

Closure Report

Malaga SWD #004 Eddy County, New Mexico API ID # 30-015-44514 Incident # NAPP2319477477

Prepared For:

Matador Resources 5347 N. 26th Street 2nd Floor. Artesia, NM 88210

Prepared By:

Talon/LPE 408 W. Texas Avenue Artesia, New Mexico 88210

August 30, 2023

NMOCD

506 W. Texas Ave Artesia, NM 88210

Subject: Closure Report Malaga SWD #004 Eddy County, New Mexico API # 30-015-44514 Incident # NAPP2319477477

To Whom It May Concern,

Matador Resources contracted Talon/LPE (Talon) to perform soil assessment and remediation services at the above referenced location. The incident description, soil sampling results, and the closure request are presented herein.

Site Information

The Malaga SWD #004 is located approximately 1 mile northeast of Malaga, New Mexico. The legal location for this release is Unit Letter E, Section 11, Township 24 South and Range 28 East in Eddy County, New Mexico. More specifically the latitude and longitude for the release are 32.23456 and -104.065378. A Site Location Map is presented in Appendix I.

According to the soil survey provided by the United States Department of Agriculture National Resources Conservation Services, the soil in this area is comprised of Reeves loam, 0 to 1 percent slopes. The referenced soil data is presented in Appendix II. Per the New Mexico Bureau of Geology and Mineral Resources, the local geology consists of Eolian and Piedmont deposits, Holocene to middle Pleistocene in age.

Groundwater and Site Characterization

Based on the New Mexico Office of the State Engineer Database, the nearest reported groundwater depth is 20 feet below ground surface (bgs) but is located greater than 0.5 miles from the subject site. The FEMA Flood Service Center does not locate the site in a 100-year flood plain. Further research of the Bureau of Land Management Karst data indicates that this site is situated within a low potential Karst area. See Appendix II for the site characterization data.

www.talonlpe.com

Approximate Dept	th to Groundwater	20 feet bgs
☐Yes ⊠No	Within 300 feet of any continuously flowing wat any other significant watercourse	ercourse or
□Yes⊠No	Within 200 feet of any lakebed, sinkhole or a pl	aya lake
□Yes ⊠No	Within 300 feet from an occupied permanent re school, hospital, institution or church	sidence,
∐Yes ⊠No	Within 500 feet of a spring or a private, domest well used by less than five households for dom watering purposes	
∐Yes ⊠No	Within 1000 feet of any freshwater well or sprin	g
□Yes ⊠No	Within incorporated municipal boundaries or wi municipal freshwater well field covered under a ordinance adopted pursuant to Section 3-2703	municipal
□Yes ⊠No	Within 300 feet of a wetland	
□Yes ⊠No	Within the area overlying a subsurface mine	
□Yes ⊠No	Within an unstable area	
□Yes ⊠No	Within a 100-year floodplain	

With no depth to water source available that meets New Mexico Oil Conservation Division's (NMOCD) criteria within $\frac{1}{2}$ mile of the site, the responsible party must therefore adhere to the cleanup criteria for this site of groundwater less than 50 feet bgs, Table I, NMOCD Rule 19.15.29 NMAC.

Table I Closure Criteria for Soils Impacted by a Release							
Depth below horizontal extents of release to ground water less than 10,000 mg/l TDS	Constituent	Method	Limit				
<u><</u> 50 feet	Total Chlorides	EPA 300.0 or SM4500 CI B	600 mg/kg				
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg				
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg				
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg				

Incident Description

On July 13, 2023, Matador personnel reported a produced water spill. The C-141 submitted to the NMOCD, incident number NAPP2319477477, stated a hole was noted in a fitting, resulting in the release of fifty-four barrels (bbls) of crude oil was released to the site and 0 bbls recovered. The site map is presented in Appendix I.

Site Assessment

On August 8th, 2023, Talon personnel mobilized to the site to conduct an initial site assessment. The impacted area was photographed, sampled utilizing a hand auger, and mapped. All soil samples were properly packaged, preserved, and transported to Cardinal laboratories with the chain of custody for analysis of Total Chlorides (Method SM4500CI-B), TPH (EPA Method 8015M), and volatile Organics (BTEX, EPA Method 8021B). Sample locations are shown on the attached Figure 1 (Appendix I) and the results of our sampling event are presented on the following data table.

			I	Malaga S	WD #004				
Sample ID	Sample Date	Depth (BGS)	Benzene mg/kg	BTEX mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Total TPH mg/kg	Chlorides mg/kg
	Table 1 C 19.15.29		10 mg/kg	50 mg/kg		+ GRO + ned = 100		100 mg/kg	600 mg/kg
	8/8/23	1'	ND	ND	ND	ND	ND	0	256
S-1	8/8/23	2'	ND	ND	ND	ND	ND	0	688
3-1	8/8/23	3'	ND	ND	ND	ND	ND	0	400
	8/8/23	4'	ND	ND	ND	ND	ND	0	256
S-2	8/8/23	1'	ND	ND	ND	ND	ND	0	528
S-3	8/8/23	1'	ND	ND	ND	ND	ND	0	208
S-4	8/8/23	1'	ND	ND	ND	ND	ND	0	112
S-5	8/8/23	1'	ND	ND	ND	ND	ND	0	176
S-6	8/8/23	1'	ND	ND	ND	ND	ND	0	256
S-7	8/8/23	1'	ND	ND	ND	ND	ND	0	5120
3-7	8/8/23	2'	ND	ND	ND	ND	ND	0	8260
	8/8/23	1'	ND	ND	ND	ND	ND	0	10400
S-8	8/8/23	2'	ND	ND	ND	ND	ND	0	3920
	8/8/23	2.5R	ND	ND	ND	ND	ND	0	288

Table 1Initial Site Assessment

NOTES:		
BGS	Below ground	
603	surface	Highlighted cells indicate
mg/kg	Milligrams per	exceedance of NMOCD Table 1
1116/ Kg	kilogram	Closure Criteria
ТРН	Total Petroleum	
IFN	Hydrocarbons	
GRO	Gasoline range organics	
DRO	Diesel range organics	
MRO	Motor oil range organics	
S	Sample	
R	Refusal	
	Analyte Not	
ND	Detected	
	Detected	

Remediation Activities

On August 31, 2023, Talon personnel returned to location to remove impacted soils. Backhoe was used to excavate 6 feet bgs. of contaminated soils and confimation samples were collected. The samples were transported with the chain of custody to Envirotech Laboratories, for analysis of Total Chlorides (EPA 300.0/9056A), Total Petroleum Hydrocarbons (TPH, EPA Method 8015D) and Volatile Organics (BTEX, EPA Method 8021B).

The soil sample results from the laboratory analytical are summarized in the data table below. Sample locations are illustrated on Figure 2 in Appendix I and complete laboratory analytical reports are presented in Appendix V.

	Malaga SWD #004								
Sample ID	Sample Date	Depth (BGS)	Benzene mg/kg	BTEX mg/kg	GRO mg/kg	DRO mg/kg	MRO mg/kg	Total TPH mg/kg	Chlorides mg/kg
	D Table 1 C 19.15.29		10 mg/kg	50 mg/kg		+ GRO + ned = 100		100 mg/kg	600 mg/kg
C-1	8/31/23	6'	ND	ND	ND	ND	ND	0	325
C-2	8/31/23	6'	ND	ND	ND	ND	ND	0	389
C-3	8/31/23	6'	ND	ND	ND	ND	ND	0	267
C-4	8/31/23	6'	ND	ND	ND	ND	ND	0	219
C-5	8/31/23	6'	ND	ND	ND	ND	ND	0	364
C-6	8/31/23	6'	ND	ND	ND	ND	ND	0	329
SW-1	8/31/23	0-6'	ND	ND	ND	ND	ND	0	272
SW-2	8/31/23	0-6'	ND	ND	ND	ND	ND	0	306
SW-3	8/31/23	0-6'	ND	ND	ND	ND	ND	0	323
SW-4	8/31/23	0-6'	ND	ND	ND	ND	ND	0	281
SW-5	8/31/23	0-6'	ND	ND	ND	ND	ND	0	280

Table 2Composite Sampling

NOTES:

BGS	Below ground
DG2	a

surface

mg/kg Milligrams per kilogram

_____ Total Petroleum

- TPH Hydrocarbons
- **GRO** Gasoline range organics
- **DRO** Diesel range organics
- MRO Motor oil range organics Confirmation
- C Sample
- SW Sidewall Sample
- ND Analyte Not
 - Detected

Highlighted cells indicate exceedance of NMOCD Table 1 Closure Criteria

Remedial Action Summary

- The impacted areas in pasture were excavated to depth of 6 feet bgs. Talon field titrated soil samples for total chlorides to guide the vertical and horizontal extents of the excavation process.
- Pursuant to NMOCD guidance, confirmation soil samples were collected at 200 square foot intervals and analyzed for TPH, BTEX and Total Chlorides to insure all areas had reached NMOCD closure criteria.
- The excavated areas were backfilled with new like material (topsoil), machine compacted, and contoured to match the surrounding location.
- Copies of the Final C-141s are presented in Appendix III.
- Photographic documentation is provided in Appendix IV.

Closure

On behalf of Matador Resources, we respectfully request that no further actions be required and that closure of this incident be granted.

Respectfully submitted,

Talon/LPE

Ched Harob

Chad Hensley Project Manager

Attachments:

Appendix ISite MapsAppendix IIGroundwater Data, Soil Survey, FEMA Flood MapAppendix IIIC-141 FormAppendix IVPhotographic DocumentationAppendix VLaboratory Report

Appendix I

Site Maps

Drafted: 9/25/2023 1 in = 50 ft Drafted By: IJR Matador Resources Company Malaga SWD #04 Eddy County, NM Figure 1 - Assessment Map

Drafted: 9/25/2023

1 in = 50 ft Drafted By: IJR Matador Resources Company Malaga SWD #04 Eddy County, NM Figure 2 - Excavation Map

Drafted: 9/25/2023 1 in = 5,000 ft Drafted By: IJR Matador Resources Company Malaga SWD #04 Eddy County, NM Karst Map

Appendix II Groundwater Data Soil Survey FEMA Flood Map

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)		• •			V 2=NE i est to lar	3=SW 4=SI gest) (N	E) IAD83 UTM in n	neters)	(In t	eet)	
POD Number		County		4 See		Rng	X	Y	DistanceDe	othWellDep		Vater olumn
<u>C 01082</u>	CUB	ED	3 3	2 11	24S	28E	588832	3566693* 🥑	785	120		
<u>C 01442</u>	С	ED	1	2 10	24S	28E	587298	3567199* 🌍	848	100		
<u>C 01237</u>	С	ED	1 1	2 10	24S	28E	587197	3567298* 🌍	984	123		
<u>C 02524 POD2</u>	С	ED	2 2	2 15	24S	28E	587814	3565690* 🌍	1154	90	11	79
<u>C_00890</u>	CUB	ED	3 3	4 10	24S	28E	587211	3565897* 🌍	1250	50		
<u>C 00511</u>	С	ED	2	3 02	24S	28E	588518	3568001* 🌍	1269	268	140	128
<u>C 00346</u>	С	ED	2	2 15	24S	28E	587715	3565591* 🔵	1274	90	32	58
<u>C 00488</u>	С	ED	2 1	2 15	24S	28E	587412	3565688* 🌍	1301	64	8	56
<u>C 04337 POD1</u>	CUB	ED	4 1	4 03	24S	28E	587317	3567907 🌍	1316	60		
<u>C 04382 POD1</u>	CUB	ED	2 1	2 15	24S	28E	587401	3565647 🌍	1341	48	35	13
<u>C 04383 POD1</u>	CUB	ED	4 1	2 15	24S	28E	587389	3565499 🌍	1478	34	19	15
<u>C 00574</u>	CUB	ED	2 4	4 11	24S	28E	589452	3566081* 🌍	1578	200	20	180
<u>C 00570</u>	CUB	ED	1	1 10	24S	28E	586490	3567195* 🌍	1610	100	28	72
<u>C 00764</u>	CUB	ED	3 1	3 10	24S	28E	586399	3566292* 🌍	1738	118	25	93
<u>C 03862 POD2</u>	CUB	ED	3 3	3 01	24S	28E	589665	3567507 🌍	1749	30	10	20
<u>C 03862 POD1</u>	CUB	ED	3 3	3 01	24S	28E	589672	3567505 🌍	1756	17	10	7
<u>C 00962</u>	С	ED	3	3 10	24S	28E	586505	3565992* 🌍	1757	63	9	54
<u>C 03862 POD3</u>	CUB	ED	3 3	3 01	24S	28E	589685	3567500 🥌	1765	60	10	50

<u>C 03862 POD4</u>	CUB	ED	3 3 3	3 01	24S	28E	589705	3567490 🥌	1780	30	10	20
<u>C 03862 POD5</u>	CUB	ED	4 3 3	3 01	24S	28E	589785	3567458 🌍	1843	17	10	7
<u>C 03132</u>	С	ED	1 2 4	4 15	24S	28E	587616	3564877* 🔵	1990	90	19	71
								Avera	ge Depth to Water:		24 feet	
									Minimum Depth	ı:	8 feet	
									Maximum Depth	:	140 feet	
Record Count: 21												
UTMNAD83 Radiu	<u>s Search (in meters):</u>											
Easting (X): 588	8056.26	Nort	thing (Y):	356	6818.48	3		Radius: 2000				
*UTM location was derived	l from PLSS - see Help											

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/18/23 3:50 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

•

Custom Soil Resource Report

MAP	LEGEND	MAP INFORMATION		
Area of Interest (AOI) Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at 1:20,000.		
Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points	 Very Stony Spot Wet Spot Other Special Line Features 	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of		
Special Point Features Blowout Borrow Pit Clay Spot	Water Features Streams and Canals Transportation	contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map		
 Clay Spot Closed Depression Gravel Pit Gravelly Spot 	 Rails Interstate Highways US Routes Major Roads 	measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)		
 Landfill Lava Flow Marsh or swamp Mine or Quarry 	Local Roads Background Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.		
 Miscellaneous Water Perennial Water Rock Outcrop Saline Spot 		This product is generated from the USDA-NRCS certified data a of the version date(s) listed below. Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 18, Sep 8, 2022		
 Saline Spot Sandy Spot Severely Eroded Spot Sinkhole 		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.		
 Slide or Slip Sodic Spot 		Date(s) aerial images were photographed: Nov 12, 2022—Dec 2, 2022 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor		

Мар	Unit	Legend
-----	------	--------

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
At	Atoka loam, 1 to 3 percent slopes	9.4	11.4%
Kr	Karro loam, 0 to 1 percent slopes	46.6	56.6%
Ku	Karro loam, 1 to 3 percent slopes	7.7	9.3%
Pe	Pima silt loam, 0 to 1 percent slopes	2.5	3.1%
Rd	Reagan loam, 1 to 3 percent slopes	0.1	0.1%
Rn	Reeves loam, 1 to 3 percent slopes	1.0	1.2%
Rt	Reeves loam, shallow, 0 to 1 percent slopes	15.1	18.3%
Totals for Area of Interest		82.3	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

At—Atoka loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w41 Elevation: 1,100 to 4,300 feet Mean annual precipitation: 7 to 14 inches Mean annual air temperature: 60 to 70 degrees F Frost-free period: 200 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Atoka and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Atoka

Setting

Landform: Plains Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 8 inches: loam H2 - 8 to 33 inches: loam H3 - 33 to 37 inches: indurated

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: 20 to 40 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: C Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Minor Components

Atoka

Percent of map unit: 1 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Upton

Percent of map unit: 1 percent Ecological site: R070BC025NM - Shallow Hydric soil rating: No

Kr—Karro loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 1w4v Elevation: 2,500 to 5,300 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 57 to 64 degrees F Frost-free period: 200 to 230 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Karro and similar soils: 99 percent Minor components: 1 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Karro

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Riser, talf, rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 10 inches: loam *H2 - 10 to 90 inches:* clay loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None

Calcium carbonate, maximum content: 60 percent *Maximum salinity:* Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) *Sodium adsorption ratio, maximum:* 1.0 *Available water supply, 0 to 60 inches:* High (about 10.5 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: R070BC030NM - Limy Hydric soil rating: No

Minor Components

Reeves

Percent of map unit: 1 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Ku—Karro loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w4w Elevation: 2,500 to 5,300 feet Mean annual precipitation: 10 to 15 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 120 to 230 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Karro and similar soils: 98 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Karro

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Riser, talf, rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 10 inches: loam H2 - 10 to 90 inches: loam

Properties and qualities

Slope: 1 to 3 percent *Depth to restrictive feature:* More than 80 inches *Drainage class:* Well drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 60 percent Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm) Sodium adsorption ratio, maximum: 1.0 Available water supply, 0 to 60 inches: High (about 10.5 inches)

Interpretive groups

Land capability classification (irrigated): 2s Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C Ecological site: R070BC030NM - Limy Hydric soil rating: No

Minor Components

Karro

Percent of map unit: 1 percent Ecological site: R070BC030NM - Limy Hydric soil rating: No

Reeves

Percent of map unit: 1 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Pe—Pima silt loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 1w58 Elevation: 600 to 4,200 feet Mean annual precipitation: 8 to 25 inches Mean annual air temperature: 60 to 70 degrees F Frost-free period: 195 to 290 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Pima and similar soils: 98 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Pima

Setting

Landform: Flood plains, alluvial flats, alluvial fans Landform position (three-dimensional): Talf, rise Down-slope shape: Convex, linear

Across-slope shape: Linear, convex Parent material: Alluvium

Typical profile

H1 - 0 to 3 inches: silt loam *H2 - 3 to 60 inches:* silty clay loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: RareNone
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to slightly saline (0.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: High (about 11.9 inches)

Interpretive groups

Land capability classification (irrigated): 1 Land capability classification (nonirrigated): 7c Hydrologic Soil Group: C Ecological site: R070BC017NM - Bottomland Hydric soil rating: No

Minor Components

Reagan

Percent of map unit: 1 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Dev

Percent of map unit: 1 percent *Ecological site:* R070BC017NM - Bottomland *Hydric soil rating:* No

Rd—Reagan loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w5m Elevation: 1,100 to 4,400 feet Mean annual precipitation: 7 to 15 inches Mean annual air temperature: 60 to 70 degrees F Frost-free period: 200 to 240 days Farmland classification: Prime farmland if irrigated

Map Unit Composition

Reagan and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Reagan

Setting

Landform: Fan remnants, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Alluvium and/or eolian deposits

Typical profile

H1 - 0 to 8 inches: loam *H2 - 8 to 82 inches:* loam

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Minor Components

Upton

Percent of map unit: 1 percent Ecological site: R070BC025NM - Shallow Hydric soil rating: No

Reagan

Percent of map unit: 1 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Rn—Reeves loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w5q Elevation: 1,250 to 4,800 feet Mean annual precipitation: 10 to 25 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 120 to 225 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Reeves and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Reeves

Setting

Landform: Ridges, plains, hills Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from gypsum

Typical profile

Ap - 0 to 8 inches: loam H2 - 8 to 32 inches: clay loam H3 - 32 to 60 inches: gypsiferous material

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 25 percent
Gypsum, maximum content: 80 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B *Ecological site:* R070BC007NM - Loamy *Hydric soil rating:* No

Minor Components

Karro

Percent of map unit: 1 percent Ecological site: R070BC030NM - Limy Hydric soil rating: No

Cottonwood

Percent of map unit: 1 percent *Ecological site:* R070BB006NM - Gyp Upland *Hydric soil rating:* No

Rt—Reeves loam, shallow, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 1w5s Elevation: 1,250 to 4,500 feet Mean annual precipitation: 10 to 25 inches Mean annual air temperature: 57 to 66 degrees F Frost-free period: 200 to 225 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Reeves and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Reeves

Setting

Landform: Ridges, plains, hills Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from gypsum

Typical profile

Ap - 0 to 18 inches: loam *H2 - 18 to 60 inches:* gypsiferous material

Properties and qualities

Slope: 0 to 1 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Very high Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum content: 25 percent Gypsum, maximum content: 80 percent Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm) Sodium adsorption ratio, maximum: 4.0 Available water supply, 0 to 60 inches: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Minor Components

Reeves

Percent of map unit: 2 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Cottonwood

Percent of map unit: 2 percent Ecological site: R070BB006NM - Gyp Upland Hydric soil rating: No

Reeves

Percent of map unit: 1 percent Landform: Ridges, plains, hills, flood plains Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest, talf Down-slope shape: Convex Across-slope shape: Linear, convex Ecological site: R070BC036NM - Salt Flats Hydric soil rating: Yes

National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023

Page 32 of 83

Appendix III

C-141 Forms NMOCD Correspondence District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	nAPP2319477477
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party Matador Production Company	OGRID 228937	
Contact Name Clinton Talley	Contact Telephone 337-319-8398	
Contact email clinton.talley@matadorresources.com	Incident # (assigned by OCD) nAPP2319477477	
Contact mailing address 5400 LBJ Freeway, Suite 1500 Dallas, Texas 75240		

Location of Release Source

Latitude 32.235718

 Longitude
 -104.065378

 (NAD 83 in decimal degrees to 5 decimal places)

Site Name Malaga SWD #004	Site Type _{SWD}
Date Release Discovered 7/13/2023	API# (<i>if applicable</i>) 30-015-44514

Unit Letter	Section	on Township Range County		County
Е	11	24S	28E	Eddy

Surface Owner: State Federal Tribal X Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)		
X Produced Water	Volume Released (bbls) 54	Volume Recovered (bbls) 0		
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	X Yes No		
Condensate	Volume Released (bbls)	Volume Recovered (bbls)		
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)		
Other (describe) Volume/Weight Released (provide units)		Volume/Weight Recovered (provide units)		

Cause of Release

Corrosion on fitting

	Page 34 of 8
Incident ID	nAPP2319477477
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?			
release as defined by				
19.15.29.7(A) NMAC?				
	>25 bbls			
X Yes 🗌 No				
If YES, was immediate n	If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?			
Yes, by Clinton Talley through OCD portal Notice of Release at 9:24 PM				

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 $\overline{\mathbf{X}}$ The source of the release has been stopped.

X The impacted area has been secured to protect human health and the environment.

X Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

X All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Clinton Talley	Title: EHS Supervisor
Signature: <u>Clint Talley</u>	Date: _7/19/2023
email: clinton.talley@matadorresources.com	Telephone: <u>337-319-8398</u>
OCD Only	
Received by: <u>Shelly Wells</u>	Date: <u>7/20/2023</u>

Page 3

Oil Conservation Division

	Page 35 of 8
Incident ID	NAPP2319477477
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔽 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🕁 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗹 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔽 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🔽 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🔽 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🔽 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🔽 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🔽 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 📈 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. \overrightarrow{V} Field data
- Data table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 9/29/2023 2:36:43 PM Form C-141 State of New Mexico			Page 36 of 83	
			Incident ID	NAPP2319477477
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all op public health or the failed to adequate addition, OCD ac and/or regulations Printed Name:	hat the information given above is true and complete to the erators are required to report and/or file certain release no he environment. The acceptance of a C-141 report by the ely investigate and remediate contamination that pose a the ceptance of a C-141 report does not relieve the operator of s. Clinton Talley Clint Talley on.talley@matadorresources.com	tifications and perform cc OCD does not relieve the reat to groundwater, surfa f responsibility for compl 	prrective actions for rele c operator of liability sh- ce water, human health iance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
Received by:		Date:		
Page 6

Oil Conservation Division

Incident ID	NAPP2319477477
District RP	
Facility ID	
Application ID	

Page 37 of 83

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following	items must be included in the closure report.
\checkmark A scaled site and sampling diagram as described in 19.15.29.	11 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	s of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate OD	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and re- human health or the environment. In addition, OCD acceptance of	ations. The responsible party acknowledges they must substantially onditions that existed prior to the release or their final land use in
Printed Name: Clinton Talley	Title:EHS
Signature: Clint Talley	Date: 9/29/2023
Signature: <u>Clint Tallay</u> email: <u>clinton.talley@matadorresources.com</u>	Telephone: 337-319-8398
OCD Only	
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible /or regulations.
Closure Approved by:	Date:
Printed Name:	

From:	Wells, Shelly, EMNRD
To:	Chad Hensley
Cc:	Bratcher, Michael, EMNRD; Hamlet, Robert, EMNRD
Subject:	RE: [EXTERNAL] Confirmation sampling event
Date:	Tuesday, August 29, 2023 9:41:48 AM
Attachments:	image001.png image002.png

This message originated from an **External Source**. Please use proper judgment and caution when opening attachments, clicking links, or responding to this email.

Good morning Chad,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520<u>|Shelly.Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Chad Hensley <chensley@talonlpe.com>
Sent: Tuesday, August 29, 2023 7:59 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>; spills@slo.state.nm.us
Cc: spills@slo.state.nm.us; Nathaniel Rose <nrose@talonlpe.com>
Subject: [EXTERNAL] Confirmation sampling event

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Talon of behalf of Matador will be conducting a sampling event:

Site Name: MALAGA SWD #004 ID# NAPP2319477477 API: 30-015-44514 Sampling date: 8/31/23 10am E-11-24S-28E 32.23546,-104.065378

Chad Hensley

Environmental Project Manager Office: 575.746.8768 x708 Direct: 575.616.4023 Cell: 575.246.0032 Fax: 575.746.8905 Emergency: 866.742.0742 Web: <u>www.talonlpe.com</u>

At Talon/LPE, we are quality in all things, including communication. Have a question? Need a quote? Send an email to <u>clientrelations@talonlpe.com</u>.

Appendix IV

Photographic Documentation

Page 41 of 83

Appendix V

Laboratory Reports

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Talon LPE

Project Name: Malaga 4

Work Order: E309025

Job Number: 23042-0001

Received: 9/5/2023

Revision: 2

Report Reviewed By:

Walter Hinchman Laboratory Director 9/12/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 9/12/23

Chad Hensley 408 W Texas Ave Artesia, NM 88210

Project Name: Malaga 4 Workorder: E309025 Date Received: 9/5/2023 8:15:00AM

Chad Hensley,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 9/5/2023 8:15:00AM, under the Project Name: Malaga 4.

The analytical test results summarized in this report with the Project Name: Malaga 4 apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Technical Representative/Client Services

Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com **Alexa Michaels** Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area **Rayny Hagan Technical Representative** Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Page 43 of 83

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
C-1 6'	5
C-2 6'	6
C-3 6'	7
C-4 6'	8
C-5 6'	9
C-6 6'	10
SW-1	11
SW-2	12
SW-3	13
SW-4	14
SW-5	15
QC Summary Data	16
QC - Volatile Organics by EPA 8021B	16
QC - Nonhalogenated Organics by EPA 8015D - GRO	17
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	18
QC - Anions by EPA 300.0/9056A	19
Definitions and Notes	20
Chain of Custody etc.	21

Sample Summary

		Sample Sum	mary		
Talon LPE		Project Name:	Malaga 4		Reported:
408 W Texas Ave		Project Number:	23042-0001		Reporteu.
Artesia NM, 88210		Project Manager:	Chad Hensley		09/12/23 13:21
lient Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
-1 6'	E309025-01A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
2 6'	E309025-02A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
3 6'	E309025-03A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
4 6'	E309025-04A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
5 6'	E309025-05A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
6 6'	E309025-06A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
V-1	E309025-07A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
W-2	E309025-08A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
W-3	E309025-09A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
V-4	E309025-10A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.
V-5	E309025-11A	Soil	08/31/23	09/05/23	Glass Jar, 4 oz.

	5	ample D	ลเล			
Talon LPE	Project Name:	Mal	aga 4			
408 W Texas Ave	Project Numbe	er: 2304	42-0001			Reported:
Artesia NM, 88210	Project Manag	ger: Cha	d Hensley			9/12/2023 1:21:14PM
		C-1 6'				
		E309025-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/07/23	
Toluene	ND	0.0250	1	09/05/23	09/07/23	
p-Xylene	ND	0.0250	1	09/05/23	09/07/23	
p,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
Surrogate: 4-Bromochlorobenzene-PID		97.0 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	mg/kg Analyst: IY		Batch: 2336023	
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.8 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KM		Batch: 2336060
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Oil Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
Surrogate: n-Nonane		98.9 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 2336052
Chloride	325	20.0	1	09/06/23	09/08/23	

Sample Data

Sam	ple Data	
Project Nome	Malaga 4	

	56	ample D	ata			
Talon LPE	Project Name:		aga 4			
408 W Texas Ave	Project Number: 23042-0001					Reported:
Artesia NM, 88210	Project Manag	ger: Cha	d Hensley			9/12/2023 1:21:14PM
		C-2 6'				
		E309025-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/07/23	
Foluene	ND	0.0250	1	09/05/23	09/07/23	
p-Xylene	ND	0.0250	1	09/05/23	09/07/23	
o,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
Surrogate: 4-Bromochlorobenzene-PID		96.7 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: IY		Batch: 2336023	
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.1 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	/kg Analyst: KM		Batch: 2336060	
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Dil Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
Surrogate: n-Nonane		99.1 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: BA		Batch: 2336052
Chloride	389	40.0	2	09/06/23	09/08/23	

Sampl	e Data
-------	--------

	3	ample D	ata			
Talon LPE	Project Name	e: Mal	aga 4			
408 W Texas Ave	Project Numb	ber: 2304	42-0001			Reported:
Artesia NM, 88210	Project Mana	iger: Cha	d Hensley			9/12/2023 1:21:14PM
		C-3 6'				
		E309025-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/06/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/06/23	
Toluene	ND	0.0250	1	09/05/23	09/06/23	
p-Xylene	ND	0.0250	1	09/05/23	09/06/23	
p,m-Xylene	ND	0.0500	1	09/05/23	09/06/23	
Fotal Xylenes	ND	0.0250	1	09/05/23	09/06/23	
Surrogate: 4-Bromochlorobenzene-PID		96.9 %	70-130	09/05/23	09/06/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	st: IY		Batch: 2336023
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/06/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.3 %	70-130	09/05/23	09/06/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	st: KM		Batch: 2336060
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Dil Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
Surrogate: n-Nonane		97.6 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: BA		Batch: 2336052
Chloride	267	20.0	1	09/06/23	09/08/23	

Sample D	ata
----------	-----

	56	ample D	ala			
Talon LPE	Project Name:		aga 4			
408 W Texas Ave	Project Number		42-0001			Reported:
Artesia NM, 88210	Project Manag	ger: Cha	d Hensley			9/12/2023 1:21:14PM
		C-4 6'				
		E309025-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	yst: IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/07/23	
Toluene	ND	0.0250	1	09/05/23	09/07/23	
p-Xylene	ND	0.0250	1	09/05/23	09/07/23	
o,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
Surrogate: 4-Bromochlorobenzene-PID		96.4 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	g Analyst: IY			Batch: 2336023
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.2 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	mg/kg Analyst: KM			Batch: 2336060
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Dil Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
Surrogate: n-Nonane		97.9 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	yst: BA		Batch: 2336052
Chloride	219	20.0	1	09/06/23	09/08/23	

Sample	Data
--------	------

	50	ample D	ala			
Talon LPE	Project Name:		aga 4			
408 W Texas Ave	Project Numbe		42-0001			Reported:
Artesia NM, 88210	Project Manag	ger: Cha	d Hensley			9/12/2023 1:21:14PM
		C-5 6'				
		E309025-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/07/23	
Toluene	ND	0.0250	1	09/05/23	09/07/23	
o-Xylene	ND	0.0250	1	09/05/23	09/07/23	
o,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
Surrogate: 4-Bromochlorobenzene-PID		97.5 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	/kg Analyst: IY		Batch: 2336023	
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.5 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	mg/kg Analyst: KM		Batch: 2336060	
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Dil Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
Surrogate: n-Nonane		97.8 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 2336052
Chloride	364	40.0	2	09/06/23	09/08/23	

Sample 1	Data
----------	------

	3	ample D	ลเล			
Talon LPE	Project Name:	Mal	aga 4			
408 W Texas Ave	Project Number	er: 2304	42-0001			Reported:
Artesia NM, 88210	Project Manag	ger: Cha	d Hensley			9/12/2023 1:21:14PM
		C-6 6'				
		E309025-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/07/23	
oluene	ND	0.0250	1	09/05/23	09/07/23	
-Xylene	ND	0.0250	1	09/05/23	09/07/23	
o,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
urrogate: 4-Bromochlorobenzene-PID		96.5 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	ng/kg Analyst: IY		Batch: 2336023	
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.0 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: KM		Batch: 2336060
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Dil Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
urrogate: n-Nonane		100 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: BA		Batch: 2336052
Chloride	329	40.0	2	09/06/23	09/08/23	
Dil Range Organics (C28-C36) Surrogate: n-Nonane Anions by EPA 300.0/9056A	ND ND mg/kg	25.0 50.0 100 % mg/kg	1 1 50-200 Analy	09/07/23 09/07/23 09/07/23 st: BA	09/09/23 09/09/23	

Sample Data

Reported:
2/2023 1:21:14PM
Notes
tch: 2336023
tch: 2336023
tch: 2336060
tch: 2336052

Sample Data

	25	ample D	ลเล			
Talon LPE	Project Name:	Mal	aga 4			
408 W Texas Ave	Project Numbe	er: 230	42-0001			Reported:
Artesia NM, 88210	Project Manage	er: Cha	d Hensley			9/12/2023 1:21:14PM
		SW-2				
]	E309025-08				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
olatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: IY		Batch: 2336023
enzene	ND	0.0250	1	09/05/23	09/07/23	
thylbenzene	ND	0.0250	1	09/05/23	09/07/23	
oluene	ND	0.0250	1	09/05/23	09/07/23	
Xylene	ND	0.0250	1	09/05/23	09/07/23	
m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
otal Xylenes	ND	0.0250	1	09/05/23	09/07/23	
urrogate: 4-Bromochlorobenzene-PID		96.9 %	70-130	09/05/23	09/07/23	
onhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	mg/kg Analyst: IY		Batch: 2336023	
asoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
urrogate: 1-Chloro-4-fluorobenzene-FID		90.7 %	70-130	09/05/23	09/07/23	
onhalogenated Organics by EPA 8015D - DRO/OR	O mg/kg	mg/kg	Analys	t: KM		Batch: 2336060
iesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
il Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
urrogate: n-Nonane		99.9 %	50-200	09/07/23	09/09/23	
nions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 2336052
hloride	306	40.0	2	09/06/23	09/08/23	
nions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 233605

Sample Data	ł
-------------	---

	Di	ample D	ala			
Talon LPE	Project Name:	Mala	aga 4			
408 W Texas Ave	Project Numbe	er: 2304	42-0001			Reported:
Artesia NM, 88210	Project Manag	er: Cha	d Hensley			9/12/2023 1:21:14PM
		SW-3				
		E309025-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/07/23	
Toluene	ND	0.0250	1	09/05/23	09/07/23	
o-Xylene	ND	0.0250	1	09/05/23	09/07/23	
o,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
Surrogate: 4-Bromochlorobenzene-PID		96.5 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	ng/kg Analyst: IY		Batch: 2336023	
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.0 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	mg/kg Analyst: KM		Batch: 2336060	
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Dil Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
Surrogate: n-Nonane		100 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: BA		Batch: 2336052
Chloride	323	100	5	09/06/23	09/08/23	

Sample Data						
Talon LPE	Project Name:	Malaga 4				
408 W Texas Ave	Project Number:	23042-0001	Reported:			
Artesia NM, 88210	Project Manager:	Chad Hensley	9/12/2023 1:21:14PM			
SW-4						

		E309025-10				
		Reporting				
Analyte	Result	Limit	Diluti	on Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	А	nalyst: IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/07/23	
Ethylbenzene	ND	0.0250	1	09/05/23	09/07/23	
Toluene	ND	0.0250	1	09/05/23	09/07/23	
o-Xylene	ND	0.0250	1	09/05/23	09/07/23	
p,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
Surrogate: 4-Bromochlorobenzene-PID		97.1 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	А	nalyst: IY		Batch: 2336023
Gasoline Range Organics (C6-C10)	ND	20.0	1	09/05/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.7 %	70-130	09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	А	nalyst: KM		Batch: 2336060
Diesel Range Organics (C10-C28)	ND	25.0	1	09/07/23	09/09/23	
Oil Range Organics (C28-C36)	ND	50.0	1	09/07/23	09/09/23	
Surrogate: n-Nonane		99.0 %	50-200	09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	А	nalyst: BA		Batch: 2336052
Chloride	281	40.0	2	09/06/23	09/08/23	

	Sa	mple Da	ata			
Talon LPE	Project Name:	Mala	nga 4			
408 W Texas Ave	Project Number	r: 2304	2-0001			Reported:
Artesia NM, 88210	Project Manage	er: Chao	l Hensley			9/12/2023 1:21:14PM
		SW-5				
	I	E309025-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	IY		Batch: 2336023
Benzene	ND	0.0250	1	09/05/23	09/07/23	
thylbenzene	ND	0.0250	1	09/05/23	09/07/23	
oluene	ND	0.0250	1	09/05/23	09/07/23	
-Xylene	ND	0.0250	1	09/05/23	09/07/23	
,m-Xylene	ND	0.0500	1	09/05/23	09/07/23	
Total Xylenes	ND	0.0250	1	09/05/23	09/07/23	
urrogate: 4-Bromochlorobenzene-PID		97.1 %	70-130	09/05/23	09/07/23	

Surrogate: 4-Bromochlorobenzene-PID		97.1%	70-130		09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analys	t: IY		Batch: 2336023
Gasoline Range Organics (C6-C10)	ND	20.0		1	09/05/23	09/07/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.5 %	70-130		09/05/23	09/07/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analys	t: KM		Batch: 2336060
Diesel Range Organics (C10-C28)	ND	25.0		1	09/07/23	09/09/23	
Oil Range Organics (C28-C36)	ND	50.0		1	09/07/23	09/09/23	
Surrogate: n-Nonane		101 %	50-200		09/07/23	09/09/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analys	t: BA		Batch: 2336052
Chloride	280	20.0		1	09/06/23	09/08/23	

QC Summary Data

	$\mathbf{t} \in \mathcal{S}$			-				
	Project Name: Project Number: Project Manager:	23	3042-0001					Reported: 9/12/2023 1:21:14PM
	, 0		•	1B				Analyst: IY
		-	-					Allaryst. 11
D16		•		Daa		PPD		
								Nata
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%0	Notes
						Prepared: 0	9/05/23 A	analyzed: 09/06/23
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0250							
ND	0.0500							
ND	0.0250							
7.65		8.00		95.6	70-130			
						Prepared: 0	9/05/23 A	analyzed: 09/06/23
5.53	0.0250	5.00		111	70-130			
5.50	0.0250	5.00		110	70-130			
5.59	0.0250	5.00		112	70-130			
5.53	0.0250	5.00		111	70-130			
11.1	0.0500	10.0		111	70-130			
16.7	0.0250	15.0		111	70-130			
7.67		8.00		95.8	70-130			
			Source:	E309025-	03	Prepared: 0	9/05/23 A	analyzed: 09/06/23
5.02	0.0250	5.00	ND	100	54-133			
5.00	0.0250	5.00	ND	100	61-133			
5.05	0.0250	5.00	ND	101	61-130			
5.02	0.0250	5.00	ND	100	63-131			
10.2	0.0500	10.0	ND	102	63-131			
15.2	0.0250	15.0	ND	101	63-131			
7.72		8.00		96.5	70-130			
			Source:	E309025-	03	Prepared: 0	9/05/23 A	nalyzed: 09/06/23
5.06	0.0250	5.00	ND	101	54-133	0.637	20	
5.03	0.0250	5.00	ND	101	61-133	0.513	20	
5.09	0.0250	5.00	ND	102	61-130	0.693	20	
5.04	0.0250	5.00	ND	101	63-131	0.425	20	
10.2	0.0500	10.0	ND	102	63-131	0.517	20	
	ND ND ND ND 7.65 5.53 5.50 5.59 5.53 11.1 16.7 7.67 5.02 5.00 5.05 5.02 10.2 15.2 7.72 5.06 5.03 5.09	Project Name: Project Number: Project Manager: Volatile Or Result mg/kg Reporting Limit mg/kg ND 0.0250 S.53 0.0250 5.53 0.0250 5.53 0.0250 5.53 0.0250 5.50 0.0250 5.53 0.0250 5.54 0.0250 5.55 0.0250 5.50 0.0250 5.02 0.0250 5.03 0.0250 5.04 0.0250 5.05 0.0250 5.06 0.0250 5.03 0.0250 5.03 0.0250 5.03 0.0250	Project Name: M Project Number: 2: Project Manager: C Volatile Organics I Result Reporting mg/kg Spike Level mg/kg ND 0.0250 S.53 0.0250 5.50 5.00 5.53 0.0250 5.00 5.00 5.53 0.0250 5.00 5.00 5.01 5.02 5.02 0.0250 5.03 0.0250 5.04 5.05 5.05 5.00	Project Number: Project Manager: 23042-0001 Chad Hensley Volatile Organics by EPA 802 Result mg/kg Reporting Limit Spike Level Source Result ND 0.0250 mg/kg mg/kg S.53 0.0250 5.00 mg/kg S.53 0.0250 5.00 mg/kg S.60 0.0250 5.00 mg/kg S.502 0.0250 5.00 ND S.012 0.0250 5.00 ND S.02 0.0250 5.00 ND	Project Name: Malaga 4 Project Number: 23042-0001 Project Manager: Chad Hensley Volatile Organics by EPA 8021B Result Reporting Limit Spike Level Source Result Rec mg/kg mg/kg mg/kg mg/kg % ND 0.0250	Project Name: Malaga 4 Project Number: 23042-0001 Project Manager: Chad Hensley Volatile Organics by EPA 8021B Result Reporting Limit Spike Mg/kg Source Mg/kg Rec Mg/kg Rec Mg/kg	Project Name: Malaga 4 Project Number: 23042-0001 Project Manager: Chad Hensley Volatile Organics by EPA 8021B Result Reporting Limit Spike Level Source Result Rec % Rec % Rec % Rep % RPD mg/kg mg/kg mg/kg mg/kg mg/kg % % % % ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 ND 0.0250 Prepared: 0 ND 0.0250 S.00 111 70-130 7.65 8.00 95.6 70-130 5.50 0.0250 5.00 111 70-130 7.67 8.00 95.8 70-130 5.53 0.0250 5.00 111 70-130 7.67 8.00 95.8 70-130 7.67 8.00 95.8 70-130 7.67 8.00 95.8 70-130 5.01 0.0250 5.00 ND 100 64-133	Project Name: Malaga 4 Project Number: 23042-0001 Project Manager: Chal Hensley Volatile Organics by EPA 8021B Result Reporting Limit Spike Level Source Result Rec Limits RPD Limit mg/kg mg/kg mg/kg mg/kg % % % % ND 0.0250 ND 0.0250 ND 0.0250 Prepared: 09/05/23 A ND 0.0250 ND 0.0250 Prepared: 09/05/23 A ND 0.0250 ND 0.0250 Prepared: 09/05/23 A ND 0.0250 S.00 111 70-130 Prepared: 09/05/23 A 5.53 0.0250 5.00 111 70-130 P P 5.53 0.0250 5.00 111 70-130 P P 5.53 0.0250 5.00 111 70-130 P P 5.53 0.0250 5.00

QC Summary Data

		QC 3	umm	ary Data	1				
Talon LPE 408 W Texas Ave		Project Name: Project Number:		Malaga 4 23042-0001					Reported:
Artesia NM, 88210		Project Manager:	. (Chad Hensley					9/12/2023 1:21:14PM
	No	nhalogenated (Organics	s by EPA 801	5D - G	RO			Analyst: IY
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2336023-BLK1)							Prepared: 0	9/05/23 A	analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.44		8.00		93.0	70-130			
LCS (2336023-BS2)							Prepared: 0	9/05/23 A	analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	48.4	20.0	50.0		96.8	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.48		8.00		93.5	70-130			
Matrix Spike (2336023-MS2)				Source:]	E309025-	03	Prepared: 0	9/05/23 A	analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	49.2	20.0	50.0	ND	98.4	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.43		8.00		92.9	70-130			
Matrix Spike Dup (2336023-MSD2)				Source: 1	E309025-	03	Prepared: 0	9/05/23 A	analyzed: 09/06/23
Gasoline Range Organics (C6-C10)	52.4	20.0	50.0	ND	105	70-130	6.17	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.51		8.00		93.9	70-130			

QC Summary Data

		QC S	umma	iry Data	d				
Talon LPE 408 W Texas Ave Artesia NM, 88210		Project Name: Project Number: Project Manager:	23	alaga 4 8042-0001 had Hensley					Reported: 9/12/2023 1:21:14PM
	Nonh	alogenated Org	anics by	EPA 8015E) - DRO	/ORO			Analyst: KM
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2336060-BLK1)							Prepared: 0	9/06/23 A	analyzed: 09/09/23
Diesel Range Organics (C10-C28)	ND	25.0					-		
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	50.8		50.0		102	50-200			
LCS (2336060-BS1)							Prepared: 0	9/06/23 A	analyzed: 09/09/23
Diesel Range Organics (C10-C28)	258	25.0	250		103	38-132			
Surrogate: n-Nonane	46.1		50.0		92.3	50-200			
Matrix Spike (2336060-MS1)				Source:	E309015-	01	Prepared: 0	9/06/23 A	analyzed: 09/11/23
Diesel Range Organics (C10-C28)	18200	1250	250	19500	NR	38-132			M4
Surrogate: n-Nonane	46.7		50.0		93.3	50-200			
Matrix Spike Dup (2336060-MSD1)				Source:	E309015-	01	Prepared: 0	9/06/23 A	analyzed: 09/11/23
Diesel Range Organics (C10-C28)	18400	1250	250	19500	NR	38-132	1.36	20	M4
Surrogate: n-Nonane	46.4		50.0		92.7	50-200			

QC Summary Data

		QU D		ary Date					
Talon LPE 408 W Texas Ave Artesia NM, 88210		Project Name: Project Number: Project Manager:	2	Malaga 4 3042-0001 Chad Hensley					Reported: 9/12/2023 1:21:14PM
		Anions l	by EPA	300.0/9056A	1				Analyst: BA
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2336052-BLK1)							Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride LCS (2336052-BS1)	ND	20.0					Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	255	20.0	250		102	90-110			
Matrix Spike (2336052-MS1)				Source:	E309024-2	21	Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	869	100	250	608	104	80-120			
Matrix Spike Dup (2336052-MSD1)				Source:	E309024-2	21	Prepared: 0	9/06/23	Analyzed: 09/08/23
Chloride	883	100	250	608	110	80-120	1.54	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Talon LPE	Project Name:	Malaga 4	
408 W Texas Ave	Project Number:	23042-0001	Reported:
Artesia NM, 88210	Project Manager:	Chad Hensley	09/12/23 13:21

M4 Matrix spike recovery value is suspect since the analyte concentration in the sample is disproportionate to the spike level. The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Released to Imaging: 2/15/2024 2:31:04 PM

Client: Ta	alor	n LPE									Bill T	ю		13.4			Lab L	lse Oi	nly		15 . <u>3</u> . 1				AT -		EPA P	rogram
ProjectM	iala	nga.4								tention:				Lab	wo	#		Job	Num			1D	2D	3D	St	andard	CWA	SDWA
Project N	<u>//an</u>	ager:							Ad	ldress:				E	309	102	25	23	D42	2.00	2				x			
Address:	4	408 W. '	Texas	Ave					<u>Cit</u>	ty, State, Zi	ip							Anal	ysis a	nd Me	thod							RCRA
City, State				M 88	210				<u>Ph</u>	one:					þ						I			\square				
Phone: 8	575	-746-87	68 _						En	nail:					ORO	ł.											State	<u> </u>
Email:c			alonip	e.cor	n										80/	1 1			9.			Σ		¥		NM CO	UT AZ	TX
Report_d	<u>ue</u>	<u>by:</u>											-		0	8	826	601	e 30							X		
Time Sampled		Date Impled	Matr	ix	No. Contai		Sample ID)					Lab Number		TPH GRO/DRO/ORO by	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0			BGDOC		GDOC			Remarks	
10:01	8-	31-23	soil		1		C-1	6	ı				1		X	X			X									
10:07							C-2						2		T	\Box			Π									
1011							C-3						3						\prod					\square				
16:14							C-4						4						Π									
1015							C-5						5						Π									
1019							C-6						6		Π				\prod					\square				
1031							SW-1						7						\prod									
1036							SW-2						8			Π			\prod			_						
644							SW-3						9			Π												
1049			T	,	1	•	SW-4						10			·		\uparrow	L									
Addition	al I	Instruc	tions:														.		•	.								
· · · ·	•			•			•	•		•	ng with or intentio	onally mislabelli	ng the sample	e locati	ion,												they are sample	d or receive
date or time				dered			y be ground		-		Sampled by:		<u> </u>					раске		at an avg	temp a	above () but les	s than 6	5*C on s	subsequent da	ys.	
Relinquish	\leq					Date 9	123	Time	1820		by (Signature)		Date 9.1.	23	Time	-	20	Rec	eivec	l on ic	e:		ab Us) / N	e On	ly			
Relinquish	~		for	\leq	_	^D 2 0 .	1.23	Time	835	Réceived b	by: (Signature)	Matro	q . /. 7	23	Time	84	<u>"5</u>	<u>T1</u>				<u>T2</u>			2 <u>01</u>	. <u>T3</u>		
Relinguish	ed b 7	y: (Sterla Gu	ature) N	14	7	Date Q.	2.23	Time	715	Received t	by (Signature)	lan	9/5/2	3	Time	15	-	AVO	iTen	ר¢ p	4							
Sample Mat													Containe	r Тур	e: g -	glass	, p - r	oly/p	lastic,	ag-a	mbei	r glas	is, v -	VOA	<u> </u>			<u> </u>
Note: Sam	ples	s are disc	arded	30 da	ys aft	er resu	ults are rep	ortec	l unless ot	her arrangem	nents are made	a. Hazardous	samples will	be re	turne	d to c	lient c	r dispo	sed o	f at the	clien	t exp	ense.	The r	eport	for the ana	lysis of the	above
samples is	арр	olicable c	only to t	those	samp	oles rea	ceived by t	he lal	poratory w	ith this COC.	The liability of	the laboratory	is limited t	o the a	amou	nt pai	d for (
samples is	<u>ahh</u>				2011	10310			Joratory w		The native of		y is infined to	o ulea	amou	nt par					r	יר	V	i	r	ot	e	C

Project	Information
---------	-------------

Read. To					<u> </u>		Dill To		·					. 1				Т				
	alon LPE				÷.,	A++	Bill To		<u> </u>			ab Us			na Status Istan	-			rogram			
	alaga 4 1anager:				1.11	_	dress:			WO	1.00	-	100	Num	• /	, 1) 2D	3D	_	andard	CWA	SDWA
	408 W.	Texas Ave	<u>a</u>				v, State, Zip		<u>بح</u>	20-	102	-0-	Apali	<u>272</u>	nd Met				x	at a state of		DCDA
	e, Zip Art						one:		-	I ≿	<u> </u>	r –	Anar	ysis ai T				<u> </u>	<u> </u>		_	RCRA
hone:	575-746-8	768			$[e^{i}]_{i}$		nail:			²											State	
	hensley@							,		8				0			:			NM CO		
leport d						1.8				NO/	8021	3260	8	8 8		A MA		Ĕ		Y		
Time	Date	Matrix	No. of Containers	Sample ID)			Lab		TPH GRO/DRO/ORO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0				GDOC			Remarks	1 1
Sampled	Sampled	<u> </u>						Number			<u> </u>	<u> </u>	ž	т Т			<u>-</u>	5				
020	8-31-23	soil	1	SW-5			· · · · · · · · · · · · · · · · · · ·			×_	X			<u>^</u>								
																			İ			
,								-2,									1-					
							· · · · · · · · · · · · · · · · · · ·	i e a	† ·								+					
<u> </u>									-				<u> </u>				+	+	┣─			
										<u> </u>							+					
	-																					
																	+		<u> </u>			
			<u> </u>													+						
addition	al Instruc	tions:		1																		
	armstruc	uons:																				
	•••			icity of this sa nay be ground	-		that tampering with or intentionally misla Sampled by:	abelling the sample	locat	ion,										on ice the day th subsequent day		ed or receive
elinquish	ed by: (Sign	ature)	Date 9	11/23	Time 87	20	Received by: (Signature)	Date 9.1.7	23	Time	IYZ	20	Rec	eived	on ice	: 1	Lab U	se Or 1	ily			
elinquis	ed by: (Sign	ature)	- Date	.1.23	Time	35	Received by: (Signature)	$\mathbf{p} = \frac{Date}{Q} \cdot / \cdot $	2	Time	24	15	T1			۲2 T2				Т3		
etureuish	ed by 18ign	ature) M	So Q	.2.23		15	Received by (Signature)	9/5/2	3	Time	:15		AVG	i Tem	ip °C	4						
ample Mat	rix: S - Soil, S			queous, O - O	ther			Container	Тур		<u></u>					ber g	ass, v	- VOA				
lote: Sam	ples are dis	carded 30 c	days after re	sults are rep	orted unle	ess oth	her arrangements are made. Hazard ith this COC. The liability of the laboration of t	ous samples will	be re	turned	l to cli	ent or	dispo	osed of	f at the c	lient e	pense	. The	report	for the anal	ysis of the	above

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Talon LPE	Date Received:	09/05/23	08:15	Work Order ID:	E309025
Phone:	(575) 746-8768	Date Logged In:	09/05/23	10:31	Logged In By:	Caitlin Mars
Email:	chensley@talonlpe.com	Due Date:	09/11/23	17:00 (4 day TAT)		
Chain o	f Custody (COC)					
1. Does 1	the sample ID match the COC?		Yes			
2. Does t	the number of samples per sampling site location mate	h the COC	Yes			
3. Were	samples dropped off by client or carrier?		Yes	Carrier: Courier		
4. Was th	he COC complete, i.e., signatures, dates/times, request	ed analyses?	Yes			
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in i.e, 15 minute hold time, are not included in this disucssio		Yes		Commen	ts/Resolution
Sample '	<u>Turn Around Time (TAT)</u>					
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes			
Sample	Cooler_					
7. Was a	sample cooler received?		Yes			
8. If yes,	, was cooler received in good condition?		Yes			
9. Was tl	he sample(s) received intact, i.e., not broken?		Yes			
10. Were	e custody/security seals present?		No			
11. If ye	s, were custody/security seals intact?		NA			
12. Was t	he sample received on ice? If yes, the recorded temp is 4°C, i Note: Thermal preservation is not required, if samples are minutes of sampling		Yes			
13. If no	visible ice, record the temperature. Actual sample	temperature: 4°	С			
	Container	<u>.</u>	<u> </u>			
	aqueous VOC samples present?		No			
	VOC samples collected in VOA Vials?		NA			
	e head space less than 6-8 mm (pea sized or less)?		NA			
	a trip blank (TB) included for VOC analyses?		NA			
	non-VOC samples collected in the correct containers?		Yes			
	appropriate volume/weight or number of sample contain	ers collected?	Yes			
Field La						
	e field sample labels filled out with the minimum infor	mation:				
	Sample ID?		Yes			
	Date/Time Collected?		Yes	L		
	Collectors name?		No			
-	<u>Preservation</u>	acamica d 9	ът.			
	s the COC or field labels indicate the samples were pro	eservea?	No			
	sample(s) correctly preserved? o filteration required and/or requested for dissolved m	atalo?	NA No			
		əta18 (No			
	ase Sample Matrix	ō				
	s the sample have more than one phase, i.e., multiphas		No			
27. If ye	s, does the COC specify which phase(s) is to be analy	zed?	NA			
	tract Laboratory					
28. Are s	samples required to get sent to a subcontract laborator a subcontract laboratory specified by the client and if	•	No			

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

August 16, 2023

CHAD HENSLEY TALON LPE 408 W. TEXAS AVE.

ARTESIA, NM 88210

RE: MATADOR MALAGA SWD #004

Enclosed are the results of analyses for samples received by the laboratory on 08/10/23 13:30.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 1 1' (H234306-01)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.2 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	08/14/2023	ND	416	104	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 1 2' (H234306-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.3 9	71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	688	16.0	08/14/2023	ND	416	104	400	3.77	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 1 3' (H234306-03)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	400	16.0	08/14/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 1 4' (H234306-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	08/14/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	97.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 2 1' (H234306-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	08/14/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	94.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 3 1' (H234306-06)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	08/14/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	91.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 4 1' (H234306-07)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	08/14/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	89.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 5 1' (H234306-08)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	08/14/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	85.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 6 1' (H234306-09)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	08/14/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	87.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 7 1' (H234306-10)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5120	16.0	08/14/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	88.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 7 2' (H234306-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8260	16.0	08/14/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	89.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 8 1' (H234306-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.01	101	2.00	0.732	
Toluene*	<0.050	0.050	08/15/2023	ND	1.91	95.5	2.00	1.05	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.96	97.8	2.00	0.213	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.88	98.1	6.00	0.294	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10400	16.0	08/14/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	91.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 8 2' (H234306-13)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.05	103	2.00	4.51	
Toluene*	<0.050	0.050	08/15/2023	ND	1.90	94.9	2.00	1.90	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.88	93.9	2.00	2.34	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.49	91.6	6.00	2.51	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3920	16.0	08/14/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	172	86.0	200	4.87	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	165	82.3	200	0.217	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	94.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TALON LPE CHAD HENSLEY 408 W. TEXAS AVE. ARTESIA NM, 88210 Fax To: (575) 745-8905

Received:	08/10/2023	Sampling Date:	08/08/2023
Reported:	08/16/2023	Sampling Type:	Soil
Project Name:	MATADOR MALAGA SWD #004	Sampling Condition:	Cool & Intact
Project Number:	702520.067.01	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY		

Sample ID: S - 8 2.5' R (H234306-14)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	08/15/2023	ND	2.05	103	2.00	4.51	
Toluene*	<0.050	0.050	08/15/2023	ND	1.90	94.9	2.00	1.90	
Ethylbenzene*	<0.050	0.050	08/15/2023	ND	1.88	93.9	2.00	2.34	
Total Xylenes*	<0.150	0.150	08/15/2023	ND	5.49	91.6	6.00	2.51	
Total BTEX	<0.300	0.300	08/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	08/14/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	08/14/2023	ND	166	83.1	200	2.61	
DRO >C10-C28*	<10.0	10.0	08/14/2023	ND	185	92.3	200	0.458	
EXT DRO >C28-C36	<10.0	10.0	08/14/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 17 of 18

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 81 of 83

CARDINAL Laboratories

101 East Marland, Hobbs, NM 88240

CARDINAL Laboratories

101 East Marland, Hobbs, NM 88240

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Released to Imaging: 2/15/2024 2:31:04 PM

Page 82 of 83

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
MATADOR PRODUCTION COMPANY	228937
One Lincoln Centre	Action Number:
Dallas, TX 75240	270832
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition Condition Date We have received your Remediation Closure Report for Incident #NAPP2319477477 MALAGA SWD #004, thank you. This Remediation Closure Report is 2/15/2024 rhamlet approved. Areas reasonably needed for production or subsequent drilling operations will need to be reclaimed and revegetated as soon as they are no longer reasonably needed. A report for reclamation and revegetation including pictures of the contoured backfilled excavation surface and a thorough discussion on reseeding mixture, vegetation ratio, timelines, etc.., will need to be submitted and approved prior to this incident receiving the final status of "Restoration Complete"

Action 270832

CONDITIONS

Page 83 of 83