

March 14, 2024

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Subject: Remediation Report and Closure Request Maverick Permian, LLC SEMU Permian #073 Flowline Release Unit Letter F, Section 19, Township 20 South, Range 38 East Lea County, New Mexico Incident ID nPAC0714434227

Dear Sir or Madam,

Tetra Tech, Inc. (Tetra Tech) was initially contracted by ConocoPhillips (COP) to assess a historical release that occurred from a flowline associated with the South East Monument Unit (SEMU) Permian #073 well (API No. 30-025-07822). The release footprint is located in Public Land Survey System (PLSS) Unit Letter F, Section 19, Township 20 South, Range 38 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.559244°, -103.189252°, as shown in **Figures 1** and **Figure 2**. Maverick Permian LLC (Maverick) subsequently acquired the Site from COP and began operating the Site in June 2022 and performed the remediation as described within this report.

BACKGROUND

According to the State of New Mexico C-141 Notification of Release provided in **Attachment 1**, on November 24, 2004, a release occurred due to internal corrosion on a flowline from the SEMU Permian #073 well. The release consisted of 35 barrels (bbls) of oil and produced water and affected a 55-foot by 25-foot area. During immediate response actions, a vacuum truck recovered 28 bbls of free liquids. The New Mexico Oil Conservation District (NMOCD) received the C-141 report form for the release on May 23, 2007. The release was subsequently assigned Incident ID nPAC0714434227. This release is included in the Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD fully executed on May 9, 2019.

SITE CHARACTERIZATION

Receptors

Tetra Tech performed a site characterization that identified no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). The Site is also located in an area mapped as low karst potential.

Tetra Tech, Inc. 1500 CityWest Boulevard, Suite 1000, Houston, TX

Maverick Permian, LLC March 14, 2024

Depth to Groundwater

According to the New Mexico Office of the State Engineers (NMOSE) reporting system, there are no water wells within a ¹/₂-mile radius of the Site. Furthermore, there are no water wells within a one-mile radius of the Site. However, there are four (4) water wells within approximately 1.5 miles of the Site. The average depth to groundwater for these wells is 73 feet below ground surface (bgs).

On March 7, 2024, Tetra Tech and West Texas Water Well mobilized to the SEMU Permian #027 (API 30-025-07814) Well Pad and installed a Depth-To-Water (DTW) boring to 55 feet bgs at 32.560329°, - 103.189912°, approximately 400-feet south-southeast of the Site. The DTW boring did not identify groundwater in the upper 55 feet to verify groundwater is below 55 feet bgs at the Site.

The site characterization data is included in **Attachment 2** and boring logs are provided in **Attachment 3**.

REGULATORY FRAMEWORK

Based upon the release footprint location and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for Benzene, Toluene, Ethylbenzene, and Xylene (BTEX), Total Petroleum Hydrocarbons (TPH), and chloride in soil.

Based on the site characterization, established depth to groundwater, and in accordance with Table 1 of 19.15.29.12 NMAC, the remediation RRALs for the Site are as follows:

Constituent	Remediation RRAL
Chloride	10,000 mg/kg
TPH (GRO+DRO+ORO)	2,500 mg/kg
TPH (DRO+ORO)	1,000 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Closure Criteria for Soils Impacted by a Release

Additionally, in accordance with the New Mexico Oil Conservation District (NMOCD) guidance *Procedures for Implementation of the Spill Rule (19.15.29 NMAC)* (September 6, 2019), the following reclamation requirements for surface soils (0-4 feet bgs) are as follows:

Reclamation Requirements

Constituent	Remediation RRAL
Chloride	600 mg/kg
TPH (GRO+DRO+ORO)	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Maverick Permian, LLC March 14, 2024

INITIAL ASSESSMENT ACTIVITIES AND SAMPLING RESULTS

Tetra Techs review of available documentation on the historic incident indicates that Environmental Plus, Inc (EPI) was onsite on behalf of COP on February 3, 2005, to delineate the vertical extent of impacted soil. The initial assessment activities and results are documented in a report prepared by EPI dated June 2, 2005 provided in **Attachment 4**.

During this initial assessment, EPI installed one soil boring to 15 feet bgs (BH-1) and one soil boring to 10 feet bgs (BH-2) within the release extent. EPI collected samples at 2-feet, 5-feet, 10-feet, and 15-feet bgs and field screened for the presence of organic vapors and salinity. A total of six (6) samples were selected from the two (2) borings and sent to Environmental Lab of Texas in Odessa, Texas for analysis of BTEX by EPA Method 8021B, TPH by EPA Method 8015M, and chloride by EPA Method 300.0.

Analytical results associated with the 2-foot sample interval at BH-1 reported TPH at a concentration greater than the NMOCD remedial threshold identified by EPI for the Site of 1,000 mg/kg. Analytical results from the 5-foot and 10-foot intervals at BH-1 and all sample intervals at BH-2 reported concentrations of benzene (10 mg/kg), BTEX (50 mg/kg), and TPH (1,000 mg/kg). Laboratory analytical results for chloride in soil were directly compared by EPI to the New Mexico Water Quality Control Commission's (NMWQCC) chloride standard of 250 mg/L. The field chloride analytical results for the 5-foot interval samples at both locations reported concentrations of chloride as greater than the NMWQCC chloride standard.

Based on the initial assessment results, EPI concluded that soils impacted above the NMOCD remedial thresholds identified in the EPI report extended to a depth of approximately 5 ft bgs, and recommended that soils in the vicinity of BH-1 be excavated to this depth. EPI estimated the release area to be approximately 1,370 square feet., however, the release extent was not delineated horizontally during the initial assessment. Subsequent to Tetra Tech's involvement with the assessment and remediation of this incident, Tetra Tech amended the proposed Site RRALs and Reclamation Requirements to reflect the current NMOCD requirements for remediation and restoration, which are more stringent than the remedial thresholds identified in the EPI report.

ADDITIONAL SITE ASSESSMENT

Based on the results of the initial EPI assessment, Tetra Tech mobilized to Site on behalf of COP on November 5, 2020, to conduct soil sampling to complete vertical and horizontal delineation of the release. A total of five (5) borings were advanced via hand auger inside the release extent (AH-1) to a depth of 10 feet bgs, and along the perimeter of the release extent (AH-2 through AH-5) to depths of 3 feet bgs. Soils at the Site consist of brown sandy soils from the surface down to 10 feet bgs. **Figure 3** depicts the release extent and the November 2020 soil boring locations. GPS coordinates for the boring locations are presented in **Table 1**. Photographic documentation of the release area from June 2020 is included in **Attachment 5**.

Soils were field screened for salinity using an ExTech EC400 ExStik to determine sampling intervals. Tetra Tech collected a total of 22 samples from the five (5) borings (AH-1 through AH-5) and submitted to Pace Analytical Laboratory (Pace) in Mount Juliet, Tennessee for analysis of chloride by EPA Method 300.0, TPH by EPA Method 8015M, and BTEX by EPA Method 8021B. Analytical data packages including chain-of-custody documentation are included in **Attachment 6**.

Maverick Permian, LLC March 14, 2024

SUMMARY OF ADDITIONAL SITE ASSESSMENT RESULTS

Results from the November 2020 soil sampling event are summarized in **Table 2**. The analytical results associated with the interior sample location (AH-1) reported TPH in sample intervals from the upper 4 feet at concentrations greater than Reclamation Requirements of 100 mg/kg. The remaining TPH analytical results reported concentrations as less than the TPH remediation RRAL of 2,500 mg/kg for samples collected from intervals greater than 4 feet bgs. Laboratory analytical results for benzene, BTEX, and chloride reported concentrations as less than Reclamation Requirements.

REMEDIATION AND CONFIRMATION SAMPLING

Excavation activities commenced on November 6, 2023, and concluded on December 18, 2023. Maverick's subcontractor, McNabb Partners, used heavy equipment to excavate impacted soil from the remediation areas to a maximum depth of 4 feet bgs as shown in **Figure 4**. McNabb excavated a total of 410 cubic yards of contaminated soil from an approximately 2,540 square-foot area and transported the soil to R360 for offsite disposal. McNabb sourced 396 cubic yards of topsoil to backfill the excavation.

Upon reaching the planned lateral and vertical excavation extents of the excavation, Tetra Tech collected a total of 20 confirmation samples, including 6 floor samples and 14 side wall samples from the excavated areas, of which 16 samples verified reclamation/remediation standards have been obtained with a sampling density of approximately one sample per 200 square feet.

Confirmation samples were submitted to Cardinal Laboratory in Hobbs, New Mexico for analysis of BTEX by Method 8021B, chloride by Method SM4500 CL-B, and TPH by Method TPH 8015M. Laboratory analytical results for submitted confirmation samples reported concentrations of BTEX, TPH, and chloride as less than respective Reclamation Requirements or RRALs, as applicable based on sample depth except at SW - 8 and SW – 9.

Additional excavation was performed, and SW - 8 and SW - 9 areas were resampled two times until confirmation samples reported TPH concentrations as less than Reclamation Requirements, confirming clean margins were obtained. Confirmation sampling locations and excavation extents are shown in **Figure 4**. Confirmation sampling laboratory analytical results screened against Reclamation Requirements and RRALs are summarized in **Table 3** and **Table 4**. Laboratory analytical data packages including chain of custody documentation are included in **Attachment 6**.

Subsequent to the receipt of confirmation sample results, McNabb completed backfilling of the excavated areas with 396 cubic yards of clean topsoil obtained from the Bob McCasland Pit before grading the topsoil and seeded with New Mexico State Land Office (NMSLO) Sandy (S) Sites Seed Mixture in accordance with the Site soil profile detailed above in the Site Characterization Section, to aid in vegetation growth to complete reclamation. Photographic Documentation showing the excavated areas and final grading after backfilling is provided in **Attachment 5** and the seed mixture applied to the remediation Site is provided in **Attachment 7**.

Maverick Permian, LLC

March 14, 2024

Site Remediation Closure Report SEMU Permian #073 Flowline Release nPAC0714434227

VARIANCE REQUEST

Tetra Tech and Maverick understand that failure to notify the NMOCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted. Tetra Tech failed to notify the NMOCD of sampling 48 hours in advance in accordance with 19.15.29.12.D.(1).(a). Tetra Tech respectfully requests a variance for the failure to notify the NMOCD of sampling in consideration of the significant changes to the NMOCD notification process and changes that were implemented by the NMOCD in early December 2023.

Tetra Tech has reviewed the C-141N notification process and NMOCD *Public Notice Implementation of Digital C-141 and Incident Statuses* document dated December 1, 2023, and has shifted to strictly adhering to the sampling notification requirements of 19.15.29.12.D.(1).(a) NMAC and NMOCD notification guidance.

CONCLUSIONS

Based on the results of the confirmation sampling, the impacted soil within the release footprint with concentrations greater than Reclamation Requirements and/or RRALs has been removed and properly disposed of offsite and the excavated area has been backfilled with clean material, graded, and seeded with BLM approved seed mixture; therefore, Site remediation is complete. If you have any questions concerning the remediation activities for the Site, please call Steve at (713) 806-8871 or Chuck at (832-252-2093.

Sincerely,

Stephen Jester Project Manager Tetra Tech, Inc.

cc: Mr. Bryce Wagoner, Maverick Natural Resources Bureau of Land Management

Charles H. Terhune IV, P.G. Program Manager Tetra Tech, Inc.

Maverick Permian, LLC March 14, 2024

LIST OF ATTACHMENTS

Figures

- Figure 1 Overview Map
- Figure 2 Site Location/Topographic Map
- Figure 3 Release Extent and Assessment Map
- Figure 4 Remediation and Confirmation Sampling Map

Tables

- Table 1 Tetra Tech Boring Location Coordinates
- Table 2 Tetra Tech Soil Assessment Sampling Summary
- Table 3 Shallow Soil Confirmation Sampling Summary
- Table 4 Deep Shallow Soil Confirmation Sampling Summary

Attachments

- Attachment 1 C-141 Forms
- Attachment 2 Site Characterization Data
- Attachment 3 Boring Logs
- Attachment 4 EPI Assessment Report
- Attachment 5 Photographic Documentation
- Attachment 6 Laboratory Analytical Data
- Attachment 7 NMSLO Seed Mixture Details

•

FIGURES

Released to Imaging: 3/28/2024 9:46:39 AM

Released to Imaging: 3/28/2024 9:46:39 AM

•

TABLES

Released to Imaging: 3/28/2024 9:46:39 AM

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT LOCATIONS - INCIDENT NPAC0714434227 MAVERICK PERMIAN, LLC SEMU PERMIAN #073 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

Boring ID	Latitude	Longitude
AH - 1	32.559241	-103.189240
AH - 2	32.559401	-103.189279
AH - 3	32.559260	-103.189183
AH - 4	32.559186	-103.189197
AH - 5	32.559251	-103.189410

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT SAMPLING - INCIDENT NPAC0714434227 MAVERICK PERMIAN, LLC SEMU PERMIAN #073 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

									BTEX ²										TPH ³		
Sample ID	Sample Date	Sample Depth	Chloride ¹		Benzen	•	Toluene		Ethylbenze	000	Total Xyle	200	Total BTE	v	GRO		DRO		ORO		Total TPH
Sample ID	Sample Date				Delizeli	e	Toluelle	•	Elliyibenze	ene		ies			C ₆ - C ₁₀	D	> C ₁₀ - C ₂₈		> C ₂₈ - C ₄₀		(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
Reclamation Requirements (19.15.29 NMAC)			600		10								50								100
	11/5/2020	0-1	< 20.1		< 0.00101		< 0.00507		< 0.00253		< 0.00659		-		< 0.101		311		1180		1491
	11/5/2020	1-2	< 20.5		< 0.00105		< 0.00527		< 0.00264		< 0.00685		-		< 0.103		1170		2890		4060
	11/5/2020	2-3	< 20.3		< 0.00103		< 0.00517		< 0.00259		0.000983	J	0.000983		< 0.102		247		968		1215
	11/5/2020	3-4	< 20.3		< 0.00103		< 0.00516		< 0.00258		< 0.00670		-		< 0.102		134		446		580
AH-1	11/5/2020	4-5	< 20.4		< 0.00104		< 0.00521		< 0.00260		< 0.00677		-		< 0.102		21.6		91.4		113
	11/5/2020	5-6	< 20.3		< 0.00103		< 0.00515		< 0.00258		< 0.00670		-		< 0.102		9.91		24.7		34.6
	11/5/2020	6-7	< 20.4		< 0.00104		< 0.00519		< 0.00260		< 0.00675		-		< 0.102		8.08		19.4		27.5
	11/5/2020	7-8	< 20.8		< 0.00108		< 0.00541		< 0.00270		< 0.00703		-		0.0368	ΒJ	12.6		29.7		42.3
	11/5/2020	8-9	< 105		< 0.00110		< 0.00550		< 0.00275		< 0.00715		-		< 0.105		< 4.20		6.39		6.39
	11/5/2020	9-10	< 104		< 0.00108		< 0.00542		< 0.00271		< 0.00704		-		< 0.104		4.1	J	14.5		18.6
	11/5/2020	0-1	< 20.1		< 0.00101		< 0.00503		< 0.00251		< 0.00654		-		< 0.100		< 4.01		2.06	J	2.06
AH-2	11/5/2020	1-2	< 20.1		< 0.00101		< 0.00504		< 0.00252		< 0.00655		-		< 0.100		< 4.01		2.6	J	2.6
	11/5/2020	2-3	< 20.1		< 0.00101		< 0.00504		< 0.00252		< 0.00655		-		< 0.100		< 4.02		1.91	J	1.91
	11/5/2020	0-1	< 20.3		< 0.00103		< 0.00517		< 0.00258		< 0.00672		-		< 0.102		6.29		29.4		35.7
AH-3	11/5/2020	1-2	< 20.1		< 0.00101		< 0.00504		< 0.00252		< 0.00655		-		< 0.100		< 4.02		5.14		5.14
	11/5/2020	2-3	< 20.1		< 0.00101		< 0.00504		< 0.00252		< 0.00655		-		0.0281	ΒJ	< 4.01		8.7		8.73
	11/5/2020	0-1	< 20.1		< 0.00101		< 0.00504		< 0.00252		< 0.00655		-		< 0.100		< 4.02		7.56		7.56
AH-4	11/5/2020	1-2	< 20.1		< 0.00101		< 0.00503		< 0.00251		< 0.00654		-		< 0.100		1.7	J	6.52		8.22
	11/5/2020	2-3	< 20.1		< 0.00101		< 0.00504		< 0.00252		< 0.00655		-		< 0.100		< 4.01		3.76	J	3.76
	11/5/2020	0-1	< 20.1		< 0.00101		< 0.00506		< 0.00253		< 0.00658		-		< 0.101		2.33	J	14.1		16.4
AH-5	11/5/2020	1-2	< 20.1		< 0.00101		< 0.00506		< 0.00253		< 0.00657		-		< 0.101		1.68	J	9.14		10.8
	11/5/2020	2-3	< 20.1		< 0.00101		< 0.00506		< 0.00253		< 0.00658		-		< 0.101		2.46	J	11.2		13.7

NOTES:

bgs: Below ground surface Q: Laboratory Qualifier

GRO: Gasoline Range Organics DRO: Diesel Range Organics TPH: Total Petroleum Hydrocarbons ORO: Oil Range Organics

1: Method 300.0 2: Method 8021B

3: Method 8015

Bold and highlighted values indicate exceedance of Reclamation Requirements (19.15.29 NMAC).

B: The same analyte is found in the associated blank.

J: The identification of the analyte is acceptable; the reported value is an estimate.

TABLE 3 SUMMARY OF ANALYTICAL RESULTS SHALLOW SOIL CONFIRMATION SAMPLING - INCIDENT NPAC0714434227 MAVERICK PERMIAN, LLC SEMU PERMIAN #073 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

									BTEX ²										TPH ³			
Sample ID Sample Date		Sample Depth	Chloride ¹		Benzen	•	Toluene	_	Ethylbonz	000	Total Xyle	n	Total BTE	v	GRO		DRO		EXT DR	C	Total TPH	
Sample ID	Sample Date				Denzen	e	Toluene	•	Emyibenz	ene		nes		.~	C ₆ - C ₁₀		> C ₁₀ - C	28	> C ₂₈ - C ₃₆		(GRO+DRO+EXT DRO)	
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	
Reclamation Req	600		10								50								100			
SW - 1	11/29/2023	0.0 - 4.0	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 2	11/29/2023	0.0 - 4.0	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 3	11/29/2023	0.0 - 4.0	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 4	11/29/2023	0.0 - 4.0	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		36		14		49	
SW - 5	11/29/2023	0.0 - 4.0	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		22		<10.0		22	
SW - 6	11/29/2023	0.0 - 4.0	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 7	11/29/2023	0.0 - 4.0	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 8	11/29/2023	0.0 - 4.0	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		151		107		258	
SW - 8	12/1/2023	0.0 - 4.0	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		57		45		102	
SW - 8	12/5/2023	0.0 - 4.0	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 9	11/29/2023	0.0 - 4.0	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		188		138		326	
SW - 9	12/1/2023	0.0 - 4.0	32		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		73		58		131	
SW - 9	12/5/2023	0.0 - 4.0	48		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 10	11/29/2023	0.0 - 4.0	16		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		42		21		62	

NOTES:

bgs: Below ground surface

Q: Laboratory QualifierDRO: Diesel Range OrganicsTPH: Total Petroleum HydrocarbonsEXT DRO: Oil Range Organics

GRO: Gasoline Range Organics DRO: Diesel Range Organics

cs 1: Method SM4500CI-B 2: Method 8021B

3: Method 8015M

Bold and highlighted values indicate exceedance of Reclamation Requirements (19.15.29 NMAC). Highlighted indicates location was laterally or vertically over-excavated and resampled. Received by OCD: 3/15/2024 10:07:43 AM

TABLE 4 SUMMARY OF ANALYTICAL RESULTS DEEP CONFIRMATION SAMPLING - INCIDENT PAC0714434227 MAVERICK PERMIAN, LLC SEMU PERMIAN #073 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

									BTEX ²										TI	PH ³		
Sample ID	Sample Date	Sample Depth	Chloride	¹	Benzen	е	Toluen	e	Ethylbenze	Ethylbenzene Total Xylenes T		Total BTEX		GRO C ₆ - C ₁₀		DRO > C ₁₀ - C ₂₈		EXT DRO > C ₂₈ - C ₃₆		TPH GRO+DRO	Total TPH (GRO+DRO+EXT DRO)	
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg
RRALs (Table I 19	9.15.29.12 NMA	C)	10,000		10								50								1,000	2,500
BH - 1 (4.0')	11/29/2023	4.0 - 4.5	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	-
BH - 2 (4.0')	11/29/2023	4.0 - 4.5	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		176		127		176	303
BH - 3 (4.0')	11/29/2023	4.0 - 4.5	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	-
BH - 4 (4.0')	11/29/2023	4.0 - 4.5	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	-
BH - 5 (4.0')	11/29/2023	4.0 - 4.5	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		55		56		55	111
BH - 6 (4.0')	11/29/2023	4.0 - 4.5	<16.0		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	-

NOTES:

bgs: Below ground surface

GRO: Gasoline Range Organics

1: Method SM4500CI-B

Bold and highlighted values indicate exceedance of Table I 19.15.29.12 NMAC. Highlighted indicates location was laterally or vertically over-excavated and resampled.

Q: Laboratory Qualifier TPH: Total Petroleum Hydrocarbons EXT DRO: Oil Range Organics

DRO: Diesel Range Organics

2: Method 8021B

3: Method 8015M

ATTACHMENT 1: C-141 DOCUMENTATION

1

12-	- 14-04;1	1:05AM;C	anoco Ho	0005				;505 39	1 3102	# 5/ 5
<u>District I</u> 1625 N. Frencl	h De Hobbs	NM 88240		S	tate o	f New Me	xico			Form C-14
District II			10	Energy M	ineral	s and Natur	al Resources		R	evised October 10, 20
District III		tesia, NM 882		Oil	Conse	ervation Di	vision		Submit 2	Copies to appropria
000 Rio Brazo istrict IV	os Road, Azte	ec, NM 87410				th St. Fran			District	Copies to appropria Office in accordanc ith Rule 116 on bac
220 S. St. Fra	ncís Dr., Sant	ta Fe, NM 875	05			Fe, NM 87:				side of fon
			Rel	ease Notifi	catio	m and C	orrective A	ction	·	and a second
						OPERA			nitial Report	Final Rep
Name of C	omnanvCa	onocoPhilli	ne Comma	1517		Contact Joh			ndai Repoit	[] Finar Kep
		rook Street					No. (505)391-3	128		
Facility Na	me SEMU	Permian #	73			Facility Typ	be Oil Well			
Surface Ow	merBob M	fcCasland		Mineral (Jwner	BLM		Leas	e No. 031670	B
			······							78220000
Jnit Letter	Section	Township	Range	Feet from the		N OF RE	Feet from the	East/West Lin		10220000
	19	205	38E	660	Nort		1980	East	County	
]			l						
			La	titude <u>32</u> 33.56	1	Longitud	e103 11.324			
				NAT	URF	OF RELI	EASE		•	
		d Produced	water	A.A.M. +		Volume of	Release35 barro	is Volum	e Recovered 28	barrels
the second s	leaseFlowi					Date and H If YES, To	our of Occurrenc	c11/24/03ete b	nhHour of Dis	overy 11/24/04
as mineon	ate Notice G		Yes [] No 🔲 Not Re	quired		wnom? Key (via voice i	mail) NMOCD	•	
v Whom?]	John Abne						our 11/24/04 4			
las a Water		ched?				IF YES, Vo	lume Impacting t	he Watercourse.		<u> </u>
]Yes 🕅			NA				1/
	rse was limp	pacted, Desci	ribe Fully."	k i i i i i i i i i i i i i i i i i i i					P# 13	
VA.								1	Ptt 1	
								(+	` /	
lescribe Can	se of Prohie	an and Reme	dial Action	Taken *				$- \leftarrow$		
				amped for the wo	eekend	and then rej	placed 2 joints of	of pipe on Mor	day 11/29/04	i.
				-					-	
										······
		nd Cleanup		en." . was picked up. '	The ri	te mill have t	a he accessed to	datarmina the	annonista	amaditation
ecessary.	2000 25 25	A 23 MI	ree ndma	was protee up.	THE SI	IC WILL HAVE I	o oc assessed a	describine in	appropriate.	cinculation
				is true and comple						
				Vor file certain rel e of a C-141 report						
ould their or	r dicenviro perations ha	we failed to a	dequately	investigate and rer	nediate	contamination	that pose a threa	at to ground wat	neve me operation and the second s	r, human health
the environ	ment. In add	dition, NMO	CD accept	ance of a C-141 re	port do	es not relieve	the operator of re	sponsibility for	compliance wit	any other
icial, sour, c	A TOCAL TAWS	s and/or regu	lanous.				OT CONST	ERVATION	DIVISION	T
		VI ///_	÷71							<u>×</u>
gnature:		tent	7-	·			ENVICE		۸ ۸	
nted Name:	John Ábne	y			A	vpproven by D	istrict.Supervicer	- Cr	ph-s	<u>ب</u>
le: SHEal	R Specialis	st				nuroval Dates	5.23.07	Expiration	N Date: ·	
		and the property of the second se								
nail Address	s:john.h.ab	oney@cono	cophillips	.com		onditions of A		- 1	Attached [כ
te: 11/30/20	004		Phone: (:	505)391-3128		JUBNU	FINAL	SIGHED)		
		s If Necessa	and the second se						شىمەسىرىيىنى <u>تىرىمىيە تورىمى</u> م ا. م	Martin
			-		C	- 141 0	N CLOSU	IKC		
					i	ZESUL	T.S ATT	Aehed		
									/	N#121
										ノヤッロ
									T	
										1.

Facility ID Application ID

Incident ID

District RP

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

	Page 20 of 15
Received by OCD: 3/15/2024 10:07:43 AM Form C-141 State of New Mexico	Incident ID
Page 4 Oil Conservation Division	District RP
	Facility ID
	Application ID
Signature: <i>Charles R. Beauvais ??</i> Date:	and perform corrective actions for releases which may endanger s not relieve the operator of liability should their operations have bundwater, surface water, human health or the environment. In
OCD Only	
Received by:	Date:

Received by OCD: 3/15/2024 10:07:43 AM Form C-141 State of New Mexico

Page 5

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: Charles R. Beauvais ?? Date: Telephone: _____ email: OCD Only Received by: Date: Denied Deferral Approved Approved Approved with Attached Conditions of Approval Signature: Date:

Maverick Permian, LLC March 14, 2024

ATTACHMENT 2: SITE CHARACTERIZATION DATA

1RP-1342

,				
Override 1	CO2, New	* Gas, Plugged	\mathcal{I}^{\checkmark} Injection, Temporarily Abandoned	△ Salt Water Injection, Active
Wells - Large Scale	CO2, Plugged	🌞 Gas, Temporarily Abandoned	Oil, Active	Salt Water Injection, Cancelled
? undefined	st CO2, Temporarily Abandoned	√ Injection, Active	Oil, Cancelled	Salt Water Injection, New
Miscellaneous	🌣 Gas, Active	Injection, Cancelled	• Oil, New	Salt Water Injection, Plugged
₭ CO2, Active	🌣 Gas, Cancelled	🗸 Injection, New	• Oil, Plugged	Salt Water Injection, Temporarily Abandoned
st CO2, Cancelled	🌣 Gas, New	Injection, Plugged	 Oil, Temporarily Abandoned 	Water, Active

Oil Conservation Division of the New Mexico Energy, Minerals and Natural Resources Department., Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI,

New Mexico Oil Conservation Division

(R=POD has been replaced, O=orphaned,				aur	arto	re ar	o 1-N	11/1/2-11	E 2_SW 4	-SE)				
C=the fi closed)	quarters are smallest to					,			(In fo	(In feet)				
	POD Sub-			0		,			(14				,	ater
Code	basin	-						•	х	Y		• •		
	L	LE	4	4	2	13	20S	37E	669189	3605491* 🌍	1803	155	84	71
	L	LE	2	4	2	18	20S	38E	670803	3605719* 🌍	1992	124	50	74
	L	LE	4	2	2	13	20S	37E	669181	3605894* 🌍	2172	140	85	55
	L	LE		2	2	13	20S	37E	669082	3605995* 🌍	2304	115		
										Aver	age Depth to V	Vater:	73 fee	ət
											Minimum D	epth:	50 fee	ət
											Maximum De	epth:	85 fee	ət
s Search	<u>(in met</u>	<u>ers):</u>												
0015.41		Norti	ning	g (Y	'): :	3603	8888.2	24		Radius: 2400				
	been re O=orph: C=the fi closed) Code	been replaced, O=orphaned, C=the file is closed) POD Sub- Code basin L L L L Search (in meter	been replaced, O=orphaned, C=the file is closed) POD Sub- L LE L LE L LE L LE L LE Search (in meters):	been replaced, O=orphaned, C=the file is closed) POD Sub- Q L LE 4 L LE 2 L LE 4 L LE 4 L LE 4 L LE 4	been replaced, O=orphaned, C=the file is (qua closed) POD Sub- Q Q Code basin County 64 16 L LE 4 4 L LE 2 4 L LE 4 2 L LE 2 Search (in meters):	been replaced, O=orphaned, C=the file is closed) POD Sub- Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q	been replaced, O=orphaned, C=the file is closed) POD Sub- Q Q Q O Code basin County 64 16 4 Sec L LE 4 4 2 13 L LE 4 2 2 13	been replaced, O=orphaned, C=the file is closed) POD Sub- Q Q Q Code basin County 64 16 4 Sec Tws L LE 4 4 2 13 20S L LE 2 2 13 20S L LE 2 2 13 20S	been replaced, O=orphaned, C=the file is closed) POD Sub- Q Q Q V FOD Sub- Dasin County 64 16 V Sub- L L E V V V V V V V V V V V V V V V V V	been replaced, O=orphaned, C=the file is closed) POD Sub- Q Q Q Code basin County 64 16 4 Sec Tws Rng X L LE 4 4 2 13 20S 37E 669189 L LE 4 2 1 3 20S 37E 669181 L LE 4 2 2 1 3 20S 37E 669082 Search (in meters):	been replaced, O=orphaned, C=the file is closed) POD Sub- Vev	been replaced, O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) POD Sub- Q Q Code basin County 64 16 4 Sec Tws Rng X Y Distance Dee L LE 4 4 2 13 20S 37E 669189 3605491*<	been replaced, O=orphaned, (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NA D83 UTM in meters) (In fe C-the file is closed) (quarters are smallest to largest) (NA D83 UTM in meters) (In fe POD Sub- Q Q Z Two smallest to largest) NM 2=NE 3=SW 4=SE) Distance Depth WellDept Code basin County 64 16 4 2 13 20S 37E 669189 3605491* Distance Depth WellDept L LE 2 4 2 13 20S 37E 669189 3605491* 1803 155 L LE 2 4 2 13 20S 37E 669181 3605894* 2172 140 L LE 2 2 13 20S 37E 669082 3605995* 2304 115 L LE 2 2 13 20S 37E 669082 3605995* 2304 115 L LE 2 2 13 20S 37E 669082 3605995* 2304 115 <td>been replaced, O=orphared, C=the file is closed) (quarters are t=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (In feet) C=the file is closed) (quarters are smallest to largest) (NAD83 UTM in meters) (In feet) POD Sub- Q Q V V Distance DepthWellDepthWaterCo Sub- L LE 4 4 2 13 20S 37E 669189 3605719* 1992 124 50 L LE 4 2 13 20S 37E 669181 3605719* 1992 124 50 L LE 4 2 13 20S 37E 669181 3605995* 2304 115 L LE 2 2 13 20S 37E 669082 3605995* 2304 115 Average Depth to Water: 73 feat Minimum Depth: 50 feat Minimum Depth: 50 feat Search (in meters): S S S S S S S</td>	been replaced, O=orphared, C=the file is closed) (quarters are t=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (In feet) C=the file is closed) (quarters are smallest to largest) (NAD83 UTM in meters) (In feet) POD Sub- Q Q V V Distance DepthWellDepthWaterCo Sub- L LE 4 4 2 13 20S 37E 669189 3605719* 1992 124 50 L LE 4 2 13 20S 37E 669181 3605719* 1992 124 50 L LE 4 2 13 20S 37E 669181 3605995* 2304 115 L LE 2 2 13 20S 37E 669082 3605995* 2304 115 Average Depth to Water: 73 feat Minimum Depth: 50 feat Minimum Depth: 50 feat Search (in meters): S S S S S S S

.

Maverick Permian, LLC March 14, 2024

ATTACHMENT 3: BORING LOGS

PROJECT NUMBER: 212C-MD-03271	DRILLING COMPANY: West Texas Water Well	LATITUDE: 32.560316°
PROJECT NAME: SEMU Permian Remediations	DRILL RIG: Air Rotary Rig	LONGITUDE: -103.190072°
CLIENT: Maverick Permian, LLC	DRILLING METHOD: Air Rotary	SURFACE ELEVATION: 3,547 feet AMSL
ADDRESS: 1410 NW County Road	BORING TYPE: Depth-to-Water	LOGGED BY: Adrian Garcia
Hobbs, NM 88240	TOTAL DEPTH: 55 feet	CHECKED BY: Charles Terhune
	DIAMETER: 8 inches	

COMMENTS: AMSL: Above Mean Sea Level

Depth (Feet)	Drilling Method	Boring Completion	Graphic Log	Material Description
_				CALICHE, white, dry, poorly sorted, angular, homogeneous.
5				SAND, light brown, dry, fine to medium grained, poorly sorted, loose, sub-angular to sub-rounded, homogeneous.
- 10				
			40°°040°°0400 8°°040°°040°0 8°°040°06°040°0 8°°040°06°06°06°0	CALICHE, white/pink, moist, medium dense.
- 15	AR			SAND, light brown, moist, loose, fine to medium grained, sub-angular to sub-rounded, poorly sorted.
20			· · · · · · · · · · · · · · · · · · ·	CALICHE/SAND, tan, loose, moist.
- 25				
- 30				
- 35				SAND, brown, moist, loose, fine to medium grained, sub-angular to
40			· · · · · · · · · · · · · · · · · · ·	sub-rounded, poorly sorted. SAND/CALICHE, tan and white, moist, medium dense, poorly sorted.
- 45				
50				
55		<i>\////////////////////////////////////</i>	· · · · · · · · · · · · · · · · · · ·	End of Hole at 55 feat below ground surface. No groundwater approximate
-				End of Hole at 55 feet below ground surface. No groundwater encountered, Hole plugged with hydrated 3/8" bentonite chips.

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Maverick Permian, LLC March 14, 2024

ATTACHMENT 4: EPI ASSESSMENT REPORT

Received by OCD: 3/15/2024 10:07:43 AM

ONMENTAL PL

ENVIRONMENTAL PLUS, INC. Micro-Blaze Micro-Blaze Ont^T State Approved Land Farm and Environmental Services

2 June 2005

RP# 1342

Mr. Larry Johnson Environmental Engineer Specialist New Mexico Oil Conservation Division 1625 North French Drive Hobbs, NM 88240

RE: ConocoPhillips SEMU Permian Well 73 Release Site (Ref. #150008) UL-B (NW¼ of the NE ¼) of Section 19, T20S, R38E Latitude N 32° 33' 33.8" and Longitude W 103° 11' 20.7" AP(#3002507822000)

Dear Mr. Johnson:

On November 24, 2004, a release of approximately 35 barrels of production fluid occurred as a result of a flow line leak at the above-referenced site. ConocoPhillips recovered approximately 28 barrels of production fluid and utilized a backhoe to back drag the release area to eliminate free-liquid residuals. ConocoPhillips retained Environmental Plus, Inc. (EPI) in January 2005 to delineate the vertical extent of impacted soil at the site. This letter report documents the results of the delineation activities and recommends how to proceed with the remediation of the impacted soil.

Site Background

The site is located in the NW¼ of the NE¼ of Section 19, Township 20 South, Range 38 East at an elevation of approximately 3,543 feet above mean sea level (reference *Figures 1 and 2*). The property is owned by Bob McCasland. A search for area water wells was completed utilizing the <u>New Mexico Office of the State Engineers</u> website and a database maintained by the United States Geological Survey (USGS). A total of 18 wells were found to be located either in Section 19 or one of the eight adjacent sections (i.e., sections 17, 18, 20, 29 and 23 of Township 20 South, Range 38 East and sections 13, 24 and 25 of Township 20 South, Range 37 East). The average depth to water in these wells was reported to be approximately 72 feet below ground surface (bgs) and ranged from 50 feet bgs to 82.73 feet bgs. (reference *Table 2*). No water supply wells or bodies of surface water were found to be located within a 1,000-foot radius of the release location, although one well (USGS #1) is located near the 1,000-foot boundary (reference *Figure 2*). Based on available information it was determined that the distance between the contamination and groundwater was between 50 and100 feet. Utilizing this information, it was determined that the New Mexico Oil Conservation Division (NMOCD) Remedial Goals for this site were as follows:

Parameter	Remedial Goal
Benzene	10 parts per million
BTEX	50 parts per million
TPH	1,000 parts per million

...

incident - nPAC0714434227 oplication - PPAC0714434336

P.O. BOX 1558

••• 2100 AVENUE O TELEPHONE 505•394•3481 ••• EUNICE,

FAX 505+394+2601

EUNICE, NEW MEXICO 88231

8282⁶

3456

Released to Imaging: 3/28/2024 9:46:39 AM

2 June 2005

Field Work

EPI was on site from February 3, 2005 to advance two soil borings within the perimeter of the release area to delineate the vertical extent of production fluid-impacted soil (reference *Figure 4*). During the advancement of the soil boring, samples were collected at 5-foot intervals with a portion of the sample being placed in a laboratory provided container and the remainder placed in a self sealing polyethylene bag. The samples placed in laboratory provided containers were immediately placed on ice for transport to Environmental Lab of Texas of Odessa, Texas, for quantification of benzene, toluene, ethylbenzene and total xylenes (BTEX), gasoline range organics (GRO), diesel range organics (DRO) and chloride.

The portion of the samples placed in the self-sealing polyethylene bag were placed in a heated environment (i.e., cab of a truck) to allow the volatilization of organic vapors. After the samples had been allowed to equilibrate to $\approx 70^{\circ}$ F, they were analyzed for the presence of organic vapors utilizing a MiniRae[®] photoionozation detector (PID) equipped with a 9.8 electron-volt (eV) lamp. In addition, the samples were analyzed in the field for the presence of chloride using a LaMotte Chloride Test Kit.

The soil borings were advanced to depths of 10 and 15 feet below ground surface (bgs) and samples were collected at 2-feet, 5-feet, 10-feet, and 15-feet bgs. Field analyses of the samples collected during the advancement of soil boring BH-1 indicated the presence of organic vapors at concentrations ranging from 17.4 parts per million (ppm) at 15 feet bgs to 104 ppm at 2 feet bgs (reference *Table 1*). Field analyses for chloride indicated concentrations ranging from 240 milligrams per kilogram (mg/Kg) at 2 and 15 feet bgs to 1,840 mg/Kg at 5 feet bgs. Field analyses of samples collected during the advancement of soil boring BH-2 indicated the presence of organic vapors at concentrations ranging from 7.2 ppm at 10 feet bgs to 28.4 ppm at 2 feet bgs. Field analyses for chlorides indicated concentrations ranging from 240 mg/Kg at 2 and 10 feet bgs to 480 mg/Kg at 5 feet bgs.

During the advancement of the soil boring, the lithology was defined as sand to a depth of at least 15 feet bgs (reference *Attachment II*).

Analytical Data

Analytical results for the samples collected during the advancement of soil boring BH-1 indicated soil impacted above the NMOCD remedial threshold extends to a depth of between 2 and 5-feet bgs (reference *Table* 1). Analytical results for the samples collected during the advancement of soil boring BH-2 indicated there was no soil impacted above the NMOCD remedial thresholds. The only contaminant reported above the NMOCD remedial threshold for this site was total petroleum hydrocarbons (TPH) in the sample obtained from soil boring BH-1 at a depth of 2-feet bgs. TPH concentrations were reported at 20,500 milligrams per kilogram (mg/Kg) in this sample. Benzene and BTEX concentrations were reported at concentrations below the NMOCD remedial guidelines for all samples.

Chloride concentrations for the samples obtained during the advancement of soil boring BH-1 were reported ranging from 20.5 milligrams per liter (mg/L) at 2-feet bgs to 1,810 mg/L at 5 feet bgs. The reported concentrations are below the New Mexico Water Quality Control Commission's (NMWQCC) chloride standards for groundwater of 250 mg/L for all samples; with the exception of the sample collected at 5-feet bgs (reference *Table 2*).

Chloride concentrations for the samples obtained during the advancement of soil boring BH-2 were reported ranging from 22.2 mg/L at 2-feet bgs to 325 mg/L at 5-feet bgs. The reported concentrations are below the NMWQCC chloride standards for groundwater of 250 mg/L for all samples, with the exception of the sample collected at 5-feet bgs (reference *Table 2*).

2 June 2005

Conclusions

Based on field and analytical analyses, soil impacted above the NMOCD remedial thresholds extends to a depth of approximately 5-feet bgs in the vicinity of where soil boring BH-1 was advanced (reference *Figure 4*). The release area is approximately 1,370 square feet in size; however, the lateral extent of impacts above the NMOCD remedial thresholds is limited to the vicinity of where soil boring BH-1 was advanced. The volume of soil that is required to be treated is unknown; however, if the entire release area was excavated to a depth of 5-feet bgs, the volume of soil excavated would be approximately 250 cubic yards (*in situ*). Due to the fact that impacts above the NMOCD remedial thresholds are limited to the vicinity of where soil boring BH-1 was advanced, the volume of impacted soil is actually less than 250 cubic yards.

Chloride concentrations were reported below the NMWQCC standards for groundwater in all but two samples collected during the advancement of the soil borings. The samples exhibiting elevated chloride levels were collected at 5-feet bgs in each of the soil borings and concentrations ranged from 325 mg/Kg (BH-2) to 1,810 mg/Kg (BH-1). Due to the elevated chloride levels reported in the sample collected from soil boring BH-1 at 5-feet bgs and the depth to groundwater in the area, there is the possibility that groundwater could be impacted by chloride.

Recommendations

Based on field and analytical results, it is recommended that soil impacted above the remedial limits within the vicinity of soil boring BH-1 be excavated. The final lateral and vertical extents will be determined via field analyses of soil samples collected during excavation activities. Upon completion of excavation activities, the excavation basin will be sampled (i.e., grab samples collected from the sidewalls and floor) and the samples submitted to an independent laboratory for quantification of BTEX and TPH.

The excavated soil impacted above the NMOCD remedial thresholds can be treated either by (a) transporting it to a State approved land treatment facility and backfilling the excavation with clean soil obtained off-site or (b) blending the soil with clean soil obtained from along the right-of-way until NMOCD remedial goals are achieved. Samples would be collected from the blended soil and analyzed in the field to ascertain when NMOCD guidelines had been achieved and samples submitted to an independent laboratory to verify field analyzes. Upon receipt of analytical results verifying the blending of the soil to NMOCD remedial guidelines or below, the excavation should be backfilled, contoured to allow natural drainage and reseeded.

2 June 2005

Should you have any questions or concerns, please feel free to contact me at (505) 394-3481 or via e-mail at <u>iolness@hotmail.com</u>. Upon your approval, EPI will initiate the next phase of the remediation. All official correspondence should be submitted to John Abney at:

John Abney, SHEaR Specialist ConocoPhillips 1410 Northwest County Road Hobbs, NM 88240

(505) 391-3128 John.H.Abney@conocophillips.com

Sincerely,

ENVIRONMENTAL PLUS, INC.

Iain A. Olness, P.G. Hydrogeologist

- cc: John Abney, ConocoPhillips Hobbs C. John Coy, ConocoPhillips – Hobbs Bob McCasland, Property Owner File
- encl. Figure 1 Area Map Figure 2 – Site Location Map Figure 3 – Site Map Figure 4 – Soil Boring Location Map Table 1 – Summary of Soil Boring Analytical Results Table 2 – Well Data Attachment I – Laboratory Results and Chain-of-Custody Form Attachment II – Soil Boring Logs Attachment III – Copy of Initial C-141

.

FIGURES

Released to Imaging: 3/28/2024 9:46:39 AM

Page 35 of 156

ived by OCD: 3/15/2024 10:07:43 AM

.

.

TABLES

.

Released to Imaging: 3/28/2024 9:46:39 AM

•

TABLE 1

Summary of Soil Boring Analytical Results

Conoco Phillips SEMU Permian Well 73 (Ref. #150008)

Soil Boring	Depth (feet)	Sample Date	PID Reading	Field Chloride	Benzene	Toluene	Ethylbenzene	m,p-Xylenes	o-Xylene	Total BTEX	TPH (as gasoline)	TPH (as diesel)	Total TPH	Chloride
	(1001)		(ppm)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Background	Surface	03-Feb-05	NA	240	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2	03-Feb-05	104	240	0.0503	1.35	3.14	6.91	2.78	14.2	2,900	17,600	20,500	20.5
BH-1	5	03-Feb-05	74.4	1,840	< 0.0250	0.0914	0.355	0.855	0.379	1.68	210	518	728	1,810
DU-1	10	03-Feb-05	21.1	320	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.125	<10.0	8.48 ⁴	<10.0	66.1
	15	03-Feb-05	17.4	240	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	2	03-Feb-05	28.4	240	<0.0250	<0.0250	<0.0250	<0.0250	<0.0250	<0.125	7.36 ⁴	154	154	22.2
BH-2	5	03-Feb-05	10.3	480	< 0.0250	<0.0250	<0.0250	< 0.0250	<0.0250	<0.125	<10.0	<10.0	<10.0	325
	10	03-Feb-05	7.2	240	<0.0250	<0.0250	<0.0250	<0.0250	< 0.0250	<0.125	<10.0	<10.0	<10.0	53.6
NMOCI) Remedial	Thresholds	100 ³		10					50			1,000	250 ⁵

¹ Bolded values are in excess of the NMOCD Remediation Thresholds

² NA = Not Analyzed

³ In lieu of laboratory analyse of benzene, toluene, ethylbenzene and total xylenes.

⁴Detected, but below the reporting limit; therefore the result is an estimated concentration (CLP J-Flag)

⁵Chloride residuals may not be capable of impacting local groundwaterabove the NMWQCCstandard of 250 mg/L

TABLE 2

Well Data

Conoco Phillips SEMU Permian Well 73 (Ref. #150008)

Well Number	Diversion ^A	Owner	Use	Source	Twsp	Rng	Secqqq	Latitude	Longitude	Date Measured	Surface Elevation ^B	Depth to Water (ft bgs)
												and an
and the second secon The second se The second se The second seco												
		(1) A set of the se										

* = Data obtained from the New Mexico Office of the State Engineer Website (http://iwaters.ose.state.nm.us:7001/iWATERS/wr_RegisServlet1)

Shaded well information indicates well location shown on Figure 2

 $^{A} =$ in acre feet per annum

^B = Elevation interpolated from USGS topographical map based on referenced location.

DOM = Domestic

STK = Livestock Watering

EXP = Expired

IRR = Irrigation

P = The site was being pumped

quarters are 1=NW, 2=NE, 3=SW, 4=SE; quarters are biggest to smallest

Analytical Report

Prepared for:

Iain Olness Environmental Plus, Incorporated P.O. Box 1558 Eunice, NM 88231

Project: Conoco Phillips/ SEMU Permian Well 73 Project Number: 150008 Location: None Given

Lab Order Number: 5B09012

Report Date: 02/18/05

Released to Imaging: 3/28/2024 9:46:39 AM

ATTACHMENT I

LABORATORY RESULTS AND CHAIN-OF-CUSTODY FORM

·	Environmental Plus, Incorporated	Project:	Conoco Phillips/ SEMU Permian Well 73	Fax: 505-394-2601
'	P.O. Box 1558	Project Number:	150008	Reported:
	Eunice NM, 88231	Project Manager:	Iain Olness	02/18/05 08:29

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH-1 (2')	5B09012-01	Soil	02/03/05 11:00	02/09/05 16:15
BH-1 (5')	5B09012-02	Soil	02/03/05 11:10	02/09/05 16:15
BH-1 (10')	5B09012-03	Soil	02/03/05 12:49	02/09/05 16:15
BH-2 (2')	5B09012-05	Soil	02/03/05 14:10	02/09/05 16:15
BH-2 (5')	5B09012-06	Soil	02/03/05 14:17	02/09/05 16:15
BH-2 (10')	5B09012-07	Soil	02/03/05 14:45	02/09/05 16:15

Environmental Plus, Incorporated	Project:	Conoco Phillips/ SEMU Permian Well 73	Fax: 505-394-2601
P.O. Box 1558	Project Number:	150008	Reported:
Eunice NM, 88231	Project Manager:	Iain Olness	02/18/05 08:29

Organics by GC **Environmental Lab of Texas**

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-1 (2') (5B09012-01) Soil	· · · · · · · · · · · · · · · · · · ·								
Benzene	0.0503	0.0250	mg/kg dry	25	EB51409	02/10/05	02/14/05	EPA 8021B	
Toluene	1.35	0.0250	н	н		ŧ	11		
Ethylbenzene	3.14	0.0250	"	u		0	н	"	
Xylene (p/m)	6.91	0.0250	0	"	*	11	**	н	
Xylene (0)	2.78	0.0250	"	11	H	11	11	11	
Surrogate: a,a,a-Trifluorotoluene		131 %	80-1	20	"	n	"	"	S-04
Surrogate: 4-Bromofluorobenzene		80.6 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	2900	50.0	mg/kg dry	5	EB51006	02/10/05	02/10/05	EPA 8015M	
Diesel Range Organics >C12-C35	17600	50.0	11	11		11	м		
Total Hydrocarbon C6-C35	20500	50.0	IF.	n	n	11	11	n	
Surrogate: 1-Chlorooctane		24.8 %	70-1	30	"	"	"	"	S-00
Surrogate: 1-Chlorooctadecane		20.2 %	70-1	30	"	"	"	"	S-00
BH-1 (5') (5B09012-02) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB51409	02/10/05	02/10/05	EPA 8021B	
Toluene	0.0914	0.0250	"	н	n	"		14	
Ethylbenzene	0.355	0.0250	"	н	н	"	"	н	
Xylene (p/m)	0.855	0.0250	"	н	"	н	"	н	
Xylene (o)	0.379	0.0250	н	n	"	н	"	н	
Surrogate: a,a,a-Trifluorotoluene		110 %	80	120	"	11	"	"	
Surrogate: 4-Bromofluorobenzene		110 %	80-1	120	"	"	"	"	-
Gasoline Range Organics C6-C12	210	10.0	mg/kg dry	1	EB51006	02/10/05	02/10/05	EPA 8015M	
Diesel Range Organics >C12-C35	518	10.0	"	ч	"	н	н	n	
Total Hydrocarbon C6-C35	728	10.0	"	"	"	II	н		
Surrogate: 1-Chlorooctane		93.0 %	70-	130	"	"	"	н	
Surrogate: 1-Chlorooctadecane		84.0 %	70	130	"	"	"	"	
BH-1 (10') (5B09012-03) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB51409	02/10/05	02/10/05	EPA 8021B	
Toluene	ND	0.0250	н		м	"	"		
Ethylbenzene	ND	0.0250	H	u	n	"	11	14	
Xylene (p/m)	ND	0.0250	0	н	н	11	**	**	
Xylene (o)	ND	0.0250	u	N	11		11	11	
Surrogate: a,a,a-Trifluorotoluene		109 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		94.5 %	80-1	20	n	"	"	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EB51006	02/10/05	02/10/05	EPA 8015M	
Diesel Range Organics >C12-C35	J [8.48]	10.0	N	н	"		"		
Total Hydrocarbon C6-C35	ND	10.0	11		n	10	н	11	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 2 of 11

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231		Project N	roject: Co umber: 150 unager: Iair	8000	lips/ SEMU	J Permian W	/ell 73	Fax: 505-3 Repor 02/18/05	ted:
			ganics b	-	_				
		Environn	nental L	ab of 1	l'exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-1 (10') (5B09012-03) Soil			_						
Surrogate: 1-Chlorooctane		92.2 %	70-1	30	EB51006	02/10/05	02/10/05	EPA 8015M	
Surrogate: 1-Chlorooctadecane		77.6 %	70-1	30	"	"	"	"	
BH-2 (2') (5B09012-05) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB51409	02/10/05	02/10/05	EPA 8021B	
Toluene	ND	0.0250	"	u		n	11	"	
Ethylbenzene	ND	0.0250	"	N	"	11	"	n	
Xylene (p/m)	ND	0.0250	u	"	"	н	n	n	
Xylene (o)	ND	0.0250	u	11	11	"	11	n	
Surrogate: a,a,a-Trifluorotoluene		110 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.4 %	80-1	20	"	"	"	"	
Gasoline Range Organics C6-C12	J [7.36]	10.0	mg/kg dry	1	EB51006	02/10/05	02/10/05	EPA 8015M	
Diesel Range Organics >C12-C35	154	10.0		н		"	H	"	
Total Hydrocarbon C6-C35	154	10.0	u	н		Ħ	"		
Surrogate: 1-Chlorooctane		89.0 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		76.8 %	70-1	30	"	"	"	"	
BH-2 (5') (5B09012-06) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB51409	02/10/05	02/10/05	EPA 8021B	
Toluene	ND	0.0250	n	"	"	"	н	н	
Ethylbenzene	ND	0.0250		u	*	"	"	11	-
Xylene (p/m)	ND	0.0250	11		"	"	н	н	
Xylene (o)	ND	0.0250	11	11	11	н	"	"	
Surrogate: a,a,a-Trifluorotoluene		89.9 %		20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		85.9 %			"	"	"	"	
Gasoline Range Organics C6-C12	ND		mg/kg dry	1	EB51006	02/10/05	02/10/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	**	11	"	"	u	
Total Hydrocarbon C6-C35	ND	10.0	n	91	*1	"	"	u	
Surrogate: 1-Chlorooctane		91.0 %	70-1	30	"	"	"	H	
Surrogate: 1-Chlorooctadecane		74.0 %			"	"	"	"	

Environmental Lab of Texas

Environmental Lab of Texas

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
BH-2 (10') (5B09012-07) Soil									
Benzene	ND	0.0250	mg/kg dry	25	EB51409	02/10/05	02/10/05	EPA 8021B	
Toluene	ND	0.0250	"	"	"	н	u.	#	
Ethylbenzene	ND	0.0250	u	n		н	"	н	
Xylene (p/m)	ND	0.0250	"	"		н	н	11	
Xylene (o)	ND	0.0250		N	17	n	"		
Surrogate: a,a,a-Trifluorotoluene		106 %	80-1	20	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		93.1 %	80-1	20	"	"	n	"	
Gasoline Range Organics C6-C12	ND	10.0	mg/kg dry	1	EB51006	02/10/05	02/10/05	EPA 8015M	
Diesel Range Organics >C12-C35	ND	10.0	"	"	"	"		**	
Total Hydrocarbon C6-C35	ND	10.0	"	"	*	n	"	**	
Surrogate: 1-Chlorooctane		92.8 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		73.6%	70-1	30	"	"	"	"	

Environmental Lab of Texas

•	Environmental Plus, Incorporated	Project: Conoco P	hillips/ SEMU Permian Well 73	Fax: 505-394-2601
¥	P.O. Box 1558	Project Number: 150008		Reported:
	Eunice NM, 88231	Project Manager: Iain Olnes	SS	02/18/05 08:29

General Chemistry Parameters by EPA / Standard Methods

Environmental	Lab of	Texas
----------------------	--------	-------

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
BH-1 (2') (5B09012-01) Soil				Diration	Daten	Ticparcu	Analyzeu		Note
Chloride	20.5	5.00	mg/kg	10	EB51717	02/14/05	02/14/05	EPA 300.0	
% Moisture	1.4	0.1	%	1	EB51102	02/10/05	02/11/05	% calculation	
BH-1 (5') (5B09012-02) Soil									
Chloride	1810	50.0	mg/kg	100	EB51717	02/14/05	02/14/05	EPA 300.0	
% Moisture	10.1	0.1	%	1	EB51102	02/10/05	02/11/05	% calculation	
BH-1 (10') (5B09012-03) Soil									
Chloride	66.1	5.00	mg/kg	10	EB51717	02/14/05	02/14/05	EPA 300.0	
% Moisture	6.1	0.1	%	1	EB51102	02/10/05	02/11/05	% calculation	
BH-2 (2') (5B09012-05) Soil									
Chloride	22.2	5.00	mg/kg	10	EB51717	02/14/05	02/14/05	EPA 300.0	
% Moisture	2.8	0.1	%	1	EB51102	02/10/05	02/11/05	% calculation	
BH-2 (5') (5B09012-06) Soil									
Chloride	325	10.0	mg/kg	20	EB51717	02/14/05	02/14/05	EPA 300.0	
% Moisture	4.6	0.1	%	1	EB51102	02/10/05	02/11/05	% calculation	
BH-2 (10').(5B09012-07) Soil									
Chloride	53.6	20.0	mg/kg	40	EB51717	02/14/05	02/14/05	EPA 300.0	
% Moisture	6.8	0.1	%	1	EB51102	02/10/05	02/11/05	% calculation	

Environmental Lab of Texas

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231	Project: Conoco Phillips/ SEMU Permian Well 73 Project Number: 150008 Project Manager: Iain Olness								Fax: 505-394-260 Reported: 02/18/05 08:29		
	•	ganics by Environm	-	•							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch EB51006 - Solvent Extraction (GC)		<u></u>								
Blank (EB51006-BLK1)				Prepared	& Analyze	ed: 02/10/	05				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet	•							
Diesel Range Organics >C12-C35	ND	10.0	"								
Fotal Hydrocarbon C6-C35	ND	10.0									
Surrogate: 1-Chlorooctane	47.5		mg/kg	50.0		95.0	70-130	······ · · · ·			
Surrogate: 1-Chlorooctadecane	37.4		"	50.0		74.8	70-130				
Blank (EB51006-BLK2)				Prenared:	02/10/05	Analyzed	: 02/11/05				
Gasoline Range Organics C6-C12	ND	10.0	mg/kg wet	1100000	02/10/05						
Diesel Range Organics >C12-C35	ND	10.0	"								
Fotal Hydrocarbon C6-C35	ND	10.0									
Surrogate: 1-Chlorooctane	47.6		mg/kg	50.0		95.2	70-130				
Surrogate: 1-Chlorooctadecane	35.2		"	50.0		70.4	70-130				
LCS (EB51006-BS1)				Prepared	& Analyze	-d. 02/10/	05				
Gasoline Range Organics C6-C12	429	10 0	mg/kg wet	500		85.8	75-125				
Diesel Range Organics >C12-C35	442	10.0	"	500		88.4	75-125				
Fotal Hydrocarbon C6-C35	871	10.0	v	1000		87.1	75-125				
Surrogate: 1-Chlorooctane	43.1		mg/kg	50.0		86.2	70-130				
Surrogate: 1-Chlorooctadecane	38.5		"	50.0		77.0	70-130				
LCS (EB51006-BS2)				Prenared	02/10/05	Analyzed	l: 02/11/05				
Gasoline Range Organics C6-C12	445	10.0	mg/kg wet	500		89.0	75-125				
Diesel Range Organics >C12-C35	459	10.0	"	500		91.8	75-125				
Fotal Hydrocarbon C6-C35	904	10.0	"	1000		90.4	75-125			-	
Surrogate: 1-Chlorooctane	39.3		mg/kg	50.0		78.6	70-130				
Surrogate: 1-Chlorooctadecane	35.9		"""""""""""""""""""""""""""""""""""""""	50.0		71.8	70-130				
-					& Analyze						
Calibration Check (EB51006-CCV1) Gasoline Range Organics C6-C12	489		mg/kg	500		97.8	80-120				
Diesel Range Organics >C12-C35	489		" ""	500		97.8 98.8	80-120 80-120				
Fotal Hydrocarbon C6-C35	983			1000		98.3	80-120 80-120				
Surrogate: 1-Chlorooctane	49.3		"	50.0		98.6	70-130			_	
Surrogate: 1-Chlorooctadecane	49.3 38.3		"	50.0 50.0		98.0 76.6	70-130 70-130				

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

Environmental Plus, Incorporated P.O. Box 1558 Eunice NM, 88231		Fax: 505-394-2 Reported: 02/18/05 08::								
	Org	anics by	GC - Q	uality (Control					
	E	2nvironn	nental L	ab of T	exas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EB51006 - Solvent Extraction ((GC)									
Calibration Check (EB51006-CCV2)		~ <u></u>		Prepared:	02/10/05	Analyzed	: 02/11/05			
Gasoline Range Organics C6-C12	490		mg/kg	500		98.0	80-120			
Diesel Range Organics >C12-C35	506			500		101	80-120			
Total Hydrocarbon C6-C35	996		**	1000		99.6	80-120			
Surrogate: 1-Chlorooctane	41.2	~	"	50.0		82.4	70-130			
Surrogate: 1-Chlorooctadecane	37.7		"	50.0		75.4	70-130			
Matrix Spike (EB51006-MS1)	Source: 5B09014-01 P				& Analyz	ed: 02/10/	05			
Gasoline Range Organics C6-C12	558	10.0	mg/kg dry	574	ND	97.2	75-125			
Diesel Range Organics >C12-C35	614	10.0	"	574	ND	107	75-125			
Total Hydrocarbon C6-C35	1170	10.0		1150	ND	102	75-125			
Surrogate: 1-Chlorooctane	51.6		mg/kg	50.0		103	70-130			
Surrogate: 1-Chlorooctadecane	39.5		"	50.0		79.0	70-130			
Matrix Spike (EB51006-MS2)	Sou	Irce: 5B090	15-04	Prepared:	02/10/05	Analyzed	l: 02/11/05			
Gasoline Range Organics C6-C12	491	10.0	mg/kg dry	531	ND	92.5	75-125			
Diesel Range Organics >C12-C35	560	10.0	"	531	ND	105	75-125			
Total Hydrocarbon C6-C35	1050	10.0	"	1060	ND	99.1	75-125			
Surrogate: 1-Chlorooctane	49.1		mg/kg	50.0		98.2	70-130			
Surrogate: 1-Chlorooctadecane	39.7		"	50.0		79. <i>4</i>	70-130			
Matrix Spike Dup (EB51006-MSD1)	Sou	rce: 5B090	14-01	Prepared & Analyzed: 02/10/05						
Gasoline Range Organics C6-C12	527	10.0	mg/kg dry	574	ND	91.8	75-125	5.71	20	
Diesel Range Organics >C12-C35	604	10.0	"	574	ND	105	75-125	1.64	20	
Total Hydrocarbon C6-C35	1130	10.0	11	1150	ND	98.3	75-125	3.48	20	

Matrix Spike Dup (EB51006-MSD2)	Sour	ce: 5B090	15-04	Prepared:	02/10/05	Analyzed	i: 02/11/05			
Gasoline Range Organics C6-C12	516	10.0	mg/kg dry	531	ND	97.2	75-125	4.97	20	
Diesel Range Organics >C12-C35	546	10.0	H	531	ND	103	75-125	2.53	20	
Total Hydrocarbon C6-C35	1060	10.0	"	1060	ND	100	75-125	0.948	20	
Surrogate: 1-Chlorooctane	49.9		mg/kg	50.0		99.8	70-130			
Surrogate: 1-Chlorooctadecane	38.0		"	50.0		7 6 .0	70-130			

mg/kg

"

50.0

50.0

97.0

72.8

70-130

70-130

Environmental Lab of Texas

Surrogate: 1-Chlorooctane

Surrogate: 1-Chlorooctadecane

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

.

48.5

36.4

·	Environmental Plus, Incorporated	Project:	Conoco Phillips/ SEMU Permian Well 73	Fax: 505-394-2601
	P.O. Box 1558	Project Number:	150008	Reported:
	Eunice NM, 88231	Project Manager:	Iain Olness	02/18/05 08:29

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB51409 - EPA 5030C (GC)	÷ • • •				····					
Blank (EB51409-BLK1)				Prepared	& Analyze	ed: 02/10/0	05			
Benzene	ND	0.0250	mg/kg wet							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250								
Xylene (p/m)	ND	0.0250								
Xylene (o)	ND	0.0250	**							
Surrogate: a,a,a-Trifluorotoluene	94.0		ug/kg	100		94.0	80-120			
Surrogate: 4-Bromofluorobenzene	108		"	100		108	80-120			
LCS (EB51409-BS1)				Prepared	& Analyz	ed: 02/10/0	05			
Benzene	100		ug/kg	100		100	80-120			
Toluene	103		"	100		103	80-120			
Ethylbenzene	117		**	100		117	80-120			
Xylene (p/m)	238		"	200		119	80-120			
Xylene (0)	113		"	100		113	80-120			
Surrogate: a,a,a-Trifluorotoluene	117		#	100		117	80-120			
Surrogate: 4-Bromofluorobenzene	120		"	100		120	80-120			
Calibration Check (EB51409-CCV1)				Prepared:	02/10/05	Analyzed	l: 02/11/05			
Benzene	102		ug/kg	100		102	80-120			
Toluene	97.6		11	100		97.6	80-120			
Ethylbenzene	99.1		"	100		99.1	80-120			
Xylene (p/m)	214		"	200		107	80-120			
Xylene (0)	106		11	100		106	80-120			
Surrogate: a,a,a-Trifluorotoluene	118		"	100		118	80-120			
Surrogate: 4-Bromofluorobenzene	103		"	100		103	80-120			
Matrix Spike (EB51409-MS1)	So	urce: 5B100	10-01	Prepared	& Analyz	ed: 02/10/0	05			
Benzene	100		ug/kg	100	ND	100	80-120			
Toluene	98.9		H	100	ND	98.9	80-120			
Ethylbenzene	105		"	100	ND	105	80-120			
Xylene (p/m)	227		"	200	ND	114	80-120			
Xylene (o)	111		*	100	ND	111	80-120			
Surrogate: a,a,a-Trifluorotoluene	116		н	100		116	80-120			
Surrogate: 4-Bromofluorobenzene	111		"	100		111	80-120			

Environmental Lab of Texas

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EB51409 - EPA 5030C (GC)

Matrix Spike Dup (EB51409-MSD1)	Source:	Source: 5B10010-01			Prepared: 02/10/05 Analyzed: 02/11/05					
Benzene	91.0	ug/kg	100	ND	91.0	80-120	9.42	20		
Toluene	87.3	"	100	ND	87.3	80-120	12.5	20		
Ethylbenzene	91.4	n	100	ND	91.4	80-120	13.8	20		
Xylene (p/m)	200		200	ND	100	80-120	13.1	20		
Xylene (o)	100	"	100	ND	100	80-120	10.4	20		
Surrogate: a,a,a-Trifluorotoluene	107	"	100		107	80-120				
Surrogate: 4-Bromofluorobenzene	117	"	100		117	80-120				

Ĵ.	Environmental Plus, Incorporated	Project: Conoco Phillips/ SEMU Pe	rmian Well 73 Fax: 505-394-2601
~ 1	P.O. Box 1558	Project Number: 150008	Reported:
	Eunice NM, 88231	Project Manager: Iain Olness	02/18/05 08:29

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source	······································	%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EB51102 - General Preparation	(Prep)									
Blank (EB51102-BLK1)				Prepared:	02/10/05	Analyzed	l: 02/11/05			
% Moisture	ND	0.1	%							
Duplicate (EB51102-DUP1)	So	urce: 5B0901	2-01	Prepared:	02/10/05	Analyzed	1: 02/11/05			
% Moisture	1.5	0.1	%		1.4			6.90	20	
Batch EB51717 - Water Extraction										
Blank (EB51717-BLK1)				Prepared	& Analyz	ed: 02/14/	05			
Chloride	ND	0.500	mg/kg							
LCS (EB51717-BS1)				Prepared	& Analyz	ed: 02/14/	05			
Chloride	9.45		mg/L	10.0		94.5	80-120			
LCS Dup (EB51717-BSD1)				Prepared	& Analyz	ed: 02/14/	05			
Chloride	9.31		mg/L	10.0		93.1	80-120	1.49	20	
Calibration Check (EB51717-CCV1)		Prepared & Analyzed: 02/14/05								
Chloride	9.74		mg/L	10.0		97.4	80-120			
Duplicate (EB51717-DUP1)	So	urce: 5B0901	2-02	Prepared	& Analyz	ed: 02/14/	05			
Chloride	1790	50.0	mg/kg		1810			1.11	20	

Environmental Lab of Texas

Notes and Definitions

- S-06 The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
- S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
- J Detected but below the Reporting Limit; therefore, result is an estimated concentration (CLP J-Flag).
- DET Analyte DETECTED
- ND Analyte NOT DETECTED at or above the reporting limit
- NR Not Reported
- dry Sample results reported on a dry weight basis
- RPD Relative Percent Difference
- LCS Laboratory Control Spike
- MS Matrix Spike
- Dup Duplicate

Report Approved By:

Kalan dk June

Date: 2-18-05

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer

Jeanne Mc Murrey, Inorg. Tech Director James L. Hawkins, Chemist/Geologist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

											······································	рН ОТНЕЯ >: РАН НАЯ	<u> </u>			See Remarks							E-mail results to: iolness@hotmail.com BEMARKS: Only analyze Samole BH-1 (15) if analytical results for sample BH-1 (10) indicate TPH	concentrations >100 ppm and/or benzene conentrations >10 ppm and/or BTEX concentrations > 50 ppm. If chloride concentrations in sample BH-1 (10°) are >500 ppm, then analyze sample BH-1 (15°) for exhering the structure in the second s			
											Es (CI)	CHLORID SULFATE	×	×	(X	K X	(X	(X	×		_		com anatytical re	entrations > (10') are >5(
												BTEX 802	××	××	хx	хx	X \	хх	× ×	_		_	tmail. (15') if	e BH-1			
		A CONTRACT OF A CO								,LING		TIME	11:00	11:10	12:49	13:12	14:10	14:17	14:45				E-mail results to: iolness@hotmail.com BEMABKS: Only analyze Samole BH-1 (15) if analy	ations in sample	LIONS, FLEAS		
		n		-31	۱.		Attn: Jain Olness	58.	Eunice, NM 88231-1558	SAMPLING		DATE	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb	3-Feb				Sults to: id Only analyze	ons >100 ppm oride concentra			
					5		Ö	PO Box 1558.	882	RV.		ЯЗНТО											nail ru IARKS	entrati If chic	Senti		
	Section of the sectio	1		Ľ	·)		ie i	B B B B C B C B C B C B C B C B C B C B	N	PRESERV.		ICE/CO01	×	×	×	X	×	×	×				E-n BEN	ppm ppm	3		
		100000000		Π			Attn		ice,		35	ACID/BAS	L							_							
		1							Eun			:R3HTO	┣_							_			\cap		hetekad Bur	5	
		and the second second								l≚	<u>-</u> .	STUDGE	┢						_	4		_	D		Ŷ	てその	
		10 C								MATRIX	<u> </u>	CENDE O SOIF	×	×	X	X	×	X	×	_			2		31	, , ,	
					r-	T	Г	Т	Т	ĮΣ		WASTEW	Ĥ		Γ	$\widehat{}$	\square	$\widehat{}$	$\widehat{}$					stant.	ѯ		
												GROUND								-				鱪(য		5
				-	5					┢	.	# CONTA	-	-	1	-		1	-	-			ed No	B B	Jee e e	Intaci No	Amiler
	Ľ.			823	94-2		2			F	AMO(2) A		ں	υ	S	с С	с	с С	с U					Received By CHab sta	7	Cool &	40
(2600 West I-20 East, Odessa, TX 79763 915) 563-1800 - EAY: (015) 563-1713	Environmental Plus, Inc.	lain Olness	P.O. BOX 1558	Eunice New Mexico 88231	505-394-3481 / 505-394-2601	Conoco Phillips	SEMU Permian Well 73	15008	Manuel Gonzales		SAMPLE I.D.		(2')			(Date 2- 9 F	ŤΤ	5	4.0 Sample Cool & Intact No	
0 East, O F∆Y- /9		nager	S		#)			Ice	me				1 BH-1 (;	2 BH-1 (5')	3 BH-1 (10"	4 BH-1 (15')	5 BH-2 (2')	6 BH-2 (5')	7 BH-2 (10'	8	6	10			2 Par		
12600 West -2((915) 563-1800	Company Name	EPI Project Manager	Mailing Address	City, State, Zip	EPI Phone#/Fax#	Client Company	Facility Name	Project Reference	EPI Sampler Name		LAB I.D.	5B09012-	- 0		- 03			-06	, 10,			1	Sampler Relinquished:	Relinquisfied by:	Delivereday		

U.

٨.

1

Environmental Lab of Texas Variance / Corrective Action Report – Sample Log-In

Client:	nvironmental Plus
Date/Time	2/9/05 16:45
Order #:	5,B09012
Initials:	· CK

Sample Receipt Checklist

Temperature of container/cooler?	(Yes)	No	4.0 C
Shipping container/cooler in good condition?	Tes	No	
Custody Seals intact on shipping container/cooler?	Yes	No	Not present
Custody Seals intact on sample bottles?	Yes	No	Not present
Chain of custody present?	Yes	No	
Sample Instructions complete on Chain of Custody?	(PES)	No	
Chain of Custody signed when relinquished and received?	FES	No	
Chain of custody agrees with sample label(s)	res	No	
Container labels legible and intact?	Tes	No	
Sample Matrix and properties same as on chain of custody?	Tes	No	
Samples in proper container/bottle?	(Yes)	No	
Samples properly preserved?	E	No	
Sample bottles intact?	(Yes)	No	
Preservations documented on Chain of Custody?	Yes	No	
Containers documented on Chain of Custody?	(Yes)	No	
Sufficient sample amount for indicated test?	(Tes	No	
All samples received within sufficient hold time?	(Veg	No	
VOC samples have zero headspace?	(Yes)	No	Not Applicable

Other observations:

Contact Person: Regarding:	Variance Documentation: Date/Time:	_ Contacted by:
Corrective Action Taken:		

ν

ATTACHMENT II

SOIL BORING LOGS

* U

					L	.og D	f Test Borings (NOTE - Page 1 of	D
							Project Number: 150008	
					lus, Ini farm a		Project Name: Conoco Phillips SEMU Permian Well 73	
	r		RONMEN	ITAL SEI	RVICES		Location: UL-B, Section 19, Township 20 South, Range 38 E	East
	(C ₁₀)X		505-	UNICE 394-348	31	B	Boring Number: BH-1 Surface Elevation: 3,543	
# e	e le	Recovery (inches)	aure	gs (σįν	÷÷	Start Date: 02/03/05	
Sample # and Time	Sample Type	scov Jche	Moisture	PIJ Readings (ppm)	U.S.C.S. Symbol	Depth (feet)	Completion Date: 02/03/05 Time: 1312 hrs	
89		2.2	ž	ă.			Description	
1100	Cuttings	NA	Da	104	SP		SAND, Dil Stained	
						_		_
						5		
1110	CS	10	Da	74.4	SP	_	SAND, Oil Stained	—
						_		_
						_		_
						10		
1249	cs	12	Da	21.1	SP	_	SAND	—
						_		_
								_
						15	5	
1312	cs	8	Da	17.4	SP	_	SAND, Red	—
							End of Boring at 17.0'	
						_		_
						so	ο	
						_		—
					·	_		—
						_		_
					ŀ	25	5	
								—
								—
						_		_
						30	0	
								—
	Wate				s (feet		Ler Drilling Method: HSA 3.5" ID	
Date	Time	≥ Sa De	mple pth	Casing Depth	Cave-ir Depth	Lev	Vel Packfill Matheath Pontanita	
02/03/0	05 -		-	-	-	+ -		

•

7

•

					L	_og	Of Test Borings (NOTE - Page 1 of 1)
				_	-		Project Number: 150008
				tal P ed land	LUS, IN	C.	Project Name: Conoco Phillips SEMU Permian Well 73
٦.	Y	ENV	IRONMEN	ITAL SEI	RVICES		Location: UL-B, Section 19, Township 20 South, Range 38 East
	-0.000- 		505-	-394-348	31	ľ	Boring Number: SB-2 Surface Elevation: 3,548
# ¥	٥.	2	re r	sốc	65	50	B Start Date: 02/03/05 Time: 1405 hrs
Sample # and Time	Sample Type	Recovery (inches)	Moisture	PID Readings (ppm)	U.S.C.S. Symbol	Depth (feet)	Completion Date: 02/03/05 Time: 1610 hrs
Sar ani	ЗГ S	аў С	ΨO	Re	<u>,</u> 20.	Р. С	Description
1410	Cuttings	NA	Da	28.4	SP	_	SAND, Brown
						—	
						_	
						_	. 5
1417	CS	9	Da	10.3	SP		SAND, White
		Ľ_	ļ	10.0			
			2				
1445	CS	12	Da	7.2	SP		SAND, White
						_	End of Boring at 12.0'
							. 15
						_	
							. 20
						_	
						i	. 25
							. 30
	Wate			urement			
Date	Tim	e So Do	ample epth	Casing Depth	Cave-ii Depth	n Wa	Water Drilling Method: HSA 3.5' ID Level D. Louis H. H. J. Brataria
2/03/0)5 -		-	_	-		Backfill Method: Bentonite
							Field Representative: MG

ATTACHMENT III COPY OF INITIAL C-141

Released to Imaging: 3/28/2024 9:46:39 AM

1

District I					bbs				;			#	
1625 N. PTCH	h Dr., Hohb	, NM 88240	0				f New Me					F	orm C-14
<u>District II</u> 301 W. Graz				o	Energy M	linerals	s and Natu	al Resources				Revised Octo	
histrict III 000 Rio Bra		• • •		•	Oil	Conse	rvation D	vision			Submit.	2 Copies to et Office in with Rule 1	appropria
District IV	,	-		e			th St. Fran				, 19 03	with Rule	16 on bac
220 S. SL FI	Incis Dr., Sa	nta Fe, NM 8	6730				e, NM 87	the state of the second se					ide of fon
				Rel	ease Notifi	catio	n and C	orrective A	Actio	n /			
							OPERA		,	V In	itial Report	<u> </u>	inal Rep
		onocoPhil					Contact Jol	n Abney No. (505)391-	2100				
		J Permian			<u>A 19702</u>			pe Oil Well	-5128			· · · · · · · · · · · · · · · · · · ·	
		AcCasland			Mineral	Ownerl		••••••••••••••••••••••••••••••••••••••		Lease	No. 0316	70B	·····
								ETPACE +	9DI		DORS	the second s	6000
Jnit Letter	Section	Townsh	in	Range	Feet from the		N OF RE	Feet from the	Fast/	WestLine		51020	.0000
	19	205	*	38E	660	North		1980	East				
	1	<u> </u>	I			- <u> </u>		102 11 204	_l		L	····	·
				La	titude <u>32</u> 33.56			le <u>103 11.324</u>	 				
The of Rel		nd Produce			NAT	URE	OF REL	EASE Release35 barr	rola	Maluma	Recovered	10 hannala	
ource of R	leaseFlow	line	<u>eu-v</u>	valer				lour of Occurren		/Odate bay	hHour of Di	scovery 11/	24/04
Vas Immed	iate Notice	Given?		Vet 🗖	No 🗌 Not Re	mired	If YES, To	Whom? Key (via voice	 	R COOD			
y Whom?	Tohn Ahn					~~~~~		our 11/24/04					
Vas a Wate		ched?					IF YES, Vo	lume Impacting	the Wat	acourse.	/)
				Yes 🕅			NA					11/	
f a Waterco	nse was in	pacted, De	scril	be Fully.*							1 2	KU/	
NA.													
										15	PIT "		
									(R	PAT 1		
Describe Car									(P# 12		
					Taken.* mped for the w	eekend	and then re	placed 2 joints	(of pipe				
						cekend	and then re	placed 2 joints	(of pipe				
nternal co	tosion on	flowline.]	Lin	e was cla	mped for the w	cekend	and then re	placed 2 joints	(of pipe				
nternal con escribe Are he area af	rosion on a Affected :	flowline.] and Cleanu	Line pAc	e was cla	mped for the w					on Mone	fay 11/29/0	94.	
nternal con escribe Are he area af	rosion on a Affected :	flowline.] and Cleanu	Line pAc	e was cla	mped for the w					on Mone	fay 11/29/0	94.	ion
nternal con lescribe Are The area af eccessary.	Tosion on a Affected fected is 5.	flowline.] and Cleanu S' X 25' al	Lind pAc Il fre	e was cla ction Take ze liquid	mped for the w m.* was picked up.	The sit	e will have	to be assessed t	to deten	on Mond	lay 11/29/0 appropriate)4. > remeditat	
nternal con lescribe Are The area af eccssary. hereby certi gulations al	rosion on a Affected is fected is 5. fy that the i	flowline. I and Cleanu 5' X 25' all nformation are required	Lind p Ac Il fre give d to	e was cla ction Taka ce liquid en above i report and	mped for the w an.* was picked up. is true and comple Vor file certain re	The sit	e will have e best of my k	to be assessed t	to deteri inderstan	on Mond mine the d that purs	lay 11/29/0 appropriate suant to NMA	4. = remeditat	nd
nternal con escribe Are he area af eccssary. nereby certi gulations ai ublic health	rosion on a Affected is fected is 5. fy that the i l operators or the envir	flowline. I and Cleanu 5' X 25' all nformation are required onment. T.	Lind pAc ll fre give d to he a	e was cla ction Taka ce liquid en above i report and cceptance	mped for the w a.* was picked up. is true and comple for file certain re of a C-141 report	The sit	e will have e best of my k tifications and NMOCD ma	to be assessed t nowledge and un i perform correct iked as "Final Re	to deteri nderstan tive actic eport" do	on Mond mine the d that purs ms for released	appropriate	4. remeditat OCD rules a may endang ator of liabi	nd er lity
escribe Are he area af eccssary. ereby certi gulations al blic health ould their o the environ	a Affected is 5. fy that the i l operators or the envir perations h ment. In as	flowline. I and Cleanu S' X 25' al nformation are required onment. To ave failed to idition, NN	Lind pAc l fre d to he a o ad 400	e was cla ction Taka ce liquid en above i report ance icceptance icquately i D accepta	mped for the w an.* was picked up. is true and comple Vor file certain re	The sit	e will have e best of my k tifications and NMOCD ma contaminatio	to be assessed t nowledge and u l perform correct iked as "Final Re a that pose a three	to deterion inderstan tive actin eport" do eat to gro	on Mond mine the d that purs ms for reli- ms for reli- und water	appropriate appropriate suant to NM eases which ieve the oper r, surface wa	4. > remeditat OCD rules a may endang ator of liabi ter, human l	nd er lily acaith
nternal con escribe Are he area af eccssary. hereby certi gulations al blic health ould their o the environ	a Affected is 5. fy that the i l operators or the envir perations h ment. In as	flowline. I and Cleanu S' X 25' al nformation are required onment. To ave failed to idition, NN	Lind pAc l fre d to he a o ad 400	e was cla ction Taka ce liquid en above i report ance icceptance icquately i D accepta	mped for the w a.* was picked up. is true and comple- lor file certain re- of a C-141 report nyestigate and re-	The sit	e will have e best of my k tifications and NMOCD ma contaminatio	to be assessed t mowledge and un I perform correc- iked as "Final Re a that pose a three the operator of r	to deteri inderstan tive actin eport" do eat to gro responsit	on Mond mine the d that purs ms for reli- ms for reli- und water ility for co	lay 11/29/0 appropriate suant to NM eases which ieve the open r, surface wa xupliance w	4. cremeditat OCD rules a may endang ator of liabi ter, human l ith any othe	nd er lily acaith
nternal con lescribe Are The area af eccessary. hereby certi gulations al ablic health and their o the environ deral, state,	a Affected is 5. fy that the i l operators or the envir perations h ment. In as	flowline. I and Cleanu S' X 25' al nformation are required onment. To ave failed to idition, NN	Lind pAc l fre d to he a o ad 400	e was cla ction Taka ce liquid en above i report ance icceptance icquately i D accepta	mped for the w a.* was picked up. is true and complete for file certain re- of a C-141 report nyestigate and re-	The sit	e will have e best of my k tifications and NMOCD ma contaminatio	to be assessed to nowledge and un 1 perform correct riked as "Final Re a that pose a threat the operator of p OIL CONS	to deteri inderstan tive actin eport ^a do eat to gro responsit SERVA	on Mond mine the d that purs ms for relevant relives not relived wild water vility for control ATION	lay 11/29/0 appropriate suant to NM eases which ieve the open r, surface wa xupliance w	4. cremeditat OCD rules a may endang ator of liabi ter, human l ith any othe	nd er lily acaith
nternal con escribe Are he area af eccessary. hereby certi gulations al iblic health ould their o the environ deral, state, gnature:	a Affected is 5. fy that the is l operators or the envir perations h ment. In as or local law	flowline. I and Cleanu S' X 25' all nformation are required onment. To onment. To onment. To didition, NIV s and/or re	Lind pAc l fre d to he a o ad 400	e was cla ction Taka ce liquid en above i report ance icceptance icquately i D accepta	mped for the w a.* was picked up. is true and complete for file certain re- of a C-141 report nyestigate and re-	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve	to be assessed to nowledge and un 1 perform correct riked as "Final Re a that pose a thre the operator of p OIL CONS EDUCE	to deteri inderstan tive actin eport" do eat to gro cesponsit SERVA	on Mond mine the d that purs ms for relevant relives not relived wild water vility for control ATION	lay 11/29/0 appropriate suant to NM eases which ieve the open r, surface wa xupliance w	4. cremeditat OCD rules a may endang ator of liabi ter, human l ith any othe	nd er lily acaith
nternal con escribe Are he area af eccessary. hereby certi gulations al blic health ould their o the environ leral, state, gnature:	a Affected is 5. fy that the is l operators or the envir perations h ment. In as or local law	flowline. I and Cleanu S' X 25' all nformation are required onment. To onment. To onment. To didition, NIV s and/or re	Lind pAc l fre d to he a o ad 400	e was cla ction Taka ce liquid en above i report ance icceptance icquately i D accepta	mped for the w a.* was picked up. is true and complete for file certain re- of a C-141 report nyestigate and re-	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve	to be assessed to nowledge and un 1 perform correct riked as "Final Re a that pose a threat the operator of p OIL CONS	to deteri inderstan tive actin eport" do eat to gro cesponsit SERVA	on Mond mine the d that purs ms for relevant relives not relived wild water vility for control ATION	lay 11/29/0 appropriate suant to NM eases which ieve the open r, surface wa xupliance w	4. cremeditat OCD rules a may endang ator of liabi ter, human l ith any othe	nd er lily acaith
nternal con escribe Are he area af eccssary. nereby certi gulations al blic health ould their o the environ leral, state, mature: inted Name	a Affected is 5. fy that the is l operators or the envir perations h ment. In as or local law	flowline. I and Cleanu S' X 25' al nformation are required onment. T ave failed to idition, NM vs and/or re	Lind pAc l fre d to he a o ad 400	e was cla ction Taka ce liquid en above i report ance icceptance icquately i D accepta	mped for the w a.* was picked up. is true and complete for file certain re- of a C-141 report nyestigate and re-	The sit	e will have e best of my k tifications and NMOCD ma contamination es not relieve pproved by D	to be assessed to nowledge and un 1 perform correct riked as "Final Re a that pose a thre the operator of p OIL CONS EDUCE	to deteri inderstan tive actin eport" do est to gro est to gro icsponsit SERVA	on Mond mine the d that purs ms for relevant religion of relevant will y for con- ATION	lay 11/29/0 appropriate search of the cases which is surface wa month of the cases which is surface wa DIVISIC	4. cremeditat OCD rules a may endang ator of liabi ter, human l ith any othe	nd er lily acaith
nternal con escribe Are he area af eccessary. nereby certi gulations at blic health ould their o the environ deral, state, gnature: inted Name	a Affected is 5. Fy that the i l operators or the envin perations h ment. In as or local law John Abn R Speciali	flowline. I and Cleanu S' X 25' al nformation are required onment. Ti Visand/or re Market to didition, NM visand/or re Company ey ey	Lind pAc I fre d to fre guts	e was cla ction Taka ce liquid en above i report and cceptance icquately i D acceptance iquidately i D acceptance	mped for the w a.* was picked up. is true and comple Vor file certain re of a C-141 report nvestigate and re- ance of a C-141 re	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve pproved by D pproved by D	to be assessed to nowledge and in 1 perform correct iked as "Final Re a that pose a thre the operator of p OIL CONS EDUCE istrict Supervise 5 · ZS · D 7	to deteri inderstan tive actin eport" do est to gro est to gro icsponsit SERVA	on Mond mine the d that purs ms for reli und wates ility for co ATION	lay 11/29/0 appropriate auantto NMf eases which eve the oper surface wa provide the oper surface wa DIVISIC	4. CCD rules a may endang ator of liabi ter, human l ith any othe N	nd er lily acaith
nternal con escribe Area he area af eccessary. hereby certi gulations al bhic health ould their o the environ jeral, state, gnature: inted Name ile: SHEa nail Addres	a Affected is 5. fy that the i l operators or the envir perations h ment. In a or local law John Abn R Speciali as: john. h. a	flowline. I and Cleanu S' X 25' al nformation are required onment. Ti Visand/or re Market to didition, NM visand/or re Company ey ey	Lind p Ac ll fre d to a o ad AOC sguta Unce	e was cla ction Take ce liquid en above i report and cceptance equately i D accept dions.	mped for the w m.* was picked up. is true and completion file certain re- of a C-141 report nvestigate and re- ance of a C-141 re- met of a C-141	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve pproved by D pproved by D pproved Date:	to be assessed to nowledge and in 1 perform correct iked as "Final Re a that pose a thre the operator of p OIL CONS EDUCE istrict Supervise .5 < 23 < 0.7 approval:	to deteri inderstan tive actic eport" do eat to gro cesponsit SER VA SER	on Mond mine the d that purs ms for rela- und wates ility for co ATION	lay 11/29/0 appropriate search of the cases which is surface wa month of the surface wa DIVISIC	4. CCD rules a may endang ator of liabi ter, human l ith any othe N	nd er lily acaith
nternal con escribe Are he area af eccessary. nereby certi gulations at blic health ould their of the environ leral, state, gnature: inted Name le: SHEa nail Addres te: 11/30/2	a Affected is fected is 5. fy that the i l operators or the envir perations h ment. In as or local law John Abn R. Speciali as: john. h. a	flowline. I and Cleanu S' X 25' al nformation are required onment. Tr ave failed to iddition, NIM s's and/or re Cy cy ist bney@cor	Line pAc l fre d to be a d fOC sgula	e was cla ction Take ce liquid en above i report and cceptance equately i D acceptance ions. 2 phillips. Phone: (2	mped for the w a.* was picked up. is true and comple Vor file certain re of a C-141 report nvestigate and re- ance of a C-141 re	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve pproved by D pproved by D pproved by D pproved by D	to be assessed to nowledge and in 1 perform correct iked as "Final Re a that pose a thre the operator of p OIL CONS EDUCE istrict Supervise .5:23.07 approval: TEDUCE	to deteri inderstan tive actin eport" do eat to gro responsit SER VA SER VA SER VA SER VA SER VA SER VA SER VA SER VA	on Mond mine the d that pur- ms for rel- tions for rel- for rel- f	lay 11/29/0 appropriate auantto NMf eases which eve the oper surface wa provide the oper surface wa DIVISIC	4. CCD rules a may endang ator of liabi ter, human l ith any othe N	nd er lily acaith
nternal con escribe Are The area af eccessary. hereby certi- gglations al iblic health ould their o the enviror deral, state, gnature: inted Name	a Affected is fected is 5. fy that the i l operators or the envir perations h ment. In as or local law John Abn R. Speciali as: john. h. a	flowline. I and Cleanu S' X 25' al nformation are required onment. Tr ave failed to iddition, NIM s's and/or re Cy cy ist bney@cor	Line pAc l fre d to be a d fOC sgula	e was cla ction Take ce liquid en above i report and cceptance equately i D acceptance ions. 2 phillips. Phone: (2	mped for the w m.* was picked up. is true and completion file certain re- of a C-141 report nvestigate and re- ance of a C-141 re- met of a C-141	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve pproved by D pproved by D pproved by D pproved by D conditions of A	to be assessed to mowledge and un a perform correc- ticed as "Final Re a that pose a three the operator of p OIL CONS EDUCE istrict Supervise $5 \cdot 25 \cdot 07$ spproval: F(DA(to determ inderstan tive actin eport" do eat to gro responsit SER VA	on Mond mine the d that purs ms for relives not relives not relives not relived wility for con- attion for con- attion I opiration I	lay 11/29/0 appropriate auantto NMf eases which eve the oper surface wa provide the oper surface wa DIVISIC	4. CCD rules a may endang ator of liabi ter, human l ith any othe N	nd er lily acaith
nternal con lescribe Are The area af eccessary. hereby certi gulations ai ublic health iould their of the environ deral, state, gnature: inted Name tle: SHEa mail Addres tte: 11/30/2	a Affected is fected is 5. fy that the i l operators or the envir perations h ment. In as or local law John Abn R. Speciali as: john. h. a	flowline. I and Cleanu S' X 25' al nformation are required onment. Tr ave failed to iddition, NIM s's and/or re Cy cy ist bney@cor	Line pAc l fre d to be a d fOC sgula	e was cla ction Take ce liquid en above i report and cceptance equately i D acceptance ions. 2 phillips. Phone: (2	mped for the w m.* was picked up. is true and completion file certain re- of a C-141 report nvestigate and re- ance of a C-141 re- met of a C-141	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve pproved by D pproved by D pproved by D pproved by D conditions of A	to be assessed to nowledge and in 1 perform correct iked as "Final Re a that pose a thre the operator of p OIL CONS EDUCE istrict Supervise .5:23.07 approval: TEDUCE	to determ inderstan tive actin eport" do eat to gro responsit SER VA	on Mond mine the d that purs ms for relives not relives not relives not relived wility for con- attion for con- attion I opiration I	lay 11/29/0 appropriate auantto NMf eases which eve the oper surface wa provide the oper surface wa DIVISIC	4. CCD rules a may endang ator of liabi ter, human l ith any othe N	nd er lily acaith
nternal con escribe Are he area af eccessary. hereby certi gulations al iblic health ould their ou deral, state, gnature: inted Name the: SHEa mail Addres te: 11/30/2	a Affected is fected is 5. fy that the i l operators or the envir perations h ment. In as or local law John Abn R. Speciali as: john. h. a	flowline. I and Cleanu S' X 25' al nformation are required onment. Tr ave failed to iddition, NIM s's and/or re Cy cy ist bney@cor	Line pAc l fre d to be a d fOC sgula	e was cla ction Take ce liquid en above i report and cceptance equately i D acceptance ions. 2 phillips. Phone: (2	mped for the w m.* was picked up. is true and completion file certain re- of a C-141 report nvestigate and re- ance of a C-141 re- met of a C-141	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve pproved by D pproved by D pproved by D pproved by D conditions of A	to be assessed to mowledge and un a perform correc- ticed as "Final Re a that pose a three the operator of p OIL CONS EDUCE istrict Supervise $5 \cdot 25 \cdot 07$ spproval: F(DA(to determ inderstan tive actin eport" do eat to gro responsit SER VA	on Mond mine the d that purs ms for relives not relives not relives not relived wility for con- attion for con- attion I opiration I	lay 11/29/0 appropriate auantto NMf eases which eve the oper surface wa provide the oper surface wa DIVISIC	4. CCD rules a may endang ator of liabi ter, human l ith any othe N	nd er lily acaith
ereby certi gulations at blic health coessary. ereby certi gulations at blic health on d their of the environ feral, state, nature: nature: ered Name le: SHEa nail Addres e: 11/30/2	a Affected is fected is 5. fy that the i l operators or the envir perations h ment. In as or local law John Abn R. Speciali as: john. h. a	flowline. I and Cleanu S' X 25' al nformation are required onment. Tr ave failed to iddition, NIM s's and/or re Cy cy ist bney@cor	Line pAc l fre d to be a d fOC sgula	e was cla ction Take ce liquid en above i report and cceptance equately i D acceptance ions. 2 phillips. Phone: (2	mped for the w m.* was picked up. is true and completion file certain re- of a C-141 report nvestigate and re- ance of a C-141 re- met of a C-141	The sit	e will have e best of my k tifications and NMOCD ma contaminatio es not relieve pproved by D pproved by D pproved by D pproved by D conditions of A	to be assessed to mowledge and un a perform correc- ticed as "Final Re a that pose a three the operator of p OIL CONS EDUCE istrict Supervise $5 \cdot 25 \cdot 07$ spproval: F(DA(to determ inderstan tive actin eport" do eat to gro responsit SER VA	on Mond mine the d that purs ms for relives not relives not relives not relived wility for con- attion for con- attion I opiration I	lay 11/29/0 appropriate auantto NMf eases which eve the oper surface wa provide the oper surface wa DIVISIC	4. CCD rules a may endang ator of liabi ter, human l ith any othe N	nd er lily acaith

Site Remediation Closure Report SEMU Permian #073 Flowline Release nPAC0714434227 Maverick Permian, LLC March 14, 2024

ATTACHMENT 5: PHOTOGRAPHIC DOCUMENTATION

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing south of release area.	1
212C-MD-02152	SITE NAME	SEMU Permian #73 Flowline Release	6/1/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing northwest of release area.	2
212C-MD-02152	SITE NAME	SEMU Permian #73 Flowline Release	6/1/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing north of release area.	3
212C-MD-02152	SITE NAME	SEMU Permian #73 Flowline Release	6/1/2020

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing northeast of release area.	4
212C-MD-02152	SITE NAME	SEMU Permian #73 Flowline Release	6/1/2020

TETRA TECH, INC.	DESCRIPTION	View facing NNE Excavation.	5
PROJECT NO. 212C-MD-03272	SITE NAME	SEMU Permian #73 Flowline Release	11/29/2023

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing East Excavation.	6
212C-MD-03272	SITE NAME	SEMU Permian #73 Flowline Release	11/29/2023

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing South Excavation.	7
212C-MD-03272	SITE NAME	SEMU Permian #73 Flowline Release	11/29/2023

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing SW Excavation.	8
212C-MD-03272	SITE NAME	SEMU Permian #73 Flowline Release	11/29/2023

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing North Post Remediation.	9
212C-MD-03272	SITE NAME	SEMU Permian #73 Flowline Release	1/09/2024

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing NW Post Remediation.	10
212C-MD-03272	SITE NAME	SEMU Permian #73 Flowline Release	1/09/2024

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing WSW Post Remediation.	11
212C-MD-03272	SITE NAME	SEMU Permian #73 Flowline Release	1/09/2024

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View facing South Post Remediation.	12
212C-MD-03272	SITE NAME	SEMU Permian #73 Flowline Release	1/09/2024

Site Remediation Closure Report SEMU Permian #073 Flowline Release nPAC0714434227 Maverick Permian, LLC March 14, 2024

ATTACHMENT 6: LABORATORY ANALYTICAL DATA

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Entire Report Reviewed By:

L1283206 11/07/2020 212C-MD-02334 SEMU Permian #73 Flowline (1RP-1342)

Report To:

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Erica Mc Neese

Erica McNeese Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 3/28/2024 9:46:39 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE:

1 of 47

Page 69 of 156

Cp ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Car Carrer Base	4	
Cp: Cover Page	1	
Tc: Table of Contents		
Ss: Sample Summary		
Cn: Case Narrative	8	
Sr: Sample Results	9	
AH-1 (0-1') L1283206-01	9	
AH-1 (1-2') L1283206-02	10	
AH-1 (2-3') L1283206-03	11	
AH-1 (3-4') L1283206-04	12	
AH-1 (4-5') L1283206-05	13	
AH-1 (5-6') L1283206-06	14	
AH-1 (6-7') L1283206-07	15	
AH-1 (7-8') L1283206-08	16	
AH-1 (8-9') L1283206-09	17	
AH-1 (9-10') L1283206-10	18	
AH-2 (0-1') L1283206-11	19	
AH-2 (1-2') L1283206-12	20	
AH-2 (2-3') L1283206-13	21	
AH-3 (0-1') L1283206-14	22	
AH-3 (1-2') L1283206-15	23	
AH-3 (2-3') L1283206-16	24	
AH-4 (0-1') L1283206-17	25	
AH-4 (1-2') L1283206-18	26	
AH-4 (2-3') L1283206-19	27	
AH-5 (0-1') L1283206-20	28	
AH-5 (1-2') L1283206-21	29	
AH-5 (2-3') L1283206-22	30	
Qc: Quality Control Summary	31	
Total Solids by Method 2540 G-2011	31	
Wet Chemistry by Method 300.0	34	
Volatile Organic Compounds (GC) by Method 8015D/GRO	36	
Volatile Organic Compounds (GC/MS) by Method 8260B	38	
Semi-Volatile Organic Compounds (GC) by Method 8015	40	
GI: Glossary of Terms	42	
Al: Accreditations & Locations	43	
Sc: Sample Chain of Custody	44	

PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 2 of 47

SAMPLE SUMMARY

ONE LAB. NAT Rage 71 of 156

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

AH-1 (0-1') L1283206-01 Solid			Collected by Adrian Garcia	Collected date/time 11/05/20 12:00	Received dat 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575378	1	11/13/20 03:57	11/13/20 04:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 18:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 07:01	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 14:55	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576739	50	11/14/20 21:33	11/15/20 13:25	JN	Mt. Juliet, TN
			Collected by	Collected date/time		
AH-1 (1-2') L1283206-02 Solid			Adrian Garcia	11/05/20 12:10	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575378	1	11/13/20 03:57	11/13/20 04:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 18:36	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 07:22	DWR	Mt. Juliet, TM
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 15:15	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576739	50	11/14/20 21:33	11/15/20 13:38	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
AH-1 (2-3') L1283206-03 Solid			Adrian Garcia	11/05/20 12:20	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575378	1	11/13/20 03:57	11/13/20 04:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 18:55	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 07:43	DWR	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 15:34	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576739	50	11/14/20 21:33	11/16/20 23:33	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
AH-1 (3-4') L1283206-04 Solid			Adrian Garcia	11/05/20 12:30	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575378	1	11/13/20 03:57	11/13/20 04:03	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 19:05	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 08:04	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 15:53	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576739	20	11/14/20 21:33	11/15/20 17:07	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
AH-1 (4-5') L1283206-05 Solid			Adrian Garcia	11/05/20 12:40	11/07/20 10:30	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 19:14	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 09:25	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 16:12	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576739	5	11/14/20 21:33	11/15/20 12:13	JDG	Mt. Juliet, TN

PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 3 of 47

SAMPLE SUMMARY

ONE LAB. NAT Rage 72 of 156

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

AH-1 (5-6') L1283206-06 Solid			Collected by Adrian Garcia	Collected date/time 11/05/20 12:50	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 19:43	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 09:46	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 16:31	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576739	1	11/14/20 21:33	11/15/20 16:28	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
AH-1 (6-7') L1283206-07 Solid			Adrian Garcia	11/05/20 13:00	11/07/20 10:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 19:52	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 10:07	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 16:50	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576739	1	11/14/20 21:33	11/15/20 16:54	JN	Mt. Juliet, TN
			Caller 1		D	h = /h:
AH-1 (7-8') L1283206-08 Solid			Collected by Adrian Garcia	Collected date/time 11/05/20 13:20	Received date/time 11/07/20 10:30	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	2	
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 20:02	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 10:28	DWR	Mt. Juliet, TM
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 17:09	JHH	Mt. Juliet, TM
Semi-Volatile Organic Compounds (GC/MS) by Method 8200B	WG1575403	1	11/14/20 21:33	11/15/20 16:02	JN	Mt. Juliet, Th Mt. Juliet, Th
			Collected by	Collected date/time	Received date/time	
AH-1 (8-9') L1283206-09 Solid			Adrian Garcia	11/05/20 13:40	11/07/20 10:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	5	11/11/20 12:59	11/11/20 20:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 10:49	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 17:28	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 13:04	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-1 (9-10') L1283206-10 Solid			Adrian Garcia	11/05/20 14:00	11/07/20 10:30	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	5	11/11/20 12:59	11/11/20 20:21	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 11:10	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 17:47	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 13:18	JDG	Mt. Juliet, TN

PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 4 of 47
Received by OCD: 3/15/2024 10:07:43 AM

SAMPLE SUMMARY

ONE LAB. NAT Rage 73 of 156

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

AH-2 (0-1') L1283206-11 Solid			Collected by Adrian Garcia	Collected date/time 11/04/20 14:10	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 20:30	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 11:31	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 18:06	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 11:06	JDG	Mt. Juliet, TN
			Collected by Adrian Garcia	Collected date/time 11/04/20 14:20	Received da 11/07/20 10:3	
AH-2 (1-2') L1283206-12 Solid			Adrian Garcia	11/04/20 14.20	11/07/20 10.3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 20:40	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 11:52	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575403	1	11/11/20 13:58	11/12/20 18:25	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 11:33	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-2 (2-3') L1283206-13 Solid			Adrian Garcia	11/04/20 14:21	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 20:49	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 12:13	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/12/20 22:12	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 11:20	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-3 (0-1') L1283206-14 Solid			Adrian Garcia	11/04/20 14:22	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575380	1	11/13/20 03:45	11/13/20 03:54	JAV	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 20:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 12:34	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/12/20 22:31	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/17/20 23:40	TJD	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
AH-3 (1-2') L1283206-15 Solid			Adrian Garcia	11/04/20 14:23	11/07/20 10:3	0
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575382	1	11/13/20 03:33	11/13/20 03:43	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 21:08	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 12:55	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/12/20 22:51	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 12:12	JDG	Mt. Juliet, TN

Released to Imaging: 3/28/2024 9:46:39 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 5 of 47 Received by OCD: 3/15/2024 10:07:43 AM

SAMPLE SUMMARY

ONE LAB. NAT Rage 74 of 156

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

AH-3 (2-3') L1283206-16 Solid			Collected by Adrian Garcia	Collected date/time 11/04/20 14:24	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575382	1	11/13/20 03:33	11/13/20 03:43	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 21:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575123	1	11/11/20 13:58	11/12/20 13:16	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/12/20 23:10	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 12:25	JDG	Mt. Juliet, TN
AH-4 (0-1') L1283206-17 Solid			Collected by Adrian Garcia	Collected date/time 11/04/20 14:25	Received da 11/07/20 10:3	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575382	1	11/13/20 03:33	11/13/20 03:43	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 21:46	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575601	1	11/11/20 13:58	11/13/20 03:19	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/12/20 23:29	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 12:38	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
AH-4 (1-2') L1283206-18 Solid			Adrian Garcia	11/04/20 14:26	11/07/20 10:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575382	1	11/13/20 03:33	11/13/20 03:43	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 21:56	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575601	1	11/11/20 13:58	11/13/20 03:40	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/12/20 23:48	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 11:59	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
AH-4 (2-3') L1283206-19 Solid			Adrian Garcia	11/04/20 14:27	11/07/20 10:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575382	1	11/13/20 03:33	11/13/20 03:43	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574603	1	11/11/20 12:59	11/11/20 22:06	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575601	1	11/11/20 13:58	11/13/20 04:01	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/13/20 00:07	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/16/20 10:40	JDG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
AH-5 (0-1') L1283206-20 Solid			Adrian Garcia	11/04/20 14:28	11/07/20 10:3	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1575382	1	11/13/20 03:33	11/13/20 03:43	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574604	1	11/15/20 15:20	11/15/20 20:26	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575601	1	11/11/20 13:58	11/13/20 04:22	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/13/20 00:26	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/17/20 23:27	TJD	Mt. Juliet, TN

PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12

6

PAGE: 6 of 47 Received by OCD: 3/15/2024 10:07:43 AM

SAMPLE SUMMARY

ONE LAB. NAT Rage 75 of 156

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received da	te/time
AH-5 (1-2') L1283206-21 Solid			Adrian Garcia	11/04/20 14:30	11/07/20 10:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Fotal Solids by Method 2540 G-2011	WG1575382	1	11/13/20 03:33	11/13/20 03:43	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1574604	1	11/15/20 15:20	11/15/20 20:54	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1575601	1	11/11/20 13:58	11/13/20 04:43	JAH	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/13/20 00:45	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/17/20 23:01	TJD	Mt. Juliet, TN

			Collected by	Collected date/time	Received date/time	
AH-5 (2-3') L1283206-22 Solid			Adrian Garcia	11/04/20 14:35	11/07/20 10:3	0
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1575382	1	11/13/20 03:33	11/13/20 03:43	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1574604	1	11/15/20 15:20	11/15/20 21:13	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1575601	1	11/11/20 13:58	11/13/20 05:04	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1575500	1	11/11/20 13:58	11/13/20 01:04	AV	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1576942	1	11/15/20 16:54	11/17/20 23:14	TJD	Mt. Juliet, TN

Released to	Imaging: 3/28/2024	9:46:39	AM
	ConocoPhillips - Tetra Tech		

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Erica Mc Neese

Erica McNeese Project Manager

PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12

TIME: 0 16:12 PAGE: 8 of 47 Recrimed by 10 CD: 3/15/2024 10:07:43 AM Collected date/time: 11/05/20 12:00

SAMPLE RESULTS - 01

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	99.3		1	11/13/2020 04:03	<u>WG1575378</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.26	20.1	1	11/11/2020 18:08	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilation	date / time	Baten	⁶ Q
TPH (GC/FID) Low Fraction	U		0.0218	0.101	1	11/12/2020 07:01	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		11/12/2020 07:01	WG1575123	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00101	1	11/12/2020 14:55	<u>WG1575403</u>
Toluene	U		0.00132	0.00507	1	11/12/2020 14:55	<u>WG1575403</u>
Ethylbenzene	U		0.000747	0.00253	1	11/12/2020 14:55	WG1575403
Total Xylenes	U		0.000892	0.00659	1	11/12/2020 14:55	<u>WG1575403</u>
(S) Toluene-d8	110			75.0-131		11/12/2020 14:55	WG1575403
(S) 4-Bromofluorobenzene	92.9			67.0-138		11/12/2020 14:55	<u>WG1575403</u>
(S) 1,2-Dichloroethane-d4	97.4			70.0-130		11/12/2020 14:55	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	311		81.1	201	50	11/15/2020 13:25	<u>WG1576739</u>
C28-C40 Oil Range	1180		13.8	201	50	11/15/2020 13:25	<u>WG1576739</u>
(S) o-Terphenyl	68.8	<u>J7</u>		18.0-148		11/15/2020 13:25	WG1576739

SDG: L1283206 DATE/TIME: 11/23/20 16:12

Tc Ss Cn

Â

Sc

Recreined by 20 CD: 3/15/2024 10:07:43 AM Collected date/time: 11/05/20 12:10 SAMPLE RESULTS - 02

ONE LAB. NAT Rage 78 of 156

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

						I'C	`n
	Result	Qualifier	Dilution	Analysis	Batch		·٢
Analyte	%			date / time		2	_
Total Solids	97.4		1	11/13/2020 04:03	WG1575378	T	C

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.45	20.5	1	11/11/2020 18:36	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	dunner	mg/kg		Dilation	date / time	Baten	6
TPH (GC/FID) Low Fraction	119/Kg		0.0223	mg/kg 0.103	1	11/12/2020 07:22	WG1575123	Ľ
(S)	0		0.0225	0.105			W01373123	7
a,a,a-Trifluorotoluene(FID)	104			77.0-120		11/12/2020 07:22	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	11/12/2020 15:15	<u>WG1575403</u>
Toluene	U		0.00137	0.00527	1	11/12/2020 15:15	<u>WG1575403</u>
Ethylbenzene	U		0.000777	0.00264	1	11/12/2020 15:15	WG1575403
Total Xylenes	U		0.000928	0.00685	1	11/12/2020 15:15	<u>WG1575403</u>
(S) Toluene-d8	127			75.0-131		11/12/2020 15:15	WG1575403
(S) 4-Bromofluorobenzene	94.4			67.0-138		11/12/2020 15:15	<u>WG1575403</u>
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		11/12/2020 15:15	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1170		82.7	205	50	11/15/2020 13:38	WG1576739
C28-C40 Oil Range	2890		14.1	205	50	11/15/2020 13:38	WG1576739
(S) o-Terphenyl	0.000	<u>J7</u>		18.0-148		11/15/2020 13:38	WG1576739

SDG: L1283206

Recrimed by 3 CD: 3/15/2024 10:07:43 AM Collected date/time: 11/05/20 12:20 SAMPLE RESULTS - 03

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.3		1	11/13/2020 04:03	WG1575378	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.36	20.3	1	11/11/2020 18:55	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	6
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	11/12/2020 07:43	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		11/12/2020 07:43	<u>WG1575123</u>	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	11/12/2020 15:34	<u>WG1575403</u>
Toluene	U		0.00135	0.00517	1	11/12/2020 15:34	<u>WG1575403</u>
Ethylbenzene	U		0.000763	0.00259	1	11/12/2020 15:34	WG1575403
Total Xylenes	0.000983	J	0.000911	0.00673	1	11/12/2020 15:34	<u>WG1575403</u>
(S) Toluene-d8	102			75.0-131		11/12/2020 15:34	WG1575403
(S) 4-Bromofluorobenzene	82.9			67.0-138		11/12/2020 15:34	<u>WG1575403</u>
(S) 1,2-Dichloroethane-d4	93.8			70.0-130		11/12/2020 15:34	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	247		81.9	203	50	11/16/2020 23:33	WG1576739
C28-C40 Oil Range	968		13.9	203	50	11/16/2020 23:33	<u>WG1576739</u>
(S) o-Terphenyl	84.3	<u>J7</u>		18.0-148		11/16/2020 23:33	WG1576739

SDG: L1283206

Recrimed by QCD: 3/15/2024 10:07:43 AM Collected date/time: 11/05/20 12:30 SAMPLE RESULTS - 04

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.5		1	11/13/2020 04:03	<u>WG1575378</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.34	20.3	1	11/11/2020 19:05	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	⁶ G
TPH (GC/FID) Low Fraction	U		0.0220	0.102	1	11/12/2020 08:04	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		11/12/2020 08:04	WG1575123	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	11/12/2020 15:53	<u>WG1575403</u>
Toluene	U		0.00134	0.00516	1	11/12/2020 15:53	<u>WG1575403</u>
Ethylbenzene	U		0.000760	0.00258	1	11/12/2020 15:53	WG1575403
Total Xylenes	U		0.000907	0.00670	1	11/12/2020 15:53	WG1575403
(S) Toluene-d8	117			75.0-131		11/12/2020 15:53	WG1575403
(S) 4-Bromofluorobenzene	89.8			67.0-138		11/12/2020 15:53	<u>WG1575403</u>
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		11/12/2020 15:53	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	134		32.7	81.2	20	11/15/2020 17:07	WG1576739
C28-C40 Oil Range	446		5.57	81.2	20	11/15/2020 17:07	<u>WG1576739</u>
(S) o-Terphenyl	72.7	<u>J7</u>		18.0-148		11/15/2020 17:07	WG1576739

SDG: L1283206

Recreined by BCD: 3/15/2024 10:07:43 AM Collected date/time: 11/05/20 12:40 SAMPLE RESULTS - 05

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	98.0		1	11/13/2020 03:54	<u>WG1575380</u>	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.39	20.4	1	11/11/2020 19:14	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	11/12/2020 09:25	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		11/12/2020 09:25	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	11/12/2020 16:12	WG1575403
Toluene	U		0.00135	0.00521	1	11/12/2020 16:12	WG1575403
Ethylbenzene	U		0.000768	0.00260	1	11/12/2020 16:12	WG1575403
Total Xylenes	U		0.000917	0.00677	1	11/12/2020 16:12	WG1575403
(S) Toluene-d8	110			75.0-131		11/12/2020 16:12	WG1575403
(S) 4-Bromofluorobenzene	93.6			67.0-138		11/12/2020 16:12	WG1575403
(S) 1,2-Dichloroethane-d4	103			70.0-130		11/12/2020 16:12	<u>WG1575403</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	21.6		8.22	20.4	5	11/15/2020 12:13	<u>WG1576739</u>
C28-C40 Oil Range	91.4		1.40	20.4	5	11/15/2020 12:13	<u>WG1576739</u>
(S) o-Terphenyl	69.1			18.0-148		11/15/2020 12:13	WG1576739

SDG: L1283206

Recreined by OCD: 3/15/2024 10:07:43 AM Collected date/time: 11/05/20 12:50

SAMPLE RESULTS - 06 L1283206

Â

Sc

Total Solids by Method 2540 G-2011

-						11	Cn
	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	98.5		1	11/13/2020 03:54	WG1575380	-	Тс

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	U		9.34	20.3	1	11/11/2020 19:43	WG1574603	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0220	0.102	1	11/12/2020 09:46	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		11/12/2020 09:46	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00103	1	11/12/2020 16:31	WG1575403
Toluene	U		0.00134	0.00515	1	11/12/2020 16:31	<u>WG1575403</u>
Ethylbenzene	U		0.000759	0.00258	1	11/12/2020 16:31	WG1575403
Total Xylenes	U		0.000907	0.00670	1	11/12/2020 16:31	<u>WG1575403</u>
(S) Toluene-d8	122			75.0-131		11/12/2020 16:31	WG1575403
(S) 4-Bromofluorobenzene	96.8			67.0-138		11/12/2020 16:31	WG1575403
(S) 1,2-Dichloroethane-d4	95.3			70.0-130		11/12/2020 16:31	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.91		1.63	4.06	1	11/15/2020 16:28	<u>WG1576739</u>
C28-C40 Oil Range	24.7		0.278	4.06	1	11/15/2020 16:28	<u>WG1576739</u>
(S) o-Terphenyl	73.9			18.0-148		11/15/2020 16:28	WG1576739

SDG: L1283206

Recreined by PCD: 3/15/2024 10:07:43 AM Collected date/time: 11/05/20 13:00 SAMPLE RESULTS - 07

ONE LAB. NAT Rage 83 of 156

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

						11	Cn
	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	98.1		1	11/13/2020 03:54	WG1575380	-	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.38	20.4	1	11/11/2020 19:52	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	11/12/2020 10:07	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	107			77.0-120		11/12/2020 10:07	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	11/12/2020 16:50	<u>WG1575403</u>
Toluene	U		0.00135	0.00519	1	11/12/2020 16:50	<u>WG1575403</u>
Ethylbenzene	U		0.000766	0.00260	1	11/12/2020 16:50	WG1575403
Total Xylenes	U		0.000914	0.00675	1	11/12/2020 16:50	<u>WG1575403</u>
(S) Toluene-d8	118			75.0-131		11/12/2020 16:50	WG1575403
(S) 4-Bromofluorobenzene	105			67.0-138		11/12/2020 16:50	WG1575403
(S) 1,2-Dichloroethane-d4	101			70.0-130		11/12/2020 16:50	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	8.08		1.64	4.08	1	11/15/2020 16:54	WG1576739
C28-C40 Oil Range	19.4		0.279	4.08	1	11/15/2020 16:54	WG1576739
(S) o-Terphenyl	70.8			18.0-148		11/15/2020 16:54	WG1576739

SDG: L1283206 DA 11/23 PAGE: 15 of 47 Recreined by 80 CD: 3/15/2024 10:07:43 AM Collected date/time: 11/05/20 13:20

SAMPLE RESULTS - 08 L1283206

ONE LAB. NAT Rage 84 of 156

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

						I'C	ⁿ
	Result	Qualifier	Dilution	Analysis	Batch		-P
Analyte	%			date / time		2	_
Total Solids	96.1		1	11/13/2020 03:54	WG1575380	T	C

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.57	20.8	1	11/11/2020 20:02	WG1574603	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	0.0368	ВJ	0.0226	0.104	1	11/12/2020 10:28	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		11/12/2020 10:28	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000505	0.00108	1	11/12/2020 17:09	<u>WG1575403</u>
Toluene	U		0.00141	0.00541	1	11/12/2020 17:09	<u>WG1575403</u>
Ethylbenzene	U		0.000797	0.00270	1	11/12/2020 17:09	WG1575403
Total Xylenes	U		0.000951	0.00703	1	11/12/2020 17:09	WG1575403
(S) Toluene-d8	112			75.0-131		11/12/2020 17:09	WG1575403
(S) 4-Bromofluorobenzene	86.9			67.0-138		11/12/2020 17:09	WG1575403
(S) 1,2-Dichloroethane-d4	99.2			70.0-130		11/12/2020 17:09	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.6		1.68	4.16	1	11/15/2020 16:02	<u>WG1576739</u>
C28-C40 Oil Range	29.7		0.285	4.16	1	11/15/2020 16:02	<u>WG1576739</u>
(S) o-Terphenyl	56.2			18.0-148		11/15/2020 16:02	WG1576739

SDG: L1283206

SAMPLE RESULTS - 09 L1283206

Ss

Cn

Sr

Qc

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		2
Total Solids		95.3		1	11/13/2020 03:54	WG1575380	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		48.3	105	5	11/11/2020 20:11	WG1574603

Sample Narrative:

L1283206-09 WG1574603: diluted due to matrix

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		G
TPH (GC/FID) Low Fraction	U		0.0228	0.105	1	11/12/2020 10:49	WG1575123	8
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		11/12/2020 10:49	WG1575123	ĨĂĬ

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000514	0.00110	1	11/12/2020 17:28	<u>WG1575403</u>
Toluene	U		0.00143	0.00550	1	11/12/2020 17:28	WG1575403
Ethylbenzene	U		0.000810	0.00275	1	11/12/2020 17:28	WG1575403
Total Xylenes	U		0.000968	0.00715	1	11/12/2020 17:28	WG1575403
(S) Toluene-d8	113			75.0-131		11/12/2020 17:28	WG1575403
(S) 4-Bromofluorobenzene	91.4			67.0-138		11/12/2020 17:28	WG1575403
(S) 1,2-Dichloroethane-d4	97.5			70.0-130		11/12/2020 17:28	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.69	4.20	1	11/16/2020 13:04	WG1576942
C28-C40 Oil Range	6.39		0.288	4.20	1	11/16/2020 13:04	<u>WG1576942</u>
(S) o-Terphenyl	34.8			18.0-148		11/16/2020 13:04	WG1576942

SDG: L1283206

SAMPLE RESULTS - 10

ONE LAB. NAT Rage 86 of 156

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	96.0		1	11/13/2020 03:54	<u>WG1575380</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		47.9	104	5	11/11/2020 20:21	WG1574603

Sample Narrative:

L1283206-10 WG1574603: diluted due to matrix

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	11/12/2020 11:10	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		11/12/2020 11:10	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000506	0.00108	1	11/12/2020 17:47	<u>WG1575403</u>
Toluene	U		0.00141	0.00542	1	11/12/2020 17:47	<u>WG1575403</u>
Ethylbenzene	U		0.000799	0.00271	1	11/12/2020 17:47	WG1575403
Total Xylenes	U		0.000954	0.00704	1	11/12/2020 17:47	WG1575403
(S) Toluene-d8	133	<u>J1</u>		75.0-131		11/12/2020 17:47	WG1575403
(S) 4-Bromofluorobenzene	90.9			67.0-138		11/12/2020 17:47	<u>WG1575403</u>
(S) 1,2-Dichloroethane-d4	95.1			70.0-130		11/12/2020 17:47	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.10	J	1.68	4.17	1	11/16/2020 13:18	WG1576942
C28-C40 Oil Range	14.5		0.285	4.17	1	11/16/2020 13:18	<u>WG1576942</u>
(S) o-Terphenyl	40.9			18.0-148		11/16/2020 13:18	WG1576942

SDG: L1283206 DATE/TIME: 11/23/20 16:12 ¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ GI

Sc

Recreived by OCD: 3/15/2024 10:07:43 AM Collected date/time: 11/04/20 14:10

SAMPLE RESULTS - 11

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	99.7		1	11/13/2020 03:54	<u>WG1575380</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.23	20.1	1	11/11/2020 20:30	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	11/12/2020 11:31	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		11/12/2020 11:31	<u>WG1575123</u>	5

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	11/12/2020 18:06	<u>WG1575403</u>
Toluene	U		0.00131	0.00503	1	11/12/2020 18:06	<u>WG1575403</u>
Ethylbenzene	U		0.000741	0.00251	1	11/12/2020 18:06	WG1575403
Total Xylenes	U		0.000885	0.00654	1	11/12/2020 18:06	<u>WG1575403</u>
(S) Toluene-d8	112			75.0-131		11/12/2020 18:06	WG1575403
(S) 4-Bromofluorobenzene	95.4			67.0-138		11/12/2020 18:06	<u>WG1575403</u>
(S) 1,2-Dichloroethane-d4	95.5			70.0-130		11/12/2020 18:06	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.61	4.01	1	11/16/2020 11:06	WG1576942
C28-C40 Oil Range	2.06	J	0.275	4.01	1	11/16/2020 11:06	<u>WG1576942</u>
(S) o-Terphenyl	63.9			18.0-148		11/16/2020 11:06	WG1576942

SDG: L1283206 DAT 11/23/ Tc Ss Cn

5r

Â

Sc

Received by DCD: 3/15/2024 10:07:43 AM Collected date/time: 11/04/20 14:20

SAMPLE RESULTS - 12 L1283206

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	99.6		1	11/13/2020 03:54	WG1575380	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.23	20.1	1	11/11/2020 20:40	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	11/12/2020 11:52	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		11/12/2020 11:52	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	11/12/2020 18:25	<u>WG1575403</u>
Toluene	U		0.00131	0.00504	1	11/12/2020 18:25	<u>WG1575403</u>
Ethylbenzene	U		0.000742	0.00252	1	11/12/2020 18:25	WG1575403
Total Xylenes	U		0.000886	0.00655	1	11/12/2020 18:25	<u>WG1575403</u>
(S) Toluene-d8	112			75.0-131		11/12/2020 18:25	WG1575403
(S) 4-Bromofluorobenzene	102			67.0-138		11/12/2020 18:25	<u>WG1575403</u>
(S) 1,2-Dichloroethane-d4	92.9			70.0-130		11/12/2020 18:25	WG1575403

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.01	1	11/16/2020 11:33	<u>WG1576942</u>
C28-C40 Oil Range	2.60	J	0.275	4.01	1	11/16/2020 11:33	<u>WG1576942</u>
(S) o-Terphenyl	64.1			18.0-148		11/16/2020 11:33	WG1576942

SDG: L1283206

Recreized by 99D: 3/15/2024 10:07:43 AM Collected date/time: 11/04/20 14:21

SAMPLE RESULTS - 13

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	99.6		1	11/13/2020 03:54	<u>WG1575380</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.24	20.1	1	11/11/2020 20:49	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	11/12/2020 12:13	WG1575123
(S) a,a,a-Trifluorotoluene(FID)	106			77.0-120		11/12/2020 12:13	WG1575123

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	11/12/2020 22:12	WG1575500
Toluene	U		0.00131	0.00504	1	11/12/2020 22:12	<u>WG1575500</u>
Ethylbenzene	U		0.000743	0.00252	1	11/12/2020 22:12	WG1575500
Total Xylenes	U		0.000887	0.00655	1	11/12/2020 22:12	<u>WG1575500</u>
(S) Toluene-d8	116			75.0-131		11/12/2020 22:12	<u>WG1575500</u>
(S) 4-Bromofluorobenzene	93.2			67.0-138		11/12/2020 22:12	<u>WG1575500</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		11/12/2020 22:12	WG1575500

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	11/16/2020 11:20	WG1576942
C28-C40 Oil Range	1.91	J	0.275	4.02	1	11/16/2020 11:20	<u>WG1576942</u>
(S) o-Terphenyl	45.7			18.0-148		11/16/2020 11:20	WG1576942

SDG: L1283206

Recripted by OCD: 3/15/2024 10:07:43 AM Collected date/time: 11/04/20 14:22 SAMPLE RESULTS - 14

ONE LAB. NAT Rage 90 of 156

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte		%			date / time		2
Total Solids		98.4		1	11/13/2020 03:54	<u>WG1575380</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.35	20.3	1	11/11/2020 20:59	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	11/12/2020 12:34	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		11/12/2020 12:34	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000483	0.00103	1	11/12/2020 22:31	<u>WG1575500</u>
Toluene	U		0.00134	0.00517	1	11/12/2020 22:31	<u>WG1575500</u>
Ethylbenzene	U		0.000762	0.00258	1	11/12/2020 22:31	<u>WG1575500</u>
Total Xylenes	U		0.000910	0.00672	1	11/12/2020 22:31	<u>WG1575500</u>
(S) Toluene-d8	117			75.0-131		11/12/2020 22:31	<u>WG1575500</u>
(S) 4-Bromofluorobenzene	78.9			67.0-138		11/12/2020 22:31	<u>WG1575500</u>
(S) 1,2-Dichloroethane-d4	96.3			70.0-130		11/12/2020 22:31	<u>WG1575500</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	6.29		1.64	4.07	1	11/17/2020 23:40	WG1576942
C28-C40 Oil Range	29.4		0.279	4.07	1	11/17/2020 23:40	WG1576942
(S) o-Terphenyl	63.7			18.0-148		11/17/2020 23:40	WG1576942

SDG: L1283206

SAMPLE RESULTS - 15

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	99.6		1	11/13/2020 03:43	WG1575382	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.24	20.1	1	11/11/2020 21:08	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	11/12/2020 12:55	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	105			77.0-120		11/12/2020 12:55	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	11/12/2020 22:51	WG1575500
Toluene	U		0.00131	0.00504	1	11/12/2020 22:51	WG1575500
Ethylbenzene	U		0.000743	0.00252	1	11/12/2020 22:51	WG1575500
Total Xylenes	U		0.000887	0.00655	1	11/12/2020 22:51	WG1575500
(S) Toluene-d8	112			75.0-131		11/12/2020 22:51	WG1575500
(S) 4-Bromofluorobenzene	97.9			67.0-138		11/12/2020 22:51	WG1575500
(S) 1,2-Dichloroethane-d4	101			70.0-130		11/12/2020 22:51	WG1575500

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	11/16/2020 12:12	WG1576942
C28-C40 Oil Range	5.14		0.275	4.02	1	11/16/2020 12:12	WG1576942
(S) o-Terphenyl	65.3			18.0-148		11/16/2020 12:12	WG1576942

SDG: L1283206

SAMPLE RESULTS - 16 L1283206

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cp	C
Analyte	%	duiner	Blution	date / time	bitch	2	_
Total Solids	99.6		1	11/13/2020 03:43	WG1575382	Tc	2

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.23	20.1	1	11/11/2020 21:37	WG1574603	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0281	ВJ	0.0218	0.100	1	11/12/2020 13:16	WG1575123	
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		11/12/2020 13:16	WG1575123	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	11/12/2020 23:10	WG1575500
Toluene	U		0.00131	0.00504	1	11/12/2020 23:10	<u>WG1575500</u>
Ethylbenzene	U		0.000742	0.00252	1	11/12/2020 23:10	WG1575500
Total Xylenes	U		0.000886	0.00655	1	11/12/2020 23:10	<u>WG1575500</u>
(S) Toluene-d8	137	<u>J1</u>		75.0-131		11/12/2020 23:10	WG1575500
(S) 4-Bromofluorobenzene	97.1			67.0-138		11/12/2020 23:10	<u>WG1575500</u>
(S) 1,2-Dichloroethane-d4	95.4			70.0-130		11/12/2020 23:10	WG1575500

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.01	1	11/16/2020 12:25	WG1576942
C28-C40 Oil Range	8.70		0.275	4.01	1	11/16/2020 12:25	WG1576942
(S) o-Terphenyl	60.8			18.0-148		11/16/2020 12:25	WG1576942

SDG: L1283206

DATE/TIME: 11/23/20 16:12 ³Ss ⁴Cn

Â

Sc

SAMPLE RESULTS - 17

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	99.6		1	11/13/2020 03:43	WG1575382	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.24	20.1	1	11/11/2020 21:46	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	bach	6 C
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	11/13/2020 03:19	WG1575601	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		11/13/2020 03:19	WG1575601	⁷ (-

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quanto	mg/kg	mg/kg	2	date / time	
Benzene	U		0.000471	0.00101	1	11/12/2020 23:29	WG1575500
Toluene	U		0.00131	0.00504	1	11/12/2020 23:29	WG1575500
Ethylbenzene	U		0.000743	0.00252	1	11/12/2020 23:29	<u>WG1575500</u>
Total Xylenes	U		0.000887	0.00655	1	11/12/2020 23:29	WG1575500
(S) Toluene-d8	113			75.0-131		11/12/2020 23:29	<u>WG1575500</u>
(S) 4-Bromofluorobenzene	96.7			67.0-138		11/12/2020 23:29	WG1575500
(S) 1,2-Dichloroethane-d4	102			70.0-130		11/12/2020 23:29	<u>WG1575500</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.02	1	11/16/2020 12:38	<u>WG1576942</u>
C28-C40 Oil Range	7.56		0.275	4.02	1	11/16/2020 12:38	<u>WG1576942</u>
(S) o-Terphenyl	55.6			18.0-148		11/16/2020 12:38	WG1576942

SDG: L1283206

Recreived by 20CD: 3/15/2024 10:07:43 AM Collected date/time: 11/04/20 14:26

SAMPLE RESULTS - 18

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	99.7		1	11/13/2020 03:43	<u>WG1575382</u>	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.23	20.1	1	11/11/2020 21:56	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quantor	mg/kg	mg/kg	2.1000	date / time		⁶ G
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	11/13/2020 03:40	WG1575601	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		11/13/2020 03:40	WG1575601	⁷ G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	11/12/2020 23:48	<u>WG1575500</u>
Toluene	U		0.00131	0.00503	1	11/12/2020 23:48	<u>WG1575500</u>
Ethylbenzene	U		0.000741	0.00251	1	11/12/2020 23:48	WG1575500
Total Xylenes	U		0.000885	0.00654	1	11/12/2020 23:48	<u>WG1575500</u>
(S) Toluene-d8	102			75.0-131		11/12/2020 23:48	WG1575500
(S) 4-Bromofluorobenzene	95.9			67.0-138		11/12/2020 23:48	<u>WG1575500</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		11/12/2020 23:48	WG1575500

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.70	J	1.61	4.01	1	11/16/2020 11:59	WG1576942
C28-C40 Oil Range	6.52		0.275	4.01	1	11/16/2020 11:59	WG1576942
(S) o-Terphenyl	67.3			18.0-148		11/16/2020 11:59	WG1576942

SDG: L1283206 DATE/TIME: 11/23/20 16:12

Ss Cn

Sr

Â

Sc

SAMPLE RESULTS - 19 L1283206

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		99.6		1	11/13/2020 03:43	WG1575382	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.23	20.1	1	11/11/2020 22:06	WG1574603

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Ŭ
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	11/13/2020 04:01	WG1575601	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		11/13/2020 04:01	WG1575601	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000470	0.00101	1	11/13/2020 00:07	WG1575500
Toluene	U		0.00131	0.00504	1	11/13/2020 00:07	WG1575500
Ethylbenzene	U		0.000742	0.00252	1	11/13/2020 00:07	WG1575500
Total Xylenes	U		0.000886	0.00655	1	11/13/2020 00:07	WG1575500
(S) Toluene-d8	112			75.0-131		11/13/2020 00:07	WG1575500
(S) 4-Bromofluorobenzene	92.6			67.0-138		11/13/2020 00:07	WG1575500
(S) 1,2-Dichloroethane-d4	96.5			70.0-130		11/13/2020 00:07	WG1575500

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.01	1	11/16/2020 10:40	WG1576942
C28-C40 Oil Range	3.76	J	0.275	4.01	1	11/16/2020 10:40	WG1576942
(S) o-Terphenyl	63.4			18.0-148		11/16/2020 10:40	WG1576942

SDG: L1283206

SAMPLE RESULTS - 20 L1283206

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	99.4		1	11/13/2020 03:43	WG1575382	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.26	20.1	1	11/15/2020 20:26	WG1574604	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0218	0.101	1	11/13/2020 04:22	WG1575601	
(S) a,a,a-Trifluorotoluene(FID)	109			77.0-120		11/13/2020 04:22	WG1575601	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00101	1	11/13/2020 00:26	WG1575500
Foluene	U		0.00132	0.00506	1	11/13/2020 00:26	WG1575500
Ethylbenzene	U		0.000746	0.00253	1	11/13/2020 00:26	WG1575500
Fotal Xylenes	U		0.000891	0.00658	1	11/13/2020 00:26	WG1575500
(S) Toluene-d8	115			75.0-131		11/13/2020 00:26	WG1575500
(S) 4-Bromofluorobenzene	96.4			67.0-138		11/13/2020 00:26	WG1575500
(S) 1,2-Dichloroethane-d4	94.3			70.0-130		11/13/2020 00:26	WG1575500

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.33	J	1.62	4.03	1	11/17/2020 23:27	WG1576942
C28-C40 Oil Range	14.1		0.276	4.03	1	11/17/2020 23:27	WG1576942
(S) o-Terphenyl	61.9			18.0-148		11/17/2020 23:27	WG1576942

SDG: L1283206

Recrined by DCD: 3/15/2024 10:07:43 AM Collected date/time: 11/04/20 14:30

SAMPLE RESULTS - 21

ONE LAB. NAT Rage 97. of 156

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	99.5		1	11/13/2020 03:43	WG1575382	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.25	20.1	1	11/15/2020 20:54	WG1574604	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		č
TPH (GC/FID) Low Fraction	U		0.0218	0.101	1	11/13/2020 04:43	WG1575601	L
(S) a,a,a-Trifluorotoluene(FID)	110			77.0-120		11/13/2020 04:43	WG1575601	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000472	0.00101	1	11/13/2020 00:45	WG1575500
Toluene	U		0.00131	0.00506	1	11/13/2020 00:45	<u>WG1575500</u>
Ethylbenzene	U		0.000745	0.00253	1	11/13/2020 00:45	WG1575500
Total Xylenes	U		0.000890	0.00657	1	11/13/2020 00:45	<u>WG1575500</u>
(S) Toluene-d8	112			75.0-131		11/13/2020 00:45	WG1575500
(S) 4-Bromofluorobenzene	96.9			67.0-138		11/13/2020 00:45	<u>WG1575500</u>
(S) 1,2-Dichloroethane-d4	101			70.0-130		11/13/2020 00:45	<u>WG1575500</u>

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.68	J	1.62	4.02	1	11/17/2020 23:01	WG1576942
C28-C40 Oil Range	9.14		0.276	4.02	1	11/17/2020 23:01	WG1576942
(S) o-Terphenyl	74.3			18.0-148		11/17/2020 23:01	WG1576942

SDG: L1283206 DAT 11/23 SAMPLE RESULTS - 22

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

						10	Cn
	Result	Qualifier	Dilution	Analysis	Batch		Ch
Analyte	%			date / time		2	
Total Solids	99.4		1	11/13/2020 03:43	WG1575382	-	Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.26	20.1	1	11/15/2020 21:13	WG1574604

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0218	0.101	1	11/13/2020 05:04	WG1575601	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120		11/13/2020 05:04	WG1575601	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000473	0.00101	1	11/13/2020 01:04	<u>WG1575500</u>
Toluene	U		0.00132	0.00506	1	11/13/2020 01:04	<u>WG1575500</u>
Ethylbenzene	U		0.000746	0.00253	1	11/13/2020 01:04	<u>WG1575500</u>
Total Xylenes	U		0.000891	0.00658	1	11/13/2020 01:04	<u>WG1575500</u>
(S) Toluene-d8	115			75.0-131		11/13/2020 01:04	<u>WG1575500</u>
(S) 4-Bromofluorobenzene	89.9			67.0-138		11/13/2020 01:04	<u>WG1575500</u>
(S) 1,2-Dichloroethane-d4	94.0			70.0-130		11/13/2020 01:04	WG1575500

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.46	J	1.62	4.03	1	11/17/2020 23:14	WG1576942
C28-C40 Oil Range	11.2		0.276	4.03	1	11/17/2020 23:14	WG1576942
(S) o-Terphenyl	74.5			18.0-148		11/17/2020 23:14	WG1576942

SDG: L1283206

Regeived by BGD: 8/15/2024 10:07:43 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

1/13/20 04:03				
MB Result	MB Qualifier	MB MDL	MB RDL	
%		%	%	
0.000				
	1/13/20 04:03 MB Result %	1/13/20 04:03 MB Result <u>MB Qualifier</u> %	1/13/20 04:03 MB Result <u>MB Qualifier</u> MB MDL % %	1/13/20 04:03 MB Result <u>MB Qualifier</u> MB MDL MB RDL % % %

L1283206-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1283206-01 11/13/20	0 04:03 • (DUP)	R3592727-3	11/13/20 04	4:03		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	99.3	99.3	1	0.0104		10

Laboratory Control Sample (LCS)

(LCS) R3592727-2 11/1	13/20 04:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 31 of 47

Req cived by BGB 3/15/2024 10:07:43 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1283206-05,06,07,08,09,10,11,12,13,14

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

Method Blank					
(MB) R3592723-1	11/13/20 03:54				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.000				
					³ Ss

L1283206-12 Original Sample (OS) • Duplicate (DUP)

(OS) L1283206-12 11/13/2	0 03:54 • (DUP)	R3592723-3	11/13/20 03	3:54		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	99.6	99.6	1	0.0707		10

Laboratory Control Sample (LCS)

(LCS) R3592723-2 11/13	3/20 03:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 32 of 47

Req cived by BGB 3/15/2024 10:07:43 AM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY <u>11283206-15,16,17,18,19,20,21,22</u>

⁺Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3592719-1 1	1/13/20 03:43						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	%		%	%			
Total Solids	0.000						

L1283206-15 Original Sample (OS) • Duplicate (DUP)

(OS) L1283206-15 11/13	8/20 03:43 • (DUP)) R3592719-3	11/13/20 03	3:43		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	99.6	99.6	1	0.0195		10

Laboratory Control Sample (LCS)

(LCS) R3592719-2 11/13/	/20 03:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 33 of 47

Req @ q 6 by Q 6 by 3/15/2024 10:07:43 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1283206-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19

Cn

Sr

Qc

Method Blank (MB)

)	Method Blank (
	17:39	(MB) R3592268-1 11/
B Qualifier MB MDL	MB Result	
mg/kg	mg/kg	Analyte
9.20	U	Chloride
9.20	U	Chioride

L1283206-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1283206-02 11/11/2	0 18:36 • (DUP) F	R3592268-5	11/11/20 18:	46		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1283206-19 Original Sample (OS) • Duplicate (DUP)

L1283206-19	83206-19 Original Sample (OS) • Duplicate (DUP)										
(OS) L1283206-19	11/11/20 22:06 • (DUP)	R3592268-6	11/11/20 22	2:15							
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	mg/kg	mg/kg		%		%					
Chloride	U	U	1	0.000		20					

Laboratory Control Sample (LCS)

(LCS) R3592268-2 11/11/	LCS) R3592268-2 11/11/20 17:49								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
Chloride	200	207	103	90.0-110					

L1283206-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283206-01 11/11/20 18:08 • (MS) R3592268-3 11/11/20 18:17 • (MSD) R3592268-4 11/11/20 18:27												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	503	U	503	503	99.9	99.9	1	80.0-120			0.0647	20

PROJECT: 212C-MD-02334

SDG: L1283206

DATE/TIME: 11/23/20 16:12

PAGE: 34 of 47

Regeired by QGD A/15/2024 10:07:43 AM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1283206-20,21,22

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3593303-1 11/1	/15/20 18:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1283206-21 Original Sample (OS) • Duplicate (DUP)

(OS) L1283206-21 11/15/2	0 20:54 • (DUP)	R3593303-5	11/15/20 2	1:03		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	U	U	1	0.000		20

L1283209-07 Original Sample (OS) • Duplicate (DUP)

L1283209-07 (L1283209-07 Original Sample (OS) • Duplicate (DUP)											
(OS) L1283209-07 11	(OS) L1283209-07 11/16/20 00:33 • (DUP) R3593303-6 11/16/20 00:42											
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁸ Al				
Analyte	mg/kg	mg/kg		%		%						
Chloride	U	U	1	0.000		20		°Sc				

Laboratory Control Sample (LCS)

(LCS) R3593303-2 11/15/2	CS) R3593303-2 11/15/20 18:45												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/kg	mg/kg	%	%									
Chloride	200	203	102	90.0-110									

L1283206-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283206-20 11/15/2	(OS) L1283206-20 11/15/20 20:26 • (MS) R3593303-3 11/15/20 20:35 • (MSD) R3593303-4 11/15/20 20:44												
Spike Amount Original Result MS Result (dry) MSD Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits (dry) (dry)													
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Chloride	503	U	518	511	103	102	1	80.0-120			1.34	20	

Released to	Imaging ^{AC} \$/28/2024 9:	:46:39 AM
	ConocoPhillips - Tetra Tech	

PROJECT: 212C-MD-02334

SDG: L1283206

DATE/TIME: 11/23/20 16:12

PAGE: 35 of 47

Regeired by BCD:3/15/2024 10:07:43 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1283206-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

⁴Cn

Sr

Qc

GI

AI

Sc

Method Blank (MB)

)				
0 04:55				
MB Result	MB Qualifier	MB MDL	MB RDL	
mg/kg		mg/kg	mg/kg	
0.0342	J	0.0217	0.100	
111			77.0-120	
	0 04:55 MB Result mg/kg 0.0342	D O4:55 MB Result MB Qualifier mg/kg 0.0342 J	D 04:55 MB Result mg/kg MB Qualifier mg/kg 0.0342 J 0.0217	MB Result mg/kg MB Qualifier mg/kg MB MDL mg/kg MB RDL mg/kg 0.0342 J 0.0217 0.100

Laboratory Control Sample (LCS)

(LCS) R3594000-1 11/12/20 04:13												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								
TPH (GC/FID) Low Fraction	5.50	5.71	104	72.0-127								
(S) a.a.a-Trifluorotoluene(FID)			102	77.0-120								

L1283204-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283204-10 11/12/2	(OS) L1283204-10 11/12/20 05:58 • (MS) R3594000-3 11/12/20 13:37 • (MSD) R3594000-4 11/12/20 13:58													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
TPH (GC/FID) Low Fraction	5.32	U	4.00	3.44	75.2	63.5	1	10.0-151			14.9	28		
(S) a.a.a-Trifluorotoluene(FID)					97.1	97.6		77.0-120						

DATE/TIME: 11/23/20 16:12

PAGE: 36 of 47

Req @ q by B 6 B; 8/15/2024 10:07:43 AM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

¹Cn

Sr

Qc

GI

AI

Sc

Method Blank (MB)

)				
(MB) R3592707-2 11/12/2	0 17:48				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	111			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3592707-1 11/12/2	0 17:07					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
TPH (GC/FID) Low Fraction	5.50	5.54	101	72.0-127		
(S) a.a.a-Trifluorotoluene(FID)			101	77.0-120		

L1283207-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283207-10 11/13/20	OS) L1283207-10 11/13/20 08:34 • (MS) R3592707-3 11/13/20 09:16 • (MSD) R3592707-4 11/13/20 09:37													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
TPH (GC/FID) Low Fraction	5.38	U	3.52	3.60	65.4	67.6	1	10.0-151			2.27	28		
(S) a,a,a-Trifluorotoluene(FID)					103	103		77.0-120						

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 37 of 47 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1283206-01.02.03.04.05.06.07.08.09.10.11.12

Τс

Ss

Cn

Sr

ິQc

GI

A

Sc

Method Blank (MB)

(MB) R3592364-2 11/12/2	0 10:45			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	115			75.0-131
(S) 4-Bromofluorobenzene	102			67.0-138
(S) 1,2-Dichloroethane-d4	101			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3592364-1 11/12/	20 09:48					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ľ
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.150	120	70.0-123		8
Ethylbenzene	0.125	0.140	112	74.0-126		
Toluene	0.125	0.137	110	75.0-121		
Xylenes, Total	0.375	0.420	112	72.0-127		ľ
(S) Toluene-d8			107	75.0-131		L
(S) 4-Bromofluorobenzene	2		96.7	67.0-138		
(S) 1,2-Dichloroethane-d4			111	70.0-130		

L1283204-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	OS) L1283204-05 11/12/20 11:34 • (MS) R3592364-3 11/12/20 18:44 • (MSD) R3592364-4 11/12/20 19:03													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
Benzene	0.125	U	0.115	0.105	91.9	83.9	1	10.0-149			9.17	37		
Ethylbenzene	0.125	U	0.109	0.114	87.1	91.1	1	10.0-160			4.52	38		
Toluene	0.125	U	0.106	0.112	84.7	89.5	1	10.0-156			5.56	38		
Xylenes, Total	0.375	0.000898	0.298	0.338	79.3	89.8	1	10.0-160			12.4	38		
(S) Toluene-d8					107	111		75.0-131						
(S) 4-Bromofluorobenzene					96.1	92.8		67.0-138						
(S) 1,2-Dichloroethane-d4					99.6	89.7		70.0-130						

SDG: L1283206

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1283206-13,14,15,16,17,18,19,20,21,22

Τс

Ss

Cn

Sr

ິQc

GI

A

Sc

Method Blank (MB)

(MB) R3592703-2 11/12/2	0 21:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	110			75.0-131
(S) 4-Bromofluorobenzene	99.7			67.0-138
(S) 1,2-Dichloroethane-d4	99.4			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3592703-1 11/12/20 20:18										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Benzene	0.125	0.124	99.2	70.0-123						
Ethylbenzene	0.125	0.132	106	74.0-126						
Toluene	0.125	0.131	105	75.0-121						
Xylenes, Total	0.375	0.383	102	72.0-127						
(S) Toluene-d8			110	75.0-131						
(S) 4-Bromofluorobenzen	ê		78.9	67.0-138						
(S) 1,2-Dichloroethane-d4			99.9	70.0-130						

L1283206-13 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283206-13 11/12/20 22:12 • (MS) R3592703-3 11/13/20 03:56 • (MSD) R3592703-4 11/13/20 04:15												
	Spike Amount (dry)	Original Result (dry)		MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.126	U	0.103	0.105	81.6	83.2	1	10.0-149			1.94	37
Ethylbenzene	0.126	U	0.104	0.113	82.4	89.6	1	10.0-160			8.37	38
Toluene	0.126	U	0.0938	0.116	74.4	92.0	1	10.0-156			21.2	38
Xylenes, Total	0.378	U	0.272	0.332	72.0	87.7	1	10.0-160			19.7	38
(S) Toluene-d8					98.6	114		75.0-131				
(S) 4-Bromofluorobenzene					81.1	88.6		67.0-138				
(S) 1,2-Dichloroethane-d4					101	99.4		70.0-130				

SDG: L1283206

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

⁺Cn

Â

Sc

Method Blank (MB)

	10)				
(MB) R3593410-1 11/15/2	20 08:30				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	0.375	J	0.274	4.00	
(S) o-Terphenyl	69.2			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3593410-2 11/15	/20 08:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	31.8	63.6	50.0-150	
(S) o-Terphenyl			58.3	18.0-148	

L1283204-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283204-01 11/16/20 22:54 • (MS) R3593866-1 11/16/20 23:07 • (MSD) R3593866-2 11/16/20 23:20												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	49.2	6.24	41.8	44.5	72.2	77.7	1	50.0-150			6.32	20
(S) o-Terphenyl					61.5	60.5		18.0-148				

DATE/TIME: 11/23/20 16:12

PAGE: 40 of 47
Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1283206-09.10.11,12,13,14,15,16,17,18,19,20,21,22

⁵Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

	D)						
(MB) R3593867-1 11/16/2	20 10:14				 		
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	U		1.61	4.00			
C28-C40 Oil Range	U		0.274	4.00			
(S) o-Terphenyl	59.3			18.0-148			

Laboratory Control Sample (LCS)

(LCS) R3593867-2 11/16	6/20 10:27					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	27.8	55.6	50.0-150		
(S) o-Terphenyl			54.2	18.0-148		

L1283207-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1283207-03 11/16/20	0 13:31 • (MS) R3	3593867-3 11/1	6/20 13:44 • (M	SD) R3593867	7-4 11/16/20 13:	57						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	52.1	56.2	128	66.2	137	18.9	1	50.0-150		<u>13 16</u>	63.4	20
(S) o-Terphenyl					41.2	27.0		18.0-148				

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL Method Detection Limit. MDL (dry) Method Detection Limit. RDL Reported Detection Limit. RDL (dry) Reported Detection Limit. REc. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the the sample matrix contains of analytes of the sample matrix contains of analytes of the sample matrix contains of analytes of the sample may result reported has already been corrected for the theorem corrected for the theorem corrected for the theorem correct of the theorem correc	s performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the
MDL (dry)Method Detection Limit.RDLReported Detection Limit.RDL (dry)Reported Detection Limit.Rec.Recovery.RPDRelative Percent Difference.SDGSample Delivery Group.(S)Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media.UNot detected at the Reporting Limit (or MDL when reported.AnalyteThe name of the particular compound or analysis reported.DilutionIf the sample matrix contains an interfering mater standard, or if concentrations of analytes in the s laboratory can accurately report, the sample matrix reported has already been corrected for th These are the target % recovery ranges or % diffic for the method and analyte being reported. Succe	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
RDL Reported Detection Limit. RDL (dry) Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the sample may result reported has already been corrected for the method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
RDL (dry) Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when Analyte Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the for the method and analyte being reported. Succent for the method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when the analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the for the method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when Analyte Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the the sample matry provides or % difference of the method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when the analyte of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample matry reported has already been corrected for the sample method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
(S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample matrix cantales of the sample matrix contains of analytes in the sa	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
(S) Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the s laboratory can accurately report, the sample may result reported has already been corrected for the for the method and analyte being reported. Succe	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the These are the target % recovery ranges or % difficient for the method and analyte being reported. Succe	s performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Analyte reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the s laboratory can accurately report, the sample may result reported has already been corrected for the These are the target % recovery ranges or % diffi- for the method and analyte being reported. Succe	rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Dilutionstandard, or if concentrations of analytes in the standard, or if concentrations of analytes in the stalaboratory can accurately report, the sample may result reported has already been corrected for the These are the target % recovery ranges or % different for the method and analyte being reported. Succe	sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Limits for the method and analyte being reported. Succ	ference value that the laboratory has historically determined as normal
	cessful QC Sample analysis will target all analytes recovered or
Original Sample The non-spiked sample in the prep batch used to sample. The Original Sample may not be include	to determine the Relative Percent Difference (RPD) from a quality control ad within the reported SDG.
Qualifier reported. If a Qualifier is present, a definition per	signation that corresponds to additional information concerning the result r Qualifier is provided within the Glossary and Definitions page and of the Qualifier in the Case Narrative if applicable.
Result (Below Detectable Levels). The information in the	ay sample specific characteristics) reported for your sample. If there was lyte, the result in this column may state "ND" (Not Detected) or "BDL" e results column should always be accompanied by either an MDL ection Limit) that defines the lowest value that the laboratory could detect
Uncertainty (Radiochemistry) Confidence level of 2 sigma.	
Case Narrative (Cn) observed either at sample receipt by the laborate	sults, including a discussion of any non-conformances to protocol tory from the field or during the analytical process. If present, there will meaning of any data qualifiers used in the report.
	the laboratory quality control analyses required by procedure or idity of the results reported for your samples. These analyses are not on laboratory generated material.
Sample Chain of date of collection, the person collecting the same	our samples were initially collected. This is used to verify the time and ples, and the analyses that the laboratory is requested to perform. This cluding commercial shippers) that have had control or possession of the v to the laboratory for analysis.
	ts of all testing performed on your samples. These results are provided s performed on each sample. The header line of each analysis section for number for the analysis reported.
Sample Summary (Ss) This section of the Analytical Report defines the stimes of preparation and/or analysis.	specific analyses performed for each sample ID, including the dates and

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12

PAGE: 42 of 47

Received by OCD: 3/15/2024 10:07:43 ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana 1	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 3/28/2024 9:46:39 AM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02334

SDG: L1283206 DATE/TIME: 11/23/20 16:12 PAGE: 43 of 47 Received by OCD: 3/15/2024 10:07:43 AM

Analysis Request of Chain of Custody Record

Page: 1 of 2

TŁ	Tetra Tech, Inc.) 682-4) 682-3						(1	ue		20		-	_				9	
Client Name:	Conoco Phillips	Site Manager	r:	Chri	istian l	Llull								11	Circ					REQ fy IV			No	1		
Project Name:	SEMU Permian #73 Flowline (1RP-1342)	Contact Info:			ail: chr one: (5			@tetrate 667	ech.co	m		1		1 I				940						., 	1	1
Project Location: county, state)	Lea County, New Mexico	Project #:		212	C-MD	-0233	84, Ta	ask No.	11				A Good								ſ					
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701											6						n ch		2	3	list)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Adriar	n Gar	cia	- The			2	6	ORO - MRO)	1	Se Hg						1		attached list)		-	
Comments: COPTE	TRA Acctnum			1		2					- that	8260B	1	1	Cd Cr Pb			4	8270C/625				TDS istry (see a		1	
	2014 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	SAMP	LING	M	ATRIX	PR		RVATIN		2	(N/N)	BTEX	GRO - DI		Ag As Ba (atiles	82608 / 624					ate Chemi	alance	1	-
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE NONE		CONTAINERS	FILTERED (Y		TPH 8015M (GRO - DRO	AH 8270C	otal Metals Ag As Ba Cd Cr Pb S Ci P Metals Ag As Ba Cd Cr Pb	CLP Volatiles	ICLP Semi Volatiles	CI C/MS Vol. 82	C/MS Semi. Vol.	CB's 8082 / 608	ORM LM (Asbestos)	8	Chloride Sulfate General Water Che	B	IPH 8015H	State of the second
ONLY)	AH-1 (0'-1')	11/05/20	1200	3	ы Х	Ĭ	主	⊇ ž X	+	#	N	E I	± ±	P	PF	P	¥	ž č	0	Pe	PI	ō X	5 0	Ar	-	1
-01	AH-1 (1'-2')	11/05/20	1210	t	x			x	+	1	N	x	x		+	1	H	+	+	Ħ	0	x	1		34	1
-02	AH-1 (2'-3')	11/05/20	1220		x			x	+	1	N	x	x									X		10	T	T
-07	AH-1 (3'-4')	11/05/20	1230	t	x			x	1	1	N	x	X						T			X	-			1
-05	AH-1 (4'-5')	11/05/20	1240	\uparrow	x			x		1	Ν	X	x						T			x			10.00	
-de	AH-1 (5'-6')	11/05/20	1250	T	X		Π	x	T	1	Ν	X	X				1	19				X		2 de		
-07	AH-1 (6'-7')	11/05/20	1300		x			x		1	N	х	X					-	I	\square		X	-		-	
-08	AH-1 (7'-8)	11/05/20	1320		X			x		1	Ν	х	X									X				
-09	AH-1 (8'-9')	11/05/20	1340		X			х		1	Ν	х	X									X				
-10	AH-1 (9'-10')	11/05/20	1400		х			x		1	Ν	X	X									X				
Relinquished by:	Date: Time: Dan 11/6/23 14:00	Received by	HAR		$)_1$	Da	.2	0	14	ime: f:c	>			NLY	1	RE	X	Stand	dard	ame D	av 2	P4 hr.	48 hr	72 hr	r	
Relinquished	Date: Time: (1.6.2) (6'3)	Received by Received by	A		l	1.4		2	14	ime:	3	Sam	ple Te	mper	rature					rges Au					1	
Relinquished by:	Date: Time:	B- Ba			1	1.1		p		30					-			Spec	ial Re	eport Li	mits c	r TRR	P Repr	ort		
		ORIGIN	AL COPY	-	•	09	7					(Cir	cle) H	IAND	DELI	VERE	D	FEDE	X L	JPS	Trac	king #:			_	

Received by OCD: 3/15/2024 10:07:43 AM

Æ	Tetra Tech, Inc.				901	Midla Tel	and, (432	Il Stree Texas 2) 682- 2) 682-	7970)1	00														
Client Name:	Conoco Phillips	Site Manage	er:	Chr	istian	Llull									1.00						JEST				
Project Name:	SEMU Permian #73 Flowline (1RP-1342)	Contact Info	:		ail: ch one: (5			@tetra 667	atech.	com		1	1)) 	Circ	le d	or S	Spe 	cify	/ Me	etho 	1 bd	lo.)	11	
Project Location: (county, state)	Lea County, New Mexico	Project #:			-	-	-	ask No	o. 11													-	14	¥-	
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01																					list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Adria	n Gar	cia	and a	1	1			- ORO - MRO)		Se Hg				34				attached li		
Comments: COPTET	RA Acctnum	138				13	-	7				608	0-ORO		Cr Pb Cr Pb				/625	48 - 20 1	1		(see atta		
n Sie	Y State of the second sec	SAMP	LING	м	ATRIX	PR		RVATI		S	(7		GRO - DRO		As Ba Cd (15-4	les	8260B / 624	. 8270C			e TDS	nce		i.
2.2	SAMPLE IDENTIFICATION	YEAR: 2020					ML		П	INER	(N/A) C	8	8015M (GRO -	0	s Ag As I Is Ag As	iles	Volati		ni. Vol.	000 / 2	bestos)	Sulfate	Water Chem ation Balance		2
LAB # (LAB USE)	SAMPLE IDENTIFICATION	DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED		TPH 8015M (PAH 8270C	CLP Metals	CLP Volatiles	TCLP Semi Volatiles RCI	GC/MS Vol.	GC/MS Semi.	NORM	PLM (Asbestos)	8	ieneral Wate	FPH 8015R	
-11	AH-2 (0'-1')	11/04/20	1410		x	Ť		X	H	1	N	X	X						0			x i	U A		1
-12	AH-2 (1'-2')	11/04/20	1420		x	1.15		x	Π	1	Ν	х	X		12	1)	<			14
-13	AH-2 (2'-3')	11/04/20	1421		x			X		1	Ν	х	x	light -	144			1)	<	un S	T	T
-14	AH-3 (0'-1')	11/04/20	1422		x			х		1	Ν	х	X							. 12)	<		Ħ	
-15	AH-3 (1'-2')	11/04/20	1423		x		10	x		1	N	x	x							1	;	<		T	1
-16	AH-3 (2'-3')	11/04/20	1424		х			х	1	1	N	x	X			Π	.5-				,	<			
-17	AH-4 (0'-1')	11/04/20	1425		x			X		1	N	x	X								5	<		Ħ	
-18	AH-4 (1'-2')	11/04/20	1426		x			х		1	Ν	х	X			Π						<		Ħ	+
-19	AH-4 (2'-3')	11/04/20	1427		x			X	Π	1	Ν	X	X									<	2	Ħ	1
-20	AH-5 (0'-1')	11/04/20	1428		х			x		1	Ν	х	X									<		Π	T
Relinquished by:	Date: Time: 11/6/20 14 10	Received by	The)	((.	_	2	2	14	Time:	5	4	LAB ON	100.00	E			tandar							
Relinduighed by	Date: Time: 11.4.2.5 1635	Received by	A		Ц.	Dat	20	2	16	Time:	2	Samp	ole Ten	npera	ture	Ĩ	-	ush Cl				. 48	hr. 72	or.	
Relinquished by:	Date: Time:		un		11.	Dat		0	10	Time: 30					- The second		100.00	21		_	ts or TF		eport		
eased to Imaging: 3/	12812024 0-46-20 AM	ORIGINA	AL COPY									N	PAS	2		19	_	-		_	acking	mR	/01	_	_

Page 113 of 156

Received by OCD: 3/15/2024 10:07:43 AM

TŁ	Tetra Tech, Inc.				901	Midl Te	and, (43)	Il Stree Texas 2) 682 2) 682	s 79 2-45	59	0															
Client Name:	Conoco Phillips	Site Manage	er:	Chr	ristian	Llull						Γ			~.				YSIS							
Project Name:	SEMU Permian #73 Flowline (1RP-1342)	Contact Info	:		ail: ch one: (5				ated	ch.com		1	1	1		rcle	e o	rs I	pec	lify	IVIE 	etho 	bd 	No.)	Ē
Project Location: county, state)	Lea County, New Mexico	Project #:		212	C-MD	-023	34, T	ask N	lo. 1	11		1														
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701										1												st)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	inature:		Adria	n Gar	cia					1	- MRO		se Hg	Se Hg				203	de la			ached li	-	
Comments: COPTE	TRA Acctnum	1	- ship									8260B	C35) DRO - ORO		LCd Cr Pb Se Hg	Cd Cr Pb	-		4	8270C/625			TDS	y (see att		N N
A. Sta		SAMP	LING	M	ATRIX	PF		RVAT			(z		GRO - DI		As Ba C	As Ba	tiles	2	0B / 62	I. 8270 8				hemistr	ance	
LAB # (LAB USE) ONLY)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED (Y/N)	< 8021B	TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRO - ORO - MRO)	PAH 8270C	Fotal Metals Ag As Ba (CLP Metals Ag	TCLP Volatiles TCLP Semi Volatiles		GC/MS Vol. 8260B / 624	GC/MS Semi, Vol. 8 PCR's RNR2 / 608	NORM	PLM (Asbestos)	Chloride 300.0 Chloride Sulfate	X	Anion/Cation Balance TPH 8015R	
-21	AH-5 (1'-2')	11/04/20	1430	5	x X	I	_	⊻ z X		#	N	E X		-	ř	¥ i		RC	<u>G</u>	5 6	ž		ti ti X	Ö	An	der.
-22	AH-5 (2'-3')	11/04/20	1435		X			×		1	N	X	×	C 28									x			10
			1																	1						
																185									14	En 19
Relinquished by:	Date: Time: Daty U/6/20 14 .00 Date: Time:	Received by:	til			Dai Dai	.2			Time:			LAE Ol	NLY		1			indard		Day	24 h	ır. 48	3 hr.	72 hr.	
log for the second seco	A) (1.(0.20 (6:3) Date: Time:	Received by:	1+ anos			Dat	e:	0		63 Time:		1.4.1	1	1	N. M	4		_	sh Cha ecial R					Report		
ased to Imaging:	3/28/2024 9:46:39 AM	ORIGINA							1			(Circ	92				1	-) SC		42	- Contract		F/h	r i	1.3

Page 114 of 156

Pace Analytical National Center for		vation	
Cooler Receipt Fo	orm		
Client: COPTETRA		L12937	2ab
Cooler Received/Opened On: 11 / 7 / 20	Temperature:	1.8	
Received By: Billy Barras	1.		
Signature: B. Bauan			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	/ /		
COC Signed / Accurate?	LA P SEL AND		121243
Bottles arrive intact?		1/	
Correct bottles used?		//	
Sufficient volume sent?		/	
If Applicable	のないので、	国家が可能な	SVE Park
VOA Zero headspace?			
Preservation Correct / Checked?			

November 30, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: SEMU PERMIAN 73

Enclosed are the results of analyses for samples received by the laboratory on 11/29/23 14:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: BH - 1 (4.0') (H236426-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	85.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.5	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: BH - 2 (4.0') (H236426-02)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/30/2023	ND	208	104	200	0.558	
DRO >C10-C28*	176	10.0	11/30/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	127	10.0	11/30/2023	ND					
Surrogate: 1-Chlorooctane	93.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	71.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: BH - 3 (4.0') (H236426-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	84.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: BH - 4 (4.0') (H236426-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	82.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: BH - 5 (4.0') (H236426-05)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/30/2023	ND	208	104	200	0.558	
DRO >C10-C28*	54.8	10.0	11/30/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	55.7	10.0	11/30/2023	ND					
Surrogate: 1-Chlorooctane	82.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: BH - 6 (4.0') (H236426-06)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	82.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 1 (H236426-07)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	120 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	82.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 2 (H236426-08)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	83.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 3 (H236426-09)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	84.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 4 (H236426-10)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/30/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/30/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/30/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/30/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/30/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	35.5	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	13.5	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	84.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 5 (H236426-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	122	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	11/30/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	21.9	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	83.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 6 (H236426-12)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	119 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/30/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	85.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 7 (H236426-13)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	120	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/30/2023	ND	448	112	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/30/2023	ND	208	104	200	0.558	
DRO >C10-C28*	<10.0	10.0	11/30/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	<10.0	10.0	11/30/2023	ND					
Surrogate: 1-Chlorooctane	80.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 8 (H236426-14)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/30/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/30/2023	ND	208	104	200	0.558	
DRO >C10-C28*	151	10.0	11/30/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	107	10.0	11/30/2023	ND					
Surrogate: 1-Chlorooctane	79.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 9 (H236426-15)

BTEX 8021B	mg/	′kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	11/30/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/30/2023	ND	208	104	200	0.558	
DRO >C10-C28*	188	10.0	11/30/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	138	10.0	11/30/2023	ND					
Surrogate: 1-Chlorooctane	87.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	11/29/2023	Sampling Date:	11/29/2023
Reported:	11/30/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 10 (H236426-16)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	11/29/2023	ND	1.83	91.7	2.00	6.82	
Toluene*	<0.050	0.050	11/29/2023	ND	1.93	96.5	2.00	6.06	
Ethylbenzene*	<0.050	0.050	11/29/2023	ND	1.95	97.4	2.00	6.46	
Total Xylenes*	<0.150	0.150	11/29/2023	ND	5.95	99.2	6.00	6.25	
Total BTEX	<0.300	0.300	11/29/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	11/30/2023	ND	448	112	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	11/29/2023	ND	208	104	200	0.558	
DRO >C10-C28*	41.5	10.0	11/29/2023	ND	210	105	200	4.01	
EXT DRO >C28-C36	20.6	10.0	11/29/2023	ND					
Surrogate: 1-Chlorooctane	77.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whose site to the services interruptors, loss of profits incurred by client, its subsidiaries, afflictes or successor arising out of or related to the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

eceived		Nominiquisince of	Relinquished hv	75/2 Relinquished by:		Reinquished by:		9 /S SW-9	14 SW-8	13 SW-7	12 SW-6	// SW-5	10 SW-4	9 SW-3	SW-2	7 SW-1	(LAB USE)	LAB#	HORILLY.	Comments:	Receiving Laboratory.		(county, state)	Project Location:	Project Name:	Client Name:	, and the second
			Date: Time:	Date: Time:	11-	Late: Ime: 1425												SAMPLE IDENTIFICATION			Cardinal Labs	Attn: Chuck Terhune	Lea County, NM		SEMU Permian 73	Maverick Natural Resources	Tetra Tech, Inc.
ORIGINAL COPY		incontrol of.	Received hv:	Received by:	Jun	how	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	11/29/2023	DATE -	YEAR: 2023	SAMPLING		Sampler Signature.	Camp by Cimption		Project #:	chuc	Site Manager:	
PY				4	an VIII	no D	×	×	×	×	×	×	×	×	×	×	TIME WATEF SOIL	2	MATRIX		Jorge		2120		281-755-8965 chuck.terhune@tetratech.com	Chuck Terhune	901 W Mid Fa
			Date' Time'	Date:/ Time:	XI Call	111	×	×	×	×	×	×	×	×	×	×	HCL HNO ₃ ICE		PRESERVATIVE		e Fernadez		212C-MD-03272		-8965 tratech.com	erhune	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
																	# CONT	-	_								
(Circle) HAND DELIVERED	#140	. (2/2	Sample Temperature	UNLY	LABUSE	×××	×	x x	x x	× ×	×××	×××	×	×××		BTEX 80 TPH TX TPH 801 PAH 827 Total Met TCLP Me	1005 5M (10C als A	(Ext to GRO - g As B	DRO - C	PRO - N Pb Se H	łg		-		10	
VERED FEDEX UPS	C	Special Ren	Rush Charg	X RUSH: Same Day]	REMARKS: 0											TCLP Vo TCLP Se RCI GC/MS V GC/MS S	iatiles mi Vo ol. 8. emi.	s blatiles 260B / Vol. 82	624	_				le or opecity	ANALYSIS	
oS Tracking #:	and an and a state	Special Report Limits or TRRP Report	Rush Charges Authorized	24 hr		Standard TAT	×	×	×	×	×	×	×	×	×		PCB's 80 NORM PLM (Ast Chloride Chloride General	Su Wate	s) ulfate er Cher		ee atta	ched li	st)		Method No.)		
	. report	Report		48 hr 72 hr													Anion/Ca	tion	Balanc	e						Pa	age 20 of

December 04, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: SEMU PERMIAN 73

Enclosed are the results of analyses for samples received by the laboratory on 12/01/23 12:18.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2023	Sampling Date:	12/01/2023
Reported:	12/04/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW -9 (H236462-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2023	ND	2.20	110	2.00	0.806	
Toluene*	<0.050	0.050	12/01/2023	ND	2.17	109	2.00	1.01	
Ethylbenzene*	<0.050	0.050	12/01/2023	ND	2.14	107	2.00	0.721	
Total Xylenes*	<0.150	0.150	12/01/2023	ND	6.83	114	6.00	0.484	
Total BTEX	<0.300	0.300	12/01/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/01/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2023	ND	207	104	200	3.79	
DRO >C10-C28*	72.9	10.0	12/01/2023	ND	193	96.6	200	1.31	
EXT DRO >C28-C36	58.3	10.0	12/01/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	122	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/01/2023	Sampling Date:	12/01/2023
Reported:	12/04/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW -8 (H236462-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/01/2023	ND	2.20	110	2.00	0.806	
Toluene*	<0.050	0.050	12/01/2023	ND	2.17	109	2.00	1.01	
Ethylbenzene*	<0.050	0.050	12/01/2023	ND	2.14	107	2.00	0.721	
Total Xylenes*	<0.150	0.150	12/01/2023	ND	6.83	114	6.00	0.484	
Total BTEX	<0.300	0.300	12/01/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	12/01/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/01/2023	ND	207	104	200	3.79	
DRO >C10-C28*	56.8	10.0	12/01/2023	ND	193	96.6	200	1.31	
EXT DRO >C28-C36	45.4	10.0	12/01/2023	ND					
Surrogate: 1-Chlorooctane	102 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Of Wailsteer, Serior Widend, Time 2017 2017, 25-3986 Chuck Terhune 212C-MD-03272 212C-MD-0327 212C-MD-0327 212C-MD-0327 212C-MD-0327 212C-MD-0327 212C-MD-0327 212C-MD-0327 212C-MD-032 212C-MD-0327 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032 212C-MD-032		CD: Relinquished by:	15/20 elinquished by:	Relinquished by:			0	D SWS	ONLY)	LAB #	Harroulez		Comments:	Receiving Laboratory	(county, state) Invoice to:	Project Location:	Project Name:	Client Name:
Of W Wall Street, Station Widdend Taxas "BYD" The (RSD) 0825-8458 The (RSD) 0825-8458 The (RSD) 0825-8458 The (RSD) 0825-8458 TILE 212C-MD-03272 212C			2-0	Time:						SAMPLE IDENTIFICATION			Cardinal Labs	Attn: Chuck Terhune	Lea County, NM	SEMU Permian 73	Maverick Natural Resources	
30 30 31 <	ORIGINAL COPY	Received by:	Received by:			T	12/1/2023	12/1/2023	-	YEAR: 2023	SAMPLING		Sampler Signature:			-	Site Manager:	
30 30 31 <			12				×	×			MATRIX		Jorge		212C	281-755 .terhune@te	Chuck T	901 W Mid Fa
Correction of the second secon			-	E			×		HNO ₃	_	PRESERVATIVE		Fernade		-MD-03272	-8965 tratech.com	erhune	/ Wall Street, Ste 100 lland,Texas 79701 il (432) 682-4559 x (432) 682-3946
			\$1:	F						INER	S							
	(Circle) HAND DELIV	· ·	ONLY Sample Temperature	LAB USE				×	TPH TX10 TPH 8015 PAH 8270 Total Metal	005 (E) M (GI C Is Ag A	xt to C3 RO - DF As Ba C	5) RO - OR d Cr Pb	Se Hg			(Circ		
PS Tracking #:		Rush Cha	X RUSH:	REMARKS:				ר ד ד נ	CLP Volat CLP Semi RCI SC/MS Vol	tiles i Volat . 8260	tiles 0B / 624	4	o Se Hg		ii.	le or S		
General Water Chemistry (see attached list)	PS Tracking #:	rges Authorized		Standard TAT			×	P N P C C	CB's 8082 ORM LM (Asbes hloride hloride	2 / 608 stos) Sulfa	3 te Ti	DS				fy Method No.	REQUEST	- ugo

December 07, 2023

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: SEMU PERMIAN 73

Enclosed are the results of analyses for samples received by the laboratory on 12/06/23 11:04.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/06/2023	Sampling Date:	12/05/2023
Reported:	12/07/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 9 (H236534-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2023	ND	2.15	108	2.00	4.82	
Toluene*	<0.050	0.050	12/06/2023	ND	2.13	106	2.00	5.45	
Ethylbenzene*	<0.050	0.050	12/06/2023	ND	2.10	105	2.00	5.67	
Total Xylenes*	<0.150	0.150	12/06/2023	ND	6.65	111	6.00	4.42	
Total BTEX	<0.300	0.300	12/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	12/06/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/06/2023	ND	198	98.8	200	0.682	
DRO >C10-C28*	<10.0	10.0	12/06/2023	ND	184	92.1	200	3.07	
EXT DRO >C28-C36	<10.0	10.0	12/06/2023	ND					
Surrogate: 1-Chlorooctane	95.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	12/06/2023	Sampling Date:	12/05/2023
Reported:	12/07/2023	Sampling Type:	Soil
Project Name:	SEMU PERMIAN 73	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03272	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK -LEA CO NM		

Sample ID: SW - 8 (H236534-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	12/06/2023	ND	2.15	108	2.00	4.82	
Toluene*	<0.050	0.050	12/06/2023	ND	2.13	106	2.00	5.45	
Ethylbenzene*	<0.050	0.050	12/06/2023	ND	2.10	105	2.00	5.67	
Total Xylenes*	<0.150	0.150	12/06/2023	ND	6.65	111	6.00	4.42	
Total BTEX	<0.300	0.300	12/06/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	12/06/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	12/06/2023	ND	198	98.8	200	0.682	
DRO >C10-C28*	<10.0	10.0	12/06/2023	ND	184	92.1	200	3.07	
EXT DRO >C28-C36	<10.0	10.0	12/06/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Site Remediation Closure Report SEMU Permian #073 Flowline Release nPAC0714434227 Maverick Permian, LLC March 14, 2024

ATTACHMENT 7: NMSLO SEED MIXTURE DETAILS

NMSLO Seed Mix

Sandy (S)

SANDY (S) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX	
Grasses:				
Sand bluestem	Elida, VNS, So.	2.0	F	
Little bluestem	Cimarron, Pastura	3.0	F	
Black grama	VNS, Southern	1.0	D	
Sand dropseed	VNS, Southern	4.0	S	
Plains bristlegrass	VNS, Southern	2.0	D	
Forbs:			2	
Firewheel (Gaillardia)	VNS, Southern	1.0	D	
Annual Sunflower	VNS, Southern	1.0	D	
Shunha		-0-	8	
Shrubs: Fourwing Saltbush	VNS, Southern	1.0	F	
Four wing Saturdusi	VIII, BOULIEIII	1.0		
	Total PLS/ac	re 16.0	8	

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill box VNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 323619

QUESTIONS		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	323619	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Prerequisites	
Incident ID (n#)	nPAC0714434227
Incident Name	NPAC0714434227 SEMU PERMIAN #073 @ 30-025-07822
Incident Type	Oil Release
Incident Status	Reclamation Report Received
Incident Well	[30-025-07822] SEMU PERMIAN #073

Location of Release Source

Please answer all the questions in this group.	e questions in this group.	
Site Name	SEMU PERMIAN #073	
Date Release Discovered	11/24/2004	
Surface Owner	Private	

Incident Details

Incident Details		
Please answer all the questions in this group.		
Incident Type	Oil Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Cause: Corrosion Pipeline (Any) Crude Oil Released: 35 BBL Recovered: 28 BBL Lost: 7 BBL.	
Produced Water Released (bbls) Details	Not answered.	
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 149 of 156

QUESTIONS, Page 2

Action 323619

QUESTIONS (continued)		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	323619	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

	Nature and Volume of Release (continued)		
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
ſ	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
	Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.			

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement Name: Chuck Terhune Email: chuck.terhune@tetratech.com		

Date: 03/15/2024

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Page 150 of 156

Action 323619

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	323619
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

OUESTIONS (continued)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)
What method was used to determine the depth to ground water	Direct Measurement
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	id the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Between ½ and 1 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1 and 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 48 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 4060 GRO+DRO (EPA SW-846 Method 8015M) 1170 BTEX (EPA SW-846 Method 8021B or 8260B) 0.1 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 11/06/2023 On what date will (or did) the final sampling or liner inspection occur 12/05/2023 On what date will (or was) the remediation complete(d) 12/18/2023 What is the estimated surface area (in square feet) that will be reclaimed 2540 What is the estimated volume (in cubic yards) that will be reclaimed 410 What is the estimated surface area (in square feet) that will be remediated 2540 What is the estimated volume (in cubic yards) that will be remediated 2540 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 323619

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	323619
	Action Type:
	[C-1/1] Reclamation Report C-1/1 (C-1/1-v-Reclamation)

OUESTIONS (continued)

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply.) (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.) Yes Which OCD approved facility will be used for off-site disposal HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510] OR which OCD approved well (API) will be used for off-site disposal Not answered. OR is the off-site disposal site, to be used, out-of-state Not answered. OR is the off-site disposal site, to be used, an NMED facility Not answered. (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) Not answered (In Situ) Soil Vapor Extraction Not answered. (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) Not answered. (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) Not answered (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) Not answered. Ground Water Abatement pursuant to 19.15.30 NMAC Not answered. OTHER (Non-listed remedial process) Not answered. Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Name: Chuck Terhune I hereby agree and sign off to the above statement Email: chuck.terhune@tetratech.com

Date: 03/15/2024 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 323619

QUES HONS (continued)	
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	323619
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)
QUESTIONS	
Deferral Requests Only	

Only answer the questions in this group if seeking a deferral upon approval this submission. Each o	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 153 of 156

Action 323619

QUESTIONS (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 323619 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	323544
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	12/01/2024
What was the (estimated) number of samples that were to be gathered	2
What was the sampling surface area in square feet	350

Remediation Closure Request

Inly answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	2540	
What was the total volume (cubic yards) remediated	410	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	2540	
What was the total volume (in cubic yards) reclaimed	410	
Summarize any additional remediation activities not included by answers (above)	410 CY of material was excavated and disposed of at R360 Halfway facility, Clean soil was trucked in and used to backfill the excavation subsequent to confirmation sampling, then graded and re-seeded using NMSLO seed mix.	
	losure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of	
Learney cartify that the information given above is true and complete to the best of my k	reculades and understand that pursuant to OCD rules and regulations all operators are required.	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.		

	Name: Chuck Terhune
I hereby agree and sign off to the above statement	Email: chuck.terhune@tetratech.com
	Date: 03/15/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 323619

QUESTIONS (continued)	
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	323619
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	Yes
What was the total reclamation surface area (in square feet) for this site	2540
What was the total volume of replacement material (in cubic yards) for this site	410
Per Paragraph (1) of Subsection D of 19.15.29.13 NMAC the reclamation must contain a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less mg/kg as analyzed by EPA Method 300.0, or other test methods approved by the division. The soil cover must include a top layer, which is either the background thickness of topsoil or one foot of suitable to establish vegetation at the site, whichever is greater.	
Is the soil top layer complete and is it suitable material to establish vegetation	Yes
On what (estimated) date will (or was) the reseeding commence(d)	12/18/2023
Summarize any additional reclamation activities not included by answers (above)	Backfilling remediation/reclamation area with clean soil from local pit, grade to match surrounding topography, seed with NMSLO seed mix to match USDA NCRS Soil mapped soil profile for the Site.
	t field notes, photographs of reclaimed area, and a narrative of the reclamation activities. Refer to 19.15.29.13
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface it does not relieve the operator of responsibility for compliance with any other federal, state, or tially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete. Name: Chuck Terhune
I hereby agree and sign off to the above statement	Email: chuck.terhune@tetratech.com Date: 03/15/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 155 of 156

Action 323619

QUESTIONS (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 323619 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Revegetation Report

Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied

Requesting a restoration complete approval with this submission

No Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 156 of 156

CONDITIONS

Action 323619

CONDITIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	323619
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

CONDITIONS

Created By	Condition	Condition Date
amaxwell	Reclamation closure approved.	3/28/2024
amaxwell	All revegetation activities will need to be documented and included in the revegetation report. The revegetation report will need to include: An executive summary of the revegetation activities including: Seed mix, Method of seeding, dates of when the release area was reseeded, information pertinent to inspections, information about any amendments added to the soil, information on how the vegetative cover established meets the life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds per 19.15.29.13 D.(3) NMAC, and any additional information; a scaled Site Map including area that was revegetated in square feet; and pictures of the revegetated areas during reseeding activities, inspections, and final pictures when revegetation is achieved.	3/28/2024
amaxwell	OR Per 19.15.29.13 E. NMAC, if a reclamation and revegetation report has been submitted to the surface owner, it may be used if the requirements of the surface owner provide equal or better protection of freshwater, human health, and the environment. A copy of the approval of the reclamation and revegetation report from the surface owner and a copy of the approved reclamation and revegetation report will need to be submitted to the OCD via the Permitting website.	3/28/2024