ENSOLUM

March 5, 2024

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Remediation Work Plan PLU 17 Twin Wells Ranch 122H Incident Number NAPP2334152485 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared the following *Remediation Work Plan (Work Plan)* to document assessment and delineation activities completed to date and proposes remedial actions to address impacted soil identified at the PLU 17 Twin Wells Ranch 122H (Site). The purpose of the Site assessment and delineation activities was to determine the presence or absence of impacted soil resulting from a release of crude oil and produced water at the Site. The following *Work Plan* proposes to excavate impacted soil and requests a Closure Criteria variance.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit D, Section 20, Township 24 South, Range 31 East, in Eddy County, New Mexico (32.20863°, -103.80592°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM).

On December 6, 2023, a buried flowline was struck during mechanical excavation, resulting in the release of 5.53 barrels (bbls) of crude oil and 25.19 bbls of produced water onto the surface of the well pad and into the adjacent pasture. A vacuum truck was dispatched to the Site to recover free standing fluids, and approximately 25.0 bbls of released fluids were recovered. XTO immediately reported the release to the New Mexico Oil Conservation Division (NMOCD) via email and submitted a Release Notification Form C-141 (Form C-141) on December 12, 2023. The release was assigned Incident Number NAPP2334152485.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented below.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on a soil boring drilled for determination of regional groundwater depth. In August 2023, a soil boring permitted by New Mexico Office of the State Engineer (NMOSE file number C-04759) was completed approximately 0.66 miles west of the Site utilizing air rotary drilling methods. Soil boring C-04759 was drilled to a depth of 110 feet bgs. While installing the temporary well, the bottom of the borehole collapsed to a depth of 107 feet bgs. A field geologist logged and described soils continuously. No moisture or groundwater was encountered during drilling activities. The temporary well was left open

XTO Energy, Inc. Remediation Work Plan PLU 17 Twin Wells Ranch 122H

for over 72 hours to allow for potential slow infill of groundwater. After the 72-hour waiting period without observing groundwater, it was confirmed that groundwater beneath the Site is greater than 107 feet bgs. The borehole was properly abandoned with drill cuttings and hydrated bentonite chips. The Well Log is included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is a freshwater emergent wetland, located approximately 4,042 feet north of the Site. The Site is greater than 200 feet from any lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Potential Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

A reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH applied to the top 4 feet of pasture area that was impacted by the release, per 19.15.29.13.D (1) NMAC for the top 4 feet of areas that will be reclaimed following remediation.

SITE ASSESSMENT AND DELINEATION SOIL SAMPLING ACTIVITIES

On January 4, 2024, Ensolum personnel conducted a Site assessment to evaluate the release extent based on information provided on the Form C-141, information provided by XTO, and visual observations. The release extent area was mapped utilizing a handheld Global Positioning System (GPS) unit and is depicted on Figure 2. During the Site assessment, Ensolum observed the excavation from replacing the line strike was still open but safely fenced off. XTO drilling operations were also present on the Site well pad. A Photographic Log of the excavated area and Site conditions is included in Appendix B.

On January 17 and 18, 2024, Ensolum returned to the Site to oversee delineation activities. Five potholes (PH01 through PH05) were advanced by a hand auger to investigate the vertical extent of the release. The potholes were advanced to auger refusal which included depths ranging from 3 feet to 4 feet bgs. Discrete soil samples were collected from each pothole at depths ranging from 0.5 feet to 4 feet bgs. Seven discrete soil samples (SS01 through SS07) were collected outside the release extent at a depth of 0.5 feet bgs to define the lateral extent of the release. All delineation soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The soil sample locations were mapped utilizing a handheld GPS unit and are depicted on Figure 2. A photographic log of delineation activities is included in Appendix B. Field screening results and observations for all potholes were logged on lithologic/soil sampling logs, which are included in Appendix C. The delineation soil sample locations are depicted on Figure 2.

XTO Energy, Inc. Remediation Work Plan PLU 17 Twin Wells Ranch 122H

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following constituents of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0. Soil samples delivered to the laboratory the same day they are collected may not have equilibrated to the 6 degrees Celsius required for shipment and long term storage but are considered by the laboratory to have been received in acceptable condition.

LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for delineation soil sample PH01, collected at 0.5 feet bgs, indicated the TPH-GRO/TPH-DRO and TPH concentrations exceeded the Closure Criteria and is the only sample collected indicating COC concentrations exceeding Closure Criteria. However, soil samples PH03 collected at 0.5 feet, and PH02A and PH03A collected at 3 feet bgs indicated TPH concentrations exceeded the reclamation requirement. Soil samples PH01, PH02, and PH02A indicated chloride concentrations exceeded the reclamation requirement. Laboratory analytical results for all other delineation soil samples collected indicated COC concentrations were in compliance with Closure Criteria and the reclamation requirement. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical report is included in Appendix D.

PROPOSED REMEDIATION WORK PLAN

Site assessment and delineation activities were conducted at the Site to assess for the presence or absence of impacted soil resulting from a release of crude oil and produced water. Based on laboratory analytical results, TPH and chloride impacted soil exists across an approximate 3,031 square-foot area within the release footprint at depths ranging from 0.5 feet bgs to an exceedance of 3 feet bgs. Due to auger refusal at 3 feet bgs in PH02 and PH03, vertical definition was not achieved in the pasture area under the reclamation requirement standards. While the vertical extent of the release is not fully established in the pasture area, it is established in all other potholes to Site Closure Criteria. The lateral extent of the release is defined through laboratory analytical results of soil samples SS01 through SS07.

XTO proposes to remove petroleum hydrocarbon and chloride impacted soil identified at the Site. The proposed excavation extent is depicted on Figure 3 and includes the previously excavated area from when the flowline was repaired. Following the removal of impacted soil, confirmation samples will be collected at a sampling frequency of every 200 square feet along the floors and sidewalls of the final excavation extent and within the northern half of the release footprint on the surface of the well pad where potholes PH04 and PH05 exist. Based on laboratory analytical results from PH02A and PH03A at 3 feet bgs, where auger refusal was encountered, Ensolum anticipates the excavation to extend to a depth of at least 4 feet bgs in these areas and in doing so, achieve full definition in the pasture area through the collection of floor and sidewall confirmation soil samples. The soil samples will be handled and analyzed for COCs as described above and submitted to Eurofins for laboratory analysis. An estimated 450 cubic yards of impacted soil will be removed. The excavated soil will be transferred to a New Mexico approved landfill facility for disposal. The excavation will be backfilled and recontoured to match pre-existing Site conditions and the pasture area will be reseeded with a BLM-approved seed mixture.

Based on the lack of sensitive receptors at the Site, the Site being underlain by low potential karst designation area, and nearby depth to groundwater data estimating regional depth to groundwater to be greater than 100 feet bgs on both sides of the Site, XTO is requesting a Closure Criteria variance for the

XTO Energy, Inc. Remediation Work Plan PLU 17 Twin Wells Ranch 122H

distance of the nearest depth to groundwater data exceeding a distance of 0.5 miles from the Site. The nearest depth to groundwater data includes the above-mentioned soil boring C-04759 that exceeds 107 feet bgs and is located 0.66 miles west of the Site, and soil borings C-04499 that exceeds 110 feet bgs and is located 0.79 miles east of the Site. Both soil borings are the most recent dated depth to groundwater data in the region as C-04759 was drilled in August 2023, and C-04499 was drilled December 2020. The next nearest depth to groundwater well is United States Geological Survey (USGS) well 321310103482101 located 0.83 miles north of the Site and has a recorded depth to water of 74.44 feet bgs. However, the last recorded depth to groundwater reading was in January 2013, the well is listed as an "Inactive Site" on the USGS National Water Information System Mapper, which could potentially mean the well is dry, and previous depth to groundwater measurements indicate an increasing groundwater depth with age. The closest groundwater well data has reasonably estimated the Site's depth to groundwater and therefore is equally protective of the public, the environment, and groundwater. Based on the above-mentioned findings, XTO requests a Closure Criteria variance for regional depth to groundwater at the Site to be greater than 100 feet bgs. All Well Logs used for the depth to groundwater investigation are included in Appendix A.

XTO believes this *Work Plan* is protective of human health, the environment, and groundwater. As such, XTO requests approval of this *Work Plan* by NMOCD. XTO will complete the excavation and soil sampling activities within 90 days of the date of approval of this *Work Plan* by the NMOCD or within 90 days of when XTO production operations is discharged from the Site, whichever comes first. If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Daniel Moir. PG

Senior Managing Geologist

Sincerely, Ensolum, LLC

D.J. Delil

Benjamin J. Belill Senior Geologist

cc: Amy Ruth, XTO Tommee Lambert, XTO BLM

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Proposed Excavation Extent
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Lithologic / Soil Sampling Logs
- Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation

FIGURES

.

Received by OCD: 3/5/2024 3:44:33 PM

Received by OCD: 3/5/2024 3:44:33 PM

Received by OCD: 3/5/2024 3:44:33 PM

Released to Imaging: 3/12/2024 1:49:28 PM

TABLES

.

ENSOLUM

				PLU 17 *	LE ANALYTIC Twin Wells Ra (TO Energy, Ir County, New	nch 122H nc				
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I C	Closure Criteria (NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000
				Delir	neation Soil Sa	mples	1		I	
SS01	01/18/2024	0.5	<0.00200	<0.00401	<50.2	<50.2	<50.2	<50.2	<50.2	11.8
SS02	01/18/2024	0.5	<0.00199	<0.00398	<50.4	<50.4	<50.4	<50.4	<50.4	11.0
SS03	01/18/2024	0.5	<0.00199	<0.00398	<50.5	<50.5	<50.5	<50.5	<50.5	10.2
SS04	01/18/2024	0.5	<0.00200	< 0.00399	<49.8	<49.8	<49.8	<49.8	<49.8	11.8
SS05	01/18/2024	0.5	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	11.2
SS06	01/18/2024	0.5	<0.00199	<0.00398	<49.7	<49.7	<49.7	<49.7	<49.7	19.7
SS07	01/18/2024	0.5	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	<49.9	26.7
PH01	01/17/2024	0.5	<0.00201	6.08	814	3,390	<50.2	3,750	4,200	3,710
PH01A	01/17/2024	4	<0.00199	0.0268	<50.4	358	<50.4	358	358	404
PH02	01/17/2024	0.5	<0.00199	0.00398	<50.5	88.4	<50.5	88.4	88.4	1,720
PH02A	01/17/2024	3	<0.00200	0.0309	<50.0	773	<50.0	773	773	837
PH03	01/17/2024	0.5	<0.00201	0.0140	<50.0	103	<50.0	103	103	535
PH03A	01/17/2024	3	<0.00200	<0.00401	<49.6	180	<49.6	180	180	159
PH04	01/18/2024	0.5	<0.00199	<0.00398	<49.7	<49.7	<49.7	<49.7	<49.7	25.8
PH04A	01/18/2024	3	<0.00199	<0.00398	<49.8	<49.8	<49.8	<49.8	<49.8	18.7
PH05	01/18/2024	0.5	<0.00200	<0.00399	<50.1	<50.1	<50.1	<50.1	<50.1	23.9
PH05A	01/18/2024	3	<0.00201	<0.00402	<50.3	<50.3	<50.3	<50.3	<50.3	14.8

TABLE 1

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation requirement where applicable. GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon NMAC: New Mexico Administrative Code

.

APPENDIX A

Referenced Well Records

								Sample Name: C-4759 (BH01)	Date: 8/07/2023			
				C	ΟΙ			Site Name: PLU 18 TWR SAT BATT	ERY			
				3				Incident Number: nAPP22305519	57			
								Job Number: 03C1558144				
		LITHOL	OGIC		SAMPLING	LOG		Logged By: M. O'Dell	Method: Air Rotary Rig			
Coord		2.207892						Hole Diameter: N/A Total Depth: 110'				
Comm	ients: No	field scre	ening	or sampli	ng was cond	ucted at the	site.					
Moisture Content							Lithologic De	scriptions				
						0						
						- - - 10 -	SP	0-10'. Sand w/ trace caliche fine to fine grained, subrou poorly graded, dry.				
					-	20	CCHE	10-40'.Caliche w/ sand. Ligh very fine to fine grained, su subangular, poorly graded,	brounded to			
					-	30						
						40	SP	40-100'. Sand w/ trace calic very fine to fine grained, su subangular grains, poorly g	brounded to			
					-	50		50': Injecting/adding water	& soap at 50'			
					-	60						
					-	70						
					-	80						
						90						
						100	SP/SC	100-110'. Clayey sand, redc very fine to fine grained, pc	lish orange oorly graded, dry.			
					-	110		110': stopped drilling and so	et casing at 110'.			
						TD (@ 110' k	ogs.				

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NO. (WE)		WELL TAG ID NO			OSE FILE NO(S).			•
IION	POD1 (MW-1 Well owner na				n/a			C-4499 PHONE (OPTIC				
GENERAL AND WELL LOCATION	XTO Energy (K							PHONE (OP IN	JNAL)			
TTT	WELL OWNER MA 6401 Holiday H				· · · · · · · · · · · · · · · · · · ·			CITY Midland		state TX	79707	ZIP
D WE											19101	
L AN	WELL LOCATION		DE	egrees 32°	MINUTES 12'	SECON 15.8		• ACCURACY	REQUIRED: ONE TENT	TH OF A S	ECOND	
ERA	(FROM GPS)			-103°	47'	36.2		* DATUM REC	QUIRED: WGS 84			
CEN	1		G WELL LOCATION TO	STREET ADD	RESS AND COMMON	N LANDM	ARKS – PLS	S (SECTION, TO	WNSHJIP, RANGE) WH	ERE AVAI	LABLE	
1.	SE NE Sec. 20	T24S	R31E									
	LICENSE NO. 1249		NAME OF LICENSED		Jackie D. Atkins				NAME OF WELL DRI Atkins Eng		OMPANY Associates, I	nc.
	DRILLING START	ED	DRILLING ENDED	DEPTH OF CO	BORE HO	LE DEPTH (FT)	DEPTH WATER FIRS	-				
	12/30/2020 12/30/2020 temporary well material 110 n/a											
7	COMPLETED WEI	LL IS:	ARTESIAN	🗹 DRY HO	LE 🗍 SHALLO	W (UNCO	NFINED)		STATIC WATER LEV	'EL IN CO n/a	MPLETED WE	LL (FT)
2. DRILLING & CASING INFORMATION	DRILLING FLUID:		🗹 AIR	MUD	ADDITI	VES – SPEC	CIFY:		1			
DRM/	DRILLING METHO	DD:	ROTARY		R 🗌 CABLE 1	rool	OTHE	R – SPECIFY:	Hollo	w Stem	Auger	
INFO	DEPTH (feet		BORE HOLE	CASING	MATERIAL ANI GRADE	D/OR		ASING	CASING		NG WALL	SLOT
SING	FROM	то	DIAM (inches)		each casing string sections of screen		i CONNECTION TYPE (add coupling diameter)		INSIDE DIAM. 7 (inches)		THICKNESS SIZ (inches) (inch	
& CA	0	110	±8.5		Boring- HSA	,	(add coup					
,ING												
RILL											•••••	
2. D												
<u> </u>				<u> </u>				······	<u> </u>	 		1
H	DEPTH (feet	bgl) TO	BORE HOLE DIAM. (inches)	1	ST ANNULAR S				AMOUNT (cubic feet)		METHO PLACEN	
ERL	TROM	10										
MAT								-				
LAR								<u> </u>				-
ANNULAR MATERIAL												·
3.4												
				1								
	E NO.	. <u>use</u> . Ц	499		POD NO	D.	1	WR-2	NO.		\sim	0/17)
LOC	CATION	•	24	15.31	E.20.2	24Z	5	WELL TAG I	D NO.			1 OF 2

	DEPTH (: FROM	feet bgl) TO	THICKNESS (feet)	INCLUDE WATE	D TYPE OF MATE R-BEARING CAVI plemental sheets to	FIES O	R FRACTURE ZONI	ŝ	WAT BEARI (YES /	NG?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	6	6	SAND, well gr	aded, fine-to-large g	ain part	icles red-brown, dry		¥	√ N	
	6	8	2	SAND, poorly graded,		•		moist	Y	✓ N	
	8	11	3	CALICHE, mod. cons		· · · · ·			Y	√ N	
	11	46	35	CALICHE, mod. conso			. .	· · · · · · · · · · · · · · · · · · ·	Y	√ N	
	46	74	28	SAND, well-graded, 1			<u> </u>		Y	√ N	
	74	110	36				cohesive, red-brown,		Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL						,,,			Y	· N	
)F Ŵ									Y	N	
000									- Y	N	
CL									Y	N	
OGI				 						N	
EOL										N	
DO.									Y	N	
YDR										N	
4. H									Y	N	
									Y	N	
									 Y	N	
									Y	N	
									Y	N	
									Y	N	
									Y	N	
	_	_		O OF WATER-BEARING					AL ESTIM .L YIELD		0.00
	PUM		IR LIFT	BAILER OT	HER - SPECIFY:					(BP-11).	0.00
NOIS	WELL TES			ACH A COPY OF DAT ME, AND A TABLE SH							
TEST; RIG SUPERVISI	MISCELLA	NEOUS INI	Ie	emporary well materia et below ground surfa ogs adapted from WS	ice, then hydrated	pentoni	oring backfilled us te chips from ten fe	ing dril et belo	l cuttings w ground	from to surface	tal depth to ten to surface.
; RIG S			_		and the BeereBier						
TEST	PRINT NAM	(E(S) OF D	RILL RIG SUPE	RVISOR(S) THAT PRO	VIDED ONSITE SU	PERVI	SION OF WELL CON	ISTRU	CTION OT	HER TH	AN LICENSEE:
5.1	Shane Eldri										
SIGNATURE	CORRECT	RECORD O	F THE ABOVE I	FIES THAT, TO THE B DESCRIBED HOLE AN 30 DAYS AFTER COM	D THAT HE OR SH	E WIL	L FILE THIS WELL				
6. SIGNA	Jack A	tkins		Ja	ckie D. Atkins				01/15	/2021	
-		SIGNAT	URE OF DRILLI	ER / PRINT SIGNEE	NAME					DATE	
FOI	R OSE INTER						₩₽_ ? ∩ ₩Л	TI PE	. ھ UBU		rsion 06/30/2017)
	E NO.	~ .	1499		POD NO.	1	TRN NO.		KAS		$\overline{\boldsymbol{\lambda}}$
	CATION		····/		٩	-	WELL TAG ID NO				PAGE 2 OF 2

USE DII JAN 27 2021 PH3:34

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category: Geographic Area Groundwater ✓ United States ✓ GO

Click to hideNews Bulletins

- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 321310103482101

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321310103482101 24S.31E.17.13120

Eddy County, New Mexico Latitude 32°13'14.1", Longitude 103°48'23.4" NAD83 Land-surface elevation 3,530.00 feet above NGVD29 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer. **Output formats**

Table of data Tab-separated data Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1959-02-03		D	62610		3459.50	NGVD29	Р	Z		
1959-02-03		D	62611		3461.24	NAVD88	Р	Z		
1959-02-03		D	72019	70.50			Р	Z		
1959-03-25		D	62610		3462.33	NGVD29	1	Z		
1959-03-25		D	62611		3464.07	NAVD88	1	Z		
1959-03-25		D	72019	67.67			1	Z		
1976-12-02		D	62610		3463.98	NGVD29	1	Z		
1976-12-02		D	62611		3465.72	NAVD88	1	Z		
1976-12-02		D	72019	66.02			1	Z		
2013-01-17	21:00 UTC	m	62610		3455.56	NGVD29	1	S	USGS	
2013-01-17	21:00 UTC	m	62611		3457.30	NAVD88	1	S	USGS	
2013-01-17	21:00 UTC	m	72019	74.44			1	S	USGS	

	Explanation								
Section	Code	Description							
Water-level date-time accuracy	D	Date is accurate to the Day							

Released to Imaging: 3/12/2024 1:49:28 PM

Received by OCD: 3/5/2024 3:44:33 PM

Section	Code	Description
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2024-03-04 15:11:34 EST 0.3 0.26 nadww02

.

APPENDIX B

Photographic Log

APPENDIX C

Lithologic Soil Sampling Logs

								Sample Name: PH01	Date: 1/17/2024	
								Site Name: PLU 17 Twin Wells I		
			N			LU		Incident Number: NAPP233415		
1								Job Number: 03C1558297		
		LITHOL	OGI		SAMPLING	GLOG		Logged By: Connor Whitman	Method: Hand auger	
Coord				3.805945				Hole Diameter: 3.5"	Total Depth: 4' bgs	
			-		vith HACH Cl	nloride Test	Strips and	PID for chloride and vapor, res	pectively. Chloride test	
								on factor included for all Chloric		
Moisture Content	Molosture Content Content Chloride Chloride Chloride Chloride (ppm) Vapor Vapor (ppm) (pp									
М	4,435 453 N PH01 0.5							SAND, reddish brown, ve silt, some caliche flakes odor.	ry fine grained, trace , no stain, strong H/C	
Μ	274	137	N		-	- 1 - -				
Μ	<168	12.0	Ν		- - -	2				
М	<168	29.0	Ν		-	3				
D	274	60.0	Ν	PH01A	4	4	CCHE	CALICHE, white, well cons fine, red sand, some silt H/C odor.	solidated, with very t, no stain and slight	
					Total D	epth@4	feet bg	s. (Auger Refusal)		

						Sample Name: PH02	Date: 1/17/2024			
						Site Name: PLU 17 Twin Wells Rar				
	I N	>		U	Μ	Incident Number: NAPP23341524				
-						Job Number: 03C1558297				
וודו	HOLOGI		SAMPLING	6106		Logged By: Connor Whitman Method: Hand auger				
Coordinates: 32.20		-				Hole Diameter: 3.5"	Total Depth: 3' bgs			
Comments: Field so	creening co	onducted w				PID for chloride and vapor, respec	tively. Chloride test			
performed with 1:4	4 dilution fa	actor of so	il to distilled	water. +40%	6 correction	on factor included for all Chloride o	calculations.			
Moisture <u>Content</u> Chloride (ppm) Vapor	(ppm) Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Descriptions				
	05 Y	PH02	0.5		SP	SAND, reddish brown, very silt, some caliche flakes, n odor.	fine grained, trace o stain, strong H/C			
M 1,870 1	.32 N		-	_ 1 						
M 235 17	7.4 N		-	2						
D 470 35	5.8 N	PH02A	3	3	CCHE	CALICHE, white, well conso fine, red sand, some silt, r H/C odor.	lidated, with very no stain and slight			

								Data: 4/47/2024				
-							Sample Name: PH03	Date: 1/17/2024				
	E	N	S	ΟΙ	_ U		Site Name: PLU 17 Twin Wells Ra					
							Incident Number: NAPP23341524	185				
			. /				Job Number: 03C1558297					
			-	SAMPLING	i LOG		Logged By: Connor Whitman	Method: Hand auger				
Coordinates: 32.2							Hole Diameter: 3.5"	Total Depth: 3' bgs				
							PID for chloride and vapor, respension factor included for all Chloride					
Content Chloride Chloride Chloride Chloride Chloride (ppm) (Lithologic Descriptions					
M 638	4.3	N	PH03	0.5	 	SP	SAND, reddish brown, very silt, some caliche flakes, r odor.	fine grained, trace no stain, trace H/C				
M 414	1.9	N		-	1		@1', no odor.					
M 201	1.2	N			- 2							
D 168	2.7	N	РНОЗА	3	3	CCHE	CCHE CALICHE, white, well consolidated, with very fine, red sand, some silt, no stain and no odor.					

							Sample Name: PH04	Data: 1/18/2024		
	-						Sample Name: PH04 Site Name: PLU 17 Twin Wells Ra	Date: 1/18/2024		
		N		U	LU	Μ	Incident Number: NAPP2334152			
		_				_	Job Number: 03C1558297			
		0614		SAMPLING						
Coordinates: 32			-				Logged By: Connor Whitman Hole Diameter: 3.5"	Total Depth: 3' bgs		
Comments: Fie	ld screen	ing co	onducted v				PID for chloride and vapor, respe on factor included for all Chloride	ectively. Chloride test		
						-	Lithologic Descriptions			
D <168	8 0.3 N PH04 0.5(fill)						CALICHE, dry, off white-tai fill, no stain, no odor.	n, well compacted		
D <168	0.7	N		-	1	SP	SAND, reddish brown, very silt, some caliche flakes,	/ fine grained, trace no stain, no odor.		
D <168	0.8	N			2					
D <168	D <168 0.0 N PH04A 3 CCHE CALICHE, white, well consolidated, with very fine, red sand, some silt, no stain and no odor.									

							Sample Name: PH05	Date: 1/18/2024			
							Site Name: PLU 17 Twin Wells				
		N		U	LU	Μ	Incident Number: NAPP23341				
							Job Number: 03C1558297				
		061		SAMPLING	106		Logged By: Connor Whitman Method: Hand auger				
Coordinates: 3			-				Hole Diameter: 3.5"	Total Depth: 3' bgs			
		-		vith HACH C	nloride Test	Strins and	PID for chloride and vapor, res	, ,			
		-				•	on factor included for all Chlori				
Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs) 0	Symbol	-	Descriptions			
D <168	3 0.2 N PH05 0.5 (fill) fill, no stain, no odor.										
D <168	0.2	N		-	_ 1	SP	SAND, reddish brown, ve silt, some caliche flake	erv fine grained, trace s, no stain, no odor.			
D <168	0.3	N		-	2						
D <168	0.0	N	PH05A	3	3	CCHE	CALICHE, white, well cor fine, red sand, some si	nsolidated, with very lt, no stain and no odor.			

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 3/5/2024 3:44:33 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/31/2024 12:54:22 PM

JOB DESCRIPTION

PLU 17 TWIN WELLS RANCH 122H 03C1558297

JOB NUMBER

890-5988-1

Page 26 of 83

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 1/31/2024 12:54:22 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 28 of 83

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Client Sample Results	8
Surrogate Summary	22
QC Sample Results	24
	33
Lab Chronicle	39
Certification Summary	45
Method Summary	46
Sample Summary	47
Chain of Custody	48
Receipt Checklists	50

Definitions/Glossary

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H Job ID: 890-5988-1

Page 29 of 83

3

SDG: 03C1558297

Qualifiers

		 J
GC VOA		
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
F1	MS and/or MSD recovery exceeds control limits.	5
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	A	
Qualifier	Qualifier Description	8
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	Q
S1+	Surrogate recovery exceeds control limits, high biased.	9
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	 13
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	

%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H Job ID: 890-5988-1 SDG: 03C1558297

Page 30 of 83

Glossary (Continued)

Abbreviation	These commonly used abbreviations may or may not be present in this report.
TNTC	Too Numerous To Count

Eurofins Carlsbad

Case Narrative

Client: Ensolum Project: PLU 17 TWIN WELLS RANCH 122H

Job ID: 890-5988-1

Page 31 of 83

Job ID: 890-5988-1

Eurofins Carlsbad

Job Narrative 890-5988-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/18/2024 12:56 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: PH 01 (890-5988-1), PH 01A (890-5988-2), PH 02 (890-5988-3), PH 02A (890-5988-4), PH 03 (890-5988-5), PH 03A (890-5988-6), PH 04 (890-5988-7), PH 04A (890-5988-8), PH 05 (890-5988-9), PH 05A (890-5988-10), SS 01 (890-5988-11), SS 02 (890-5988-12), SS 03 (890-5988-13), SS 04 (890-5988-14), SS 05 (890-5988-15), SS 06 (890-5988-16) and SS 07 (890-5988-17).

GC VOA

Method 8021B: The matrix spike (MS) and/or matrix spike duplicate (MSD) recovery for preparation batch 880-71633 and analytical batch 880-71772 was outside control limits for the following analyte(s): Benzene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. Results may be biased high because this analyte is a common laboratory solvent and contaminant.

Method 8021B: Surrogate recovery for the following samples were outside control limits: PH 01 (890-5988-1), SS 05 (890-5988-15), (890-5988-A-1-E MS) and (890-5988-A-1-F MSD). Evidence of matrix interference is present; therefore, reextraction and/or re-analysis was not performed.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71633 and analytical batch 880-71772 was outside the control limits.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71786 and analytical batch 880-71848 was outside the upper control limits.

Method 8021B: The laboratory control sample duplicate (LCSD) for preparation batch 880-71633 and analytical batch 880-71772 recovered outside control limits for the following analytes: m-Xylene & p-Xylene. Since only an acceptable LCS is required per the method, the data has been qualified and reported.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71639 and analytical batch 880-71951 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-71254/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: PH 01 (890-5988-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) precision for preparation batch 880-71254 and analytical batch 880-71766 was outside control limits. Sample non-homogeneity is suspected.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

Case Narrative

Client: Ensolum Project: PLU 17 TWIN WELLS RANCH 122H

Job ID: 890-5988-1 (Continued)

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-71230 and analytical batch 880-71386 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

Job ID: 890-5988-1

Client Sample Results

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample ID: PH 01

Date Collected: 01/17/24 11:00 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U F1	0.00201	mg/Kg		01/25/24 18:00	01/29/24 22:43	
Foluene	0.0262	F1	0.00201	mg/Kg		01/25/24 18:00	01/29/24 22:43	
Ethylbenzene	0.259	F2 F1	0.00201	mg/Kg		01/25/24 18:00	01/29/24 22:43	
n-Xylene & p-Xylene	3.84		0.100	mg/Kg		01/25/24 18:06	01/31/24 09:53	2
-Xylene	1.95		0.0501	mg/Kg		01/25/24 18:06	01/31/24 09:53	2
Kylenes, Total	5.79		0.100	mg/Kg		01/25/24 18:06	01/31/24 09:53	2
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	339	S1+	70 - 130			01/25/24 18:00	01/29/24 22:43	
,4-Difluorobenzene (Surr)	93		70 - 130			01/25/24 18:00	01/29/24 22:43	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
otal BTEX	6.08		0.100	mg/Kg			01/31/24 09:53	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	4200		50.2	mg/Kg			01/29/24 15:10	
Aethod: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
nalyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
asoline Range Organics GRO)-C6-C10	814		50.2	mg/Kg		01/19/24 17:22	01/29/24 15:10	
liesel Range Organics (Over :10-C28)	3390		50.2	mg/Kg		01/19/24 17:22	01/29/24 15:10	
Oll Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		01/19/24 17:22	01/29/24 15:10	
Surrogate	%Recovery		Limits			Prepared	Analyzed	Dil Fa
l-Chlorooctane	132	S1+	70 - 130			01/19/24 17:22	01/29/24 15:10	
-Terphenyl	82		70 - 130			01/19/24 17:22	01/29/24 15:10	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	3710	F1	25.0	mg/Kg			01/24/24 11:55	į
ient Sample ID: PH 01A						Lab Sar	nple ID: 890-	5988-2
ate Collected: 01/17/24 11:30							Matri	x: Solie
ate Received: 01/18/24 12:56								
ample Depth: 4'								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
enzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/29/24 23:03	
oluene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/29/24 23:03	
thylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/29/24 23:03	
	0.0246	*_	0.00398	mg/Kg		01/25/24 18:00	01/29/24 23:03	• • • • • • •
m-Xylene & p-Xylene	0.0216	•	0.00000	mg/rtg		01/20/24 10:00	01/25/24 20:00	

Job ID: 890-5988-1 SDG: 03C1558297

Lab Sample ID: 890-5988-1

Matrix: Solid

1

1

1

Project/Site: PLU 17 TWIN WELLS RANCH 122H

Job ID: 890-5988-1 SDG: 03C1558297

Matrix: Solid

5

Lab Sample ID: 890-5988-2

Client Sample ID: PH 01A

Date Collected: 01/17/24 11:30 Date Received: 01/18/24 12:56

Sample Depth: 4'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	96		70 - 130			01/25/24 18:00	01/29/24 23:03	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0268		0.00398	mg/Kg			01/29/24 23:03	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	358		50.4	mg/Kg			01/29/24 15:32	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4	mg/Kg		01/19/24 17:22	01/29/24 15:32	1
(GRO)-C6-C10								
Diesel Range Organics (Over	358		50.4	mg/Kg		01/19/24 17:22	01/29/24 15:32	1
C10-C28)			50.4			0.1.1.0.10.1.17.55		
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		01/19/24 17:22	01/29/24 15:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130			01/19/24 17:22	01/29/24 15:32	1
o-Terphenyl	88		70 - 130			01/19/24 17:22	01/29/24 15:32	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	404		4.99	mg/Kg			01/24/24 07:13	1
lient Sample ID: PH 02						Lab San	nple ID: 890-	5988-3
ate Collected: 01/17/24 11:50							Matri	x: Solid
ate Received: 01/18/24 12:56								
ample Depth: 0.5'								

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/29/24 23:24	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/29/24 23:24	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/29/24 23:24	1
m-Xylene & p-Xylene	0.00398	*+	0.00398	mg/Kg		01/25/24 18:00	01/29/24 23:24	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/29/24 23:24	1
Xylenes, Total	0.00398	*+	0.00398	mg/Kg		01/25/24 18:00	01/29/24 23:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130			01/25/24 18:00	01/29/24 23:24	1
1,4-Difluorobenzene (Surr)	83		70 - 130			01/25/24 18:00	01/29/24 23:24	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00398		0.00398	mg/Kg			01/29/24 23:24	1
- Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	88.4		50.5	mg/Kg			01/29/24 15:54	1

Eurofins Carlsbad

Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample Results

Page 35 of 83

Job ID: 890-5988-1 SDG: 03C1558297

Lab Sample ID: 890-5988-3

01/29/24 15:54

01/29/24 15:54

Lab Sample ID: 890-5988-4

01/19/24 17:22

01/19/24 17:22

Client Sample ID: PH 02

Date Collected: 01/17/24 11:50 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

Client: Ensolum

_ Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		01/19/24 17:22	01/29/24 15:54
Diesel Range Organics (Over C10-C28)	88.4		50.5	mg/Kg		01/19/24 17:22	01/29/24 15:54
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		01/19/24 17:22	01/29/24 15:54
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed

%Recovery Qualifier Surrogate 70 - 130 1-Chlorooctane 107 o-Terphenyl 88 70 - 130

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1720		24.8	mg/Kg			01/24/24 07:20	5

Client Sample ID: PH 02A

Date Collected: 01/17/24 12:10 Date Received: 01/18/24 12:56

Samp	le De	pth:	3'

C10-C28)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/29/24 23:44	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/29/24 23:44	1
Ethylbenzene	0.00389		0.00200	mg/Kg		01/25/24 18:00	01/29/24 23:44	1
m-Xylene & p-Xylene	0.0214	*+	0.00399	mg/Kg		01/25/24 18:00	01/29/24 23:44	1
o-Xylene	0.00557		0.00200	mg/Kg		01/25/24 18:00	01/29/24 23:44	1
Xylenes, Total	0.0270	*+	0.00399	mg/Kg		01/25/24 18:00	01/29/24 23:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130			01/25/24 18:00	01/29/24 23:44	1
1,4-Difluorobenzene (Surr)	102		70 - 130			01/25/24 18:00	01/29/24 23:44	1
T,4-Dinuorobenzene (Surr)		culation	70 - 730			01/20/24 10:00	0 17 20, 2 + 20. + +	
Method: TAL SOP Total BTEX	- Total BTEX Cal							
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calo Result	culation Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX	- Total BTEX Cal			Unit mg/Kg	<u>D</u>			Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calo Result 0.0309	Qualifier	RL 0.00399		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calo Result 0.0309 sel Range Organ	Qualifier	RL 0.00399		<u>D</u>		Analyzed	Dil Fac 1 Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calo Result 0.0309 sel Range Organ	Qualifier	RL 0.00399	mg/Kg		Prepared	Analyzed 01/29/24 23:44	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Cale Result 0.0309 Seel Range Organ Result 773	Qualifier ics (DRO) (Qualifier	RL 0.00399 GC) RL 50.0	mg/Kg Unit		Prepared	Analyzed 01/29/24 23:44 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Cale Result 0.0309 esel Range Organ Result 773 iesel Range Orga	Qualifier ics (DRO) (Qualifier	RL 0.00399 GC) RL 50.0	mg/Kg Unit		Prepared	Analyzed 01/29/24 23:44 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Cale Result 0.0309 esel Range Organ Result 773 iesel Range Orga	Qualifier ics (DRO) (Qualifier nics (DRO) Qualifier	RL 0.00399	mg/Kg	D	Prepared Prepared	Analyzed 01/29/24 23:44 Analyzed 01/29/24 16:14	1 Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D Analyte	- Total BTEX Cald Result 0.0309 esel Range Organ Result 773 iesel Range Orga Result	Qualifier ics (DRO) (Qualifier nics (DRO) Qualifier	RL 0.00399 GC) RL 50.0 (GC) RL	mg/Kg Unit mg/Kg Unit	D	Prepared Prepared Prepared	Analyzed 01/29/24 23:44 Analyzed 01/29/24 16:14 Analyzed	1 Dil Fac

<50.0 U 50.0 01/19/24 17:22 01/29/24 16:14 Oll Range Organics (Over C28-C36) mg/Kg 1 Limits Dil Fac %Recovery Qualifier Prepared Analyzed Surrogate 70 - 130 01/19/24 17:22 1-Chlorooctane 01/29/24 16:14 107 1 o-Terphenyl 86 70 - 130 01/19/24 17:22 01/29/24 16:14 1

Eurofins Carlsbad

1

1

1

1

1

Released to Imaging: 3/12/2024 1:49:28 PM

Client Sample Results

ient Sample ID: PH 02A						Lab San	nple ID: 890-	5988-4
ate Collected: 01/17/24 12:10								ix: Solid
ate Received: 01/18/24 12:56								
ample Depth: 3'								
· · ·								
Method: EPA 300.0 - Anions, lor		-			_		.	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	837		5.02	mg/Kg			01/24/24 07:27	1
lient Sample ID: PH 03						Lab San	nple ID: 890-	5988-5
Date Collected: 01/17/24 12:30								ix: Solid
Date Received: 01/18/24 12:56								
Sample Depth: 0.5'								
-								
Method: SW846 8021B - Volatile				,	_		- . .	
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		01/25/24 18:00	01/30/24 00:05	1
Toluene	0.0111		0.00201	mg/Kg		01/25/24 18:00	01/30/24 00:05	1
Ethylbenzene	< 0.00201		0.00201	mg/Kg		01/25/24 18:00	01/30/24 00:05	۲ ر
m-Xylene & p-Xylene	< 0.00402	U ^+	0.00402	mg/Kg		01/25/24 18:00	01/30/24 00:05	1
o-Xylene	0.00294		0.00201	mg/Kg		01/25/24 18:00	01/30/24 00:05	1
Xylenes, Total	<0.00402	U *+	0.00402	mg/Kg		01/25/24 18:00	01/30/24 00:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130			01/25/24 18:00	01/30/24 00:05	1
1,4-Difluorobenzene (Surr)	97		70 - 130			01/25/24 18:00	01/30/24 00:05	1
-								
Method: TAL SOP Total BTEX -					_			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0140		0.00402	mg/Kg			01/30/24 00:05	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	103	·	50.0	mg/Kg			01/29/24 16:36	
-								
Method: SW846 8015B NM - Die			(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/19/24 17:22	01/29/24 16:36	
(GRO)-C6-C10	402		50.0	malka		01/10/01 17:00	01/29/24 16:36	
Diesel Range Organics (Over C10-C28)	103		50.0	mg/Kg		01/19/24 17:22	01/29/24 10:30	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/19/24 17:22	01/29/24 16:36	
		-	-	0.0				
	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Surrogate			70 400			01/19/24 17:22	01/29/24 16:36	
Surrogate 1-Chlorooctane	105		70 - 130					
			70 - 130 70 - 130			01/19/24 17:22	01/29/24 16:36	
1-Chlorooctane o-Terphenyl			70 - 130			01/19/24 17:22	01/29/24 16:36	
1-Chlorooctane	105 84 n Chromatograp	o <mark>hy - Solubl</mark> Qualifier	70 - 130	Unit	D	01/19/24 17:22 Prepared	01/29/24 16:36 Analyzed	Dil Fa
Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample ID: PH 03A

Date Collected: 01/18/24 12:45 Date Received: 01/18/24 12:56

Sample Depth: 3'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 00:25	
Toluene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 00:25	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 00:25	
m-Xylene & p-Xylene	<0.00401	U *+	0.00401	mg/Kg		01/25/24 18:00	01/30/24 00:25	
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 00:25	
Xylenes, Total	<0.00401	U *+	0.00401	mg/Kg		01/25/24 18:00	01/30/24 00:25	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	84		70 - 130			01/25/24 18:00	01/30/24 00:25	
1,4-Difluorobenzene (Surr)	77		70 - 130			01/25/24 18:00	01/30/24 00:25	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			01/30/24 00:25	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (G	C)					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	180		49.6	mg/Kg			01/29/24 16:57	
Method: SW846 8015B NM - Dies Analyte		Qualifier	BC) RL	Unit	D	Bronorod	Analyzed	Dil F
	Kesult <49.6		49.6		<u></u>	Prepared 01/19/24 17:22	01/29/24 16:57	
Gasoline Range Organics (GRO)-C6-C10	\$49.0	0	49.0	mg/Kg		01/19/24 17.22	01/29/24 10.57	
Diesel Range Organics (Over	180		49.6	mg/Kg		01/19/24 17:22	01/29/24 16:57	
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		01/19/24 17:22	01/29/24 16:57	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil F
1-Chlorooctane	106		70 - 130			01/19/24 17:22	01/29/24 16:57	
o-Terphenyl	86		70 - 130			01/19/24 17:22	01/29/24 16:57	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F
Chloride	159		5.04	mg/Kg			01/24/24 07:55	
lient Sample ID: PH 04						Lab Sar	nple ID: 890-	5988-
ate Collected: 01/18/24 09:15							Matri	x: Sol
ate Received: 01/18/24 12:56								
ample Depth: 0.5'								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil F

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 00:45	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 00:45	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 00:45	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 00:45	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 00:45	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 00:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76		70 - 130			01/25/24 18:00	01/30/24 00:45	1

Eurofins Carlsbad

Job ID: 890-5988-1

SDG: 03C1558297

Matrix: Solid

5

Lab Sample ID: 890-5988-6

Job ID: 890-5988-1 SDG: 03C1558297

Matrix: Solid

5

Lab Sample ID: 890-5988-7

Client Sample ID: PH 04

Date Collected: 01/18/24 09:15 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	79		70 - 130			01/25/24 18:00	01/30/24 00:45	
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/30/24 00:45	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.7	U	49.7	mg/Kg			01/29/24 17:18	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7	mg/Kg		01/19/24 17:22	01/29/24 17:18	
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7	mg/Kg		01/19/24 17:22	01/29/24 17:18	
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		01/19/24 17:22	01/29/24 17:18	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130			01/19/24 17:22	01/29/24 17:18	
o-Terphenyl	82		70 - 130			01/19/24 17:22	01/29/24 17:18	
Method: EPA 300.0 - Anions, lor	h Chromatograp	hy - Solub	le					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	25.8		5.03	mg/Kg			01/24/24 08:02	
lient Sample ID: PH 04A							nple ID: 890-	

Sample Depth: 3'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 01:06	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 01:06	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 01:06	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 01:06	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 01:06	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 01:06	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		70 - 130			01/25/24 18:00	01/30/24 01:06	1
1,4-Difluorobenzene (Surr)	73		70 - 130			01/25/24 18:00	01/30/24 01:06	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/30/24 01:06	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
						- ·		B 11 F
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample ID: PH 04A

Date Collected: 01/18/24 09:30 Date Received: 01/18/24 12:56

Sample Depth: 3'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		01/19/24 17:22	01/29/24 17:39	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		01/19/24 17:22	01/29/24 17:39	,
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		01/19/24 17:22	01/29/24 17:39	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130			01/19/24 17:22	01/29/24 17:39	1
o-Terphenyl	96		70 - 130			01/19/24 17:22	01/29/24 17:39	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18.7	4.98	mg/Kg			01/22/24 20:38	1

Client Sample ID: PH 05

Date Collected: 01/18/24 09:50

Date Received: 01/18/24 12:56

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 01:26	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 01:26	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 01:26	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399	mg/Kg		01/25/24 18:00	01/30/24 01:26	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 01:26	1
Xylenes, Total	<0.00399	U *+	0.00399	mg/Kg		01/25/24 18:00	01/30/24 01:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130			01/25/24 18:00	01/30/24 01:26	1
1,4-Difluorobenzene (Surr)	71		70 - 130			01/25/24 18:00	01/30/24 01:26	1
- Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			01/30/24 01:26	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1	mg/Kg			01/29/24 18:00	1
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1	mg/Kg		01/19/24 17:22	01/29/24 18:00	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.1	U	50.1	mg/Kg		01/19/24 17:22	01/29/24 18:00	1
C10-C28)	.=0.4		50.4			04/40/04 47 00	04/00/04 40 55	
	<50.1	U	50.1	mg/Kg		01/19/24 17:22	01/29/24 18:00	1
Oil Range Organics (Over 028-036)								
	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	% Recovery 104	Qualifier	Limits 70 - 130			Prepared 01/19/24 17:22	Analyzed 01/29/24 18:00	Dil Fac

Eurofins Carlsbad

Page 39 of 83

Job ID: 890-5988-1 SDG: 03C1558297

Lab Sample ID: 890-5988-8

Lab Sample ID: 890-5988-9

Matrix: Solid

Matrix: Solid

Client Sample Results

		Clien	t Sample Re	Sunto				
Client: Ensolum Project/Site: PLU 17 TWIN WELLS	RANCH 122H						Job ID: 890 SDG: 03C1	
Client Sample ID: PH 05						Lab San	nple ID: 890-	5988-9
Date Collected: 01/18/24 09:50						Lub Out		x: Solid
ate Received: 01/18/24 12:56								
Sample Depth: 0.5'								
-								
Method: EPA 300.0 - Anions, Ion	• •	Ohy - Soluble Qualifier	e RL	Unit	D	Prepared	Analyzad	Dil Fac
Analyte Chloride	Kesuit 	Quaimer	5.03	mg/Kg			Analyzed 01/22/24 20:54	1
Client Sample ID: PH 05A						Lah Sam	ple ID: 890-5	988-10
Date Collected: 01/18/24 10:05						Lub Oum	-	x: Solid
Date Received: 01/18/24 12:56							inati	
Sample Depth: 3'								
Method: SW846 8021B - Volatile	Organia Comp	oundo (CC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201		0.00201	mg/Kg		01/25/24 18:00	01/30/24 01:47	1
Toluene	< 0.00201		0.00201	mg/Kg		01/25/24 18:00	01/30/24 01:47	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/25/24 18:00	01/30/24 01:47	1
m-Xylene & p-Xylene	<0.00402	U *+	0.00402	mg/Kg		01/25/24 18:00	01/30/24 01:47	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/25/24 18:00	01/30/24 01:47	1
Xylenes, Total	<0.00402	U *+	0.00402	mg/Kg		01/25/24 18:00	01/30/24 01:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130			01/25/24 18:00	01/30/24 01:47	1
1,4-Difluorobenzene (Surr)	72		70 - 130			01/25/24 18:00	01/30/24 01:47	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			01/30/24 01:47	1
Method: SW846 8015 NM - Diese	A Range Organ	ice (DRO) ((CC)					
Analyte		Qualifier						
Total TPH			RL	Unit	D	Prepared	Analyzed	Dil Fac
	<50.3			Unit mg/Kg	<u>D</u>	Prepared	Analyzed 01/29/24 18:22	Dil Fac
-	<50.3	U	50.3	Unit mg/Kg	D	Prepared		
_ Method: SW846 8015B NM - Dies	<pre><50.3</pre> <pre>sel Range Orga</pre>	U Inics (DRO)	50.3 (GC)	mg/Kg			01/29/24 18:22	1
Method: SW846 8015B NM - Dies Analyte	<50.3 sel Range Orga Result	U Inics (DRO) Qualifier	50.3 (GC) RL	mg/Kg Unit	<u>D</u>	Prepared	01/29/24 18:22 Analyzed	1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<pre><50.3</pre> <pre>sel Range Orga</pre>	U Inics (DRO) Qualifier	50.3 (GC)	mg/Kg			01/29/24 18:22	1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	<50.3 sel Range Orga Result	U Inics (DRO) Qualifier U	50.3 (GC) RL	mg/Kg Unit		Prepared	01/29/24 18:22 Analyzed	1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<pre><50.3 sel Range Orga Result <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	U Inics (DRO) Qualifier U	50.3 (GC) RL 50.3	mg/Kg Unit mg/Kg		Prepared 01/19/24 17:22	01/29/24 18:22 Analyzed 01/29/24 18:22	1 Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<pre><50.3 sel Range Orga Result <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	U nnics (DRO) Qualifier U	50.3 (GC) RL 50.3	mg/Kg Unit mg/Kg		Prepared 01/19/24 17:22	01/29/24 18:22 Analyzed 01/29/24 18:22	1 Dil Fac 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.3 sel Range Orga Result <50.3 <50.3 <50.3 %Recovery	U nnics (DRO) Qualifier U U U	50.3 (GC) RL 50.3 50.3 50.3 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:22 01/19/24 17:22 01/19/24 17:22 Prepared	01/29/24 18:22 Analyzed 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22 Analyzed	1 Dil Fac 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.3 sel Range Orga Result <50.3 <50.3 <50.3 <50.3 <50.3 %Recovery 106	U nnics (DRO) Qualifier U U U	50.3 (GC) RL 50.3 50.3 50.3	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:22 01/19/24 17:22 01/19/24 17:22	01/29/24 18:22 Analyzed 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22	1 Dil Fac 1 1
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.3 sel Range Orga Result <50.3 <50.3 <50.3 %Recovery	U nnics (DRO) Qualifier U U U	50.3 (GC) RL 50.3 50.3 50.3 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:22 01/19/24 17:22 01/19/24 17:22 Prepared	01/29/24 18:22 Analyzed 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.3 sel Range Orga Result <50.3 <50.3 <50.3 <50.3 %Recovery 106 85	U unics (DRO) Qualifier U U U Qualifier	50.3 (GC) RL 50.3 50.3 50.3 50.3 <u>Limits</u> 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:22 01/19/24 17:22 01/19/24 17:22 Prepared 01/19/24 17:22	01/29/24 18:22 Analyzed 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22 Analyzed 01/29/24 18:22	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.3 sel Range Orga Result <50.3 <50.3 <50.3 <50.3 <50.3 %Recovery 106 85 Chromatograp	U unics (DRO) Qualifier U U U Qualifier	50.3 (GC) RL 50.3 50.3 50.3 50.3 <u>Limits</u> 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:22 01/19/24 17:22 01/19/24 17:22 Prepared 01/19/24 17:22	01/29/24 18:22 Analyzed 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22 01/29/24 18:22 Analyzed 01/29/24 18:22	

Eurofins Carlsbad

.

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample ID: SS 01

Date Collected: 01/18/24 11:00 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

nod: SW846 8021B - Volatile Organic Compounds (GC)	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 03:09	
Toluene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 03:09	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 03:09	
m-Xylene & p-Xylene	<0.00401	U *+	0.00401	mg/Kg		01/25/24 18:00	01/30/24 03:09	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 03:09	1
Xylenes, Total	<0.00401	U *+	0.00401	mg/Kg		01/25/24 18:00	01/30/24 03:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		70 - 130			01/25/24 18:00	01/30/24 03:09	1
1,4-Difluorobenzene (Surr)	78		70 - 130			01/25/24 18:00	01/30/24 03:09	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			01/30/24 03:09	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2	mg/Kg			01/23/24 01:46	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	50.2	mg/Kg		01/19/24 17:25	01/23/24 01:46	1
Diesel Range Organics (Over	<50.2	U	50.2	mg/Kg		01/19/24 17:25	01/23/24 01:46	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		01/19/24 17:25	01/23/24 01:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130			01/19/24 17:25	01/23/24 01:46	1
o-Terphenyl	93		70 - 130			01/19/24 17:25	01/23/24 01:46	î
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client Sample ID: SS 02 Date Collected: 01/18/24 11:05 Date Received: 01/18/24 12:56 Sample Depth: 0.5'

Method: SW846 8021B - Volatil	e Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 03:29	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 03:29	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 03:29	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 03:29	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 03:29	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 03:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130			01/25/24 18:00	01/30/24 03:29	1

Eurofins Carlsbad

Lab Sample ID: 890-5988-12

Matrix: Solid

Page 41 of 83

Job ID: 890-5988-1 SDG: 03C1558297

Matrix: Solid

Lab Sample ID: 890-5988-11

Job ID: 890-5988-1 SDG: 03C1558297

Lab Sample ID: 890-5988-12

Client Sample ID: SS 02

Date Collected: 01/18/24 11:05 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	75		70 - 130			01/25/24 18:00	01/30/24 03:29	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/30/24 03:29	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4	mg/Kg			01/23/24 02:08	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4	mg/Kg		01/19/24 17:25	01/23/24 02:08	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.4	U	50.4	mg/Kg		01/19/24 17:25	01/23/24 02:08	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		01/19/24 17:25	01/23/24 02:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130			01/19/24 17:25	01/23/24 02:08	1
o-Terphenyl	86		70 - 130			01/19/24 17:25	01/23/24 02:08	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.0		5.02	mg/Kg			01/22/24 21:19	1

Date Received: 01/18/24 12:56 Sample Depth: 0.5'

Released to Imaging: 3/12/2024 1:49:28 PM

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 03:50	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 03:50	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 03:50	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 03:50	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 03:50	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 03:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130			01/25/24 18:00	01/30/24 03:50	1
1,4-Difluorobenzene (Surr)	80		70 - 130			01/25/24 18:00	01/30/24 03:50	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/30/24 03:50	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
		U	50.5	mg/Kg			01/23/24 02:29	

Eurofins Carlsbad

Matrix: Solid

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample ID: SS 03

Date Collected: 01/18/24 11:10 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		01/19/24 17:25	01/23/24 02:29	1
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5	mg/Kg		01/19/24 17:25	01/23/24 02:29	1
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		01/19/24 17:25	01/23/24 02:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130			01/19/24 17:25	01/23/24 02:29	1
o-Terphenyl	90		70 - 130			01/19/24 17:25	01/23/24 02:29	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.2	5.04	mg/Kg			01/22/24 21:25	1

Client Sample ID: SS 04

Date Collected: 01/18/24 11:20 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 04:10	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 04:10	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 04:10	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399	mg/Kg		01/25/24 18:00	01/30/24 04:10	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/30/24 04:10	1
Xylenes, Total	<0.00399	U *+	0.00399	mg/Kg		01/25/24 18:00	01/30/24 04:10	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130			01/25/24 18:00	01/30/24 04:10	1
1,4-Difluorobenzene (Surr)	74		70 - 130			01/25/24 18:00	01/30/24 04:10	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00399	U	0.00399	mg/Kg			01/30/24 04:10	1

Analyte Unit Result Qualifier RL D Prepared Analyzed Dil Fac Total TPH <49.8 U 49.8 mg/Kg 01/23/24 02:50 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		01/19/24 17:25	01/23/24 02:50	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		01/19/24 17:25	01/23/24 02:50	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		01/19/24 17:25	01/23/24 02:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130			01/19/24 17:25	01/23/24 02:50	1
o-Terphenyl	85		70 - 130			01/19/24 17:25	01/23/24 02:50	1

Job ID: 890-5988-1 SDG: 03C1558297

Matrix: Solid

Lab Sample ID: 890-5988-13

Lab Sample ID: 890-5988-14

Matrix: Solid

	o <mark>hy - Soluble</mark> Qualifier				Lab Sam	Job ID: 890 SDG: 03C1 ple ID: 890-59 Matriz	558297
romatograp Result	-				Lab Sam	ple ID: 890-59	988-14
Result	-				Lab Sam		
Result	-					Matri	v: Salid
Result	-						A. GOIIQ
Result	-						
Result	-						
Result	-						
	quanner	RL	Unit	D	Prepared	Analyzed	Dil Fac
		4.99	mg/Kg			01/22/24 21:30	1
					Lab Sam	ple ID: 890-59	3 88-15
						Matri	x: Solid
anic Comp	ounds (GC)						
		RL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00201	U	0.00201	mg/Kg		01/25/24 18:00	01/30/24 04:31	1
<0.00201	U	0.00201	mg/Kg		01/25/24 18:00	01/30/24 04:31	1
<0.00201	U	0.00201	mg/Kg		01/25/24 18:00	01/30/24 04:31	1
<0.00402	U *+	0.00402	mg/Kg		01/25/24 18:00	01/30/24 04:31	1
<0.00201	U	0.00201	mg/Kg		01/25/24 18:00	01/30/24 04:31	1
<0.00402	U *+	0.00402	mg/Kg		01/25/24 18:00	01/30/24 04:31	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
87		70 - 130			01/25/24 18:00	01/30/24 04:31	1
67	S1-	70 - 130			01/25/24 18:00	01/30/24 04:31	1
				_	- ·		
				D	Prepared		Dil Fac
<0.00402	U	0.00402	mg/Kg			01/30/24 04:31	1
inge Organ	ics (DRO) (G	C)					
		RL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0	mg/Kg			01/23/24 03:11	1
			11-14	_	Description	A	
				D			Dil Fac
<50.0	U	0.06	mg/Kg		01/19/24 17:25	01/23/24 03:11	1
<50.0	U	50.0	mg/Kg		01/19/24 17:25	01/23/24 03:11	1
<50.0	U	50.0	mg/Kg		01/19/24 17:25	01/23/24 03:11	1
%Recoverv	Qualifier	Limits			Prepared	Analyzed	Dil Fac
83	<u> </u>	70 - 130			01/19/24 17:25	01/23/24 03:11	1
82		70 - 130			01/19/24 17:25	01/23/24 03:11	1
				_	D	.	B -
	Qualifier			D	Prepared		Dil Fac
	Result <0.00201	67 S1- BTEX Calculation Result Qualifier <0.00402 U ange Organics (DRO) (G Result Qualifier <50.0 U Range Organics (DRO) (Result Qualifier <50.0 U <50.0 U <50.0 U <50.0 U <50.0 U <50.0 U 	Result Qualifier RL <0.00201	Result Qualifier RL Unit <0.00201	Result Qualifier RL Unit D <0.00201	Result Qualifier RL Unit D Prepared <0.00201	Result Qualifier RL Unit D Prepared Analyzed <0.00201

Eurofins Carlsbad

.

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample ID: SS 06

Date Collected: 01/18/24 11:30 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

di SW946 9021 P. Volotilo Organio Co

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 04:51	
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 04:51	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 04:51	
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 04:51	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 18:00	01/30/24 04:51	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		01/25/24 18:00	01/30/24 04:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78		70 - 130			01/25/24 18:00	01/30/24 04:51	1
1,4-Difluorobenzene (Surr)	79		70 - 130			01/25/24 18:00	01/30/24 04:51	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/30/24 04:51	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
		<mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Dies Analyte Total TPH		Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total TPH	Result <49.7	Qualifier U	RL 49.7		<u>D</u>	Prepared		Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die	Result <49.7	Qualifier	(GC)	mg/Kg			01/23/24 03:33	1
Analyte ^{Total TPH} Method: SW846 8015B NM - Die Analyte	Result <49.7 esel Range Orga Result	Qualifier U nics (DRO) Qualifier	(GC) RL	mg/Kg Unit	D	Prepared	01/23/24 03:33 Analyzed	1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	Result <49.7	Qualifier U nics (DRO) Qualifier	(GC)	mg/Kg			01/23/24 03:33	Dil Fac 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.7 esel Range Orga Result <49.7	Qualifier U mics (DRO) Qualifier U	RL 49.7 (GC) RL 49.7	mg/Kg Unit mg/Kg		Prepared 01/19/24 17:25	01/23/24 03:33 Analyzed 01/23/24 03:33	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.7 esel Range Orga Result	Qualifier U mics (DRO) Qualifier U	(GC) RL	mg/Kg Unit		Prepared	01/23/24 03:33 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.7 esel Range Orga Result <49.7	Qualifier U Qualifier U U U	RL 49.7 (GC) RL 49.7	mg/Kg Unit mg/Kg		Prepared 01/19/24 17:25	01/23/24 03:33 Analyzed 01/23/24 03:33	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.7	Qualifier U Qualifier U U U U	RL 49.7 (GC) RL 49.7 49.7	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:25 01/19/24 17:25 01/19/24 17:25	01/23/24 03:33 Analyzed 01/23/24 03:33 01/23/24 03:33 01/23/24 03:33	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <49.7 esel Range Orga Result <49.7 <49.7	Qualifier U Qualifier U U U	RL 49.7 (GC) RL 49.7 49.7 49.7 49.7	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:25 01/19/24 17:25	01/23/24 03:33 Analyzed 01/23/24 03:33 01/23/24 03:33	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.7	Qualifier U Qualifier U U U U	RL 49.7 (GC) RL 49.7 49.7 49.7 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:25 01/19/24 17:25 01/19/24 17:25 Prepared	01/23/24 03:33 Analyzed 01/23/24 03:33 01/23/24 03:33 01/23/24 03:33 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.7	Qualifier U Qualifier U U U Qualifier	RL 49.7 (GC) RL 49.7 49.7 49.7 10.7 10.7 10.7 10.7 49.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:25 01/19/24 17:25 01/19/24 17:25 Prepared 01/19/24 17:25	01/23/24 03:33 Analyzed 01/23/24 03:33 01/23/24 03:33 01/23/24 03:33 01/23/24 03:33 Analyzed 01/23/24 03:33	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.7	Qualifier U Qualifier U U U Qualifier	RL 49.7 (GC) RL 49.7 49.7 49.7 10.7 10.7 10.7 10.7 49.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7 10.7	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/19/24 17:25 01/19/24 17:25 01/19/24 17:25 Prepared 01/19/24 17:25	01/23/24 03:33 Analyzed 01/23/24 03:33 01/23/24 03:33 01/23/24 03:33 01/23/24 03:33 Analyzed 01/23/24 03:33	Dil Fac

Client S **Date Coll Date Rec** Sample E

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		01/29/24 10:57	01/30/24 01:56	1
Toluene	<0.00201	U	0.00201	mg/Kg		01/29/24 10:57	01/30/24 01:56	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/29/24 10:57	01/30/24 01:56	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/29/24 10:57	01/30/24 01:56	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/29/24 10:57	01/30/24 01:56	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/29/24 10:57	01/30/24 01:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			01/29/24 10:57	01/30/24 01:56	1

Matrix: Solid

Job ID: 890-5988-1

SDG: 03C1558297

Matrix: Solid

5

Page 45 of 83

	Result	Qualifier	RL	Unit	D	Prepared	Anal
e Range Organics	- <49.7		49.7		— -	01/19/24 17:25	01/23/2
C6-C10	\$49.7	0	49.7	ilig/Kg		01/19/24 17.25	01/23/2
Range Organics (Over	<49.7	U	49.7	mg/Kg		01/19/24 17:25	01/23/2
8)	10.1	0	10.1	ingrig		01/10/21 11:20	01/20/2
ge Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		01/19/24 17:25	01/23/2
ate	%Recovery	Qualifier	Limits			Prepared	Anal
poctane	83		70 - 130			01/19/24 17:25	01/23/2
enyl	79		70 - 130			01/19/24 17:25	01/23/2
d: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e				
	Result	Qualifier	RL	Unit	D	Prepared	Anal
e	19.7		5.02	mg/Kg			01/22/2
e	10.1		0.02				
Sample ID: SS 07	10.7		0.02			Lab Sam	ple ID:
-						Lab Sam	ple ID:
Sample ID: SS 07			0.02			Lab Sam	ple ID:
Sample ID: SS 07 ollected: 01/18/24 11:35			0.02			Lab Sam	ple ID:
Sample ID: SS 07 Dilected: 01/18/24 11:35 eceived: 01/18/24 12:56 Depth: 0.5'		ounds (GC)				Lab Sam	ple ID:
Sample ID: SS 07 Dilected: 01/18/24 11:35 eccived: 01/18/24 12:56	Organic Comp	ounds (GC) Qualifier		Unit	D	Lab Sam	ple ID:
Sample ID: SS 07 Dilected: 01/18/24 11:35 eceived: 01/18/24 12:56 Depth: 0.5'	Organic Comp	Qualifier)		<u>D</u>		
Sample ID: SS 07 bllected: 01/18/24 11:35 eceived: 01/18/24 12:56 Depth: 0.5' d: SW846 8021B - Volatile	Organic Comp Result	Qualifier) RL	Unit	<u>D</u>	Prepared	Anal
Sample ID: SS 07 bllected: 01/18/24 11:35 eceived: 01/18/24 12:56 Depth: 0.5' d: SW846 8021B - Volatile	Organic Comp Result <0.00201	Qualifier U U	RL	Unit mg/Kg	<u>D</u>	Prepared 01/29/24 10:57	Anal
Sample ID: SS 07 Dilected: 01/18/24 11:35 eceived: 01/18/24 12:56 Depth: 0.5' d: SW846 8021B - Volatile	Organic Comp 	Qualifier U U U	RL 0.00201 0.00201	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 01/29/24 10:57 01/29/24 10:57	Anal 01/30/2 01/30/2
Sample ID: SS 07 Dilected: 01/18/24 11:35 eceived: 01/18/24 12:56 Depth: 0.5' d: SW846 8021B - Volatile	Organic Comp	Qualifier U U U U	RL 0.00201 0.00201 0.00201	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/29/24 10:57 01/29/24 10:57 01/29/24 10:57	Anal 01/30/2 01/30/2 01/30/2

Job ID: 890-5988-1 SDG: 03C1558297

Client Sample ID: SS 07

Date Collected: 01/18/24 11:35 Date Received: 01/18/24 12:56

Sample Depth: 0.5'

Client: Ensolum

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)) (Continued)					
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	104		70 - 130			01/29/24 10:57	01/30/24 01:56	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402	mg/Kg			01/30/24 01:56	1
Method: SW846 8015 NM - Diese								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/23/24 03:55	1
Method: SW846 8015B NM - Dies Analyte	• •		· · /					
				11			A second second	
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	Result <49.9			<mark>Unit</mark> mg/Kg	D	Prepared 01/19/24 17:25	Analyzed 01/23/24 03:55	Dil Fac 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		U			<u>D</u>			
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg	<u>D</u>	01/19/24 17:25	01/23/24 03:55	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 <49.9	U	49.9	mg/Kg	<u> </u>	01/19/24 17:25	01/23/24 03:55 01/23/24 03:55	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<49.9 <49.9 <49.9	U U U	49.9 49.9 49.9	mg/Kg	<u> </u>	01/19/24 17:25 01/19/24 17:25 01/19/24 17:25	01/23/24 03:55 01/23/24 03:55 01/23/24 03:55	1 1 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<49.9 <49.9 <49.9 %Recovery	U U U	49.9 49.9 49.9 Limits	mg/Kg	D_	01/19/24 17:25 01/19/24 17:25 01/19/24 17:25 Prepared	01/23/24 03:55 01/23/24 03:55 01/23/24 03:55 01/23/24 03:55 Analyzed	1 1 1 <i>Dil Fac</i>
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<49.9 <49.9 <49.9 %Recovery 84 80	U U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130	mg/Kg	D	01/19/24 17:25 01/19/24 17:25 01/19/24 17:25 Prepared 01/19/24 17:25	01/23/24 03:55 01/23/24 03:55 01/23/24 03:55 01/23/24 03:55 <u>Analyzed</u> 01/23/24 03:55	1 1 1 <i>Dil Fac</i> 1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<49.9 <49.9 <49.9 <49.9 <i>%Recovery</i> 84 80 Chromatograp	U U Qualifier	49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130	mg/Kg	D	01/19/24 17:25 01/19/24 17:25 01/19/24 17:25 Prepared 01/19/24 17:25	01/23/24 03:55 01/23/24 03:55 01/23/24 03:55 01/23/24 03:55 <u>Analyzed</u> 01/23/24 03:55	1 1 1 <i>Dil Fac</i> 1

Eurofins Carlsbad

Lab Sample ID: 890-5988-17 Matrix: Solid

Surrogate Summary

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				•	0) (0) ()	reicent Surrogate Recovery (Acceptance Linits)
		BFB1	DFBZ1				
Lab Sample ID	Client Sample ID	(70-130)	(70-130)				
880-38548-A-1-D MS	Matrix Spike	94	100				
880-38548-A-1-E MSD	Matrix Spike Duplicate	101	101				
890-5988-1	PH 01	339 S1+	93				
890-5988-1 MS	PH 01	280 S1+	95				
890-5988-1 MSD	PH 01	504 S1+	93				
890-5988-2	PH 01A	128	96				
890-5988-3	PH 02	99	83				
890-5988-4	PH 02A	115	102				
890-5988-5	PH 03	113	97				
890-5988-6	PH 03A	84	77				
890-5988-7	PH 04	76	79				
890-5988-8	PH 04A	84	73				
890-5988-9	PH 05	82	71				
890-5988-10	PH 05A	82	72				
890-5988-11	SS 01	84	78				
890-5988-12	SS 02	88	75				
890-5988-13	SS 03	81	80				
890-5988-14	SS 04	82	74				
890-5988-15	SS 05	87	67 S1-				
890-5988-16	SS 06	78	79				
890-5988-17	SS 07	113	104				
890-5998-A-42-C MS	Matrix Spike	106	86				
890-5998-A-42-D MSD	Matrix Spike Duplicate	114	89				
LCS 880-71633/1-A	Lab Control Sample	114	101				
LCS 880-71639/1-A	Lab Control Sample	110	94				
LCS 880-71786/1-A	Lab Control Sample	100	94 97				
	•						
LCSD 880-71633/2-A	Lab Control Sample Dup	115	101				
LCSD 880-71639/2-A	Lab Control Sample Dup	107	90				
LCSD 880-71786/2-A	Lab Control Sample Dup	96	97				
MB 880-71633/5-A	Method Blank	69 S1-	83				
MB 880-71636/5-A	Method Blank	120	110				
MB 880-71639/5-A	Method Blank	132 S1+	114				
MB 880-71786/5-A	Method Blank	137 S1+	122				

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-5986-A-21-C MS	Matrix Spike	114	84
890-5986-A-21-D MSD	Matrix Spike Duplicate	122	89
890-5988-1	PH 01	132 S1+	82
890-5988-2	PH 01A	113	88
890-5988-3	PH 02	107	88
890-5988-4	PH 02A	107	86

Job ID: 890-5988-1

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

Eurofins Carlsbad

Prep Type: Total/NA

5

Client: Ensolum

Job ID: 890-5988-1 SDG: 03C1558297

Project/Site: PLU 17 TWIN WELLS RANCH 122H Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

Prep Type: Total/NA

		1CO1	OTPH1	4
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	 5
890-5988-5	PH 03	105	84	
890-5988-6	PH 03A	106	86	6
890-5988-7	PH 04	102	82	
890-5988-8	PH 04A	117	96	
890-5988-9	PH 05	104	84	
890-5988-10	PH 05A	106	85	
890-5988-11	SS 01	89	93	8
890-5988-12	SS 02	88	86	
890-5988-13	SS 03	89	90	9
890-5988-14	SS 04	86	85	
890-5988-15	SS 05	83	82	
890-5988-16	SS 06	83	79	
890-5988-17	SS 07	84	80	
890-5989-A-1-C MS	Matrix Spike	87	77	
890-5989-A-1-D MSD	Matrix Spike Duplicate	86	77	
LCS 880-71254/2-A	Lab Control Sample	75	67 S1-	
LCS 880-71255/2-A	Lab Control Sample	101	125	
LCSD 880-71254/3-A	Lab Control Sample Dup	80	79	
LCSD 880-71255/3-A	Lab Control Sample Dup	101	115	
MB 880-71254/1-A	Method Blank	119	102	
MB 880-71255/1-A	Method Blank	86	88	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Released to Imaging: 3/12/2024 1:49:28 PM

Lab Sample ID: MB 880-71633/5-A

QC Sample Results

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 71772							Prep Type: 1 Prep Batch	
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/29/24 22:21	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/29/24 22:21	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/29/24 22:21	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/25/24 18:00	01/29/24 22:21	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:00	01/29/24 22:21	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/25/24 18:00	01/29/24 22:21	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130			01/25/24 18:00	01/29/24 22:21	1
1,4-Difluorobenzene (Surr)	83		70 - 130			01/25/24 18:00	01/29/24 22:21	1

Lab Sample ID: LCS 880-71633/1-A Matrix: Solid

Analysis Batch: 71772

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1103		mg/Kg		110	70 - 130	
Toluene	0.100	0.1082		mg/Kg		108	70 - 130	
Ethylbenzene	0.100	0.1273		mg/Kg		127	70 - 130	
m-Xylene & p-Xylene	0.200	0.2599		mg/Kg		130	70 - 130	
o-Xylene	0.100	0.1270		mg/Kg		127	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	116		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: LCSD 880-71633/2-A

Matrix: Solid

Analysis Batch: 71772							Prep	Batch:	71633
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1102		mg/Kg		110	70 - 130	0	35
Toluene	0.100	0.1107		mg/Kg		111	70 - 130	2	35
Ethylbenzene	0.100	0.1274		mg/Kg		127	70 - 130	0	35
m-Xylene & p-Xylene	0.200	0.2642	*+	mg/Kg		132	70 - 130	2	35
o-Xylene	0.100	0.1280		mg/Kg		128	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 890-5988-1 MS Matrix: Solid

Analysis Batch: 71772

Analysis Batch: 71772									Prep	Batch: 71633
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F1	0.0996	0.07314		mg/Kg		73	70 - 130	
Toluene	0.0262	F1	0.0996	0.07949	F1	mg/Kg		54	70 - 130	

Eurofins Carlsbad

Client Sample ID: PH 01

Prep Type: Total/NA

Job ID: 890-5988-1 SDG: 03C1558297

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 71633

1/31/2024

Lab Sample ID: 890-5988-1 MS

Analysis Batch: 71772

4-Bromofluorobenzene (Surr)

Analysis Batch: 71772

Lab Sample ID: 890-5988-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

Ethylbenzene

Surrogate

Matrix: Solid

Analyte

Benzene

Toluene

Surrogate

Matrix: Solid

QC Sample Results

MS MS

MSD MSD

0.06463 F1

0.1030

Result Qualifier

0.2700 F1

Result Qualifier

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

D

D

%Rec

65

78

%Rec

11

Spike

Added

0.0996

Limits

70 - 130 70 - 130

Spike

Added

0.0990

0.0990

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

MS MS

0.259

280 S1+

95

Sample Sample

<0.00201

0.0262 F1

504 S1+

93

MSD MSD %Recovery Qualifier

Result Qualifier

U F1

MB MB

%Recovery

Result Qualifier

F2 F1

Qualifier

Job ID: 890-5988-1 SDG: 03C1558297

Client Sample ID: PH 01

Client Sample ID: PH 01

Prep Type: Total/NA

Prep Batch: 71633

RPD

12

26

%Rec

Limits

70 - 130

%Rec

Limits

70 - 130

70 - 130

Prep Type: Total/NA

Prep Batch: 71633

5
7
8
9

_	
	9
	3

RPD

Limit

35

35

Client Sample ID: Method Blank
Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 71639

Prep Batch: 71636

Analysis Batch: 71951

Lab Sample ID: MB 880-71636/5-A

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:04	01/30/24 16:45	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:04	01/30/24 16:45	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:04	01/30/24 16:45	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/25/24 18:04	01/30/24 16:45	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:04	01/30/24 16:45	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/25/24 18:04	01/30/24 16:45	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130			01/25/24 18:04	01/30/24 16:45	1
1,4-Difluorobenzene (Surr)	110		70 - 130			01/25/24 18:04	01/30/24 16:45	1

Lab Sample ID: MB 880-71639/5-A Matrix: Solid

Analysis Batch: 71951

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:06	01/31/24 04:31	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:06	01/31/24 04:31	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:06	01/31/24 04:31	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/25/24 18:06	01/31/24 04:31	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/25/24 18:06	01/31/24 04:31	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/25/24 18:06	01/31/24 04:31	1

Eurofins Carlsbad

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	МВ	MB MB			
Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)		S1+	70 - 130		
1.4-Difluorobenzene (Surr)	114		70 - 130		

Lab Sample ID: LCS 880-71639/1-A Matrix: Solid

Analysis	Batch:	71951
Allalysis	Daten.	11331

Analysis Batch: 71951							Prep Ba	atch: 71639
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09753		mg/Kg		98	70 - 130	
Toluene	0.100	0.09463		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.1136		mg/Kg		114	70 - 130	
m-Xylene & p-Xylene	0.200	0.2029		mg/Kg		101	70 - 130	
o-Xylene	0.100	0.09605		mg/Kg		96	70 - 130	
	LCS LCS							

	203	203	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: LCSD 880-71639/2-A

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09675		mg/Kg		97	70 - 130	1	35
Toluene	0.100	0.1025		mg/Kg		102	70 - 130	8	35
Ethylbenzene	0.100	0.1163		mg/Kg		116	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.2068		mg/Kg		103	70 - 130	2	35
o-Xylene	0.100	0.09919		mg/Kg		99	70 - 130	3	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	90		70 - 130

Lab Sample ID: 890-5998-A-42-C MS Matrix: Solid

Analysis Batch: 71951

Analysis Batch: 71951									Prep Ba	atch: 71639
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U	0.0996	0.08057		mg/Kg		81	70 - 130	
Toluene	<0.00199	U	0.0996	0.08266		mg/Kg		83	70 - 130	
Ethylbenzene	<0.00199	U	0.0996	0.09552		mg/Kg		96	70 - 130	
m-Xylene & p-Xylene	<0.00398	U	0.199	0.1585		mg/Kg		80	70 - 130	
o-Xylene	<0.00199	U	0.0996	0.07241		mg/Kg		73	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	106		70 - 130							
1,4-Difluorobenzene (Surr)	86		70 _ 130							

Eurofins Carlsbad

Dil Fac

Job ID: 890-5988-1

SDG: 03C1558297

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 71639

Analyzed

01/25/24 18:06	01/31/24 04:31	1
01/25/24 18:06	01/31/24 04:31	1
Client Sample II	D: Lab Control Prep Type: 1	

Prepared

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 71639

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Result <0.00199 <0.00199			Spike Added	MSD	MSD				Prep Typ Prep Ba %Rec		
Result <0.00199	Qua		-		MSD						
<0.00199		lifier	-								
	U			Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
<0.00199	-		0.0990	0.08706		mg/Kg		88	70 - 130	8	35
	U		0.0990	0.09096		mg/Kg		92	70 - 130	10	35
<0.00199	U		0.0990	0.09592		mg/Kg		97	70 - 130	0	35
<0.00398	U		0.198	0.1716		mg/Kg		87	70 - 130	8	35
			0.0990	0.07679		mg/Kg		78	70 - 130	6	35
			Lingita								
	Qua	imer									
69			70 - 130								
86/5-A								Client Sa	ample ID: Me	thod	Blank
	мв	МВ									
Re	esult	Qualifier	RL	_	Unit	[) Р	repared	Analyzed		Dil Fac
<0.00	0200	U	0.00200)	mg/Kg	–	01/2	9/24 10:57	01/29/24 17:2	29 -	1
<0.00	0200	U	0.00200)	mg/Kg	J	01/2	9/24 10:57	01/29/24 17:2	29	1
<0.00	0200	U	0.00200)	mg/Kg	J	01/2	9/24 10:57	01/29/24 17:2	29	1
<0.00	0400	U	0.00400)	mg/Kg		01/2	9/24 10:57	01/29/24 17:2	29	1
<0.00	0200	U	0.00200)			01/2	9/24 10:57	01/29/24 17:2	29	1
<0.00	0400	U	0.00400)			01/2	9/24 10:57	01/29/24 17:2	29	1
	мв	MB									
%Reco		Qualifier	Limits				P	repared	Analyzed		Dil Fac
	137	S1+	70 - 130	-			01/2	9/24 10:57	01/29/24 17:2	29	1
	122		70 - 130				01/2	9/24 10:57	01/29/24 17:2	29	1
86/1-A							Client	Sample			-
										atch:	71786
			Spike						%Rec		
			Added		Qualifier	Unit	D	%Rec	Limits		
						mg/Kg					
				0.09719		mg/Kg		97	70 - 130		
			0.100	0.1060		mg/Kg		106	70 - 130		
			0.200	0.1940		mg/Kg		97	70 - 130		
			0.100	0.09396		mg/Kg		94	70 - 130		
LCS	LCS										
%Recovery	Qua	lifier	Limits								
100			70 - 130								
-	MSD %Recovery 114 89 6/5-A <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.0 <0.	<u>%Recovery</u> Qua 114 89 6/5-A MB Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00400 <0.00200 <0.00400 MB %Recovery 137 122 86/1-A LCS LCS	MSD MSD %Recovery Qualifier 114 89 6/5-A MB MB Result Qualifier <0.00200	MSD MSD %Recovery Qualifier Limits 114 70.130 89 89 70.130 6/5-A MB MB Result Qualifier Rt <0.00200	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	MSD MSD MSD %Recovery Qualifier Limits 114 70-130 89 70-130 6/5-A MB MB Result Qualifier RL 0.00200 0 0.00200 mg/Kg 0.00200 0 0.00200 mg/Kg 0.00200 0 0.00200 mg/Kg mg/Kg 0.00200 0 0.00200 mg/Kg mg/Kg 0.00200 mg/Kg mg/Kg 0.00200 mg/Kg mg/Kg mg/Kg <	MSD MSD %Recovery Qualifier Limits 114 70 - 130 89 70 - 130 6/5-A MB MB Result Qualifier Rt 0.00200 0.00200 mg/Kg 01/2 <0.00200	MSD MSD %Recovery Qualifier Limits 114 70.130 89 70.130 6/5-A Client Sc MB MB - 0.00200 0 0.00200 mg/Kg 01/29/24 10:57 MB MB	MSD MSD %Recovery Qualifier Limits 114 70.130 89 70.130 6/5-A Client Sample ID: Me Prep Typ Prop B: MB MB Result Qualifier 0.00200 0 0.00200 0 0.00200 0.00200 mg/Kg 0.00200 mg/Kg 0.00200 0 0.00200 mg/Kg 0.00200 mg/Kg 0.00200 mg/Kg 0.00200 mg/Kg 0.00200 0 0.00200 mg/Kg 0.00200 mg/Kg 0.00200 mg/Kg 0.00400 0 0.00200 mg/Kg 0.00400 0 0.00200 mg/Kg 0.00200 mg/Kg	MSD MSD %Recovery Qualifier Limits 114 70.130 89 70.130 6/5-A Client Sample ID: Method Prep Type: To Prep Batch: MB MB 0.00200 U 0.00200 0.00202

Matrix: Solid Prep Type: Total/NA Analysis Batch: 71848 Prep Batch: 71786 Spike LCSD LCSD RPD %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Benzene 0.100 0.1088 109 70 - 130 35 mg/Kg 9 Toluene 0.100 0.1075 mg/Kg 107 70 - 130 10 35

Eurofins Carlsbad

5

6 7 8

Job ID: 890-5988-1

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H Job ID: 890-5988-1 SDG: 03C1558297

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-71 Matrix: Solid						Sile	Gan	ipic ib.	Lab Contro		
										Type: To	
Analysis Batch: 71848			Spike	1.080	LCSD				%Rec	Batch:	RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Ethylbenzene			0.100	0.1154	Quaimer	mg/Kg		115	70 - 130	9	3
m-Xylene & p-Xylene			0.100	0.2035		mg/Kg		102	70 - 130	5	
o-Xylene			0.100	0.09740		mg/Kg		97	70 - 130 70 - 130	4	3
o Aylone			0.100	0.00740		ing/itg		51	70-100	-	
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	96		70 - 130								
1,4-Difluorobenzene (Surr)	97		70 - 130								
Lab Sample ID: 880-38548-A								Client	Sample ID	• Matrix	Snik
Matrix: Solid								Chem		ype: To	
Analysis Batch: 71848										Batch:	
Analysis Batch. 7 1040	Sample	Sample	Spike	MS	MS				%Rec	Datch.	/ 1/0
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00199		0.0996	0.09679	Quaimer	mg/Kg		97	70 - 130		
Toluene	< 0.00199		0.0996	0.08799		mg/Kg		88	70 - 130 70 - 130		
Ethylbenzene	<0.00199		0.0990	0.09497		mg/Kg		95	70 - 130		
m-Xylene & p-Xylene	<0.00199		0.199	0.1715		mg/Kg		86	70 - 130		
o-Xylene	<0.00398		0.199	0.08250		mg/Kg		83	70 - 130		
	0.00100		0.0000	0.00200		mgring		00	101100		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	94		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
Lab Sample ID: 880-38548-A	1 6 480					~	liont S	ample IF). Motrix Sr	niko Dur	liest
Matrix: Solid						U U	ment S): Matrix Sp Bron J		
										Spe: To Batch:	
									e ren	DAILUT	11/0
Analysis Batch: 71848	Sampla	Sample	Spike	MSD	MSD				%Rec		RP

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.0990	0.08458		mg/Kg		85	70 - 130	13	35
Toluene	<0.00199	U	0.0990	0.07643		mg/Kg		77	70 - 130	14	35
Ethylbenzene	<0.00199	U	0.0990	0.08291		mg/Kg		84	70 - 130	14	35
m-Xylene & p-Xylene	<0.00398	U	0.198	0.1634		mg/Kg		83	70 - 130	5	35
o-Xylene	<0.00199	U	0.0990	0.08003		mg/Kg		81	70 - 130	3	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	101		70 - 130								

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

101

Lab Sample ID: MB 880-71254/1-A Matrix: Solid Analysis Batch: 71766	мв	МВ				Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/19/24 17:22	01/29/24 07:57	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/19/24 17:22	01/29/24 07:57	1

Eurofins Carlsbad

Page 53 of 83

1,4-Difluorobenzene (Surr)

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Page 54 of 83

Job ID: 890-5988-1 SDG: 03C1558297

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-71254/	1-A									Client S	ample ID:		
Matrix: Solid												Type: To	
Analysis Batch: 71766											Prep	Batch:	7125
		MB	MB										
Analyte	Re	esult	Qualifier	RL		Unit		D	P	repared	Analyz		Dil Fa
Oll Range Organics (Over C28-C36)	<	50.0	U	50.0		mg/K	(g		01/1	9/24 17:22	01/29/24	07:57	
		ΜВ	МВ										
Surrogate	%Reco		Qualifier	Limits					P	repared	Analyz	ed	Dil Fa
1-Chlorooctane		119	quanner	70 - 130						9/24 17:22	01/29/24		Diria
o-Terphenyl		102		70 - 130						9/24 17:22	01/29/24		
Lab Sample ID: LCS 880-71254	1/2_1							<u>د</u>	liont	Samplo	ID: Lab Co	ontrol S	ampl
Matrix: Solid	12-A							Ŭ	nem	Jampie		Type: To	
Analysis Batch: 71766												Batch:	
Analysis Batch. 71700				Spike	1.09	LCS					%Rec	Datch.	1125
Analuto				Added		Qualifier	Unit		D	%Rec	Limits		
Analyte				1000	1053	Guainter			-	105	70 - 130		
Gasoline Range Organics (GRO)-C6-C10				1000	1055		mg/Kg			105	10 - 130		
Diesel Range Organics (Over C10-C28)				1000	776.6		mg/Kg			78	70 - 130		
	LCS	LCS											
Surrogate	%Recovery	Qual	ifier	Limits									
1-Chlorooctane	75			70 - 130									
o-Terphenyl	67	S1-		70_130									
Analysis Batch: 71766				Spike		LCSD					Prep %Rec	Batch:	7125 RP
Analyte				Added		Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Gasoline Range Organics				1000	1008	Quaimer	mg/Kg		<u> </u>	101	70 - 130	4	2
(GRO)-C6-C10				1000	1000		ilig/itg			101	10-100	-	-
Diesel Range Organics (Over C10-C28)				1000	778.1		mg/Kg			78	70 - 130	0	2
	LCSD	LCS	D										
Surrogate	%Recovery	Qual	ifier	Limits									
1-Chlorooctane	80			70 - 130									
o-Terphenyl	79			70 - 130									
Lab Sample ID: 890-5986-A-21- Matrix: Solid	-C MS									Client	Sample ID Prep T	: Matrix Type: To	
Analysis Batch: 71766												Batch:	
	Sample	Sam	ple	Spike	MS	MS					%Rec		Ī
	Sample		ifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
-	Result	Qual			4005		mg/Kg		-	126	70 - 130		
Analyte Gasoline Range Organics	•			1010	1295								
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	U F2		1010	1023		mg/Kg			97	70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.1	U F2					mg/Kg			97	70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.1 <50.1	U F2 U <i>M</i> S					mg/Kg			97	70 - 130		
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.1 <50.1 MS	U F2 U <i>M</i> S		1010			mg/Kg			97	70 - 130		

QC Sample Results

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-5986-A-21- Matrix: Solid	-D MSD								Clie	ent Sa	ample ID:	: Matrix Sp	pike Du Type: To	-	
Analysis Batch: 71766													Batch:		
Alldiysis Daton. 71700	Sample	Sam	anla	Spike		MSD	MSD					%Rec	Daton.	. 71254 RPD	
Analyte	Result		-	Added			Qualifier	Unit		D	%Rec	Limits	RPD		
Gasoline Range Organics	<50.1			1010		938.9		mg/Kg			90	70 - 130	32		
(GRO)-C6-C10	-00.1	0.2	•	1010		500.0	12	ingrise			00	10 - 100	02	20	
Diesel Range Organics (Over	<50.1	U		1010		1091		mg/Kg			104	70 - 130	6	20	1
C10-C28)								- .							
	MSD	MSD	n												
Surrogate				Limits											
1-Chlorooctane	122			70 - 130											1
o-Terphenyl	89			70 _ 130											
Lab Sample ID: MB 880-71255/	1-A										Client Sa	ample ID: I			
Matrix: Solid													Type: To		
Analysis Batch: 71295												Prep	Batch:	: 71255	
			MB												
Analyte			Qualifier		RL		Unit		D		Prepared	Analyz		Dil Fac	
Gasoline Range Organics	<	<50.0	U		50.0		mg/Ko	g		01/1	19/24 17:25	01/22/24 1	18:38	1	I
(GRO)-C6-C10 Diesel Range Organics (Over		<50.0	Ш		50.0		mg/Kg	'n		01/*	19/24 17:25	01/22/24 1	18.38	1	
C10-C28)		.00.0	C		00.0			Э		017.	3/27 11.20	01/22/2	10.00		
Oll Range Organics (Over C28-C36)	<	<50.0	U		50.0		mg/Kg	'à		01/1	19/24 17:25	01/22/24 1	18:38	1	
		-40													
Surrogate	%Reco		MB Qualifier	Limi	ite						Prepared	Analyz		Dil Fac	
1-Chlorooctane	///////////////////////////////////////	86			. 130						19/24 17:25			1	
o-Terphenyl		88			. 130						19/24 17:25			1	
		00		70-	150					017.1	3/27 11.20	V1/LL/L-, ,	10.00	•	
Lab Sample ID: LCS 880-71255	5/2-A								С	lient	t Sample	ID: Lab Co	ontrol §	Sample	
Matrix: Solid													Type: To		
Analysis Batch: 71295													Batch:		
-				Spike		LCS	LCS					%Rec			
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits			
Gasoline Range Organics				1000		960.0		mg/Kg			96	70 - 130			
(GRO)-C6-C10															
Diesel Range Organics (Over				1000		961.6		mg/Kg			96	70 - 130			
C10-C28)															
	LCS	LCS	;												
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	101			70 - 130											
o-Terphenyl	125			70 - 130											
-	_													_	
Lab Sample ID: LCSD 880-7125	55/3-A							CI	lient	Sam	nple ID: L	ab Contro			
Matrix: Solid												Prep T	Туре: То	otal/NA	
												D	D a f a la	- 40	

Matrix: Solid

Analysis Batch: 71295							Prep	Batch:	71255
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1022		mg/Kg		102	70 - 130	6	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	989.3		mg/Kg		99	70 - 130	3	20
C10-C28)									

Eurofins Carlsbad

Page 55 of 83

Job ID: 890-5988-1 SDG: 03C1558297 Lab Sample ID: LCSD 880-71255/3-A

Matrix: Solid

Surrogate

1-Chlorooctane

Analysis Batch: 71295

QC Sample Results

Limits

70 - 130

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCSD LCSD %Recovery Qualifier

101

Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA Prep Batch: 71255 Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 71255 %Rec <u>D %Rec</u> <u>Limits</u> 7 9

Lab Sample ID: 890-5989-A	-1-C MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										Type: To	
Analysis Batch: 71295										Batch:	
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	1010	883.2		mg/Kg		85	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.1	U	1010	919.6		mg/Kg		91	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1.01.1											
1-Chlorooctane	87		70 - 130								
o-Terphenyl	77		70 - 130 70 - 130			C !!	ant C		. Metrix Cr		liest
	77 -1-D MSD		70 - 130			Cli	ent Sa	ample IE	Prep	oike Dup Type: To Batch:	tal/N/ 7125
o-Terphenyl Lab Sample ID: 890-5989-A Matrix: Solid Analysis Batch: 71295	-1-D MSD Sample	Sample	70 ₋ 130 Spike	MSD				·	Prep T Prep %Rec	ype: To Batch:	tal/N/ 7125 RP
o-Terphenyl Lab Sample ID: 890-5989-A Matrix: Solid Analysis Batch: 71295 Analyte	-1-D MSD Sample Result	Qualifier	70 - 130 Spike Added	Result	MSD Qualifier	Unit	ent Sa	%Rec	Prep 1 Prep %Rec Limits	Batch:	tal/N/ 7125 RPI Lim
o-Terphenyl Lab Sample ID: 890-5989-A Matrix: Solid Analysis Batch: 71295	-1-D MSD Sample	Qualifier	70 ₋ 130 Spike					·	Prep T Prep %Rec	ype: To Batch:	tal/N/ 7125 RPI Lim
o-Terphenyl Lab Sample ID: 890-5989-A Matrix: Solid Analysis Batch: 71295 Analyte Gasoline Range Organics	-1-D MSD Sample Result	Qualifier	70 - 130 Spike Added	Result		Unit		%Rec	Prep 1 Prep %Rec Limits	Batch:	tal/N/ 7125 RPI Limi 2
o-Terphenyl Lab Sample ID: 890-5989-A Matrix: Solid Analysis Batch: 71295 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	77 -1-D MSD Sample Result <50.1 <50.1	Qualifier	70 - 130 Spike Added 1010	Result 864.2		- <mark>Unit</mark> mg/Kg		%Rec 84	Prep 7 Prep %Rec Limits 70 - 130	RPD 2	tal/N/ 7125 RPI Limi 2
o-Terphenyl Lab Sample ID: 890-5989-A Matrix: Solid Analysis Batch: 71295 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	77 -1-D MSD Sample Result <50.1 <50.1	Qualifier U U MSD	70 - 130 Spike Added 1010	Result 864.2		- <mark>Unit</mark> mg/Kg		%Rec 84	Prep 7 Prep %Rec Limits 70 - 130	RPD 2	tal/N/ 7125 RPI Limi 2
o-Terphenyl Lab Sample ID: 890-5989-A Matrix: Solid Analysis Batch: 71295 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	-1-D MSD Sample Result <50.1 <50.1	Qualifier U U MSD	70 - 130 Spike Added 1010	Result 864.2		- <mark>Unit</mark> mg/Kg		%Rec 84	Prep 7 Prep %Rec Limits 70 - 130	RPD 2	tal/N/

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-71216/1-A Matrix: Solid Analysis Batch: 71372									Client S	Sample ID: Metho Prep Type:	
-	МВ	МВ									
Analyte	Result	Qualifier		RL		Unit	t	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U		5.00		mg/	Kg			01/22/24 19:11	1
 Lab Sample ID: LCS 880-71216/2-A								Clien	t Sample	BID: Lab Control	Sample
Matrix: Solid										Prep Type:	Soluble
Analysis Batch: 71372											
			Spike		LCS	LCS				%Rec	
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits	
Chloride			250		253.5		mg/Kg		101	90 - 110	

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H Job ID: 890-5988-1 SDG: 03C1558297

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-71	216/3-A					Cli	ent S	am	p.0.121	Lab Contro		
Matrix: Solid										Prep	Type: S	oluble
Analysis Batch: 71372			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added		Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride			250	255.3		mg/Kg			102	90 - 110	1	20
 Lab Sample ID: 890-5988-8 M	IS									Client Sam	ole ID: P	H 04A
Matrix: Solid										Prep	Type: S	oluble
Analysis Batch: 71372												
	Sample	-	Spike		MS					%Rec		
Analyte Chloride		Qualifier	Added 249	274.0	Qualifier	Unit mg/Kg		D	%Rec 103	Limits 90 - 110		
	10.7		249	274.0		mg/rtg			105	90 - 110		
Lab Sample ID: 890-5988-8 M	ISD									Client Sam	ole ID: P	H 04A
Matrix: Solid										Prep	Type: S	oluble
Analysis Batch: 71372												
	Sample	•	Spike	MSD	MSD					%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride	18.7		249	274.4		mg/Kg			103	90 _ 110	0	20
Lab Sample ID: MB 880-7123	0/1-A								Client	Sample ID:	Method	Blank
Matrix: Solid											Type: S	
Associate Details 74000												
Analysis Batch: (1386												
Analysis Batch: 71386		MB MB										
Analysis Batch: 71386		esult Qualifier		RL	Unit		D	Pr	repared	Analyz	zed	Dil Fac
-				RL 5.00	Unit mg/Kg)	<u>D</u>	Pr	repared	Analyz 01/24/24		Dil Fac 1
Analyte Chloride	<	esult Qualifier]			-	01/24/24	06:32	1
Analyte Chloride Lab Sample ID: LCS 880-712	<	esult Qualifier]			-	01/24/24	06:32	1 ample
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid	<	esult Qualifier]			-	01/24/24	06:32	1 ample
Analyte Chloride Lab Sample ID: LCS 880-712	<	esult Qualifier	Spike	5.00		3			-	01/24/24	06:32	1 ample
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid	<	esult Qualifier		5.00 LCS	mg/Kg	Unit			-	01/24/24 e ID: Lab C Prep	06:32	1 ample
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386	<	esult Qualifier	Spike	5.00 LCS	LCS			ent	Sampl	01/24/24 e ID: Lab C Prep %Rec	06:32	1 ample
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride	30/2-A	esult Qualifier	Spike Added	5.00 LCS Result	LCS	Unit mg/Kg	Cli	ent	Sampl %Rec 101	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110	ontrol S Type: S	1 ample oluble
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71	30/2-A	esult Qualifier	Spike Added	5.00 LCS Result	LCS	Unit mg/Kg	Cli	ent	Sampl %Rec 101	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro	ontrol S Type: S	1 ample oluble e Dup
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid	30/2-A	esult Qualifier	Spike Added	5.00 LCS Result	LCS	Unit mg/Kg	Cli	ent	Sampl %Rec 101	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro	ontrol S Type: S	1 ample oluble e Dup
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71	30/2-A	esult Qualifier	Spike Added	5.00 LCS Result 252.1	LCS	Unit mg/Kg	Cli	ent	Sampl %Rec 101	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro	ontrol S Type: S	1 ample oluble e Dup
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid	30/2-A	esult Qualifier	Spike Added 250	5.00 LCS Result 252.1	LCS Qualifier	Unit mg/Kg	Cli	ent	Sampl %Rec 101	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep	ontrol S Type: S	1 ample oluble e Dup oluble
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386	30/2-A	esult Qualifier	Spike Added 250 Spike	5.00 LCS Result 252.1	LCS Qualifier	Unit mg/Kg Cli	Cli	ent D am	Sampl %Rec 101 ple ID:	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	ontrol S Type: S	1 ample oluble e Dup oluble RPD
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride	30/2-A 230/3-A	esult Qualifier	Spike Added 250 Spike Added	5.00 LCS Result 252.1 LCSD Result	LCS Qualifier	Unit mg/Kg Cli Unit	Cli	ent D am	Sampl %Rec 101 ple ID: %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1	1 ample oluble e Dup oluble RPD Limit 20
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 M	30/2-A 230/3-A	esult Qualifier	Spike Added 250 Spike Added	5.00 LCS Result 252.1 LCSD Result	LCS Qualifier	Unit mg/Kg Cli Unit	Cli	ent D am	Sampl %Rec 101 ple ID: %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID:	1 ample oluble e Dup oluble RPD Limit 20 PH 01
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 M Matrix: Solid	30/2-A 230/3-A	esult Qualifier	Spike Added 250 Spike Added	5.00 LCS Result 252.1 LCSD Result	LCS Qualifier	Unit mg/Kg Cli Unit	Cli	ent D am	Sampl %Rec 101 ple ID: %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1	1 ample oluble e Dup oluble RPD Limit 20 PH 01
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 M	30/2-A 230/3-A	25.00 U	Spike Added 250 Spike Added	5.00 LCS Result 252.1 LCSD Result 250.5	LCS Qualifier	Unit mg/Kg Cli Unit	Cli	ent D am	Sampl %Rec 101 ple ID: %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID:	1 ample oluble e Dup oluble RPD Limit 20 PH 01
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 M Matrix: Solid	<pre>30/2-A 30/2-A 230/3-A IS Sample Result</pre>	Sample Qualifier	Spike Added 250 Spike Added 250	5.00 LCS Result 252.1 LCSD Result 250.5	LCS Qualifier Qualifier	Unit mg/Kg Cli Unit	Cli	ent D am	Sampl %Rec 101 ple ID: %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar Prep	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID:	1 ample oluble e Dup oluble RPD Limit 20 PH 01
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 M Matrix: Solid Analysis Batch: 71386	<pre>30/2-A 230/3-A IS Sample</pre>	Sample Qualifier	Spike Added 250 Spike Added 250 Spike	5.00 LCS Result 252.1 LCSD Result 250.5	LCS Qualifier UCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	Cli	D am	%Rec 101 ple ID: %Rec 100	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Client Sar Prep %Rec	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID:	1 ample oluble e Dup oluble RPD Limit 20 PH 01
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 M Matrix: Solid Analysis Batch: 71386 Analyte Chloride	30/2-A 230/3-A IS Result 3710	Sample Qualifier	Spike Added 250 Spike Added 250 Spike Added	5.00 LCS Result 252.1 LCSD Result 250.5	LCS Qualifier UCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	Cli	D am	Sampl %Rec 101 ple ID: %Rec 100 %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sar Prep %Rec Limits 90 - 110 Client Sar Prep %Rec Limits 90 - 110	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID: Type: S	1 ample oluble e Dup oluble RPD Limit 20 PH 01 oluble
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 N Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 N	30/2-A 230/3-A IS Result 3710	Sample Qualifier	Spike Added 250 Spike Added 250 Spike Added	5.00 LCS Result 252.1 LCSD Result 250.5	LCS Qualifier UCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	Cli	D am	Sampl %Rec 101 ple ID: %Rec 100 %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sar Prep %Rec Limits 90 - 110 Client Sar %Rec Limits 90 - 110 Client Sar 90 - 110 Client Sar	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID: Type: S	1 ample oluble e Dup oluble RPD Limit 20 PH 01 oluble
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 N Matrix: Solid Analyte Chloride Lab Sample ID: 890-5988-1 N Matrix: Solid	30/2-A 230/3-A IS Result 3710	Sample Qualifier	Spike Added 250 Spike Added 250 Spike Added	5.00 LCS Result 252.1 LCSD Result 250.5	LCS Qualifier UCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	Cli	D am	Sampl %Rec 101 ple ID: %Rec 100 %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sar Prep %Rec Limits 90 - 110 Client Sar %Rec Limits 90 - 110 Client Sar 90 - 110 Client Sar	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID: Type: S	1 ample oluble e Dup oluble RPD Limit 20 PH 01 oluble
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 N Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 N	30/2-A 230/3-A IS Result 3710	Sample Gualifier F1	Spike Added 250 Spike Added 250 Spike Added	5.00 LCS Result 252.1 LCSD Result 250.5 MS Result 5153	LCS Qualifier UCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	Cli	D am	Sampl %Rec 101 ple ID: %Rec 100 %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sar Prep %Rec Limits 90 - 110 Client Sar %Rec Limits 90 - 110 Client Sar 90 - 110 Client Sar	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID: Type: S	1 ample oluble e Dup oluble RPD Limit 20 PH 01 oluble
Analyte Chloride Lab Sample ID: LCS 880-712 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: LCSD 880-71 Matrix: Solid Analysis Batch: 71386 Analyte Chloride Lab Sample ID: 890-5988-1 N Matrix: Solid Analyte Chloride Lab Sample ID: 890-5988-1 N Matrix: Solid	30/2-A 30/2-A 230/3-A IS Sample Result 3710 ISD Sample	Sample Gualifier F1	Spike Added 250 Spike Added 250 Spike Added 1250	5.00 LCS Result 252.1 LCSD Result 250.5 MS Result 5153	LCS Qualifier MS Qualifier F1	Unit mg/Kg Cli Unit mg/Kg	Cli	D am	Sampl %Rec 101 ple ID: %Rec 100 %Rec	01/24/24 e ID: Lab C Prep %Rec Limits 90 - 110 Lab Controc Prep %Rec Limits 90 - 110 Client Sar Prep %Rec Limits 90 - 110 Client Sar 90 - 110 Client Sar 90 - 110 Client Sar Prep	ontrol S Type: S ol Sampl Type: S <u>RPD</u> 1 nple ID: Type: S	1 ample oluble e Dup oluble RPD Limit 20 PH 01 oluble PH 01 oluble

Eurofins Carlsbad

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

GC VOA

Prep Batch: 71633

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5988-1	PH 01	Total/NA	Solid	5035	
890-5988-2	PH 01A	Total/NA	Solid	5035	
890-5988-3	PH 02	Total/NA	Solid	5035	
890-5988-4	PH 02A	Total/NA	Solid	5035	
890-5988-5	PH 03	Total/NA	Solid	5035	
890-5988-6	PH 03A	Total/NA	Solid	5035	
890-5988-7	PH 04	Total/NA	Solid	5035	
890-5988-8	PH 04A	Total/NA	Solid	5035	
890-5988-9	PH 05	Total/NA	Solid	5035	
890-5988-10	PH 05A	Total/NA	Solid	5035	
890-5988-11	SS 01	Total/NA	Solid	5035	
890-5988-12	SS 02	Total/NA	Solid	5035	
890-5988-13	SS 03	Total/NA	Solid	5035	
890-5988-14	SS 04	Total/NA	Solid	5035	
890-5988-15	SS 05	Total/NA	Solid	5035	
890-5988-16	SS 06	Total/NA	Solid	5035	
MB 880-71633/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-71633/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-71633/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5988-1 MS	PH 01	Total/NA	Solid	5035	
890-5988-1 MSD	PH 01	Total/NA	Solid	5035	

Prep Batch: 71636

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-71636/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 71639

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5988-1	PH 01	Total/NA	Solid	5035	
MB 880-71639/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-71639/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-71639/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5998-A-42-C MS	Matrix Spike	Total/NA	Solid	5035	
890-5998-A-42-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 71772

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5988-1	PH 01	Total/NA	Solid	8021B	71633
890-5988-2	PH 01A	Total/NA	Solid	8021B	71633
890-5988-3	PH 02	Total/NA	Solid	8021B	71633
890-5988-4	PH 02A	Total/NA	Solid	8021B	71633
890-5988-5	PH 03	Total/NA	Solid	8021B	71633
890-5988-6	PH 03A	Total/NA	Solid	8021B	71633
890-5988-7	PH 04	Total/NA	Solid	8021B	71633
890-5988-8	PH 04A	Total/NA	Solid	8021B	71633
890-5988-9	PH 05	Total/NA	Solid	8021B	71633
890-5988-10	PH 05A	Total/NA	Solid	8021B	71633
890-5988-11	SS 01	Total/NA	Solid	8021B	71633
890-5988-12	SS 02	Total/NA	Solid	8021B	71633
890-5988-13	SS 03	Total/NA	Solid	8021B	71633
890-5988-14	SS 04	Total/NA	Solid	8021B	71633

Eurofins Carlsbad

Page 58 of 83

Job ID: 890-5988-1 SDG: 03C1558297

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

GC VOA (Continued)

Analysis Batch: 71772 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5988-15	SS 05	Total/NA	Solid	8021B	71633
890-5988-16	SS 06	Total/NA	Solid	8021B	71633
MB 880-71633/5-A	Method Blank	Total/NA	Solid	8021B	71633
LCS 880-71633/1-A	Lab Control Sample	Total/NA	Solid	8021B	71633
LCSD 880-71633/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71633
890-5988-1 MS	PH 01	Total/NA	Solid	8021B	71633
890-5988-1 MSD	PH 01	Total/NA	Solid	8021B	71633
890-5988-17	SS 07	Total/NA	Solid	5035	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-71786/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-71786/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCS 880-71786/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-38548-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
880-38548-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
nalysis Batch: 71848					
- Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch

Lab Sample ID 890-5988-17	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 71786
MB 880-71786/5-A	Method Blank	Total/NA	Solid	8021B	71786
LCS 880-71786/1-A	Lab Control Sample	Total/NA	Solid	8021B	71786
LCSD 880-71786/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71786
880-38548-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	71786
880-38548-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	71786

Analysis Batch: 71948

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
890-5988-1	PH 01	Total/NA	Solid	Total BTEX	
890-5988-2	PH 01A	Total/NA	Solid	Total BTEX	
890-5988-3	PH 02	Total/NA	Solid	Total BTEX	
890-5988-4	PH 02A	Total/NA	Solid	Total BTEX	
890-5988-5	PH 03	Total/NA	Solid	Total BTEX	
890-5988-6	PH 03A	Total/NA	Solid	Total BTEX	
890-5988-7	PH 04	Total/NA	Solid	Total BTEX	
890-5988-8	PH 04A	Total/NA	Solid	Total BTEX	
890-5988-9	PH 05	Total/NA	Solid	Total BTEX	
890-5988-10	PH 05A	Total/NA	Solid	Total BTEX	
890-5988-11	SS 01	Total/NA	Solid	Total BTEX	
890-5988-12	SS 02	Total/NA	Solid	Total BTEX	
890-5988-13	SS 03	Total/NA	Solid	Total BTEX	
890-5988-14	SS 04	Total/NA	Solid	Total BTEX	
890-5988-15	SS 05	Total/NA	Solid	Total BTEX	
890-5988-16	SS 06	Total/NA	Solid	Total BTEX	
890-5988-17	SS 07	Total/NA	Solid	Total BTEX	

Analysis Batch: 71951

Lab Sample ID 890-5988-1	Client Sample ID PH 01	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 71639
MB 880-71636/5-A	Method Blank	Total/NA	Solid	8021B	71636
MB 880-71639/5-A	Method Blank	Total/NA	Solid	8021B	71639

Eurofins Carlsbad

Job ID: 890-5988-1

Page 59 of 83

SDG: 03C1558297

5

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

GC VOA (Continued)

Analysis Batch: 71951 (Continued)

Lab Sample ID LCS 880-71639/1-A	Client Sample ID Lab Control Sample	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 71639
LCSD 880-71639/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71639
890-5998-A-42-C MS	Matrix Spike	Total/NA	Solid	8021B	71639
890-5998-A-42-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	71639

GC Semi VOA

Prep Batch: 71254

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5988-1	PH 01	Total/NA	Solid	8015NM Prep	
890-5988-2	PH 01A	Total/NA	Solid	8015NM Prep	
890-5988-3	PH 02	Total/NA	Solid	8015NM Prep	
890-5988-4	PH 02A	Total/NA	Solid	8015NM Prep	
890-5988-5	PH 03	Total/NA	Solid	8015NM Prep	
890-5988-6	PH 03A	Total/NA	Solid	8015NM Prep	
890-5988-7	PH 04	Total/NA	Solid	8015NM Prep	
890-5988-8	PH 04A	Total/NA	Solid	8015NM Prep	
890-5988-9	PH 05	Total/NA	Solid	8015NM Prep	
890-5988-10	PH 05A	Total/NA	Solid	8015NM Prep	
MB 880-71254/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-71254/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-71254/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5986-A-21-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5986-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 71255

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5988-11	SS 01	Total/NA	Solid	8015NM Prep	
890-5988-12	SS 02	Total/NA	Solid	8015NM Prep	
890-5988-13	SS 03	Total/NA	Solid	8015NM Prep	
890-5988-14	SS 04	Total/NA	Solid	8015NM Prep	
890-5988-15	SS 05	Total/NA	Solid	8015NM Prep	
890-5988-16	SS 06	Total/NA	Solid	8015NM Prep	
890-5988-17	SS 07	Total/NA	Solid	8015NM Prep	
MB 880-71255/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-71255/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-71255/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5989-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5989-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 71295

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5988-11	SS 01	Total/NA	Solid	8015B NM	71255
890-5988-12	SS 02	Total/NA	Solid	8015B NM	71255
890-5988-13	SS 03	Total/NA	Solid	8015B NM	71255
890-5988-14	SS 04	Total/NA	Solid	8015B NM	71255
890-5988-15	SS 05	Total/NA	Solid	8015B NM	71255
890-5988-16	SS 06	Total/NA	Solid	8015B NM	71255
890-5988-17	SS 07	Total/NA	Solid	8015B NM	71255
MB 880-71255/1-A	Method Blank	Total/NA	Solid	8015B NM	71255
LCS 880-71255/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	71255

Eurofins Carlsbad

Page 60 of 83

Job ID: 890-5988-1 SDG: 03C1558297

ad

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

GC Semi VOA (Continued)

Analysis Batch: 71295 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCSD 880-71255/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	71255
890-5989-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	71255
890-5989-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	71255

Analysis Batch: 71440

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-5988-1	PH 01	Total/NA	Solid	8015 NM		
890-5988-2	PH 01A	Total/NA	Solid	8015 NM		8
890-5988-3	PH 02	Total/NA	Solid	8015 NM		
890-5988-4	PH 02A	Total/NA	Solid	8015 NM		9
890-5988-5	PH 03	Total/NA	Solid	8015 NM		
890-5988-6	PH 03A	Total/NA	Solid	8015 NM		
890-5988-7	PH 04	Total/NA	Solid	8015 NM		
890-5988-8	PH 04A	Total/NA	Solid	8015 NM		
890-5988-9	PH 05	Total/NA	Solid	8015 NM		
890-5988-10	PH 05A	Total/NA	Solid	8015 NM		
890-5988-11	SS 01	Total/NA	Solid	8015 NM		
890-5988-12	SS 02	Total/NA	Solid	8015 NM		
890-5988-13	SS 03	Total/NA	Solid	8015 NM		13
890-5988-14	SS 04	Total/NA	Solid	8015 NM		
890-5988-15	SS 05	Total/NA	Solid	8015 NM		
890-5988-16	SS 06	Total/NA	Solid	8015 NM		
890-5988-17	SS 07	Total/NA	Solid	8015 NM		

Analysis Batch: 71766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5988-1	PH 01	Total/NA	Solid	8015B NM	71254
890-5988-2	PH 01A	Total/NA	Solid	8015B NM	71254
890-5988-3	PH 02	Total/NA	Solid	8015B NM	71254
890-5988-4	PH 02A	Total/NA	Solid	8015B NM	71254
890-5988-5	PH 03	Total/NA	Solid	8015B NM	71254
890-5988-6	PH 03A	Total/NA	Solid	8015B NM	71254
890-5988-7	PH 04	Total/NA	Solid	8015B NM	71254
890-5988-8	PH 04A	Total/NA	Solid	8015B NM	71254
890-5988-9	PH 05	Total/NA	Solid	8015B NM	71254
890-5988-10	PH 05A	Total/NA	Solid	8015B NM	71254
MB 880-71254/1-A	Method Blank	Total/NA	Solid	8015B NM	71254
LCS 880-71254/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	71254
LCSD 880-71254/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	71254
890-5986-A-21-C MS	Matrix Spike	Total/NA	Solid	8015B NM	71254
890-5986-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	71254

HPLC/IC

Leach Batch: 71216

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5988-8	PH 04A	Soluble	Solid	DI Leach	
890-5988-9	PH 05	Soluble	Solid	DI Leach	
890-5988-10	PH 05A	Soluble	Solid	DI Leach	
890-5988-11	SS 01	Soluble	Solid	DI Leach	
890-5988-12	SS 02	Soluble	Solid	DI Leach	

Eurofins Carlsbad

Page 61 of 83

5 6

Job ID: 890-5988-1 SDG: 03C1558297

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

HPLC/IC (Continued)

Leach Batch: 71216 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5988-13	SS 03	Soluble	Solid	DI Leach	
890-5988-14	SS 04	Soluble	Solid	DI Leach	
890-5988-15	SS 05	Soluble	Solid	DI Leach	
890-5988-16	SS 06	Soluble	Solid	DI Leach	
890-5988-17	SS 07	Soluble	Solid	DI Leach	
MB 880-71216/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-71216/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-71216/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5988-8 MS	PH 04A	Soluble	Solid	DI Leach	
890-5988-8 MSD	PH 04A	Soluble	Solid	DI Leach	

Leach Batch: 71230

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5988-1	PH 01	Soluble	Solid	DI Leach	
890-5988-2	PH 01A	Soluble	Solid	DI Leach	
890-5988-3	PH 02	Soluble	Solid	DI Leach	
890-5988-4	PH 02A	Soluble	Solid	DI Leach	
890-5988-5	PH 03	Soluble	Solid	DI Leach	
890-5988-6	PH 03A	Soluble	Solid	DI Leach	
890-5988-7	PH 04	Soluble	Solid	DI Leach	
MB 880-71230/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-71230/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-71230/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5988-1 MS	PH 01	Soluble	Solid	DI Leach	
890-5988-1 MSD	PH 01	Soluble	Solid	DI Leach	

Analysis Batch: 71372

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5988-8	PH 04A	Soluble	Solid	300.0	71216
890-5988-9	PH 05	Soluble	Solid	300.0	71216
890-5988-10	PH 05A	Soluble	Solid	300.0	71216
890-5988-11	SS 01	Soluble	Solid	300.0	71216
890-5988-12	SS 02	Soluble	Solid	300.0	71216
890-5988-13	SS 03	Soluble	Solid	300.0	71216
890-5988-14	SS 04	Soluble	Solid	300.0	71216
890-5988-15	SS 05	Soluble	Solid	300.0	71216
890-5988-16	SS 06	Soluble	Solid	300.0	71216
890-5988-17	SS 07	Soluble	Solid	300.0	71216
MB 880-71216/1-A	Method Blank	Soluble	Solid	300.0	71216
LCS 880-71216/2-A	Lab Control Sample	Soluble	Solid	300.0	71216
LCSD 880-71216/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	71216
890-5988-8 MS	PH 04A	Soluble	Solid	300.0	71216
890-5988-8 MSD	PH 04A	Soluble	Solid	300.0	71216

Analysis Batch: 71386

Lab Sample ID 890-5988-1	Client Sample ID PH 01	Prep Type Soluble	Matrix Solid	Method 300.0	Prep Batch 71230
890-5988-2	PH 01A	Soluble	Solid	300.0	71230
890-5988-3	PH 02	Soluble	Solid	300.0	71230
890-5988-4	PH 02A	Soluble	Solid	300.0	71230
890-5988-5	PH 03	Soluble	Solid	300.0	71230

Job ID: 890-5988-1 SDG: 03C1558297

Eurofins Carlsbad

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

HPLC/IC (Continued)

Analysis Batch: 71386 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5988-6	PH 03A	Soluble	Solid	300.0	71230
890-5988-7	PH 04	Soluble	Solid	300.0	71230
MB 880-71230/1-A	Method Blank	Soluble	Solid	300.0	71230
LCS 880-71230/2-A	Lab Control Sample	Soluble	Solid	300.0	71230
LCSD 880-71230/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	71230
890-5988-1 MS	PH 01	Soluble	Solid	300.0	71230
890-5988-1 MSD	PH 01	Soluble	Solid	300.0	71230

Job ID: 890-5988-1 SDG: 03C1558297

5 6 7

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample ID: PH 01 Date Collected: 01/17/24 11:00

Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	71639	01/25/24 18:06	MNR	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	71951	01/31/24 09:53	MNR	EET MID
Total/NA	Prep	5035			4.98 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/29/24 22:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/31/24 09:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/29/24 15:10	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	71254	01/19/24 17:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 15:10	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	71230	01/19/24 14:56	SA	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	71386	01/24/24 11:55	SMC	EET MID

Client Sample ID: PH 01A

Date Collected: 01/17/24 11:30 Date Received: 01/18/24 12:56

Lab	Sample	ID:	890-5988-2
-----	--------	-----	------------

Lab Sample ID: 890-5988-3

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71633	01/25/24 18:00	MNR	EET MIC
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/29/24 23:03	MNR	EET MIC
Total/NA	Analysis	Total BTEX		1			71948	01/29/24 23:03	SM	EET MIC
Total/NA	Analysis	8015 NM		1			71440	01/29/24 15:32	SM	EET MI
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	71254	01/19/24 17:22	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 15:32	SM	EET MIC
Soluble	Leach	DI Leach			5.01 g	50 mL	71230	01/19/24 14:56	SA	EET MIC
Soluble	Analysis	300.0		1	50 mL	50 mL	71386	01/24/24 07:13	SMC	EET MID

Client Sample ID: PH 02 Date Collected: 01/17/24 11:50 Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/29/24 23:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/29/24 23:24	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/29/24 15:54	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	71254	01/19/24 17:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 15:54	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	71230	01/19/24 14:56	SA	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	71386	01/24/24 07:20	SMC	EET MID

Job ID: 890-5988-1 SDG: 03C1558297

Lab Sample ID: 890-5988-1

Matrix: Solid

5

9

Job ID: 890-5988-1 SDG: 03C1558297

Lab Sample ID: 890-5988-4 Matrix: Solid

Lab Sample ID: 890-5988-5

Lab Sample ID: 890-5988-6

Lab Sample ID: 890-5988-7

Matrix: Solid

Matrix: Solid

Date Collected: 01/17/24 12:10 Date Received: 01/18/24 12:56

Client Sample ID: PH 02A

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/29/24 23:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/29/24 23:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/29/24 16:14	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	71254	01/19/24 17:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 16:14	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	71230	01/19/24 14:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71386	01/24/24 07:27	SMC	EET MID

Client Sample ID: PH 03

Date Collected: 01/17/24 12:30

Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 00:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 00:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/29/24 16:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	71254	01/19/24 17:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 16:36	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	71230	01/19/24 14:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71386	01/24/24 07:34	SMC	EET MID

Client Sample ID: PH 03A Date Collected: 01/18/24 12:45

Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 00:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 00:25	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/29/24 16:57	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	71254	01/19/24 17:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 16:57	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	71230	01/19/24 14:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71386	01/24/24 07:55	SMC	EET MID

Client Sample ID: PH 04 Date Collected: 01/18/24 09:15 Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 00:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 00:45	SM	EET MID

Eurofins Carlsbad

Page 65 of 83

Released to Imaging: 3/12/2024 1:49:28 PM

Matrix: Solid

Page 66 of 83

Job ID: 890-5988-1 SDG: 03C1558297

Lab Sample ID: 890-5988-7

Lab Sample ID: 890-5988-9

Lab Sample ID: 890-5988-10

Matrix: Solid

Matrix: Solid

Client Sample ID: PH 04

Client: Ensolum

Date Collected: 01/18/24 09:15 Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			71440	01/29/24 17:18	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	71254	01/19/24 17:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 17:18	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	71230	01/19/24 14:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71386	01/24/24 08:02	SMC	EET MID

Client Sample ID: PH 04A

Date Collected: 01/18/24 09:30 Date Received: 01/18/24 12:56

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 01:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 01:06	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/29/24 17:39	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	71254	01/19/24 17:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 17:39	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 20:38	SMC	EET MID

Client Sample ID: PH 05

Date Collected: 01/18/24 09:50 Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 01:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 01:26	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/29/24 18:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	71254	01/19/24 17:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 18:00	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 20:54	SMC	EET MID

Client Sample ID: PH 05A

Date Collected: 01/18/24 10:05 Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 01:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 01:47	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/29/24 18:22	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	71254	01/19/24 17:22	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71766	01/29/24 18:22	SM	EET MID

Eurofins Carlsbad

Matrix: Solid 5 Lab Sample ID: 890-5988-8 9 Matrix: Solid

Job ID: 890-5988-1 SDG: 03C1558297

Client Sample ID: PH 05A Date Collected: 01/18/24 10:05

Client: Ensolum

Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 20:59	SMC	EET MID

Client Sample ID: SS 01

Date Collected: 01/18/24 11:00 Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 03:09	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 03:09	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/23/24 01:46	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	71255	01/19/24 17:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71295	01/23/24 01:46	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 21:14	SMC	EET MID

Client Sample ID: SS 02 Date Collected: 01/18/24 11:05 Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 03:29	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 03:29	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/23/24 02:08	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	71255	01/19/24 17:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71295	01/23/24 02:08	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 21:19	SMC	EET MID

Client Sample ID: SS 03 Date Collected: 01/18/24 11:10 Date Received: 01/18/24 12:56

Lab Sample ID: 890-5988-13 Matrix: Solid

Lab Sample ID: 890-5988-12

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 03:50	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 03:50	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/23/24 02:29	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	71255	01/19/24 17:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71295	01/23/24 02:29	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 21:25	SMC	EET MID

Eurofins Carlsbad

Job ID: 890-5988-1 SDG: 03C1558297

Client Sample ID: SS 04 Date Collected: 01/18/24 11:20

Date Received: 01/18/24 12:56

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 04:10	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 04:10	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/23/24 02:50	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	71255	01/19/24 17:25	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71295	01/23/24 02:50	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 21:30	SMC	EET MID

Client Sample ID: SS 05

Date Collected: 01/18/24 11:25

Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 04:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 04:31	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/23/24 03:11	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	71255	01/19/24 17:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71295	01/23/24 03:11	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 21:35	SMC	EET MID

Client Sample ID: SS 06 Date Collected: 01/18/24 11:30

Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71633	01/25/24 18:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71772	01/30/24 04:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 04:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			71440	01/23/24 03:33	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	71255	01/19/24 17:25	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71295	01/23/24 03:33	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 21:40	SMC	EET MID

Client Sample ID: SS 07 Date Collected: 01/18/24 11:35 Date Received: 01/18/24 12:56

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	71786	01/29/24 10:57	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71848	01/30/24 01:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71948	01/30/24 01:56	SM	EET MID

Eurofins Carlsbad

Page 68 of 83

SDG: 03C1558297

Matrix: Solid

Lab Sample ID: 890-5988-15

Lab Sample ID: 890-5988-16

Lab Sample ID: 890-5988-17

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Client Sample ID: SS 07 Date Collected: 01/18/24 11:35

Date Received: 01/18/24 12:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			71440	01/23/24 03:55	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	71255	01/19/24 17:25	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71295	01/23/24 03:55	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	71216	01/19/24 14:32	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	71372	01/22/24 21:45	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-5988-1 SDG: 03C1558297

Lab Sample ID: 890-5988-17

Matrix: Solid

Eurofins Carlsbad

Accreditation/Certification Summary

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program		Identification Number	Expiration Date
exas	NELAP	1	T104704400-23-26	06-30-24
for which the agency do	bes not offer certification.	,	ed by the governing authority. This lis	t may include analytes
• ,		the laboratory is not certif Matrix Solid	ed by the governing authority. This lis Analyte Total TPH	t may include analytes

10

Job ID: 890-5988-1 SDG: 03C1558297

Method Summary

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H Job ID: 890-5988-1 SDG: 03C1558297

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
0.00	Anions, Ion Chromatography	EPA	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
01 Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe ASTM = A	srences: STM International		
EPA = US	Environmental Protection Agency		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed	ition, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R			
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Eurofins Carlsbad

Sample Summary

Client: Ensolum Project/Site: PLU 17 TWIN WELLS RANCH 122H

890-5988-1 PH 01 Solid 01/17/24 11:00 01/18/24 12:56 0.5' 890-5988-2 PH 01A Solid 01/17/24 11:30 01/18/24 12:56 4' 890-5988-3 PH 02 Solid 01/17/24 11:50 01/18/24 12:56 4' 890-5988-3 PH 02 Solid 01/17/24 11:50 01/18/24 12:56 0.5' 890-5988-4 PH 02A Solid 01/17/24 12:10 01/18/24 12:56 3' 890-5988-5 PH 03 Solid 01/17/24 12:30 01/18/24 12:56 0.5' 890-5988-6 PH 03A Solid 01/18/24 12:45 01/18/24 12:56 3' 890-5988-7 PH 04 Solid 01/18/24 09:15 01/18/24 12:56 3' 890-5988-8 PH 04A Solid 01/18/24 09:30 01/18/24 12:56 3' 890-5988-9 PH 05 Solid 01/18/24 09:50 01/18/24 12:56 0.5' 890-5988-10 PH 05A Solid 01/18/24 10:05 01/18/24 12:56 3'
890-5988-3PH 02Solid01/17/24 11:5001/18/24 12:560.5'890-5988-4PH 02ASolid01/17/24 12:1001/18/24 12:563'890-5988-5PH 03Solid01/17/24 12:3001/18/24 12:560.5'890-5988-6PH 03ASolid01/18/24 12:4501/18/24 12:563'890-5988-7PH 04Solid01/18/24 09:1501/18/24 12:560.5'890-5988-8PH 04ASolid01/18/24 09:3001/18/24 12:563'890-5988-9PH 05Solid01/18/24 09:5001/18/24 12:560.5'890-5988-10PH 05ASolid01/18/24 10:0501/18/24 12:563'
890-5988-4PH 02ASolid01/17/24 12:1001/18/24 12:563'890-5988-5PH 03Solid01/17/24 12:3001/18/24 12:560.5'890-5988-6PH 03ASolid01/18/24 12:4501/18/24 12:563'890-5988-7PH 04Solid01/18/24 09:1501/18/24 12:560.5'890-5988-8PH 04ASolid01/18/24 09:3001/18/24 12:563'890-5988-9PH 05Solid01/18/24 09:5001/18/24 12:560.5'890-5988-10PH 05ASolid01/18/24 10:0501/18/24 12:563'
890-5988-5PH 03Solid01/17/24 12:3001/18/24 12:560.5'890-5988-6PH 03ASolid01/18/24 12:4501/18/24 12:563'890-5988-7PH 04Solid01/18/24 09:1501/18/24 12:560.5'890-5988-8PH 04ASolid01/18/24 09:3001/18/24 12:563'890-5988-9PH 05Solid01/18/24 09:5001/18/24 12:560.5'890-5988-10PH 05ASolid01/18/24 10:0501/18/24 12:563'
890-5988-6PH 03ASolid01/18/24 12:4501/18/24 12:563'890-5988-7PH 04Solid01/18/24 09:1501/18/24 12:560.5'890-5988-8PH 04ASolid01/18/24 09:3001/18/24 12:563'890-5988-9PH 05Solid01/18/24 09:5001/18/24 12:560.5'890-5988-10PH 05ASolid01/18/24 10:0501/18/24 12:563'
890-5988-7PH 04Solid01/18/24 09:1501/18/24 12:560.5'890-5988-8PH 04ASolid01/18/24 09:3001/18/24 12:563'890-5988-9PH 05Solid01/18/24 09:5001/18/24 12:560.5'890-5988-10PH 05ASolid01/18/24 10:0501/18/24 12:563'
B390-5988-8 PH 04A Solid 01/18/24 09:30 01/18/24 12:56 3' B390-5988-9 PH 05 Solid 01/18/24 09:50 01/18/24 12:56 0.5' B390-5988-10 PH 05A Solid 01/18/24 10:05 01/18/24 12:56 3'
390-5988-9 PH 05 Solid 01/18/24 09:50 01/18/24 12:56 0.5' 390-5988-10 PH 05A Solid 01/18/24 10:05 01/18/24 12:56 3'
390-5988-10 PH 05A Solid 01/18/24 10:05 01/18/24 12:56 3'
390-5988-11 SS 01 Solid 01/18/24 11:00 01/18/24 12:56 0.5'
390-5988-12 SS 02 Solid 01/18/24 11:05 01/18/24 12:56 0.5'
390-5988-13 SS 03 Solid 01/18/24 11:10 01/18/24 12:56 0.5'
390-5988-14 SS 04 Solid 01/18/24 11:20 01/18/24 12:56 0.5'
90-5988-15 SS 05 Solid 01/18/24 11:25 01/18/24 12:56 0.5'
390-5988-16 SS 06 Solid 01/18/24 11:30 01/18/24 12:56 0.5'
890-5988-17 SS 07 Solid 01/18/24 11:35 01/18/24 12:56 0.5'

Job ID: 890-5988-1 SDG: 03C1558297

niii raye iPT IRRC S iPT IPT IRRP iPS IPT IRRP iPS IPS IRRP iPS IPS IRRP iPS IPS IRRP iPS IRRP IRRP iPS IRRP <th>🐝 eurofins</th> <th></th> <th>Erwironment Testing Xenco</th> <th>Di-</th> <th>Ho Midla EL F Hob</th> <th>Ch uston, TX (3 nd, TX (4:32 aso, TX (9 bs, NM (57</th> <th>ain of (1240-4200, 704-5440, Sar 15) 585-3443, L 5) 382-7550, Ca</th> <th>Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock: TX (806) 794-1286 Hobbs, NM (575) 392-7550, Cartsbad, NM (575) 988-3189</th> <th>890-5988 C</th> <th>0</th> <th></th>	🐝 eurofins		Erwironment Testing Xenco	Di-	Ho Midla EL F Hob	Ch uston, TX (3 nd, TX (4:32 aso, TX (9 bs, NM (57	ain of (1240-4200, 704-5440, Sar 15) 585-3443, L 5) 382-7550, Ca	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock: TX (806) 794-1286 Hobbs, NM (575) 392-7550, Cartsbad, NM (575) 988-3189	890-5988 C	0	
Ersoluti Company Name KNO Energy Program: USTPPS Peol Brown Index Rector Peog am: USTPPS Peol Brown Index Rector Peog am: USTPPS Peol Brown Index Rector 3722 Nutrional Parts +hyy Audress Bito of Project. Rate of Project. Reserved: Reserved: Rate of Project. Reserved:		Belill			Bill to: (if differe		arrett Green			Work Order Comme	
SeTrust T TRRP D Other: PT O Other: Other: None: NO DI Reservative None: NO DI H ₃ S04: HP NaHS H ₃ P04: HP NaHS Na25,03: NaS03 Zn Acetate+NaOH: Z NaCH+Ascorbic Acid Sample Comr Incident ID: NAPP2334152 AFE: AFE: AFE: V Z St I SN U V Z V Z ST V Z ST V Z ST V Z ST V Z ST V Z ST V Z ST V Z ST V Z ST V Z ST V Z ST V Z S		olum			Company Nan		TO Energy		Program: UST/PST	PRP Brownfields	
Serrulst [] TRRP [] PT [] Other: None: NO DI I None: NO DI I Hds: Hds Hds: Hds Naps: Hd Naps: Hd N		2 National Parks	Hwy		Address:		104 E. Green	St	State of Project:	÷	
IPT □ Other: Preservatifi None: NO Cool: Cool H ₃ PO4: H ₃ H ₃ PO4: H ₃ Na ₂ S ₂ O ₃ : NABIS Na ₂ S ₂ O ₃ : NASO And ST NAPP2334 AFE: AFE: Da UE) Da		sbad, NM 88220			City, State ZIP		arisbad, NM 8	38220	Reporting: Level II	Level III 🗌 PST/UST	
Preservati None: NO Cool: Cool HGL: HC HS04: HP NaHS04: NABIS Na255,05: NaS05 Zn Acetate +NaOT NaOH+Ascorbic A Sample Co Incident ID: NaPP2334 AFE: AFE: 1666556 AFE: Ure) Da		-887-2946		Email:	Garrett.Gree	1@Exxor	Mobil.com		Deliverables: EDD	□ ADaPT □	Other:
None: NO Cool: Cool HCL: HC H ₂ S04: HP NaHS04: NABIS Na ₂ S ₂ 05: NaS0 ₃ Zn Acetate+NaOH NaOH+Ascorbic A Sample Co Incident ID: NAPP2334 AFE: Cost Center: 1666556 AFE: 1666556		U 17 Twin Wells	Ranch 122H	Turn	Around			ANALYSIS	REQUEST	Pr	eservative Codes
Cool: Cool HGL: HC H ₃ PO4: HP NaHSO4: NABIS Na ₂ S ₂ O3: NASO3 Zn Acetate+NaOF NaOH+Ascorbic A Sample Co Sample Co Cost Center: 1665556 AFE: Cost Center: 1665556 AFE: 10 V V V a Sr TI Sn U V V 245.117470 /74		03C15582	57	J Routine		Pres. Code	_		988	None: N	
HCL: HC H ₃ PO4: H ₂ NaHSO4: NABIS Na25,03: NASO3 Na25,03: NASO3 Zn Acetate +NaOF NaOH+Ascorbic A Sample Co Sample Co Incident ID: NAPP2334 AFE: AFE: AFE: 1665556 AFE: 1665556 AFE: 1665556	Location:			Due Date:						Cool: Co	
	er's Name:	Connor-Whi	man	TAT starts the	rday received by	Ì				HCL: HC	
				the lab, if rec	erved by 4:30pm	-				H2S04: F	
	PLE RECEIPT	Temp Blank:	(Yes No	Wet Ice:	(Yes) No		(0.0			H3PO4:1	ЧÞ
	as Received Intact:	(Yes) No	Thermometer	ö	Three?	-	300			NaHSO,	I: NABIS
	Custody Seals:	No	Correction Fac	tor:	0.2	-	: \A			Na ₂ S ₂ O	5 NaSO3
	Custody Seals:	Yes No CNIAL		teading:						Zn Aceta	ate+NaOH: Zn
AFE: AFE: / 245.1	ontainers;		Corrected Terr	perature:	- 4		(910)			NaOH+/	Ascorbic Acid: SAPC
Incident ID: NAPP2 Cost Center: AFE: AFE: AFE: Va Sr TI Sn U Va Sr TI Sn U Va Sr TI Sn U	Sample Identificat		-	Time Sampled		# of Cont	98) Hd.			Sa	mple Comments
AFE: 1665 AFE: 1665 AFE: 1665 AFE: 1665 1665 AFE: 1665	PHOL	5	1/17/24	100	5 5	M	-			Inciden	tib:
Cost Center: Cost Center: AFE: AFE: 1665 AFE: 1245.117470	PHOID	-		1130	1 7	-					NAPP2334152485
Cost Center: AFE: 1665 AFE: 1665 1665 1665 1665 1665 17670 1245,117470	PHOZ			1150	5						
AFE: 1665 AFE: AFE: 1245.1 J 245.1 J 7470 . Ure)	PH02A			1210	~					Cost Ce	enter:
AFE: Va Sr TI Sn U /245,11/7470 (ure)	6Ho3			1230	S	-					1665561001
Va Sr TI Sn U Va Sr TI Sn U /245.117470	PHOSA		1	562	3					AFE:	
Va Sr TI Sn U V245.117470 (ure)	totd		1/8/24	516	.5						
Va Sr TI Sn U /245.117470 (ure)	PHPUA			930	5						
Va Sr TI Sn U 1245.117470 . Ure)	P.Hos			950	5.						
/a Sr Ti Sn U /245.117470 . ure)	PHOSA	>	1	10.05	3 1	>					
(aun	d 200.7 / 6010 dethod(s) and Me	200.8 / 6020: tal(s) to be analy:		TCI P / SPI	A Texas 11 P 6010- 8P	100	As Ba Be	Cd Ca Cr Co Cu Fe	Ni K	Ag SiO ₂ Na Sr TI Ho: 1631 / 245 1 /	U V U
(are)	gnature of this documer . Eurofins Xenco will be s Xenco. A minimum ch	nt and relinquishment e liable only for the cos harge of \$85.00 will be	of samples constitu t of samples and si applied to each pro	tes a valid purch hall not assume	hase order from cl any responsibility is of \$5 for each s	for any loss ample subm	y to Eurofins Xer es or expenses li itted to Eurofins	nco, its affiliates and subcontracto ncurred by the client if such losse: Xenco, but not analyzed. These te	rs. It assigns standard terms and s are due to circumstances beyond rms will be enforced unless previou		-88
12:56 110	nquished by: (Sigr	nature)	Received	by: (Signatu	re)	Ť	the/Fime	Relinquished by: (Sig	jnature) Received	by: (Signature)	Date/Time
	atto		Celtrel				0 0	18			
								4			

Loc: 890 5988 Page 73 of 83

4 5 6

	Xenco				EL Paso, T) Hobbs, NM	(915) 585 (575) 392-	EL Paso, TX (1915) 585-3443, Lubbock, TX (806) 794-1298 Hobbs: NM (575) 382-3443, Lubbock, TX (806) 794-1298	C . C	1
Project Manager, B	Ben Belill			Bill to: (if different)	ferent)	Garrett Green	Graen	M	Wy Xenco.com Page 2 of 1
	Ensolum				loome.	VTO L			
	3122 National Parks Hwv	Hwv		Address:	value.	3104 F	ATO Entergy 3104 F. Green St	Program: US1/PS1 UPRPU Brownhelds URC U	Brownheids RRC Superfund
City, State ZIP: C	Carlsbad, NM 88220			City, State ZIP:	ZIP:	Carlsba	Carlsbad, NM 88220	Reporting: Level II CLevel III RST/UST T TRRP	
Phone: 3	303-887-2946		Email:		een@Ex	KonMobil	.com	Deliverables: EDD	
Project Name:	PLU 17 Twin Wells Ranch 122H	Ranch 122H	Tur	Turn Around	-		ANALYSIS REQUEST	REQUEST	Preservative Codes
Project Number:	03C1558297	297	J Routine	Rush	Pres.	-			None: NO DI Water: H.O
Project Location:			Due Date:						
Sampter's Name: PO #:	Connor-Whitman	tman	TAT starts the day received by the lab, if received by 4:30pm	TAT starts the day received by the lab, if received by 4:30pm	11				
SAMPLE RECEIPT		Yes No	Wet Ice:	(Yes No	neters	(0'			HaPOd: HP
Samples Received Intact	-	Thermometer ID:	D:	[Nares	12	000E			NaHSOA: NABIS
Cooler Custody Seals: Sample Custody Seals:	Yes No (N/A Correction Factor:	Correction Factor: Temperature Reading:	ctor:	202	4	:A93			Na ₂ S ₂ O ₃ : NaSO ₃
Total Containers:			nperature:	20					Zn Acetale+NaOH: Zn NaOH+Ascorbic Acid: SAPC
Sample Identification	cation Matrix	Date	Time	Depth Co	Grab/ # of Comp Cont		08) H9' 8) X3T8		Sample Comments
5501	2	1/18/24	1100	1 5'	C I	-	+		Incident ID:
5025	-		50.11	5.	-	_			NAPP2334152485
2303			1110	.5					
ssey			021	.5	_	_			Cost Center:
5055	-		1125	5.	-				1665561001
CSOG			1130	15		-			AFE:
5507	>	×	1135	5.	*	_			
					1		11		
						$\left \right $			
Total 200.7 / 6010 200.8 / 6020: cle Method(s) and Metal(s) to be an	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed		8RCRA 13PPN TCLP / SPI	M Texas 11 AI S LP 6010: 8RCRA	1 AI Sb RCRA	As Ba Sb As B	AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K CRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U	Se	Ag SiO ₂ Na Sr TI Sn U V Zn Ho: 1631/2451/7470 /7471
: Signature of this docu rice. Eurofins Xenco wi ofins Xenco. A minimun	ment and relinquishment c It be liable only for the cost a charge of \$85.00 will be a	of samples constitu t of samples and sl applied to each pro	tes a valid purch hall not assume ject and a charg	hase order from any responsibility of \$5 for eac	i client comp lity for any lo h sample su	any to Euro sses or exp mitted to E	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shell not assume any responsibility for any losses or expenses incurred by the client it such losses are de to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$5.00 will be applied to each project and a charge of \$6 for each sample submitted to Eurofins Xenco. As not analyzed. These terms will be enforced unless previously supplished.	 It assigns standard terms and conditions redue to circumstances beyond the contro s will be enforced unless previously negotil 	
Relinquished by: (Signature)	ignature)	Received	Received by: (Signature)	re)		Date/Time	te Refinduished by: (Signature)	ature) Received by. (Signature)	gnature) Date/Time
- PAP		abul	5		12	2:56	1/18		
							8		

1/31/2024

Page 74 of 83

Job Number: 890-5988-1 SDG Number: 03C1558297

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5988 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-5988-1 SDG Number: 03C1558297

List Source: Eurofins Midland

List Creation: 01/19/24 03:48 PM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5988 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 320494

QUESTIONS	
Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	320494
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2334152485
Incident Name	NAPP2334152485 PLU 17 TWIN WELLS RANCH 122H @ 0
Incident Type	Other
Incident Status	Remediation Plan Received

Location of Release Source

Please answer all the questions in this group.	
Site Name	PLU 17 Twin Wells Ranch 122H
Date Release Discovered	12/06/2023
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.	
Incident Type	Other
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	r the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Cause: Other Flow Line - Production Crude Oil Released: 6 BBL Recovered: 5 BBL Lost: 1 BBL.
Produced Water Released (bbls) Details	Cause: Other Flow Line - Production Produced Water Released: 25 BBL Recovered: 21 BBL Lost: 4 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 78 of 83

QUESTIONS, Page 2

Action 320494

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	320494
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.

Initial R	esponse
-----------	---------

•	
The responsible party must undertake the following actions immediately unless they could create a	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	liation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for rele- the OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Melanie Collins Title: Regulatory Analyst Email: Melanie.Collins@exxonmobil.com Date: 12/14/2023

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 320494

Page 79 of 83

QUESTIONS (continued)	
Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	320494
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	Attached Document
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	id the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between ½ and 1 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between ½ and 1 (mi.)
Any other fresh water well or spring	Between ½ and 1 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between ½ and 1 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Between 1 and 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 3710 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 4200 GRO+DRO (EPA SW-846 Method 8015M) 3750 BTEX (EPA SW-846 Method 8021B or 8260B) 6.1 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 05/04/2024 On what date will (or did) the final sampling or liner inspection occur 08/02/2024 On what date will (or was) the remediation complete(d) 08/02/2024 What is the estimated surface area (in square feet) that will be reclaimed 1540 What is the estimated volume (in cubic yards) that will be reclaimed 230 What is the estimated surface area (in square feet) that will be remediated 2940 What is the estimated volume (in cubic yards) that will be remediated 450 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 320494

QUESTIONS (continued)		
Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	320494	
	Action Type:	
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply.) (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.) Yes Which OCD approved facility will be used for off-site disposal HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510] OR which OCD approved well (API) will be used for off-site disposal Not answered. OR is the off-site disposal site, to be used, out-of-state Not answered. OR is the off-site disposal site, to be used, an NMED facility Not answered. (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) Not answered (In Situ) Soil Vapor Extraction Not answered. (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) Not answered. (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) Not answered. (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) Not answered. Ground Water Abatement pursuant to 19.15.30 NMAC Not answered. OTHER (Non-listed remedial process) Not answered. Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Name: Amy Ruth Title: Coordinator SSHE Environmental I hereby agree and sign off to the above statement Email: amy.ruth@exxonmobil.com Date: 03/05/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 320494

Page 81 of 83

QUESTIONS (continued)	
Operator: XTO ENERGY, INC	OGRID: 5380
6401 Holiday Hill Road Midland, TX 79707	Action Number: 320494
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)
QUESTIONS	

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Only answer the questions in this group it seeking a detertar upon approval this submission. Each of the following items must be continued as part of any request for detertar of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 320494

Page 82 of 83

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	320494
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	302620
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/19/2024
What was the (estimated) number of samples that were to be gathered	39
What was the sampling surface area in square feet	7800

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed. Requesting a remediation closure approval with this submission No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 320494

CONDITIONS		
Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	320494	
	Action Type:	
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	

CONDITIONS		
Created By	Condition	Condition Date
michael.buchanan	The soil boring C-04759 that exceeds 107 feet bgs and is located 0.66 miles west of the Site, and soil boring C-04499 that exceeds 110 feet bgs and is located 0.79 miles east of the Site is just outside of the ½ mile requirement. The release is not within a 100-year floodplain. Also, the release is located in low karst and depth to groundwater appears to be >100 feet. The variance request to utilize these points as depth to groundwater is approved. Please include this e-mail correspondence in the remediation and/or closure report.	3/12/2024