

SITE INFORMATION

Closure Report Tiger 11 Federal 001H (07.10.23) Incident #: NAPP2319848031 Lea County, New Mexico Unit D Sec 11 T20S R34E 32.5948°, -103.5357°

Crude Oil and Produced Water Release Point of Release: Overfilled Free Water Knock Out Release Date: 07.10.23 Volume Released: 1.717 Barrels of Crude Oil and 3.6487 Barrels of Produced Water Volume Recovered: 1.5 Barrels of Crude Oil and 3.0 Barrels of Produced Water

Prepared for: COG Operating, LLC 600 W Illinois Ave Midland, Texas 79701

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	SAMPLE LOCATION	FIGURE 4	EXCAVATION
	APPE	NDICES	
APPENDIX A	TABLES		
APPENDIX B	PHOTOS		

- APPENDIX C INITIAL C-141 AND FINAL/ NMOCD CORRESPONDENCE
- **APPENDIX D** SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS

September 22, 2023

New Mexico Oil Conservation Division 1220 South St, Francis Drive Santa Fe, NM 87505

Re: Closure Report Tiger 11 Federal 001H (07.10.23) Concho Operating, LLC Site Location: Unit D, S11, T20S, R34E (Lat 32.5948°, Long -103.5357°) Lea County, New Mexico

To whom it may concern:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment activities for the Tiger 11 Federal 001H. The site is located at 32.5948, -103.5357 within Unit D, S11, T20S, R34E, in Lea County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on July 10, 2023, due to an overfill of a free water knock out from pressure loss. It resulted in approximately one point seven one seven (1.717) barrels of crude oil and three point six four eight seven (3.6487) barrels of produced water, with one point five (1.5) barrels of crude oil and three (3) barrels of produced water recovered. The impacted area occurred on the pad, shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The closest well is approximately 1.26 miles west of the site in S4, T20S, and R34E and was drilled in 2015. The well has a reported depth to groundwater of 112.75 feet below the ground surface (ft bgs). A copy of the associated point of diversion is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, thefollowing criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On July 14, 2023, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of five (5) sample points (S-1 through S-5) and four (4) horizontal sample points (H-1 through H-4) were installed to total depths ranging from surface to 1.5' bgs within the release extent. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum

hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

Using a hand auger, a dense layer was encountered on the pad around 1.5' bgs and could not grab deeper samples. See Table 1 for the analytical results.

5.0 Remediation Activities

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on August 8, 2023, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of eleven (11) confirmation floor samples were collected (CS-1 through CS-11), and eleven (11) sidewall samples (SW-1 through SW-11) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 215 cubic yards of material were excavated and transported offsite for proper disposal.

6.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Mike Carmona Environmental Manager

Conner Moehring Sr. Project Manager

APPENDIX A

CARMONA RESOURCES

Table 1 **Conoco Phillips** Tiger 11 Fed 7H (07.10.23) Lea County, New Mexico

Comula ID	Data	Double (ft)		TPH	l (mg/kg)	-	Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
S-1	7/14/2023	0-1	<50.4	465	<50.4	465	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,760
3-1	7/14/2023	1.5	<50.1	52.6	<50.1	52.6	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	685
	7/14/2023	0-1	<50.0	552	<50.0	552	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	1,840
\$-2	7/14/2023	1.5	<50.4	57.5	<50.4	57.5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	625
S-3	7/14/2023	0-1	<503	13,300	878	14,200	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	6,020
S-4	7/14/2023	0-1	1,340	36,200	2,180	39,700	2.87	18.5	9.67	25.2	56.2	7,150
	7/14/2023	1.5	<502	5,800	<502	5,800	0.323	7.26	4.89	19.2	31.7	3,260
S-5	7/14/2023	0-1	1,290	5,730	<497	7,020	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	1,320
	7/14/2023	1.5	<248	894	<248	894	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	196
H-1	7/14/2023	0-1	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	61.9
H-2	7/14/2023	0-1	<49.5	<49.5	<49.5	<49.5	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	60.3
H-3	7/14/2023	0-1	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	53.5
H-4	7/14/2023	0-1	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	53.5
	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet

(H) Horizontal Sample (S) Sample Point

Removed

•

Table 2 **Conoco Phillips** Tiger 11 Fed 7H (07.10.23) Lea County, New Mexico

				TPH	l (mg/kg)	-					-	
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	Benzene (mg/kg)	Toluene (mg/kg)	Ethlybenzene (mg/kg)	Xylene (mg/kg)	Total BTEX (mg/kg)	Chloride (mg/kg)
	8/10/2023	2.0	26.3	1,610	404	2,040.3	< 0.050	< 0.050	< 0.050	<0.150	< 0.300	144
CS-1	8/14/2023	2.25	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	60.0
CS-2	8/10/2023	2.0	<10.0	19.1	11.3	30.4	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-3	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-4	8/10/2023	2.0	<10.0	70.9	11.5	82.4	<0.050	<0.050	<0.050	<0.150	<0.300	160
CS-5	8/10/2023	2.0	<10.0	122	31.0	153	<0.050	<0.050	<0.050	<0.150	<0.300	288
	8/14/2023	2.25	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	48.9
CS-6	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
CS-7	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-8	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
CS-9	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
CS-10	8/10/2023	2.0	<10.0	11.0	<10.0	11.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
CS-11	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-1	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-2	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-3	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	240
SW-4	8/10/2023	2.0	<10.0	59.2	13.2	72.4	<0.050	<0.050	<0.050	<0.150	<0.300	176
SW-5	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-6	8/10/2023	2.0	<10.0	85.6	31.4	117	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
011 0	8/14/2023	2.0	<50.3	<50.3	<50.3	<50.3	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	57.4
SW-7	8/10/2023	2.0	<10.0	19.3	<10.0	19.3	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-8	8/10/2023	2.0	<10.0	37.3	<10.0	37.3	<0.050	<0.050	<0.050	<0.150	<0.300	112
SW-9	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32
SW-10	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-11	8/10/2023	2.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons

ft-feet (CS) Confirmation Smaple

(SW) Sidewall Sample

Removed

APPENDIX B

CARMONA RESOURCES

.

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph I	No. 1	W NW NE E 270 300 330 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Facility:	Tiger 11 Federal 001H (07.10.23)	© 1°N (T)
County:	Lea County, New Mexico	
Description: View North, are	a of CS-1 through CS-3.	L AUQ 2023
Photograph I	No. 2	SW W NE NE 270 300 300 330 0 300 1 1 1 1 1 1 1 1 1 1
Facility:	Tiger 11 Federal 001H (07.10.23)	© 318°NW (T)
County:	Lea County, New Mexico	
Description: View Northwest 11.	t, area of CS-4, CS-5, CS-10 and CS-	Listud 2028
Photograph I	No. 3	N NE E SE S 0 30 60 91 120 150 180
Facility:	Tiger 11 Federal 001H (07.10.23)	¹ • • • ³⁰ • 1 • 1 • ⁶⁰ • • • ⁹ • • 1 • 1 ¹²⁰ • • • ¹⁵⁰ • • 1 • ¹⁸⁰ • ^o 92°E (T) ● 32.594852°, -103.536056° ±13ft ▲ 3669ft
County:	Lea County, New Mexico	
Description: View East, area	a of CS-6 through CS-9.	Li Aug 2023

PHOTOGRAPHIC LOG

Concho Operating, LLC

APPENDIX C

CARMONA RESOURCES

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 17eof 143

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	Longitude
	(NAD 83 in decimal degrees to 5 decimal places)
Site Name	Site Type

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
1 ugo	-

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
🗌 Yes 🗌 No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The impacted area has been secured to protect human health and the environment.

The source of the release has been stopped.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by: Shelly Wells	Date: <u>7/17/2023</u>

Page 3

Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 10/3/202	23 11:16:16 AM State of New Mexico	Page 20 of 143
Form C-141		Incident ID
Page 4	Oil Conservation Division	District RP
		Facility ID
		Application ID
regulations all operators are public health or the environm failed to adequately investig addition, OCD acceptance of and/or regulations. Printed Name: Signature:	required to report and/or file certain release noti nent. The acceptance of a C-141 report by the C ate and remediate contamination that pose a thre s a C-141 report does not relieve the operator of	est of my knowledge and understand that pursuant to OCD rules and cations and perform corrective actions for releases which may endanger 2D does not relieve the operator of liability should their operations have to groundwater, surface water, human health or the environment. In sponsibility for compliance with any other federal, state, or local laws Title: Date: Felephone:
OCD Only Received by: Shelly Wel	S	Date: 10/3/2023

Page 6

Oil Conservation Division

Inc	ident ID	
Dis	trict RP	
Fac	ility ID	
Ap	plication ID	

Page 21 of 143

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following it	items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and re- human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially inditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete.
·	Date:
email:	Telephone:
OCD Only	
Received by: Shelly Wells	Date: <u>10/3/2023</u>
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible for regulations.
Closure Approved by: <u>Scott Rodgers</u>	Date: 02/13/20204
Printed Name: Scott Rodgers	Title: Environmental Specialist Adv.

Spill Calculation - On-Pad Surface Pool Spill

<i>Received by OCD: 10/3/202</i> Convert Irregular shape into a series of rectangles			Average Depth (in.)	Estimated <u>Pool</u> Area (sq. ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estimated Volume of Spill (bbl.)	Percentage of Oil if Spilled Fluid is a Mixture (%.)	Total Estimated Volume of Spilled Oil (bbl.)	Page 22 of 143 Total Estimated Volume of Spilled Liquid other than Oil (bbl.)	
Rectangle A	22	18	0.3	396.00	1.47	0.00	1.47		0.47	1.00	
Rectangle B	30	37	0.2	1110.00	3.29	0.00	3.30		1.05	2.24	
Rectangle C				0.00	0.00	0.00	0.00		0.00	0.00	
Rectangle D	Ĩ			0.00	0.00	0.00	0.00		0.00	0.00	
Rectangle E	0			0.00	0.00	0.00	0.00	32%	0.00	0.00	
Rectangle F				0.00	0.00	0.00	0.00	5270	0.00	0.00	
Rectangle G				0.00	0.00	0.00	0.00		0.00	0.00	
Rectangle H				0.00	0.00	0.00	0.00		0.00	0.00	
Rectangle I				0.00	0.00	0.00	0.00		0.00	0.00	
Released to Imaging: 2/13/	2024 3:38	8:47 PM		0.00	0.00	0.00	0.00		0.00	0.00	
	Total Surface Pool Volume Relea						4.7658		1.5250	3.2407	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: (OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	241023
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition scwells None

CONDITIONS

Action 241023

Condition Date 7/17/2023 From: Wells, Shelly, EMNRD
Sent: Tuesday, August 8, 2023 2:07 PM
To: Mike Carmona
Cc: Bratcher, Michael, EMNRD; Velez, Nelson, EMNRD
Subject: RE: [EXTERNAL] COG Tiger 11 Fed 1H (07.10.23) Sampling Notification

Hi Mike,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive | Santa Fe, NM 87505 (505)469-7520 | Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Mike Carmona <<u>Mcarmona@carmonaresources.com</u>>
Sent: Tuesday, August 8, 2023 10:58 AM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov></u>
Cc: Conner Moehring <<u>Cmoehring@carmonaresources.com</u>>; Laird, Jacob
<Jacob.Laird@conocophillips.com>; Devin Dominguez <<u>Ddominguez@carmonaresources.com</u>>
Subject: [EXTERNAL] COG Tiger 11 Fed 1H (07.10.23) Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

This email serves as a notification for confirmation sampling on the COG Tiger 11 Fed 1H (07.10.23). Sampling is scheduled to begin on <u>Friday</u>, <u>August 11th</u>, around 8:00 a.m. Mountain Time. Carmona Resources personnel will be on-site to collect the confirmation samples.

COG - TIGER 11 FEDERAL #001H (07.10.2023) Sec 11 T20S R34E Unit D 32.594895, -103.536114 Lea County, New Mexico

Mike J. Carmona 310 West Wall Street, Suite 500 Midland TX, 79701 M: <u>432-813-1992</u> <u>Mcarmona@carmonaresources.com</u>

APPENDIX D

CARMONA RESOURCES

28' Drilled 1985

(112.75' - Drilled 2015

GIGER 11 FEDERAL #001H (07.10.2023)

58.14' - Drilled 1976 📀

145.20' - Drilled 1996

Legend Page 27 of 143 0.50 Mile Radius 1.26 Miles 1.26 Miles 1.49 Miles 1.94 Miles 2.08 Miles 2.49 Miles 2.49 Miles INMSEO Water Well TIGER 11 FEDERAL #001H (07.10.2023) USGS Water Well USGS Water Well ISGS Water Well USGS Water Well ISGS Water Well ISGS Water Well ISGS Water Well

1 mi

GTIGER 11 FEDERAL #001H (07.10.2023)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	(•					2=NE 3 st to larg	=SW 4=SE gest) (N	:) AD83 UTM in me	eters)	(n feet)	
POD Number	POD Sub-			Q	-	S a a	Ture	Dng	х	Y	Distance	-	-	Water Column
CP 00656 POD1	Code basin Co CP	LE					20S		6 35342	3607391* 🌍	2037	225	Water	Column
CP 00655 POD1	СР	LE		3	1	14	20S	34E	637294	3605108* 🥃	2217	210		
CP 01672 POD1	CP	LE	1	3	1	36	19S	34E	638736	3610009 🌍	3009	100		
CP 00654 POD1	CP	LE		4	4	12	20S	34E	640103	3605947* 🌍	3053	60		
L 04157	L	LE		3	3	06	20S	35E	640483	3607561* 🌍	3114	70	64	6
CP 00800 POD1	CP	LE	2	2	2	22	20S	34E	637007	3603994* 🌍	3350	220		
CP 00683 POD1	CP	LE	3	3	4	25	19S	34E	639530	3610685* 🌍	3990	120	28	92
										Avera	ge Depth to	Water:	46	feet
											Minimum	Depth:	28	feet
											Maximum	Depth:	64	feet
Descrid County 7														

Record Count: 7

UTMNAD83 Radius Search (in meters):

Easting (X): 637378

Northing (Y): 3607324

Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 29 of 143

Received by OGD: 10/3/2023 11:16:16 AM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 323529103332501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323529103332501 20S.34E.04.44434

Lea County, New Mexico Latitude 32°35'44.90", Longitude 103°33'27.80" NAD83 Land-surface elevation 3,632 feet above NAVD88 The depth of the well is 200 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Chinle Formation (231CHNL) local aquifer.

output formats
Table of data
Tab-separated data
Graph of data
Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1965-11-17		D	62610		3443.90	NGVD29	Р	Z		
1965-11-17		D	62611		3445.46	NAVD88	Р	Z		
1965-11-17		D	72019	186.54			Р	Z		
1968-03-19		D	62610		3484.54	NGVD29	1	Z		
1968-03-19		D	62611		3486.10	NAVD88	1	Z		
1968-03-19		D	72019	145.90			1	Z		
1971-02-03		D	62610		3458.25	NGVD29	Р	Z		
1971-02-03		D	62611		3459.81	NAVD88	Р	Z		
1971-02-03		D	72019	172.19			Р	Z		
1972-10-02		D	62610		3456.35	NGVD29	Р	Z		
1972-10-02		D	62611		3457.91	NAVD88	Р	Z		
1972-10-02		D	72019	174.09			Р	Z		
1976-01-28		D	62610		3500.54	NGVD29	1	Z		
1976-01-28		D	62611		3502.10	NAVD88	1	Z		

Recained by OCD: 10/3/2023 11:16:16 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 31 of 143

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1976-01-28		D	72019	129.90			1	Z		
1970-01-28		D	62610	129.90	3503.57	NGVD29	1	Z		
1981-02-18		D	62611		3505.13	NAVD88	1	Z		
1981-02-18		D	72019	126.87			1	Z		
1986-04-01		D	62610		3504.62	NGVD29	1	Z		
1986-04-01		D	62611		3506.18	NAVD88	1	Z		
1986-04-01		D	72019	125.82			1	Z		
1996-01-26		D	62610		3505.67	NGVD29	1	S		
1996-01-26		D	62611		3507.23	NAVD88	1	S		
1996-01-26		D	72019	124.77			1	S		
2015-12-17	15:45 UTC	m	62610		3517.69	NGVD29	1	S	USGS	
2015-12-17	15:45 UTC	m	62611		3519.25	NAVD88	1	S	USGS	
2015-12-17	15:45 UTC	m	72019	112.75			1	S	USGS	

		Explanation
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

<u>Questions or Comments</u> <u>Automated retrievals</u> <u>Help</u> Data Tips Explanation of terms Subscribe for system changes <u>News</u>

FOIA Privacy Accessibility

Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-07-14 15:41:16 EDT 0.28 0.25 nadww01

USA.gov

.

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? S
				Groundwate	r 🗸 New Mexico	✓ GO	,

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323409103321301 20S.34E.14.13343

Lea County, New Mexico Latitude 32°34'24", Longitude 103°32'18" NAD27 Land-surface elevation 3,648.00 feet above NGVD29 The depth of the well is 230 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Chinle Formation (231CHNL) local aquifer.

Output formats

Table of data	
Tab-separated data	
Graph of data	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source (measur(
1968-03-21		D	62610		3495.16	NGVD29	1	Z		
1968-03-21		D	62611		3496.72	NAVD88	1	Z		
1968-03-21		D	72019	152.84			1	Z		
1971-02-03		D	62610		3496.00	NGVD29	1	Z		
1971-02-03		D	62611		3497.56	NAVD88	1	Z		
1971-02-03		D	72019	152.00			1	Z		
1972-10-02		D	62610		3457.78	NGVD29	Р	Z		
1972-10-02		D	62611		3459.34	NAVD88	Р	Z		
1972-10-02		D	72019	190.22			Р	Z		
1976-02-20		D	62610		3492.97	NGVD29	1	Z		
1976-02-20		D	62611		3494.53	NAVD88	1	Z		
1976-02-20		D	72019	155.03			1	Z		
1981-02-26		D	62610		3492.64	NGVD29	Р	Z		
1981-02-26		D	62611		3494.20	NAVD88	Р	Z		

Received by OGD: 10/3/2023 11:16:16 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 33 of 143

Date	Time	? Water-level date-time accuracy	? Pai coc	rameter de	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? S
1981-02-26	C	0 72019	155.36			Р	Z	
1986-04-01	C	62610		3495.99	NGVD29	1	Z	
1986-04-01	C	62611		3497.55	NAVD88	1	Z	
1986-04-01	C	72019	152.01			1	Z	
1996-02-02	C	62610		3502.80	NGVD29	1	S	
1996-02-02	C	62611		3504.36	NAVD88	1	S	
1996-02-02	C	72019	145.20			1	S	

		Explanation
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

<u>Questions or Comments</u> <u>Automated retrievals</u> <u>Help</u> <u>Data Tips</u> <u>Explanation of terms</u> <u>Subscribe for system changes</u> <u>News</u>

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-07-14 15:45:55 EDT 0.28 0.24 nadww02

Rottins: White White the second s

.

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters a	are 1=N	W 2=N	IE 3=SW				
			(quarters	are sma	allest to	o largest)	(NAD83 U	(NAD83 UTM in meters)		
Well Tag	POD	Number	Q64 Q1	6 Q4	Sec	Tws	Rng	Х	Y	
	L 04	4157	3	3 3	06	20S	35E	640483	3607561* 🧲	
x Driller Lice	ense:	208	Driller Co	ompai	ny:	VA	N NOY,	W.L.		
Driller Nan	ne:									
Drill Start Date: 12/12/1959			Drill Fini	Drill Finish Date:				59 P I	ug Date:	
Log File Date: 12/18/1959			PCW Rev	v Date	:		So	ource:	Shallow	
Pump Type	e:		Pipe Disc	harge	Size:		Estimated Yield:			
Casing Size	e:	5.00	Depth We		7	0 feet	D	epth Water:	64 feet	
X	Wate	er Bearing Stratif	ications:	Т	op l	Bottom	Desci	ription		
······································				(65	68	8 Sands	stone/Grave	ne/Gravel/Conglomerate	
х	Casing Perfo		forations:	Т	op l	Bottom				
					50	70)			
x										

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/14/23 1:38 PM

POINT OF DIVERSION SUMMARY

Received by OGD: 10/3/2023 11:16:16 AM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323436103302801 20S.34E.12.44333

Lea County, New Mexico Latitude 32°34'36", Longitude 103°30'28" NAD27 Land-surface elevation 3,660 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

<u>Table of data</u>

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1961-03-08		D	62610		3607.25	NGVD29	1	Z		
1961-03-08		D	62611		3608.80	NAVD88	1	Z		
1961-03-08		D	72019	51.20			1	Z		
1968-06-27		D	62610		3600.58	NGVD29	Р	Z		
1968-06-27		D	62611		3602.13	NAVD88	Р	Z		
1968-06-27		D	72019	57.87			Р	Z		
1971-02-03		D	62610		3598.44	NGVD29	Р	Z		
1971-02-03		D	62611		3599.99	NAVD88	Р	Z		
1971-02-03		D	72019	60.01			Р	Z		
1976-06-11		D	62610		3600.31	NGVD29	Р	Z		
1976-06-11		D	62611		3601.86	NAVD88	Р	Z		
1976-06-11		D	72019	58.14			Р	Z		

Explanation

Recained by OCD: 10/3/2023 11:16:16 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 36 of 143

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-07-14 15:44:31 EDT 0.27 0.24 nadww01 USA.gov

.

New Mexico Office of the State Engineer **Point of Diversion Summary**

			< 1					V 4=SE)	(NIA D92 LI	TM in materia)	
W.U.T	DOD	N	••	(quarters are smallest to Q64 Q16 Q4 Sec			0	·	`	TM in meters)	
Well Tag	-	Number		-	-			0	X	Y	
	CP 0	0683 POD1	3	3	4	25	19S	34E	639530	3610685* 🤤	
Driller Lice	ense:	46	Drille	r Con	npar	ny:	AB	BOTT	BROTHERS	S COMPANY	
Driller Nar	BOTT	TT									
Drill Start	Date:	07/18/1985	Drill I	Finish	n Dat	te:	0	7/20/19	85 PI	ug Date:	
Log File Da	ate:	08/16/1985	PCW	Rev I	Date	:			So	ource:	Shallow
Pump Type	e:		Pipe I	Discha	arge	Size:			Es	timated Yield:	1 GPM
Casing Size	e:	4.00	Depth	Well	:		1	20 feet	De	epth Water:	28 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/14/23 1:39 PM

POINT OF DIVERSION SUMMARY

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

APPENDIX E

CARMONA RESOURCES

Received by OCD: 10/3/2023 11:16:16 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 7/24/2023 2:59:19 PM

JOB DESCRIPTION

Tiger 11 Fed 7H (07.10.23) SDG NUMBER Lea County, New Mexico

JOB NUMBER

880-30792-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 7/24/2023 2:59:19 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-30792-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	15
QC Association Summary	22
Lab Chronicle	26
Certification Summary	29
Method Summary	30
Sample Summary	31
Chain of Custody	32
	33

Definitions/Glossary

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23) Page 43 of 143

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Qualifiers

Quaimers		3
GC VOA		
Qualifier	Qualifier Description	
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	5
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	4.9
CFU	Colony Forming Unit	13
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	

DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Project/Site: Tiger 11 Fed 7H (07.10.23)

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Job ID: 880-30792-1

Client: Carmona Resources

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-30792-1

Receipt

The samples were received on 7/17/2023 2:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -10.3°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: S-1 (0-1') (880-30792-1), S-1 (1.5') (880-30792-2), S-2 (0-1') (880-30792-3), S-2 (1.5') (880-30792-4), S-3 (0-1') (880-30792-5), S-4 (0-1') (880-30792-6), S-4 (1.5') (880-30792-7), S-5 (0-1') (880-30792-8) and S-5 (1.5') (880-30792-9).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: S-4 (0-1') (880-30792-6) and S-4 (1.5') (880-30792-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-58039 and analytical batch 880-58087 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: S-1 (0-1') (880-30792-1), S-3 (0-1') (880-30792-5), S-4 (0-1') (880-30792-6), (890-4944-A-1-F MS) and (890-4944-A-1-G MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (CCV 880-57890/20). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 880-57876 and analytical batch 880-57890 was outside control limits. Sample non-homogeneity is suspected.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-57942 and analytical batch 880-58261 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (880-30793-A-2-D). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: S-5 (0-1') (880-30792-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Client Sample ID: S-1 (0-1') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		07/18/23 11:31	07/20/23 00:02	1
Toluene	<0.00199	U	0.00199		mg/Kg		07/18/23 11:31	07/20/23 00:02	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		07/18/23 11:31	07/20/23 00:02	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		07/18/23 11:31	07/20/23 00:02	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		07/18/23 11:31	07/20/23 00:02	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		07/18/23 11:31	07/20/23 00:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130				07/18/23 11:31	07/20/23 00:02	1
1,4-Difluorobenzene (Surr)	113		70 - 130				07/18/23 11:31	07/20/23 00:02	1
Method: TAL SOP Total BTEX - T									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			07/20/23 10:18	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
						-			Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dirrac
Analyte Total TPH	465		50.4	MDL	Unit mg/Kg	D	Prepared	07/19/23 11:00	1
Total TPH Method: SW846 8015B NM - Dies	465 Sel Range Orga		50.4			D	Prepared		1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	465 Sel Range Orga	nics (DRO) Qualifier			mg/Kg			07/19/23 11:00	1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	465 sel Range Orga Result	nics (DRO) Qualifier	50.4 (GC) RL		mg/Kg Unit		Prepared	07/19/23 11:00 Analyzed	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	465 sel Range Orga Result <50.4	nics (DRO) Qualifier U	50.4 (GC) RL 50.4		mg/Kg Unit mg/Kg		Prepared 07/17/23 15:02	07/19/23 11:00 Analyzed 07/19/23 07:41	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	465 sel Range Orga Result <50.4 465	nics (DRO) Qualifier U	50.4 (GC) <u>RL</u> 50.4 50.4		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/17/23 15:02 07/17/23 15:02	07/19/23 11:00 Analyzed 07/19/23 07:41 07/19/23 07:41	1 Dil Fac 1 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	465 sel Range Orga Result <50.4 465 <50.4	nics (DRO) Qualifier U	50.4 (GC) RL 50.4 50.4 50.4		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02	07/19/23 11:00 Analyzed 07/19/23 07:41 07/19/23 07:41 07/19/23 07:41	Dil Fac 1 1 Dil Fac
	465 sel Range Orga Result <50.4 465 <50.4 %Recovery 1	nics (DRO) Qualifier U U	50.4 (GC) RL 50.4 50.4 50.4 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02 Prepared	07/19/23 11:00 Analyzed 07/19/23 07:41 07/19/23 07:41 07/19/23 07:41 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	465 sel Range Orga Result <50.4 465 <50.4 %Recovery 1 5	nics (DRO) Qualifier U U Qualifier S1- S1-	50.4 (GC) <u>RL</u> 50.4 50.4 50.4 <u>Limits</u> 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02 Prepared 07/17/23 15:02	07/19/23 11:00 Analyzed 07/19/23 07:41 07/19/23 07:41 07/19/23 07:41 Analyzed 07/19/23 07:41	1 Dil Fac 1 1 1 1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	465 sel Range Orga Result <50.4 465 <50.4 <i>%Recovery</i> 1 5 Chromatograp	nics (DRO) Qualifier U U Qualifier S1- S1-	50.4 (GC) <u>RL</u> 50.4 50.4 50.4 <u>Limits</u> 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02 Prepared 07/17/23 15:02	07/19/23 11:00 Analyzed 07/19/23 07:41 07/19/23 07:41 07/19/23 07:41 Analyzed 07/19/23 07:41	1 Dil Fac 1 1 1 1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	465 sel Range Orga Result <50.4 465 <50.4 <i>%Recovery</i> 1 5 Chromatograp	u Qualifier U Qualifier S1- S1- S1-	50.4 (GC) RL 50.4 50.4 50.4 50.4 70.4 70.130 70.130 70.130 8	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02 Prepared 07/17/23 15:02 07/17/23 15:02	07/19/23 11:00 Analyzed 07/19/23 07:41 07/19/23 07:41 07/19/23 07:41 Analyzed 07/19/23 07:41 07/19/23 07:41	1 Dil Fac 1 1 1 1 <i>Dil Fac</i> 1 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	465 sel Range Orga Result <50.4 465 <50.4 %Recovery 1 5 Chromatograp Result	u Qualifier U Qualifier S1- S1- S1-	50.4 (GC) RL 50.4 50.4 50.4 50.4 50.4 50.4 70.130 70.130 8 RL	MDL	mg/Kg Unit mg/Kg mg/Kg Mg/Kg Unit	<u>D</u>	Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02 Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02 Prepared	07/19/23 11:00 Analyzed 07/19/23 07:41 07/19/23 07:41 07/19/23 07:41 Analyzed Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	465 sel Range Orga Result <50.4 465 <50.4 %Recovery 1 5 Chromatograp Result	u Qualifier U Qualifier S1- S1- S1-	50.4 (GC) RL 50.4 50.4 50.4 50.4 50.4 50.4 70.130 70.130 8 RL	MDL	mg/Kg Unit mg/Kg mg/Kg Mg/Kg Unit	<u>D</u>	Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02 Prepared 07/17/23 15:02 07/17/23 15:02 07/17/23 15:02 Prepared	07/19/23 11:00 Analyzed 07/19/23 07:41 07/19/23 07:41 07/19/23 07:41 Analyzed 07/19/23 07:41 07/19/23 07:41 07/19/23 07:41 Analyzed 07/18/23 09:26 ple ID: 880-3	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/18/23 11:31	07/20/23 00:22	1
Toluene	<0.00198	U	0.00198		mg/Kg		07/18/23 11:31	07/20/23 00:22	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		07/18/23 11:31	07/20/23 00:22	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		07/18/23 11:31	07/20/23 00:22	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/18/23 11:31	07/20/23 00:22	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		07/18/23 11:31	07/20/23 00:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				07/18/23 11:31	07/20/23 00:22	1
1,4-Difluorobenzene (Surr)	107		70 - 130				07/18/23 11:31	07/20/23 00:22	1

Eurofins Midland

Page 45 of 143

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-1

Matrix: Solid

Project/Site: Tiger 11 Fed 7H (07.10.23)

Matrix: Solid

Client Sample Results

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Client Sample ID: S-1 (1.5')

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			07/20/23 10:18	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	52.6		50.1		mg/Kg			07/19/23 11:00	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		07/17/23 15:02	07/19/23 08:04	1
(GRO)-C6-C10									
Diesel Range Organics (Over	52.6		50.1		mg/Kg		07/17/23 15:02	07/19/23 08:04	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		07/17/23 15:02	07/19/23 08:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130				07/17/23 15:02	07/19/23 08:04	1
o-Terphenyl	119		70 - 130				07/17/23 15:02	07/19/23 08:04	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	685		4.99		mg/Kg			07/18/23 09:41	1

Client Sample ID: S-2 (0-1')

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

Lab Sample ID: 880-30792-3 Matrix: Solid

Analyzed

Method: SW846 8021B - Volatile Organic Compounds (GC)

Welliou: 50040 60216 - Volati	le organic comp		/						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/20/23 00:43	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/20/23 00:43	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/20/23 00:43	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/18/23 11:31	07/20/23 00:43	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/20/23 00:43	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/18/23 11:31	07/20/23 00:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130				07/18/23 11:31	07/20/23 00:43	1
1,4-Difluorobenzene (Surr)	113		70 - 130				07/18/23 11:31	07/20/23 00:43	1

Method: TAL SOP Total BTEX - Total BTEX Calculation Result Qualifier Analyte RL MDL Unit D Prepared

Total BTEX	<0.00404	U	0.00404		mg/Kg			07/20/23 10:18	1
Method: SW846 8015 NM - Diese	I Range Organi	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	552		50.0		mg/Kg			07/19/23 11:00	1
Method: SW846 8015B NM - Dies Analyte	• •	nics (DRO) (Qualifier	GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	• •	Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared 07/17/23 15:02	Analyzed 07/19/23 08:28	Dil Fac

Eurofins Midland

Dil Fac

Lab Sample ID: 880-30792-2

Project/Site: Tiger 11 Fed 7H (07.10.23)

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-3

Client Sample ID: S-2 (0-1') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

Г

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		07/17/23 15:02	07/19/23 08:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				07/17/23 15:02	07/19/23 08:28	1
o-Terphenyl	104		70 - 130				07/17/23 15:02	07/19/23 08:28	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1840		25.1		mg/Kg			07/18/23 09:46	5
Client Sample ID: S-2 (1.5')							Lab Sam	ple ID: 880-3	0792-4
Date Collected: 07/14/23 00:00								Matri	x: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/18/23 11:31	07/20/23 01:04	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/18/23 11:31	07/20/23 01:04	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/18/23 11:31	07/20/23 01:04	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/18/23 11:31	07/20/23 01:04	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/18/23 11:31	07/20/23 01:04	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/18/23 11:31	07/20/23 01:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				07/18/23 11:31	07/20/23 01:04	1
1,4-Difluorobenzene (Surr)	111		70 - 130				07/18/23 11:31	07/20/23 01:04	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			07/20/23 10:18	1

Method: SW846 8015 NM - Diesel I	Range Organic	s (DRO) (GC)						
Analyte	Result C	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	57.5	50.4		mg/Kg			07/19/23 11:00	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4		mg/Kg		07/17/23 15:02	07/19/23 08:50	1
(GRO)-C6-C10									
Diesel Range Organics (Over	57.5		50.4		mg/Kg		07/17/23 15:02	07/19/23 08:50	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		07/17/23 15:02	07/19/23 08:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	99		70 - 130				07/17/23 15:02	07/19/23 08:50	1
o-Terphenyl	102		70 - 130				07/17/23 15:02	07/19/23 08:50	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	625		4.98		mg/Kg			07/18/23 09:51	1

1 ugt 47 0j 14

Matrix: Solid

Client Sample Results

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Client Sample ID: S-3 (0-1') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/20/23 01:24	
Toluene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/20/23 01:24	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/20/23 01:24	
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		07/18/23 11:31	07/20/23 01:24	
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/20/23 01:24	
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		07/18/23 11:31	07/20/23 01:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	103		70 - 130				07/18/23 11:31	07/20/23 01:24	
1,4-Difluorobenzene (Surr)	106		70 - 130				07/18/23 11:31	07/20/23 01:24	
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403		mg/Kg			07/20/23 10:18	
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	14200		503		mg/Kg			07/19/23 11:00	
Method: SW846 8015B NM - Die									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<503	U	503		mg/Kg		07/17/23 15:02	07/19/23 09:12	1
Diesel Range Organics (Over	13300		503		mg/Kg		07/17/23 15:02	07/19/23 09:12	1
C10-C28)									
Oll Range Organics (Over C28-C36)	878		503		mg/Kg		07/17/23 15:02	07/19/23 09:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	127		70 - 130				07/17/23 15:02	07/19/23 09:12	1
p-Terphenyl	231	S1+	70 - 130				07/17/23 15:02	07/19/23 09:12	1
Method: EPA 300.0 - Anions, Io	n Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	6020		50.3		mg/Kg			07/18/23 09:56	1
lient Sample ID: S-4 (0-1')							Lab Sam	ple ID: 880-3	0792-0
ate Collected: 07/14/23 00:00								Matri	x: Soli
ate Received: 07/17/23 14:00									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.87		0.0499		mg/Kg		07/18/23 11:31	07/20/23 01:45	25
Toluene	18.5		0.505		mg/Kg		07/20/23 10:20	07/20/23 21:22	250
Ethylbenzene	9.67		0.0499		mg/Kg		07/18/23 11:31	07/20/23 01:45	25
m-Xylene & p-Xylene	17.9		0.0998		mg/Kg		07/18/23 11:31	07/20/23 01:45	25
o-Xylene	7.25		0.0499		mg/Kg		07/18/23 11:31	07/20/23 01:45	25
Xylenes, Total	25.2		0.0998		mg/Kg		07/18/23 11:31	07/20/23 01:45	25
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	299	S1+	70 - 130				07/18/23 11:31	07/20/23 01:45	25
1,4-Difluorobenzene (Surr)	73		70 - 130				07/18/23 11:31	07/20/23 01:45	25

Eurofins Midland

Page 48 of 143

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-5

Matrix: Solid

5

Project/Site: Tiger 11 Fed 7H (07.10.23)

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-6

Client Sample ID: S-4 (0-1') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	56.2		0.0998		mg/Kg			07/20/23 10:18	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	39700		496		mg/Kg			07/19/23 11:00	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	1340		496		mg/Kg		07/17/23 15:02	07/19/23 09:35	10
Diesel Range Organics (Over C10-C28)	36200		496		mg/Kg		07/17/23 15:02	07/19/23 09:35	10
Oll Range Organics (Over C28-C36)	2180		496		mg/Kg		07/17/23 15:02	07/19/23 09:35	1(
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	123		70 - 130				07/17/23 15:02	07/19/23 09:35	10
o-Terphenyl	577	S1+	70 - 130				07/17/23 15:02	07/19/23 09:35	10
Method: EPA 300.0 - Anions, Io	n Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7150		50.4		mg/Kg			07/18/23 10:01	10

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.0497 07/18/23 11:31 07/20/23 06:14 25 0.323 Benzene mg/Kg Toluene 7.26 0.0497 mg/Kg 07/18/23 11:31 07/20/23 06:14 25 0.0497 mg/Kg 07/18/23 11:31 07/20/23 06:14 25 Ethylbenzene 4.89 m-Xylene & p-Xylene 13.7 0.0994 mg/Kg 07/18/23 11:31 07/20/23 06:14 25 0.0497 07/18/23 11:31 07/20/23 06:14 25 mg/Kg o-Xylene 5.48 **Xylenes**, Total 19.2 0.0994 mg/Kg 07/18/23 11:31 07/20/23 06:14 25 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 294 S1+ 70 - 130 07/18/23 11:31 07/20/23 06:14 25 1,4-Difluorobenzene (Surr) 96 70 - 130 07/18/23 11:31 07/20/23 06:14 25 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **Total BTEX** 31.7 0.0994 mg/Kg 07/20/23 10:18 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac **Total TPH** 5800 502 mg/Kg 07/24/23 15:27 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

			/					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<502	U	502	mg/Kg		07/18/23 11:39	07/22/23 20:18	10
(GRO)-C6-C10								

Eurofins Midland

Project/Site: Tiger 11 Fed 7H (07.10.23)

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-7

Client Sample ID: S-4 (1.5') Date Collected: 07/14/23 00:00

Client: Carmona Resources

Method: SW846 8015B NM - Dies Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics (Over	5800		502		mg/Kg		07/18/23 11:39	07/22/23 20:18	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<502	U	502		mg/Kg		07/18/23 11:39	07/22/23 20:18	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	110		70 - 130				07/18/23 11:39	07/22/23 20:18	1
o-Terphenyl	125		70 - 130				07/18/23 11:39	07/22/23 20:18	1
Method: EPA 300.0 - Anions, Ion	Chromatograg	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	3260		25.1		mg/Kg			07/18/23 10:06	
Client Sample ID: S-5 (0-1')							Lab Sam	ple ID: 880-3	0792-8
Date Collected: 07/14/23 00:00								Matri	x: Solid
ate Received: 07/17/23 14:00								Matri	x: Solic
ate Received: 07/17/23 14:00 Method: SW846 8021B - Volatile (•	ounds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Matri Analyzed	x: Solic
ate Received: 07/17/23 14:00 Method: SW846 8021B - Volatile (Analyte	•	Qualifier		MDL	Unit mg/Kg	D	Prepared 07/18/23 11:31		
ate Received: 07/17/23 14:00 Method: SW846 8021B - Volatile (Analyte Benzene	Result	Qualifier	RL	MDL		D	<u> </u>	Analyzed	
ate Received: 07/17/23 14:00 Method: SW846 8021B - Volatile (Analyte Benzene Toluene		Qualifier U U	RL 0.00198	MDL	mg/Kg	<u>D</u>	07/18/23 11:31	Analyzed 07/20/23 03:08	
ate Received: 07/17/23 14:00 Method: SW846 8021B - Volatile (Analyte Benzene Toluene Ethylbenzene	Result <0.00198 <0.00198	Qualifier U U U	RL 0.00198 0.00198	MDL	mg/Kg mg/Kg	<u>D</u>	07/18/23 11:31 07/18/23 11:31	Analyzed 07/20/23 03:08 07/20/23 03:08	
ate Collected: 07/14/23 00:00 ate Received: 07/17/23 14:00 Method: SW846 8021B - Volatile (Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00198	Qualifier U U U U U	RL 0.00198 0.00198 0.00198	MDL	mg/Kg mg/Kg mg/Kg	D	07/18/23 11:31 07/18/23 11:31 07/18/23 11:31	Analyzed 07/20/23 03:08 07/20/23 03:08 07/20/23 03:08	

	Surrogate	%Recovery Qualifi	ier Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	99	70 - 130	07/18/23 11:31	07/20/23 03:08	1
L	1,4-Difluorobenzene (Surr)	98	70 - 130	07/18/23 11:31	07/20/23 03:08	1

Method: TAL SOP Total BTEX - Tota	al BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			07/20/23 10:18	1
 Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) ((30)						

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	7020		497		mg/Kg			07/24/23 15:27	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	1290		497		mg/Kg		07/18/23 11:39	07/22/23 19:56	10
Diesel Range Organics (Over C10-C28)	5730		497		mg/Kg		07/18/23 11:39	07/22/23 19:56	10
Oll Range Organics (Over C28-C36)	<497	U	497		mg/Kg		07/18/23 11:39	07/22/23 19:56	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	150	S1+	70 - 130				07/18/23 11:39	07/22/23 19:56	10
o-Terphenyl	171	S1+	70 - 130				07/18/23 11:39	07/22/23 19:56	10

Analyte	Result	Qualifier RL	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1320	5.00		mg/Kg			07/18/23 10:20	1

Eurofins Midland

Matrix: Solid

5

<0.00396 U 0.00396 mg/Kg 07/18/23 11:31 Diesel Range Organics (DRO) (GC)

Client Sample Results

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Client Sample ID: S-5 (1.5') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/20/23 03:29	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/20/23 03:29	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/20/23 03:29	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/18/23 11:31	07/20/23 03:29	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/20/23 03:29	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/18/23 11:31	07/20/23 03:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				07/18/23 11:31	07/20/23 03:29	1
1,4-Difluorobenzene (Surr)	109		70 - 130				07/18/23 11:31	07/20/23 03:29	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
- / I D	<0.00400	11	0.00400		mg/Kg			07/20/23 10:18	1
					iiig/itg			0.720.20 10110	
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result		GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte	el Range Organ	ics (DRO) (GC)	MDL		<u>D</u>	Prepared		Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result 894	<mark>ics (DRO) (</mark> Qualifier	GC) 	MDL	Unit	<u> </u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result 894 sel Range Orga	<mark>ics (DRO) (</mark> Qualifier	GC) 		Unit	D	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	el Range Organ Result 894 sel Range Orga	ics (DRO) (Qualifier nics (DRO) Qualifier	GC) <u>RL</u> 248		Unit mg/Kg			Analyzed 07/24/23 15:27	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result 894 sel Range Orga Result	ics (DRO) (Qualifier nics (DRO) Qualifier	GC) RL 248 (GC) RL		Unit mg/Kg Unit		Prepared	Analyzed 07/24/23 15:27 Analyzed	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result 894 sel Range Orga Result <248	ics (DRO) (Qualifier nics (DRO) Qualifier U	GC) <u>RL</u> 248 (GC) <u>RL</u> 248		Unit mg/Kg Unit mg/Kg		Prepared 07/18/23 11:39	Analyzed 07/24/23 15:27 Analyzed 07/22/23 20:41	1 Dil Fac 5
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	el Range Organ Result 894 sel Range Orga Result <248 894	ics (DRO) (Qualifier nics (DRO) Qualifier U	GC) RL 248 (GC) RL 248 248		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 07/18/23 11:39 07/18/23 11:39	Analyzed 07/24/23 15:27 Analyzed 07/22/23 20:41 07/22/23 20:41	1 Dil Fac 5 5
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ Result 894 sel Range Orga Result <248 894 <248	ics (DRO) (Qualifier nics (DRO) Qualifier U	GC) RL 248 (GC) RL 248 248 248 248		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 07/18/23 11:39 07/18/23 11:39 07/18/23 11:39	Analyzed 07/24/23 15:27 Analyzed 07/22/23 20:41 07/22/23 20:41	1 5 5 5
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	el Range Organ Result 894 sel Range Orga Result <248 894 <248	ics (DRO) (Qualifier nics (DRO) Qualifier U	GC) RL 248 (GC) RL 248 248 248 248 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 07/18/23 11:39 07/18/23 11:39 07/18/23 11:39 07/18/23 11:39 Prepared	Analyzed 07/24/23 15:27 Analyzed 07/22/23 20:41 07/22/23 20:41 07/22/23 20:41 Analyzed	1 Dil Fac 5 5 5 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	el Range Organ Result 894 Sel Range Orga Result <248 894 <248 894 <248 894 2248 98 105	ics (DRO) (Qualifier mics (DRO) Qualifier U U Qualifier	GC) RL 248 (GC) RL 248 2		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 07/18/23 11:39 07/18/23 11:39 07/18/23 11:39 Prepared 07/18/23 11:39	Analyzed 07/24/23 15:27 Analyzed 07/22/23 20:41 07/22/23 20:41 07/22/23 20:41 Analyzed 07/22/23 20:41	1 Dil Fac 5 5 5 5 <i>Dil Fac</i> 5
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	el Range Organ Result 894 sel Range Orga Result <248 894 <248 %Recovery 98 105 Chromatograp	ics (DRO) (Qualifier mics (DRO) Qualifier U U Qualifier	GC) RL 248 (GC) RL 248 2		Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 07/18/23 11:39 07/18/23 11:39 07/18/23 11:39 Prepared 07/18/23 11:39	Analyzed 07/24/23 15:27 Analyzed 07/22/23 20:41 07/22/23 20:41 07/22/23 20:41 Analyzed 07/22/23 20:41	1 Dil Fac 5 5 5 5 <i>Dil Fac</i> 5

Page 51 of 143

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-9

Matrix: Solid

Eurofins Midland

Mexico 2 1792-9 :: Solid 4 Dil Fac 5

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-30791-A-1-E MS	Matrix Spike	103	100		
880-30791-A-1-F MSD	Matrix Spike Duplicate	105	102		
880-30792-1	S-1 (0-1')	111	113		
880-30792-2	S-1 (1.5')	92	107		
880-30792-3	S-2 (0-1')	109	113		
880-30792-4	S-2 (1.5')	106	111		
880-30792-5	S-3 (0-1')	103	106		
880-30792-6	S-4 (0-1')	299 S1+	73		
880-30792-7	S-4 (1.5')	294 S1+	96		
880-30792-8	S-5 (0-1')	99	98		
880-30792-9	S-5 (1.5')	98	109		
890-4960-A-1-A MS	Matrix Spike	93	96		
890-4960-A-1-B MSD	Matrix Spike Duplicate	97	101		
LCS 880-57941/1-A	Lab Control Sample	102	105		
LCS 880-58039/1-A	Lab Control Sample	88	99		
LCSD 880-57941/2-A	Lab Control Sample Dup	105	100		
LCSD 880-58039/2-A	Lab Control Sample Dup	94	107		
MB 880-57941/5-A	Method Blank	78	95		
MB 880-57993/5-A	Method Blank	84	96		
MB 880-58039/5-A	Method Blank	95	109		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

-				P
		1CO1	OTPH1	i
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	I)
880-30792-1	S-1 (0-1')	1 S1-	5 S1-	_
880-30792-2	S-1 (1.5')	117	119	
880-30792-3	S-2 (0-1')	105	104	
880-30792-4	S-2 (1.5')	99	102	
880-30792-5	S-3 (0-1')	127	231 S1+	+
880-30792-6	S-4 (0-1')	123	577 S1+	+
880-30792-7	S-4 (1.5')	110	125	
880-30792-8	S-5 (0-1')	150 S1+	171 S1+	+
880-30792-9	S-5 (1.5')	98	105	
880-30793-A-2-E MS	Matrix Spike	103	113	
880-30793-A-2-F MSD	Matrix Spike Duplicate	107	115	
890-4944-A-1-F MS	Matrix Spike	195 S1+	191 S1+	+
890-4944-A-1-G MSD	Matrix Spike Duplicate	241 S1+	244 S1+	+
LCS 880-57876/2-A	Lab Control Sample	112	122	
LCS 880-57942/2-A	Lab Control Sample	85	106	
LCSD 880-57876/3-A	Lab Control Sample Dup	110	123	
LCSD 880-57942/3-A	Lab Control Sample Dup	92	114	
MB 880-57876/1-A	Method Blank	122	130	
MB 880-57942/1-A	Method Blank	170 S1+	197 S1+	+

Eurofins Midland

Prep Type: Total/NA

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Received by OCD: 10/3/2023 11:16:16 AM

Surrogate Summary

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl Job ID: 880-30792-1

SDG: Lea County, New Mexico

Page 53 of 143

Eurofins Midland

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-57941/5-A
Marchine Called

Matrix: Solid Analysis Batch: 57992

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130				07/18/23 11:31	07/19/23 22:17	1
1,4-Difluorobenzene (Surr)	95		70 - 130				07/18/23 11:31	07/19/23 22:17	1

Lab Sample ID: LCS 880-57941/1-A Matrix: Solid

Analysis Batch: 57992

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1012		mg/Kg		101	70 - 130	
Toluene	0.100	0.1028		mg/Kg		103	70 - 130	
Ethylbenzene	0.100	0.09282		mg/Kg		93	70 - 130	
m-Xylene & p-Xylene	0.200	0.1982		mg/Kg		99	70 - 130	
o-Xylene	0.100	0.09351		mg/Kg		94	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: LCSD 880-57941/2-A

Matrix: Solid

Analysis Batch: 57992							Prep	Batch:	57941
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09337		mg/Kg		93	70 - 130	8	35
Toluene	0.100	0.1004		mg/Kg		100	70 - 130	2	35
Ethylbenzene	0.100	0.09466		mg/Kg		95	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1942		mg/Kg		97	70 - 130	2	35
o-Xylene	0.100	0.09648		mg/Kg		96	70 - 130	3	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-30791-A-1-E MS

Matrix: Solid Analysia Rataby 57002

Analysis Batch: 57992									Pre	Batch: 57941
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U	0.0994	0.08714		mg/Kg		88	70 - 130	
Toluene	<0.00198	U	0.0994	0.08178		mg/Kg		82	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

SDG: Lea County, New Mexico

Client Sample ID: Method Blank

Job ID: 880-30792-1

Prep Type: Total/NA

Prep Batch: 57941

-		· ···· , - · ··	
_	07/18/23 11:31	07/19/23 22:17	1
	07/18/23 11:31	07/19/23 22:17	1
	07/18/23 11:31	07/19/23 22:17	1
	07/18/23 11:31	07/19/23 22:17	1
	07/18/23 11:31	07/19/23 22:17	1
	07/18/23 11:31	07/19/23 22:17	1
	Prepared	Analyzed	Dil Fac
	07/18/23 11:31	07/19/23 22:17	1
	07/18/23 11:31	07/19/23 22:17	1
с	lient Sample	ID: Lab Control Prep Type: 1 Prep Batch %Rec	Total/NA
	D %Rec	Limits	

Client Sample ID: Lab	Control Sample Dup

Prep Type: Total/NA

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23) Job ID: 880-30792-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-30791-A Matrix: Solid	A-1-E MS									Client S	Sample ID: Prep Ty		
Analysis Batch: 57992											Prep E	Batch:	5794
-	Sample	Sam	ple	Spike	MS	MS					%Rec		
Analyte	Result	Qual	lifier	Added	Result	Quali	fier Unit		D	%Rec	Limits		
Ethylbenzene	< 0.00198	U		0.0994	0.07867		mg/ł	ζg		79	70 - 130		
n-Xylene & p-Xylene	<0.00396			0.199	0.1552		mg/ł			78	70 - 130		
o-Xylene	<0.00198			0.0994	0.08587		mg/ł	-		86	70 - 130		
-							•						
	MS	MS											
Surrogate	%Recovery	Qual	lifier	Limits									
4-Bromofluorobenzene (Surr)	103			70 - 130									
1,4-Difluorobenzene (Surr)	100			70 - 130									
_ab Sample ID: 880-30791-A	A-1-F MSD							Clie	ent Sa	mple ID:	: Matrix Spi	ke Duj	olicat
Matrix: Solid											Prep Ty	pe: To	tal/N
Analysis Batch: 57992											Prep F	Batch:	5794
	Sample	Sam	ple	Spike	MSD	MSD					%Rec		RF
Analyte	Result	Qual	lifier	Added	Result	Quali	fier Unit		D	%Rec	Limits	RPD	Lin
Benzene	< 0.00198	U		0.0998	0.08228		mg/ł	ζg		82	70 - 130	6	;
oluene	<0.00198	U		0.0998	0.07839		mg/ł			79	70 - 130	4	3
Ethylbenzene	<0.00198			0.0998	0.07902		mg/ł	-		79	70 - 130	0	;
n-Xylene & p-Xylene	<0.00396			0.200	0.1570		mg/ł			79	70 - 130	1	
p-Xylene	<0.00198			0.0998	0.08751		mg/ł	-		88	70 - 130	2	:
							Ū	0					
Surrogate	MSD %Recovery	MSD Qual		Limits									
I-Bromofluorobenzene (Surr)		Quai		70 - 130									
-Bromonuorobenzene (Surr) 1,4-Difluorobenzene (Surr)	105			70 - 130 70 - 130									
∟ab Sample ID: MB 880-579 Matrix: Solid Analysis Batch: 57992	93/5-A									Client Sa	ample ID: M Prep Ty Prep E		tal/N
····,····		мв											
Analyte			мв										
	R		MB Qualifier	RL		MDL	Unit	D	P	repared	Analyze	d	
Benzene		esult		RL			Unit mg/Kg	<u>D</u>		repared 9/23 08:25	Analyze		
	<0.0	esult	Qualifier U					<u> </u>	07/1	-		1:34	
oluene	<0.0	esult 0200	Qualifier U U	0.00200			mg/Kg	<u>D</u>	07/1 07/1	9/23 08:25	07/19/23 11	1:34 1:34	
ōluene Ithylbenzene	<0.0 <0.0 <0.0	esult 0200 0200	Qualifier U U U	0.00200			mg/Kg mg/Kg mg/Kg	<u>D</u>	07/1 07/1 07/1	9/23 08:25 9/23 08:25	07/19/23 11	1:34 1:34 1:34	
Toluene Ethylbenzene n-Xylene & p-Xylene	<0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0200	Qualifier U U U U	0.00200 0.00200 0.00200			mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 07/19/23 11	1:34 1:34 1:34 1:34	
Toluene Ethylbenzene n-Xylene & p-Xylene b-Xylene	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0200 0200 0400	Qualifier U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400			mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11	1:34 1:34 1:34 1:34 1:34	
Toluene Ethylbenzene n-Xylene & p-Xylene b-Xylene	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0200 0400 0200 0400	Qualifier U U U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11	1:34 1:34 1:34 1:34 1:34	
Toluene Ethylbenzene n-Xylene & p-Xylene 0-Xylene Kylenes, Total	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0200 0400 0200 0400 MB	Qualifier U U U U U U U	0.00200 0.00200 0.00200 0.00200 0.00400 0.00200			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11	1:34 1:34 1:34 1:34 1:34 1:34	Dil F
oluene Ethylbenzene n-Xylene & p-Xylene -Xylene Kylenes, Total Surrogate	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0200 0400 0200 0400 MB	Qualifier U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11	1:34 1:34 1:34 1:34 1:34 1:34 1:34	Dil F
oluene thylbenzene n-Xylene & p-Xylene -Xylene tylenes, Total Surrogate -Bromofluorobenzene (Surr)	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0200 0400 0400 0400 0400 MB	Qualifier U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 Limits			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11	1:34 1:34 1:34 1:34 1:34 1:34 1:34 1:34	Dil F
Toluene Thylbenzene n-Xylene & p-Xylene h-Xylene (ylenes, Total Surrogate H-Bromofluorobenzene (Surr) y,4-Difluorobenzene (Surr)	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0400 0400 0400 0400 MB overy 84	Qualifier U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11	1:34 1:34 1:34 1:34 1:34 1:34 1:34 1:34	Dil F
Foluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Kylenes, Total Surrogate f-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-580	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0400 0400 0400 0400 MB overy 84	Qualifier U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11 07/19/23 11	1:34 1:34 1:34 1:34 1:34 1:34 1:34 1:34	Dil F
Benzene Toluene Ethylbenzene n-Xylene & p-Xylene Sylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-580 Matrix: Solid Analysis Patch: 52027	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0400 0400 0400 0400 MB overy 84	Qualifier U U U U U U U MB	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 ample ID: M Prep Ty	1:34 1:34 1:34 1:34 1:34 1:34 1:34 1:34	Dil Fa Dil Fa Blar stal/N
Toluene Ethylbenzene n-Xylene & p-Xylene S-Xylene Kylenes, Total Surrogate H-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-580 Matrix: Solid	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0	esult 0200 0200 0200 0400 0200 0400 0400 040	Qualifier U U U U U U MB Qualifier	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	07/1 07/1 07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25	07/19/23 11 07/19/23 11 ample ID: M Prep Ty	1:34 1:34 1:34 1:34 1:34 1:34 1:34 1:34	Dil F Dil F Blar tal/N
Toluene Ethylbenzene n-Xylene & p-Xylene -Xylene Kylenes, Total Surrogate II-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-580 Matrix: Solid Analysis Batch: 58087	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 % <i>Reco</i> 39/5-A	esult 0200 0200 0400 0200 0400 0400 0400 040	Qualifier U U U U U U MB Qualifier	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		07/1 07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 Client Sa	07/19/23 11 07/19/23 11	1:34 1:34	Dil Fa Dil Fa Blar tal/N 5803
Toluene Ethylbenzene m-Xylene & p-Xylene S-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-580 Matrix: Solid Analysis Batch: 58087 Analyte	<0.0 <0.0 <0.0 <0.0 <0.0 <0.0 %Reco 39/5-A	esult 0200 0200 0400 0200 0400 0200 0400 040	Qualifier U U U U U MB Qualifier	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	07/1 07/11 07/11 07/11 07/11 07/11 07/11 07/11	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 Client Sa Client Sa	07/19/23 11 07/19/23 12 07/19/23 12 07/19/	1:34 1:34 1:34 1:34 1:34 1:34 1:34 1:34	Dil Fa Dil Fa Blan stal/N
Toluene Ethylbenzene n-Xylene & p-Xylene >-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: MB 880-580 Matrix: Solid Analysis Batch: 58087	 <0.0 	esult 0200 0200 0400 0200 0400 0400 0400 040	Qualifier U U U U U U MB Qualifier U	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130 70 - 130		MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		07/1 07/1 07/1 07/1 07/1 07/1 07/1 07/1	9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 9/23 08:25 Client Sa	07/19/23 11 07/19/23 11	1:34 1:34 <t< td=""><td>Dil Fa Dil Fa Blan tal/N 5803</td></t<>	Dil Fa Dil Fa Blan tal/N 5803

07/20/23 12:48

07/20/23 12:48

Ethylbenzene

m-Xylene & p-Xylene

0.00200

0.00400

mg/Kg

mg/Kg

07/19/23 12:20

07/19/23 12:20

<0.00200 U

<0.00400 U

1

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23) Job ID: 880-30792-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-5803	9/5-A									Client Sa	mple ID: Met		
Matrix: Solid											Prep Type		
Analysis Batch: 58087											Prep Bat	ch:	58039
	ME	MB											
Analyte		Qualifier	RL		MDL	Unit		D	P	repared	Analyzed		Dil Fa
o-Xylene	<0.00200	U	0.00200	1		mg/Kg	1		07/1	9/23 12:20	07/20/23 12:48	3	
Xylenes, Total	<0.00400	U	0.00400	1		mg/Kg	1		07/1	9/23 12:20	07/20/23 12:48	}	
	МЕ	MB											
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)	98	5	70 - 130	-					07/1	9/23 12:20	07/20/23 12:48	3	1
1,4-Difluorobenzene (Surr)	109)	70 - 130						07/1	9/23 12:20	07/20/23 12:48	3	1
Lab Sample ID: LCS 880-580	39/1-A							С	lient	Sample I	ID: Lab Contr	ol S;	ample
Matrix: Solid											Prep Type	: To	tal/N/
Analysis Batch: 58087											Prep Bat	ch:	58039
			Spike	LCS	LCS						%Rec		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Benzene			0.100	0.1108			mg/Kg			111	70 - 130		
Toluene			0.100	0.1090			mg/Kg			109	70 - 130		
Ethylbenzene			0.100	0.08481			mg/Kg			85	70 - 130		
m-Xylene & p-Xylene			0.200	0.1704			mg/Kg			85	70 - 130		
o-Xylene			0.100	0.08892			mg/Kg			89	70 - 130		
	LCS LC	s											
Surrogate	%Recovery Qu	alifier	Limits										
4-Bromofluorobenzene (Surr)	88		70 - 130										
1,4-Difluorobenzene (Surr)	99		70 - 130										
Lab Sample ID: LCSD 880-58	8039/2-A						Cli	ent	Sam	nple ID: La	ab Control Sa	mpl	e Dur
Matrix: Solid											Prep Type	: To	tal/NA
Analysis Batch: 58087											Prep Bat		
			Spike	LCSD	LCS	D					%Rec		RPD
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits F	RPD	Limi
Benzene			0.100	0.08374			mg/Kg		_	84	70 - 130	28	3
Toluene			0.100	0.08484			mg/Kg			85	70 - 130	25	3
Ethylbenzene			0.100	0.06776	*_		mg/Kg			68	70 - 130	22	3

o-Xylene			0.100
	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 890-4960-A-1-A MS Matrix: Solid

m-Xylene & p-Xylene

Analysis Batch: 58087									Prep	Batch: 58039
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0994	0.09403		mg/Kg		95	70 - 130	
Toluene	<0.00201	U	0.0994	0.09690		mg/Kg		97	70 - 130	
Ethylbenzene	<0.00201	U *-	0.0994	0.08179		mg/Kg		82	70 - 130	
m-Xylene & p-Xylene	<0.00402	U	0.199	0.1776		mg/Kg		89	70 - 130	
o-Xylene	<0.00201	U	0.0994	0.08748		mg/Kg		88	70 - 130	

0.200

0.1506

0.07561

mg/Kg

mg/Kg

75

76

70 - 130

70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA

12

16

35

35

Eurofins Midland

Page 56 of 143 380-30792-1

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-4960-A-1-A MS

Matrix: Solid Analysis Batch: 58087

1,4-Difluorobenzene (Surr)

(GRO)-C6-C10

C10-C28)

Diesel Range Organics (Over

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	96		70 _ 130

Lab Sample ID: 890-4960-A-1-B MSD Matrix: Solid

Analysis Batch: 58087							
	Sample	Sample	Spike	MSD	MSD		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D
Benzene	< 0.00201	U	0.0998	0.08966		mg/Kg	
Toluene	<0.00201	U	0.0998	0.09371		mg/Kg	
Ethylbenzene	<0.00201	U *-	0.0998	0.07577		mg/Kg	
m-Xylene & p-Xylene	<0.00402	U	0.200	0.1670		mg/Kg	
o-Xylene	<0.00201	U	0.0998	0.08334		mg/Kg	
	MSD	MSD					
Surrogate	%Recovery	Qualifier	Limits				
4-Bromofluorobenzene (Surr)	97		70 - 130				

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

101

_ Lab Sample ID: MB 880-57876/1-A										Client Sa	ample ID: Met	thod Blank
Matrix: Solid Analysis Batch: 57890											Prep Type	e: Total/NA itch: 57876
	MB	МВ										
Analyte	Result	Qualifier	RI	-	MDL	Unit		D	Ρ	repared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0)		mg/Kg	J		07/1	7/23 15:02	07/18/23 09:5	4 1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0)		mg/Kg	ļ		07/1	7/23 15:02	07/18/23 09:5	4 1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0)		mg/Kg	1		07/1	7/23 15:02	07/18/23 09:5	4 1
	MB	МВ										
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed	Dil Fac
1-Chlorooctane	122		70 - 130	-				_	07/1	7/23 15:02	07/18/23 09:5	54 1
o-Terphenyl	130		70 - 130						07/1	7/23 15:02	07/18/23 09:5	54 1
- Lab Sample ID: LCS 880-57876/2-A								Cli	ient	Sample	ID: Lab Cont	rol Sample
Matrix: Solid											Prep Type	e: Total/NA
Analysis Batch: 57890											Prep Ba	tch: 57876
			Spike	LCS	LCS						%Rec	
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Gasoline Range Organics			1000	985.7			mg/Kg		_	99	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	112		70 - 130
o-Terphenyl	122		70 - 130

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

%Rec

Limits

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

%Rec

90

94

76

84

84

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 58039

RPD

5

3

8

6

5

RPD

Limit

35

35

35

35

35

Prep Batch: 58039

1000

1084

mg/Kg

108

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-57876/3-A Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) LCSD LCSD Surrogate 1-Chlorooctane 110 70 - 130 0-Terphenyl 123 70 - 130 Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890 Sample Sample Sample Spike			Unit mg/Kg mg/Kg	<u>D</u>	<u>%Rec</u> 99 –	ab Control Prep Ty Prep %Rec Limits 70 - 130 70 - 130		tal/NA
Analysis Batch: 57890 Analysis Batch: 57890 Spike Analyte Added Gasoline Range Organics 1000 (GRO)-C6-C10 1000 Diesel Range Organics (Over 1000 C10-C28) LCSD Surrogate %Recovery 1-Chlorooctane 110 o-Terphenyl 123 Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890	Resul 988.9	Qualifier	mg/Kg	D	99	Prep %Rec Limits 70 - 130	Batch: RPD 0	57876 RPD Limit 20
AnalyteSpikeAnalyteAddedGasoline Range Organics1000(GRO)-C6-C101000Diesel Range Organics (Over1000C10-C28)LCSDLCSD LCSDSurrogate%RecoveryQualifierLimits1-Chlorooctane110o-Terphenyl123Cample ID: 890-4944-A-1-F MSMatrix: SolidAnalysis Batch: 57890	Resul 988.9	Qualifier	mg/Kg	<u> </u>	99	%Rec Limits 70 - 130	RPD 0	RPD Limit 20
AnalyteAddedGasoline Range Organics1000(GRO)-C6-C101000Diesel Range Organics (Over1000C10-C28)LCSDLCSDLCSDSurrogate%Recovery1-Chlorooctane110o-Terphenyl123Co-Terphenyl123Lab Sample ID: 890-4944-A-1-F MSMatrix: SolidAnalysis Batch: 57890	Resul 988.9	Qualifier	mg/Kg	<u>D</u>	99	Limits 70 - 130	0	Limit 20
Gasoline Range Organics 1000 (GRO)-C6-C10 1000 Diesel Range Organics (Over 1000 C10-C28) LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 110 70 - 130 70 - 130 o-Terphenyl 123 70 - 130 130 Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890	988.9)	mg/Kg		99	70 - 130	0	20
(GRO)-C6-C10 1000 Diesel Range Organics (Over 1000 C10-C28) LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 110 70 - 130 70 - 130 o-Terphenyl 123 70 - 130 70 - 130 Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890								
Diesel Range Organics (Over 1000 C10-C28) Surrogate <u>LCSD LCSD</u> 1-Chlorooctane <u>110</u> 70 - 130 o-Terphenyl 123 70 - 130 Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890	1077		mg/Kg		108	70 - 130	1	20
LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 110 70 - 130 o-Terphenyl 123 70 - 130 Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890								
Surrogate%RecoveryQualifierLimits1-Chlorooctane11070 - 130o-Terphenyl12370 - 130Lab Sample ID: 890-4944-A-1-F MSMatrix: SolidMatrix: SolidAnalysis Batch: 57890								
Surrogate%RecoveryQualifierLimits1-Chlorooctane11070 - 130o-Terphenyl12370 - 130Lab Sample ID: 890-4944-A-1-F MSMatrix: SolidMatrix: SolidAnalysis Batch: 57890								
1-Chlorooctane 110 70 - 130 0-Terphenyl 123 70 - 130 Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890								
٥- <i>Terphenyl</i> 123 70 ـ 130 Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890								
Lab Sample ID: 890-4944-A-1-F MS Matrix: Solid Analysis Batch: 57890								
Matrix: Solid Analysis Batch: 57890								
Matrix: Solid Analysis Batch: 57890					Client	Sample ID:	Matrix	Spike
Analysis Batch: 57890						Prep T		
-							Batch:	
	MS	MS				%Rec		
Analyte Result Qualifier Added		d Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics <50.1 U F2 996	908.1		mg/Kg		88	70 - 130		
(GRO)-C6-C10			0 0					
Diesel Range Organics (Over <50.1 U F2 996	929.8	3	mg/Kg		91	70 - 130		
C10-C28)								
MS MS								
Surrogate %Recovery Qualifier Limits								
1-Chlorooctane 195 S1+ 70-130								
o-Terphenyl 191 S1+ 70 - 130								
Lab Sample ID: 890-4944-A-1-G MSD Matrix: Solid Analysis Batch: 57890			CI	ient Sa	ample ID	: Matrix Sp Prep T		licate
Sample Sample Spike	MOR					Pren		
	MSL	MSD					Batch:	5787 <mark>6</mark>
		MSD t Qualifier	Unit	D	%Rec	%Rec	Batch:	57876 RPD
Analyte Result Qualifier Added	Result	Qualifier	Unit ma/Ka	<u>D</u>	<u>%Rec</u>	%Rec Limits	Batch:	57876 RPD Limit
AnalyteResultQualifierAddedGasoline Range Organics<50.1U F2996	Result		<mark>Unit</mark> mg/Kg	<u>D</u>	%Rec	%Rec	Batch:	57876 RPD Limit
AnalyteResultQualifierAddedGasoline Range Organics<50.1U F2996(GRO)-C6-C10<50.1U F2996	Result 1143	Qualifier		D		%Rec Limits	Batch:	57876 RPD Limit 20
AnalyteResultQualifierAddedGasoline Range Organics<50.1U F2996(GRO)-C6-C10996Diesel Range Organics (Over<50.1U F2996C10-C28) </th <td>Result 1143</td> <td>Qualifier F2</td> <td>mg/Kg</td> <td> D</td> <td>111</td> <td>%Rec Limits 70 - 130</td> <td>Batch: RPD 23</td> <td>57876 RPD Limit 20</td>	Result 1143	Qualifier F2	mg/Kg	D	111	%Rec Limits 70 - 130	Batch: RPD 23	57876 RPD Limit 20
AnalyteResultQualifierAddedGasoline Range Organics<50.1U F2996(GRO)-C6-C10<50.1U F2996Diesel Range Organics (Over C10-C28)<50.1U F2996MSD MSD	Result 1143	Qualifier F2	mg/Kg	<u>D</u>	111	%Rec Limits 70 - 130	Batch: RPD 23	5787 <mark>6</mark>
AnalyteResultQualifierAddedGasoline Range Organics<50.1U F2996(GRO)-C6-C10996Diesel Range Organics (Over<50.1U F2996C10-C28) </th <td>Result 1143</td> <td>Qualifier F2</td> <td>mg/Kg</td> <td> D</td> <td>111</td> <td>%Rec Limits 70 - 130</td> <td>Batch: RPD 23</td> <td>57876 RPD Limit 20</td>	Result 1143	Qualifier F2	mg/Kg	D	111	%Rec Limits 70 - 130	Batch: RPD 23	57876 RPD Limit 20

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: MB 880-57942	2/1-A							Client S	ample ID: Met	hod Blan
Matrix: Solid									Prep Type	
Analysis Batch: 58261										tch: 5794
		MB MB	,				-			
Surrogate	%Reco	<u> </u>	<i>Limits</i>					repared	Analyzed	Dil Fa
1-Chlorooctane		170 S1+	70 ₋ 130					8/23 11:36 8/23 11:36	07/22/23 09:0	
o-Terphenyl		197 S1+	70 - 130				0771	0/23 11.30	07/22/23 09:0	0
Lab Sample ID: LCS 880-5794	2/2-A						Client	Sample	ID: Lab Contr	ol Sampl
Matrix: Solid									Prep Type	: Total/N
Analysis Batch: 58261										tch: 5794
-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics			1000	1114		mg/Kg		111	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over			1000	977.6		mg/Kg		98	70 - 130	
C10-C28)										
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctane	85		70 - 130							
o-Terphenyl	106		70 - 130							
Matrix: Solid Analysis Batch: 58261										tch: 5794
			Spike		LCSD				%Rec	RP
Analyte			Added		Qualifier	Unit	D	%Rec		RPD Lim
Gasoline Range Organics (GRO)-C6-C10			1000	1000		mg/Kg		100	70 - 130	11 2
Diesel Range Organics (Over			1000	1032		mg/Kg		103	70 - 130	5 2
C10-C28)										
	LCSD	LCSD								
Surrogate			Limits							
1-Chlorooctane	92		70 - 130							
o-Terphenyl	114		70 - 130							
Lab Sample ID: 880-30793-A-2	2-E MS							Client	Sample ID: Ma	atrix Spik
Matrix: Solid									Prep Type	e: Total/N
Analysis Batch: 58261									Prep Ba	tch: 5794
• • • •	-	Sample	Spike		MS		_	a/ =	%Rec	
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	1000	864.5		mg/Kg		86	70 - 130	
GRO)-C6-C10 Diesel Range Organics (Over	61.8		1000	934.3		mg/Kg		87	70 - 130	
C10-C28)	01.0			001.0				0.		
	MS	MS								
Surrogate	%Recovery		Limits							
1-Chlorooctane	103		70 - 130							

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Analysis Batch: \$5261 Sample Sample Sample Spike MSD MSD MSD Viftee Analyte Resuit Qualifier Added Resuit Qualifier Unit D %Rec Limits RPD Gasoline Range Organics 0:03 1000 1003 mg/Kg 100 70.130 15 Gasoline Range Organics (Over 61.8 1000 953.8 mg/Kg 89 70.130 2 CirC-C29 MSD MSD MSD 70.130 70.130 2 2 CirC-C29 MSD MSD MSD 70.130	Matrix: Solid									D: Matrix S Prep	Туре: То	
Sample Sample Sample Spike MED WRD ViRec Rev Location Rev Location D ViRec View Rev Location Rev Location Link SP <												
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Gasoline Range Organics <50.3 U 1000 1003 mg/Kg 60 70.130 15 Diesel Range Organics (Over 61.8 1000 953.8 mg/Kg 60 70.130 2 Surrogate %Recovery Qualifier Limits -		Sample	Sample	Spike	MSD	MSD					Datom	RPI
Gasemine Range Organice (GR0)-G6-C10 (GR0)-G70-C130	Analyte	-	-	-			Unit	D	%Rec		RPD	Limi
MSD MSD <td></td> <td>2</td>												2
Diese Range Organics (Over C10-C28) 61.8 1000 953.8 mg/Kg 89 70 - 130 2 C10-C28) MSD MSD MSD Limits -		00.0	0						100	10-100	10	-
MSD MSD Surrogate %Recovery Qualifier Limits 10D 115 70.130 o-Terphenyl 115 70.130 Tethod: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 880-57863/1-A Client Sample ID: Method E Matrix: Solid Result Qualifier RL Matrix: Solid Result Qualifier RL Analysis Batch: 57925 MB MB MDL Unit D Prepared Analyzed D Chorde < 5.00		61.8		1000	953.8		mg/Kg		89	70 - 130	2	2
Surrogate %Recovery Qualifier Limits 1-Chicrocatane 107 70.130 -Terphenyl 115 70.130 Rethod: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 880-57863/1-A Lab Sample ID: MB 880-57863/1-A MB MB Analysis Batch: S7925 MB Result Qualifier Chioride <5.00	C10-C28)											
Surrogate %Recovery Qualifier Limits 1-Chicrocatane 107 70.130 -Terphenyl 115 70.130 Rethod: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 880-57863/1-A Lab Sample ID: MB 880-57863/1-A MB MB Analysis Batch: S7925 MB Result Qualifier Chioride <5.00		MSD	MSD									
1: Chorocctane 107 70.130 or Terphenyl 115 70.130 Iethod: 300.0 - Anions, Ion Chromatography Its 70.130 Lab Sample ID: MB 880-57863/1-A Client Sample ID: Method B Prep Type: Sol Analysis Batch: 57925 MB MB Result Qualifier RL MDL Unit D Prepared Analyzed D Chioride < 5.00	Surrogate			Limits								
e-Terphenyl 115 70.130 Idethod: 300.0 - Anions, ion Chromatography Lab Sample ID: MB 880-57863/1-A Matrix: Solid Analysis Batch: 57925 MB MB Analyte Result Qualifier Added Result Qualifier Chioride Result Qualifier Chioride Result Qualifier Chioride Result Qualifier Chioride Result Qualifier Result Qualifier Chioride Result Qualifier Result Qualifier Chioride Result Qualifier Chioride Result Qualifier Result												
Atechod: 300.0 - Anions, Ion Chromatography Lab Sample ID: MB 880-57863/1-A Matrix: Solid Client Sample ID: Method E Prep Type: Sol Analysis Batch: 57925 MB MB Analysis Batch: 57925 Result Qualifier RL MDL Unit D Prepared Analyzed D Client Sample ID: LCS 880-57863/2-A Matrix: Solid Client Sample ID: LCS 880-57863/2-A Prep Type: Sol Client Sample ID: Lab Control Sample Prep Type: Sol Analysis Batch: 57925 Spike LCS LCS %Rec Limits Prep Type: Sol Analysis Batch: 57925 Spike LCSD Client Sample ID: Lab Control Sample Prep Type: Sol Analysis Batch: 57925 Analysis Batch: 57925 Spike LCSD KRec Limits Prep Type: Sol Analysis Batch: 57925 Spike LCSD Client Sample ID: Lab Control Sample Prep Type: Sol Prep Type: Sol Analysis Batch: 57925 Spike LCSD Client Sample ID: Lab Control Sample Prep Type: Sol Analysis Batch: 57925 Sample Spike MS MS KRec Analysis Batch: 57925 Sample Spike MS MS KRec												
Lab Sample ID: MB 880-57863/1-A Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCS 880-57863/2-A Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-37863/3-A Matrix: Solid Analysis Batch: 57925 Analyte Chloride Chloride Chloride MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB M												
Matrix: Solid Analysis Batch: 57925 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed D Chloride <5.00	ethod: 300.0 - Anions, Io	on Chromat	ography									
Matrix: Solid Analysis Batch: 57925 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed D Chloride <5.00	Lab Sample ID: MB 880-57863	3/1-A							Client	Sample ID:	Method	Blan
Malysis Batch: 57925 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed D Chloride <5.00												
MBMBAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDChioride<5.00											.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDChionide<5.00			МВ МВ									
Chloride <5.00 U 5.00 mg/kg 07/18/23 08:41 Lab Sample ID: LCS 880-57863/2-A Matrix: Solid Analysis Batch: 57925 Client Sample ID: Lab Control Sample ID: Lab Control Sample ID: Lab Control Sample ID: LCSD 880-57863/3-A Spike LCS LCS V/Rec Limits Analyte Added Result Qualifier Unit D %Rec Limits Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Chloride 250 257.4 Client Sample ID: Lab Control Sample Analyte Added Result Qualifier Unit D %Rec Analyte Added 250 257.4 Client Sample ID: Sa Prep Type: So Analyte Result Qualifier Unit D %Rec Chloride 326	Analyte	R			RL	MDL Unit		D	Prepared	Analy	zed	Dil Fa
Lab Sample ID: LCS 880-57863/2-A Matrix: Solid Analysis Batch: 57925 Spike Added Client Sample ID: Lab Control Sam Prep Type: Sol Analysis Batch: 57925 Analyte Added Result Qualifier Unit D %Rec Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925 Spike LCS LCS Write Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Analyte Added Result Qualifier Unit D %Rec Chioride 250 257.4 Unit D %Rec Limits Chioride 250 257.4 Client Sample ID: Sample ID: Sample ID: Sample ID: Sample ID: Sample ID: S-4 (Prep Type: Sol Analyte Result Qualifier Unit D %Rec Analysis Batch: 57925 Sample Spike MS MS MS Analyte Result Qualifier Unit D %Rec Analyte Result Qualifier Unit D %Rec Analysis Batch: 57925 Sample Spike MS MS MS Analyte Result Qualifier Unit </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ά</td> <td></td> <td></td> <td></td> <td></td> <td>2</td>							ά					2
Matrix: Solid Analysis Batch: 57925 Spike Added LCS LCS LCS Matrix Matrix Matrix Matrix Spike LCS LCS Matrix Matrix D %Rec Matrix Mac Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925 Added Result Qualifier Unit D %Rec Lab Control Sample Prep Type: Sol Analyte Chloride Spike LCSD LCSD Client Sample ID: Lab Control Sample Prep Type: Sol Analyte Chloride Added Result Qualifier Unit D %Rec Analyte Chloride Spike LCSD LCSD Matrix: Spike LCSD Matrix Lab Sample ID: 880-30792-7 MS Matrix: Solid Sample Spike MS MS %Rec Limits Analyte Result Qualifier Added Result Qualifier Unit D %Rec Analysis Batch: 57925 Sample Spike MS MS MS %Rec Limits Analysis Batch: 57925 Sample ID: 840-00792-7 MSD Matrix: Solid Prep Type: Sol Prep Type: Sol Analysis Batch: 57925 Sample Spike MSD MSD WRec Limits						-	-					
Matrix: Solid Analysis Batch: 57925 Prep Type: Sol Analysis Batch: 57925 Analyte Chloride Spike Added LCS 250 LCS 257.0 Unit mg/Kg D %Rec 103 %Rec 103 Limits 90.110 - Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925 Spike Added LCSD 257.0 Client Sample ID: Lab Control Sample Prep Type: Sol 250 Client Sample ID: Lab Control Sample Prep Type: Sol 250 Analyte Chloride Added 250 CSD 257.4 Unit mg/Kg D %Rec 103 %Rec Limits 90.110 Client Sample ID: Sol 90.110 Lab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925 Sample Sample Spike Added Spike Added MS 4dded Result Qualifier MS 4514 MS MS %Rec Limits 90.110 Limits 90.110 Lab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925 Sample Spike 3260 MS 1260 MS 4514 MS MS MS 90.110 %Rec Limits 90.110 Lab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925 Sample Spike Sample Spike MS MS MS 90.110 Viliet MS D 90.110	Lab Sample ID: LCS 880-5786	63/2-A						Clier	t Sampl	e ID: Lab C	ontrol S	ampl
SpikeLCSLCS%RecAnalyteAddedResultQualifierUnitD%RecLimitsChloride250257.0mg/Kg10390.110103Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925SpikeLCSDClient Sample ID: Lab Control Sample Prep Type: SolAnalyteAddedResultQualifierUnitD%RecLimits Prep Type: SolAnalyteAddedResultQualifierUnitD%RecLimits Prep Type: SolChloride250257.4Client Sample ID: Lab Control Sample Prep Type: SolLab Sample ID: 880-30792-7 MS Matrix: Solid ChlorideSampleSpikeMSMSClient Sample ID: S-4 (Prep Type: SolAnalyteResultQualifierAddedResultQualifierUnitD%RecLab Sample ID: 880-30792-7 MS ChlorideSampleSpikeMSMS%RecAnalyteResultQualifierAddedResultQualifierUnitD%RecAnalyteResultQualifierAddedResultQualifierUnitD%RecPrep Type: SolAnalyteResultQualifierAddedResultQualifierUnitD%RecPrep Type: SolAnalysis Batch: 57925SampleSampleSpikeMSMSMSYRecPrep Type: SolAnalysis Batch: 57925Sample SampleSpikeMSDMSD	Matrix: Solid									Prep	Type: S	olubl
SpikeLCSLCS%RecAnalyteAddedResultQualifierUnitD%RecLimitsChloride250257.0mg/Kg10390.110103Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925SpikeLCSDClient Sample ID: Lab Control Sample Prep Type: SolAnalyteAddedResultQualifierUnitD%RecLimits Prep Type: SolAnalyteAddedResultQualifierUnitD%RecLimits Prep Type: SolChloride250257.4Client Sample ID: Lab Control Sample Prep Type: SolLab Sample ID: 880-30792-7 MS Matrix: Solid ChlorideSampleSpikeMSMSClient Sample ID: S-4 (Prep Type: SolAnalyteResultQualifierAddedResultQualifierUnitD%RecLab Sample ID: 880-30792-7 MS ChlorideSampleSpikeMSMS%RecAnalyteResultQualifierAddedResultQualifierUnitD%RecAnalyteResultQualifierAddedResultQualifierUnitD%RecPrep Type: SolAnalyteResultQualifierAddedResultQualifierUnitD%RecPrep Type: SolAnalysis Batch: 57925SampleSampleSpikeMSMSMSYRecPrep Type: SolAnalysis Batch: 57925Sample SampleSpikeMSDMSD	Analysis Batch: 57925											
Chloride250257.0mg/Kg10390.110Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925Client Sample ID: Lab Control Sample Prep Type: SolAnalyteSpikeLCSDLCSDWrecChloride250257.4UnitD%recChloride250257.4UnitD%recLab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925SampleSpikeMSMSAnalyteResult QualifierQualifierUnitD%recChloride3260SpikeMSMSVrep Type: SolLab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925SampleSpikeMSMSLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925SampleSpikeMSMSVrep Type: SolLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925SampleSpikeMS MSDVrep Type: SolLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925SampleSpikeMSDVrep Type: Sol												
Lab Sample ID: LCSD 880-57863/3-A Matrix: Solid Analysis Batch: 57925Client Sample ID: Lab Control Sample Prep Type: Sol AddedAnalyteSpikeLCSDLCSDWRec TotalChloride250257.4UnitD%Rec TotalLab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925SampleSpikeMS AddedMS ResultClient Sample ID: S-4 TotalClient Sample ID: S-4 TotalLab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925SampleSpikeMS AddedMS ResultMS Total%Rec LimitsLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925SampleSpikeMS AddedMS ResultMS QualifierUnit mg/KgD%Rec LimitsLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample SampleSpikeMS MSDClient Sample ID: S-4 Prep Type: SolLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample SampleSpikeMSD%Rec				Spike	LCS	LCS				%Rec		
Matrix: Solid Analysis Batch: 57925Prep Type: Sol %RecAnalyte ChlorideAdded 250Result 250Qualifier mg/KgUnit mg/KgD%Rec %Rec 103Limits 90 - 110RPD 0Lab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925Sample SampleSpike MsMS MSClient Sample ID: S-4 MS MSPrep Type: Sol Analysis Batch: 57925Lab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925Sample SpikeSpike Added Added 1260MS 4514MS mg/Kg%Rec D%Rec Ms MSLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample SpikeSpike MS MSMS MS%Rec MS MSLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample Spike SpikeMSD MSD%Rec	Analyte						Unit	D	%Rec			
Matrix: Solid Analysis Batch: 57925Prep Type: Sol %RecAnalyte ChlorideAdded 250Result 250Qualifier mg/KgUnit mg/KgD%Rec %Rec 103Limits 90 - 110RPD 0Lab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925Sample SampleSpike MsMS MSClient Sample ID: S-4 MS MSPrep Type: Sol Analysis Batch: 57925Lab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925Sample SpikeSpike Added Added 1260MS 4514MS mg/Kg%Rec D%Rec Ms MSLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample SpikeSpike MS MSMS MS%Rec MS MSLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample Spike SpikeMSD MSD%Rec				Added	Result			D		Limits		
Analysis Batch: 57925SpikeLCSDLCSD%RecAnalyteAddedResultQualifierUnitD%RecLimitsRPDChloride250257.4mg/KgD10390 - 1100Lab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925SampleSpikeMSMSClient Sample ID: S-4 MSTPrep Type: SolAnalyteResult QualifierQualifierAddedResult QualifierQualifierUnitD%RecMSChloride326012604514mg/KgD%Rec mg/KgLimits 90 - 110Lab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample SampleSpikeMSDMSDClient Sample ID: S-4 Prep Type: SolLab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample SampleSpikeMSD%Rec				Added	Result			<u>D</u>		Limits		
Analysis Batch: 57925SpikeLCSDLCSD%RecAnalyteAddedResultQualifierUnitD%RecLimitsRPDChloride250257.4mg/KgD10390 - 1100Lab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925SampleSpikeMSMSClient Sample ID: S-4 MSTPrep Type: SolAnalyteResult QualifierQualifierAddedResult QualifierQualifierUnitD%RecMSChloride326025012604514mg/KgD%Rec mg/KgLimits 90 - 110-Lab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample SampleSpikeMSDKBDKRecSample SampleSpikeMSDMSD%RecLimits mg/Kg	Chloride	 863/3-A		Added	Result		mg/Kg		103	Limits 90 - 110	 ol Sampl	le Du
AnalyteAddedLCSDLCSD%RecAnalyteAddedResultQualifierUnitD%RecLimitsRPDChloride250257.4QualifierUnitD%RecLimitsRPDLab Sample ID: 880-30792-7 MSAnalysis Batch: 57925SampleSpikeMSMSClient Sample ID: S-4Prep Type: SolAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsChloride3260QualifierAddedResultQualifierUnitD%RecLimitsLab Sample ID: 880-30792-7 MSDQualifier12604514QualifierUnitD%RecLimitsLab Sample ID: 880-30792-7 MSDClient Sample ID: S-4 (Prep Type: SolAddedResultQualifierUnitD%RecPrep Type: SolLab Sample ID: 880-30792-7 MSDSample Sample SpikeMSDMSD%RecMSDYmper Type: Sol	Chloride Lab Sample ID: LCSD 880-578	863/3-A		Added	Result		mg/Kg		103	Limits 90 - 110	-	
Chloride250257.4mg/Kg10390 - 1100Lab Sample ID: 880-30792-7 MS Matrix: Solid Analysis Batch: 57925Client Sample ID: S-4 Prep Type: SolClient Sample ID: S-4 Prep Type: SolAnalyteResult QualifierQualifierAdded 1260Result 4514QualifierUnit mg/KgD%Rec 100Lab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925Sample SampleSpikeMSDClient Sample ID: S-4 Prep Type: SolSample Sample SampleSpikeMSD MSD%Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid	863/3-A		Added	Result		mg/Kg		103	Limits 90 - 110	-	
Lab Sample ID: 880-30792-7 MS Client Sample ID: S-4 (Matrix: Solid Prep Type: Sol Analysis Batch: 57925 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Chloride 3260 1260 4514 mg/Kg D %Rec Limits	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid	863/3-A		Added 250	Result 257.0	Qualifier	mg/Kg		103	Limits 90 - 110 Lab Contro Prep	-	olubl
Matrix: Solid Analysis Batch: 57925 Prep Type: Sol Analysis Batch: 57925 Sample Sample Spike MS MS %Rec Analyte Chloride Result 3260 Qualifier 1260 Added 4514 Result qualifier Unit mg/Kg D %Rec Mint Limits 90 - 110 Lab Sample ID: 880-30792-7 MSD Matrix: Solid Analysis Batch: 57925 Client Sample ID: S-4 Prep Type: Sol	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925	863/3-A		Added 250 Spike	Result 257.0 LCSD	Qualifier	mg/Kg	ent Sa	103 mple ID:	Limits 90 - 110 Lab Contro Prep %Rec	Type: S	<mark>olubl</mark> RP
Matrix: Solid Prep Type: Sol Analysis Batch: 57925 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte	863/3-A		Added 250 Spike Added	Result 257.0 LCSD Result	Qualifier	mg/Kg Cliv	ent Sa	103 mple ID: %Rec	Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: S	olubi RP Lim
Analysis Batch: 57925 Sample Sample Spike MS MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte	863/3-A		Added 250 Spike Added	Result 257.0 LCSD Result	Qualifier	mg/Kg Cliv	ent Sa	103 mple ID: %Rec	Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: S	olubl RP Lim
SampleSampleSampleSpikeMSMS%RecAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsChloride3260126012604514QualifierUnitD%RecLimitsLab Sample ID: 880-30792-7 MSDKatrix: SolidClient Sample ID: S-4Prep Type: SolMatrix: SolidSampleSpikeMSD%Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride			Added 250 Spike Added	Result 257.0 LCSD Result	Qualifier	mg/Kg Cliv	ent Sa	103 mple ID: <u>%Rec</u> 103	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S <u> RPD</u> 0	olubl RP Lim 2
AnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsChloride32601260126045144514mg/KgD%RecLimitsLab Sample ID: 880-30792-7 MSDClient Sample ID: 880-30792-7 MSDMatrix: SolidPrep Type: SolAnalysis Batch: 57925Sample SampleSpikeMSD%Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M			Added 250 Spike Added	Result 257.0 LCSD Result	Qualifier	mg/Kg Cliv	ent Sa	103 mple ID: <u>%Rec</u> 103	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample	Type: S <u>RPD</u> 0 e ID: S-4	Olubl RP Lim 2 (1.5
Chloride 3260 1260 4514 mg/Kg 100 90 - 110 Lab Sample ID: 880-30792-7 MSD Client Sample ID: S-4 (Matrix: Solid Matrix: Solid Analysis Batch: 57925 Prep Type: Sol Sample Sample Spike MSD MSD %Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid			Added 250 Spike Added	Result 257.0 LCSD Result	Qualifier	mg/Kg Cliv	ent Sa	103 mple ID: <u>%Rec</u> 103	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample	Type: S <u>RPD</u> 0 e ID: S-4	Olubl RP Lim 2 (1.5
Lab Sample ID: 880-30792-7 MSD Client Sample ID: S-4 (Matrix: Solid Prep Type: Sol Analysis Batch: 57925 Sample Sample Spike MSD MSD %Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid	 MS		Added 250 Spike Added 250	Result 257.0 LCSD Result 257.4	Qualifier LCSD Qualifier	mg/Kg Cliv	ent Sa	103 mple ID: <u>%Rec</u> 103	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample Prep	Type: S <u>RPD</u> 0 e ID: S-4	Coluble RPI Lim 2 (1.5
Matrix: Solid Analysis Batch: 57925 Sample Sample Spike MSD MSD %Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid Analysis Batch: 57925	MS Sample	-	Added 250 Spike Added 250 Spike	Result 257.0 LCSD Result 257.4	Qualifier LCSD Qualifier MS	Unit		103 mple ID: <u>%Rec</u> 103 CI	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample Prep %Rec	Type: S <u>RPD</u> 0 e ID: S-4	Olubl RP Lim 2 (1.5
Matrix: Solid Analysis Batch: 57925 Sample Sample Spike MSD MSD %Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid Analysis Batch: 57925 Analyte	VIS Sample Result	-	Added 250 Spike Added 250 Spike Added	Result 257.0 LCSD Result 257.4 MS Result	Qualifier LCSD Qualifier MS	Unit Unit		103 mple ID: %Rec 103 CI %Rec	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits	Type: S <u>RPD</u> 0 e ID: S-4	Olubl RP Lim 2 (1.5
Analysis Batch: 57925 Sample Sample Spike MSD MSD %Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid Analysis Batch: 57925 Analyte Chloride Chloride	VIS Sample <u>Result</u> 3260	-	Added 250 Spike Added 250 Spike Added	Result 257.0 LCSD Result 257.4 MS Result	Qualifier LCSD Qualifier MS	Unit Unit		103 mple ID: %Rec 103 CI %Rec 100	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample Prep %Rec Limits 90 - 110	RPD 0 e ID: S-4 Type: S	olubi
Sample Sample Spike MSD MSD %Rec	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M	VIS Sample <u>Result</u> 3260	-	Added 250 Spike Added 250 Spike Added	Result 257.0 LCSD Result 257.4 MS Result	Qualifier LCSD Qualifier MS	Unit Unit		103 mple ID: %Rec 103 CI %Rec 100	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample 90 - 110 ient Sample	RPD 0 e ID: S-4 Type: S	olubi RP
	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid	VIS Sample <u>Result</u> 3260	-	Added 250 Spike Added 250 Spike Added	Result 257.0 LCSD Result 257.4 MS Result	Qualifier LCSD Qualifier MS	Unit Unit		103 mple ID: %Rec 103 CI %Rec 100	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample 90 - 110 ient Sample	RPD 0 e ID: S-4 Type: S	olubi RP
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid	MS Sample <u>Result</u> 3260 MSD	Qualifier	Added 250 Spike Added 250 Spike Added 1260	Result 257.0 LCSD Result 257.4 MS Result 4514	Qualifier LCSD Qualifier MS Qualifier	Unit Unit		103 mple ID: %Rec 103 CI %Rec 100	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample %Rec Limits 90 - 110 ient Sample Prep	RPD 0 e ID: S-4 Type: S	olubi RP 2 2 4 (1.5 0lubi
	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 N Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 N Matrix: Solid Analysis Batch: 57925	MS Sample Result 3260 MSD Sample	Qualifier	Added 250 Spike Added 250 Spike 1260	Result 257.0 LCSD Result 257.4 MS Result 4514	Qualifier LCSD Qualifier MS Qualifier	 <u>mg/Kg</u> <u>Unit</u> <u>mg/Kg</u> <u>Unit</u> <u>mg/Kg</u> 	D	103 mple ID: <u>%Rec</u> 103 CI <u>%Rec</u> 100 CI	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample %Rec Limits 90 - 110 ient Sample Prep %Rec	RPD 0 e ID: S-4 Type: S	elubi RP 2 4 (1.5 olubi 4 (1.5 olubi 8 (1.5 olubi 8 (1.5)
	Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30792-7 M Matrix: Solid	MS Sample Result 3260 MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added 1260	Result 257.0 LCSD Result 257.4 MS Result 4514	Qualifier LCSD Qualifier MS Qualifier	Unit Unit		103 mple ID: %Rec 103 CI %Rec 100	Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 ient Sample %Rec Limits 90 - 110 ient Sample Prep	RPD 0 e ID: S-4 Type: S	olul R Li (1. olul

Page 60 of 143

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23) Page 61 of 143

Job ID: 880-30792-1 SDG: Lea County, New Mexico

8

	9
tch	
941 941	13
941	

Prep Batch: 57941

GC VOA

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30792-1	S-1 (0-1')	Total/NA	Solid	5035	
880-30792-2	S-1 (1.5')	Total/NA	Solid	5035	
880-30792-3	S-2 (0-1')	Total/NA	Solid	5035	
880-30792-4	S-2 (1.5')	Total/NA	Solid	5035	
880-30792-5	S-3 (0-1')	Total/NA	Solid	5035	
880-30792-6	S-4 (0-1')	Total/NA	Solid	5035	
880-30792-7	S-4 (1.5')	Total/NA	Solid	5035	
880-30792-8	S-5 (0-1')	Total/NA	Solid	5035	
880-30792-9	S-5 (1.5')	Total/NA	Solid	5035	
MB 880-57941/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-57941/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-57941/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-30791-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
880-30791-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30792-1	S-1 (0-1')	Total/NA	Solid	8021B	57941
880-30792-2	S-1 (1.5')	Total/NA	Solid	8021B	57941
880-30792-3	S-2 (0-1')	Total/NA	Solid	8021B	57941
880-30792-4	S-2 (1.5')	Total/NA	Solid	8021B	57941
880-30792-5	S-3 (0-1')	Total/NA	Solid	8021B	57941
880-30792-6	S-4 (0-1')	Total/NA	Solid	8021B	57941
880-30792-7	S-4 (1.5')	Total/NA	Solid	8021B	57941
880-30792-8	S-5 (0-1')	Total/NA	Solid	8021B	57941
880-30792-9	S-5 (1.5')	Total/NA	Solid	8021B	57941
MB 880-57941/5-A	Method Blank	Total/NA	Solid	8021B	57941
MB 880-57993/5-A	Method Blank	Total/NA	Solid	8021B	57993
LCS 880-57941/1-A	Lab Control Sample	Total/NA	Solid	8021B	57941
LCSD 880-57941/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	57941
880-30791-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	57941
880-30791-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	57941

Prep Batch: 57993

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-57993/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 58039

Г

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-30792-6	S-4 (0-1')	Total/NA	Solid	5035	
MB 880-58039/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-58039/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-58039/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4960-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
890-4960-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 58087

Lab Sample ID 880-30792-6	Client Sample ID S-4 (0-1')	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 58039
MB 880-58039/5-A	Method Blank	Total/NA	Solid	8021B	58039
LCS 880-58039/1-A	Lab Control Sample	Total/NA	Solid	8021B	58039

Eurofins Midland

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23) Job ID: 880-30792-1 SDG: Lea County, New Mexico

GC VOA (Continued)

Analysis Batch: 58087 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-58039/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	58039
890-4960-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	58039
890-4960-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	58039

Analysis Batch: 58111

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30792-1	S-1 (0-1')	Total/NA	Solid	Total BTEX	
880-30792-2	S-1 (1.5')	Total/NA	Solid	Total BTEX	
880-30792-3	S-2 (0-1')	Total/NA	Solid	Total BTEX	
880-30792-4	S-2 (1.5')	Total/NA	Solid	Total BTEX	
380-30792-5	S-3 (0-1')	Total/NA	Solid	Total BTEX	
380-30792-6	S-4 (0-1')	Total/NA	Solid	Total BTEX	
380-30792-7	S-4 (1.5')	Total/NA	Solid	Total BTEX	
880-30792-8	S-5 (0-1')	Total/NA	Solid	Total BTEX	
880-30792-9	S-5 (1.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 57876

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30792-1	S-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-30792-2	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-30792-3	S-2 (0-1')	Total/NA	Solid	8015NM Prep	
880-30792-4	S-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-30792-5	S-3 (0-1')	Total/NA	Solid	8015NM Prep	
880-30792-6	S-4 (0-1')	Total/NA	Solid	8015NM Prep	
MB 880-57876/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-57876/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-57876/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4944-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4944-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 57890

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-30792-1	S-1 (0-1')	Total/NA	Solid	8015B NM	57876
880-30792-2	S-1 (1.5')	Total/NA	Solid	8015B NM	57876
880-30792-3	S-2 (0-1')	Total/NA	Solid	8015B NM	57876
880-30792-4	S-2 (1.5')	Total/NA	Solid	8015B NM	57876
880-30792-5	S-3 (0-1')	Total/NA	Solid	8015B NM	57876
880-30792-6	S-4 (0-1')	Total/NA	Solid	8015B NM	57876
MB 880-57876/1-A	Method Blank	Total/NA	Solid	8015B NM	57876
LCS 880-57876/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	57876
LCSD 880-57876/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	57876
890-4944-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	57876
890-4944-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	57876

Prep Batch: 57942

Lab Sample ID 880-30792-7	Client Sample ID S-4 (1.5')	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
880-30792-8	S-5 (0-1')	Total/NA	Solid	8015NM Prep	
880-30792-9	S-5 (1.5')	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 62 of 143

5 6

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

GC Semi VOA (Continued)

Prep Batch: 57942 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-57942/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-57942/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-57942/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-30793-A-2-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-30793-A-2-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 58025

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-30792-1	S-1 (0-1')	Total/NA	Solid	8015 NM	
880-30792-2	S-1 (1.5')	Total/NA	Solid	8015 NM	
880-30792-3	S-2 (0-1')	Total/NA	Solid	8015 NM	
880-30792-4	S-2 (1.5')	Total/NA	Solid	8015 NM	
880-30792-5	S-3 (0-1')	Total/NA	Solid	8015 NM	
880-30792-6	S-4 (0-1')	Total/NA	Solid	8015 NM	
880-30792-7	S-4 (1.5')	Total/NA	Solid	8015 NM	
880-30792-8	S-5 (0-1')	Total/NA	Solid	8015 NM	
880-30792-9	S-5 (1.5')	Total/NA	Solid	8015 NM	

Analysis Batch: 58261

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30792-7	S-4 (1.5')	Total/NA	Solid	8015B NM	57942
880-30792-8	S-5 (0-1')	Total/NA	Solid	8015B NM	57942
880-30792-9	S-5 (1.5')	Total/NA	Solid	8015B NM	57942
MB 880-57942/1-A	Method Blank	Total/NA	Solid	8015B NM	57942
LCS 880-57942/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	57942
LCSD 880-57942/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	57942
880-30793-A-2-E MS	Matrix Spike	Total/NA	Solid	8015B NM	57942
880-30793-A-2-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	57942

HPLC/IC

Leach Batch: 57863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-30792-1	S-1 (0-1')	Soluble	Solid	DI Leach	
880-30792-2	S-1 (1.5')	Soluble	Solid	DI Leach	
880-30792-3	S-2 (0-1')	Soluble	Solid	DI Leach	
880-30792-4	S-2 (1.5')	Soluble	Solid	DI Leach	
880-30792-5	S-3 (0-1')	Soluble	Solid	DI Leach	
880-30792-6	S-4 (0-1')	Soluble	Solid	DI Leach	
880-30792-7	S-4 (1.5')	Soluble	Solid	DI Leach	
880-30792-8	S-5 (0-1')	Soluble	Solid	DI Leach	
880-30792-9	S-5 (1.5')	Soluble	Solid	DI Leach	
MB 880-57863/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-57863/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-57863/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-30792-7 MS	S-4 (1.5')	Soluble	Solid	DI Leach	
880-30792-7 MSD	S-4 (1.5')	Soluble	Solid	DI Leach	
nalysis Batch: 57925					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-30792-1	S-1 (0-1')	Soluble	Solid	300.0	57863

Eurofins Midland

Page 63 of 143

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

HPLC/IC (Continued)

Analysis Batch: 57925 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30792-2	S-1 (1.5')	Soluble	Solid	300.0	57863
880-30792-3	S-2 (0-1')	Soluble	Solid	300.0	57863
880-30792-4	S-2 (1.5')	Soluble	Solid	300.0	57863
880-30792-5	S-3 (0-1')	Soluble	Solid	300.0	57863
880-30792-6	S-4 (0-1')	Soluble	Solid	300.0	57863
880-30792-7	S-4 (1.5')	Soluble	Solid	300.0	57863
880-30792-8	S-5 (0-1')	Soluble	Solid	300.0	57863
880-30792-9	S-5 (1.5')	Soluble	Solid	300.0	57863
MB 880-57863/1-A	Method Blank	Soluble	Solid	300.0	57863
LCS 880-57863/2-A	Lab Control Sample	Soluble	Solid	300.0	57863
LCSD 880-57863/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	57863
880-30792-7 MS	S-4 (1.5')	Soluble	Solid	300.0	57863
880-30792-7 MSD	S-4 (1.5')	Soluble	Solid	300.0	57863

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Eurofins Midland

Project/Site: Tiger 11 Fed 7H (07.10.23)

5

9

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-1 Matrix: Solid

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

Client Sample ID: S-1 (0-1')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/20/23 00:02	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58025	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.93 g	10 mL	57876	07/17/23 15:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	57890	07/19/23 07:41	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		5			57925	07/18/23 09:26	СН	EET MID

Lab Sample ID: 880-30792-2

Lab Sample ID: 880-30792-3

Lab Sample ID: 880-30792-4

Matrix: Solid

Matrix: Solid

Client Sample ID: S-1 (1.5') Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/20/23 00:22	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58025	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	57876	07/17/23 15:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	57890	07/19/23 08:04	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		1			57925	07/18/23 09:41	СН	EET MID

Client Sample ID: S-2 (0-1') Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/20/23 00:43	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58025	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	57876	07/17/23 15:02	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	57890	07/19/23 08:28	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		5			57925	07/18/23 09:46	СН	EET MID

Client Sample ID: S-2 (1.5') Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/20/23 01:04	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID

Eurofins Midland

Matrix: Solid

Client Sample ID: S-2 (1.5') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			58025	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	57876	07/17/23 15:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	57890	07/19/23 08:50	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		1			57925	07/18/23 09:51	СН	EET MID

Client Sample ID: S-3 (0-1') Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/20/23 01:24	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58025	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	57876	07/17/23 15:02	TKC	EET MID
Total/NA	Analysis	8015B NM		10	1 uL	1 uL	57890	07/19/23 09:12	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		10			57925	07/18/23 09:56	СН	EET MID

Client Sample ID: S-4 (0-1')

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	57992	07/20/23 01:45	SM	EET MID
Total/NA	Prep	5035			4.95 g	5 mL	58039	07/20/23 10:20	EL	EET MID
Total/NA	Analysis	8021B		250	5 mL	5 mL	58087	07/20/23 21:22	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58025	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	57876	07/17/23 15:02	TKC	EET MID
Total/NA	Analysis	8015B NM		10	1 uL	1 uL	57890	07/19/23 09:35	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		10			57925	07/18/23 10:01	СН	EET MID

Client Sample ID: S-4 (1.5') Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	57992	07/20/23 06:14	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58025	07/24/23 15:27	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 66 of 143

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-4 Matrix: Solid

Lab Sample ID: 880-30792-5

5 9

Lab Sample ID: 880-30792-6

Lab Sample ID: 880-30792-7

Matrix: Solid

Matrix: Solid

7/24/2023

Client Sample ID: S-4 (1.5') Date Collected: 07/14/23 00:00

Date	Received:	07/17/23	14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	57942	07/18/23 11:39	ТКС	EET MID
Total/NA	Analysis	8015B NM		10	1 uL	1 uL	58261	07/22/23 20:18	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		5			57925	07/18/23 10:06	СН	EET MID

Client Sample ID: S-5 (0-1') Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/20/23 03:08	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58025	07/24/23 15:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	57942	07/18/23 11:39	TKC	EET MID
Total/NA	Analysis	8015B NM		10	1 uL	1 uL	58261	07/22/23 19:56	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		1			57925	07/18/23 10:20	СН	EET MID

Client Sample ID: S-5 (1.5') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/20/23 03:29	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58111	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58025	07/24/23 15:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	57942	07/18/23 11:39	TKC	EET MID
Total/NA	Analysis	8015B NM		5	1 uL	1 uL	58261	07/22/23 20:41	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		1			57925	07/18/23 10:25	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30792-7 Matrix: Solid

Lab Sample ID: 880-30792-8

9

Lab Sample ID: 880-30792-9

Matrix: Solid

Matrix: Solid

10

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority		rogram	Identification Number	Expiration Date		
xas	N	IELAP	T104704400-23-26	06-30-24		
The following analytes	are included in this report, b	out the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w		
the agency does not of		Matrix	Analyta			
Analysis Method	fer certification. Prep Method	Matrix	Analyte			
0,		Matrix Solid Solid	Analyte Total TPH Total BTEX			

Eurofins Midland

Client: Carmona Resources

Job ID: 880-30792-1 SDG: Lea County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

of 143

11 12 13

Eurofins Midland

Sample Summary

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23) Job ID: 880-30792-1 SDG: Lea County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-30792-1	S-1 (0-1')	Solid	07/14/23 00:00	07/17/23 14:00
880-30792-2	S-1 (1.5')	Solid	07/14/23 00:00	07/17/23 14:00
880-30792-3	S-2 (0-1')	Solid	07/14/23 00:00	07/17/23 14:00
880-30792-4	S-2 (1.5')	Solid	07/14/23 00:00	07/17/23 14:00
880-30792-5	S-3 (0-1')	Solid	07/14/23 00:00	07/17/23 14:00
880-30792-6	S-4 (0-1')	Solid	07/14/23 00:00	07/17/23 14:00
880-30792-7	S-4 (1.5')	Solid	07/14/23 00:00	07/17/23 14:00
880-30792-8	S-5 (0-1')	Solid	07/14/23 00:00	07/17/23 14:00
880-30792-9	S-5 (1.5')	Solid	07/14/23 00:00	07/17/23 14:00

Anth	7	Comments Email		S-5 (1 5')	S-5 (0-1')	S-4 (1 5)	S-4 (0-1')	S-3 (0-1')	S-2 (1 5)	S-2 (0-1')	S-1 (1 5')	S-1 (0-1')		Sample Identification	Total Containers	Sample Custody Seals	Cooler Custody Seals	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name	Project Location	Project Number	Project Name	Phone	City, State ZIP	Address	Company Name	Project Manager
Col 1		to Mike Carn		5')	-1')	5')	1)	1)	5')	1)	5')	(1)		tification		ls Yes	s Yes					Lea		Tiger	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
Hant -	Relinquished by	10na / Mcarmo		7/14/2023	7/14/2023	7/14/2023	7/14/2023	7/14/2023	7/14/2023	7/14/2023	7/14/2023	7/14/2023		Date		NO MIA	Not (N/A)	res No	Tema Blank		FV	Lea County, New Mexico	2088	Tiger 11 Fed 7H (07 10 23)		9701	t Ste 500	ources	ring
	by (Signature)	ona@carmona											i	Time	Corrected Temperature	Temperature Reading	Correction Factor	Thermometer ID	Yes (No			Nexico		7 10 23)					
		resources co		×	×	×	×	×	×	×	×	×	u com	Soil	perature	eading	or.	U	Wet Ice	2		Due Date	Routine	Tur	Email				
		Email to Mike Carmona / Mcarmona@carmonaresources com and Conner Moehring / Cmoehring@carmonaresources com and Devin Dominguez / Ddominguez@carmonaresources com		 	6	6	G	G	G	6	6	6	water Comp	Water Grab/	2 011	01-10	98~	202	Ke No)		72 Hrs	マ Rush	Turn Around	II Mcarmona@carmonaresources com	City, State ZIP	Address.	Company Name	Bill to (if different)
$\left \right $		Moehrin		-						1	1	1		b/ #of	M		Pa	iram	leter	'S			Pres.		carmonar			ē	4)
	Date/Time	g / Cmo	$\left - \right $	×	×	×	×	×	×	×	×	×		1		вт	ΈX	8021	в						esource				Carn
12	Time	oehring.		×	×	×	×	×	×	×	×	×		трн	801	5M (GR	0+1	DRO	+ M	RO)				es com				Carmona Resources
		@carm		×	×	×	×	×	×	×	×	×	.			Chl	orid	e 30	0 0			_							sources
		onareso					_																						
		urces o																						ANAL					
	R	om and		_																				'SIS RE					
S	Received by (Signature)	d Devin																						ANALYSIS REQUEST	Deliv	Repo	State	Prog	
I IT	by (Sig	Domin																							Deliverables EDD	Reporting Level II Level III	State of Project	Program: UST/PST PRP	
	nature)	guez / C			080-3					ł												_	_		EDD [ět ,	T/PST	
		Ddomin			0792 Ch					+				<u> </u>														PRP	Work O
		guez@(oou-30792 Chain of Custody					1					7	7.	z	z -	т -	т -			z		ADaPT	ST/UST	l	rownfields	rder Co
		sarmon;		.	ustody								San		laOH+As	7n Acetate+NaOH 7n	1a-S-O-	NaHSO, NARIS	H_PO_ Hp	H-SOL H-				Pres			Г	elds	Work Order Comments
	D	aresoui			VAN ANA				1				nple Co		corbic A	PHOSNHS	Naco-	NARIS	0		-	-		servativ	Other	RRP [ຕິ	is
	Date/Time	rces co			-								Sample Comments		NaOH+Ascorbic Acid SAPC	Z n			NACIT NA					Preservative Codes			[
		3			1		1	. 1					S		റ				ā) Z	- 7			^		< □	і Г	≝ ¬	

7/24/2023

20192

Work Order No: _

Page 71 of 143

Chain of Custody

13

14

Job Number: 880-30792-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 30792 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").
Received by OCD: 10/3/2023 11:16:16 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 7/20/2023 10:33:51 AM

JOB DESCRIPTION

Tiger 11 Fed 7H (07.10.23) SDG NUMBER Lea County, New Mexico

JOB NUMBER

880-30791-1

ËOL

FOR ehring urces /all St e 500 79701 3:51 AM

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 7/20/2023 10:33:51 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-30791-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23) Job ID: 880-30791-1

Page 76 of 143

SDG: Lea County, New Mexico

MQL

NC

ND NEG

POS

PQL PRES

QC

RER RL

RPD

TEF

TEQ

TNTC

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		5
Qualifier	Qualifier Description	
F2	MS/MSD RPD exceeds control limits	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	4
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Project/Site: Tiger 11 Fed 7H (07.10.23)

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Job ID: 880-30791-1

Client: Carmona Resources

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-30791-1

Receipt

The samples were received on 7/17/2023 2:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -10.3°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-30791-1), H-2 (0-0.5') (880-30791-2), H-3 (0-0.5') (880-30791-3) and H-4 (0-0.5') (880-30791-4).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (890-4944-A-1-F MS) and (890-4944-A-1-G MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (CCV 880-57890/20). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 880-57876 and analytical batch 880-57890 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Client Sample ID: H-1 (0-0.5') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		07/18/23 11:31	07/19/23 22:39	1
oluene	<0.00198	U	0.00198		mg/Kg		07/18/23 11:31	07/19/23 22:39	1
thylbenzene	<0.00198	U	0.00198		mg/Kg		07/18/23 11:31	07/19/23 22:39	1
n-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		07/18/23 11:31	07/19/23 22:39	
o-Xylene	<0.00198	U	0.00198		mg/Kg		07/18/23 11:31	07/19/23 22:39	1
kylenes, Total	<0.00396	U	0.00396		mg/Kg		07/18/23 11:31	07/19/23 22:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	92		70 - 130				07/18/23 11:31	07/19/23 22:39	1
,4-Difluorobenzene (Surr)	98		70 - 130				07/18/23 11:31	07/19/23 22:39	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			07/20/23 10:18	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	<49.9	U	49.9		mg/Kg			07/19/23 11:00	
Method: SW846 8015B NM - Dies			· · ·		11		Durant	Amelianad	D!! 5-
Analyte		Qualifier		MDL	Unit	<u>D</u>	Prepared 07/17/23 15:02	Analyzed 07/18/23 17:34	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.9	0	49.9		mg/Kg		07/17/23 15:02	07/18/23 17:34	
Diesel Range Organics (Over 210-C28)	<49.9	U	49.9		mg/Kg		07/17/23 15:02	07/18/23 17:34	
DII Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		07/17/23 15:02	07/18/23 17:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	108		70 - 130				07/17/23 15:02	07/18/23 17:34	
-Terphenyl	110		70 - 130				07/17/23 15:02	07/18/23 17:34	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	61.9		4.96		mg/Kg			07/18/23 08:56	1
lient Sample ID: H-2 (0-0.5	')						Lab Sam	ple ID: 880-3	0791-2
te Collected: 07/14/23 00:00 te Received: 07/17/23 14:00								Matri	x: Solie
Method: SW846 8021B - Volatile		ounds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
						-		· · · · · · · · · · · · · · · · · · ·	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/19/23 23:00	1
Toluene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/19/23 23:00	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/19/23 23:00	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		07/18/23 11:31	07/19/23 23:00	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		07/18/23 11:31	07/19/23 23:00	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		07/18/23 11:31	07/19/23 23:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				07/18/23 11:31	07/19/23 23:00	1
1,4-Difluorobenzene (Surr)	115		70 - 130				07/18/23 11:31	07/19/23 23:00	1

Eurofins Midland

Page 78 of 143

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30791-1

Matrix: Solid

5

Page 6 of 22

Matrix: Solid

5

Client Sample Results

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30791-2

Project/Site: Tiger 11 Fed 7H (07.10.23) Client Sample ID: H-2 (0-0.5')

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			07/20/23 10:18	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.5	U	49.5		mg/Kg			07/19/23 11:00	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.5	U	49.5		mg/Kg		07/17/23 15:02	07/18/23 17:59	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.5	U	49.5		mg/Kg		07/17/23 15:02	07/18/23 17:59	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.5	U	49.5		mg/Kg		07/17/23 15:02	07/18/23 17:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				07/17/23 15:02	07/18/23 17:59	1
o-Terphenyl	106		70 - 130				07/17/23 15:02	07/18/23 17:59	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	60.3		4.98		mg/Kg			07/18/23 09:11	1

Client Sample ID: H-3 (0-0.5')

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

Lab Sample ID: 880-30791-3 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		07/18/23 11:31	07/19/23 23:21	1
Toluene	<0.00201	U	0.00201		mg/Kg		07/18/23 11:31	07/19/23 23:21	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		07/18/23 11:31	07/19/23 23:21	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		07/18/23 11:31	07/19/23 23:21	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		07/18/23 11:31	07/19/23 23:21	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		07/18/23 11:31	07/19/23 23:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				07/18/23 11:31	07/19/23 23:21	1
1,4-Difluorobenzene (Surr)	111		70 - 130				07/18/23 11:31	07/19/23 23:21	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			07/20/23 10:18	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	55.7		49.6		mg/Kg			07/19/23 11:00	1
Method: SW846 8015B NM - D	iesel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		07/17/23 15:02	07/19/23 06:55	1

Diesel Range Organics (Over C10-C28)	55.7	49.6	mg/Kg	07/17/23 15:02	07/19/23 06:55
• -					Ff

Eurofins Midland

(GRO)-C6-C10

1

Matrix: Solid

Matrix: Solid

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30791-3

Client Sample ID: H-3 (0-0.5')

Project/Site: Tiger 11 Fed 7H (07.10.23)

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		07/17/23 15:02	07/19/23 06:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				07/17/23 15:02	07/19/23 06:55	1
o-Terphenyl	112		70 - 130				07/17/23 15:02	07/19/23 06:55	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61.7		5.02		mg/Kg			07/18/23 09:16	

Client Sample ID: H-4 (0-0.5')

Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 23:41	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 23:41	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 23:41	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		07/18/23 11:31	07/19/23 23:41	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 23:41	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		07/18/23 11:31	07/19/23 23:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				07/18/23 11:31	07/19/23 23:41	1
1,4-Difluorobenzene (Surr)	113		70 - 130				07/18/23 11:31	07/19/23 23:41	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg				07/20/23 10:18	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.8	U	49.8		mg/Kg			07/19/23 11:00	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		07/17/23 15:02	07/19/23 07:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		07/17/23 15:02	07/19/23 07:17	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		07/17/23 15:02	07/19/23 07:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				07/17/23 15:02	07/19/23 07:17	1
o-Terphenyl	105		70 - 130				07/17/23 15:02	07/19/23 07:17	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	53.5		5.04		mg/Kg			07/18/23 09:21	1

Eurofins Midland

5

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

Page 81 of 143

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		DED4		Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	BFB1 (70-130)	DFBZ1 (70-130)	
880-30791-1	H-1 (0-0.5')	92	98	
880-30791-1 MS	H-1 (0-0.5')	103	100	
880-30791-1 MSD	H-1 (0-0.5')	105	102	
880-30791-2	H-2 (0-0.5')	99	115	
880-30791-3	H-3 (0-0.5')	99	111	
880-30791-4	H-4 (0-0.5')	104	113	
LCS 880-57941/1-A	Lab Control Sample	102	105	
LCSD 880-57941/2-A	Lab Control Sample Dup	105	100	
MB 880-57941/5-A	Method Blank	78	95	
MB 880-57993/5-A	Method Blank	84	96	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

	Matrix:	Sol	id
--	---------	-----	----

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-30791-1	H-1 (0-0.5')	108	110
880-30791-2	H-2 (0-0.5')	108	106
880-30791-3	H-3 (0-0.5')	106	112
880-30791-4	H-4 (0-0.5')	103	105
890-4944-A-1-F MS	Matrix Spike	195 S1+	191 S1+
890-4944-A-1-G MSD	Matrix Spike Duplicate	241 S1+	244 S1+
LCS 880-57876/2-A	Lab Control Sample	112	122
LCSD 880-57876/3-A	Lab Control Sample Dup	110	123
MB 880-57876/1-A	Method Blank	122	130

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-57941/5-A
Marchine Called

Matrix: Solid Analysis Batch: 57992

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		07/18/23 11:31	07/19/23 22:17	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130				07/18/23 11:31	07/19/23 22:17	1
1,4-Difluorobenzene (Surr)	95		70 - 130				07/18/23 11:31	07/19/23 22:17	1

Lab Sample ID: LCS 880-57941/1-A Matrix: Solid

Analysis Batch: 57992

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1012		mg/Kg		101	70 - 130	
Toluene	0.100	0.1028		mg/Kg		103	70 - 130	
Ethylbenzene	0.100	0.09282		mg/Kg		93	70 - 130	
m-Xylene & p-Xylene	0.200	0.1982		mg/Kg		99	70 - 130	
o-Xylene	0.100	0.09351		mg/Kg		94	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

Lab Sample ID: LCSD 880-57941/2-A

Matrix: Solid

Analysis Batch: 57992							Prep	Batch:	57941
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09337		mg/Kg		93	70 - 130	8	35
Toluene	0.100	0.1004		mg/Kg		100	70 - 130	2	35
Ethylbenzene	0.100	0.09466		mg/Kg		95	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.1942		mg/Kg		97	70 - 130	2	35
o-Xylene	0.100	0.09648		mg/Kg		96	70 - 130	3	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-30791-1 MS Matrix: Solid

Analysia Rataby 57002

Analysis Batch: 57992									Prep	Batch: 57941
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U	0.0994	0.08714		mg/Kg		88	70 - 130	
Toluene	<0.00198	U	0.0994	0.08178		mg/Kg		82	70 - 130	

Eurofins Midland

Client Sample ID: H-1 (0-0.5')

Prep Type: Total/NA

3

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 57941

Prep Batch: 57941

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid											Chefit	Sample ID: H Prep Type		
Analysis Batch: 57992												Prep Ba		
	Sample	Sam	ple	Spike	MS	MS						%Rec		
Analyte	Result	Qua	lifier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00198	U		0.0994	0.07867			mg/Kg			79	70 - 130		
n-Xylene & p-Xylene	<0.00396	U		0.199	0.1552			mg/Kg			78	70 - 130		
o-Xylene	<0.00198			0.0994	0.08587			mg/Kg			86	70 - 130		
	MS	мs												
Surrogate	%Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	103			70 - 130										
1,4-Difluorobenzene (Surr)	100			70 - 130										
Lab Sample ID: 880-30791-1 MS	D										Client	Sample ID: H	-1 (0-0.5"
Matrix: Solid												Prep Type		
Analysis Batch: 57992												Prep Ba		
-	Sample	Sam	ple	Spike	MSD	MSD)					%Rec		RPD
Analyte	Result	Qua	lifier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits F	RPD	Limi
Benzene	<0.00198	U		0.0998	0.08228			mg/Kg			82	70 - 130	6	35
Toluene	<0.00198	U		0.0998	0.07839			mg/Kg			79	70 - 130	4	35
Ethylbenzene	<0.00198	U		0.0998	0.07902			mg/Kg			79	70 - 130	0	35
m-Xylene & p-Xylene	<0.00396	U		0.200	0.1570			mg/Kg			79	70 - 130	1	35
o-Xylene	<0.00198	U		0.0998	0.08751			mg/Kg			88	70 - 130	2	35
	MSD	MSD)											
Surrogate	%Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	105			70 - 130										
1,4-Difluorobenzene (Surr)	102			70 - 130										
Lab Sample ID: MB 880-57993/5	- A										Client Sa	mple ID: Met	hod	Blank
Matrix: Solid												Prep Type		
Analysis Batch: 57992												Prep Ba		
		мв	МВ											
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	Pi	repared	Analyzed		Dil Fac
2	<0.0	0200	U	0.00200			mg/Kg		_	07/19	9/23 08:25	07/19/23 11:34	1 -	1
Benzene	-0.0	0200	U	0.00200			mg/Kg			07/19	9/23 08:25	07/19/23 11:34	1	1
	<0.0			0.00200			mg/Kg			07/19	9/23 08:25	07/19/23 11:34	1	
Toluene		0200	0	0.00200						07/19	9/23 08:25	07/19/23 11:34	1	1
Toluene Ethylbenzene	<0.0	0200 0400		0.00200			mg/Kg			01711	0/20 00.20	01/10/20 1110		
Toluene Ethylbenzene m-Xylene & p-Xylene	<0.0 <0.0		U				mg/Kg mg/Kg				9/23 08:25	07/19/23 11:34		
Foluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	<0.0 <0.0 <0.0	0400	U U	0.00400						07/19			1	
Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	<0.0 <0.0 <0.0	0400 0200 0400	U U	0.00400 0.00200			mg/Kg			07/19	9/23 08:25	07/19/23 11:34	1	
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	<0.0 <0.0 <0.0	0400 0200 0400 MB	บ บ บ	0.00400 0.00200			mg/Kg			07/19 07/19	9/23 08:25	07/19/23 11:34	1	1 1 Dil Fac
Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	<0.0 <0.0 <0.0 <0.0	0400 0200 0400 MB	บ บ บ <i>MB</i>	0.00400 0.00200 0.00400			mg/Kg			07/19 07/19 Pi	9/23 08:25 9/23 08:25	07/19/23 11:34 07/19/23 11:34	1	1

Lab Sample ID: MB 880-57876/1-A Matrix: Solid Analysis Batch: 57890							Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		07/17/23 15:02	07/18/23 09:54	1

Eurofins Midland

(GRO)-C6-C10

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23) Job ID: 880-30791-1

SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-57876 Matrix: Solid											ample ID: Prep ⁻	Type: T	
Analysis Batch: 57890												Batch	
-	M	в мв											
Analyte	Resu	lt Qualifier	RL		MDL	Unit		D	Pr	epared	Analyz	zed	Dil Fa
Diesel Range Organics (Over C10-C28)	<50.	0 U	50.0			mg/Kg			07/17	7/23 15:02	07/18/23	09:54	
Oll Range Organics (Over C28-C36)	<50.	0 U	50.0			mg/Kg			07/17	7/23 15:02	07/18/23	09:54	
Surrogate	M %Recover		Limits						Pr	repared	Analy	zed	Dil Fa
1-Chlorooctane								_		7/23 15:02	07/18/23		2
o-Terphenyl	13	0	70 - 130						07/17	7/23 15:02	07/18/23	09:54	
Lab Sample ID: LCS 880-5787	6/2-A							Cli	ient	Sample	ID: Lab C	ontrol	Sampl
Matrix: Solid											Prep ⁻	Type: T	otal/N
Analysis Batch: 57890											Prep	Batch	: 5787
			Spike	LCS	LCS						%Rec		
Analyte			Added	Result	Qual	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics			1000	985.7			mg/Kg			99	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)			1000	1084			mg/Kg			108	70 - 130		
	LCS LC	s											
Surrogate	%Recovery Qu	alifier	Limits										
	112		70 - 130										
1-Chlorooctane	112												
	122		70 - 130										
p-Terphenyl	122		70 - 130				Cli	ent S	Sam	ple ID: L	ab Contro	ol Samp	ole Du
o-Terphenyl Lab Sample ID: LCSD 880-578	122		70 - 130				Cli	ent S	Sam	ple ID: L		ol Samp Type: T	
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-578 Matrix: Solid	122		70 - 130				Cli	ent S	Sam	ple ID: L	Prep ⁻	-	otal/N
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-578 Matrix: Solid	122		70 - 130 Spike	LCSD	LCSI	D	Cli	ent S	Sam	ple ID: L	Prep ⁻	Type: T	otal/N : 5787
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte	122		Spike Added	Result			Cli Unit	ent S	Sam	%Rec	Prep Prep %Rec Limits	Type: To Batch	otal/N : 5787 RP Lim
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10	122		Spike Added 1000	Result 988.9				ent S		-	Prep Prep %Rec Limits 70 - 130	Type: To Batch	otal/N : 5787 RP Lim 2
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	122		Spike Added	Result			Unit	ent S		%Rec	Prep Prep %Rec Limits	Type: To Batch	otal/N/ : 5787 RP Lim 2
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	122 776/3-A		Spike Added 1000 1000	Result 988.9			Unit mg/Kg	ent \$		%Rec	Prep Prep %Rec Limits 70 - 130	Type: To Batch RPD 0	otal/N : 5787 RP Lim 2
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	122 76/3-A 		Spike Added 1000 1000 Limits	Result 988.9			Unit mg/Kg	ent S		%Rec	Prep Prep %Rec Limits 70 - 130	Type: To Batch RPD 0	otal/N/ : 5787 RP Lim 2
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	122 76/3-A 		Spike Added 1000 1000 Limits 70 - 130	Result 988.9			Unit mg/Kg	ent S		%Rec	Prep Prep %Rec Limits 70 - 130	Type: To Batch RPD 0	otal/N/ : 5787 RP Lim 2
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	122 76/3-A 		Spike Added 1000 1000 Limits	Result 988.9			Unit mg/Kg	ent S		%Rec	Prep Prep %Rec Limits 70 - 130	Type: To Batch RPD 0	otal/N/ : 5787 RP Lim 2
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4944-A-1-I	122 576/3-A LCSD LC <u>%Recovery</u> Qu 110 123		Spike Added 1000 1000 Limits 70 - 130	Result 988.9			Unit mg/Kg	ent \$		%Rec 99 108	Prep	Type: To Batch RPD 0 1 2: Matri;	otal/N : 5787 RP Lim 2 2 x Spik
o-Terpheny/ Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: 890-4944-A-1-I Matrix: Solid	122 576/3-A LCSD LC <u>%Recovery</u> Qu 110 123		Spike Added 1000 1000 Limits 70 - 130	Result 988.9			Unit mg/Kg	ent \$		%Rec 99 108	Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch RPD 0 1 2: Matri: Type: To	total/N. : 5787 RP Lim 2 2 x Spik otal/N.
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4944-A-1-I Matrix: Solid	122 776/3-A LCSD LC %Recovery Qu 110 123 F MS	alifier _	Spike Added 1000 1000 1000 500 Limits 70 - 130 70 - 130	Result 988.9 1077	Qual		Unit mg/Kg	ent S		%Rec 99 108	Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 0 1 2: Matri;	otal/NJ 5787 RP Lim 2 2 x Spik otal/NJ
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4944-A-1-I Matrix: Solid Analysis Batch: 57890	122 576/3-A LCSD LC %Recovery Qu 110 123 F MS Sample Sa	nalifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 Spike	Result 988.9 1077	Qual	lifier	Unit mg/Kg mg/Kg	ent \$	<u>D</u> .	%Rec 99 108 Client \$	Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 0 1 2: Matri: Type: To	otal/NJ 5787 RP Lim 2 2 x Spik otal/NJ
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4944-A-1-I Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics	122 776/3-A LCSD LC %Recovery Qu 110 123 F MS	mple	Spike Added 1000 1000 1000 500 Limits 70 - 130 70 - 130	Result 988.9 1077	Qual	lifier	Unit mg/Kg	ent \$		%Rec 99 108	Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch RPD 0 1 2: Matri: Type: To	total/N. : 5787 RP Lim 2 2 x Spik otal/N.
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4944-A-1-I Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	122 576/3-A <i>LCSD LC</i> <i>%Recovery Qu</i> 110 123 F MS Sample Sa <u>Result</u> Qu	mple Nalifier	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 Spike Added	Result 988.9 1077 MS Result	Qual	lifier	Unit mg/Kg mg/Kg	ent \$	<u>D</u> .	%Rec 99 108 Client \$ %Rec	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep %Rec Limits	Type: To Batch RPD 0 1 2: Matri: Type: To	otal/N : 5787 RP Lim 2 2 2 x Spik otal/N
o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4944-A-1-I Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	122 122 122 123 123 123 F MS Sample Sa Result Qu <50.1 U	mple alifier =2 =2	Spike Added 1000	Result 988.9 1077 MS Result 908.1	Qual	lifier	Unit mg/Kg mg/Kg Unit mg/Kg	ent \$	<u>D</u> .	%Rec 99 108 Client \$ %Rec 88	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep %Rec Limits 70 - 130	Type: To Batch RPD 0 1 2: Matri: Type: To	otal/NJ 5787 RP Lim 2 2 x Spik otal/NJ
o-Terpheny/ Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: 890-4944-A-1-I Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	122 576/3-A <i>LCSD LC</i> <i>%Recovery Qu</i> 110 123 F MS Sample Sa <u>Result</u> <i>Qu</i> <50.1 UI <50.1 UI <i>MS MS</i>	mple alifier =2 =2	Spike Added 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 Limits 70 - 130 70 - 130 Spike Added 996 996	Result 988.9 1077 MS Result 908.1	Qual	lifier	Unit mg/Kg mg/Kg Unit mg/Kg	ent \$	<u>D</u> .	%Rec 99 108 Client \$ %Rec 88	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep %Rec Limits 70 - 130	Type: To Batch RPD 0 1 2: Matri: Type: To	otal/NA : 5787(RPI Limi 2 2 2 x Spike otal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 890-4944-A-1-I Matrix: Solid Analysis Batch: 57890 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	122 122 122 123 123 123 F MS Sample Sa Result Qu <50.1 U	mple alifier =2 =2 salifier	Spike Added 1000	Result 988.9 1077 MS Result 908.1	Qual	lifier	Unit mg/Kg mg/Kg Unit mg/Kg	ent \$	<u>D</u> .	%Rec 99 108 Client \$ %Rec 88	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep %Rec Limits 70 - 130	Type: To Batch RPD 0 1 2: Matri: Type: To	otal/NA : 5787(RPI Limi 20 20 x Spike otal/NA

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	-G MSD): Matrix Sj Prep 1	Гуре: То	tal/N/
Analysis Batch: 57890										Batch:	
,	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<50.1	U F2	996	1143	F2	mg/Kg		111	70 - 130	23	2
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)	<50.1	U F2	996	1166	F2	mg/Kg		115	70 - 130	23	2
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	241	<u>S1+</u>	70 - 130								
o-Terphenyl	244	S1+	70 - 130								
lethod: 300.0 - Anions, Io Lab Sample ID: MB 880-5786 Matrix: Solid Analysis Batch: 57925								Client S	ample ID: Prep	Method Type: S	
	_	MB MB					_				
Analyte		esult Qualifier			MDL Unit		р Р — —	repared	Analyz		Dil Fa
Chloride	<	5.00 U		5.00	mg/K	g			07/18/23	08:41	
	5 3/2-A						onem	Jampie	ID: Lab Co Prep	Type: S	
Matrix: Solid Analysis Batch: 57925	53/Z-A		Spike		LCS	llait		-	Prep %Rec		
Matrix: Solid Analysis Batch: 57925 ^{Analyte}			Added	Result	LCS Qualifier	Unit ma/Ka	<u> </u>	%Rec	Prep %Rec Limits		
Matrix: Solid Analysis Batch: 57925 ^{Analyte}			-			Unit mg/Kg		-	Prep %Rec		
Matrix: Solid Analysis Batch: 57925 Analyte Chloride			Added	Result		mg/Kg	<u>D</u>	%Rec	Prep %Rec Limits 90 - 110	Type: S	olub
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-57			Added	Result		mg/Kg	<u>D</u>	%Rec	Prep %Rec Limits 90 - 110	Type: S	le Du
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-57 Matrix: Solid			Added	Result		mg/Kg	<u>D</u>	%Rec	Prep %Rec Limits 90 - 110	Type: S	le Du
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-57 Matrix: Solid			Added	Result 257.0		mg/Kg	<u>D</u>	%Rec	Prep %Rec Limits 90 - 110	Type: S	le Du
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-576 Matrix: Solid Analysis Batch: 57925			Added 250	Result 257.0 LCSD	Qualifier	mg/Kg	<u>D</u>	%Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: S	le Du olub RF
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-57 Matrix: Solid Analysis Batch: 57925 Analyte			Added 250 Spike	Result 257.0 LCSD	Qualifier	mg/Kg Clie	D_ nt Sam	%Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: S	le Du olub RF Lin
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-574 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I	863/3-A		Added 250 Spike Added	Result 257.0 LCSD Result	Qualifier	mg/Kg Cliet	D_ nt Sam	%Rec 103 hple ID: 1 %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S ol Sampl Type: S <u>RPD</u> 0 D: H-1 (le Du colub RF Lin
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-574 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I Matrix: Solid	863/3-A		Added 250 Spike Added	Result 257.0 LCSD Result	Qualifier	mg/Kg Cliet	D_ nt Sam	%Rec 103 hple ID: 1 %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S DI Sampl Type: S <u>RPD</u> 0	le Du colub RF Lim 2 (0-0.5
Lab Sample ID: LCS 880-5786 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-574 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I Matrix: Solid Analysis Batch: 57925	863/3-A		Added 250 Spike Added 250	Result 257.0 LCSD Result 257.4	Qualifier	mg/Kg Cliet	D_ nt Sam	%Rec 103 hple ID: 1 %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: S ol Sampl Type: S <u>RPD</u> 0 D: H-1 (le Du colub RF Lim 2 (0-0.5
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-574 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I Matrix: Solid Analysis Batch: 57925	863/3-A MS Sample	Sample Qualifier	Added 250 Spike Added	Result 257.0 LCSD Result 257.4	Qualifier LCSD Qualifier MS	mg/Kg Cliet	D_ nt Sam	%Rec 103 mple ID: I %Rec 103 Clien	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 at Sample II Prep	Type: S ol Sampl Type: S <u>RPD</u> 0 D: H-1 (le Du colub RF Lim 2 (0-0.5
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-578 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 Matrix: Solid Analysis Batch: 57925 Analyte	863/3-A MS Sample	-	Added 250 Spike Added 250 Spike	Result 257.0 LCSD Result 257.4	Qualifier LCSD Qualifier	mg/Kg Clien Unit mg/Kg	D	%Rec 103 hple ID: 1 %Rec 103	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 tt Sample II Prep %Rec	Type: S ol Sampl Type: S <u>RPD</u> 0 D: H-1 (le Du olub RF Lin
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-574 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I Matrix: Solid	863/3-A MS <u>Sample</u> <u>Result</u> 61.9	-	Added 250 Spike Added 250 Spike Added	Result 257.0 LCSD Result 257.4 MS Result	Qualifier LCSD Qualifier MS	Unit	D	%Rec 103 mple ID: I %Rec 103 Clien %Rec 104	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 tt Sample II %Rec Limits 90 - 110	Type: S DI Sampl Type: S <u>RPD</u> 0 D: H-1 (Type: S	le Du colub Rf Lin (0-0.{ colub
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-574 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I Matrix: Solid	863/3-A MS <u>Sample</u> <u>Result</u> 61.9 MSD	Qualifier	Added 250 Spike Added 250 Spike Added 248	Result 257.0 LCSD Result 257.4 MS Result 319.9	Qualifier LCSD Qualifier MS Qualifier	Unit	D	%Rec 103 mple ID: I %Rec 103 Clien %Rec 104	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 t Sample II Prep %Rec Limits 90 - 110	Type: S DI Sampl Type: S <u></u> D: H-1 (Type: S D: H-1 (le Du olub RF Lin 2 00-0.5 00ub
Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: LCSD 880-573 Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I Matrix: Solid Analysis Batch: 57925 Analyte Chloride Lab Sample ID: 880-30791-1 I Matrix: Solid	863/3-A VIS Sample Result 61.9 VISD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 257.0 LCSD Result 257.4 MS Result 319.9	Qualifier LCSD Qualifier MS	Unit	D	%Rec 103 mple ID: I %Rec 103 Clien %Rec 104	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 tt Sample II %Rec Limits 90 - 110	Type: S DI Sampl Type: S <u></u> D: H-1 (Type: S D: H-1 (le Du colub RF (0-0.5 colub

7/20/2023

Page 85 of 143

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Client Sample ID

H-1 (0-0.5')

H-2 (0-0.5')

H-3 (0-0.5')

H-4 (0-0.5')

Method Blank

H-1 (0-0.5')

H-1 (0-0.5')

H-1 (0-0.5')

H-2 (0-0.5')

H-3 (0-0.5')

H-4 (0-0.5')

Method Blank

Method Blank

H-1 (0-0.5')

H-1 (0-0.5')

Lab Control Sample

Lab Control Sample Dup

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

GC VOA

880-30791-1

880-30791-2

880-30791-3

880-30791-4

MB 880-57941/5-A

LCS 880-57941/1-A

880-30791-1 MS

Lab Sample ID

880-30791-1

880-30791-2

880-30791-3

880-30791-4

MB 880-57941/5-A

MB 880-57993/5-A

LCS 880-57941/1-A

880-30791-1 MS

LCSD 880-57941/2-A

880-30791-1 MSD

LCSD 880-57941/2-A

Analysis Batch: 57992

Prep Batch: 57941 Lab Sample ID

Page 86 of 143

Prep Batch

Prep Batch

57941

57941

57941

57941

57941

57993

57941

57941

57941

57941

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Method

5035

5035

5035

5035

5035

5035

5035

5035

5035

Method

8021B

880-30791-1 MSD Prep Batch: 57993

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-57993/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 58110

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-30791-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-30791-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-30791-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-30791-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 57876

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-30791-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-30791-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-30791-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-30791-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-57876/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-57876/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-57876/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4944-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4944-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 57890					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30791-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	57876

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

GC Semi VOA (Continued)

Analysis Batch: 57890 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30791-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	57876
880-30791-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	57876
880-30791-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	57876
MB 880-57876/1-A	Method Blank	Total/NA	Solid	8015B NM	57876
LCS 880-57876/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	57876
LCSD 880-57876/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	57876
890-4944-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	57876
890-4944-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	57876

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-30791-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-30791-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-30791-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-30791-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 57863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-30791-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-30791-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-30791-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-30791-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-57863/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-57863/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-57863/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-30791-1 MS	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-30791-1 MSD	H-1 (0-0.5')	Soluble	Solid	DI Leach	

Analysis Batch: 57925

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-30791-1	H-1 (0-0.5')	Soluble	Solid	300.0	57863
880-30791-2	H-2 (0-0.5')	Soluble	Solid	300.0	57863
880-30791-3	H-3 (0-0.5')	Soluble	Solid	300.0	57863
880-30791-4	H-4 (0-0.5')	Soluble	Solid	300.0	57863
MB 880-57863/1-A	Method Blank	Soluble	Solid	300.0	57863
LCS 880-57863/2-A	Lab Control Sample	Soluble	Solid	300.0	57863
LCSD 880-57863/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	57863
880-30791-1 MS	H-1 (0-0.5')	Soluble	Solid	300.0	57863
880-30791-1 MSD	H-1 (0-0.5')	Soluble	Solid	300.0	57863

Page 87 of 143

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Project/Site: Tiger 11 Fed 7H (07.10.23)

Client Sample ID: H-1 (0-0.5')

5 6

9

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30791-1 Matrix: Solid

Lab Sample ID: 880-30791-2

Lab Sample ID: 880-30791-3

Lab Sample ID: 880-30791-4

Matrix: Solid

Matrix: Solid

Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

Client: Carmona Resources

Batch		Batch	Batch		Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab			
Total/NA	Prep	5035			5.05 g	5 mL	57941	07/18/23 11:31	EL	EET MID			
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/19/23 22:39	SM	EET MID			
Total/NA	Analysis	Total BTEX		1			58110	07/20/23 10:18	SM	EET MID			
Total/NA	Analysis	8015 NM		1			58024	07/19/23 11:00	SM	EET MID			
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	57876	07/17/23 15:02	ткс	EET MID			
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	57890	07/18/23 17:34	SM	EET MID			
Soluble	Leach	DI Leach			5.04 g	50 mL	57863	07/17/23 14:47	KS	EET MID			
Soluble	Analysis	300.0		1			57925	07/18/23 08:56	СН	EET MID			

Client Sample ID: H-2 (0-0.5') Date Collected: 07/14/23 00:00

Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/19/23 23:00	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58110	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58024	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.10 g	10 mL	57876	07/17/23 15:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	57890	07/18/23 17:59	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		1			57925	07/18/23 09:11	СН	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/19/23 23:21	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58110	07/20/23 10:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			58024	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	57876	07/17/23 15:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	57890	07/19/23 06:55	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		1			57925	07/18/23 09:16	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 07/14/23 00:00 Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	57941	07/18/23 11:31	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	57992	07/19/23 23:41	SM	EET MID
Total/NA	Analysis	Total BTEX		1			58110	07/20/23 10:18	SM	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 2/13/2024 3:38:47 PM

Date Received: 07/17/23 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			58024	07/19/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	57876	07/17/23 15:02	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	57890	07/19/23 07:17	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	57863	07/17/23 14:47	KS	EET MID
Soluble	Analysis	300.0		1			57925	07/18/23 09:21	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-30791-4

Matrix: Solid

9

Eurofins Midland

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	P	rogram	Identification Number	Expiration Date			
exas	N	IELAP	T104704400-23-26	06-30-24			
The following analytes		out the laboratory is not certif	ed by the governing authority. This list ma	y include analytes for w			
the agency does not of		Matrix	Analuto				
Analysis Method	fer certification . Prep Method	Matrix	Analyte				
0,		Matrix Solid Solid	Analyte Total TPH Total BTEX				

Eurofins Midland

Released to Imaging: 2/13/2024 3:38:47 PM

10

Project/Site: Tiger 11 Fed 7H (07.10.23)

Client: Carmona Resources

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Method	Method Description	Protocol	Laborator
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

> 11 12 13

Job ID: 880-30791-1 SDG: Lea County, New Mexico

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (07.10.23)

Matrix	Collected	Received		
Solid	07/14/23 00:00	07/17/23 14:00		

Lab Sample IDClient Sample IDMatrixCollectedReceived880-30791-1H-1 (0-0.5')Solid07/14/23 00:0007/17/23 14:00880-30791-2H-2 (0-0.5')Solid07/14/23 00:0007/17/23 14:00880-30791-3H-3 (0-0.5')Solid07/14/23 00:0007/17/23 14:00880-30791-4H-4 (0-0.5')Solid07/14/23 00:0007/17/23 14:00
880-30791-2 H-2 (0-0.5') Solid 07/14/23 00:00 07/17/23 14:00 880-30791-3 H-3 (0-0.5') Solid 07/14/23 00:00 07/17/23 14:00
880-30791-3 H-3 (0-0.5') Solid 07/14/23 00:00 07/17/23 14:00

of Custody

13

Received by OCD: 10/3/2023 11:16:16 AM

Maar	Comments Email				H-4 (0-0 5')	H-3 (0-0 5')	H-2 (0-0 5')	H-1 (0-0 5')	Sample Identification	I otal Containers.	Sample Custody Seals	Cooler Custody Seals	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name	Project Location	Project Number	Project Name	Phone.	City, State ZIP	Address	Company Name	Project Manager
MA	i to Mike Carmo				0 5')	0 5')	0 5')	0 5')	tification		Yes	Yes	(Ve		-		Lea C		Tiger	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
Relinquished by (Signature)	na / Mcarmor				7/14/2023	7/14/2023	7/14/2023	7/14/2023	Date		NO NA	NA L		Blank		FV	Lea County, New Mexico	2088	Tiger 11 Fed 7H (07 10 23)		701	Ste 500	urces	DL
r (Signature)	na@carmonar								Time	Corrected Temperature	Temperature Reading	Correction Factor	Thermometer ID	Yes No	Ð		exico		10 23)					
	esources con				×	×	×	×	Soil	erature	ading	1		Wet Ice		L.,	Due Date	Routine	Turn	Email				
	1 and Conner N				G	G	G	G	Water Comp	10.2		1, 12 08 0	HR.	(Yes) No			72 Hrs	🗸 Rush	Turn Around	Mcarmona@carmonaresources.com	City, State ZIP	Address	Company Name	Bill to (if different)
	Vloehring				<u> </u>	-1	-1	<u> </u>	/ #of p Cont		<u> </u>	P	aran	nete	rs			Pres, Code		armonares				
Date/Time	/ Cmoeh			-	×	×	×	××	тр	н 80 [.]			(802) + M	IROI				ources.c				Carmona
S °	rıng@ca				××	^ ×	^ ×	×					de 3(om				Carmona Resources
	rmonare		 _																					ŭ
	sources																		ANAL					
Re	com anc																_		ANALYSIS REQUEST					
Received by (Signature)	Email to Mike Carmona / Mcarmona@carmonaresources com and Conner Moehring / Cmoehring@carmonaresources com and Devin Dominguez / Ddominguez@carmonaresources com																		QUEST	Deliverables EDD	Reporting Level II Level III ST/UST	State of Project:	Program UST/PST PRP rownfields	
3	/ Ddomingi																							Work Or
	uez@carr									NaOt	Zn Ac	Na ₂ S	NaHS	H ³ PO	H ₂ S0 ₄ H ₂	HCL HC	Cool Cool	None NO		ADaPT]sт/usт		rownfields	Page
	nonaresc	usiouy							Sample (1+Ascorbic	Zn Acetate+NaOH Zn	Na ₂ S ₂ O ₃ NaSO ₃	NaHSO4 NABIS	H ³ PO ⁷ Hb	1 H ₂	HC	Cool	No	Preserva	Other-		I	RRC	Page 4
Date/Time	vurces com								Sample Comments	NaOH+Ascorbic Acid SAPC	OH ZN	ພ້	0)		NaOH Na	HNO, HN	Meon Me	DI Water: H ₂ O	Preservative Codes			l r		≶0f1

5

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 30791 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 880-30791-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

August 14, 2023

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST SUITE 415 MIDLAND, TX 79701

RE: TIGER 11 FED 7H (07.10.23)

Enclosed are the results of analyses for samples received by the laboratory on 08/11/23 12:33.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 1 (2') (H234346-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.8	% 71.5-13	24						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	26.3	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	1610	10.0	08/11/2023	ND	173	86.7	200	2.12	QM-07
EXT DRO >C28-C36	404	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	98.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.6	% 49.1-14	18						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 2 (2') (H234346-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	19.1	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	11.3	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	94.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 3 (2') (H234346-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	95.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 4 (2') (H234346-04)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	70.9	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	11.5	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	90.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 5 (2') (H234346-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	122	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	31.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	89.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 6 (2') (H234346-06)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	91.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 7 (2') (H234346-07)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	93.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 8 (2') (H234346-08)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	89.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 9 (2') (H234346-09)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	89.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 10 (2') (H234346-10)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	11.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	88.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: CS - 11 (2') (H234346-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.2	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	88.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 1 (2') (H234346-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.7	% 71.5-13	4						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	91.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 2 (2') (H234346-13)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.5	% 71.5-13	4						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	92.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 3 (2') (H234346-14)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	94.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 4 (2') (H234346-15)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.15	107	2.00	1.66	
Toluene*	<0.050	0.050	08/11/2023	ND	2.09	104	2.00	2.87	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.00	99.9	2.00	2.04	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	5.98	99.7	6.00	1.54	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	59.2	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	13.2	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	89.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 5 (2') (H234346-16)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.08	104	2.00	3.99	
Toluene*	<0.050	0.050	08/11/2023	ND	2.01	100	2.00	5.73	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.04	102	2.00	4.62	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	6.15	102	6.00	4.61	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/14/2023	ND	400	100	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	88.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 6 (2') (H234346-17)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.08	104	2.00	3.99	
Toluene*	<0.050	0.050	08/11/2023	ND	2.01	100	2.00	5.73	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.04	102	2.00	4.62	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	6.15	102	6.00	4.61	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	08/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	85.6	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	31.4	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	91.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 7 (2') (H234346-18)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.08	104	2.00	3.99	
Toluene*	<0.050	0.050	08/11/2023	ND	2.01	100	2.00	5.73	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.04	102	2.00	4.62	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	6.15	102	6.00	4.61	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	08/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	19.3	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	89.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 8 (2') (H234346-19)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.08	104	2.00	3.99	
Toluene*	<0.050	0.050	08/11/2023	ND	2.01	100	2.00	5.73	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.04	102	2.00	4.62	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	6.15	102	6.00	4.61	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	08/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	37.3	10.0	08/11/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	88.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 9 (2') (H234346-20)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.08	104	2.00	3.99	
Toluene*	<0.050	0.050	08/11/2023	ND	2.01	100	2.00	5.73	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.04	102	2.00	4.62	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	6.15	102	6.00	4.61	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	08/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/12/2023	ND	163	81.3	200	1.21	
DRO >C10-C28*	<10.0	10.0	08/12/2023	ND	173	86.7	200	2.12	
EXT DRO >C28-C36	<10.0	10.0	08/12/2023	ND					
Surrogate: 1-Chlorooctane	87.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 10 (2') (H234346-21)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.08	104	2.00	3.99	
Toluene*	<0.050	0.050	08/11/2023	ND	2.01	100	2.00	5.73	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.04	102	2.00	4.62	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	6.15	102	6.00	4.61	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	08/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	180	90.2	200	7.92	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	185	92.3	200	9.47	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	121	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received:	08/11/2023	Sampling Date:	08/10/2023
Reported:	08/14/2023	Sampling Type:	Soil
Project Name:	TIGER 11 FED 7H (07.10.23)	Sampling Condition:	Cool & Intact
Project Number:	2088	Sample Received By:	Tamara Oldaker
Project Location:	LEA COUNTY, NEW MEXICO		

Sample ID: SW - 11 (2') (H234346-22)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/11/2023	ND	2.08	104	2.00	3.99	
Toluene*	<0.050	0.050	08/11/2023	ND	2.01	100	2.00	5.73	
Ethylbenzene*	<0.050	0.050	08/11/2023	ND	2.04	102	2.00	4.62	
Total Xylenes*	<0.150	0.150	08/11/2023	ND	6.15	102	6.00	4.61	
Total BTEX	<0.300	0.300	08/11/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	08/14/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/11/2023	ND	180	90.2	200	7.92	
DRO >C10-C28*	<10.0	10.0	08/11/2023	ND	185	92.3	200	9.47	
EXT DRO >C28-C36	<10.0	10.0	08/11/2023	ND					
Surrogate: 1-Chlorooctane	107	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	125	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com and Devin Dominguez / Ddominguez@carmonaresources.com	CS-10 (2)	CS-9 (2')	CS-8 (2')	CS-7 (2')	CS-6 (2')	CS-5 (2')	CS-4 (2')	CS-3 (2')	CS-2 (2')	CS-1 (2')	Sample Identification	Total Containers:	Sample Custody Seals	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	ate ZIP:	Address:	Company Name:	Project Manager:	
X	I/ R	o Mike Carmo	2')				.)	.9				(1	fication		Yes	Yes	Kes				Lea (Tiger	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring	
N. C.	Relinquished by (Signature)	ona / Mcarmo	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	8/10/2023	Date	1	No N/A	NO NIA	No	Temp Blank:		KB	Lea County, New Mexico	2088	Tiger 11 Fed 7H (07.10.23)		9701	Ste 500	ources	ing	
	(USignature)	na@carmona											Time	Corrected Temperature	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes NO			Nexico		7.10.23)						
		'esources.com	×	×	×	×	×	×	×	Х	Х	, X	Soil	perature:	eading:	01.		Wet Ice:			Due Date:	Routine	Tur	Email:					
<i>t</i>		n and Conne	0	0	C	0	0	0	0	0	0	0	Water	1	0,4	1	140	Nes N			24 Hrs	✓ Rush	Turn Around	ii: Mcarmona@carmonaresources.com	City, State ZIP	Address:	Company Name	Bill to: (if different)	
000		er Moeh	Comp	Comp .	Grab/ Comp	1	00	'		No			S			a@carm	ZIP:		lame:	erent)									
8-11-23	Da	ring / C	-		-	1	-	-	-	-	-	-	# of Cont			Pa	ran	neter	rs			Pres, Code		onareso					
31	Date/Time	moehri	××	××	×	X X	×	×	×	×	×	×	TPH	801	-	GR		DRO	+ M	ROI	_			urces.c				armona	
233		ng@ca	×	×	×	×	×	×	×	×	×	×				loric								om				Carmona Resources	
P		rmona																										ces	
		resour					_								,								A		2				
	0	ces.cor					_	_	-	_	_	_			_						_								
1 ali	Rece	n and [-	-	-	-	-	-									-	_	NALYSIS REQUEST						
	Received by: (Signa)	Devin D															-						QUEST	Deliv	Repo	State	Prog]
	r: (Sign	oming		4																				Deliverables: EDD	orting:Le	State of Project:	ram: U		
	ature)	uez / [_	_	_	_	_	-	+												EDD	Reporting:Level II Level III	lect:	ST/PST		
		domin			-	-	+	+	+	+	+	+		-	-			a.			-	_			Level II		PRP	Work	
		ıguez@					+	+	+	+											-	-		ADaPT			Fow	Order	
		carmo	60	9	2		50	1-	E	N	2	-	s	NaOH+	Zn Ace	Na ₂ S ₂ C	NaHSC	H-PO.: HP	H-S04: H-	HCL: HC	Cool: Cool	None: NO	P	T	ST/UST		Program: UST/PST PRP prownfields RC	Work Order Comments	Fa
		nareso											Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO NABIS	HP	Ļ (C .	00	NO	Preservative Codes	Other:	RRP		RC	ents	Page
	Date/Time	urces.c											Comme	c Acid: S	OH: Zn	3	S .		NaOH- Na	HNO, HN	MeOH: Me	DIW	ative Co						1 of
	ne	őm											ints	APC					- Na	HN	- Mp	DI Water: H ₂ O	odes				perfund		1

Received by OCD: 10/3/2023 11:16:16 AM

Work Order No: HO 34 340 Page 25 of 27

Chain of Custody

Page 119 of 143

. Released to Imaging: 2/13/2024 3:38:47 PM

Project Manager: Conner Moehring			City, State ZIP: Midland, TX 79701	Phone: 432-813-6823	Project Name: Tiger 11	Project Number:		Sampler's Name:	PO #:	SAMPLE RECEIPT Temp		Cooler Custody Seals: Yes No	s: Yes	Total Containers:	Sample Identification		CS-11 (2')										Mike Carmon	CS-11 (2') SW-1 (2') SW-2 (2') SW-3 (2') SW-4 (2') SW-5 (2') SW-6 (2') SW-7 (2') SW-8 (2') SW-8 (2') SW-8 (2') SW-9 (2') Reference	CS-11 (2') SW-1 (2') SW-2 (2') SW-3 (2') SW-4 (2') SW-5 (2') SW-6 (2') SW-7 (2') SW-7 (2') SW-8 (2') SW-8 (2') SW-9 (2') Re
	rces	te 500	01		Tiger 11 Fed 7H (07.10.23)	2088	Lea County, New Mexico	KB		Temp Blank:	No	MA	Z		Date		8/10/2023	8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023	8/10/2023 8/10/2023 <td< td=""><td>8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023</td></td<>	8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023 8/10/2023
					0.23)					Yes NO	Thermometer ID:	Correction Factor:	Temperature Reading:	Corrected Temperature:	Time												@carmonare	a@carmonare	@carmonare
				Email:	Turn	Routine	Due Date:			Wet Ice:			ding:	rature:	Soil		×	××	××××	× × × ×	× × × × ×	\times \times \times \times \times \times	\times \times \times \times \times \times \times	$\times \times \times \times \times \times \times \times \times \times$	$\times \times \times \times \times \times \times \times \times \times \times$	$\times \times \times$	Sources.com	Sources.com	
Bill to: (if different)	Company Name	Address:	City, State ZIP:	Email: Mcarmona@carmonaresources.com	Turn Around	イ Rush	24 Hrs			Xes No		1	0,42		Water Grab/		Com	Comp	Comp	Comp Comp	Comp Comp Comp	Comp Comp Comp Comp Comp	Comp Comp Comp Comp Comp	Comp Comp Comp Comp Comp Comp	Comp Comp Comp Comp Comp Comp	Comp Comp Comp Comp Comp Comp Comp	and Conner M	and Conner N	and Conner N
	ü –			armonare		Prcs.			s	eter	am	Pa			# of Cont		p 1										b b b b b p	openning openning	Image: Non-Additional system Image: Non-Additional system <th< td=""></th<>
Carn	Cam			esource						в	021	EX 8	вт			×	t	×	××	$\times \times \times$	$\times \times \times \times$	× × × × ×	× × × × × ×	× × × × × × ×	× × × × × × × ×	$\times \times \times \times \times \times \times \times \times$		/ Cmoehri	
nona Re	nona Ke			es.com				RO)	+ M	RO) + C	GRC	M (8015	трн	×		×	××	× × ×	× × × ×	× × × × ×	× × × × × ×	× × × × × × ×	× × × × × × × ×	× × × × × × × × ×	ehring	ehring ehring	ehring
sources	Carmona Resources									00	45	orid	Chl			×		×	××	×××	$\times \times \times \times$	× × × × ×	$\times \times \times \times \times \times$	× × × × × × ×	× × × × × × × ×	× × × × × × × × ×	X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X		
																ļ	•												
					AN	\neg	+							-		+		1											
					ANALYSIS REQUEST	-	+							-		+	-	+	++	,	7						s.com	s.com	
					REQU																						and De	Recei	Recei
	Pronra	State c	Report	Deliver	JEST																							ved by	vin Do
	m- IIST	State of Project:	ng:Leve	Deliverables: EDD		_	_	_								+		+	++						+++++++++++++++++++++++++++++++++++++++			Signal gu la	and Devin Dominguez /
	Program: LIST/DST DDD	Η	Reporting:Level II Level III			-	+									+	+		+			++++					ez / Dd		
Vork O	Nork C							1																			oming	oming	
rder C	Order Comm	L	ST/UST	ADaPT				T	T -	r .	, .		V	2 1													luez@c		
Page					Pre	None- NO	Cool: Cool	HCI - HC	H-S0 H-	1 DO - H	Notico - 1	Nation Naco	7n Anatatananu: 7n	NaOH+Ascorbic Acid: SAPC	San	=	F	25	202	FWØ	REWOS	SULEMO	TENEWO	ADE NEWOO	TRUEMENO	8 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	rces.com and Devin Dominguez / Ddominguez@carmonaresources.com	B B B B B B B B B B B B B B B B B B B	BERTENEDO
e2	ents	[RRP	Other:	servat		<u> </u>	-	,- `	0 2		Naco	- INGOOS	scorbic	nple C														
		[]	Level IV		Preservative Codes		Manu- Ma	HND	NaOH- Na	NaCI I.			1.75	Acid: SA	Sample Comments													rces.co	Date/Time
역		1	-		D		M.			No.				C	ts												3	© ∃	3

Received by OCD: 10/3/2023 11:16:16 AM

Work Order No: H2343410

Chain of Custody

Page 26 of 27

Chain of Custody

Received i	by (OCD:	10/3/	2023	<i>11:1</i>	6:16 AM
-------------------	------	-------------	-------	------	-------------	---------

	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresou							SW-11 (2')	SW-10 (2')	Sample Identification	I otal Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone: 4	City, State ZIP: A	Address:	Company Name: (Project Manager: (
A	b Mike Carmo							2')	2')	fication		Yes	Yes	8				Lea (Tiger	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring	
Relinguished by (Signature	ona / Mcarmo		×					8/10/2023	8/10/2023	Date	,	NO (NIA)	NO NIA	Yes No	Temp Blank:		KB	Lea County, New Mexico	2088	Tiger 11 Fed 7H (07.10.23)		9701	t Ste 500	ources	ing	
r (Signature)	na@carmona									Time	Corrected Temperature:	Temperature Reading:	Correction Factor:		Yes No			Nexico		7.10.23)						
	resources.cor						;	×	×	Soil	perature:	leading:	tor.		Wet Ice:			Due Date:	Routine	Τu	Ema					
	n and Conne				-				-	Water	(0,4		140	Yes No			24 Hrs	 Rush 	Turn Around	Email: Mcarmona@carmonaresources.com	City, State ZIP	Address:	Company Name	Bill to: (if different)	
<u>~</u>	er Moehi		_		_		Comp	ôm .	-	Grab/		63		0	6						a@carmo	ZIP:		Vame:	ferent)	
	ring / Cr			\square	_		-	+	+	# of Cont					neter	s			Pres.		onareso					
Time	moehrii	+	+	$\left \right $	+			+	××	TPH	801			802	DRO	+ M	RO)		_		urces.c				armona	
223	ng@car	1					>	< .	×		×.	Ch	loric	le 45	00				_		m				Carmona Resources	
	monare																								es	
		+	_	\square	+		-	+	+									_	_	AN						
	s.com		+		-		+	+	+				-	-				+	-	ANALYSIS REQUEST						
Received by:	and Dev							Ī												REQU						
ad by: (a	/in Dorr	+	+	\vdash	+		+	+	+			4						_	_	EST	Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST PRP		
(Signature	ninguez	+	+				+	+	+		3							+	-		oles: ED	g:Level I	Project	n: UST/F		
() (e)	C/ Ddor																				0 0	I 🗌 Levi		TS	W	
	ningue	+		-	-	-	-	+	•					,				_	_		AD				ork Ord	
	rces.com and Devin Dominguez / Ddominguez@carmonaresources.com	A.			+		2	2	د		NaO	Zn A	Nass	HeN.	H_P	H OF			NICO		ADaPT	ST/UST		rownfields	Work Order Comments	
	nonares						P			Sample	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na-S-0-: NaSO-	NaHSO, NARIS	H_PO_HP					Preser	Other:	RRP		is RC	ments	Page
Date/Time	sources									Sample Comments	bic Acid:	laOH: Zr	SO,	RIS	Ndi	NIT				Preservative Codes	Ier:	_				ω
lime	.com									nents	SAPC	_			NACH. Na					Ondee		Level IV		Iperfund		of 3

Environment Testing

Page 122 of 143

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 8/16/2023 12:35:52 PM

JOB DESCRIPTION

Tiger 11 Fed 7H (7.10.23) SDG NUMBER Lea County New Mexico

JOB NUMBER

880-32018-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 8/16/2023 12:35:52 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

8/16/2023

Page 124 of 143

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23) Job ID: 880-32018-1 SDG: Lea County New Mexico

Qualifiers

ML

MPN

MQL

NC

ND

NEG

POS

PQL

QC

RL

RPD TEF

TEQ

TNTC

RER

PRES

Qualifiers		 3
GC VOA Qualifier	Qualifier Description	
S1-	Qualifier Description Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	5
		J
GC Semi VO Qualifier	A Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC	Qualifier Description	0
Qualifier U	Qualifier Description Indicates the analyte was analyzed for but not detected.	 O
U		
Glossary		 9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	12
Dil Fac	Dilution Factor	13
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

Job ID: 880-32018-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-32018-1

Receipt

The samples were received on 8/14/2023 2:50 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -2.6°C

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: SW-6 (2') (880-32018-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (880-32031-A-21-A) and (880-32031-A-21-B MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: CS-1 (2.25') (880-32018-1) and SW-6 (2') (880-32018-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The continuing calibration verification (CCV) associated with batch 880-60233 recovered below the lower control limit for Diesel Range Organics (Over C10-C28). An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-60233/5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23)

Client Sample ID: CS-1 (2.25') Date Collected: 08/14/23 00:00 Date Received: 08/14/23 14:50

Job ID: 880-32018-1 SDG: Lea County New Mexico

Lab Sample ID: 880-32018-1 Matrix: Solid

Matrix: Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00202	U	0.00202		mg/Kg		08/15/23 09:13	08/15/23 12:20	
Toluene	<0.00202	U	0.00202		mg/Kg		08/15/23 09:13	08/15/23 12:20	
Ethylbenzene	<0.00202		0.00202		mg/Kg		08/15/23 09:13		
m-Xylene & p-Xylene	< 0.00403		0.00403		mg/Kg			08/15/23 12:20	
p-Xylene	< 0.00202		0.00202		mg/Kg			08/15/23 12:20	
Xylenes, Total	< 0.00403		0.00403		mg/Kg			08/15/23 12:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	77		70 - 130				08/15/23 09:13	08/15/23 12:20	
,4-Difluorobenzene (Surr)	80		70 - 130				08/15/23 09:13	08/15/23 12:20	
Nethod: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
otal BTEX	<0.00403	U	0.00403		mg/Kg			08/15/23 17:09	
lethod: SW846 8015 NM - Die	esel Range	Organics (DRO) (GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
otal TPH	<49.9	U	49.9		mg/Kg			08/16/23 11:05	
/lethod: SW846 8015B NM - D	Diesel Range	• Organics	(DRO) (GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Sasoline Range Organics	<49.9	U	49.9		mg/Kg		08/15/23 09:19	08/15/23 18:36	
iesel Range Organics (Over	<49.9	U	49.9		mg/Kg		08/15/23 09:19	08/15/23 18:36	
:10-C28) III Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/15/23 09:19	08/15/23 18:36	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil
-Chlorooctane	72		70 - 130				08/15/23 09:19	08/15/23 18:36	
-Terphenyl	69	S1-	70 - 130				08/15/23 09:19	08/15/23 18:36	
lethod: EPA 300.0 - Anions, I	Ion Chroma	tography -	Soluble						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
hloride	60.0		5.02		mg/Kg			08/15/23 03:19	
ient Sample ID: CS-5 (2	.25')					L	ab Sample	e ID: 880-32	2018
te Collected: 08/14/23 00:00 te Received: 08/14/23 14:50								Matrix	c: So
	tile Organia	Compound							
Method: SW846 8021B - Volat Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil I
Benzene	<0.00201	U	0.00201		mg/Kg		08/15/23 09:13	08/15/23 12:41	
oluene	<0.00201		0.00201		mg/Kg		08/15/23 09:13	08/15/23 12:41	
thylbenzene	<0.00201		0.00201		mg/Kg		08/15/23 09:13		
-Xylene & p-Xylene	<0.00402		0.00402		mg/Kg			08/15/23 12:41	
	<0.00201		0.00201		mg/Kg			08/15/23 12:41	
-Xylene	~0.00Z01		=						
-	<0.00201	U	0.00402		mg/Kg		08/15/23 09:13	08/15/23 12:41	
ylenes, Total	<0.00402		0.00402 <i>Limits</i>		mg/Kg				Dil F
o-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr)					mg/Kg		08/15/23 09:13 Prepared 08/15/23 09:13	Analyzed	Dil F

Client: Carmona Resources

Client Sample Results

Page 128 of 143

Job ID: 880-32018-1 SDG: Lea County New Mexico

Lab Sample ID: 880-32018-2

Client Sample ID: CS-5 (2.25') Date Collected: 08/14/23 00:00 Date Received: 08/14/23 14:50

Project/Site: Tiger 11 Fed 7H (7.10.23)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/15/23 17:09	
Method: SW846 8015 NM - D	Negel Banga	Organica (
Analyte		Qualifier		МП	Unit	D	Prepared	Applyzod	Dil Fa
Total TPH			<u>50.0</u>	WDL	mg/Kg		Frepareu	Analyzed 08/16/23 11:05	
	<50.0	0	50.0		mg/Kg			06/10/23 11:05	
Method: SW846 8015B NM -		-	6 (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/15/23 09:19	08/15/23 18:58	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		08/15/23 09:19	08/15/23 18:58	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/15/23 09:19	08/15/23 18:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	75		70 - 130				08/15/23 09:19	08/15/23 18:58	
o-Terphenyl	72		70 - 130				08/15/23 09:19	08/15/23 18:58	
Method: EPA 300.0 - Anions	Ion Chrome	tography	Solublo						
Analyte	•	Qualifier	RL	мп	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	48.9	Quaimer	4.97		mg/Kg			08/15/23 03:40	
					0 0				
ate Collected: 08/14/23 00:0 ate Received: 08/14/23 14:50)	Compour						Matrix	: Sol
ate Collected: 08/14/23 00:0 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola) atile Organic			MDI	Unit		Prenared		
ate Collected: 08/14/23 00:0 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte	atile Organic Result	Qualifier		MDL	Unit mg/Kg	D	Prepared	Analyzed	
ate Collected: 08/14/23 00:0 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene	atile Organic Result <0.00202	Qualifier	RL 0.00202	MDL	mg/Kg	<u>D</u>	08/15/23 09:13	Analyzed 08/15/23 13:01	
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene	0 atile Organic Result <0.00202 <0.00202	Qualifier U U	RL 0.00202 0.00202	MDL	mg/Kg mg/Kg	D	08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01	
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene) atile Organic Result <0.00202 <0.00202 <0.00202	Qualifier U U U	RL 0.00202 0.00202 0.00202	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01	
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene	D atile Organic Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00202	Qualifier U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	D	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01	
Lient Sample ID: SW-6 (ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Xylenes, Total) atile Organic Result <0.00202 <0.00202 <0.00202	Qualifier U U U U U U	RL 0.00202 0.00202 0.00202	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01	
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene S-Xylene Kylenes, Total	atile Organic Result <0.00202 <0.00202 <0.00202 <0.00404 <0.00202 <0.00404	Qualifier U U U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene o-Xylene Kylenes, Total Surrogate	atile Organic Result <0.00202 <0.00202 <0.00202 <0.00404 <0.00202 <0.00404 %Recovery	Qualifier U U U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 Analyzed	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene o-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	Atile Organic Result <0.00202	Qualifier U U U U U U Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 Analyzed 08/15/23 13:01	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene o-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	Atile Organic Result <0.00202	Qualifier U U U U U U U	RL 0.00202 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 Analyzed	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene b-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Atile Organic Result <0.00202	Qualifier U U U U U U U Qualifier S1-	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130 70 - 130	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 Analyzed 08/15/23 13:01	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene & p-Xylene o-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte	2 atile Organic Result <0.00202 <0.00202 <0.00202 <0.00404 <0.00202 <0.00404 %Recovery 93 65 X - Total BTE Result	Qualifier U U U U U Qualifier S1- X Calculat Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130 70 - 130		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 Analyzed 08/15/23 13:01	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene o-Xylene & p-Xylene o-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte	Atile Organic Result <0.00202	Qualifier U U U U U Qualifier S1- X Calculat Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130 70 - 130 tion		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 Analyzed 08/15/23 13:01 08/15/23 13:01	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte Fotal BTEX	Atile Organic Result <0.00202	Qualifier U U U U U U U U U U S 1- X Calculat Qualifier U	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130 70 - 130 130 tion RL 0.00404		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit		08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene n-Xylene & p-Xylene D-Xylene & p-Xylene Cylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D	Atile Organic Result <0.00202	Qualifier U U U U U U U U U U S 1- X Calculat Qualifier U	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 0.00404 Limits 70 - 130 70 - 130 130 tion RL 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit		08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene D-Xylene & p-Xylene D-Xylene & p-Xylene Cylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte	Atile Organic Result <0.00202	Qualifier U U U U U U U U U U U U U S1- X Calculat Qualifier U Organics (Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits 70 - 130 70 - 130 70 - 0.00404 Limits 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 Prepared	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 Analyzed 08/15/23 13:01 Analyzed 08/15/23 17:09	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene b-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte Total TPH	Atile Organic Result <0.00202	Qualifier U U U U U U U Qualifier S1- X Calculat Qualifier U Organics (Qualifier U	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits 70 - 130 70 - 130 70 - 130 70 - 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit Unit	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 Prepared	Analyzed 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 08/15/23 13:01 Analyzed 08/15/23 13:01 Analyzed 08/15/23 17:09 Analyzed	Dil Fa
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene D-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte Total TPH Method: SW846 8015B NM -	Atile Organic Result <0.00202	Qualifier U U U U U Qualifier S1- X Calculat Qualifier U Organics (Qualifier U	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits 70 - 130 70 - 130 70 - 130 70 - 0.00404 Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 50.00404	MDL MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	<u>D</u>	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 Prepared 08/15/23 09:13 08/15/23 09:13 Prepared Prepared	Analyzed 08/15/23 13:01 08/15/23 13:09 Analyzed 08/16/23 11:05	Dil Fa
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene o-Xylene & p-Xylene o-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte Total TPH Method: SW846 8015B NM - Analyte	Atile Organic Result <0.00202	Qualifier U U U U Qualifier S1- X Calculat Qualifier U Organics (Qualifier U Organics (Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits 70 - 130 70 - 130 70 - 130 70 - 0.00404	MDL MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg Unit Unit	D	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 Prepared 08/15/23 09:13 08/15/23 09:13 Prepared Prepared Prepared	Analyzed 08/15/23 13:01 08/15/23 13:01 Analyzed 08/16/23 11:05 Analyzed	Dil F
ate Collected: 08/14/23 00:00 ate Received: 08/14/23 14:50 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene b-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte Total BTEX Method: SW846 8015 NM - D Analyte Total TPH	Atile Organic Result <0.00202	Qualifier U U U U Qualifier S1- X Calculat Qualifier U Organics (Qualifier U Organics (Qualifier	RL 0.00202 0.00202 0.00202 0.00404 0.00202 0.00404 Limits 70 - 130 70 - 130 70 - 130 70 - 0.00404 Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 50.00404	MDL MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	D	08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 08/15/23 09:13 Prepared 08/15/23 09:13 08/15/23 09:13 Prepared Prepared	Analyzed 08/15/23 13:01 08/15/23 13:09 Analyzed 08/16/23 11:05	Dil Fa Dil Fa Dil Fa

Eurofins Midland

Matrix: Solid

5

Client Sample Results

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23) Job ID: 880-32018-1 SDG: Lea County New Mexico

Client Sample ID: SW-6 (2') Date Collected: 08/14/23 00:00 Date Received: 08/14/23 14:50

Lab Sample ID: 880-32018-3

Matrix: Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		08/15/23 09:19	08/15/23 19:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	71		70 - 130				08/15/23 09:19	08/15/23 19:22	1
o-Terphenyl	63	S1-	70 - 130				08/15/23 09:19	08/15/23 19:22	1
Method: EPA 300.0 - Anions,	on Chromat	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	57.4		4.96		mg/Kg			08/15/23 03:47	1

Eurofins Midland

Released to Imaging: 2/13/2024 3:38:47 PM

Surrogate Summary

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

			Perc	ent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-32018-1	CS-1 (2.25')	77	80	
880-32018-1 MS	CS-1 (2.25')	124	121	
880-32018-1 MSD	CS-1 (2.25')	119	119	
880-32018-2	CS-5 (2.25')	93	81	
880-32018-3	SW-6 (2')	93	65 S1-	
LCS 880-60246/1-A	Lab Control Sample	126	113	
LCSD 880-60246/2-A	Lab Control Sample Dup	121	120	
MB 880-60246/5-A	Method Blank	70	83	

Surrogate Legend BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

			Per
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-32018-1	CS-1 (2.25')	72	69 S1-
880-32018-2	CS-5 (2.25')	75	72
880-32018-3	SW-6 (2')	71	63 S1-
880-32031-A-21-B MS	Matrix Spike	82	64 S1-
880-32031-A-21-C MSD	Matrix Spike Duplicate	96	79
LCS 880-60248/2-A	Lab Control Sample	95	87
LCSD 880-60248/3-A	Lab Control Sample Dup	87	80
MB 880-60248/1-A	Method Blank	80	81

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl 5 6 7

3

Prep Type: Total/NA

Prep Type: Total/NA

Eurofins Midland

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-60246/5-A
Matrix: Solid
Analysis Batch: 60240

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/15/23 09:13	08/15/23 11:58	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/15/23 09:13	08/15/23 11:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/15/23 09:13	08/15/23 11:58	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/15/23 09:13	08/15/23 11:58	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/15/23 09:13	08/15/23 11:58	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/15/23 09:13	08/15/23 11:58	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	70		70 - 130				08/15/23 09:13	08/15/23 11:58	1
1,4-Difluorobenzene (Surr)	83		70 - 130				08/15/23 09:13	08/15/23 11:58	1

Lab Sample ID: LCS 880-60246/1-A Matrix: Solid Analysis Batch: 60240

· ····· ······················· ········	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08741		mg/Kg		87	70 - 130	
Toluene	0.100	0.1021		mg/Kg		102	70 - 130	
Ethylbenzene	0.100	0.1092		mg/Kg		109	70 - 130	
m-Xylene & p-Xylene	0.200	0.2436		mg/Kg		122	70 - 130	
o-Xylene	0.100	0.1196		mg/Kg		120	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	126		70 - 130
1,4-Difluorobenzene (Surr)	113		70 - 130

Lab Sample ID: LCSD 880-60246/2-A Matrix: Solid

Analysis Batch: 60240

Analysis Batch: 60240							Prep E	Batch: 6	60246
-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.08410		mg/Kg		84	70 - 130	4	35
Toluene	0.100	0.09120		mg/Kg		91	70 - 130	11	35
Ethylbenzene	0.100	0.09689		mg/Kg		97	70 - 130	12	35
m-Xylene & p-Xylene	0.200	0.2162		mg/Kg		108	70 - 130	12	35
o-Xylene	0.100	0.1060		mg/Kg		106	70 - 130	12	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	121		70 - 130
1,4-Difluorobenzene (Surr)	120		70 - 130

Lab Sample ID: 880-32018-1 MS Matrix: Solid

Analysis Batch: 60240

Analysis Batch: 60240									Prep E	Batch: 60246
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.0996	0.08785		mg/Kg		88	70 - 130	
Toluene	<0.00202	U	0.0996	0.09319		mg/Kg		94	70 - 130	

Eurofins Midland

Client Sample ID: CS-1 (2.25')

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 60246

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Bat

tch:	60246	

Client Sample	ID: Lab Control Sample Dup
	Prep Type: Total/NA

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23)

Job ID: 880-32018-1 SDG: Lea County New Mexico

Client Sample ID: Method Blank

08/15/23 08:00 08/15/23 08:28

08/15/23 08:00 08/15/23 08:28

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 60248

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-3201	8-1 MS						C	lient S	ample ID:	CS-1 (2.25')
Matrix: Solid									Prep Ty		
Analysis Batch: 60240									Prep E	atch: 6	6 <mark>0246</mark>
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00202	U	0.0996	0.09535		mg/Kg		96	70 - 130		
m-Xylene & p-Xylene	< 0.00403	U	0.199	0.2073		mg/Kg		104	70 - 130		
o-Xylene	<0.00202	U	0.0996	0.1004		mg/Kg		101	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	124		70 - 130								
1,4-Difluorobenzene (Surr)	121		70 - 130								
Matrix: Solid									Pren IV		
Analysis Batch: 60240	Sampla	Samplo	Spiko	Med	Med				Prep E	pe: Tot Batch: 6	6 <mark>0246</mark>
-	•	Sample Qualifier	Spike Added	MSD Result	-	Unit	п	%Rec	Prep E %Rec	Batch: 6	6 <mark>0246</mark> RPD
Analyte	Result	Qualifier	Added	Result	MSD Qualifier	Unit ma/Ka	<u>D</u>	%Rec	Prep E %Rec Limits	Batch: 6	60246 RPD Limit
Analyte Benzene	- Result <0.00202	Qualifier	Added	Result 0.08584	-	mg/Kg	<u>D</u>	86	Prep E %Rec Limits 70 - 130	Batch: 6	60246 RPD Limit
Analyte Benzene Toluene	Result	Qualifier U U	Added	Result	-	mg/Kg mg/Kg	<u>D</u>		Prep E %Rec Limits	Batch: 6	
Analyte Benzene Toluene Ethylbenzene	Result <0.00202 <0.00202	Qualifier U U U	Added	Result 0.08584 0.09212	-	mg/Kg	<u> </u>	86 93	Prep E %Rec Limits 70 - 130 70 - 130	Batch: 6 RPD 2 1	60246 RPD Limit 35 35 35
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00202	Qualifier U U U U U	Added 0.0994 0.0994 0.0994	Result 0.08584 0.09212 0.08989	-	mg/Kg mg/Kg mg/Kg	<u> </u>	86 93 90	Prep E %Rec Limits 70 - 130 70 - 130 70 - 130	RPD 2 1 6	60246 RPD Limit 35 35 35 35
Analysis Batch: 60240 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00202	Qualifier U U U U U	Added 0.0994 0.0994 0.0994 0.199	Result 0.08584 0.09212 0.08989 0.1947	-	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	86 93 90 98	Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	RPD 2 1 6	60246 RPD Limit 35 35
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00202	Qualifier U U U U U U U MSD	Added 0.0994 0.0994 0.0994 0.199	Result 0.08584 0.09212 0.08989 0.1947	-	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	86 93 90 98	Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	RPD 2 1 6	60246 RPD Limit 35 35 35 35
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00202	Qualifier U U U U U U U MSD	Added 0.0994 0.0994 0.0994 0.199 0.0994	Result 0.08584 0.09212 0.08989 0.1947	-	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	86 93 90 98	Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	RPD 2 1 6	60246 RPD Limit 35 35 35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-60248/1-A Matrix: Solid Analysis Batch: 60233

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		08/15/23 08:00	08/15/23 08:28	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		08/15/23 08:00	08/15/23 08:28	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/15/23 08:00	08/15/23 08:28	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	LIMITS
1-Chlorooctane	80		70 - 130
o-Terphenyl	81		70 - 130

Lab Sample ID: LCS 880-60248/2-A Matrix: Solid Analysis Batch: 60233

Analysis Batch: 60233							Prep E	Batch: 60248
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	877.7		mg/Kg		88	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	833.7		mg/Kg		83	70 - 130	
C10-C28)								

Eurofins Midland

Prep Type: Total/NA

Page 132 of 143

5

7

1

1

Limits

70 - 130

70 - 130

Spike

Added

1000

1000

Limits

70 - 130 70 - 130

998

Limits

70 - 130

70 - 130

Spike

Added

998

998

Limits

70 - 130

70 - 130

LCSD LCSD

800.9

800.6

723.2

MSD MSD

896.2

884.2

Result Qualifier

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

D %Rec

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23)

Lab Sample ID: LCS 880-60248/2-A

Lab Sample ID: LCSD 880-60248/3-A

Lab Sample ID: 880-32031-A-21-B MS

Lab Sample ID: 880-32031-A-21-C MSD

Matrix: Solid

Surrogate 1-Chlorooctane

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate 1-Chlorooctane

o-Terphenyl

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Matrix: Solid

(GRO)-C6-C10

Analysis Batch: 60233

Analysis Batch: 60233

Gasoline Range Organics

Diesel Range Organics (Over

Analysis Batch: 60233

Gasoline Range Organics

Diesel Range Organics (Over

Analysis Batch: 60233

Gasoline Range Organics

Diesel Range Organics (Over

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS %Recovery Qualifier

95

87

LCSD LCSD

%Recovery Qualifier

87

80

Sample Sample

<50.2 U

<50.2 U

82 64 S1-

%Recovery

MS MS

Sample Sample

<50.2 U

<50.2 U

96

79

%Recovery

MSD MSD

Qualifier

Result Qualifier

Qualifier

Result Qualifier

Job ID: 880-32018-1 SDG: Lea County New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 60248

RPD

9

4

RPD

Limit

20

20

Prep Batch: 60248

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

%Rec

Limits

70 - 130

70 - 130

70 - 130

5
7
8
9

Prep Type: Total/NA

Prep Batch: 60248

RPD

16

20

RPD

Limit

20

20

Client Sample ID: Matrix Spike

						· Prep Ty	vpe: Total/NA Batch: 60248
Spike	MS	MS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
998	766.0		mg/Kg		74	70 - 130	

D

%Rec

80

80

70

Client Sample ID: Matrix Spike Duplicate

87

86

%Rec

Limits

70 - 130

70 - 130

Released to Imaging: 2/13/2024 3:38:47 PM

Eurofins Midland

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23) Job ID: 880-32018-1 SDG: Lea County New Mexico

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-60092 Matrix: Solid	/1 -A								C	lieı	nt Sam	ple ID: N Prep T	lethod ype: So		
Analysis Batch: 60268															
	_	MB MB							_	_					
Analyte		sult Qualifier	·	RL		MDL			<u>D</u>	Pre	epared	Analy		Dil Fac	
Chloride	<	5.00 U		5.00			mg/Kg	9				08/15/23	01:17	1	
Lab Sample ID: LCS 880-6009	2/2-4							Clie	ent S	am	nnle ID	: Lab Co	ntrol Sa	ample	I
Matrix: Solid													ype: S		
Analysis Batch: 60268													Jpere		1
			Spike		LCS	LCS						%Rec			
Analyte			Added		Result	Qual	ifier	Unit	I	D	%Rec	Limits			
Chloride			250		257.5			mg/Kg			103	90 - 110			
								0 0							ï
Lab Sample ID: LCSD 880-600	92/3-A						С	lient S	ampl	le I	D: Lab	Control	Sampl	e Dup	
Matrix: Solid												Prep T	ype: So	oluble	
Analysis Batch: 60268															
			Spike		LCSD	LCSI	D					%Rec		RPD	
Analyte			Added		Result	Qual	ifier	Unit		D.	%Rec	Limits	RPD	Limit	
Chloride			250		258.5			mg/Kg			103	90 - 110	0	20	ŝ
Lab Sample ID: 880-32018-1 M										0	liont C	ample ID		(2.25)	
Matrix: Solid	3										nent S		vpe: S		ŝ
Analysis Batch: 60268												Fieb i	ype. S	oluble	
Analysis Batch. 00200	Sample	Sample	Spike		MS	MS						%Rec			
Analyte	•	Qualifier	Added		Result	-	ifior	Unit		D	%Rec	Limits			
Chloride	60.0		251		303.1	Quai		mg/Kg			97	90 - 110			
	00.0		201		000.1			iiig/itg			01	00-110			
Lab Sample ID: 880-32018-1 M	SD									C	lient Sa	ample ID	: CS-1	(2.25')	
Matrix: Solid													ype: S		
Analysis Batch: 60268													•••		
-	Sample	Sample	Spike		MSD	MSD	1					%Rec		RPD	
Analyte	-	Qualifier	Added		Result	Qual	ifier	Unit	I	D	%Rec	Limits	RPD	Limit	

0-32018-1 w Mexico

Page 134 of 143

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23)

Client Sample ID

CS-1 (2.25')

CS-5 (2.25')

Method Blank

CS-1 (2.25')

CS-1 (2.25')

CS-1 (2.25')

CS-5 (2.25')

Method Blank

CS-1 (2.25')

CS-1 (2.25')

Lab Control Sample

Lab Control Sample Dup

SW-6 (2')

Client Sample ID

Lab Control Sample

Lab Control Sample Dup

SW-6 (2')

GC VOA

Lab Sample ID

880-32018-1

880-32018-2

880-32018-3

MB 880-60246/5-A

LCS 880-60246/1-A

LCSD 880-60246/2-A

Prep Batch: 60246

880-32018-1 MS

Lab Sample ID

880-32018-1

880-32018-2

880-32018-3

MB 880-60246/5-A

LCS 880-60246/1-A

LCSD 880-60246/2-A

880-32018-1 MS

880-32018-1 MSD

880-32018-1 MSD

Analysis Batch: 60240

60246 60246 60246

60246

60246

Prep Batch

Prep Batch

60246

60246

60246

5	
8	}
9	

Analysis Batch: 60328

Client Sample ID CS-1 (2.25')	Prep Type Total/NA	Matrix Solid	Total BTEX	Prep Batch
CS-5 (2.25')	Total/NA	Solid	Total BTEX	
SW-6 (2')	Total/NA	Solid	Total BTEX	
	CS-1 (2.25') CS-5 (2.25')	CS-1 (2.25') Total/NA CS-5 (2.25') Total/NA	CS-1 (2.25') Total/NA Solid CS-5 (2.25') Total/NA Solid	CS-1 (2.25') Total/NA Solid Total BTEX CS-5 (2.25') Total/NA Solid Total BTEX

GC Semi VOA

Analysis Batch: 60233

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32018-1	CS-1 (2.25')	Total/NA	Solid	8015B NM	60248
880-32018-2	CS-5 (2.25')	Total/NA	Solid	8015B NM	60248
880-32018-3	SW-6 (2')	Total/NA	Solid	8015B NM	60248
MB 880-60248/1-A	Method Blank	Total/NA	Solid	8015B NM	60248
LCS 880-60248/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	60248
LCSD 880-60248/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	60248
880-32031-A-21-B MS	Matrix Spike	Total/NA	Solid	8015B NM	60248
880-32031-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	60248

Prep Batch: 60248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32018-1	CS-1 (2.25')	Total/NA	Solid	8015NM Prep	
880-32018-2	CS-5 (2.25')	Total/NA	Solid	8015NM Prep	
880-32018-3	SW-6 (2')	Total/NA	Solid	8015NM Prep	
MB 880-60248/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-60248/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-60248/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-32031-A-21-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-32031-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 135 of 143

Job ID: 880-32018-1

SDG: Lea County New Mexico

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

8021B

Method

5035

5035

5035

5035

5035

5035

5035

5035

Released to Imaging: 2/13/2024 3:38:47 PM

QC Association	Summary
-----------------------	---------

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23)

Job ID: 880-32018-1 SDG: Lea County New Mexico

GC Semi VOA

Analysis Batch: 60379

Lab Sample ID	Client Sample ID		Matrix	Method	Prep Batch
880-32018-1 880-32018-2	CS-1 (2.25') CS-5 (2.25')	Total/NA Total/NA	Solid Solid	8015 NM 8015 NM	
880-32018-3	SW-6 (2')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 60092

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
880-32018-1	CS-1 (2.25')	Soluble	Solid	DI Leach		U
880-32018-2	CS-5 (2.25')	Soluble	Solid	DI Leach		0
880-32018-3	SW-6 (2')	Soluble	Solid	DI Leach		3
MB 880-60092/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-60092/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-60092/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
880-32018-1 MS	CS-1 (2.25')	Soluble	Solid	DI Leach		
880-32018-1 MSD	CS-1 (2.25')	Soluble	Solid	DI Leach		
Analysis Batch: 6026	29					
Analysis Datch. 0020	00					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32018-1	CS-1 (2.25')	Soluble	Solid	300.0	60092
880-32018-2	CS-5 (2.25')	Soluble	Solid	300.0	60092 1
880-32018-3	SW-6 (2')	Soluble	Solid	300.0	60092
MB 880-60092/1-A	Method Blank	Soluble	Solid	300.0	60092
LCS 880-60092/2-A	Lab Control Sample	Soluble	Solid	300.0	60092
LCSD 880-60092/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	60092
880-32018-1 MS	CS-1 (2.25')	Soluble	Solid	300.0	60092
880-32018-1 MSD	CS-1 (2.25')	Soluble	Solid	300.0	60092

Eurofins Midland

Page 136 of 143

Batch

5035

8021B

Total BTEX

8015NM Prep

8015 NM

8015B NM

DI Leach

300.0

Method

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Leach

Client Sample ID: CS-5 (2.25')

Analysis

Prep

Job ID: 880-32018-1 SDG: Lea County New Mexico

Analyst

EL

Lab

EET MID

Lab Sample ID: 880-32018-1 Matrix: Solid

Prepared

or Analyzed

08/15/23 09:13

08/15/23 12:20 SM

08/15/23 17:09 SM

08/16/23 11:05 SM

08/15/23 09:19 TKC

08/15/23 18:36 SM

08/14/23 15:12 SMC

08/15/23 03:19 SMC

9

Lab Sample ID: 880-32018-2 Matrix: Solid

Date Collected: 08/14/23 00:00 Date Received: 08/14/23 14:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	60246	08/15/23 09:13	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60240	08/15/23 12:41	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60328	08/15/23 17:09	SM	EET MID
Total/NA	Analysis	8015 NM		1			60379	08/16/23 11:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	60248	08/15/23 09:19	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60233	08/15/23 18:58	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	60092	08/14/23 15:12	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	60268	08/15/23 03:40	SMC	EET MID

Lab Chronicle

Initial

Amount

4.96 g

5 mL

10.02 g

1 uL

4.98 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

60246

60240

60328

60379

60248

60233

60092

60268

Number

Dil

1

1

1

1

1

Factor

Run

Client Sample ID: SW-6 (2') Date Collected: 08/14/23 00:00 Date Received: 08/14/23 14:50

Lab Sample ID: 880-32018-3 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	60246	08/15/23 09:13	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60240	08/15/23 13:01	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60328	08/15/23 17:09	SM	EET MID
Total/NA	Analysis	8015 NM		1			60379	08/16/23 11:05	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	60248	08/15/23 09:19	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60233	08/15/23 19:22	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	60092	08/14/23 15:12	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	60268	08/15/23 03:47	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23) Job ID: 880-32018-1 SDG: Lea County New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pre	ogram	Identification Number	Expiration Date
lexas	NE	ELAP	T104704400-23-26	06-30-24
			et contified by the governing outbority	This list may include analytes for which
the following analytes the agency does not o	•	ort, but the laboratory is n	or certified by the governing authority.	This list may include analytes for whic
• •	•	Matrix	Analyte	This list may include analytes for which
the agency does not o	ffer certification.			

Eurofins Midland

10

8/16/2023

Method Summary

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23) Job ID: 880-32018-1 SDG: Lea County New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Tiger 11 Fed 7H (7.10.23) Job ID: 880-32018-1 SDG: Lea County New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-32018-1	CS-1 (2.25')	Solid	08/14/23 00:00	08/14/23 14:50	
380-32018-2	CS-5 (2.25')	Solid		08/14/23 14:50	
880-32018-3	SW-6 (2')	Solid	08/14/23 00:00	08/14/23 14:50	5
					8
					9
					12
					13

Received	by	OCD:	10/3/	/2023	<i>11:1</i>	6:16 AN	1
----------	----	------	-------	-------	-------------	---------	---

																88	-32018	3 Chair	880-32018 Chain of Custody	ody		
													ן ז						Page	-	of	i Į
Project Manager C	Conner Moehring				Bill to. (If different)		Carmo	Carmona Resources	ources				Ĺ			Z	ork O	rder Cu	Work Order Comments	5		
Company Name C	Carmona Resources				Company Name								 	rogram	: UST/F	ST 🗍	Ř	Program: UST/PST PRP rownfields	elds	IRC	Iperfund	1
	310 W Wall St Ste 500	00			Address.									tate of	State of Project:	יי ז	z r		Ē			ء
e ZIP	Midland, TX 79701				City, State ZIP	i i								eporting	Reporting Level II Level III			ST/UST		RRP [
	432-813-6823			Email		armonare	sources	s.com						eliverab	Deliverables EDD	U U		ADaPT	I	1		
Project Name.	Tiger 11 Fed 7H (07 10.23)	d 7H (07 10	.23)	Turn	Turn Around						ANA	ANALYSIS REQUEST		TS					Pres	arvativ	Preservative Codes	<u>]</u> [
Project Number	2	2088		Routine	マ Rush	Pres. Code									-	-		Ţ	None NO		DI Water H ₂ O	5
Project Location	Lea County	Lea County, New Mexico	co	Due Date	24 Hrs									_	+	-		\Box	Cool Cool			Þ - 70
Sampler's Name		KB						RO)														- ⊼
PO#:					Y	rs		+ MI						-					H-SOAL H-		NaOH Na	ע 2
SAMPLE RECEIPT	T Temp Blank.		Yes No	Wet Ice	(Yes)No	nete	IB	DRO	0.0										H,PO, HP	U		
Received Intact:	N		Thermometer ID		0.व	aran	802	:0 +	ie 30									7	NaHSO4 NABIS	NABIS		
Cooler Custody Seals	Yes No		Correction Factor	<u> </u>		P	STE)	(GI	nlori										$Na_2S_2O_3 NaSO_3$	NaSO3		
Table Cusing Series	100 100			aung		<u> </u>		151	с 										Zn Acetate+NaOH Zn	3+NaOh	t Zn	
			Conected temperature	erature	46	ľ		1 80								<u> </u>			NaOH+Ascorbic Acid SAPC	corbic A	vcid SAP	0
Sample Identification		Date	Time	Soil	Water Comp	/ #of Cont		TPł											Sam	Iple Co	Sample Comments	v
CS-1 (2 25')		8/14/2023		×	Comp	p 1	×	×	×		_			_	+	+						
CS-5 (2 25')		8/14/2023		×	Comp	p 1	×	×	×						-			\square				
SW-6 (2')		8/14/2023		×	Comp	р 1	×	×	×					\dashv	+	+		\square				
								_														
									_		+		_			+						
														_	-	-+						
Comments: Email (to Mike Carmona /	Mcarmona	Ocarmonar	esources con	and Conner I	Moehring		hrina							-							
Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com and Devin Dominguez / Ddominguez@carmonaresources.com	to Mike Carmona /	Mcarmona	@carmonar	esources.com	1 and Conner I	Moehring	/ Cmor	əhring	@carm	onares	ources	.com a	nd De	/in Doi	ningu	ez / Dd	oming	Juez@	carmona	resou	rces.coi	n
	, Relinq	Relinquished by ((Signature)				Date/Time	ime			<u>></u>		Receiv	ed by	Received by: (Signature)	ure)				D	Date/Time	
Mr and	- 1/ n	r 8				X	-14-	-13			\triangleleft	B	M	2		,				02	62	Ŵ
VIVINU	ANN A	45							-	\square										<u></u> ;	刻	T
									L	K										-	1	

Page 20 of 21

5

13

Chain of C istody

Job Number: 880-32018-1

List Source: Eurofins Midland

SDG Number: Lea County New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 32018 List Number: 1 Creator: Kramer, Jessica

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

14

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	271833
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
scott.rodgers	None	2/13/2024

Action 271833