Received by OCD: 10/16/2023 11:10:37 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 1 of 10.	2
Incident ID	nAPP2319260257	
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u><50</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🖂 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/16/2023 11:10:37 AM				Page 2 of 102		
F01111 C-141	State of New Mexico		Incident II)	nAPP2319260257	
Page 4	Oil Conservation Division	1	District RI)		
			Facility ID)		
			Applicatio	n ID		
I hereby certify that the in regulations all operators a public health or the envir failed to adequately inves addition, OCD acceptanc and/or regulations. Printed Name:I Signature: Dale (email:dale.woo	nformation given above is true and complete to the are required to report and/or file certain release no onment. The acceptance of a C-141 report by the stigate and remediate contamination that pose a the e of a C-141 report does not relieve the operator of Dale Woodall	e best of my knowl otifications and perf OCD does not reli reat to groundwate of responsibility for Title: Date: Telephone:	edge and understand to orm corrective action eve the operator of lia r, surface water, huma compliance with any <u>Env. Professional</u> /2023575-748-1833	that pursu s for relea bility sho in health o other fed 8	ant to OCD rules and uses which may endanger uld their operations have or the environment. In eral, state, or local laws	
OCD Only Received by: <u>Shelly W</u>	/ells	Date:	10/16/2023	_		

Received by OCD: 10/16/2023 11:10:37 AM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

	Page 3 of 10	02
Incident ID	nAPP2319260257	
District RP		
Facility ID		
Application ID		

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Dale Woodall Title: Env. Professional Signature: Dale Woodall Date: 10/16/2023 email: <u>dale.woodall@dvn.com</u>_____ Telephone: <u>575-748-1838</u> OCD Only Date: <u>10/16/2023</u> Received by: <u>Shelly Wells</u> Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

Remediation plan conditionally approved with the following:
1. If exploratory boring to determine depth tho water is not advanced within 0.5 miles from the release, then the closure standard will be gw<50 ft. below grade. Keep in mind, the boring location should be as close to the point of release as possible.
2. Devon has 90-days (May 2, 2024) to submit its appropriate or final remediation closure

Released to Imaging: 2/2/2024 2:23:40 PM

report.

Page 5

Environmental Site Remediation Work Plan

General Information

NMOCD District:	District 1	Incident ID:	nAPP2319260257
Landowner:	Private	RP Reference:	N/A
Client:	Devon Energy Production Company, LP	Site Location:	Red Bull 29 Fed #001H
Date:	October 11, 2023	Project #:	23E-04311
Client Contact:	Dale Woodall	Phone #:	405.318.4697
Vertex PM:	Kent Stallings	Phone #:	346.814.1413

Objective

The objective of the environmental remediation work plan is to identify exceedances found during the site assessment and characterization activity at Red Bull 29 Fed #001H, and to propose an appropriate remediation technique to address these areas. Areas of environmental concern identified and delineated include: the east side of the tank containment and surrounding area on pad. The initial C-141 Release Notification was submitted on July 25, 2023 (Attachment 1). Closure criteria have been selected as per New Mexico Administrative Code 19.15.29. All applicable research as it pertains to closure criteria selection is presented in Attachment 2. The closure criteria for the site are presented below.

Table 1. Closure Criteria for Soils Impacted by a Release			
Minimum depth below any point within the horizontal boundary of the release to groundwater less than 10,000 mg/l TDS	Constituent	Limit	
	Chloride	600 mg/kg	
	TPH (GRO+DRO+MRO)	100 mg/kg	
< 50 feet	BTEX	50 mg/kg	
	Benzene	10 mg/kg	

TDS – Total dissolved solids

TPH – Total petroleum hydrocarbons = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO),

BTEX - Benzene, toluene, ethylbenzene, and xylenes

Site Assessment/Characterization

Site characterization was concluded on July 26, 2023. A total of eight sample points were established and 16 samples collected for field screening. All 16 samples were submitted to Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, for analysis. The sample locations are presented in Attachment 3. Laboratory analysis results have been compared to the above noted closure criteria and the results from the characterization activity are presented in Attachment 4. Exceedances are identified in the table as bold with a grey background.

Remedial Activities

General

Areas identified with contaminant concentrations above closure criteria will be remediated through excavation. Laboratory results from the site assessment and characterization have been referenced to estimate both the vertical and horizontal limits of the impacts and the volume of soil to be removed. Soil will be excavated to address surface staining and the extents of sample derived contamination. Field screening will be utilized to confirm removal of contaminanted soil below the applicable closure criteria. Contaminated soils will be stored on a 30mil liner prior to disposal at an approved facility. Once excavation is complete, confirmatory samples will be collected and laboratory analysis completed to confirm closure criteria guidelines are met. Excavations will be backfilled with clean soil sourced locally.

VERTEX

Environmental Site Remediation Work Plan

No depth to groundwater data currently exists within 0.5 miles of the site. According to the New Mexico Office of the State Engineer, well number CP-0614-POD2, the nearest depth to groundwater in the area is 303 feet below ground surface (bgs) and well number CP-1099-POD3 depth to groundwater in the area is 282 feet bgs. Vertex proposes a depth to ground water exploratory borehole to be drilled to 105 feet within 0.5 miles of the site, where closure criteria will most likely be as shown below.

Table 2. Closure Criteria for Soils Impacted by a Release		
Minimum depth below any point within the		
horizontal boundary of the release to groundwater		
less than 10,000 mg/l TDS	Constituent	Limit
	Chloride	20,000 mg/kg
	TPH (GRO+DRO+MRO)	2,500 mg/kg
> 100 feet	GRO+DRO	1,000 mg/kg
	BTEX	50 mg/kg
	Benzene	10 mg/kg

TDS – Total dissolved solids

TPH – Total petroleum hydrocarbons = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO),

BTEX – Benzene, toluene, ethylbenzene, and xylenes

nAPP2319260257- Release from Tanks and Containment

A total of 16 samples were collected for analysis adjacent to the tank containment area. All sample points were established on the site pad. It is expected that excavation of soils will include an approximated 966 square feet area around BH23-02 at a depth of 1 foot under an adjusted closure criteria of greater than 100 feet depth to groundwater, Table 2. Heavy equipment will be used to complete excavation in open areas. A hydrovac truck and hand crew will be utilized to remove contaminated soil in close proximity to the containment area and around any utility lines within or in proximity to the excavation area. Confirmatory samples will be collected as per New Mexico Oil Conservation Division guidance and submitted for laboratory analysis of all applicable parameters. The estimated volume to be excavated is **86 cubic yards**.

Sample Point	Excavation Depth	Remediation Method
BH23-02	1'	Backhoe
Staining	Scrape to 0.5'	Backhoe

Should you have any questions or concerns, please do not hesitate to contact the undersigned at 346.814.1413 or kstallings@vertex.ca.

Stephanie McCarty

Stephanie McCarty, B.Sc.

October 11, 2023

Date

Kent Stallings P.G.

October 12, 2023

Kent Stallings, P.G. PROJECT MANAGER, REPORT REVIEW

Date

Environmental Site Remediation Work Plan

Attachments

Attachment 1. NMOCD C-141 Report

- Attachment 2. Closure Criteria Research
- Attachment 3. Characterization Sampling Site Schematic

Attachment 4. Laboratory Results Table and Laboratory Data Report

ATTACHMENT 1

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page & of 102

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Longitude

Latitude	

Site Name	Site Type
Date Release Discovered	API# (if applicable)

(NAD 83 in decimal degrees to 5 decimal places)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2

Incident ID

District RP Facility ID

	Application ID
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: Kendra Ruiz	Date:
email:	Telephone:
OCD Only	
Received by: <u>Shelly Wells</u>	Date: <u>7/27/2023</u>

<u>Sp</u>	ill Volume(Bbl	s) Calculator		
Co	ntaminated Soil	measurement		
Length(Ft)	Width(Ft)	Depth(Ft)		
Cubic Feet of	Soil Impacted	0.000		
Barrels of Sc	oil Impacted	0.00		
Soil Type		Clay/Sand		
Barrels of Oil Assuming 100% Saturation		0.00		
Saturation Fluid present with shovel/backhoe				
Estimated Barrels of Oil Released		0.00		
	Free Standing I	Fluid Only		
Length(Ft)	Width(Ft)	Depth(Ft)		
<u>30</u>	128.000	0.042		
Standin	g fluid	<u>28.685</u>		
Total fluid	ds spilled	28.685		

Spills In Line	d Containment
Measurements	Of Standing Fluid
Length (Ft)	125
Width(Ft)	22
Depth(in.)	2
Total Capacity without tank displacements (bbls)	81.63
No. of 500 bbl Tanks In Standing Eluid	5
No. of Other Tanks In Standing Fluid	0
OD Of Other Tanks In Standing Fluid(feet)	
Total Volume of standing fluid accounting for tank displacement.	53.64

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410

Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	244510
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Action 244510

Condition Date 7/27/2023

	Oklahoma City, OK 73102	244510
		Action Type:
		[C-141] Release Corrective Action (C-141)
CONDITIO	DNS	
Created E	y Condition	
scwells	None	

Received by OCD: 10/16/2023 11:10:37 AM Form C-141 State of New Mexico

Page 3

Oil Conservation Division

	Page 12 of 102
Incident ID	nAPP2319260257
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u><50</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- \square Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/	16/2023 11:10:37 AM			Page 13 of 102
Form C-141	State of New Mexico		Incident ID	nAPP2319260257
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
I hereby certify that the regulations all operator public health or the env failed to adequately inv addition, OCD accepta and/or regulations. Printed Name: Signature: Dalk email:dale.we	e information given above is true and complete to the rs are required to report and/or file certain release nor vironment. The acceptance of a C-141 report by the vestigate and remediate contamination that pose a the nce of a C-141 report does not relieve the operator o Dale Woodall Woodall oodall@dvn.com	e best of my knowledg tifications and perform OCD does not relieve eat to groundwater, su f responsibility for cor 	e and understand that purs a corrective actions for rele the operator of liability shurface water, human health npliance with any other fea <u>tw. Professional</u> <u>23</u> <u>575-748-1838</u>	uant to OCD rules and cases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:		Date:		

Received by OCD: 10/16/2023 11:10:37 AM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

I use I i ej I ez	P	age	<i>14</i>	oj	f 1	02
-------------------	---	-----	-----------	----	-----	----

Incident ID	nAPP2319260257
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points \square Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Title: <u>Env. Professional</u> Printed Name: Dale Woodall Signature: Dale Woodall Date: 10/16/2023 email: <u>dale.woodall@dvn.com</u>_____ Telephone: <u>575-748-1838</u> OCD Only Received by: Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

ATTACHMENT 2

Closure C	riteria Research		
Site Nam	e: Red Bull 29 Fed 1H	-	
Spill Coor	dinates:	32.28172539	-103.3969538
Site Speci	fic Conditions	Value	Unit
1	Depth to Groundwater	303	feet
2	Within 300 feet of any continuously flowing	8 560	foot
2	watercourse or any other significant watercourse	8,309	leet
2	Within 200 feet of any lakebed, sinkhole or playa lake	0.212	foot
5	(measured from the ordinary high-water mark)	9,215	leet
4	Within 300 feet from an occupied residence, school,	25.640	feet
4	hospital, institution or church	23,040	leet
	i) Within 500 feet of a spring or a private, domestic		
E	fresh water well used by less than five households for	n/a	feet
J	domestic or stock watering purposes, or		
	ii) Within 1000 feet of any fresh water well or spring		feet
	Within incorporated municipal boundaries or within a		
	defined municipal fresh water field covered under a		
6	municipal ordinance adopted pursuant to Section 3-27-	No	(Y/N)
	3 NMSA 1978 as amended, unless the municipality		
	specifically approves		
7	Within 300 feet of a wetland	7,547	feet
8	Within the area overlying a subsurface mine	No	(Y/N)
			Critical
0		Law	High
9	within an unstable area (karst Map)	LOW	Medium
			Low
10	Within a 100-year Floodplain	500	year
11	Soil Type	Simona fine sandy l	oam, 0 to 3% slopes
12	Ecological Classification	shallov	v sands
13	Geology	Q	оа
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	>100'	<50' 51-100' >100'

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates th POD has been replaced & no longer serves a water right file.)	(R=PO) replaced O=orph C=the f closed)	D has been d, naned, île is	D has been l, aned, ile is (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (In feet) POD												
		POD Sub-		0	0	0								Wa	ter
POD Number	Code	e basin	County	64	16	4	Sec	Tws	Rng	Х	Y	DistanceDepth	WellDepthW	/ater Coli	imn
<u>CP 00614 POD2</u>		СР	LE	4	3	3	29	23S	35E	651102	3571401 🌍	1398	440	320	120
<u>CP 01099 POD3</u>		СР	LE	1	1	1	28	238	35E	652478	3572932 🌍	1524	930	725	205
<u>CP 01099 POD2</u>		СР	LE	3	3	3	21	238	35E	652968	3572750 🌍	2008	750	120	630
<u>CP 01100 POD3</u>		СР	LE	3	2	1	28	238	35E	652987	3572726 🌍	2028	950	730	220
<u>CP 01100 POD2</u>		СР	LE		2	1	28	238	35E	652995	3572726 🌍	2036	750	125	625
<u>CP 01830 POD1</u>		СР	LE	3	3	3	18	238	35E	649289	3574568 🌍	2439	460	270	190
<u>CP 00580</u>		СР	LE	3	4	3	23	23S	34E	646524	3572948* 🌍	4438	220		
<u>CP 00606</u>		СР	LE		4	1	23	23S	34E	646613	3573854* 🌍	4474	650	265	385
<u>CP 00499</u>		СР	LE		3	3	23	23S	35E	655875	3573194* 🌍	4931	150		
<u>CP 01120 POD1</u>		СР	LE	2	3	3	14	23S	34E	646366	3574753 🌍	4994	397	318	79
											Averag	ge Depth to Water:		359 feet	
												Minimum Depth	:	120 feet	
												Maximum Depth:		730 feet	
Record Count: 10															
<u>UTMNAD83 Ra</u>	<mark>dius Search (</mark> i	<u>in meters)</u>	<u>:</u>												
Easting (X):	650960		North	ning	(Y)):	3572	2792			Radius: 5000				

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/19/23 9:44 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Red Bull 29 Fed #001H

10/11/2023, 2:54:15 PM

Esri, HERE, iPC, U.S. Department of Energy Office of Legacy Management, Esri, HERE, Garmin, iPC, Maxar

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quar	ters are	1=NV	N 2=	NE 3=SW	4=SE)	202.17		
Woll Tog	ΡΟΠ	Numbor		(qua	rters ar	$ \mathbf{O} \mathbf{A} $	llest	to largest)	Dna	(NAI	083 U1 V	M in meters)	
221BF	CP (0614 PO	D2	4	3	3	29	238	35E	651	102	3571401 🥌	
x Driller Lic	ense:	1706	Di	rille	r Con	ınan	v:	ELI	ТЕ Г	RILLER	S CO	RPORATION	
Driller Na	me:	WALLA	CE, BRYCE J.	LEF	E.NER	-p		221	122				
Drill Start	Date:	11/20/2	018 D i	rill I	Finish	Dat	e:	11	/23/2	2018	Plu	ıg Date:	
Log File D	ate:	03/01/2	019 P (W	Rev I)ate:					So	urce:	Shallow
Pumn Tyn	асс . 6•	05/01/2	Pi	ne I)ischa	rge	Size	•			Est	timated Vield.	35 GPM
Casing Siz	e:	7.60	D	epth	Well	:	SIZ	-• 44	10 fee	et	De	pth Water:	320 feet
x				•									
	Wate	er Bearing	g Stratificatio	18:		То	р	Bottom	De	scription	l		
						25	0	360	Sa	ndstone/C	Fravel	/Conglomerate	
						36	0	390	Sa	ndstone/C	Bravel	/Conglomerate	
						39	0	420	Sa	ndstone/C	Gravel	/Conglomerate	
X		Cas	ing Perforatio	ns:		То	р	Bottom					
						30	0	440					
х	Mete	r Numbe	r: 189	65				Meter N	Make	:	T	URBINES INC	
	Mete	er Serial I	Number: 200	6262	2			Meter N	Aulti	plier:	1.	0000	
	Num	ber of Di	als: 7					Meter T	[vpe:	•	D	iversion	
	Unit	of Measu	ire: Bar	els -	42 gal			Return	Flov	v Percent	t :		
	Usag	e Multip	lier:		C			Reading	g Fre	equency:	М	onthly	
Madam	x	(° A	F 4)										
Read	i Date	gs (III Ac. Vear	re-reel) Mtr Readin	σ	Flag	R	dr	Comme	nt			Mtr	Amount Online
01/0	7/2019	2019	With Reauli	ຣ · 0	Δ	R	рт	comme	mu				
03/3	1/2019	2019	311	9.	A	R	РТ						0 402
07/0	1/2019	2019	5965	6	A	R	РТ						7 287
08/02	2/2019	2019	6606	6	A	R	РТ						0.826
09/0	1/2019	2019	7419	1	A	R	РТ						1.047
10/0	7/2019	2019	8470	8	A	R	РТ	RPT had	1840	707 966			1 356
11/04	4/2019	2019	9382	0	A	R	РТ	Iti I nuv	4010	101.500			1.174
12/0	3/2019	2019	13814	5	A	R	РТ						5 713
02/0	1/2020	2020	17801	6	Δ	R	РТ						5 139
03/0	2/2020	2020	20758	5	A	R	РТ						3 811
04/1	3/2.02.0	2020	21779	4	A	R	РТ	Final M	eter]	Read			1.316
04/1	3/2020	2020	2872	9	A	R	PT	initial re	ad fo	or new m	eter		0
05/04	4/2020	2020	3632	6	A	R	PT		1				0.979
06/04	4/2.020	2020	6401	9	A	R	PT						3.569
07/01	2/2020	2020	8736	5	A	R	РТ						3.009
08/02	3/2020	2020	11687	8	A	R	РТ						3.804
10/0	9/2020	2020	15019	7	A	R	PT						4.295
11/0	5/2020	2020	17717	2	Ā	R	РТ						3.477

Received by OGD:	0/16/2023 11:10:37 AM/nmwrrs/ReportDispatcher?tvpe=PODGHTML&name=PodGroundSummarvHTML.ir;	xml&basin=Clean 20	<u>of 102</u>
------------------	---	--------------------	---------------

		•		21	
12/14/2020	2020	193192	А	RPT	
01/07/2021	2020	203980	А	RPT	
02/05/2021	2021	233044	А	RPT	
08/02/2021	2021	51144	А	ad	
09/01/2021	2021	51144	А	ad	
10/05/2021	2021	82316	А	ad	
11/04/2021	2021	97536	А	ad	
12/14/2021	2021	128306	А	ad	
01/01/2022	2022	129650	А	ad	
02/08/2022	2022	129650	А	ad	
03/02/2022	2022	129650	А	ad	
04/01/2022	2022	129650	А	ad	
05/10/2022	2022	129964	А	ad	
06/07/2022	2022	129964	А	ad	
09/05/2022	2022	129964	А	ad	
10/10/2022	2022	129964	А	ad	
11/10/2022	2022	129964	А	ad	
05/09/2023	2023	129964	А	ad	
06/07/2023	2023	129964	А	ad	
**YTD Met	er Amounts:	Year		Amount	
		2019		17.805	
		2020		32.855	
		2021		13.692	
		2022		0.213	
		2023		0	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/19/23 9:45 AM

Х

POINT OF DIVERSION SUMMARY

æ

PAGE 1 OF 2

WELL TAG ID NO.

						and the state	<u></u>	1" 11 11 11 11 11 11 11 11 11 11 11		
OSE POD NO CP-614-PO	D. (WELL NO. DD2)	WELL TAG ID NO.		OSE FILE NO	S).	×220.5% **** भूगी **** * के			
WELL OWN Limestone	ER NAME(S) Basin Pro	perties Ranch, LLC	-		PHONE (OPT1 210-835-80	ONAL) 57				
WELL OWN 3300 N. A	ER MAILING Street, Blo	ADDRESS dg 1, Ste 220	·······		CITY Midland		STATE TX 79705	ZP		
WELL	N TAT	DE	GREES MINUTES 32 16	SECONDS 09.0 N	* ACCURACY	REQUIRED: ONE TEN	TH OF A SECOND			
(FROM GI	PS)	ICUDE	103 23	44.4 W	* DATUM RE	QUIRED: WGS 84				
DESCRIPTIO	ON RELATIN	G WELL LOCATION TO	STREET ADDRESS AND COMMON	I LANDMARKS – PLS	SS (SECTION, TO	WNSHJP, RANGE) WE	IERE AVAILABLE	<u></u>		
LICENSE NO). 706	NAME OF LICENSED	DRILLER Druce Wellage		<u>ta ningat</u> kanadira	NAME OF WELL DR	LLING COMPANY			
	TARTED	DRILLING ENDED	DEDTH OF COMPLETED WELL (7)			DEPTH WATER FIR	OTHERS COIPORATION	<u>.</u>		
11/2	0/18	11/23/18	440	D BORE HO	445	DEFTH WATER FIR	320	J		
COMPLETE	O WELL IS:	WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COMPLETED WE 303								
DRILLING F	LUD:	AIR	MID ADDITIV	ES – SPECIFY:						
DRILLING N	THOD:	ROTARY	HAMMER CABLE T	OOL 🗌 OTHE	R - SPECIFY:					
DEPTH	(feet bgl)	BOREHOLE	CASING MATERIAL AND	D/OR		CASING		Τ		
FROM	TO	DIAM	GRADE	and CON	ASING NECTION	INSIDE DIAM.	THICKNESS	SLC		
		(inches)	note sections of screen)	(add coup	(YPE ling diameter)	(inches)	(inches)	(inch		
Ó	20	20	ASTM53 GRADE B			15.5	.25	1		
+2	300	14.75	ASTM53 GRADE B	W	/elded	8.125	.25			
300	440	14.75	SDR 17 PVC		pline	7.6	SDR 17	.03		
	_									
			· · ·					+		
DEPTH	(leet bgl)	BORE HOLE	LIST ANNULAR SE	L AL MATERIAL A	AND	AMOUNT	 METHC	D OF		
FROM	ТО	DIAM. (inches)	GRAVEL PACK SIZE-	RANGE BY INTE	RVAL	(cubic feet)	PLACEN	MENT		
0	20	20	Portland I	I/II Cement		23	Trimr	nie		
0	288	14.75	Portland	I/II Cement		245	Trim	nie		
288		14.75	8/16 Si	lica Sand	•	120	Pou	r		

LOCATION

.

										51.7 61.0	
	DEPTH (FROM	feet bgl) TO	THICKNESS (feet)	COLOR A INCLUDE WAT (attach su	ND TYPE OF MATERIAL I ER-BEARING CAVITIES (pplemental sheets to fully c	ENCOUNTERED DR FRACTURE 7 lescribe all units	ONES	WA BEAF (YES	TER RING? / NO)	ESTI YIE W BE ZON	MATED LD FOR ATER- ARING ES (gpm)
	0	10	10		Caliche			Y	√ N		
	10	80	70		Тац & Brown Sandston	ne		Y	√ N		
	80	100	20		Tan Clay			Y	√ N	1.5	
	100	130	30		Tan Sandstone	·		Y	√ N		
	130	220	90		Tan & Brown Sandston	nc		Y	√ N	ĺ	
	220	230	10		Tan Clay	······································		Y	√ N		i
VEL	230	250	20		Red & Tan Sandstone	;		Y	√ N		
OF V	250	360	110		Tan, Brown & Gray Sand	sione		✓ Y	Ň	1	0.00
00	360	390	30		Tan & Red Sandstone	· · · · · · · · · · · · · · · · · · ·		VΥ	N		0.00
CL	390	420	30		Tan, Brown & Gray Sand	sione		V Y	N	1	5.00
0CI	420	445	25		Red Clay			Y Y	N		
EOL								v	N		
l B l		{			<u></u>			v			
YDR								v I	N		
Ξ.									N	<u>.</u>	
					·			v I	N		
	····			·	<u></u>			. Y	N		
·			···					Y	N	ļ	
-								Y	N		
ŀ								Y	N		
-						· _ ·		Y	<u>N</u>		
								Y	N	L	
	METHOD U	ISED TO ES	TIMATE YIELD	OF WATER-BEARIN	G STRATA:		TOT	AL ESTIN	AATED		
	PUM	P 🔽 Al	IR LIFT	BAILER O	THER – SPECIFY:		WBI	JL YIELL	(gpm):	3	5.00
G SUPERVISION	WELL TES	T TEST I START NEOUS INF	RESULTS - ATT ITIME, END TH ORMATION:	ACH A COPY OF DA' ME, AND A TABLE S	TA COLLECTED DURING HOWING DISCHARGE AN	WELL TESTING	, INCLUDI OVER TH	NG DISC E TESTIN	HARGE I IG PERIC	METHO)D.	D,
5. TEST; RI	PRINT NAM	1E(S) OF DF	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPERV	SION OF WELL	CONSTRU	CTION O	THER TH	IAN LIC	ENSEE:
6. SIGNATURE	THE UNDER CORRECT F AND THE P	RSIGNED H RECORD OF ERMIT HOI SIGNATI	EREBY CERTIF THE ABOVE D LOFE WITHIN 20 JRE OF DRILLE	IES THAT, TO THE B ESCRIBED HOLE AN 0 DAYS AFTER COM E R / PRINT SIGNEE	DEST OF HIS OR HER KNC ND THAT HE OR SHE WIL IPLETION OF WELL DRIL Bryce Wallace	WLEDGE AND L FILE THIS WE LING:	BELIEF, TH	IE FOREC D WITH 7 11/2	GOING IS THE STA 27/18 DATE	A TRU TE ENC	E AND INEER
FOR	OSE INTERI	NAL USE	· · · · · · · · · · · · · · · · · · ·		DODAIO	WR-20	WELL REC	CORD &	LOG (Vei	sion 06/	<u>30/2017)</u> 1
					POD NU.	IRN N	U				
1.00	JALION					WELL TAG ID	NO.			PAG	E 2 OF 2

.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO CP-1099-P	O. (WELL NO POD3	.)	W II		OSE FILE NO(S).				
OCATI	WELL OWNI	er name(s) NE BASI	N PROPERTIES R	ANCH, LLC		<u> </u>		PHONE (OPTI-	ONAE)		
WELL I	WELL OWN 3300 N A	ER MAILING STREET,	ADDRESS BLDG 1, STE 220					CITY MIDLAND		STATE TX 79705	ZIP
tal. and	WELL LOCATIO	N LA	DE FITUDE	agrees 32	MINUTES 16	SECONDS 58.03	N	* ACCURACY	' REQUIRED: ONE TEN'	TH OF A SECOND	
ENER	(FROM GP	LO	NGITUDE		22	50.93	W	E (EECTION TO	WNELLID, WGS 54		
1. G	DESCRIPTIO	JN KELATIN	G WELL LOCATION TO	STREET ADDRES	S AND COMMON	LANDMAR	xə - rLə	3 (3EC110A, 10	WNSHJIF, KANGEJ WI		·
	LICENSE NO WD1	706	NAME OF LICENSED	DRILLER	vce Wallace			· · · · · · · · ·	NAME OF WELL DR	ILLING COMPANY Drillers Corporation	
	DRILLING S	TARTED	DRILLING ENDED	DEPTH OF COMP	LETED WFLL (FT	Г) В	ORE HO	LE DEPTH (FT)	DEPTH WATER FIRS	ST ENCOUNTERED (FT)	
	09/14	4/20	11/02/20		930			930		725	
Z	COMPLETE) WELL IS:	ARTESIAN	DRY HOLE	SHALLOW	W (UNCONF	NED)		STATIC WATER LEV	FEL IN COMPLETED WE	LL (FT)
ATIO	DRILLING F	LUD:	☐ AIR	MUD	ADDITIVI	ES – SPECIF	Ý:				
ORM	DRILLING M	IETHOD:	7 ROTARY	HAMMER	CABLE TO		OTHE	R - SPECIFY:	-	······	
ING INF	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM (inches)	CASING MA	ATERIAL AND GRADE h casing string, i	AND/OR CASING CONNECTION TYPE			CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)
CAS	0	666	17.5	note sec	tions of screen) 55 - 48#		idd coup	ling diameter) T/C	12.615	.38	
NG &	640	930	12.25		J55			T/C	7.875	.38	0.1
וורו											
2. DR											
	DEPTH	(feet bgl)	BORE HOLE	LIST	ANNULAR SE	EAL MATE	RIAL A	AND	AMOUNT	метно	D OF
IAL	FROM	то	DIAM. (inches)	GRAVE	L PACK SIZE-	RANGE B	Y INTE	RVAL	(cubic feet)	PLACEN	1ENT
TER	0	666	17.5		CLA	ASS C			1021	Pressure	Grout
R MA	640	930	12.25		3/8 PEA	GRAVEL			150	Pou	ſ
NULA		·									
ANR.											
3											*
FOR	OSE INTER	NAL USE						WR-2	0 WELL RECORD a	& LOG (Version 06 3	0/17)
CH D	NO	(7)	1000		DODAYO		2	TDNIN		1000-	

THE NO.		POD NO.		
LOCATION	235.35	E 28.11	WELL TAG ID NO. 2021	PAGE 1 OF 2

.

.

.

	·····										-
	DEPTH () FROM	feet bgl) TO	THICKNESS (feet)	COLOR AN INCLUDE WAT (attach su	ND TYPE OF MATERIAL 1 ER-BEARING CAVITIES (pplemental sheets to fully (ENCOUN OR FRAC describe a	TERED - TURE ZONE all units)	S I	WA BEAF YES	TER AING? 7 NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	60	60	······	SANDY CALICHE				Y	√ N	
	60	440	380	RE	D/BROWN/GREENISH GF	AY CLA	Y		Y	√ N	
-	440	645	205		GRAY/RED/BROWN C	LAY			Y	√ N	
	645	710	65		GRAY/RED/TAN SANDS	TONE			Y	√ N	
	710	750	40		YELLOW/RED STANDS	TONE		1	Y	N	25.00
.L	750	905	155		TAN/RED/GRAY SANDS	TONE		1	Y	N	25.00
WEL	905	930	25		RED SILTSTONE/RED O	CLAY			Y	√ N	
OF				Y	N						
00,									Y	N	
1.016				<u></u>					Y	N	
TOC									Y	N	
GEO									Y	N	
RO									Y	N	
ІЛН									Y	N	
4									Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
		_							Y	N	
									Y	N	
	METHOD U	SED TO ES $\mathbf{\nabla} = \mathbf{\nabla} \mathbf{A}^{T}$	TIMATE YIELD	OF WATER-BEARIN	G STRATA: THER - SPECIEY			TOTAL E WELL Y	STIN IELC	AATED (gpm):	50.00
	WELL TES	TEST	RESULTS - ATT	ACH A COPY OF DA	TA COLLECTED DURING	WELL T	ESTING, INC	LUDING I	DISC	HARGE N	METHOD,
ISION	MISCELLA	STAR	TIME, END TIN	ME, AND A TABLE SI	HOWING DISCHARGE A	ND DRAV	WDOWN OVI	ER THE TE	STIN	G PERIC	DD.
F; RIG SUPERV	MICE EEEA.		ORMER HON.				2014) 1944 -		ngt Get ter	elleri, internet Li in Linerezi	¢*×.;≏3
5. TESI	PRINT NAM	E(S) OF DE	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPERV	ISION OF	F WELL CON	STRUCTIC	ON O	THER TH	IAN LICENSEE:
SIGNATURE	THE UNDER CORRECT F AND THE P	RSIGNED H RECORD OI FROMIT HON	THE ABOVE D	IES THAT, TO THE B ESCRIBED HOLE AN 0 DAYS AFTER COM B	EST OF HIS OR HER KNO ID THAT HE OR SHE WIL PLETION OF WELL DRIL Bryce Wallace	DWLEDG L FILE T LING:	E AND BELI HIS WELL R	EF, THE FO	DREC	GOING IS THE STA 08/20	A TRUE AND TE ENGINEER
è		SIGNATU	URE OF DRILLE	R / PRINT SIGNEE	NAME					DATE	
FOR	OSE INTERN	AL USE					WR-20 WFI	I. RECOR	D & 1	LOG (Ver	sion 06/30/2017)
FILI	E NO.	CP-	1099		POD NO. 3		TRN NO.	678	50	97	5
LOC	ATION					WELL	TAG ID NO.				PAGE 2 OF 2

U.S. Fish and Wildlife Service

National Wetlands Inventory

02 - Watercourse - Red Bull 29 Fed 1H 8,569 feet away (1.62 miles)

A 2023 A 2024 A 2025 A 2025

Released to Imaging: 2/2/2024 2:23:40 PM

July 19, 2023

Wetlands

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

0/16/2022 11.10.27 11 Received by OCD. **U.S. Fish and Wildlife Service**

National Wetlands Inventory

03 - Lakebed - Red Bull 29 Fed 1H 9,213 feet away (1.74 miles)

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake Other Riverine Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 2/2/2024 2:23:40 PM

Received by 295D: 10/16/2023 Jie State Ant N/nmwrrs/ReportProxy?queryData=%7B"report"%3A"podByLocOwner"%2C%0A"PodNbrDiv"%3A"gree 28.0f 102

New Mexico Office of the State Engineer Active & Inactive Points of Diversion

(with Ownership Information)

								(R=POD no longer	r serves this file,	(quarter	s are 1	I=NV	N 2=	NE 3=	SW 4=SE)			
		(acre ft p	per annum)					C=the file is closed)			s are s	small	lest to	o large	st)	(NAD83 UTM in me		
	Sub						Well				qq	q						
WR File Nbr <u>CP 00614</u>	basin CP	Use Di COM	iversion Ow 80 LIN	ner 1ESTONE BASIN PROPERTIES	County LE	POD Number CP 00614 POD2	Tag 221BF	Code	Grant	Source Shallow	6416 4 3	3	Sec 29	Tws 23S	Rng 35E	X 651102	¥ 3571401	
					LE	<u>CP 00614 POD1</u>				Shallow	4 3	3	29	238	35E	651091	3571382	
<u>CP 01099</u>	СР	COM	80 LIN	ESTONE BASIN PROPERTIES	LE	<u>CP 01099 POD1</u>					1 1	1	28	238	35E	652466	3572927 🧲	
					LE	<u>CP 01099 POD3</u>	NA			Artesian	1 1	1	28	238	35E	652478	3572932	
<u>CP 00433</u>	СР	AGR	0 LB!	M CATTLE COMPANY, INC.	LE	<u>CP 00433 POD2</u>					1	1	28	238	35E	652662	3572736* 🧲	
<u>CP 01099</u>	СР	COM	80 LIN	IESTONE BASIN PROPERTIES	LE	<u>CP 01099 POD2</u>	221C0			Shallow	33	3	21	238	35E	652968	3572750	
<u>CP 01100</u>	СР	COM	80 LIN	IESTONE BASIN PROPERTIES	LE	CP 01100 POD1					1 2	1	28	238	35E	652968	3572750	
					LE	CP 01100 POD3	NA			Artesian	3 2	1	28	238	35E	652987	3572726	
					LE	CP 01100 POD2	221C1			Artesian	2	1	28	238	35E	652995	3572726	
<u>CP 00433</u>	СР	AGR	0 LB!	M CATTLE COMPANY, INC.	LE	<u>CP 00433 POD1</u>					2	1	28	23S	35E	653065	3572743* 🧲	
<u>CP 00616</u>	СР	PRO	0 J.C.	MILLS	LE	<u>CP 00616</u>					2 1	1	21	23S	35E	652737	3574445* 🧲	
<u>CP 01830</u>	СР	COM	100 LIN	IESTONE BASIN PROP RANCH LLC	LE	<u>CP 01830 POD1</u>	211F8			Shallow	33	3	18	238	35E	649288	3574568 🧧	
<u>CP 01758</u>	СР	EXP	0 LIN	IESTONE BASIN PROPERTIES	LE	<u>CP 01758 POD1</u>	NA				1 2	3	18	238	35E	649680	3575267	
<u>CP 00612</u>	СР	PRO	0 J.C.	MILLS	LE	<u>CP 00612</u>					4 4	1	18	23S	35E	649900	3575408* 🧲	
<u>CP 01708</u>	СР	EXP	0 ATH	KINS ENGR ASSOC INC	LE	<u>CP 01708 POD1</u>	NA				2	1	36	238	34E	648262	3571205 🧲	
<u>CP 01709</u>	СР	COM	200 LIN	IESTONE BASIN PROPERTIES	LE	<u>CP 01708 POD1</u>	NA				2	1	36	238	34E	648262	3571205	
<u>CP 01838</u>	СР	COM	100 LIN	IESTONE BASIN PROP RANCH LLC	LE	<u>CP 01838 POD1</u>	211EA				33	3	07	238	35E	649294	3576148	
<u>CP 01197</u>	СР	COM	0 GE1	NERAL COUNSEL OFFICE	LE	<u>CP 01197 POD1</u>					1	3	06	24S	35E	649528	3568790	
<u>CP 00580</u>	СР	PRO	0 NA	TOMAS NORTH AMERICA INC	LE	<u>CP 00580</u>				Shallow	34	3	23	238	34E	646524	3572948* 🧲	
<u>CP 00606</u>	СР	PRO	0 NA	TOMAS NORTH AMERCIA INC.	LE	<u>CP 00606</u>				Shallow	4	1	23	238	34E	646613	3573854* 🧲	
<u>CP 00499</u>	СР	STK	3 HU	GH WARD	LE	<u>CP 00499</u>					3	3	23	238	35E	655875	3573194* 🧲	
<u>CP 01120</u>	СР	STK	3 LIN	IESTONE BASIN PROPERTIES	LE	CP 01120 POD1	NA			Shallow	2 3	3	14	238	34E	646366	3574753	
<u>CP 01729</u>	СР	COM	200 LIN	IESTONE BASIN PROPERTIES	LE	CP 01120 POD1	NA			Shallow	2 3	3	14	238	34E	646366	3574753	
Record Count:	23																	

UTMNAD83 Radius Search (in meters):

Easting (X): 650960 Northing (Y): 3572792

Radius: 5000

Sorted by: Distance

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for purpose of the data.

7/19/23 1:42 PM

ACTIVE & INACTIVE POINTS OF D

Respired by OSD: 10/16/2023. Je State And Som Wirnwrrs/ReportDispatcher?type=WRHTML&name=WaterRightSummaryHTML.jrxml&basin=CPV-3840f 102

get image list	WR File Number: Primary Purpose: Primary Status:	CP 004 AGR CAN	433 AGRI CANO	CULT	Subbasin: CP FURE OTHER THAN ED	Cross Ro RIRRIGATION	eference:	-	
	Total Acres:				Subfile: -			Header:	-
	Total Diversion:	0			Cause/Case: -				
	Owner:	LBM C	CATTLE	COM	IPANY, INC.				
Document	x on File								
			Sta	itus		From/			~ .
an de	Trn # Doc File	/Act		2 EDJ	Transaction Desc.	То	Acres	Diversion	Consumptive
images	<u>591830 APPRO 196</u>	<u>/-0/-26</u>	CAN	FIN					
urrent P	vints of Diversion	ell Tag – So	Qurce 64	2 4Q16Q 2	(NAD8 Q4Sec Tws Rng 1 28 23S 35F 65	33 UTM in meters) X Y 3065 3572743*	Other	Location De	esc
Current P POD	x oints of Diversion Number Wo 433 POD1 433 POD2 *An (*) after north	ell Tag So	Q ource 64 dicates UT	2 4Q16(2 1 FM loca	(NAD8 Q4Sec Tws Rng 1 28 23S 35E 65 1 28 23S 35E 65 ation was derived from Pl	33 UTM in meters) X Y 3065 3572743* 2662 3572736* LSS - see Help	Other	Location De	sc
Current P POD <u>CP 00</u> <u>CP 00</u> Priority S	x oints of Diversion Number Wo 433 POD1 433 POD2 *An (*) after north x ummary	ell Tag So	Q ource 64 dicates UT	2 4Q16(2 1 FM loca	(NAD8 Q4Sec Tws Rng 1 28 23S 35E 65 1 28 23S 35E 65 ation was derived from Pl	33 UTM in meters) X Y 3065 3572743* 2662 3572736* LSS - see Help	Other	Location De	
Current P POD <u>CP 00</u> <u>CP 00</u> Priority S	x oints of Diversion Number Wo 433 POD1 433 POD2 *An (*) after north x ummary Priority	ell Tag So ing value in S	dicates U	2 4Q16(2 1 FM locs	(NAD8 Q4Sec Tws Rng 1 28 23S 35E 65 1 28 23S 35E 65 ation was derived from Pl	33 UTM in meters) X Y 3065 3572743* 2662 3572736* LSS - see Help Number	Other	Location De	25C
Current P POD <u>CP 00</u> <u>CP 00</u> Priority S	x oints of Diversion Number Wa 433 POD1 433 POD2 *An (*) after north x ummary Priority 04/26/19	ell Tag So ing value in S 67	dicates United to the second s	2 4Q16Q 2 1 FM locs	(NAD8 Q4Sec Tws Rng 1 28 23S 35E 65 1 28 23S 35E 65 ation was derived from Pl Acres Diversion Pod N 0 0 <u>CP 00</u> <u>CP 00</u>	33 UTM in meters) X Y 3065 3572743* 2662 3572736* LSS - see Help Number)433 POD1)433 POD2	Other	Location De	25C
Current P POD <u>CP 00</u> <u>CP 00</u> Priority S	x oints of Diversion Number We 433 POD1 433 POD2 *An (*) after north x ummary Priority 04/26/19	ell Tag So ing value in S 67	dicates U7	2 4Q16(2 1 FM loca	(NAD8 Q4Sec Tws Rng 1 28 23S 35E 65 1 28 23S 35E 65 ation was derived from Pl Acres Diversion Pod N 0 0 <u>CP 00</u> <u>CP 00</u>	33 UTM in meters) X Y 3065 3572743* 2662 3572736* LSS - see Help Number 0433 POD1 0433 POD2	Other	Location De	28C
Current P POD <u>CP 00</u> <u>CP 00</u> Priority S	x oints of Diversion Number Wa 433 POD1 433 POD2 *An (*) after north x ummary Priority 04/26/19 x se Q Q 256 64 Q16 Q4Sec T 1 1 28 2	ell Tag So ing value in 67 ws Rng 3S 35E	dicates UT tatus CAN Acres 0	2 4Q16(2 1 FM loce A	(NAD8 Q4Sec Tws Rng 1 28 23S 35E 65 1 28 23S 35E 65 ation was derived from PI 0 0 CP 00 CP	33 UTM in meters) X Y 3065 3572743* 2662 3572736* LSS - see Help Number 0433 POD1 0433 POD2 see Priority St GR 04/26/1967 C	Other	Location De	28C
Current P POD <u>CP 00</u> <u>CP 00</u> Priority S Place of U	x oints of Diversion Number We 433 POD1 433 POD2 *An (*) after north x ummary Priority 04/26/19 x se Q Q 256 64 Q16 Q4Sec T 1 1 28 2 x	ell Tag So ing value in 67 ws Rng 3S 35E	dicates U ¹ tatus CAN Acres 0	2 4Q16(2 1 FM loc: A	(NAD8 Q4Sec Tws Rng 1 28 23S 35E 65 1 28 23S 35E 65 ation was derived from PI 0 0 CP 00 CP 00 Version CU Us 0 AC	33 UTM in meters) X Y 3065 3572743* 2662 3572736* LSS - see Help Mumber 0433 POD1 0433 POD2 see Priority St GR 04/26/1967 C	Other	Location De	esc

7/19/23 1:45 PM

WATER RIGHT SUMMARY

12022 11.10.27 Recei red by OCD

U.S. Fish and Wildlife Service National Wetlands Inventory

07 - Wetland - Red Bull 29 Fed 1H 7,547 feet away (1.43 miles)

July 19, 2023

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake Other Riverine Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Received by OCD: 10/16/2023 11:10:37 AM

08 - Mines - Red Bull 29 Fed 1H

* Aggregate, Stone etc.

Esri, NASA, NGA, USGS, FEMA, New Mexico State University, Texas Parks & Wildlife, CONANP, Esri, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA

0.8

1.6 km

0.4

0

Received by OCD: 10/16/2023 11:10:37 AM National Flood Hazard Layer FIRMette

Legend

Page 35 of 102

Basemap Imagery Source: USGS National Map 2023

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Lea County, New Mexico

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Lea County, New Mexico	
BE—Berino-Cacique loamy fine sands association	
MN—Ratliff-Wink fine sandy loams	15
PU—Pyote and Maljamar fine sands	17
SE—Simona fine sandy loam, 0 to 3 percent slopes	
TF—Tonuco loamy fine sand, 0 to 3 percent slopes	
References	22

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic classes has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

.

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

•

Custom Soil Resource Report

MAP L	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Slowout	 Very Stony Spot Wet Spot Other Special Line Features 	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
Image: Second system Borrow Pit Image: Second system Clay Spot Image: Closed Depression Gravel Pit Image: Second system Gravel Pit Image: Second system Gravelly Spot Image: Second system Landfill Image: Advective of the system Marsh or swamp	Streams and Canais Transportation +++ Rails ~ Interstate Highways ~ US Routes ~ Major Roads ~ Local Roads Background Aerial Photography	Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albert area area
 Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot Severely Eroded Spot 		accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 19, Sep 8, 2022 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
 Sinkhole Slide or Slip Sodic Spot 		Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
BE	Berino-Cacique loamy fine sands association	171.7	38.9%
MN	Ratliff-Wink fine sandy loams	28.4	6.4%
PU	Pyote and Maljamar fine sands	81.9	18.6%
SE	Simona fine sandy loam, 0 to 3 percent slopes	152.0	34.5%
TF	Tonuco loamy fine sand, 0 to 3 percent slopes	7.1	1.6%
Totals for Area of Interest		441.0	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Lea County, New Mexico

BE—Berino-Cacique loamy fine sands association

Map Unit Setting

National map unit symbol: dmpd Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 13 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Berino and similar soils: 50 percent Cacique and similar soils: 40 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Berino

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock over calcareous sandy alluvium derived from sedimentary rock

Typical profile

A - 0 to 6 inches: loamy fine sand Btk - 6 to 60 inches: sandy clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7c Hydrologic Soil Group: B Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Description of Cacique

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 12 inches: loamy fine sand Bt - 12 to 28 inches: sandy clay loam Bkm - 28 to 38 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 20 to 40 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7c Hydrologic Soil Group: C Ecological site: R070BD004NM - Sandy Hydric soil rating: No

Minor Components

Maljamar

Percent of map unit: 6 percent *Ecological site:* R077CY028TX - Limy Upland 16-21" PZ *Hydric soil rating:* No

Palomas

Percent of map unit: 4 percent Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

MN—Ratliff-Wink fine sandy loams

Map Unit Setting

National map unit symbol: dmqf Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Ratliff and similar soils: 45 percent Wink and similar soils: 40 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ratliff

Setting

Landform: Plains Landform position (three-dimensional): Dip Down-slope shape: Convex Across-slope shape: Convex Parent material: Calcareous alluvium and/or calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 4 inches: fine sandy loam Bw - 4 to 22 inches: clay loam Bk - 22 to 60 inches: clay loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 50 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Moderate (about 8.1 inches)

Interpretive groups

Land capability classification (irrigated): 4e

Custom Soil Resource Report

Land capability classification (nonirrigated): 6c Hydrologic Soil Group: B Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Description of Wink

Setting

Landform: Plains Landform position (three-dimensional): Dip Down-slope shape: Convex Across-slope shape: Convex Parent material: Calcareous sandy alluvium and/or calcareous sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 12 inches: fine sandy loam Bk - 12 to 23 inches: sandy loam BCk - 23 to 60 inches: sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 30 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R070BD004NM - Sandy Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 6 percent Ecological site: R070BC022NM - Sandhills Hydric soil rating: No

Maljamar

Percent of map unit: 5 percent Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Palomas

Percent of map unit: 4 percent *Ecological site:* R070BD003NM - Loamy Sand Hydric soil rating: No

PU—Pyote and Maljamar fine sands

Map Unit Setting

National map unit symbol: dmqq Elevation: 3,000 to 3,900 feet Mean annual precipitation: 10 to 12 inches Mean annual air temperature: 60 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Pyote and similar soils: 46 percent *Maljamar and similar soils:* 44 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pyote

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 30 inches: fine sand Bt - 30 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7s

Custom Soil Resource Report

Hydrologic Soil Group: A *Ecological site:* R070BD003NM - Loamy Sand *Hydric soil rating:* No

Description of Maljamar

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 24 inches: fine sand Bt - 24 to 50 inches: sandy clay loam Bkm - 50 to 60 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 40 to 60 inches to petrocalcic
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 5 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Low (about 5.6 inches)

Interpretive groups

Land capability classification (irrigated): 6e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Minor Components

Kermit

Percent of map unit: 10 percent *Ecological site:* R070BC022NM - Sandhills *Hydric soil rating:* No

SE—Simona fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: dmr2 Elevation: 3,000 to 4,200 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 58 to 62 degrees F Frost-free period: 190 to 205 days Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains Landform position (three-dimensional): Rise Down-slope shape: Linear Across-slope shape: Linear Parent material: Calcareous eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 8 inches: fine sandy loam Bk - 8 to 16 inches: gravelly fine sandy loam Bkm - 16 to 26 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 35 percent
Gypsum, maximum content: 1 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 2.0
Available water supply, 0 to 60 inches: Very low (about 2.0 inches)

Interpretive groups

Land capability classification (irrigated): 6s Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D

Custom Soil Resource Report

Ecological site: R070BD002NM - Shallow Sandy *Hydric soil rating:* No

Minor Components

Kimbrough

Percent of map unit: 8 percent Ecological site: R077CY037TX - Very Shallow 16-21" PZ Hydric soil rating: No

Lea

Percent of map unit: 7 percent *Ecological site:* R077CY028TX - Limy Upland 16-21" PZ *Hydric soil rating:* No

TF—Tonuco loamy fine sand, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw3c Elevation: 3,280 to 4,460 feet Mean annual precipitation: 10 to 16 inches Mean annual air temperature: 59 to 64 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Tonuco and similar soils: 70 percent Minor components: 30 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tonuco

Setting

Landform: Ridges, plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Sandy eolian deposits

Typical profile

A - 0 to 12 inches: loamy fine sand Bw - 12 to 17 inches: loamy sand Bkkm - 17 to 39 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: 12 to 20 inches to petrocalcic Drainage class: Excessively drained Runoff class: Very high

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 2 percent Gypsum, maximum content: 1 percent Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) Sodium adsorption ratio, maximum: 2.0 Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R077DY048TX - Shallow 12-17" PZ Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 15 percent Landform: Ridges, plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: R070BD002NM - Shallow Sandy Hydric soil rating: No

Berino

Percent of map unit: 10 percent Landform: Ridges, plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: R070BD003NM - Loamy Sand Hydric soil rating: No

Cacique

Percent of map unit: 5 percent Landform: Ridges, plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: R070BD004NM - Sandy Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

USDA Natural Resources Conservation Service

Ecological site R070BD002NM Shallow Sandy

Accessed: 10/02/2023

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R070BD004NM	Sandy	
	Sandy sites often occur in association or in a complex with Shallow Sandy Sites.	

Similar sites

R070BD004NM	Sandy
	Sandy ecological sites are similar to Shallow Sandy sites in species composition and Transition pathways.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occures on plains, alluvial fans, uplands, or fan piedmonts. The parent material consists of mixed loamy alluvium or eolian material derived from igneous and sedimentory bedrock. The petrocalcic layer is at a depth of 10 to 25 inches and undulating.

Slopes are nearly level to undulating, usually less than 9 percent. Elevations range from 2,842 to 4,500 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain (2) Fan piedmont (3) Alluvial fan
Elevation	2,842–4,500 ft
Slope	1–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common.

Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is from 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of the site. The vegetation of this site can take advantage of the moisture and the time it falls. Because of the soil profile, little moisture can be stored in the soil for any length of time. Moisture is readily available to the plants from the time it falls. Strong winds from the southwest blow from January through June which rapidly dries out the soil profile during a critical period for plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are very shallow to shallow, less than 20 inches in depth. Surface and subsurface textures are gravelly loamy sand, gravelly fine sandy loam or fine sandy loam.

An indurated calache layer occurs at depths of 6 to 25 inches and is at an average of 15 inches from the surface. Underlying material textures are very gravelly fine sandy loam, very gravelly sandy loam, gravelly fine sandy loam. Gravels are calcium carbonate concretions, calcium carbonate content ranges from 30 to 65 percent.

The indurated caliche layer typically holds water up in the profile for short periods within the root zone of plants. These soils will blow if left unprotected by vegetation.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are: Simona Jerag

Table 4. Representative soil features

-	
Surface texture	(1) Fine sandy loam(2) Loamy fine sand(3) Gravelly fine sandy loam
Family particle size	(1) Loamy
Drainage class	Well drained to moderately well drained
Permeability class	Moderately slow to moderate

Soil depth	7–24 in
Surface fragment cover <=3"	5–25%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	1–2 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	7.4–8
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

Overview

The Shallow Sandy site occurs on upland plains, and tops of low ridges and mesas, associated with Sandy, Loamy Sand, and Shallow sites. Coarse to moderately coarse soil surface textures, shallow depth (<20 inches) to an indurated caliche layer (petrocalcic horizon), and an overwhelming dominance by black grama help to distinguish this site. The historic plant community of the Shallow Sandy site is a black grama dominated grassland sparsely dotted with shrubs. Shrubs, especially mesquite and creosotebush can increase or colonize due to the dispersal of shrub seeds by livestock or wildlife. This increase in mesquite and colonization of creosotebush may be enhanced by proximity to areas with existing high shrub densities. Fire suppression, and the loss of grass cover due to overgrazing or drought may facilitate the increase and encroachment of shrubs. Persistent loss of grass cover, competition for resources by shrubs, and periods of climate with increased winter precipitation and dry summers, may initiate the transition to a shrub-dominated state.

State and transition model

Plant Communities and Transitional Pathways (diagram)

1a. Seed dispersal, drought, overgrazing, fire suppression.

1b. Prescribed fire, brush control, prescribed grazing.

2. Persistent loss of grass cover, resource competition, increased winter precipitation.

3. Brush control, range seeding, prescribed grazing,

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: This site responds well to management and is resistant to state change, due to the shallow depth to petrocalcic horizon and sandy surface textures. The sandy surface textures allow rapid water infiltration and the petrocalcic horizon helps to keep water perched and available to shallow rooted grasses. Black grama is the dominant species in the historic plant community, averaging 50 to 60 percent of the total production for this site. Bush muhly, blue grama, and dropseeds are present as sub-dominants. Typically, yucca, javalinabush, range ratany, prickly pear, and mesquite are sparsely dotted across the landscape. Leatherweed croton, cutleaf

happlopappus, wooly groundsel, and threadleaf groundsel are common forbs. Continuous heavy grazing or extended periods of drought will cause a loss of grass cover characterized by a decrease in black grama, bush muhly, blue and sideoats grama, plains bristlegrass, and Arizona cottontop. Dropseeds and or threeawns may increase and become sub-dominant to black grama. Continued loss of grass cover in conjunction with dispersal of shrubs seeds and fire suppression is believed to cause the transition to a state with increased amounts of shrubs (Grass/Shrub state). Diagnosis: Black grama is the dominant grass species. Grass cover uniformly distributed. Shrubs are a minor component averaging only two to five percent canopy cover. Litter cover is high (40-50 percent of area), and litter movement is limited to smaller size class litter and short distances (<. 5m). Other grasses that could appear on this site would include: six-weeks grama, fluffgrass, false-buffalograss, hairy grama, little bluestem, bristle panicum, cane bluestem, Indian ricegrass, tridens spp., and red lovegrass. Other woody plants include: pricklypear, cholla, fourwing saltbush, catclaw mimosa, winterfat, American tarbush and mesquite. Other forbs include: globemallow, verbena, desert holly, senna, plains blackfoot, trailing fleabane, fiddleneck, deerstongue, wooly Indianwheat, and locoweed.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	474	652	830
Forb	78	107	136
Shrub/Vine	48	66	84
Total	600	825	1050

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	30-35%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-25%

Figure 5. Plant community growth curve (percent production by month). NM2802, R042XC002NM-Shallow Sandy-HCPC. SD-3 Shallow Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

Community 2.1 Grass/Shrub

Grass/Shrub: This state is characterized by the notable presence of shrubs, especially mesquite, broom snakeweed, and/or creosotebush, however grasses remain as the dominant species. Black grama is the dominant

grass species. Threeawns and or dropseeds are sub-dominant. The susceptibility of the Shallow Sandy site to shrub encroachment may be higher when located adjacent to other sites with high densities of mesquite or creosotebush. Retrogression within this site is characterized by decreases in grass cover and increasing densities of shrubs. Diagnosis: Black grama remains as the dominant grass species. Grass cover varies in response to the amount of shrub increase, ranging from uniform to patchy. Shrubs are found at increased densities relative to the grassland state, especially mesquite, creosotebush, or broom snakeweed. Transition to Grass/Shrub (1a) Historically fire may have kept mesquite and other shrubs in check by completely killing some species and disrupting seed production cycles and suppressing the establishment of shrub seedlings in others. Fire suppression combined with seed dispersal by livestock and wildlife is believed to be the factors responsible for the establishment and increase in shrubs.1, 3 Loss of grass cover due to overgrazing, prolonged periods of drought, or their combination, reduces fire fuel loads and increases the susceptibility of the site to shrub establishment. Key indicators of approach to transition: Increase in the relative abundance of dropseeds and threeawns Presence of shrub seedlings Loss of organic matter—evidenced by an increase in physical soil crusts 8 Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. If adequate fuel loads remain, possibly the reintroduction of fire as a management tool will assist in the transition back, however, mixed results have been observed concerning the effects of fire on black grama grasslands.6 Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover capable of sustaining fire.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated: Across the range of soil types included in the Shallow Sandy site, mesquite is typically the dominant shrub, but it does occur as a co-dominant or sub-dominant species with creosotebush or broom snakeweed. Mesquite tends to dominate when the Shallow Sandy site occurs as part of a complex or in association with Sandy or Loamy Sand sites. Creosotebush tends to dominate on Shallow Sandy sites that occur as part of, or adjacent to Shallow Sites. Broom snakeweed increases in response to heavy grazing, but tends to cycle in and out depending on timing of rainfall. However, once the site is dominated by shrubs and snakeweed becomes well established, it tends to remain as a major component in the shrub dominated state. Diagnosis: Mesquite, creosotebush, or snakeweed cover is high, exceeding that of grasses. Grass cover is patchy with large connected bare areas present. Black grama, threeawns, or dropseeds may be the dominant grass. Evidence of accelerated wind erosion in the form of pedestalling of plants, and soil deposition around shrub bases may be common. Transition to Shrub-Dominated (2) Persistent loss of grass cover and the resulting increased competition between shrubs and remaining grasses for dwindling resources (especially soil moisture) may drive this transition.5 Additionally periods of increased winter precipitation may facilitate periodic episodes of shrub expansion and establishment. 4 Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion, evidenced by pedestalling of plants, and soil and litter deposition on leeward side of plants. 7 Transition back to Grassland (3) Brush control is necessary to reduce competition from shrubs and reestablish grasses. Range seeding may be necessary if insufficient grasses remain, The benefits, and costs, will vary depending upon the degree of site degradation, and adequate precipitation following seeding.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season			413–495	
	black grama	BOER4	Bouteloua eriopoda	413–495	_
2	Warm Season			41–83	
	bush muhly	MUPO2	Muhlenbergia porteri	41–83	_
3	Warm Season			41–83	

Released to Imaging: 2/2/2024 2:23:40 PM

	blue grama	BOGR2	Bouteloua gracilis	41–83	-
4	Warm Season		•	25–41	
	sideoats grama	BOCU	Bouteloua curtipendula	25–41	_
5	Warm Season	•	•	41–83	
	spike dropseed	SPCO4	Sporobolus contractus	41–83	_
	sand dropseed	SPCR	Sporobolus cryptandrus	41–83	_
	mesa dropseed	SPFL2	Sporobolus flexuosus	41–83	_
6	Warm Season		•	17–41	
	threeawn	ARIST	Aristida	17–41	_
7	Warm Season		•	41–83	
	Arizona cottontop	DICA8	Digitaria californica	41–83	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	41–83	_
8	Warm Season	•	·	41–83	
	mat sandbur	CELO3	Cenchrus longispinus	41–83	_
	hooded windmill grass	CHCU2	Chloris cucullata	41–83	_
9	Other Perennial Grasses	-	•	25–41	
	Grass, perennial	2GP	Grass, perennial	25–41	_
Shrub	/Vine	•	·		
10	Shrub			8–25	
	javelina bush	COER5	Condalia ericoides	8–25	_
11	Shrub	-	•	8–25	
	уисса	YUCCA	Yucca	8–25	_
12	Shrub			8–25	
	jointfir	EPHED	Ephedra	8–25	_
	littleleaf ratany	KRER	Krameria erecta	8–25	-
13	Shrub	-		8–25	
	featherplume	DAFO	Dalea formosa	8–25	_
14	Shrub			8–25	
	broom snakeweed	GUSA2	Gutierrezia sarothrae	8–25	_
15	Other Shrubs			25–41	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	25–41	_
Forb					
16	Forb			17–41	
	leatherweed	CRPOP	Croton pottsii var. pottsii	17–41	_
	Goodding's tansyaster	MAPIG2	Machaeranthera pinnatifida ssp. gooddingii var. gooddingii	17–41	-
17	Forb	•		17–41	
	woolly groundsel	PACA15	Packera cana	17–41	_
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	17–41	_
18	Forb			8–25	
	whitest evening primrose	OEAL	Oenothera albicaulis	8–25	_
19	Other Forbs			8–25	
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass- like)	8–25	_

Animal community

This site provides habitats which support a resident animal community that is characterized by pronghorn antelope, swift fox, black-tailed jackrabbit, spotted ground squirrel, Ord's kangaroo rat, northern grasshopper mouse, coyote, horned lark, meadowlark, lark bunting, scaled quail, morning dove, side-blotched lizard, round-tailed horned lizard, marbled whiptail, prairie rattlesnake and ornate box turtle.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series Hydrologic Group Jarag D Simona D

Recreational uses

This site offers recreation for hiking, horseback riding, nature observation and photography, and quail and dove hunting. During years of abundant spring moisture, this site displays a riot of color from wildflowers during May and June. A few summer and fall flowers also occur.

Wood products

The natural potential plant community of this site affords little or no wood products. Where the site has been invaded by mesquite or cholla cactus the roots and stems of these plants provide attractive material for a variety of curiosities, such as lamps and small furniture.

Other products

This site is suitable for grazing by all kinds and classes of livestock during all seasons of the year. Because of the sandy textures and shallow profile, this site will respond rapidly to management. As this site deteriorates, plants such as black grama, bush muhly, blue and sideoats grama, plains bristlegrass and Arizona cottontop, will decrease and be replaced by plants such as threeawns, mesquite, creosote bush, and broom snakeweed. This also causes a decrease in ground cover, leaving the soil to blow. This site responds best to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index Ac/AUM $100 - 76 \ 2.5 - 3.5$ $75 - 51 \ 3.2 - 4.6$ $50 - 26 \ 4.5 - 7.5$ $25 - 0 \ 7.6 +$

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Literature References:

1. Brooks, M.L. and D.A. Pyke. 2001. Invasive plants and fire in the deserts of North America. Pages 1–14 in K.E.M. Galley and T.P. Wilson (eds.). Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species.

2. Hennessy, J.T., R.P. Gibbens, J.M. Tromble, and M. Cardenas. 1983. Water properties of caliche. J. Range Manage. 36: 723-726.

3. Humphrey, R.R. 1974. Fire in the deserts and desert grassland of North America. In: Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 365-400.

4. Moir, W.H., and J. A. Ludwig. 1991. Plant succession and changing land features in desert grasslands. P. 15-18. In P.F. Ffolliott and W.T. Swank (eds.) People and the temperate region: a summary of research from the United States Man and the Biosphere Program 1991. U.S. Dept. State, Publ No. 9839, Nat. Tech. Info. Serv., U.S. Dept. Commerce, Springfield, Illinois. 63 p.

5. Tiedemann, A. R. and J. O. Klemmedson. 1977. Effect of mesquite trees on vegetation and soils in the desert grassland. J. Range Manage. 30: 361-367.

6. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2002, September). Fire Effects Information System, [Online]. Available: http://www.fs.fed.us/database/feis/ [accessed 2/10/03].

7. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Wind Erosion. Rangeland Sheet 10 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

8. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Physical and Biological Soil Crusts. Rangeland Sheet 7 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

Contributors

David Trujillo Don Sylvester

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

NMBGMR Interactive Resources Map

- 1

-103.276 32.287 Degrees

2mi

ATTACHMENT 3

23E-04311)ID17111.mxd

23E-04311 - Red Bull 29 Fed 1H\Figure 1 Chai

ATTACHMENT 4

Client Name: Devon Energy Production Company, LP Site Name: Red Bull 29 Fed 1H NMOCD Tracking #: nAPP2319260257 Project #: 23E-04311 Lab Report: 2307D90

	Table 2. Initial Characterization Sample Field Screen and Laboratory Results - Depth to Groundwater >100 feet bgs												
S	ample Descrip	otion	Field Screening			Petroleum Hydrocarbons							
				<i>о</i>			Volatile Extractable						Inorganic
Sample ID	Depth (ft)	Sample Date	Volatile Organic Compound: (PID)	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(ppm)	(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BH23-01	0	July 26, 2023	1	204	6,284	ND	ND	ND	170	78	170	250	9100
	1.5	July 26, 2023	0	74	144	ND	ND	ND	17	ND	17	17	270
BH23-02	0	July 26, 2023	9	-	11,439	ND	ND	6	3800	1700	3806	5506	16000
	1	July 26, 2023	2	286	3,218	ND	ND	ND	230	120	230	350	4000
BH23-03	0	July 26, 2023	1	22	0	ND	ND	ND	ND	ND	ND	ND	120
51120 00	1	July 26, 2023	0	29	0	ND	ND	ND	ND	ND	ND	ND	83
BH23-04	0	July 26, 2023	1	98	365	ND	ND	ND	ND	ND	ND	ND	1100
51125 04	1	July 26, 2023	69	69	47	ND	ND	ND	ND	ND	ND	ND	280
BH23-05	0	July 26, 2023	0	52	28	ND	ND	ND	ND	ND	ND	ND	240
BH25 05	1	July 26, 2023	0	30	0	ND	ND	ND	ND	ND	ND	ND	110
BH23-06	0	July 26, 2023	0	45	0	ND	ND	ND	ND	ND	ND	ND	120
BH25 00	1	July 26, 2023	0	25	0	ND	ND	ND	ND	ND	ND	ND	ND
BH33-07	0	July 26, 2023	0	33	0	ND	ND	ND	ND	ND	ND	ND	72
51125 07	1	July 26, 2023	0	30	0	ND	ND	ND	ND	ND	ND	ND	ND
BH33-08	0	July 26, 2023	0	30	0	ND	ND	ND	ND	ND	ND	ND	110
BH23-08	0.5	July 26, 2023	0	26	0	ND	ND	ND	ND	ND	ND	ND	60

"ND" Not Detected at the Reporting Limit

"-" indicates not analyzed/assessed

Bold and grey shaded indicates exceedance outside of NMOCD Closure Criteria (on-pad)

Bold and green shaded indicates exceedance outside of NMOCD Reclamation Criteria (off-pad)

August 07, 2023

Kent Stallings Devon Energy 6488 Seven Rivers Highway Artesia, NM 88210 TEL: (505) 350-1336 FAX:

RE: Red Bull 29 Fed 1H

OrderNo.: 2307D90

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kent Stallings:

Hall Environmental Analysis Laboratory received 16 sample(s) on 7/28/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project:

Lab ID:

Red Bull 29 Fed 1H

2307D90-001

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-01 0.0 ' Collection Date: 7/26/2023 9:00:00 AM Received Date: 7/28/2023 7:15:00 AM

Analyses	Pocult	DI	Qual Unite	DF	Data Analyzad
Anaryses	Kesuit	KL	Quai Units	DF	Date Analyzeu
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: DGH
Diesel Range Organics (DRO)	170	9.8	mg/Kg	1	7/31/2023 7:07:01 PM
Motor Oil Range Organics (MRO)	78	49	mg/Kg	1	7/31/2023 7:07:01 PM
Surr: DNOP	90.0	69-147	%Rec	1	7/31/2023 7:07:01 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/1/2023 11:06:04 AM
Surr: BFB	87.5	15-244	%Rec	1	8/1/2023 11:06:04 AM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.025	mg/Kg	1	8/1/2023 11:06:04 AM
Toluene	ND	0.049	mg/Kg	1	8/1/2023 11:06:04 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/1/2023 11:06:04 AM
Xylenes, Total	ND	0.098	mg/Kg	1	8/1/2023 11:06:04 AM
Surr: 4-Bromofluorobenzene	107	39.1-146	%Rec	1	8/1/2023 11:06:04 AM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	9100	600	mg/Kg	200	8/3/2023 9:11:22 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 1 of 23

Analytical Report Lab Order 2307D90

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/7/2023 Client Sample ID: BH23-01 1.5 ' 7/2C/2022 0.10.00 AM ... -

Project:	Red Bull 29 Fed 1H	Collection Date: 7/26/2023 9:10:00 AM						
Lab ID:	2307D90-002	Matrix: SOIL	Received Date: 7/28/2023 7:15:00 AM					
Analyses		Result	RL Qu	al Units	DF	Date Analyzed		
EPA ME	THOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analyst: DGH		
Diesel R	ange Organics (DRO)	17	9.3	mg/Kg	1	7/31/2023 7:31:38 PM		
Motor Oi	I Range Organics (MRO)	ND	47	mg/Kg	1	7/31/2023 7:31:38 PM		
Surr: I	DNOP	86.7	69-147	%Rec	1	7/31/2023 7:31:38 PM		
EPA ME	THOD 8015D: GASOLINE R	ANGE				Analyst: JJP		
Gasoline	Range Organics (GRO)	ND	4.8	mg/Kg	1	8/1/2023 11:29:30 AM		
Surr: I	BFB	92.4	15-244	%Rec	1	8/1/2023 11:29:30 AM		
EPA ME	THOD 8021B: VOLATILES					Analyst: JJP		
Benzene	•	ND	0.024	mg/Kg	1	8/1/2023 11:29:30 AM		
Toluene		ND	0.048	mg/Kg	1	8/1/2023 11:29:30 AM		
Ethylben	zene	ND	0.048	mg/Kg	1	8/1/2023 11:29:30 AM		
Xylenes,	Total	ND	0.096	mg/Kg	1	8/1/2023 11:29:30 AM		
Surr: 4	4-Bromofluorobenzene	111	39.1-146	%Rec	1	8/1/2023 11:29:30 AM		
EPA ME	THOD 300.0: ANIONS					Analyst: RBC		
Chloride		270	60	mg/Kg	20	8/2/2023 5:13:39 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 2 of 23

.

Red Bull 29 Fed 1H

Project:

Analytical Report Lab Order 2307D90

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/7/2023

Client Sample ID: BH23-02 0.0 ' Collection Date: 7/26/2023 9:20:00 AM Received Date: 7/28/2023 7:15:00 AM

Lab ID: 2307D90-003 Matrix: SOIL Received Date: 7/28/2023 7:15:0					023 7:15:00 AM	
Analyses	Result	RL (Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAM	IGE ORGANICS					Analyst: DGH
Diesel Range Organics (DRO)	3800	89		mg/Kg	10	7/31/2023 7:56:14 PM
Motor Oil Range Organics (MRO)	1700	450		mg/Kg	10	7/31/2023 7:56:14 PM
Surr: DNOP	0	69-147	S	%Rec	10	7/31/2023 7:56:14 PM
EPA METHOD 8015D: GASOLINE RA	NGE					Analyst: JJP
Gasoline Range Organics (GRO)	6.4	4.8		mg/Kg	1	8/1/2023 3:24:57 PM
Surr: BFB	135	15-244		%Rec	1	8/1/2023 3:24:57 PM
EPA METHOD 8021B: VOLATILES						Analyst: JJP
Benzene	ND	0.024		mg/Kg	1	8/1/2023 3:24:57 PM
Toluene	ND	0.048		mg/Kg	1	8/1/2023 3:24:57 PM
Ethylbenzene	ND	0.048		mg/Kg	1	8/1/2023 3:24:57 PM
Xylenes, Total	0.15	0.096		mg/Kg	1	8/1/2023 3:24:57 PM
Surr: 4-Bromofluorobenzene	114	39.1-146		%Rec	1	8/1/2023 3:24:57 PM
EPA METHOD 300.0: ANIONS						Analyst: RBC
Chloride	16000	600		mg/Kg	200	8/3/2023 9:23:46 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit
- RL

Page 3 of 23

Project:

Lab ID:

Red Bull 29 Fed 1H

2307D90-004

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-02 1.0 ' Collection Date: 7/26/2023 9:30:00 AM

Received Date: 7/28/2023 7:15:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RANGE C	EPA METHOD 8015M/D: DIESEL RANGE ORGANICS					
Diesel Range Organics (DRO)	230	9.6	mg/Kg	1	8/1/2023 10:48:06 AM	
Motor Oil Range Organics (MRO)	120	48	mg/Kg	1	8/1/2023 10:48:06 AM	
Surr: DNOP	98.6	69-147	%Rec	1	8/1/2023 10:48:06 AM	
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP	
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/1/2023 12:16:25 PM	
Surr: BFB	89.9	15-244	%Rec	1	8/1/2023 12:16:25 PM	
EPA METHOD 8021B: VOLATILES					Analyst: JJP	
Benzene	ND	0.023	mg/Kg	1	8/1/2023 12:16:25 PM	
Toluene	ND	0.047	mg/Kg	1	8/1/2023 12:16:25 PM	
Ethylbenzene	ND	0.047	mg/Kg	1	8/1/2023 12:16:25 PM	
Xylenes, Total	ND	0.094	mg/Kg	1	8/1/2023 12:16:25 PM	
Surr: 4-Bromofluorobenzene	110	39.1-146	%Rec	1	8/1/2023 12:16:25 PM	
EPA METHOD 300.0: ANIONS					Analyst: RBC	
Chloride	4000	150	mg/Kg	50	8/3/2023 9:36:11 PM	

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range Reporting Limit

RL

Page 4 of 23

Red Bull 29 Fed 1H

Project:

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-03 0.0 ' Collection Date: 7/26/2023 9:40:00 AM Received Date: 7/28/2023 7:15:00 AM

Lab ID: 2307D90-005	Matrix: SOIL	Received Date: 7/28/2023 7:15:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH		
Diesel Range Organics (DRO)	ND	8.6	mg/Kg	1	7/31/2023 8:45:18 PM		
Motor Oil Range Organics (MRO)	ND	43	mg/Kg	1	7/31/2023 8:45:18 PM		
Surr: DNOP	83.6	69-147	%Rec	1	7/31/2023 8:45:18 PM		
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: JJP		
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/1/2023 12:39:58 PM		
Surr: BFB	90.5	15-244	%Rec	1	8/1/2023 12:39:58 PM		
EPA METHOD 8021B: VOLATILES					Analyst: JJP		
Benzene	ND	0.024	mg/Kg	1	8/1/2023 12:39:58 PM		
Toluene	ND	0.049	mg/Kg	1	8/1/2023 12:39:58 PM		
Ethylbenzene	ND	0.049	mg/Kg	1	8/1/2023 12:39:58 PM		
Xylenes, Total	ND	0.098	mg/Kg	1	8/1/2023 12:39:58 PM		
Surr: 4-Bromofluorobenzene	108	39.1-146	%Rec	1	8/1/2023 12:39:58 PM		
EPA METHOD 300.0: ANIONS					Analyst: RBC		
Chloride	120	60	mg/Kg	20	8/2/2023 5:50:53 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range RL Reporting Limit

Page 5 of 23

Red Bull 29 Fed 1H

Project:

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-03 1.0 ' Collection Date: 7/26/2023 9:50:00 AM Received Date: 7/28/2023 7:15:00 AM

Lab ID: 2307D90-006	Matrix: SOIL	Received Date: 7/28/2023 7:15:00 AM					
Analyses	Result	RL Qu	RL Qual Units		Date Analyzed		
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH		
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	7/31/2023 9:09:51 PM		
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	7/31/2023 9:09:51 PM		
Surr: DNOP	86.7	69-147	%Rec	1	7/31/2023 9:09:51 PM		
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: JJP		
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/1/2023 1:03:32 PM		
Surr: BFB	88.1	15-244	%Rec	1	8/1/2023 1:03:32 PM		
EPA METHOD 8021B: VOLATILES					Analyst: JJP		
Benzene	ND	0.024	mg/Kg	1	8/1/2023 1:03:32 PM		
Toluene	ND	0.047	mg/Kg	1	8/1/2023 1:03:32 PM		
Ethylbenzene	ND	0.047	mg/Kg	1	8/1/2023 1:03:32 PM		
Xylenes, Total	ND	0.095	mg/Kg	1	8/1/2023 1:03:32 PM		
Surr: 4-Bromofluorobenzene	106	39.1-146	%Rec	1	8/1/2023 1:03:32 PM		
EPA METHOD 300.0: ANIONS					Analyst: RBC		
Chloride	83	60	mg/Kg	20	8/2/2023 6:28:06 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 23

Analytical Report Lab Order 2307D90

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/7/2023
Client Sample ID: BH23-04 0.0 '

Project:	Red Bull 29 Fed 1H	Collection Date: 7/26/2023 10:00:00 AM						
Lab ID:	2307D90-007	Matrix: SOIL	Received Date: 7/28/2023 7:15:00 AM					
Analyses		Result	RL Qu	al Units	DF	Date Analyzed		
EPA ME	THOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: DGH		
Diesel R	ange Organics (DRO)	ND	9.0	mg/Kg	1	7/31/2023 9:34:27 PM		
Motor Oi	Range Organics (MRO)	ND	45	mg/Kg	1	7/31/2023 9:34:27 PM		
Surr: [DNOP	87.4	69-147	%Rec	1	7/31/2023 9:34:27 PM		
EPA ME	THOD 8015D: GASOLINE R	ANGE				Analyst: JJP		
Gasoline	Range Organics (GRO)	ND	4.7	mg/Kg	1	8/1/2023 1:27:02 PM		
Surr: E	BFB	90.5	15-244	%Rec	1	8/1/2023 1:27:02 PM		
EPA ME	THOD 8021B: VOLATILES					Analyst: JJP		
Benzene		ND	0.023	mg/Kg	1	8/1/2023 1:27:02 PM		
Toluene		ND	0.047	mg/Kg	1	8/1/2023 1:27:02 PM		
Ethylben	zene	ND	0.047	mg/Kg	1	8/1/2023 1:27:02 PM		
Xylenes,	Total	ND	0.093	mg/Kg	1	8/1/2023 1:27:02 PM		
Surr: 4	1-Bromofluorobenzene	109	39.1-146	%Rec	1	8/1/2023 1:27:02 PM		
EPA ME	THOD 300.0: ANIONS					Analyst: RBC		
Chloride		1100	60	mg/Kg	20	8/2/2023 6:40:31 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 23

.

Project: Red Bull 29 Fed 1H

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-04 1.0 ' Collection Date: 7/26/2023 10:10:00 AM

Lab ID: 2307D90-008	Matrix: SOIL	Received Date: 7/28/2023 7:15:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analyst: DGH		
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	7/31/2023 9:58:58 PM		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	7/31/2023 9:58:58 PM		
Surr: DNOP	89.3	69-147	%Rec	1	7/31/2023 9:58:58 PM		
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: JJP		
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/1/2023 1:50:35 PM		
Surr: BFB	96.1	15-244	%Rec	1	8/1/2023 1:50:35 PM		
EPA METHOD 8021B: VOLATILES					Analyst: JJP		
Benzene	ND	0.024	mg/Kg	1	8/1/2023 1:50:35 PM		
Toluene	ND	0.047	mg/Kg	1	8/1/2023 1:50:35 PM		
Ethylbenzene	ND	0.047	mg/Kg	1	8/1/2023 1:50:35 PM		
Xylenes, Total	ND	0.095	mg/Kg	1	8/1/2023 1:50:35 PM		
Surr: 4-Bromofluorobenzene	112	39.1-146	%Rec	1	8/1/2023 1:50:35 PM		
EPA METHOD 300.0: ANIONS					Analyst: RBC		
Chloride	280	60	mg/Kg	20	8/2/2023 11:31:21 AM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 23

Red Bull 29 Fed 1H

Project:

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-05 0.0 ' Collection Date: 7/26/2023 10:20:00 AM Received Date: 7/28/2023 7:15:00 AM

Lab ID: 2307D90-009	Matrix: SOIL	Received Date: 7/28/2023 7:15:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analyst: PRD		
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	8/1/2023 1:07:29 PM		
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/1/2023 1:07:29 PM		
Surr: DNOP	102	69-147	%Rec	1	8/1/2023 1:07:29 PM		
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: JJP		
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/1/2023 10:52:25 PM		
Surr: BFB	90.7	15-244	%Rec	1	8/1/2023 10:52:25 PM		
EPA METHOD 8021B: VOLATILES					Analyst: JJP		
Benzene	ND	0.024	mg/Kg	1	8/1/2023 10:52:25 PM		
Toluene	ND	0.047	mg/Kg	1	8/1/2023 10:52:25 PM		
Ethylbenzene	ND	0.047	mg/Kg	1	8/1/2023 10:52:25 PM		
Xylenes, Total	ND	0.094	mg/Kg	1	8/1/2023 10:52:25 PM		
Surr: 4-Bromofluorobenzene	109	39.1-146	%Rec	1	8/1/2023 10:52:25 PM		
EPA METHOD 300.0: ANIONS					Analyst: RBC		
Chloride	240	60	mg/Kg	20	8/2/2023 11:43:46 AM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range Reporting Limit

RL

Page 9 of 23

Red Bull 29 Fed 1H

Project:

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-05 1.0 ' Collection Date: 7/26/2023 10:30:00 AM Received Date: 7/28/2023 7:15:00 AM

Lab ID: 2307D90-010	Matrix: SOIL	Received Date: 7/28/2023 7:15:00 AM					
Analyses	Result	RL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: PRD		
Diesel Range Organics (DRO)	ND	9.5	mg/Kg	1	8/1/2023 1:18:05 PM		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	8/1/2023 1:18:05 PM		
Surr: DNOP	131	69-147	%Rec	1	8/1/2023 1:18:05 PM		
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst: JJP		
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	8/2/2023 12:02:37 AM		
Surr: BFB	96.7	15-244	%Rec	1	8/2/2023 12:02:37 AM		
EPA METHOD 8021B: VOLATILES					Analyst: JJP		
Benzene	ND	0.024	mg/Kg	1	8/2/2023 12:02:37 AM		
Toluene	ND	0.048	mg/Kg	1	8/2/2023 12:02:37 AM		
Ethylbenzene	ND	0.048	mg/Kg	1	8/2/2023 12:02:37 AM		
Xylenes, Total	ND	0.097	mg/Kg	1	8/2/2023 12:02:37 AM		
Surr: 4-Bromofluorobenzene	115	39.1-146	%Rec	1	8/2/2023 12:02:37 AM		
EPA METHOD 300.0: ANIONS					Analyst: RBC		
Chloride	110	60	mg/Kg	20	8/2/2023 11:56:11 AM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

D н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL

Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 10 of 23

Project:

Lab ID:

Red Bull 29 Fed 1H

2307D90-011

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-06 0.0 ' Collection Date: 7/26/2023 10:40:00 AM Received Date: 7/28/2023 7:15:00 AM

Anglyces	Result	PI Ou	al Unite	DF	Date Analyzed
Anaryses	Kesuit	KL Qu		DI	Date Analyzeu
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	8/1/2023 1:28:44 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/1/2023 1:28:44 PM
Surr: DNOP	74.0	69-147	%Rec	1	8/1/2023 1:28:44 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/2/2023 1:13:05 AM
Surr: BFB	91.1	15-244	%Rec	1	8/2/2023 1:13:05 AM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.024	mg/Kg	1	8/2/2023 1:13:05 AM
Toluene	ND	0.047	mg/Kg	1	8/2/2023 1:13:05 AM
Ethylbenzene	ND	0.047	mg/Kg	1	8/2/2023 1:13:05 AM
Xylenes, Total	ND	0.095	mg/Kg	1	8/2/2023 1:13:05 AM
Surr: 4-Bromofluorobenzene	109	39.1-146	%Rec	1	8/2/2023 1:13:05 AM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	120	60	mg/Kg	20	8/2/2023 12:08:35 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

ND PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range

RL Reporting Limit Page 11 of 23

Red Bull 29 Fed 1H

Project:

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-06 1.0 ' Collection Date: 7/26/2023 10:50:00 AM Received Date: 7/28/2023 7:15:00 AM

Lab ID: 2307D90-012	Matrix: SOIL	Rece	eived Date:	7/28/2	023 7:15:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	8/1/2023 1:39:25 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/1/2023 1:39:25 PM
Surr: DNOP	99.0	69-147	%Rec	1	8/1/2023 1:39:25 PM
EPA METHOD 8015D: GASOLINE RA	ANGE				Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/2/2023 1:36:25 AM
Surr: BFB	92.0	15-244	%Rec	1	8/2/2023 1:36:25 AM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.024	mg/Kg	1	8/2/2023 1:36:25 AM
Toluene	ND	0.049	mg/Kg	1	8/2/2023 1:36:25 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/2/2023 1:36:25 AM
Xylenes, Total	ND	0.097	mg/Kg	1	8/2/2023 1:36:25 AM
Surr: 4-Bromofluorobenzene	111	39.1-146	%Rec	1	8/2/2023 1:36:25 AM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	ND	60	mg/Kg	20	8/2/2023 1:10:37 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 12 of 23

Project:

Red Bull 29 Fed 1H

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-07 0.0 ' Collection Date: 7/26/2023 11:00:00 AM Received Date: 7/28/2023 7:15:00 AM

Lab ID: 2307D90-013	Matrix: SOIL	Rece	eived Date:	7/28/2	023 7:15:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	8/1/2023 1:50:07 PM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	8/1/2023 1:50:07 PM
Surr: DNOP	78.8	69-147	%Rec	1	8/1/2023 1:50:07 PM
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/2/2023 1:59:46 AM
Surr: BFB	91.7	15-244	%Rec	1	8/2/2023 1:59:46 AM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.024	mg/Kg	1	8/2/2023 1:59:46 AM
Toluene	ND	0.049	mg/Kg	1	8/2/2023 1:59:46 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/2/2023 1:59:46 AM
Xylenes, Total	ND	0.098	mg/Kg	1	8/2/2023 1:59:46 AM
Surr: 4-Bromofluorobenzene	110	39.1-146	%Rec	1	8/2/2023 1:59:46 AM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	72	60	mg/Kg	20	8/2/2023 1:23:02 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

- D н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 13 of 23

Project:

Lab ID:

Red Bull 29 Fed 1H

2307D90-014

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-07 1.0 ' Collection Date: 7/26/2023 11:10:00 AM Received Date: 7/28/2023 7:15:00 AM

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	8/1/2023 2:00:50 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/1/2023 2:00:50 PM
Surr: DNOP	112	69-147	%Rec	1	8/1/2023 2:00:50 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/2/2023 2:23:12 AM
Surr: BFB	91.7	15-244	%Rec	1	8/2/2023 2:23:12 AM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.024	mg/Kg	1	8/2/2023 2:23:12 AM
Toluene	ND	0.049	mg/Kg	1	8/2/2023 2:23:12 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/2/2023 2:23:12 AM
Xylenes, Total	ND	0.097	mg/Kg	1	8/2/2023 2:23:12 AM
Surr: 4-Bromofluorobenzene	110	39.1-146	%Rec	1	8/2/2023 2:23:12 AM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	ND	60	mg/Kg	20	8/2/2023 1:35:27 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range Reporting Limit

RL

Page 14 of 23

Red Bull 29 Fed 1H

Project:

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-08 0.0 ' Collection Date: 7/26/2023 11:20:00 AM Received Date: 7/28/2023 7:15:00 AM

Lab ID: 2307D90-015	Matrix: SOIL	Rece	eived Date:	7/28/2	023 7:15:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	ANGE ORGANICS				Analyst: PRD
Diesel Range Organics (DRO)	ND	8.7	mg/Kg	1	8/1/2023 2:11:34 PM
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	8/1/2023 2:11:34 PM
Surr: DNOP	85.9	69-147	%Rec	1	8/1/2023 2:11:34 PM
EPA METHOD 8015D: GASOLINE R	ANGE				Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	8/2/2023 2:46:42 AM
Surr: BFB	92.0	15-244	%Rec	1	8/2/2023 2:46:42 AM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.024	mg/Kg	1	8/2/2023 2:46:42 AM
Toluene	ND	0.048	mg/Kg	1	8/2/2023 2:46:42 AM
Ethylbenzene	ND	0.048	mg/Kg	1	8/2/2023 2:46:42 AM
Xylenes, Total	ND	0.095	mg/Kg	1	8/2/2023 2:46:42 AM
Surr: 4-Bromofluorobenzene	110	39.1-146	%Rec	1	8/2/2023 2:46:42 AM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	110	60	mg/Kg	20	8/2/2023 1:47:51 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

Analyte detected in the associated Method Blank в

- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 15 of 23

Project:

Lab ID:

Red Bull 29 Fed 1H

2307D90-016

Analytical Report Lab Order 2307D90

Date Reported: 8/7/2023

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH23-08 0.5 ' Collection Date: 7/26/2023 11:30:00 AM Received Date: 7/28/2023 7:15:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.0	mg/Kg	1	8/2/2023 3:07:46 PM
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	8/2/2023 3:07:46 PM
Surr: DNOP	92.8	69-147	%Rec	1	8/2/2023 3:07:46 PM
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst: JJP
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/2/2023 3:10:17 AM
Surr: BFB	88.6	15-244	%Rec	1	8/2/2023 3:10:17 AM
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	0.024	mg/Kg	1	8/2/2023 3:10:17 AM
Toluene	ND	0.049	mg/Kg	1	8/2/2023 3:10:17 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/2/2023 3:10:17 AM
Xylenes, Total	ND	0.097	mg/Kg	1	8/2/2023 3:10:17 AM
Surr: 4-Bromofluorobenzene	107	39.1-146	%Rec	1	8/2/2023 3:10:17 AM
EPA METHOD 300.0: ANIONS					Analyst: RBC
Chloride	60	60	mg/Kg	20	8/2/2023 2:25:05 PM

Matrix: SOIL

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 16 of 23

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

v	VO#:	2307D90
		07-Aug-23

Client: Project:	Devon Red Bu	Energy Ill 29 Fed 1H		
Sample ID:	MB-76612	SampType: MBLK	TestCode: EPA Method 300.0: Anions	
Client ID:	PBS	Batch ID: 76612	RunNo: 98664	
Prep Date:	8/1/2023	Analysis Date: 8/1/2023	SeqNo: 3593662 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD F	PDLimit Qual
Chloride		ND 1.5		
Sample ID:	LCS-76612	SampType: LCS	TestCode: EPA Method 300.0: Anions	
Client ID:	LCSS	Batch ID: 76612	RunNo: 98664	
Prep Date:	8/1/2023	Analysis Date: 8/1/2023	SeqNo: 3593663 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD F	PDLimit Qual
Chloride		14 1.5 15.00	0 0 92.4 90 110	
Sample ID:	MB-76617	SampType: MBLK	TestCode: EPA Method 300.0: Anions	
Client ID:	PBS	Batch ID: 76617	RunNo: 98683	
Prep Date:	8/2/2023	Analysis Date: 8/2/2023	SeqNo: 3594682 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD F	PDLimit Qual
Chloride		ND 1.5		
Sample ID:	LCS-76617	SampType: LCS	TestCode: EPA Method 300.0: Anions	
Client ID:	LCSS	Batch ID: 76617	RunNo: 98683	
Prep Date:	8/2/2023	Analysis Date: 8/2/2023	SeqNo: 3594683 Units: mg/Kg	
Analyte		Result PQL SPK value	e SPK Ref Val %REC LowLimit HighLimit %RPD F	RPDLimit Qual
Chloride		14 1.5 15.00	0 0 92.3 90 110	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 23

.

Devon Energy

Red Bull 29 Fed 1H

Client:

Project:

Client ID:

Prep Date:

Analvte

Sample ID: MB-76565

PBS

7/31/2023

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Result

SampType: MBLK

Batch ID: 76565

Analysis Date: 7/31/2023

PQL

Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.8		10.00		88.0	69	147			
Sample ID: LCS-76565	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: LCSS	Batch	n ID: 76	565	F	RunNo: 9	8619				
Prep Date: 7/31/2023	Analysis D	Date: 7/	31/2023	S	SeqNo: 3	591534	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	10	50.00	0	93.2	61.9	130			
Surr: DNOP	4.4		5.000		87.7	69	147			
Sample ID: LCS-76582	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: LCSS	Batch	n ID: 76	582	F	RunNo: 9 8	8632				
Prep Date: 7/31/2023	Analysis D	Date: 8/	1/2023	S	SeqNo: 3	593241	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	55	10	50.00	0	110	61.9	130			
Surr: DNOP	5.3		5.000		105	69	147			
Sample ID: MB-76582	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batch	n ID: 76	582	F	RunNo: 9 8	8632				
Prep Date: 7/31/2023	Analysis D	Date: 8/	1/2023	Ş	SeqNo: 3	593242	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	11		10.00		105	69	147			
Sample ID: MB-76620	SampT	ype: ME	BLK	Tes	tCode: Ef	PA Method	8015M/D: Die	sel Range	Organics	
Client ID: PBS	Batch	n ID: 76	620	F	RunNo: 9 8	8691				
Prep Date: 8/2/2023	Analysis D	Date: 8/	2/2023	S	SeqNo: 3	594941	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.0		10.00		89.7	69	147			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

Page 18 of 23

WO#: 2307D90

Qual

TestCode: EPA Method 8015M/D: Diesel Range Organics

Units: mg/Kg

%RPD

RPDLimit

HighLimit

RunNo: 98619

SPK value SPK Ref Val %REC LowLimit

SeqNo: 3591533

07-Aug-23

Client:	Devo	on Energy									
Project:	Red	Bull 29 Fed 1H									
Sample ID:	LCS-76620	SampT	ype: L	cs	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range	Organics	
Client ID:	LCSS	Batch	ID: 76	6620	F	RunNo: 98	3691				
Prep Date:	8/2/2023	Analysis D	ate: 8	/2/2023	S	SeqNo: 3	594942	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	44	10	50.00	0	88.7	61.9	130			
Surr: DNOP		4.3		5.000		86.0	69	147			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 23

2307D90

07-Aug-23

WO#:

Devon Energy

Red Bull 29 Fed 1H

Client:

Project:

Client ID:

Prep Date:

Surr: BFB

Client ID:

Prep Date:

Surr: BFB

Analyte

Analvte

Sample ID: Ics-76543

LCSS

Gasoline Range Organics (GRO)

Sample ID: mb-76543

PBS

Gasoline Range Organics (GRO)

7/28/2023

7/28/2023

QC SUMMARY REPORT Hall Environmental Analysis La

REP	ORT							WO#:	2307D00
Analy	ysis L	aborato	ry, Inc.					₩0#.	07-Aug-23
ergy 9 Fed 1H	ł								
Samp ⁻	Туре: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	9	
Batc	h ID: 76	543	F	RunNo: 9 8	8601				
Analysis [Date: 7/3	31/2023	5	SeqNo: 3	591155	Units: mg/K	g		
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
23	5.0	25.00	0	92.9	70	130			
2000		1000		199	15	244			
Samp	Туре: МЕ	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Range	•	
Batc	h ID: 76	543	F	RunNo: 9 8	8601				
Analysis [Date: 7/	31/2023	S	SeqNo: 3	591604	Units: mg/K	g		
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
ND	5.0								
960		1000		96.1	15	244			

Sample ID: Ics-76571	SampT	ype: LC	s	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range	•		
Client ID: LCSS	Batch	n ID: 765	571	F	RunNo: 98	8626					
Prep Date: 7/31/2023	Analysis E	Date: 8/1	1/2023	5	SeqNo: 3	593250	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	22	5.0	25.00	0	87.6	70	130				
Surr: BFB	1900		1000		191	15	244				
Sample ID: mb-76571	SampT	уре: МВ	LK	Tes	tCode: EF	PA Method	8015D: Gasol	ine Range	•		

-									-		
Client ID:	PBS	Batch	ID: 765	571	F	RunNo: 9 8	8626				
Prep Date:	7/31/2023	Analysis D	ate: 8/ *	1/2023	S	SeqNo: 3	593251	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	ND	5.0								
Surr: BFB		970		1000		97.4	15	244			
Sample ID:	2307d90-009ams	SampT	ype: MS	5	Tes	tCode: El	PA Method	8015D: Gaso	line Range		
Client ID:	BH23-05 0 0 '	Batch	ID. 765	571	F	RunNo: q	8626				
onone ib.	BI125-05 0.0	Dato	10. 700		•		0010				
Prep Date:	7/31/2023	Analysis D	ate: 8/	1/2023	S	SeqNo: 3	593266	Units: mg/K	g		
Prep Date: Analyte	7/31/2023	Analysis D Result	ate: 8/	1/2023 SPK value	SPK Ref Val	SeqNo: 3	593266 LowLimit	Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
Prep Date: Analyte	7/31/2023 ge Organics (GRO)	Analysis D Result 23	ate: 8/ PQL 4.7	1/2023 SPK value 23.63	SPK Ref Val	SeqNo: 3: %REC 96.2	593266 LowLimit 70	Units: mg/K HighLimit 130	g %RPD	RPDLimit	Qual
Prep Date: Analyte Gasoline Rang Surr: BFB	7/31/2023 ge Organics (GRO)	Analysis D Result 23 1900	ate: 8/ PQL 4.7	1/2023 SPK value 23.63 945.2	SPK Ref Val	SeqNo: 3 %REC 96.2 203	593266 LowLimit 70 15	Units: mg/K HighLimit 130 244	g %RPD	RPDLimit	Qual
Prep Date: Analyte Gasoline Rang Surr: BFB	7/31/2023 ge Organics (GRO) 2307d90-009amsd	Analysis D Result 23 1900 SampT	ate: 8/1 PQL 4.7 ype: MS	1/2023 SPK value 23.63 945.2	SPK Ref Val	SeqNo: 3: %REC 96.2 203 tCode: EF	593266 LowLimit 70 15 PA Method	Units: mg/K HighLimit 130 244 8015D: Gaso	g %RPD	RPDLimit	Qual
Analyte Gasoline Rang Surr: BFB Sample ID: Client ID:	7/31/2023 ge Organics (GRO) 2307d90-009amsd BH23-05 0.0 '	Analysis D Result 23 1900 SampT Batch	Ate: 8/ PQL 4.7 ype: MS	1/2023 SPK value 23.63 945.2 SD 571	SPK Ref Val 0 Tes	SeqNo: 3 %REC 96.2 203 tCode: EF	593266 LowLimit 70 15 PA Method 8626	Units: mg/K HighLimit 130 244 8015D: Gaso	g %RPD line Range	RPDLimit	Qual

Analyte

Value exceeds Maximum Contaminant Level. *

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit ND

- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- в Analyte detected in the associated Method Blank

%REC

LowLimit

HighLimit

- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Sample pH Not In Range Р
- RL Reporting Limit

SPK value SPK Ref Val

RPDLimit

%RPD

Result

PQL

Qual

Client: Project:	Devon En Red Bull 2	ergy 29 Fed 1H	[
Sample ID:	2307d90-009amsd	SampT	уре: МS	5D	Tes	tCode: EF	PA Method	8015D: Gaso	line Range	1		
Client ID:	BH23-05 0.0 ' Batch ID: 76571 RunNo: 98626											
Prep Date:	7/31/2023	Analysis D	ate: 8/	1/2023	S	SeqNo: 35	593267	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Rang	e Organics (GRO)	23	4.7	23.41	0	96.2	70	130	0.982	20		
Surr: BFB		1900		936.3		204	15	244	0	0		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 23

WO#: 2307D90 07-Aug-23 Devon Energy

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

2307D90	WO#:
07-Aug-23	

Project:	Red B	ull 29 Fed 1H	I										
Sample ID:	LCS-76543	SampT	Гуре: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles				
Client ID:	LCSS	Batch	h ID: 76	543	F	RunNo: 9	8601						
Prep Date:	7/28/2023	Analysis D	Date: 7/	31/2023	\$	SeqNo: 3	591156	Units: mg/k	٤g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		1.0	0.025	1.000	0	101	70	130					
Toluene		1.0	0.050	1.000	0	103	70	130					
Ethylbenzene		1.0	0.050	1.000	0	105	70	130					
Xylenes, Total		3.2	0.10	3.000	0	107	70	130					
Surr: 4-Bron	nofluorobenzene	1.1		1.000		114	39.1	146					
Sample ID:	mb-76543	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles				
Client ID:	PBS	Batch	h ID: 76	543	F	RunNo: 9	8601						
Prep Date:	7/28/2023	Analysis E	Date: 7/	31/2023	\$	SeqNo: 3	591642	Units: mg/H	٤g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		ND	0.025										
Toluene		ND	0.050										
Ethylbenzene		ND	0.050										
Xylenes, Total		ND	0.10										
Surr: 4-Bron	nofluorobenzene	1.1		1.000		114	39.1	146					
Sample ID:	LCS-76571	SampT	Гуре: LC	s	Tes	tCode: EF	PA Method	8021B: Volat	iles				
Client ID:	LCSS	Batcl	h ID: 76	571	F	RunNo: 9 8	8626						
Prep Date:	7/31/2023	Analysis D	Date: 8/ *	1/2023	Ş	SeqNo: 3	593284	Units: mg/k	٤g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		0.94	0.025	1.000	0	93.6	70	130					
Toluene		0.98	0.050	1.000	0	97.6	70	130					
Ethylbenzene		1.0	0.050	1.000	0	102	70	130					
Xylenes, Total		3.1	0.10	3.000	0	104	70	130					
Surr: 4-Bron	nofluorobenzene	1.2		1.000		117	39.1	146					
Sample ID:	mb-76571	SampT	Гуре: МЕ	BLK	Tes	tCode: E	PA Method	8021B: Volat	iles				
Client ID:	PBS Batch ID: 76571			571	F	RunNo: 9 8	8626						
Prep Date:	7/31/2023	Analysis D	Date: 8/	1/2023	Ş	SeqNo: 3	593285	Units: mg/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		ND	0.025										
Toluene		ND	0.050										
Ethylbenzene		ND	0.050										
Xylenes, Total		ND	0.10										
Surr: 4-Bron	nofluorobenzene	1.2		1.000		117	39.1	146					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 23

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#: 2307D90

07-Aug-23

Client: Project:	Devon Ene Red Bull 2	ergy 29 Fed 1H	ł										
Sample ID:	2307d90-001ams	Samp	Гуре: МS	;	Tes	tCode: E	PA Method	8021B: Volat	iles				
Client ID:	BH23-01 0.0 '	Batc	h ID: 765	543	F	RunNo: 9 8	8626						
Prep Date:	7/28/2023	Analysis [Date: 8/ *	1/2023	S	SeqNo: 3	593296	Units: mg/k	۲g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		0.99	0.025	0.9814	0	101	70	130					
Toluene		1.0	0.049	0.9814	0	102	70	130					
Ethylbenzene		1.0	0.049	0.9814	0	103	70	130					
Xylenes, Total		3.1	0.098	2.944	0	105	70	130					
Surr: 4-Brom	nofluorobenzene	1.1		0.9814		115	39.1	146					
Sample ID:	2307d90-001amsd	Samp	Гуре: МS	D	Tes	tCode: El	PA Method	8021B: Volat	iles				
Client ID:	BH23-01 0.0 '	Batc	h ID: 765	543	F	RunNo: 98	8626						
Prep Date:	7/28/2023	Analysis [Date: 8/ *	1/2023	5	SeqNo: 3	593297	Units: mg/k	٤g				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		0.95	0.025	0.9833	0	97.0	70	130	3.58	20			
Toluene		0.97	0.049	0.9833	0	99.1	70	130	2.59	20			
Ethylbenzene		0.99	0.049	0.9833	0	101	70	130	1.80	20			
Xylenes, Total		3.0	0.098	2.950	0	102	70	130	2.67	20			
Surr: 4-Brom	nofluorobenzene	1.1		0.9833		113	39.1	146	0	0			
Sample ID:	2307d90-010ams	Samp	Гуре: МS	;	TestCode: EPA Method 8021B: Volatiles								
Client ID:	BH23-05 1.0 '	Batc	h ID: 765	571	F	RunNo: 9	8626						
Prep Date:	7/31/2023	Analysis [Date: 8/ 2	2/2023	Ş	SeqNo: 3	593303	Units: mg/k					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		0.94	0.024	0.9662	0	97.2	70	130					
Toluene		0.99	0.048	0.9662	0	102	70	130					
Ethylbenzene		1.0	0.048	0.9662	0	108	70	130					
Xylenes, Total		3.2	0.097	2.899	0	109	70	130					
Surr: 4-Brom	nofluorobenzene	1.1		0.9662		114	39.1	146					
Sample ID:	2307d90-010amsd	Samp	Гуре: МS	D	Tes	tCode: El							
Client ID:	BH23-05 1.0 '	Batc	h ID: 765	571	F	RunNo: 9 8	3626						
Prep Date:	7/31/2023	Analysis [Date: 8/ 2	2/2023	Ş	SeqNo: 3	593304	Units: mg/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene		0.91	0.024	0.9718	0	93.7	70	130	3.10	20			
Toluene		0.95	0.049	0.9718	0	97.5	70	130	3.91	20			
Ethylbenzene		1.0	0.049	0.9718	0	103	70	130	3.87	20			
Xylenes, Total		3.0	0.097	2.915	0	105	70	130	3.29	20			
Surr: 4-Brom	nofluorobenzene	1.1		0.9718		109	39.1	146	0	0			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

.

HALL ENVIRONMENTA ANALYSIS LABORATORY	Hall Er L TEL: 5 Web	wironmental Analysis Labo. 4901 Hawki Albuquerque. NM 05-345-3975 FAX: 505-345 site: www.hallenvironmenta	ratory ns NE 87109 San -4107 11.com	nple Log-In Check List
Client Name: Devon Ener	gy Work Ord	ler Number: 2307D90		RcptNo: 1
Received By: Tracy Casa	arrubias 7/28/2023 7	7:15:00 AM		
Completed By: Tracy Casa	arrubias 7/28/2023	7:43:27 AM		
Reviewed By: 17-2	8-23			
hain of Custody				
1 Is Chain of Custody complete	ate?	Yes 🗌	No 🔽	Not Present
How was the sample delive				
		Counter		
<u>Log In</u>		_		_
Was an attempt made to control	ool the samples?	Yes 🗹	No 🗌	
4. Were all samples received	at a temperature of $>0^{\circ}$ C to 6	.0°C Yes 🗹	No 🗌	
5. Sample(s) in proper contain	ner(s)?	Yes 🔽	No 🗌	
S. Sufficient sample volume for	or indicated test(s)?	Yes 🗹	No 🗌	
7 Are samples (except VOA a	and ONG) properly preserved?	Yes 🗹	No 🗌	
3. Was preservative added to	bottles?	Yes 🗌	No 🗹	NA 🗌
). Received at least 1 vial with	headspace <1/4" for AQ VOA	? Yes 🗌	No 🗌	NA 🗹
0. Were any sample containe	rs received broken?	Yes 🗀	No 🗹	# of preserved bottles checked
1. Does paperwork match bott	le labels?	Yes 🔽	No 🗌	for pH:
(Note discrepancies on cha	In of custody)	Yes M	No 🗌	(<2 or >12 unless noted) Adjusted?
2. Are mances correctly ident	re requested?	Yes V		
4. Were all holding times able (If no, notify customer for a	to be met? uthorization.)	Yes 🗹	No 🗌	Checked by: 1128/23
pecial Handling (if app	<u>licable)</u>			
5. Was client notified of all dis	screpancies with this order?	Yes 🗌	No 🗌	NA 🗹
Person Notified:		Date:		
By Whom:		Via: eMail	Phone 🗌 Fax	In Person
Regarding:				10 7/00/02
	ivialling address, phone number	r, and Email/Fax are miss	ing on COC- TN	MC 1128/23
10. Additional remarks:				
7 Cooler Information	Condition Seal Intact S	eal No Seal Date	Signed By	
Cooler No Temp °C	Condition Sear Intact S			

Page 99 of 102

L
and the second second
-
~
100
- N.
2.2
0
12.4
0
_
-
2.1
A Real Property lies:
-
00
2.4
\sim
-
5
0
2.1
~
5
_
the second se
-
\leq
3
201
10/
10/
: 10/1
: 10/1
D: 10/1
D: 10/1
CD: 10/1
CD: 10/1
CD: 10/1
0CD: 10/1
0CD: 10/1
, OCD: 10/1
y OCD: 10/1
by OCD: 10/1
by OCD: 10/1
(by OCD: 10/1
d by OCD: 10/1
ed by OCD: 10/1
ed by OCD: 10/1
ved by OCD: 10/1
ived by OCD: 10/1
ived by OCD: 10/1
eived by OCD: 10/1
ceived by OCD: 10/1
ceived by OCD: 10/1
eceived by OCD: 10/1

- COL
-
The second second
C
A COLUMN TWO IS NOT
~
_
-
Contraction of the local division of the loc
Sec. 1
-
_
_
- M
-

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		or-cus	tody ked	ora						Ī	ALL	EN	5	S	NME	TN	F
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A	har			Z Standard	Rust	D Davy		Π	A	NAL	YS.	S	P	SOR	ATO	RY
B Address: Project # Address: Addres: Address: Address:	Dires	L Bil	/		Project Nam	11 29 6	At pe			5	ww.ha	llenviro	nme	ntal.co	Ę		
Project #: Project #: Project #: Tal. 565-3437/ Image: Tage:	g Address:				ž			4	901 H	awkins	NE NE	Albu	duerq	ue, NI	M 87109	~	
Image: Analysis <					Project #:	1240-1	/		Tel. 50	5-345	-3975	Б Га	x 50!	5-345	4107		
Of Teach: Project Manager: The At Completion Project Manager: Prodeage: Provide: At Completion Differ: The At Completion Prodeage: Differ: At Completion Samplet: The At Completion Prodeage: Differ: At Completion Samplet: At Completion Prodeage: Differ: At Completion Samplet: At Completion Prodeage: Differ: At Completion Samplet: At Completion Off Differ: At Completion Samplet: At Completion Off Differ: At Completion Samplet: At Completion Off Differ: At Completion Samplet: At Completion Differ: At Completion Samplet: At Completion Samplet: Differ: At Completion Samplet: At Completion At Completion Differ: At Completion At Completion At Completion At Completion Differ: At Completion At Completion At Completion At	e #:				07	501	An ender a la la la					ualys	is Re	duest			
Petrope Month Control Month	or Fax#:				Project Mana	iger:	- //	(12			-	⁺OS	- 2	(juə			
Indered Inder	Package:					tent ar	Scu/17	208)	CB's			°*0		edA		i.	
Gliation: DA: Compliance Sample: M Mile Mile </td <td>Indard</td> <td></td> <td>Level 4 (Full V</td> <td>alidation)</td> <td></td> <td></td> <td></td> <td>5,g</td> <td>5 b(</td> <td>502</td> <td>20/</td> <td>d ''</td> <td></td> <td>дие</td> <td></td> <td></td> <td></td>	Indard		Level 4 (Full V	alidation)				5,g	5 b(502	20/	d ''		дие			
Отореј Полов <	ditation:	J Az Comp	oliance		Sampler:	A		IMT	808	(1.4(70 1	ON	(6	orese			
Time Matrix Sample Name Container Preservative HEAL No. Mit Preservative		Other			Un Ice: # of Coolars:	W Yes	- hod -	/ 38	səp)9 P	o oi slais	' ^ɛ O		i) m			
Time Matrix Sample Name Container Preservative HEAL NO. Ref Preservative Preservative </td <td></td> <td></td> <td></td> <td></td> <td>Cooler Temp</td> <td>(Including CF): A</td> <td>(°C)</td> <td></td> <td>ioite</td> <td>oqt</td> <td>co 9M</td> <td>N ¹</td> <td>-ime</td> <td>lifor</td> <td></td> <td></td> <td></td>					Cooler Temp	(Including CF): A	(°C)		ioite	oqt	co 9M	N ¹	-ime	lifor			
Time Matrix Sample Name Type and # Type $23\Lambda_2\Omega_1O$ E E					Container	Preservative	HEAL No.		81 Pes	eM) 80	8 AA:) - Е' Вч) 02 (A) 02	c) of tal			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Time M	fatrix Si	ample Name	-	Type and #	Type	060t022	Т8 ТТ	808	DV DEC	2A A	CI;	28	0T			
6% 8/123-07 1.5 002 1.6 003 1.6	5 0050 5	10.1 B	10-524	0.0	yor	1 CE	1001	7				,	-				
6720 8473-02 0.0 003 1 0 0 6930 8473-02 0.0 0.0 0.0 0.0 10 8472-05 1.0 0.0 <	0210	8	1423-01	1,5			200					_		20			
CP30 BK23-02 1.0 004 1 005 005 0	0250	3	1423-02	0.0			003	_									
$\Theta 4 0$ $B 4 73 - 03$ 6.0 0.05 0.06 1.0 0.06 1.0 0.06 1.0 0.06 1.0 0.06 1.0 0.06 0.0	6930	B	123-02	1.0			604				_						
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	040	B	(423-03	6.0		and the second s	200			8		_					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0360	B	423-03	1.0'			900										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	[000]	B	192-04	0.0		_	500			-		_	-				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0101	B	423-04	1.0			00%				_		-+				
1030 Bt73-05 1,0 010 011 010 1040 Bt73-06 0.0 0.1 011 011 011 Time: Bt723-06 1,0 011 011 011 011 Time: Relinquished by: Bt723-06 1,0 012 012 011 Time: Relinquished by: C 1017 Date Time Remarks: C Ach 5 Killings Time: Relinquished by: No.1 No.1 No.1 No.4 K5 Killings	0201	B	123-05	0,0	-		009							_			
1040 Bt73-06 0.0 ⁻ 0.1 0.1 Time: EW23-06 1,0 ⁻ 0.12 N N N Time: Relinquished by: N N N N N N Time: Relinquished by: N N N N N N N Time: Relinquished by: N	1030	B	1723-05	1.0			010						-				
Ioso Euroso I.o V V V Time: Relinquished by: Received by: Viai Date Time N N Time: Relinquished by: Remarks: C: Kenk Skillings Time: Relinquished by: Viai Country 7(37) 53 BOD KS/lings Time: Relinquished by: Viai Country Date Time Time: Relinquished by: Viai Country Date Time	1040	a	423-06	0.0			011			_		-	-				_
Time: Relinquished by: Received by: Via: Date Time Remarks: C: Kenth Skillings Time: Relinquished by: Relinquished by: Nate Nate Nate Nate Mina: Ana. Ana. Nate Nate Nate Nate Nate	0201	8	423-06	1.0'	7		210	8		-		7	1				
Time: Relinquished by: Received by: Vial Courted Date Time KS/1/175 @ Verfex Co	Time: R(Relinquished	by:		Received by:	Via:	Date Time	Rema	rks:	C	M	A vo	6	kelle	SS		
Time: Relinquished by: Received by: Viar Country Date Time KS///n55 @ Var /ex Co					MANAA	At A	000 20/2011		5	2							
	Time: R	Relinquished	by:		Rěčěived by:	ViavCounty	Date Time			Ka	5 fall	Sul	C	Ver	fex.	5	

-
-
-
T.
· · ·
2.2
\sim
÷.
9
The second
Contract
-
_
0
<u> </u>
_
\sim
~
5
~
-
· ·
0
_
-
\frown
and the second s
113
\sim
-
0
-
2
and the second division of the second divisio
0
- 5
0

· ·
- COL
-
_
The second
-
A REAL PROPERTY.
~ *
0
_
-
The second second
<u> </u>
-
Total State
0
~
-
_
~
<u> </u>
Personal Ventoria

and for the second s				www.rialierivirorinterital.com 4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107 Analysis Portiost		Vypseu SIMS SCB's	V DKG (8082 I)4.1) (1 8270 (8270 (8270 (8270 (92, 1	GR(GR(des des des des des des des des des des	Pestici Metho by 83 Br, N VOA) Semi- Semi- Semi-	8081 F 21) F, 3270 (3260 (21) F, 3260 (701 C 10131 C 10131 C									Kent Stallings	CC: Kotallings @ revex.cg
	I urn-Around Time:	P Standard P Rush 5 024	Project Name:	# Rod 8,1/1 29 Frod 214	Project #: 23E-01311	Project Manager:	hent Stallings	Sampler: Att Contrast to Vac Inc.	# of Coolers: 1 Coolers: 1	Cooler Temp(Induding CF): 0 - 0 = 0 (°C)	Type and # Type 2304 D4 0	402 1CE 013 1	014	1/ 015 1/	V V OIG				teceived by: Via: Date Time Rem	MANANA Tar 123 Pan	ieceived by: Via: Count Date Time 7:15 7:15 Itracted to other accredited laboratories. This serves as notice of this nossib
	Chain-of-Custody Record	Client:	Direct B. 11	Mailing Address:	Phone #:	email or Fax#:	QA/QC Package:	Accreditation:	EDD (Type)		Date Time Matrix Sample Name	-26-23 1100 So. 1 8/423.07 0.0	1 1/10 1 6/423-07 1,0	1120 1, BH23-08 0.0	V 1130 V BA23.08 0,5				Date: Time: Relinquished by: R		Plate: Time: Relinquished by: 181 B 190 0.000000000000000000000000000000000

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	275953
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Remediation plan conditionally approved with the following: 1. If exploratory boring to determine depth tho water is not advanced within 0.5 miles from the release, then the closure standard will be gw<50 ft. below grade. Keep in mind, the boring location should be as close to the point of release as possible. 2. Devon has 90-days (May 2, 2024) to submit its appropriate or final remediation closure report.	2/2/2024

Page 102 of 102

CONDITIONS

Action 275953