20		
Benzo(b)fluoranthene	87	5.0	100.0	0	87.2	59.3	146	0.415	20		
Benzo(g,h,i)perylene	87	5.0	100.0	0	87.2	57.6	146	1.09	20		
Benzo(k)fluoranthene	90	5.0	100.0	0	89.6	55	151	3.75	20		
Benzoic acid	45	20	100.0	0	44.9	21.8	98.2	0.822	20		
Benzyl alcohol	65	5.0	100.0	0	64.8	22.7	145	2.78	20		
Bis(2-chloroethoxy)methane	58	5.0	100.0	0	57.8	25.2	134	1.62	20		
Bis(2-chloroethyl)ether	60	5.0	100.0	0	60.3	19.8	141	1.25	20		
Bis(2-chloroisopropyl)ether	54	5.0	100.0	0	54.5	16.1	137	2.95	20		
Bis(2-ethylhexyl)phthalate	92	10	100.0	0	92.0	69	132	2.00	20		
1-Bromophenyl phenyl ether	73	5.0	100.0	0	73.4	52.1	138	3.32	20		
Butyl benzyl phthalate	90	5.0	100.0	0	90.2	70.1	128	0.204	20		
Carbazole	79	5.0	100.0	0	79.2	63.9	128	4.91	20		
1-Chloro-3-methylphenol	63	5.0	100.0	0	62.5	53.9	129	0.721	20		
I-Chloroaniline	58	5.0	100.0	0	57.7	19.4	143	2.20	20		
2-Chloronaphthalene	39	5.0	100.0	0	38.9	25.6	133	2.02	20		
2-Chlorophenol	57	5.0	100.0	0	56.9	16.1	144	0.771	20		
1-Chlorophenyl phenyl ether	60	5.0	100.0	0	60.1	49	131	0.848	20		
Chrysene	86	5.0	100.0	0	86.4	60.9	135	3.68	20		
Di-n-butyl phthalate	85	10	100.0	0	85.2	63.2	136	2.66	20		
Di-n-octyl phthalate	93	20	100.0	0	92.7	67.9	132	1.16	20		
Dibenz(a,h)anthracene	82	5.0	100.0	0	82.0	59.5	145	2.56	20		
Dibenzofuran	58	5.0	100.0	0	57.7	40.2	136	0.477	20		
1,2-Dichlorobenzene	24	5.0	100.0	0	23.6	15	106	1.55	20		
1,3-Dichlorobenzene	21	5.0	100.0	0	21.3	15	100	0.366	20		
1,4-Dichlorobenzene	23	5.0	100.0	0	23.4	15	99.1	6.30	20		
3,3'-Dichlorobenzidine	ND	5.0	100.0	0	4.25	72.3	127	0	20	S	
Diethyl phthalate	77	10	100.0	0	77.3	55.9	140	0.0661	20		
Dimethyl phthalate	74	10	100.0	0	73.6	57.1	133	8.26	20		
2,4-Dichlorophenol	60	5.0	100.0	0	60.4	24.2	138	2.94	20		
2,4-Dimethylphenol	48	5.0	100.0	0	47.5	23.3	135	0.958	20		
4,6-Dinitro-2-methylphenol	80	20	100.0	0	80.5	45.4	138	4.29	20		
2,4-Dinitrophenol	65	20	100.0	0	64.8	44.4	126	9.01	20		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 97 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30**

13-Apr-22

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: Icsr-66325	Samp1	Гуре: LC	SD4	TestCode: EPA Method 8270C: Semivolatiles							
Client ID: BatchQC	Batcl	h ID: 663	325	F	RunNo: 80	6930					
Prep Date:	Analysis [SeqNo: 30		Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
2,4-Dinitrotoluene	70	5.0	100.0	0	69.7	63.8	136	1.29	20		
2,6-Dinitrotoluene	64	5.0	100.0	0	63.9	55.8	135	7.82	20		
Fluoranthene	87	10	100.0	0	86.5	63.9	137	3.79	20		
Fluorene	63	5.0	100.0	0	62.6	51.8	131	1.16	20		
Hexachlorobenzene	73	5.0	100.0	0	73.3	43.7	146	7.51	20		
Hexachlorobutadiene	13	5.0	100.0	0	12.8	15	109	0.954	20	S	
Hexachlorocyclopentadiene	19	5.0	100.0	0	19.4	15	112	7.09	20		
Hexachloroethane	17	5.0	100.0	0	16.6	15	89.4	3.82	20		
Indeno(1,2,3-cd)pyrene	84	5.0	100.0	0	83.6	61.6	140	0.647	20		
Isophorone	62	5.0	100.0	0	62.5	24.8	121	1.54	20		
1-Methylnaphthalene	32	5.0	100.0	0	31.7	32.9	124	2.27	20	S	
2-Methylnaphthalene	29	5.0	100.0	0	29.1	20.4	129	1.94	20		
2-Methylphenol	57	5.0	100.0	0	56.8	18.7	143	0.292	20		
3+4-Methylphenol	58	5.0	100.0	0	58.1	19.4	138	0.515	20		
N-Nitrosodi-n-propylamine	64	5.0	100.0	0	63.7	22.3	137	2.52	20		
N-Nitrosodimethylamine	58	5.0	100.0	0	58.4	15	124	0.715	20		
N-Nitrosodiphenylamine	64	5.0	100.0	0	64.3	54.5	131	0.318	20		
Naphthalene	31	5.0	100.0	0	30.8	15	124	0.425	20		
2-Nitroaniline	67	5.0	100.0	0	66.8	55.1	134	3.69	20		
3-Nitroaniline	73	5.0	100.0	0	73.1	15	229	6.49	20		
4-Nitroaniline	77	5.0	100.0	0	77.1	63.3	136	2.93	20		
Nitrobenzene	61	5.0	100.0	0	61.4	21.8	134	3.09	20		
2-Nitrophenol	60	5.0	100.0	0	60.2	21.4	140	10.7	20		
4-Nitrophenol	47	10	100.0	0	47.5	39.7	84.3	1.13	20		
Pentachlorophenol	55	20	100.0	0	54.7	52.6	146	0.187	20		
Phenanthrene	80	5.0	100.0	0	79.9	63.1	130	0.0348	20		
Phenol	36	5.0	100.0	0	36.0	15	88.4	4.33	20		
Pyrene	90	5.0	100.0	0	89.5	59.5	135	1.84	20		
Pyridine	38	10	100.0	0	37.7	15	116	4.43	20		
1,2,4-Trichlorobenzene	20	5.0	100.0	0	20.4	15	115	0.904	20		
2,4,5-Trichlorophenol	57	5.0	100.0	0	57.0	47.2	132	6.59	20		
2,4,6-Trichlorophenol	54	5.0	100.0	0	54.1	41.7	134	2.84	20		
Surr: 2-Fluorophenol	150		300.0		50.6	29.4	87.7	0			
Surr: Phenol-d5	120		300.0		39.6	28.5	64.7	0			
Surr: 2,4,6-Tribromophenol	230		300.0		77.0	18.6	129	0			
Surr: Nitrobenzene-d5	120		200.0		58.1	36.9	103	0			
Surr: 2-Fluorobiphenyl	85		200.0		42.3	38.1	99.9	0			
Surr: 4-Terphenyl-d14	170		200.0		83.2	48	155	0			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 98 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30**

13-Apr-22

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: Ics-1 100.2uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R86681 RunNo: 86681

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060544 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 110 10 100.0 0 108 85 115

Sample ID: Ics-2 100.2uS eC SampType: Ics TestCode: SM2510B: Specific Conductance

Client ID: LCSW Batch ID: R86681 RunNo: 86681

Prep Date: Analysis Date: 3/22/2022 SeqNo: 3060570 Units: µmhos/cm

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Conductivity 100 10 100.2 0 104 85 115

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 99 of 100

Hall Environmental Analysis Laboratory, Inc.

WO#: **2203A30** *13-Apr-22*

Client: CMB Environmental

Project: Energy Resources Corp West Lovington

Sample ID: MB-66320 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 66320 RunNo: 86707

Prep Date: 3/22/2022 Analysis Date: 3/24/2022 SeqNo: 3061447 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID: LCS-66320 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 66320 RunNo: 86707

Prep Date: 3/22/2022 Analysis Date: 3/24/2022 SeqNo: 3061448 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1000 20.0 1000 0 100 80 120

Sample ID: 2203A30-014CDUP SampType: DUP TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: MW-8M Batch ID: 66320 RunNo: 86707

Prep Date: 3/22/2022 Analysis Date: 3/24/2022 SeqNo: 3061467 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 610 40.0)0000763 10 *D

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 100 of 100

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

Sample Log-In Check List

Client Name:	CMB Environmental	Work Order Nun	nber: 2203A30		RcptNo: 1
Received By:	Kasandra Payan	3/18/2022 10:10:0	0 AM	HAL	
Completed By:	Sean Livingston	3/18/2022 10:48:1	5 AM	5-1	,
Reviewed By:	JR3/18/22			2-6	1300
Chain of Cus	stody				
1. Is Chain of C	ustody complete?		Yes 🗸	No 🗆	Not Present
2. How was the	sample delivered?		<u>UPS</u>		
Log In					
Was an atten	npt made to cool the sample	es?	Yes 🗸	No 🗌	NA 🗆
4. Were all sam	ples received at a temperat	ure of >0° C to 6.0°C	Yes 🗸	No 🗌	NA 🗆
5. Sample(s) in	proper container(s)?		Yes 🔽	No 🗌	
6. Sufficient sam	nple volume for indicated te	st(s)?	Yes 🔽	No 🗆	2/18/22
7. Are samples ((except VOA and ONG) pro	perly preserved?	Yes 🗸	No 🗆	Sc 2/18/20
8. Was preserva	tive added to bottles?		Yes 🗗	No 🗹	NA 🗆
9. Received at le	east 1 vial with headspace <	1/4" for AQ VOA?	Yes 🗸	No 🗌	NA 🗆
0. Were any san	mple containers received br	oken?	Yes	No 🔽	# of preserved
	ork match bottle labels? ancies on chain of custody)		Yes 🗸	No 🗌	bottles checked for pH:
	correctly identified on Chain	of Custody?	Yes 🗸	No 🗆	Adjusted?
3. Is it clear what	t analyses were requested?		Yes 🔽	No 🗌	
	ng times able to be met? ustomer for authorization.)		Yes 🔽	No 🗆	Checked by: &C 3/18/2C
pecial Handl	ing (if applicable)				
15. Was client no	tified of all discrepancies w	ith this order?	Yes	No 🗌	NA 🗹
Person	Notified:	Date		_	
By Who		Via:	eMail F	Phone 🗌 Fax	☐ In Person
Regardi					
Client In	nstructions:				
Additional rer		t+ -150m	c from	001	+ 00240034 for 001-003
7. Cooler Inform	mation Thny	-O.Snl Huc) for	netals	analysis, cheeked for
Cooler No		Seal Intact Seal No	Seal Date	Signed By	Pager -11
1	2.4 Good				Proper pH = 2 Sec 31.
2	1.4 Good				

Client: Client: Mailing An Phone #: QA/QC Pan QA/QC Pan Standa Accreditat NELAC EDD (T
Phone #: Phone #: QA/QC Par Standa Accreditat NELAC
QA/QC Paraction of Standard Accreditate
Accreditat
□ NELAC
Date Tir

Chain-of-Custody Record Client: Richard E. Olson, ESQ, HINKLE SHANIK LUP Mailing Address: BOX 10 Phone #: 575, 622 - 6510 emailor Fax#: ralsone hinkle lawfirm. com	West Lovington Strown Unit 8 Unit L Sec. 34 TIS SR. 35 E Project #: 6ROOND Wa Ten Monitoring 2022	HALL ENVIRONMENTAL ANALYSIS LABORATOR www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request								
□ Standard □ Level 4 (Full Validation) Accreditation: □ Az Compliance □ NELAC □ Other □ EDD (Type)	Sampler: Om Barnhill, PG- On Ice: Yes □ No # of Coolers: 3	BTEX/ MTBE/ TMB's (8021) TPH:8015D(GRO / DRO / MRO) 8081 Pesticides/8082 PCB's EDB (Method 504.1) PAHS by 8310 or 8270SIMS RCRA 8 Metals GAF, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8270 (VOA) FULU (LGF 8270 (Semi-VOA) Total Coliform (Present/Absent) FM Printing Wifer STURMAS (Metals) TOTAL COLIFORM (PRESENT/Absent)								
Date Time Matrix Sample Name 3/5/22 11:25 H20 Have Water Well 3/5/22 11:30 H20 POND Water Well	IX SOUNCE NONE OOL IX SOUNCE NONE OOL IX SOUNCE NONE OOR IX SOUNCE NONE OOR	BIEX/ BIEV/ BIEX/								
15/2 1038 H,0 MW-9M 15/22 11:45 H,0 MW-9D 15/22 14:10 H,0 MW-1 15/22 14:46 H,20 MW-5	2x500 mc 100 more feel 204 3x your vox feel 204 2x500 mc vox feel 204 3x your vox fee									
	010									
	tracted to other accredited laboratories. This serves as notice of this poss	marks: Any Questions? Please Call CMB Bages 2575, 626, 1615 Sent. Copy of Parsatts To Combenier Of Gmail, Cony sibility. Any sub-contracted data will be clearly notated on the analytical report.								

\approx
-
0
2
6
0
2
-
6
3
2
,E
٧٥.
Name of
000
9
-
00
~
1.3
~
\sim
7
400
CU
100
-
0
9
w
-
7
\sim
-

(Client	hain	-of-C	ustody Record	Turn-Around				E			Н	ALI	LE	FA ENV	e ege VII	e RO	20 NM	/ J IEN	Z TA	Received b
-	11	CHA		Joseph, Esa,	Project Nam	d Rush	. Parantel	6.	ANALYCIC LABORATION									ZY			
1	1ailing	Addres:	0	ANON LCP	- West L	orington S	y Resources Trawn Unit 14 T165 RS	THE S				W	ww.h	aller	nviror	mer	ntal.c	om			CD:
-)	00	OX	10	Onit	- Sec is	4 T165 RS	SE		490	01 Ha	wkin	s NE	- A	lbuq	uerqu	ue, N	IM 87	109		6/28
				88202-0010	Project #3	COUND NOT	a Montre	Ki,		Te	l. 505	5-345	-3975	5	Fax	505	-345	-4107			7202
				22-6510	NMOCI	ause	# 188-2	45						Ana	lysis	Rec	ques	t			34
<u>e</u>	mail o	r Fax#:/	0/501	chinkle Law Firm . Co	The second secon	_			1	0				SO			nt)				21:
	A/QC I ∕Stan			Environ a g mailicary	/	M Barn	hill, PE	4	's (8021)	O/MRO)	PCB's	ONIO	OZIVIDO 1750	PO ₄ . S			t/Abse				05 PM
			□ Az Co	mpliance	Sampler: 4	CM Barn	hill PG		TMB's	DRO		()	77	NO,	1 3	-	sen	#			
-	NEL	40	□ Other		On Ice:	Yes	□ No		-	20)8/s	0 5	5 / "			(A)	(Pre	G			
F	EDD	(Type)		-	# of Coolers			(0.0)	MTBE	9)	cide	bod (Metals	NO3		ΙŽ	E	Ec			
					Cooler Temp	O(including CF):		(°C)	Σ	15[esti	/leth	~ 100	٦.	Ó	Sem	olifc	10	11		
D	ate	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No.		BTEX,	TPH:8015D(GRO	8081 Pesticides/8082	EDB (Method &	RCRA	C)F, I	l a	8270 (Semi-VOA)	Total Coliform (Present/Absent)	705			
3/6	2022	1030	HyD	MW-85	ZX 500 MLHOY	Nontel	213							X	"X	X		X	4		
3/4	/22	1123	150	MW-8M	JASTASIA		014							X	X	X		X			
3/1	122	1405	Hall	MW-8D			015						إمراا	X	X			X			
3/	1/22	1505	Hall	MW-75			016							X	X			X			
3/4	1/22	1625	Hal	MW-7D	V	V	017							X	X			X			
L			2.76		0. (X	X	X		X			
-				TRIP Blank	2x yamc	HCC	019				3						50			4	
				Trip DIMN Z			019												1		
_																					
-																					
_																					
Da	le.	Time:	Relinquishe	and I	Dessived	7.5										-3					
2/		12:00		Water 11	Received by:	Via:	Date Time		Rema	arks:	1	try	Pi	116	104	5%	0	Pleas	e C	all	P
Da	14	A	Relinquishe	dos:	Received by:	Via:	Date Time	_			-	m	Be	5	75	.6.	26	. 16	15		Page 372 0737
											Je	nd	0	150	1119	- 1	75,	P.	10,	/	372 0
_	If	necessary,	samples subr	nitted to Hall Environmental may be su	bcontracted to other a	ccredited laboratories.	This serves as notice	of this .	oogoibi	itu A	av oub	ontract	od data	, N	and and	111	00	-91	m 4 11	, (017

Appendix E

Historical Data

Received by OCD: 6/28/2023 4:21:05 PM

Water Lev	el Elevation	on (feet ms)
2012 Q4	2022 Q1	2021 Q3	2

2016 Q1	2016 Q2	2016 Q3	2016 Q4	2012 Q4	2022 Q1	2021 Q3	2017 Q1	2017 Q2	2017 Q3	2017 Q4
3,919.17	3,919.15	3,919.16	3,919.05	3,922.16	3,918.44	-	3,919.10	3,919.04	3,919.05	3,919.16
3,917.22	3,917.22	3,917.22	3,917.42	3,917.72	3,916.57	-	3,917.17	3,917.39	3,917.42	3,917.39
3,917.54	3,917.54	3,917.53	3,917.43	3,920.93	3,916.91	-	3,917.48	3,917.38	3,917.43	3,917.53
3,917.13	3,917.13	3,917.13	3,917.00	3,919.79	3,916.57	-	3,917.08	3,916.99	3,917.00	3,916.99
3,918.83	3,918.83	3,918.83	3,918.83	3,919.29	3,918.30	-	3,918.77	3,918.70	3,918.83	3,918.70
3,917.56	3,917.52	3,917.54	3,917.45	-	3,916.99	-	3,917.52	3,917.40	3,917.45	3,917.54
-	-	-	-	-	3,914.70	3,914.60	-	-	-	-
-	-	-	-	-	3,914.73	3,914.73	-	-	-	-
-	-	-	-	-	3,914.81	3,914.61	-	-	-	-
-	-	-	-	-	3,915.26	3,915.27	-	-	-	-
-	-	-	-	-	3,915.30	3,915.10	-	-	-	-
-	-	-	-	-	3,915.29	3,915.09	-	-	-	-
-	-	-	-	-	3,919.08	3,919.12	-	-	-	-
-	-	-	-	-	3,919.08	3,919.15	-	-	-	-
-	-	-	-	-	3,918.97	3,919.69	-	-	-	-
	3,919.17 3,917.22 3,917.54 3,917.13 3,918.83	3,919.17 3,919.15 3,917.22 3,917.22 3,917.54 3,917.54 3,917.13 3,917.13 3,918.83 3,918.83	3,919.173,919.153,919.163,917.223,917.223,917.223,917.543,917.543,917.533,917.133,917.133,917.133,918.833,918.833,918.83	3,919.173,919.153,919.163,919.053,917.223,917.223,917.223,917.423,917.543,917.543,917.533,917.433,917.133,917.133,917.133,917.003,918.833,918.833,918.833,918.83	3,919.17 3,919.15 3,919.16 3,919.05 3,922.16 3,917.22 3,917.22 3,917.42 3,917.72 3,917.54 3,917.53 3,917.43 3,920.93 3,917.13 3,917.13 3,917.00 3,919.79 3,918.83 3,918.83 3,918.83 3,918.83 3,919.29	3,919.17 3,919.15 3,919.16 3,919.05 3,922.16 3,918.44 3,917.22 3,917.22 3,917.42 3,917.72 3,916.57 3,917.54 3,917.54 3,917.53 3,917.43 3,920.93 3,916.91 3,917.13 3,917.13 3,917.00 3,919.79 3,916.57 3,918.83 3,918.83 3,918.83 3,918.83 3,919.29 3,918.30 3,917.56 3,917.52 3,917.54 3,917.45 - 3,916.99 - - - - 3,914.70 - - - - 3,914.73 - - - - 3,915.26 - - - - 3,915.29 - - - - 3,915.29 - - - - 3,915.29 - - - - 3,919.08	3,919.17 3,919.15 3,919.16 3,919.05 3,922.16 3,918.44 - 3,917.22 3,917.22 3,917.42 3,917.72 3,916.57 - 3,917.54 3,917.54 3,917.53 3,917.43 3,920.93 3,916.91 - 3,917.13 3,917.13 3,917.00 3,919.79 3,916.57 - 3,918.83 3,918.83 3,918.83 3,919.29 3,918.30 - 3,917.56 3,917.52 3,917.54 3,917.45 - 3,916.99 - - - - - - 3,914.70 3,914.60 - - - - 3,914.73 3,914.73 - - - - 3,915.26 3,915.27 - - - - 3,915.20 3,915.00 - - - - 3,915.29 3,915.09 - - - - 3,919.08 3,919.12 - - - - 3,919.08 3,919.15	3,919.17 3,919.15 3,919.16 3,919.05 3,922.16 3,918.44 - 3,919.10 3,917.22 3,917.22 3,917.42 3,917.72 3,916.57 - 3,917.17 3,917.54 3,917.54 3,917.53 3,917.43 3,920.93 3,916.91 - 3,917.48 3,917.13 3,917.13 3,917.00 3,919.79 3,916.57 - 3,917.08 3,918.83 3,918.83 3,918.83 3,918.83 3,919.29 3,918.30 - 3,918.77 3,917.56 3,917.52 3,917.54 3,917.45 - 3,916.99 - 3,917.52 - - - - - 3,914.70 3,914.60 - - - - - 3,914.73 3,914.73 - - - - - 3,915.26 3,915.27 - - - - - 3,915.29 3,915.09 - - - - - 3,915.29 3,915.09 - - - - - 3	3,919.17 3,919.15 3,919.16 3,919.05 3,922.16 3,918.44 - 3,919.10 3,919.04 3,917.22 3,917.22 3,917.42 3,917.72 3,916.57 - 3,917.17 3,917.39 3,917.54 3,917.54 3,917.53 3,917.00 3,919.79 3,916.91 - 3,917.08 3,917.38 3,917.13 3,917.13 3,917.00 3,919.79 3,916.57 - 3,917.08 3,916.99 3,918.83 3,918.83 3,918.83 3,919.29 3,918.30 - 3,918.77 3,918.70 3,917.56 3,917.52 3,917.54 3,917.45 - 3,914.70 3,914.60 - - - - - - 3,914.73 3,914.73 - - - - - - - 3,914.73 3,914.60 - - - - - - - 3,914.73 3,914.61 - - - - - - - 3,915.26 3,915.27 - - -	3,919.17 3,919.15 3,919.16 3,919.05 3,922.16 3,918.44 - 3,919.10 3,919.04 3,919.05 3,917.22 3,917.22 3,917.42 3,917.72 3,916.57 - 3,917.17 3,917.39 3,917.42 3,917.54 3,917.54 3,917.53 3,917.00 3,919.79 3,916.57 - 3,917.08 3,917.38 3,917.43 3,918.83 3,918.83 3,919.29 3,918.30 - 3,918.77 3,918.70 3,918.83 3,917.56 3,917.52 3,917.54 3,917.45 - 3,916.99 - 3,917.52 3,917.40 3,917.45 - - - - 3,914.70 3,914.60 - - - - - - - - 3,914.73 3,914.73 - - - - - - - - 3,915.26 3,915.27 - - - - - - - - - - - - - - - - - - -

Received by OCD: 6/28/2023 4:21:05 PM

										Chloride	Concentrat	ion (ppm)									
Well ID	2002 Q4	2009 Q1	2009 Q4	2009 Q3	2010 Q2	2010 Q1	2012 Q4	2015 Q4	2016 Q4	2016 Q3	2016 Q2	2016 Q1	2017 Q4	2017 Q3	2017 Q2	2017 Q1	2018 Q4	2018 Q3	2018 Q2	2018 Q1	2022 Q1
MW-1	-	-	-	-	-	-	27	27.6	27.7	29.8	19.5	24.5	30.5	28.8	26.4	26.7	26.4	29.1	28.2	29.6	26
MW-2	-	-	-	-	-	-	130	821	869	1450	674	493	836	526	2500	980	1240	1500	1260	1320	1200
MW-3	-	-	-	-	-	-	28	28.5	28	29.7	21.4	24.6	29.7	27.1	26.9	27.4	26.5	27	27.3	-	25
MW-4	-	-	-	-	-	-	390	193	227	255	123	136	217	187	153	154	187	181	180	-	230
MW-5	-	-	-	-	-	-	23	25.1	28.2	26.9	20.2	24	29.1	40.8	25.6	26.2	25.9	25.7	26.6	-	25
MW-6	-	-	-	-	-	-	-	544	1420	1410	1570	1360	1220	1070	2570	1370	983	1120	1200	1250	1000
MW-7D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	34
MW-7S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	38
MW-8D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	40
MW-8M	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46
MW-8S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	20
MW-9D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	29
MW-9M	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	46
MW-9S	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	27
Pond Water Well	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	32
WLSU #11 windmill	-	31	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WLSU #20 water well	-	26	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WSLU #8 water well	99	298	2485	4331	440	1101	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
WSLU #8 Windmill	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	24
Battery A water Well	-	28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
House Water Well	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	32

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 234083

CONDITIONS

Operator:	OGRID:
ENERGEN RESOURCES CORPORATION	162928
3510 N A St	Action Number:
Midland, TX 79705	234083
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Review of the Site Characterization Report for WLSU #8: Content Satisfactory 1. If not already uploaded into the online portal, please file the permits for P&A of all wells in the well file online. 2. Continue to conduct groundwater monitoring events as prescribed by NMOCD. In order to achieve closure, eight (8) consecutive monitoring events must be me below the NM WQCC standards 20.6.2.3103 of NMAC 3. Please submit the 2023 Annual Groundwater Monitoring Report by or before April 1, 2024.	1/8/2024