E N S O L U M

February 5, 2024

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request EVGSAU 2437-001 Incident Numbers NAPP2303273838 and NAPP2334650001 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of Maverick Permian, LLC (Maverick), has prepared this *Closure Request* as a follow-up to the *Remediation Work Plan* (*Work Plan*) submitted to the New Mexico Oil Conservation Division (NMOCD) on July 13, 2023, and approved by NMOCD on October 6, 2023. This *Closure Request* documents excavation, delineation, and liner installation activities performed at the EVGSAU 2437-001 (Site) to address impacts to soil resulting from two releases of crude oil and produced water at the Site. Based on the remediation activities completed as outlined in the approved *Work Plan*, Maverick is submitting this *Closure Request*, describing remediation that has occurred and requesting closure for Incident Numbers NAPP2303273838 and NAPP2334650001.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit P, Section 24, Township 17 South, Range 34 East, in Lea County, New Mexico (32.816832° N, -103.506018° W) and is associated with oil and gas exploration and production operations on state land managed by the New Mexico State Land Office (SLO).

On January 10, 2023, corrosion of a flow line resulted in the release of approximately 2.67 barrels (bbls) of crude oil and 6.23 bbls of produced water into the surrounding pasture. No fluids were recovered. The release occurred on the surface of a historical/reclaimed Phillips Petroleum well pad (API 30-025-27337). Maverick reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on January 19, 2023. The release was assigned Incident Number NAPP2303273838.

On December 11, 2023, the same flow line released approximately 18 bbls of crude oil and 6 bbls of produced water into the open excavation associated with remediation activities for Incident Number NAPP2303273838. The released fluids were contained in the open excavation and a vacuum truck was used to recover approximately 9 bbls of crude oil and 6 bbls of produced water. Maverick reported the release to the NMOCD and NMSLO on a Form C-141 on December 21, 2023. The release was assigned Incident Number nAPP2334650001.

Since the release area was in the pasture, the release location was assessed for determination of whether the release encroached into undisturbed areas to comply with the Cultural Properties Protection

Page 2

Rule (CPP). Ensolum contracted Beaver Creek Archeology to conduct an Archaeological Records Management System (ARMS) review. Based on a review of prior cultural resource surveys that overlap the release extent, no cultural resources were identified within and/or around the release extent requiring oversight or modifications to remediation efforts. No additional cultural resource surveys were completed in connection with this release. The NMSLO was initially notified of excavation and remediation activities required in the pasture on a Right of Entry Request for Remediation form, submitted to the NMSLO on March 17, 2023. The request included a copy of the Form C-141, a topographic location map, and a satellite image of the location. The Right of Entry (ROE) Permit (RE-6494) was fully executed by the NMSLO and received by Maverick on April 11, 2023. A copy of the fully executed ROE Permit and the NMSLO Cultural Resources Cover Sheet, is included as Appendix A.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential Site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be between 51 and 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well with depth to groundwater data is United States Geologic Survey (USGS) Well 324854103301101, located approximately 925 feet southeast of the Site. The groundwater well has a reported depth to groundwater of 76.7 feet bgs and a total depth of 226 feet bgs. All wells used for depth to groundwater determination are depicted on Figure 1 and the referenced well records are included in Appendix B.

The closest continuously flowing or significant watercourse to the Site is a dry playa, located approximately 825 feet east of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). The Site is less than 1,000 feet to a water well. Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

BACKGROUND

As detailed in the approved *Work Plan*, Ensolum personnel were at the Site between January 18, 2023, and May 8, 2023, to oversee excavation activities based on visible staining in the release area and laboratory analytical results for assessment soil samples SS01 through SS05. During excavation activities, visible indications of a historical pit were encountered at approximately 3 feet bgs. Upon encountering the historical pit, vertical excavation was halted. The excavation proceeded laterally within the release extent until sidewall samples were compliant with the Site Closure Criteria. Potholes PH01 and PH02 were advanced via track mounted backhoe within the 3-foot-deep excavation to depths of 11 feet and 7 feet bgs, respectively, to delineate the vertical extent of the impacted soil within the historical pit. Laboratory analytical results for the excavation sidewall samples were compliant with the Site

Page 3

Closure Criteria. Laboratory analytical results for the final depth delineation samples from potholes PH01 and PH02, collected at depths of 10 feet and 7 feet bgs, indicated all COC concentrations were compliant with the Site Closure Criteria and provided vertical delineation of impacted soil within the historical pit.

Based on the laboratory analytical results, a *Work Plan* was submitted to the NMOCD on July 13, 2023. The *Work Plan* proposed excavation of impacted soil to a depth of 4 feet bgs and installation of a liner in the floor of the excavation (over the historical pit) to mitigate further impacts to the subsurface. Additional details regarding the excavation, delineation, soil sampling activities, and proposed work plan can be referenced in the July 13, 2023, *Work Plan*. The *Work Plan* was approved by the NMOCD on October 6, 2023, with no conditions. The *Work Plan* was approved by the NMSLO on November 2, 2023, with the condition that the installed liner must be a clay liner not a poly liner.

On December 11, 2023, prior to commencement of remediation activities, a second flow line release occurred at the Site (Incident Number NAPP2334650001). The released fluids impacted the open excavation associated with Incident Number NAPP2303273838. The NMOCD and NMSLO were contacted to discuss the continued application of the approved *Work Plan*. The NMOCD and NMSLO agreed to proceed with the approved *Work Plan* with the following conditions:

- The excavation will be deepened to a depth of 4 feet bgs, per the approved Work Plan.
- The sidewalls of the excavation will be extended as necessary to remove the impacted soil associated with the new release. Sidewall samples will be collected from the final excavation extent to confirm compliance with the Site Closure Criteria in the top four feet.
- New potholes will be advanced within the release extent to re-confirm the vertical extent of impacted soil after the second release occurred.
- A clay liner will be installed over the historical pit to mitigate further impacts to the subsurface. The clay liner will be installed at 4 feet bgs within the open excavation.
 - Based on the pothole delineation data and liner installation in the floor of the excavation, no floor samples were proposed in the approved *Work Plan*.

EXCAVATION AND DELINEATION ACTIVITIES

Between January 12, 2024, and January 18, 2024, Ensolum personnel were at the Site to oversee delineation, excavation, and liner installation activities as outlined in the approved *Work Plan* and in accordance with the NMOCD/NMSLO conditions detailed above.

Assessment soil samples SS06 through SS09 were collected around the release from a depth of approximately 0.5 feet bgs, to confirm the surface extent of the second release. The soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The release extent and assessment soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2.

The existing open excavation was extended laterally to remove impacted soil from the excavation sidewalls, that were impacted by the second release. To direct excavation activities, soil was field screened for VOCs and chloride. The excavation was extended vertically to a total depth of 4 feet bgs across the entire release extent. Following lateral and vertical excavation of the impacted soil, 5-point composite soil samples were collected every 200 square feet from the sidewalls of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples SW01 through SW03, SW04/SW04A, SW05, and SW06 were collected from the sidewalls of the

Page 4

excavation at depths ranging from the ground surface to 4 feet bgs. The excavation extent and soil sample locations were mapped utilizing a handheld GPS and are presented on Figure 3.

Two potholes (PH01 and PH02) were advanced within the open excavation to depths of 9 feet and 8 feet bgs, respectively. Soil from the potholes was field screened at 1-foot intervals for VOCs and chloride. Final depth of the potholes was determined by field screening results indicating compliance with the Site Closure Criteria. Field screening results and observations for the potholes were logged on lithologic soil sampling logs, which are included in Appendix C. Discrete delineation samples were selected from each pothole for laboratory analysis; the samples with the highest field screening results and the sample from the final pothole depth. The pothole and delineation soil sample locations are presented on Figure 2. Photographic documentation was completed during the excavation and delineation activities. A photographic log is included in Appendix D.

The assessment, delineation, and excavation soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-ofcustody procedures to Cardinal Laboratories (Cardinal) in Carlsbad, New Mexico, for analysis of the following contaminants of concern (COC): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following Standard Method SM 4500.

The excavation measured approximately 5,500 square feet in areal extent. A total of approximately 830 cubic yards of impacted soil was excavated, transported, and properly disposed at R360 Environmental Solutions in Hobbs, New Mexico.

LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for assessment samples SS06 through SS09, collected around the release extent, indicated all COC concentrations were compliant with the Site Closure Criteria, and successfully defined the lateral extent of the surface release.

Laboratory analytical results for excavation sidewall samples SW01 through SW03, SW04A, SW05, and SW06, collected from the final excavation extent, indicated all COC concentrations were compliant with the Site Closure Criteria and confirmed removal of impacted soil from the top 4 feet of the release extent. Sidewall sample SW04 initially exceeded the Site Closure Criteria for chloride, additional soil was removed from the sidewall and subsequent sidewall sample SW04A was compliant.

Laboratory analytical results and field screening results for the pothole PH01 and PH02 delineation samples indicated that chloride concentrations exceeded the Site Closure Criteria within the historical pit at depths ranging from 4 feet to 8 feet bgs. Laboratory analytical results for the final depth pothole delineation samples, collected at depths of 8 feet and 9 feet bgs, indicated all COC concentrations were compliant with the Site Closure Criteria and provided vertical delineation of impacted soil within the historical pit. The laboratory analytical results are summarized on the attached Table 1 and the complete laboratory analytical reports are included in Appendix E.

CLAY LINER INSTALLATION AND RECLAMATION ACTIVITIES

Upon completion of the excavation and delineation activities, and receipt of final laboratory analytical results, the clay liner was installed. The clay liner was installed in the floor of the open excavation at a depth of 4 feet bgs to mitigate further impacts to the subsurface. Photographic documentation was completed during the liner installation activities. A photographic log is included in Appendix D.

Page 5

Upon completion of liner installation, the excavation was backfilled with caliche and topsoil and the disturbed area was recontoured to match the surrounding topography. The disturbed area was seeded on January 23, 2024. The Reclamation Plan submitted with the July 13, 2023, *Work Plan* was followed at this Site. Vegetation monitoring will be completed as outlined in the Reclamation Plan, which is included in Appendix F.

CLOSURE REQUEST

Excavation, delineation, and liner installation activities were conducted at the Site to address the January 10, 2023, and December 11, 2023 releases of crude oil and produced water. Laboratory analytical results for the excavation sidewall samples, collected from the final excavation extent, indicated all COC concentrations were compliant with the Site Closure Criteria and reclamation requirements. Additionally, the impacted soil was vertically delineated to below the most stringent Table I Closure Criteria and a clay liner was installed in the floor of the 4-foot-deep excavation to mitigate further impacts to the subsurface. Based on the excavation and delineation activities, and installation of a clay liner as outlined in the approved *Work Plan*, no further remediation is required.

Maverick believes the remedial actions completed are protective of human health, the environment, and groundwater and respectfully requests closure for Incident Numbers NAPP2303273838 and NAPP2334650001. NMOCD notifications are included in Appendix G and a copy of the approved *Remediation Work Plan* is included as Appendix H.

If you have any questions or comments, please contact Ms. Aimee Cole at (720) 384-7365 or acole@ensolum.com.

Sincerely, Ensolum, LLC

Madrie Freen

Hadlie Green Project Geologist

linée Cole

Aimee Cole Senior Managing Scientist

cc: Bryce Wagoner, Maverick Natural Resources New Mexico State Land Office

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations and Liner Extent
- Table 1
 Soil Sample Analytical Results
- Appendix A ROE Request for Remediation Form and ROE Permit
- Appendix B Referenced Well Records
- Appendix C Lithologic Soil Sampling Logs
- Appendix D Photographic Log
- Appendix E Laboratory Analytical Reports & Chain of Custody Documentation
- Appendix F NMSLO Reclamation Plan
- Appendix G NMOCD Notifications
- Appendix H Remediation Work Plan (July 2023)

FIGURES

Received by OCD: 2/19/2024 11:28:58 AM

Page 7 of 129

Received by OCD: 2/19/2024 11:28:58 AM

Released to Imaging: 4/12/2024 8:48:54 AM

Received by OCD: 2/19/2024 11:28:58 AM

Released to Imaging: 4/12/2024 8:48:54 AM

TABLES

.

-

			SO	IL SAMPLE ANA	2437-001 ermian, LLC	LTS			
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	100	600
				Assessment	Soil Samples				
SS01	01/11/2023	0.5	12.7	297	4,660	32,100	4,570	41,330	10,200
SS02	01/11/2023	0.5	9.37	289	3,960	31,900	4,320	40,180	8,290
SS03	01/11/2023	0.5	38.4	451	3,390	12,000	1,730	17,120	13,400
SS04	01/11/2023	0.5	9.62	260	2,190	17,600	2,350	22,140	13,600
SS05	01/11/2023	0.5	0.152	0.825	7,210	<49.9	<49.9	7,210	49.1
SS06	1/17/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	16.0
SS07	1/17/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	64.0
SS08	1/17/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	64.0
SS09	1/17/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	48.0
				Delineation \$	Soil Samples				
PH01	01/12/2024	4	<0.050	<0.300	<10.0	10.4	<10.0	10.4	1,020
PH01	01/12/2024	6	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	1,800
PH01	01/12/2024	9	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	80.0
PH02	01/12/2024	4	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	80.0
PH02	01/12/2024	6	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	992
PH02	01/12/2024	8	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	128

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS EVGSAU 2437-001 Maverick Permian, LLC Lea County, New Mexico												
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)				
NMOCD Table I	Closure Criteria ((NMAC 19.15.29)	10	50	NE	NE	NE	100	600				
				Excavation S	Soil Samples								
SW01	01/12/2024	0-4	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	288				
SW02	01/15/2024	0-4	<0.050	<0.300	<10.0	15.4	<10.0	15.4	224				
SW03	01/15/2024	0-4	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	160				
SW04	01/17/2024	0-4	<0.050	<0.300	<10.0	62.1	<10.0	62.1	1,440				
SW04A	01/18/2024	0-4	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	160				
SW05	01/17/2024	0-4	<0.050	<0.300	<10.0	60.0	11.4	71.4	80.0				
SW06	01/17/2024	0-4	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	32.0				

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram NMOCD: New Mexico Oil Conservation Division BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes TPH: Total Petroleum Hydrocarbon

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

Grey text represents samples that have been excavated concentrations in **bold** exceed the NNOCD Table I Closure Criteria or reclamation standard where applicable

APPENDIX A ROE Request for Remediation Form and ROE Permit

Stephanie Garcia Richard, Commissioner of Public Lands State of New Mexico

NMSLO Cultural Resources Cover Sheet Exhibit

NMCRIS Activity Number:

Exhibit Type (select one)

(if applicable)

ARMS Inspection/Review - Summarize the results (select one):

- (A) The entire area of potential effect or project area has been previously surveyed to current standards and **no cultural properties** were found within the survey area.
- (B) The entire area of potential effect or project area has been previously surveyed to current standards and **cultural properties were found** within the survey area.
- (C) The entire area of potential effect or project area has **not** been previously surveyed or has not been surveyed to current standards. A complete archaeological survey will be conducted and submitted for review.

Archaeological Survey

Findings:

Negative - No further archaeological review is required.

Positive - Have avoidance and protection measures been devised? Select one:

Comments:

Project Details:

NMSLO Lease Number (if available):

Cultural Resources Consultant:

Project Proponent (Applicant):

Project Title/Description:

Project Location:

County(ies): PLSS/Section/Township/Range):

For NMSLO Agency Use Only:

NMSLO Lease Number:

Lease Analyst:

Date Exhibit Routed to Cultural Resources Office:

Acknowledgment-Only:

No person may alter the wording of the questions or layout of the cover sheet. The completion of this cover sheet by itself does not authorize anyone to engage in new surface disturbing activity before the review and approvals required by the Cultural Properties Protections Rule. Form Revised 12 22

Stephanie Garcia Richard Commissioner of Public Lands

RIGHT OF ENTRY REQUEST FOR REMEDIATION

Company Nam	e Maverick Natural Resources, LLC											
Address	1410 NW County Rd											
City, State, Zip	Hobbs, NM 88240											
Contact Person	Bryce Wagoner											
Telephone #:	(928) 241-1862											
Email:	Bryce.Wagoner@mavresources.com											
at the Site. The soil	Request to remediate soil impacted by a release of crude oil and produced water will be excavated and transported to a licensed disposal facility. All remediation activities IOCD spill rules (19.15.29 NMAC). We expect to complete activities within 3 weeks.											
Section 24	Township <u>17S</u> Range <u>34E</u> Unit Letter <u>P</u>											
Qtr/Qtr SE/SE	County_Lea											
GPS Location	(decimal degrees): Latitude <u>32.81668</u> W Longitude <u>-103.50599</u> N											
If this is a reme	ediation for a spill please attach a copy of the OCD C-141 form.											
Is the complete	d C-141 attached? Yes 🔳 No 🗌											
Square footage	of spill impacted surface: 4,162 sq. ft.											
Estimated squa	re footage of total disturbance: <u>63,275 sq. ft.</u>											
	an (<i>attach addl. sheet if necessary</i>) Maverick will backfill the excavation with clean gurchased topsoil for the upper 4 ft, if the excavation reaches that depth.											
The backfilled area	will be contoured to match natural surroundings and seeded with an approved BLM seed mixture.											
From intersection o	ons from nearest state highway or road (<i>attach a map of the location</i>): f CR-50 (Buckeye Rd) and NM-238 N, head North on NM-238 N and continue for 0.72 miles. Turn											
right onto unnamed	d access road and continue for 0.32 miles. Turn left and follow to Site approximately 0.14 miles.											
Lease number a	associated with the ROE request:B014040008											
Well Name and	l/or Operator (if applicable): EVGSAU 2437-001											
Time expected	to complete remediation: <u>3 weeks</u>											
Personnel prese	ent on State Land crew and environmental oversight											
Equipment & r	naterials present on State Land Yes; backhoe or trackhoe and loader											
\$50.00 applica	tion fee and \$500.00 permit amount (based on 180 days) renewable for up to 3 yrs.											
•	The Commissioner of Public Lands P O Box 1148											

* When you provide a check as payment, you authorize the State of New Mexico to either use information from your check to make a one-time electronic fund transfer from your account or to process the payment as a check transaction.

Santa Fe, NM 87504-1148

Received by OCD: 2/19/2024 11:28:58 AM

Page 16 of 129

Received by OCD: 2/19/2024 11:28:58 AM

State of New Mexico Commissioner of Public Lands 310 OLD SANTA FE TRAIL P.O. BOX 1148 SANTA FE, NEW MEXICO 87504-1148

COMMISSIONER'S OFFICE Phone (505) 827-5760 Fax (505) 827-5766 www.nmstatelands.org

Stephanie Garcia Richard COMMISSIONER

April 11, 2023

Maverick Natural Resources, LLC 1410 NW County Rd Hobbs, NM 88240

Attn: BryceWagoner

Re: Right-of-Entry Permit No.: RE-6494/EVGSAU 2437-01

Dear Applicant:

Enclosed is the completed captioned Right-of-Entry permit. If any corrections are necessary, please let us know and we will retype or amend this permit as necessary.

The New Mexico State Land Office requires you to notify any surface lessees that will be impacted by your project prior to construction.

If you have any questions, or if we may be of further assistance, please do not hesitate to contact Amy Velazquez of my staff at (505) 827-5789.

Sincerely, James S. Bordegaray Director, Commercial Resources Division

JSB/alv

NEW MEXICO STATE LAND OFFICE Commissioner of Public Lands Stephanie Garcia Richard New Mexico State Land Office Building P.O. Box 1148, Santa Fe, NM 87504-1148

RIGHT OF ENTRY PERMIT CONTRACT NO. RE – 6494

This Agreement is made and entered into between the COMMISSIONER OF PUBLIC LANDS (the "Commissioner") and

Maverick Natural Resources, LLC 1410 NW County Rd Hobbs, NM 88240

("Permittee"). The parties agree as follows:

1. RIGHT OF ENTRY ("ROE")

The Commissioner grants to Permittee, and its authorized representatives, employees, and contractors, permission to use the state trust lands identified below (the "Premises"), and ingress and egress to the Premises, for the sole purposes of (1) surveying/conducting an environmental investigation on the site of a produced water and crude oil spill (the "Premises"), <u>EVGSAU 2437-001</u>, Incident No. nAPP2303273838, and (2) conducting surface reclamation activities, including removal of equipment and debris, and any required remediation per 19.2.100.67 NMAC.

The Premises is situated in the following location in Lea County, New Mexico:

Section	Township	Range	Subdivision	County	Longitude/Latitude
24	17S	34E	SE4SE4	Lea	32.81668,-103.50599

2. TERM AND TERMINATION

Right of entry is granted for a term of **180 days**, commencing on the execution date of this document by the Commissioner of Public Lands.

3. FEES

\$ 50.00 Application Fee\$ 500.00 Permit Fee\$ 550.00 Total Fee

RE-6494

Page 1 of 3

4. CONDITIONS OF USE

A. The issuance of this ROE does not guarantee that any subsequent lease, permit or any other instrument will be issued to Permittee for the Premises.

B. No blading or widening of any roads that provide access to the Premises is permitted under this ROE.

C. No sale of <u>any</u> material extracted from the Premises is allowed under this ROE.

D. Permittee shall observe all applicable federal, state and local laws and regulations.

E. Permittee shall take all reasonable precautions to prevent and suppress forest, brush and grass fires and prevent pollution of waters on or in the vicinity of the Premises.

F. Permittee shall not block or disrupt roads or trails commonly in use.

G. This ROE is subject to any and all easements and rights-of-way previously granted and now in force and affect.

H. Permittee shall be responsible for repair and restitution for damage to any Premises or improvements as a result of activities related to this ROE.

I. Prior to entering the Premises, Permittee must identify and contact any existing surface lessees. The grant of this ROE does not allow access across private lands.

J. Permittee may utilize this ROE upon its execution for inspection of the Premises and to conduct any necessary tests or inspections. Permittee may not conduct remediation or reclamation work until it has submitted a written plan for such work, and received State Land Office approval.

K. Personnel present on State Land: Maverick Natural Resources personnel and contractors.

L. Equipment and materials present on State Land: Heavy equipment, trucks, and associated materials.

5. SITE CONDITIONS

A. No surface disturbance, other than soil sampling, except as described in a reclamation plan submitted to and approved by the State Land Office.

B. Access to the Premises shall be over existing roads.

C. The natural environmental conditions that exist contemporaneously with this grant of ROE shall be preserved and protected. Permittee must follow all applicable environmental and cultural resource protection laws and regulations.

6. INDEMNITY

Permittee shall save, hold harmless, indemnify and defend the State of New Mexico, the Commissioner and Commissioner's employees, agents and contractors, in both their official and individual capacities, from any and all liability, claims, losses, damages, or expenses of any character or nature whatsoever, including but not limited to attorney's fees, court costs, loss of land value or use, third party claims, penalties, or removal, remedial or restoration costs arising out of, or alleged to arise out of Permittee's operations or presence on the Premises (or operations or presence of his representatives, employees, or contractors).

RE-6494

7. SURVIVAL OF TERMS

Permittee's obligations regarding indemnity, site conditions, and compliance with applicable standards and laws, shall survive the termination, cancellation or relinquishment of this Agreement, and any cause of action of the Commissioner to enforce any right, liability, claim, loss, damage or expense under those paragraphs shall not be deemed to accrue until the Commissioner's actual discovery of said right, liability, claim, loss, damage or expense.

8. NOTIFICATION

Permittee must notify the State Land Office immediately in the event Permittee or his representatives, employees, or contractors observe any spill, fire, or other emergency on the Premises, or if Permittee or his representatives, employees, or contractors experience any serious injury while on the Premises.

RE-6494

WITNESS the hands of PERMITTEE and COMMISSIONER on the day(s) and year entered below.

PERMITTEE SIGNATURE

DATE: ____

Bryce Wagoner

HSE Specialist

PERMITTEE NAME AND TITLE (PRINT)

SEAL:

Jain Ille BY:

Stephanie Garcia Richard Commissioner of Public Lands

04/11/2023

DATE:

APPENDIX B

Referenced Well Records

New Mexico Office of the State Engineer **Point of Diversion Summary**

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)									
Well Tag 🛛 I	OD Number	Q64 Q16 Q4 Sec	Tws Rng	X Y					
Ι	. 04829 POD7	3 3 3 19	17S 35E 6	40012 3631688* 🍯)				
Driller Licens	e: 99	Driller Company:	O.R. MUSSELV	WHITE WATER WEL	LL SE				
Driller Name	MUSSELWHITE	E, O.R. (LD)							
Drill Start Da	te: 03/25/1968	Drill Finish Date:	03/30/1968	Plug Date:					
Log File Date	: 04/04/1968	PCW Rcv Date:	06/24/1968	Source:	Shallow				
Pump Type:	SUBMER	Pipe Discharge Size:	200	Estimated Yield	:				
Casing Size:	10.75	Depth Well:	210 feet	Depth Water:	70 feet				

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

1/17/23 9:00 AM

POINT OF DIVERSION SUMMARY

USGS Home Contact USGS Search USGS

> ~ GO

National Water Information System: Web Interface

USGS Water Resources

• See the Water Data for the Nation Blog for the latest news and updates.

Groundwater levels for the Nation

Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usgs site_no list = • 324854103301101

Minimum number of levels = 1Save file of selected sites to local disk for future upload

USGS 324854103301101 17S.35E.19.3332231

Lea County, New Mexico Latitude 32°48'54", Longitude 103°30'11" NAD27 Land-surface elevation 3,992.5 feet above NGVD29 The depth of the well is 226 feet below land surface. The depth of the hole is 226 feet below land surface. This well is completed in the High Plains aquifer (N100HGHPLN) national aquifer. This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Table of data

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Pai cod	rameter	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1980-09-30			D	62610		3915.84	NGVD29	1	S			Д
1980-09-30			D	62611		3917.35	NAVD88	1	S			А
1980-09-30			D	72019	76.66			1	S			Δ

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for USA: Water Levels URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: USGS Water Data Support Team

USA.gov

Page Last Modified: 2023-01-16 15:04:20 EST 0.3 0.24 nadww01

.

Received by OCD: 2/19/2024 11:28:58 AM

APPENDIX C

Lithologic Soil Sampling Logs

•

								Sample Name: PH01	Date: 1/12/24			
				C				Site Name: EVGSAU-2437				
				3	ΟΙ			Incident Number: NAPP23032738	38			
								Job Number: : 03D2057067				
		ITHOL	OGIO		AMPLING	Logged By: Ronni Hayes Method: Trackhoe						
Coord	linates: 32							Hole Diameter: ~3 ft	Total Depth: 10'			
					ith HACH Chl	oride Test S	trips and I	PID for chloride and vapor, respection				
test performed with 1:4 dilution factor of soil to distilled water. 40% correction factor included.												
				0			~					
Moisture Content	Chloride (ppm)	or n)	Staining	Sample ID	Sample	Depth	JSCS/Rock Symbol					
Aoisture Content	chloride (ppm)	Vapor (ppm)	ain	ldu	Depth	(ft bgs)	/mt	Lithologic Des	scriptions			
ŠŬ	, c	/ _	St	Sar	(ft bgs)	(10.00)	US(
					-	ŀ						
D						- 1						
						Ľ						
					-	-		Open excavation	U-4 feet			
D						- 2						
					-	-						
D					-	- 3						
					-	-						
					_	_		SAND: fine to medium grair	ied, trace amounts			
D	1,025	4.8	Ν	PH01	4 -	- 4	SW	medium sized gravel, poorly				
								stained, strong hydrocarboi				
						-		, , ,				
D	1,300	0.6	Ν		_	- 5	SW	SAA				
					-	-						
					-	-		GRAVEL: medium to fine gra				
D	1,624	0.6	Ν	PH01	6 -	- 6	GM	of silty sand, poorly graded,	, heavily stained,			
					_	_		strong hydrocarbon odor.	-:			
	1 0 2 5	0.1	NI		-		CN4	GRAVEL: medium to fine gra				
D	1,025	0.1	Ν			- 7	GM	silty sand, poorly graded, he hydrocarbon odor.	eavily stained, strong			
					-	F						
D	1,109	0.1	Ν			- 8	GM	SAA				
	1,105	0.1			-	-						
					-			GRAVEL: medium to fine gra	ained, mod amounts of			
D	<156.8	0.0	Ν	PH01	9 -	- 9	GM	silty sand, poorly graded, he				
					-	ŀ		hydrocarbon odor.				
						-						
D	<156.8	0.0	Ν		-	- 10	GM	SAA				
						È.						
					-	ŀ		TD at 10 ft bgs				
					-							
					-	ŀ						
						-						

•

								Sample Name: PH02	Date: 1/12/24		
				~				Site Name: EVGSAU-2437	<i>Butter</i> 1/ 12/21		
			N	3	ΟΙ			Incident Number: NAPP230327383	38		
								Job Number: : 03D2057067			
LITHOLOGIC / SOIL SAMPLING LOG								Logged By: Ronni Hayes Method: Trackhoe			
Coord	inates: 32.							Hole Diameter: ~3 ft	Total Depth: 8 ft bgs		
					th HACH Chl	oride Test Si	trips and I	PID for chloride and vapor, respection			
						tion factor included.	,				
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic Des	criptions		
								Open excavation			
D	<156.8	0.3	N	PH02	4 -	- 4 - 4	SW	SAND: fine to medium grain medium sized gravel, poorly stained, strong hydrocrbon	graded, heavily		
D	<156.8	0.8			-	- 5	SW	SAA GRAVEL: medium to fine gra	iined, trace amounts		
D	1,080	0.2	Ν	PH02	6 -	- 6	GM	of silty sand, poorly graded, odor.	slight hydrocarbon		
D	526.4	0.2			-	- 7 -	GM	GRAVEL: medium to fine gra silty sand, poorly graded, no			
D	364	0.0	N	PH02	8 -	- 8	GM	SAA TD at 8 ft bgs			

APPENDIX D

Photographic Log

APPENDIX E

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 2/19/2024 11:28:58 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kalei Jennings Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/18/2023 1:38:25 PM

JOB DESCRIPTION

EVGSU 2437-001 SDG NUMBER Lea County

JOB NUMBER

890-3833-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See hage two for job notes and contect information
Received by OCD: 2/19/2024 11:28:58 AM

1

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 1/18/2023 1:38:25 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3833-1 SDG: Lea County

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	23
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

2

3

Page 39 of 129

	Definitions/Glossary	1
Client: Ensolur Project/Site: E	n Job ID: 890-3833-1 /GSU 2437-001 SDG: Lea County	2
Qualifiers		3
GC VOA Qualifier	Qualifier Description	4
*+ F1	LCS and/or LCSD is outside acceptance limits, high biased. MS and/or MSD recovery exceeds control limits.	5
F2	MS/MSD RPD exceeds control limits	3
S1+ U	Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.	6
GC Semi VOA		7
Qualifier	Qualifier Description	

S1+

U

HPLC/IC	
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
	applicable.
E	Result exceeded calibration range.
U	Indicates the analyte was analyzed for but not detected.

Surrogate recovery exceeds control limits, high biased.

Indicates the analyte was analyzed for but not detected.

Glossary

Glossaly	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

0

Page 40 of 129

Job ID: 890-3833-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3833-1

Receipt

The samples were received on 1/11/2023 4:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-3833-1), SS02 (890-3833-2), SS03 (890-3833-3), SS04 (890-3833-4), SS05 (890-3833-5), SS06 (890-3833-6), SS07 (890-3833-7) and SS08 (890-3833-8).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS01 (890-3833-1) and SS02 (890-3833-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS03 (890-3833-3) and SS04 (890-3833-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43910 and analytical batch 880-43961 was outside control limits. Sample matrix interference and/or non-homogeneity is suspected.

Method 8021B: LCSD biased high. Since only an acceptable LCS is required per the method, the data has been qualified and reported. (LCSD 880-43910/2-A)

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS01 (890-3833-1) and SS02 (890-3833-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-43991 and analytical batch 880-44129 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SS01 (890-3833-1), SS02 (890-3833-2), SS03 (890-3833-3), SS04 (890-3833-4), SS05 (890-3833-5), SS07 (890-3833-7), SS08 (890-3833-8), (MB 880-43909/1-A) and (890-3831-A-1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The native sample, matrix spike, and matrix spike duplicate (MS/MSD) associated with preparation batch 880-43970 and analytical batch 880-44164 were performed at the same dilution. Due to the additional level of analyte present in the spiked samples, the concentration of Chloride in the MS/MSD was above the instrument calibration range. The data have been reported and qualified.

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43970 and analytical batch 880-44164 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

12.7

93.1

85.9 70.0

35.0

105

Client Sample Results

RL

0.498

0.498

0.498

0.996

0.498

0.996

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

01/16/23 14:35

01/16/23 14:35

01/16/23 14:35

01/16/23 14:35

01/16/23 14:35

01/16/23 14:35

Job ID: 890-3833-1 SDG: Lea County

Client Sample ID: SS01

Project/Site: EVGSU 2437-001

Date Collected: 01/11/23 13:15 Date Received: 01/11/23 16:35

Sample Depth: 0.5'

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Lab Sample	ID:	890-3833-1
		Matrix: Solid

Analyzed

01/17/23 15:34

01/17/23 15:34

01/17/23 15:34

01/17/23 15:34

01/17/23 15:34

01/17/23 15:34

11 12 13

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	471	S1+	70 - 130			01/13/23 13:50	01/16/23 16:24	50
1,4-Difluorobenzene (Surr)	70		70 - 130			01/13/23 13:50	01/16/23 16:24	50
Method: TAL SOP Total BTEX - To	tal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	297		0.996	mg/Kg			01/17/23 14:40	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) ((GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	41300		500	mg/Kg			01/16/23 16:51	1
Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	4660		500	mg/Kg		01/13/23 13:11	01/16/23 03:17	10
(GRO)-C6-C10			500			04/40/00 40 44	04/40/00 00 47	10
Diesel Range Organics (Over C10-C28)	32100		500	mg/Kg		01/13/23 13:11	01/16/23 03:17	10
Oll Range Organics (Over C28-C36)	4570		500	mg/Kg		01/13/23 13:11	01/16/23 03:17	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	196	S1+	70 - 130			01/13/23 13:11	01/16/23 03:17	10
o-Terphenyl	184	S1+	70 - 130			01/13/23 13:11	01/16/23 03:17	10
Method: MCAWW 300.0 - Anions,	on Chromato	ography - So	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10200		49.7	mg/Kg			01/17/23 16:52	10
Client Sample ID: SS02						Lab Sar	nple ID: 890-	3833-2
Date Collected: 01/11/23 13:20							Matri	x: Solid
Date Received: 01/11/23 16:35								
Sample Depth: 0.5'								
Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	9.37	*+	0.0998	mg/Kg		01/13/23 13:50	01/16/23 16:44	50

Analyte	Result	Quaimer	RL	Unit	U	Prepared	Analyzed	DIFac
Benzene	9.37	*+	0.0998	mg/Kg		01/13/23 13:50	01/16/23 16:44	50
Toluene	79.0		0.497	mg/Kg		01/16/23 14:35	01/17/23 15:55	250
Ethylbenzene	85.7		0.497	mg/Kg		01/16/23 14:35	01/17/23 15:55	250
m-Xylene & p-Xylene	74.6		0.994	mg/Kg		01/16/23 14:35	01/17/23 15:55	250
o-Xylene	40.5		0.497	mg/Kg		01/16/23 14:35	01/17/23 15:55	250
Xylenes, Total	115		0.994	mg/Kg		01/16/23 14:35	01/17/23 15:55	250

Eurofins Carlsbad

Released to Imaging: 4/12/2024 8:48:54 AM

Client Sample Results

Job ID: 890-3833-1 SDG: Lea County

Client Sample ID: SS02

Project/Site: EVGSU 2437-001

Date Collected: 01/11/23 13:20 Date Received: 01/11/23 16:35

Sample Depth: 0.5'

Client: Ensolum

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	561	S1+	70 - 130			01/13/23 13:50	01/16/23 16:44	50
1,4-Difluorobenzene (Surr)	121		70 - 130			01/13/23 13:50	01/16/23 16:44	50
Method: TAL SOP Total BTEX - Tot								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	289		0.994	mg/Kg			01/17/23 14:40	1
Method: SW846 8015 NM - Diesel I	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	40200		499	mg/Kg			01/16/23 16:51	1
Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	3960		499	mg/Kg		01/13/23 13:11	01/16/23 03:38	10
(GRO)-C6-C10 Diesel Range Organics (Over	24000		499	mg/Kg		01/13/23 13:11	01/16/23 03:38	10
C10-C28)	31900		+33	mg/rxg		01/10/20 10.11	01/10/20 00.00	10
Oll Range Organics (Over	4320		499	mg/Kg		01/13/23 13:11	01/16/23 03:38	10
C28-C36)								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	195	S1+	70 - 130			01/13/23 13:11	01/16/23 03:38	10
o-Terphenyl	187	S1+	70 - 130			01/13/23 13:11	01/16/23 03:38	10
Method: MCAWW 300.0 - Anions, I		graphy - So Qualifier						
Analyte		Quaimer	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8290	Quaimer	RL 50.3	Unit mg/Kg	<u> </u>	Prepared	Analyzed 01/17/23 17:09	Dil Fac 10
Chloride		Quaimer			D			10
Chloride					<u>D</u>		01/17/23 17:09	10 3833-3
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25					<u> </u>		01/17/23 17:09	10
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35		Quaimer			<u> </u>		01/17/23 17:09	10 3833-3
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Dample Depth: 0.5'	8290		50.3		<u> </u>		01/17/23 17:09	10 3833-3
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Dample Depth: 0.5'	8290 rganic Comp		50.3		D		01/17/23 17:09	10 3833-3
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Dample Depth: 0.5' Method: SW846 8021B - Volatile O	8290 rganic Comp	ounds (GC)	50.3	mg/Kg		Lab Sar	01/17/23 17:09 nple ID: 890- Matri	10 3833-3 x: Solid
Chloride Chloride Elient Sample ID: SS03 ate Collected: 01/11/23 13:25 ate Received: 01/11/23 16:35 ample Depth: 0.5' Method: SW846 8021B - Volatile O Analyte Benzene	8290 rganic Comp Result	ounds (GC)	50.3	mg/Kg		Lab San	01/17/23 17:09 nple ID: 890- Matri Analyzed	10 3833-3 x: Solid Dil Fac 500
Chloride Client Sample ID: SS03 pate Collected: 01/11/23 13:25 pate Received: 01/11/23 16:35 pample Depth: 0.5' Method: SW846 8021B - Volatile O Analyte	rganic Comp Result 38.4	ounds (GC)	50.3	mg/Kg		Lab San Prepared 01/16/23 14:35	01/17/23 17:09 nple ID: 890- Matri Analyzed 01/17/23 20:02	10 3833-3 x: Solid
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Date Received: 01/11/123 16:35 Date Received: 01/11/123 16:35 D	8290 rganic Comp Result 38.4 170	ounds (GC)	50.3 	mg/Kg Unit mg/Kg mg/Kg		Prepared 01/16/23 14:35 01/16/23 14:35	01/17/23 17:09 nple ID: 890- Matri Analyzed 01/17/23 20:02 01/17/23 20:02	10 3833-3 x: Solid Dil Fac 500 500
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Dample Depth: 0.5' Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene	8290 rganic Comp Result 38.4 170 111	ounds (GC)	50.3 RL 0.994 0.994 0.994	Unit mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35	01/17/23 17:09 nple ID: 890- Matri Analyzed 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02	10 3833-3 x: Solid Dil Fac 500 500 500
Chloride Client Sample ID: SS03 pate Collected: 01/11/23 13:25 pate Received: 01/11/23 16:35 pample Depth: 0.5' Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	8290 rganic Comp Result 38.4 170 111 90.6	ounds (GC)	50.3 RL 0.994 0.994 0.994 1.99	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35	01/17/23 17:09 nple ID: 890- Matri Analyzed 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02	10 3833-3 x: Solid Dil Fac 500 500 500 500 500 500
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Date Depth: 0.5' Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	8290 rganic Comp Result 38.4 170 111 90.6 41.3	ounds (GC Qualifier	Fl 0.994 0.994 0.994 0.994 0.994 0.994 0.994 0.994	mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35	01/17/23 17:09 nple ID: 890- Matri 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02	10 3833-3 x: Solid Dil Fac 500 500 500 500
Chloride Client Sample ID: SS03 pate Collected: 01/11/23 13:25 pate Received: 01/11/23 16:35 pample Depth: 0.5' Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	8290 rganic Comp Result 38.4 170 111 90.6 41.3 132 %Recovery	ounds (GC Qualifier	FL 0.994 0.994 0.994 0.994 0.994 1.99 0.994 1.99 0.994	mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35	01/17/23 17:09 nple ID: 890- Matri 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02	10 3833-3 x: Solid 500 500 500 500 500 500 500 500 500 50
Chloride Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Sample Depth: 0.5' Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	8290 rganic Comp Result 38.4 170 111 90.6 41.3 132 %Recovery	ounds (GC) Qualifier	50.3 RL 0.994 0.994 0.994 1.99 0.994 1.99 Limits	mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 Prepared	01/17/23 17:09 nple ID: 890- Matri Analyzed 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 01/17/23 20:02 Analyzed	10 3833-3 x: Solid Dil Fac 500 500 500 500 500 500
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Date Depth: 0.5' Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	8290 rganic Comp Result 38.4 170 111 90.6 41.3 132 %Recovery 466 77	Ounds (GC) Qualifier Qualifier S1+	RL 0.994 0.994 0.994 0.994 0.994 1.99 0.994 1.99 Limits 70 - 130	mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35	01/17/23 17:09 nple ID: 890- Matri 01/17/23 20:02 01/17/23 20:02	10 3833-3 x: Solid 500 500 500 500 500 500 500 500 500 50
Chloride Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35 Sample Depth: 0.5' Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	8290 rganic Comp Result 38.4 170 111 90.6 41.3 132 %Recovery 466 77 tal BTEX Calc	Ounds (GC) Qualifier Qualifier S1+	RL 0.994 0.994 0.994 0.994 0.994 1.99 0.994 1.99 Limits 70 - 130	mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35 01/16/23 14:35	01/17/23 17:09 nple ID: 890- Matri 01/17/23 20:02 01/17/23 20:02	10 3833-3 x: Solid 500 500 500 500 500 500 500 500 500 50

Lab Sample ID: 890-3833-2 Matrix: Solid

Client Sample Results

Job ID: 890-3833-1 SDG: Lea County

Client Sample ID: SS03

Project/Site: EVGSU 2437-001

Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35

Sample Depth: 0.5'

Gasoline Range Organics

Oll Range Organics (Over

Diesel Range Organics (Over

Analyte

Analyte

C10-C28)

C28-C36)

(GRO)-C6-C10

Total TPH

Client: Ensolum

Lab Sample ID:	890-3833-3
	Matrix: Solid

Lab Sample ID: 890-3833-4

Matrix: Solid

5 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Dil Fac Result Qualifier RL Unit D Analyzed Prepared 250 01/16/23 16:51 17100 mg/Kg 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL Unit Analyzed Dil Fac D Prepared 250 01/13/23 13:11 01/16/23 04:00 5 3390 mg/Kg 12000 250 mg/Kg 01/13/23 13:11 01/16/23 04:00 5 1730 250 mg/Kg 01/13/23 13:11 01/16/23 04:00 5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	153	S1+	70 - 130	01/13/23 13:11	01/16/23 04:00	5
o-Terphenyl	171	S1+	70 - 130	01/13/23 13:11	01/16/23 04:00	5

wiethod: wicAvvvv 300.0 - Anions, id	on Chromato	grapny - Son	ubie					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13400		100	mg/Kg			01/17/23 17:15	20

Client Sample ID: SS04

Date Collected: 01/11/23 13:30

Date Received: 01/11/23 16:35

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	9.62		1.00	mg/Kg		01/16/23 14:35	01/17/23 20:22	500
Toluene	74.8		1.00	mg/Kg		01/16/23 14:35	01/17/23 20:22	500
Ethylbenzene	73.8		1.00	mg/Kg		01/16/23 14:35	01/17/23 20:22	500
m-Xylene & p-Xylene	65.8		2.00	mg/Kg		01/16/23 14:35	01/17/23 20:22	500
o-Xylene	36.4		1.00	mg/Kg		01/16/23 14:35	01/17/23 20:22	500
Xylenes, Total	102		2.00	mg/Kg		01/16/23 14:35	01/17/23 20:22	500
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	423	S1+	70 - 130			01/13/23 13:50	01/16/23 21:56	50
			70 100			01/10/00 10 50	01/16/23 21:56	50
Method: TAL SOP Total BTEX -		culation Qualifier	70 - 130 RL	Unit	D	01/13/23 13:50 Prepared		
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX -	Total BTEX Cald			11-14				
Method: TAL SOP Total BTEX - Analyte	Total BTEX Cald			Unit mg/Kg	<u>D</u>	Prepared	Analyzed 01/17/23 14:40	50 Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX	Total BTEX Calc Result 260	Qualifier			<u> </u>		Analyzed	
	Total BTEX Calo Result 260 sel Range Organ	Qualifier			<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte	Total BTEX Calo Result 260 sel Range Organ	Qualifier	RL	mg/Kg		Prepared	Analyzed 01/17/23 14:40	
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies	Total BTEX Calo Result 260 sel Range Organ Result 22100	Qualifier ics (DRO) (Qualifier	RL 2.00 GC) RL 250	mg/Kg Unit		Prepared	Analyzed 01/17/23 14:40 Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Die	Total BTEX Calo Result 260 Sel Range Organ Result 22100 Sesel Range Orga	Qualifier ics (DRO) (Qualifier	RL 2.00 GC) RL 250	mg/Kg Unit		Prepared	Analyzed 01/17/23 14:40 Analyzed	Dil Fac 1 Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH	Total BTEX Calo Result 260 Sel Range Organ Result 22100 Sesel Range Orga	Qualifier ics (DRO) (Qualifier nics (DRO)	RL 2.00 GC) RL 250 (GC)	mg/Kg	D	Prepared Prepared	Analyzed 01/17/23 14:40 Analyzed 01/16/23 16:51	Dil Fac

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3833-4

01/16/23 04:21

Lab Sample ID: 890-3833-5

01/13/23 13:11

Project/Site: EVGSU 2437-001 Client Sample ID: SS04

Date Collected: 01/11/23 13:30 Date Received: 01/11/23 16:35

Sample Depth: 0.5'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	2350		250	mg/Kg		01/13/23 13:11	01/16/23 04:21	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	161	S1+	70 - 130			01/13/23 13:11	01/16/23 04:21	5

o-Terphenyl

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

171 S1+

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13600		99.6	mg/Kg			01/17/23 17:21	20

70 - 130

Client Sample ID: SS05

Date Collected: 01/11/23 13:35 Date Received: 01/11/23 16:35

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.152	*+	0.0498	mg/Kg		01/13/23 13:50	01/16/23 22:17	25
Toluene	0.297		0.0498	mg/Kg		01/13/23 13:50	01/16/23 22:17	25
Ethylbenzene	0.145	*+	0.0498	mg/Kg		01/13/23 13:50	01/16/23 22:17	25
m-Xylene & p-Xylene	0.148		0.0996	mg/Kg		01/13/23 13:50	01/16/23 22:17	25
o-Xylene	0.0830		0.0498	mg/Kg		01/13/23 13:50	01/16/23 22:17	25
Xylenes, Total	0.231		0.0996	mg/Kg		01/13/23 13:50	01/16/23 22:17	25
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			01/13/23 13:50	01/16/23 22:17	25
1,4-Difluorobenzene (Surr)	121		70 - 130			01/13/23 13:50	01/16/23 22:17	25

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total BTEX 0.825 0.0996 mg/Kg D 01/17/23 14:40 1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte		Qualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	7210	49.9	mg/Kg			01/16/23 16:51	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	7210		49.9	mg/Kg		01/13/23 13:11	01/16/23 01:29	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		01/13/23 13:11	01/16/23 01:29	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/13/23 13:11	01/16/23 01:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	113		70 - 130			01/13/23 13:11	01/16/23 01:29	1
o-Terphenyl	137	S1+	70 _ 130			01/13/23 13:11	01/16/23 01:29	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	49.1		4.97	mg/Kg			01/17/23 17:26	1

Eurofins Carlsbad

5

Dil Fac

25

25

Client Sample Results

RL

0.0495

0.0495

Unit

mg/Kg

mg/Kg

D

Prepared

01/13/23 13:50

01/13/23 13:50

Job ID: 890-3833-1 SDG: Lea County

Client Sample ID: SS06

Date Collected: 01/11/23 13:40 Date Received: 01/11/23 16:35

Sample Depth: 0.5'

Analyte

Benzene

Toluene

Lab Sample	ID:	890-3833-6
		Matrix: Solid

Analyzed

01/16/23 22:37

01/16/23 22:37

11 12 13

Totuette	0.155		0.0100	ing/itg		01/10/20 10:00	01/10/20 22:01	20
Ethylbenzene	0.126	*+	0.0495	mg/Kg		01/13/23 13:50	01/16/23 22:37	25
m-Xylene & p-Xylene	0.148		0.0990	mg/Kg		01/13/23 13:50	01/16/23 22:37	25
o-Xylene	0.0994		0.0495	mg/Kg		01/13/23 13:50	01/16/23 22:37	25
Xylenes, Total	0.247		0.0990	mg/Kg		01/13/23 13:50	01/16/23 22:37	25
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			01/13/23 13:50	01/16/23 22:37	25
1,4-Difluorobenzene (Surr)	123		70 - 130			01/13/23 13:50	01/16/23 22:37	25
	.20					0 // 0/ 20 / 0/00	0.1.0.20 22.0.	20
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.528		0.0990	mg/Kg			01/17/23 14:40	1
- Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	50.1		50.0	mg/Kg			01/16/23 16:51	1
Method: SW846 8015B NM - Dies Analyte		Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	- <u>- <50.0</u>		50.0	mg/Kg		01/13/23 13:11	01/16/23 00:24	1
(GRO)-C6-C10		0	00.0	1119/119		01/10/20 10:11	01/10/20 00.21	
Diesel Range Organics (Over	50.1		50.0	mg/Kg		01/13/23 13:11	01/16/23 00:24	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/13/23 13:11	01/16/23 00:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130			01/13/23 13:11	01/16/23 00:24	1
o-Terphenyl	127		70 - 130			01/13/23 13:11	01/16/23 00:24	1
_ Method: MCAWW 300.0 - Anions	Ion Chromate	ography - S	oluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	64.1		5.02	mg/Kg			01/17/23 17:32	1
Client Sample ID: SS07						l ah Sar	nple ID: 890-	3833-7
Date Collected: 01/11/23 13:45						Lab Gai		x: Solid
Jale Collected: 01/11/25 15:45							Watri	x: 50110
Data Pacaivad: 01/11/23 16:35								
	Organic Comp	ounds (GC)					
Sample Depth: 0.5'	•	ounds (GC Qualifier) RL	Unit	D	Prepared	Analyzed	Dil Fac
Sample Depth: 0.5' Method: SW846 8021B - Volatile	•	Qualifier	•	Unit mg/Kg	D	Prepared 01/13/23 13:50	01/16/23 22:58	25
Sample Depth: 0.5' Method: SW846 8021B - Volatile Analyte	Result	Qualifier	RL		D	· · ·		25
Sample Depth: 0.5' Method: SW846 8021B - Volatile Analyte Benzene	Result <0.0497	Qualifier	RL 0.0497	mg/Kg	<u> </u>	01/13/23 13:50	01/16/23 22:58	25 25
Sample Depth: 0.5' Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.0497 0.0839	Qualifier U *+ U *+	RL 0.0497 0.0497	mg/Kg mg/Kg	<u>D</u>	01/13/23 13:50 01/13/23 13:50	01/16/23 22:58 01/16/23 22:58	
Analyte Benzene Toluene Ethylbenzene	Result <0.0497	Qualifier U *+ U V	RL 0.0497 0.0497 0.0497	mg/Kg mg/Kg mg/Kg	<u>D</u>	01/13/23 13:50 01/13/23 13:50 01/13/23 13:50	01/16/23 22:58 01/16/23 22:58 01/16/23 22:58	25 25 25

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130	01/13/23 13:50	01/16/23 22:58	25

Eurofins Carlsbad

Client: Ensolum Project/Site: EVGSU 2437-001

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.0495 U*+

0.155

Client Sample Results

Job ID: 890-3833-1 SDG: Lea County

Lab Sample ID: 890-3833-7

Client Sample ID: SS07

Project/Site: EVGSU 2437-001

Date Collected: 01/11/23 13:45

Date Received: 01/11/23 16:35 Sample Depth: 0.5'

Client: Ensolum

C10-C28)

Sample Depth: 0.5								
Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC) (Continued)					
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	122		70 - 130			01/13/23 13:50	01/16/23 22:58	25
Method: TAL SOP Total BTEX	- Total BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.0994	U	0.0994	mg/Kg			01/17/23 14:40	1
Method: SW846 8015 NM - Die Analyte	0 0	i <mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			01/16/23 16:51	1
 Method: SW846 8015B NM - D Analyte	0 0	nics (DRO) Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
	<u><50.0</u>	-	50.0			01/13/23 13:11	01/16/23 00:45	1
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	30.0	mg/Kg		01/13/23 13:11	01/10/23 00:45	I
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/13/23 13:11	01/16/23 00:45	1

Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	01/13/23 13:11	01/16/23 00:45	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	129		70 - 130		01/13/23 13:11	01/16/23 00:45	1
o-Terphenyl	145	S1+	70 - 130		01/13/23 13:11	01/16/23 00:45	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Chloride	347		5.01	mg/Kg			01/17/23 17:38	1

Client Sample ID: SS08

Date Collected: 01/11/23 13:50 Date Received: 01/11/23 16:35 Sample Depth: 0.5'

Lab Sample ID: 890-3833-8 Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200	mg/Kg		01/13/23 13:50	01/16/23 19:51	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/13/23 13:50	01/16/23 19:51	1
Ethylbenzene	<0.00200	U *+	0.00200	mg/Kg		01/13/23 13:50	01/16/23 19:51	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/13/23 13:50	01/16/23 19:51	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/13/23 13:50	01/16/23 19:51	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		01/13/23 13:50	01/16/23 19:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			01/13/23 13:50	01/16/23 19:51	1
1,4-Difluorobenzene (Surr)	107		70 - 130			01/13/23 13:50	01/16/23 19:51	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			01/17/23 14:40	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0		50.0	mg/Kg			01/16/23 16:51	

Eurofins Carlsbad

Matrix: Solid

5

Released to Imaging: 4/12/2024 8:48:54 AM

5

13

Client Sample Results

Job ID: 890-3833-1 SDG: Lea County

Client Sample ID: SS08

Project/Site: EVGSU 2437-001

Date Collected: 01/11/23 13:50

Date Received: 01/11/23 16:35 Sample Depth: 0.5'

Client: Ensolum

Lab Sample ID:	890-3833-8
	Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/13/23 13:11	01/16/23 01:50	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/13/23 13:11	01/16/23 01:50	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/13/23 13:11	01/16/23 01:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	131	S1+	70 - 130			01/13/23 13:11	01/16/23 01:50	1
o-Terphenyl	144	S1+	70 - 130			01/13/23 13:11	01/16/23 01:50	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	234		24.9	mg/Kg			01/17/23 17:43	5

Client: Ensolum Project/Site: EVGSU 2437-001

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	4
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
890-3832-A-8-E MS	Matrix Spike	107	102		
890-3832-A-8-F MSD	Matrix Spike Duplicate	109	98		6
890-3833-1	SS01	471 S1+	70		
890-3833-2	SS02	561 S1+	121		7
890-3833-3	SS03	466 S1+	77		
890-3833-4	SS04	423 S1+	120		8
890-3833-5	SS05	103	121		
890-3833-6	SS06	101	123		Q
890-3833-7	SS07	97	122		
890-3833-8	SS08	103	107		10
890-3838-A-61-E MS	Matrix Spike	102	84		IU
890-3838-A-61-F MSD	Matrix Spike Duplicate	134 S1+	93		4.4
LCS 880-43910/1-A	Lab Control Sample	99	101		11
LCS 880-43991/1-A	Lab Control Sample	108	97		40
LCSD 880-43910/2-A	Lab Control Sample Dup	104	104		12
LCSD 880-43991/2-A	Lab Control Sample Dup	111	100		
MB 880-43910/5-A	Method Blank	99	100		13
MB 880-43991/5-A	Method Blank	85	90		
Surrogate Legend					14

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3831-A-1-B MS	Matrix Spike	102	114	
890-3831-A-1-C MSD	Matrix Spike Duplicate	107	119	
890-3833-1	SS01	196 S1+	184 S1+	
890-3833-2	SS02	195 S1+	187 S1+	
890-3833-3	SS03	153 S1+	171 S1+	
890-3833-4	SS04	161 S1+	171 S1+	
890-3833-5	SS05	113	137 S1+	
890-3833-6	SS06	108	127	
890-3833-7	SS07	129	145 S1+	
890-3833-8	SS08	131 S1+	144 S1+	
LCS 880-43909/2-A	Lab Control Sample	104	126	
LCSD 880-43909/3-A	Lab Control Sample Dup	105	126	
MB 880-43909/1-A	Method Blank	179 S1+	227 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Project/Site: EVGSU 2437-001

Client: Ensolum

Job ID: 890-3833-1 SDG: Lea County

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-43910)/5-A								Client Sa	ample ID: M	lethoo	l Blank
Matrix: Solid										Prep Ty	pe: To	otal/N/
Analysis Batch: 43961										Prep E	Batch:	4391
-	ME	з мв								-		
Analyte	Resul	t Qualifier	RL		Unit		D	Pr	epared	Analyze	d	Dil Fa
Benzene	<0.00200	0 U	0.00200		mg/K	g		01/13	3/23 13:50	01/16/23 14	4:39	
Toluene	<0.00200	D U	0.00200		mg/K	g		01/13	8/23 13:50	01/16/23 14	4:39	
Ethylbenzene	<0.00200	D U	0.00200		mg/K	g		01/13	3/23 13:50	01/16/23 14	4:39	
m-Xylene & p-Xylene	<0.00400	D U	0.00400		mg/K	g		01/13	3/23 13:50	01/16/23 14	4:39	
o-Xylene	<0.00200	D U	0.00200		mg/K	g		01/13	3/23 13:50	01/16/23 14	4:39	
Xylenes, Total	<0.00400	D U	0.00400		mg/K	-		01/13	3/23 13:50	01/16/23 14	4:39	
-					-	-						
	ME											
Surrogate	%Recover		Limits				-		epared	Analyze		Dil Fa
4-Bromofluorobenzene (Surr)	7		1+_03+						3/: 3 0356+	+0/02/: 3 04		
0,4-Difluorobenzene (Surr)	0+-	+	1+_03+					+0/03	3/: 3 0356+	+0/02/: 3 04	4537	
Lab Sample ID: LCS 880-4391 Matrix: Solid	0/1-A						CI	lient	Sample	ID: Lab Cor Prep Ty		
Analysis Batch: 43961										Prep E	-	
Analysis Datch: 45501			Spike	LCS	LCS					%Rec	Jaich	. 4551
Analyte			Added	Result		Unit		D	%Rec	Limits		
Benzene	·		0.100	0.1229	Quaimer	mg/Kg		<u> </u>	123	70 - 130		
Toluene			0.100	0.1220		mg/Kg			113	70 - 130		
Ethylbenzene			0.100	0.1225		mg/Kg			122	70 - 130		
m-Xylene & p-Xylene			0.200	0.1223		mg/Kg			111	70 - 130		
			0.200	0.2210		mg/rtg				70 - 130		
o-Xvlene			0 100	0 1110		ma/Ka			112	70 130		
o-Xylene			0.100	0.1119		mg/Kg			112	70 - 130		
o-Xylene	LCS LC	s	0.100	0.1119		mg/Kg			112	70 - 130		
		S alifier	0.100 <i>Limits</i>	0.1119		mg/Kg			112	70 - 130		
Surrogate				0.1119		mg/Kg			112	70 - 130		
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery Qu		Limits	0.1119		mg/Kg			112	70 - 130		
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr)	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+	0.1119				0			0	
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-435	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+	0.1119			ient	Sam		ab Control		
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+	0.1119			ient	Sam		ab Control Prep Ty	pe: To	otal/NA
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+ 1+ - 03+				ient	Sam		ab Control Prep Ty Prep B	pe: To	otal/NA : 43910
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+ 1+ - 03+ Spike	LCSD		CI	ient		ple ID: L	ab Control Prep Ty Prep E %Rec	pe: To Batch:	otal/N/ : 4391(RPI
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+ 1+ - 03+ Spike Added	LCSD Result	Qualifier	CI	ient	Sam	ple ID: L	ab Control Prep Ty Prep E %Rec Limits	RPD	otal/NA : 43910 RPI Limi
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte Benzene	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100	LCSD Result 0.1348		CI - Unit mg/Kg	ient :		ple ID: L <u>%Rec</u> 135	ab Control Prep Ty Prep E %Rec Limits 70 - 130	Ppe: To Batch: RPD 9	otal/NA : 4391(RPI Limi 3
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100	LCSD Result 0.1348 0.1189	Qualifier *+	CI mg/Kg mg/Kg	ient :		ple ID: L %Rec 135 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130	rpe: To Batch: RPD 9 5	20tal/N/ 2 43910 RPI Limi 33 33
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100	LCSD Result 0.1348 0.1189 0.1308	Qualifier *+	CI mg/Kg mg/Kg mg/Kg	ient :		ple ID: L %Rec 135 119 131	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130	rpe: To Batch: RPD 9 5 7	tal/N/ 4391 RPI Lim 3 3 3
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200	LCSD Result 0.1348 0.1308 0.2375	Qualifier *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 9 5 7 7	tal/NA 43910 RPI Limi 38 38 38 38 38 38
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<u>%Recovery</u> <u>Qu</u> 77 0+0		Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100	LCSD Result 0.1348 0.1189 0.1308	Qualifier *+	CI mg/Kg mg/Kg mg/Kg	ient :		ple ID: L %Rec 135 119 131	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130	rpe: To Batch: RPD 9 5 7	tal/NA 43910 RPI Limi 38 38 38 38 38 38
o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-433 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	<u>%Recovery</u> Qu 77 0+0 910/2-A	alifier	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200	LCSD Result 0.1348 0.1308 0.2375	Qualifier *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 9 5 7 7	otal/NA : 43910 RPE Limi 38 38 38
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	<u>%Recovery</u> Qu 77 0+0 910/2-A 	sD	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200 0.100	LCSD Result 0.1348 0.1308 0.2375	Qualifier *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 9 5 7 7	otal/NA : 4391(RPI Limi 38 38 38 38
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	<u>%Recovery</u> Qu 77 0+0 910/2-A	sD	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200	LCSD Result 0.1348 0.1308 0.2375	Qualifier *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 9 5 7 7	otal/NA : 43910 RPE Limi 38 38 38
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-433 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	<u>%Recovery</u> Qu 77 0+0 910/2-A 	sD	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200 0.100 Limits	LCSD Result 0.1348 0.1308 0.2375	Qualifier *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 9 5 7 7	otal/NA : 4391(RPI Limi 38 38 38 38
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-433 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3832-A-8	<u>%Recovery</u> Qu 77 0+0 910/2-A <u>LCSD</u> LC <u>%Recovery</u> Qu 0+4 0+4	sD	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200 0.100 1.100 Limits 1+ - 03+	LCSD Result 0.1348 0.1308 0.2375	Qualifier *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Ppe: To Batch: 9 5 7 7 7 7 7 8 Matrix	c Spike
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-433 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3832-A-8- Matrix: Solid	<u>%Recovery</u> Qu 77 0+0 910/2-A <u>LCSD</u> LC <u>%Recovery</u> Qu 0+4 0+4	sD	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200 0.100 1.100 Limits 1+ - 03+	LCSD Result 0.1348 0.1308 0.2375	Qualifier *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Ppe: To Batch: 9 5 7 7 7 7 7 8 Matrix ppe: To	c Spike
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-433 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3832-A-8- Matrix: Solid	<u>%Recovery</u> Qu 77 0+0 910/2-A <u>LCSD</u> LC <u>%Recovery</u> Qu 0+4 0+4	sD	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200 0.100 Limits 1+ - 03+ 1+ - 03+	LCSD Result 0.1348 0.1189 0.1308 0.2375 0.1194	Qualifier *+ *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 130	Ppe: To Batch: 9 5 7 7 7 7 7 8 Matrix ppe: To	c Spike
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-433 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3832-A-8- Matrix: Solid Analysis Batch: 43961	%Recovery Qu 77 - 0+0 - 910/2-A -	alifier SD alifier	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 Limits 1+ - 03+ 1+ - 03+ 1+ - 03+	LCSD Result 0.1348 0.1189 0.1308 0.2375 0.1194	Qualifier *+ *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119 119 119 Client \$	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 190 70 - 190 7	Ppe: To Batch: 9 5 7 7 7 7 7 8 Matrix ppe: To	c Spike
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-439 Matrix: Solid Analysis Batch: 43961 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	<u>%Recovery</u> Qu 77 0+0 910/2-A <u>LCSD</u> LC <u>%Recovery</u> Qu 0+4 0+4	alifier	Limits 1+ - 03+ 1+ - 03+ Spike Added 0.100 0.100 0.100 0.200 0.100 Limits 1+ - 03+ 1+ - 03+	LCSD Result 0.1348 0.1189 0.1308 0.2375 0.1194	Qualifier *+ *+	CI mg/Kg mg/Kg mg/Kg mg/Kg	ient :		%Rec 135 119 131 119 119	ab Control Prep Ty Prep E %Rec Limits 70 - 130 70 - 170 Frep Ty Prep E	Ppe: To Batch: 9 5 7 7 7 7 7 8 Matrix ppe: To	etal/NA : 43910 RPD Limit 35 35 35 35 35 35 35 35 35 35

QC Sample Results

Client: Ensolum Project/Site: EVGSU 2437-001

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3832-A- Matrix: Solid Analysis Batch: 43961	-8-E MS								Client S		: Matrix ype: To Batch:	tal/NA
	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Toluene	<0.00202	U F2 F1	0.101	0.07955		mg/Kg			79	70 - 130		
Ethylbenzene	<0.00202	U *+ F2 F1	0.101	0.08884		mg/Kg			88	70 - 130		
m-Xylene & p-Xylene	<0.00403	U F2 F1	0.202	0.1628		mg/Kg			81	70 - 130		
o-Xylene	<0.00202	U F2 F1	0.101	0.08464		mg/Kg			84	70 - 130		
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	0+1		1+-03+									
0,4-Difluorobenzene (Surr)	0+:		1+_03+									
Lab Sample ID: 890-3832-A- Matrix: Solid	-8-F MSD						Clien	it Sa	mple ID:	Matrix Sp Prep T	oike Dup ype: To	
Analysis Batch: 43961										-	Batch:	
	Sample	Sample	Spike	MSD	MSD					%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Benzene	<0.00202	U *+ F2 F1	0.0990	0.007699	F2 F1	mg/Kg			8	70 - 130	171	3
Toluene	<0.00202		0.0990	0.01331	F2 F1	mg/Kg			13	70 - 130	143	3
Ethylbenzene	<0.00202	U *+ F2 F1	0.0990	0.007250	F2 F1	mg/Kg			7	70 - 130	170	3
m-Xylene & p-Xylene	<0.00403	U F2 F1	0.198	0.007591	F2 F1	mg/Kg			4	70 - 130	182	3
o-Xylene	<0.00202	U F2 F1	0.0990	0.003161	F2 F1	mg/Kg			3	70 - 130	186	3
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	0+7		1+_03+									
0,4-Difluorobenzene (Surr)	7C		1+_03+									
Lab Sample ID: MB 880-439 Matrix: Solid Analysis Batch: 44129	91/5-A								Client Sa		Method ype: To Batch:	tal/N/
		MB MB										
Analyte		esult Qualifier		RL	Unit		D		epared	Analyz		Dil Fa
Benzene		0200 U	0.00		mg/K				6/23 14:35	01/17/23		
Toluene		0200 U	0.00	200	mg/K				6/23 14:35	01/17/23		
Ethylbenzene	<0.0	0200 U	0.00	200	mg/K	g		01/16	6/23 14:35	01/17/23	12:29	
m-Xylene & p-Xylene	<0.0	0400 U	0.00	400	mg/K	g		01/16	6/23 14:35	01/17/23	12:29	
o-Xylene	<0.0	0200 U	0.00	200	mg/K	g		01/16	6/23 14:35	01/17/23	12:29	
Xylenes, Total	<0.0	0400 U	0.00	400	mg/K	g		01/16	6/23 14:35	01/17/23	12:29	
		MB MB										

Page 50 of 129

Lab Sample ID: LCS 880-43991/1-A Matrix: Solid Analysis Batch: 44129					Client	Sample	Prep Ty	ntrol Sample pe: Total/NA Batch: 43991
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09402		mg/Kg		94	70 - 130	

Eurofins Carlsbad

Analyzed

+0/01/: 3 0: 5 7

+0/01/: 3 0: 5 7

Prepared

+0/02/: 3 04536

+0/02/: 3 04536

Released to Imaging: 4/12/2024 8:48:54 AM

%Recovery Qualifier

*C*6

7+

Surrogate

4-Bromofluorobenzene (Surr)

0,4-Difluorobenzene (Surr)

Limits

1+-03+

1+_03+

Dil Fac

0

0

QC Sample Results

Client: Ensolum Project/Site: EVGSU 2437-001 Job ID: 890-3833-1 SDG: Lea County

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-43 Matrix: Solid	991/1-A						Client	Sample		Type: Tot	tal/NA
Analysis Batch: 44129			• "						-	Batch:	4399
			Spike		LCS		_		%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Toluene			0.100	0.1033		mg/Kg		103	70 - 130		
Ethylbenzene			0.100	0.09664		mg/Kg		97	70 - 130		
m-Xylene & p-Xylene			0.200	0.2150		mg/Kg		107	70 - 130		
o-Xylene			0.100	0.1176		mg/Kg		118	70 - 130		
	LCS	LCS									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)	0+C		1+_03+								
),4-Difluorobenzene (Surr)	71		1+_03+								
_ab Sample ID: LCSD 880-4	43991/2-A					Clie	nt Sam	ple ID: I	Lab Contro	I Sample	e Du
Matrix: Solid									Prep 1	Type: Tot	tal/N
Analysis Batch: 44129									Prep	Batch:	4399
			Spike	LCSD	LCSD				%Rec		RF
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Benzene			0.100	0.1023		mg/Kg		102	70 - 130	8	3
oluene			0.100	0.1067		mg/Kg		107	70 - 130	3	3
thylbenzene			0.100	0.09902		mg/Kg		99	70 - 130	2	3
n-Xylene & p-Xylene			0.200	0.2172		mg/Kg		109	70 - 130	1	3
-Xylene			0.100	0.1197		mg/Kg		120	70 - 130	2	3
		LCSD									
Surrogate	%Recoverv	Qualifier	l imits								
	%Recovery	Qualifier	Limits 1+_03+								
-Bromofluorobenzene (Surr)	<u>%Recovery</u> 000 0++	Qualifier	Limits 1+_03+ 1+_03+								
4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid	-61-E MS		1+ - 03+ 1+ - 03+					Client	Prep	: Matrix Type: Tot Batch: 4	tal/N
I-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129	-61-E MS Sample	Sample	1+ - 03+ 1+ - 03+ Spike	MS	MS				Prep 1 Prep %Rec	Type: Tot	tal/N
4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte	-61-E MS Sample Result	Sample Qualifier	1+ - 03+ 1+ - 03+ Spike Added	Result	Qualifier	Unit	D	%Rec	Prep 1 Prep %Rec Limits	Type: Tot	tal/N
I-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene	-61-E MS Sample	Sample Qualifier U F1	1+ - 03+ 1+ - 03+ Spike Added 0.0998	Result 0.06666	Qualifier	mg/Kg	D	%Rec 67	Prep 1 Prep %Rec Limits 70 - 130	Type: Tot	tal/N
A-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene	-61-E MS -61-E MS	Sample Qualifier U F1 U	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998	Result 0.06666 0.08616	Qualifier	mg/Kg mg/Kg	<u>D</u>	%Rec 67 86	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	tal/N
A-Bromofluorobenzene (Surr) D,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene Ethylbenzene	-61-E MS -61-E MS 	Sample Qualifier U F1 U U	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.0998	Result 0.06666 0.08616 0.09887	Qualifier	mg/Kg mg/Kg mg/Kg	D	%Rec 67 86 99	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
A-Bromofluorobenzene (Surr) D,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene	-61-E MS -61-E MS 	Sample Qualifier U F1 U U	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.0998 0.200	Result 0.06666 0.08616 0.09887 0.1769	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 67 86 99 89	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
A-Bromofluorobenzene (Surr) D,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene	-61-E MS -61-E MS 	Sample Qualifier U F1 U U	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.0998	Result 0.06666 0.08616 0.09887	Qualifier	mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 67 86 99	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
A-Bromofluorobenzene (Surr) D,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene	-61-E MS -61-E MS 	Sample Qualifier U F1 U U	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.0998 0.200	Result 0.06666 0.08616 0.09887 0.1769	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 67 86 99 89	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
A-Bromofluorobenzene (Surr) D,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene D-Xylene	-61-E MS -61-E MS 	Sample Qualifier U F1 U U U U U U MS	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.0998 0.200	Result 0.06666 0.08616 0.09887 0.1769	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 67 86 99 89	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
A-Bromofluorobenzene (Surr) D,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	-61-E MS -61-E MS 	Sample Qualifier U F1 U U U U U U MS	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.0998 0.200 0.0998	Result 0.06666 0.08616 0.09887 0.1769	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 67 86 99 89	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
-Bromofluorobenzene (Surr) ,4-Difluorobenzene (Surr) .ab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 analyte thylbenzene boluene thylbenzene -Xylene & p-Xylene -Xylene -Xylene	-61-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Sample Qualifier U F1 U U U U U U MS	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998	Result 0.06666 0.08616 0.09887 0.1769	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 67 86 99 89	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	tal/N
-Bromofluorobenzene (Surr) A-Difluorobenzene (Surr) A-Difluorobenzene (Surr) Aab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Malyte Benzene Soluene Surrogate -Xylene & p-Xylene -Xylene Surrogate -Bromofluorobenzene (Surr) A-Difluorobenzene (Surr) A-	-61-E MS -61-E MS -61-E MS 	Sample Qualifier U F1 U U U U U U MS	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 1+ - 03+	Result 0.06666 0.08616 0.09887 0.1769	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 67 86 99 89 93	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 7	Type: Tot Batch: /	tal/N 4399
A-Bromofluorobenzene (Surr) a),4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Toluene Ethylbenzene n-Xylene & p-Xylene b-Xylene Surrogate Gurrogate Gurrogate Gurrogate Gurrogate Complete (Surr) b),4-Difluorobenzene (Surr) b),4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid	-61-E MS -61-E MS -61-E MS 	Sample Qualifier U F1 U U U U U WS Qualifier	1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.0998 0.200 0.0998 Limits 1+ - 03+	Result 0.06666 0.08616 0.09887 0.1769 0.09305	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 67 86 99 89 93	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 7	Dike Dup	blicatital/N
-Bromofluorobenzene (Surr) A-Difluorobenzene (Surr) A-Difluorobenzene (Surr) Aab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene Stylene & p-Xylene -Xylene & p-Xylene -Xylene Bromofluorobenzene (Surr) A-Difluorobenzene (Surr) A-Di	-61-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>%Recovery</i> 0+: C4 -61-F MSD Sample	Sample Qualifier U F1 U U U U U WS Qualifier	1+ - 03+ 1+ - 03+ 1+ - 03+ Spike Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998 1.200 1.200 1.200 1.200 0.0998 1.200 1	Result 0.06666 0.08616 0.09887 0.1769 0.09305	Qualifier F1	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 67 86 99 89 93	Prep 1 Prep 3 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep 1	Dike Dup	tal/N 4399 blicat tal/N 4399 RP
A-Difluorobenzene (Surr) ab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Toluene Ethylbenzene n-Xylene & p-Xylene -Xylene Burrogate I-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Cab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte	-61-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>%Recovery</i> 0+: C4 -61-F MSD Sample	Sample Qualifier U F1 U U U U MS Qualifier Sample Qualifier	1+ - 03+ 1+ - 03+ 1+ - 03+ Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998 1+ - 03+ 1+ - 03+ 1+ - 03+ 1+ - 03+	Result 0.06666 0.08616 0.09887 0.1769 0.09305	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	lient Sa	%Rec 67 86 99 89 93	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 190 70 -	Dike Dup Dike Tot Dike Dup Diype: Tot	blicat tal/N 4399 klicat tal/N 4399 RP Lim
A-Bromofluorobenzene (Surr) D,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene D-Xylene Surrogate 4-Bromofluorobenzene (Surr) D,4-Difluorobenzene (Surr) D,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene	-61-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> <i>0+:</i> <i>C4</i> -61-F MSD Sample Result	Sample Qualifier U F1 U U U U MS Qualifier Sample Qualifier U F1	1+ - 03+ 1+ - 03+ 1+ - 03+ Added 0.0998 0.0998 0.200 0.0998 0.200 0.0998 1+ - 03+ 1+ - 03+ 1+ - 03+ 1+ - 03+ Added	Result 0.06666 0.08616 0.09887 0.1769 0.09305	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg C	lient Sa	%Rec 67 86 99 89 93 93	Prep 1 Prep %Rec Limits 70 - 130 70 - 190 %Rec Limits	Dike Dup Dike Dup Dype: Tot Batch: 4	tal/N 4399
Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 0,4-Difluorobenzene (Surr) 0,4-Difluorobenzene (Surr) Lab Sample ID: 890-3838-A Matrix: Solid Analysis Batch: 44129 Analyte Benzene Toluene Ethylbenzene	-61-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 0+: <i>C4</i> -61-F MSD Sample Result <0.00199	Sample Qualifier U F1 U U U U MS Qualifier U F1 U	1+ - 03+ 1+ - 03+ 1+ - 03+ 0.0998 0.0998 0.0998 0.200 0.0998 0.200 0.0998 1+ - 03+ 1+ - 03+ 1+ - 03+ 1+ - 03+ 0.100	Result 0.06666 0.08616 0.09887 0.1769 0.09305	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg C Unit mg/Kg	lient Sa	%Rec 67 86 99 93 93 ample ID %Rec 66	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep 2 %Rec Limits 70 - 130	Dike Dup Type: Tot Dike Dup Type: Tot Batch: 4 RPD 1	blicat tal/N 4399 blicat tal/N 4399 RP Lim

5

7 8

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3838-A-	61-F MSD					CI	ient Sa	ample ID	: Matrix Sp	oike Dup	licate
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 44129									Prep	Batch:	43991
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
o-Xylene	< 0.00199	U	0.100	0.1021		mg/Kg		102	70 - 130	9	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	034	S0h	1+_03+								
0,4-Difluorobenzene (Surr)	73		1+_03+								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-43909/1-	Α					Client Sa	mple ID: Metho	d Blank
Matrix: Solid							Prep Type: 1	Total/NA
Analysis Batch: 43947							Prep Batch	n: 43909
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		01/13/23 13:11	01/15/23 19:47	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/13/23 13:11	01/15/23 19:47	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/13/23 13:11	01/15/23 19:47	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
0-ctlorooa9Tne	017	S0h	1+_03+			+0/03/: 3 03500	+0/06/: 3 07541	0
o-peryt en8l	::1	S0h	1+ - 03+			+0/03/: 3 03500	+0/06/: 3 07541	0

Lab Sample ID: LCS 880-43909/2-A Matrix: Solid

Analysis Batch: 43947

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10	1000	945.3		mg/Kg		95	70 - 130
Diesel Range Organics (Over C10-C28)	1000	932.4		mg/Kg		93	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
0-c t lorooa9Tne	0+4		1+_03+
o-peryt en8l	0: 2		1+-03+

Lab Sample ID: LCSD 880-43909/3-A Metrix: Callel

Matrix. S	ona	
Analysis	Patch:	12017

Analysis Batch: 43947									-	Batch:	43909
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10			1000	907.9		mg/Kg		91	70 - 130	4	20
Diesel Range Organics (Over C10-C28)			1000	939.3		mg/Kg		94	70 - 130	1	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								

ounogate	/meeovery	quanner	Linits
0-c t lorooa9Tne	0+6		1+_03+

Eurofins Carlsbad

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 43909

Lab Sample ID: LCSD 880-43909/3-A

Lab Sample ID: 890-3831-A-1-B MS

QC Sample Results

Limits

1+_03+

Spike

Added

998

998

Limits

MS MS

907.3

1114

Result Qualifier

Unit

mg/Kg

mg/Kg

Client: Ensolum Project/Site: EVGSU 2437-001

Matrix: Solid

Surrogate

Analyte

C10-C28)

Surrogate

o-peryt en8l

Matrix: Solid

(GRO)-C6-C10

Analysis Batch: 43947

Analysis Batch: 43947

Gasoline Range Organics

Diesel Range Organics (Over

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCSD LCSD %Recovery Qualifier

Sample Sample

<49.9 U

<49.9 U

MS MS

%Recovery Qualifier

Result Qualifier

0:2

				1
			: 890-3833-1 : Lea County	
Client Sa	mple ID: L	Ргер Ту	Sample Dup pe: Total/NA	4
		Prep I	Batch: 43909	5
				6
	Client	-	Matrix Spike	7
			/pe: Total/NA Batch: 43909	8
t D Kg	%Rec 88	Limits 70 - 130		9
Kg	108	70 - 130		

0-c t lorooa9Tne	0+:		1+ - 03+								
o-peryt en8l	004		1+_03+								
Lab Sample ID: 890-3831-A-	1-C MSD					CI	ient Sa	ample IE): Matrix Sp	oike Dup	olicate
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 43947									Prep	Batch:	43909
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U	997	944.2		mg/Kg		92	70 - 130	4	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	997	1175		mg/Kg		115	70 - 130	5	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
0-c t lorooa9Tne	0+1		1+ - 03+								
o-peryt en8l	007		1+_03+								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-43970/1-A Matrix: Solid Analysis Batch: 44164									Client S	Sample ID: Metho Prep Type:	
Analysis Baton. 44104	МВ	МВ									
Analyte	Result	Qualifier		RL		Unit		D F	repared	Analyzed	Dil Fac
Chloride	<5.00	U		5.00		mg/k	(g			01/17/23 14:54	1
Lab Sample ID: LCS 880-43970/2-A								Clien	t Sample	D: Lab Control	-
Matrix: Solid										Prep Type:	Soluble
Analysis Batch: 44164			Spike		1.09	LCS				%Rec	
Analyte			Added			Qualifier	Unit	D	%Rec	Limits	
Chloride			250		246.3		mg/Kg		99	90 - 110	

Project/Site: EVGSU 2437-001

Client: Ensolum

5

Job ID: 890-3833-1 SDG: Lea County

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-43970/3-/	4					Clier	nt Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 44164									-		
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	245.9		mg/Kg		98	90 - 110	0	20
 Lab Sample ID: 890-3835-A-1-H MS								Client	Sample IE): Matrix	Spike
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 44164											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	1370		248	1517	E 4	mg/Kg		59	90 - 110		
Lab Sample ID: 890-3835-A-1-I MSD						Cli	ent Sa	ample ID): Matrix S	pike Dup	olicate
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 44164											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1370		248	1515	E 4	mg/Kg		58	90 _ 110	0	20

QC Association Summary

Client: Ensolum Project/Site: EVGSU 2437-001 Job ID: 890-3833-1 SDG: Lea County

GC VOA

Prep Batch: 43910

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3833-1	SS01	Total/NA	Solid	5035	
890-3833-2	SS02	Total/NA	Solid	5035	
890-3833-3	SS03	Total/NA	Solid	5035	
890-3833-4	SS04	Total/NA	Solid	5035	
890-3833-5	SS05	Total/NA	Solid	5035	
890-3833-6	SS06	Total/NA	Solid	5035	
890-3833-7	SS07	Total/NA	Solid	5035	
890-3833-8	SS08	Total/NA	Solid	5035	
MB 880-43910/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43910/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43910/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3832-A-8-E MS	Matrix Spike	Total/NA	Solid	5035	
890-3832-A-8-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 43961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3833-1	SS01	Total/NA	Solid	8021B	43910
890-3833-2	SS02	Total/NA	Solid	8021B	43910
890-3833-3	SS03	Total/NA	Solid	8021B	43910
890-3833-4	SS04	Total/NA	Solid	8021B	43910
890-3833-5	SS05	Total/NA	Solid	8021B	43910
890-3833-6	SS06	Total/NA	Solid	8021B	43910
890-3833-7	SS07	Total/NA	Solid	8021B	43910
890-3833-8	SS08	Total/NA	Solid	8021B	43910
MB 880-43910/5-A	Method Blank	Total/NA	Solid	8021B	43910
LCS 880-43910/1-A	Lab Control Sample	Total/NA	Solid	8021B	43910
LCSD 880-43910/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43910
890-3832-A-8-E MS	Matrix Spike	Total/NA	Solid	8021B	43910
890-3832-A-8-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	43910

Prep Batch: 43991

Г

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3833-1	SS01	Total/NA	Solid	5035	
890-3833-2	SS02	Total/NA	Solid	5035	
890-3833-3	SS03	Total/NA	Solid	5035	
890-3833-4	SS04	Total/NA	Solid	5035	
MB 880-43991/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43991/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43991/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3838-A-61-E MS	Matrix Spike	Total/NA	Solid	5035	
890-3838-A-61-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 44129

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3833-1	SS01	Total/NA	Solid	8021B	43991
890-3833-2	SS02	Total/NA	Solid	8021B	43991
890-3833-3	SS03	Total/NA	Solid	8021B	43991
890-3833-4	SS04	Total/NA	Solid	8021B	43991
MB 880-43991/5-A	Method Blank	Total/NA	Solid	8021B	43991
LCS 880-43991/1-A	Lab Control Sample	Total/NA	Solid	8021B	43991
LCSD 880-43991/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43991

Eurofins Carlsbad

Page 55 of 129

5

QC Association Summary

Client: Ensolum Project/Site: EVGSU 2437-001 Job ID: 890-3833-1 SDG: Lea County

GC VOA (Continued)

Analysis Batch: 44129 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3838-A-61-E MS	Matrix Spike	Total/NA	Solid	8021B	43991
890-3838-A-61-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	43991

Analysis Batch: 44174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3833-1	SS01	Total/NA	Solid	Total BTEX	
890-3833-2	SS02	Total/NA	Solid	Total BTEX	
890-3833-3	SS03	Total/NA	Solid	Total BTEX	
890-3833-4	SS04	Total/NA	Solid	Total BTEX	
890-3833-5	SS05	Total/NA	Solid	Total BTEX	
890-3833-6	SS06	Total/NA	Solid	Total BTEX	
890-3833-7	SS07	Total/NA	Solid	Total BTEX	
890-3833-8	SS08	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 43909

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3833-1	SS01	Total/NA	Solid	8015NM Prep	
890-3833-2	SS02	Total/NA	Solid	8015NM Prep	
890-3833-3	SS03	Total/NA	Solid	8015NM Prep	
890-3833-4	SS04	Total/NA	Solid	8015NM Prep	
890-3833-5	SS05	Total/NA	Solid	8015NM Prep	
890-3833-6	SS06	Total/NA	Solid	8015NM Prep	
890-3833-7	SS07	Total/NA	Solid	8015NM Prep	
890-3833-8	SS08	Total/NA	Solid	8015NM Prep	
MB 880-43909/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43909/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43909/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3831-A-1-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3831-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 43947

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3833-1	SS01	Total/NA	Solid	8015B NM	43909
890-3833-2	SS02	Total/NA	Solid	8015B NM	43909
890-3833-3	SS03	Total/NA	Solid	8015B NM	43909
890-3833-4	SS04	Total/NA	Solid	8015B NM	43909
890-3833-5	SS05	Total/NA	Solid	8015B NM	43909
890-3833-6	SS06	Total/NA	Solid	8015B NM	43909
890-3833-7	SS07	Total/NA	Solid	8015B NM	43909
890-3833-8	SS08	Total/NA	Solid	8015B NM	43909
MB 880-43909/1-A	Method Blank	Total/NA	Solid	8015B NM	43909
LCS 880-43909/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43909
LCSD 880-43909/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43909
890-3831-A-1-B MS	Matrix Spike	Total/NA	Solid	8015B NM	43909
890-3831-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	43909

Lab Sample ID Client Sample ID Method Prep Batch Matrix Prep Type 890-3833-1 SS01 Total/NA Solid 8015 NM

Eurofins Carlsbad

5

8 9

QC Association Summary

Client: Ensolum Project/Site: EVGSU 2437-001

GC Semi VOA (Continued)

Analysis Batch: 44066 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3833-2	SS02	Total/NA	Solid	8015 NM	
890-3833-3	SS03	Total/NA	Solid	8015 NM	
890-3833-4	SS04	Total/NA	Solid	8015 NM	
890-3833-5	SS05	Total/NA	Solid	8015 NM	
890-3833-6	SS06	Total/NA	Solid	8015 NM	
890-3833-7	SS07	Total/NA	Solid	8015 NM	
890-3833-8	SS08	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 43970

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-3833-1	SS01	Soluble	Solid	DI Leach		
890-3833-2	SS02	Soluble	Solid	DI Leach		
890-3833-3	SS03	Soluble	Solid	DI Leach		
890-3833-4	SS04	Soluble	Solid	DI Leach		
890-3833-5	SS05	Soluble	Solid	DI Leach		
890-3833-6	SS06	Soluble	Solid	DI Leach		
890-3833-7	SS07	Soluble	Solid	DI Leach		1
890-3833-8	SS08	Soluble	Solid	DI Leach		
MB 880-43970/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-43970/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-43970/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
890-3835-A-1-H MS	Matrix Spike	Soluble	Solid	DI Leach		
890-3835-A-1-I MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach		

Analysis Batch: 44164

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3833-1	SS01	Soluble	Solid	300.0	43970
890-3833-2	SS02	Soluble	Solid	300.0	43970
890-3833-3	SS03	Soluble	Solid	300.0	43970
890-3833-4	SS04	Soluble	Solid	300.0	43970
890-3833-5	SS05	Soluble	Solid	300.0	43970
890-3833-6	SS06	Soluble	Solid	300.0	43970
890-3833-7	SS07	Soluble	Solid	300.0	43970
890-3833-8	SS08	Soluble	Solid	300.0	43970
MB 880-43970/1-A	Method Blank	Soluble	Solid	300.0	43970
LCS 880-43970/2-A	Lab Control Sample	Soluble	Solid	300.0	43970
LCSD 880-43970/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	43970
890-3835-A-1-H MS	Matrix Spike	Soluble	Solid	300.0	43970
890-3835-A-1-I MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	43970

Page 57 of 129

Job ID: 890-3833-1 SDG: Lea County

5 6

9

Job ID: 890-3833-1 SDG: Lea County

Lab Sample ID: 890-3833-1 Matrix: Solid

Client Sample ID: SS01 Date Collected: 01/11/23 13:15 Date Received: 01/11/23 16:35

Project/Site: EVGSU 2437-001

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	43910	01/13/23 13:50	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	43961	01/16/23 16:24	MNR	EET MID
Total/NA	Prep	5035			5.02 g	5 mL	43991	01/16/23 14:35	MNR	EET MID
Total/NA	Analysis	8021B		250	5 mL	5 mL	44129	01/17/23 15:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44174	01/17/23 14:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			44066	01/16/23 16:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	43909	01/13/23 13:11	DM	EET MID
Total/NA	Analysis	8015B NM		10	1 uL	1 uL	43947	01/16/23 03:17	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	43970	01/16/23 09:20	KS	EET MID
Soluble	Analysis	300.0		10			44164	01/17/23 16:52	CH	EET MID

Client Sample ID: SS02

Date Collected: 01/11/23 13:20 Date Received: 01/11/23 16:35

Lab Sample ID: 890-3833-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	43910	01/13/23 13:50	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	43961	01/16/23 16:44	MNR	EET MID
Total/NA	Prep	5035			5.03 g	5 mL	43991	01/16/23 14:35	MNR	EET MID
Total/NA	Analysis	8021B		250	5 mL	5 mL	44129	01/17/23 15:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44174	01/17/23 14:40	SM	EET MIC
Total/NA	Analysis	8015 NM		1			44066	01/16/23 16:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	43909	01/13/23 13:11	DM	EET MID
Total/NA	Analysis	8015B NM		10	1 uL	1 uL	43947	01/16/23 03:38	AJ	EET MIC
Soluble	Leach	DI Leach			4.97 g	50 mL	43970	01/16/23 09:20	KS	EET MID
Soluble	Analysis	300.0		10			44164	01/17/23 17:09	СН	EET MID

Client Sample ID: SS03 Date Collected: 01/11/23 13:25 Date Received: 01/11/23 16:35

Lab Sample ID: 890-3833-3 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	43910	01/13/23 13:50	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	43961	01/16/23 21:35	MNR	EET MID
Total/NA	Prep	5035			5.03 g	5 mL	43991	01/16/23 14:35	MNR	EET MID
Total/NA	Analysis	8021B		500	5 mL	5 mL	44129	01/17/23 20:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44174	01/17/23 14:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			44066	01/16/23 16:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43909	01/13/23 13:11	DM	EET MID
Total/NA	Analysis	8015B NM		5	1 uL	1 uL	43947	01/16/23 04:00	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	43970	01/16/23 09:20	KS	EET MID
Soluble	Analysis	300.0		20			44164	01/17/23 17:15	CH	EET MID

5 6

9

Job ID: 890-3833-1 SDG: Lea County

Lab Sample ID: 890-3833-4 Matrix: Solid

Client Sample ID: SS04 Date Collected: 01/11/23 13:30 Date Received: 01/11/23 16:35

Project/Site: EVGSU 2437-001

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	43910	01/13/23 13:50	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	43961	01/16/23 21:56	MNR	EET MID
Total/NA	Prep	5035			4.99 g	5 mL	43991	01/16/23 14:35	MNR	EET MID
Total/NA	Analysis	8021B		500	5 mL	5 mL	44129	01/17/23 20:22	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44174	01/17/23 14:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			44066	01/16/23 16:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	43909	01/13/23 13:11	DM	EET MID
Total/NA	Analysis	8015B NM		5	1 uL	1 uL	43947	01/16/23 04:21	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	43970	01/16/23 09:20	KS	EET MID
Soluble	Analysis	300.0		20			44164	01/17/23 17:21	СН	EET MID

Client Sample ID: SS05

Date Collected: 01/11/23 13:35 Date Received: 01/11/23 16:35

Lab Sample ID: 890-3833-5

Lab Sample ID: 890-3833-6

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	43910	01/13/23 13:50	MNR	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	43961	01/16/23 22:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44174	01/17/23 14:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			44066	01/16/23 16:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	43909	01/13/23 13:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43947	01/16/23 01:29	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	43970	01/16/23 09:20	KS	EET MID
Soluble	Analysis	300.0		1			44164	01/17/23 17:26	СН	EET MID

Client Sample ID: SS06 Date Collected: 01/11/23 13:40 Date Received: 01/11/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	43910	01/13/23 13:50	MNR	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	43961	01/16/23 22:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44174	01/17/23 14:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			44066	01/16/23 16:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43909	01/13/23 13:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43947	01/16/23 00:24	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	43970	01/16/23 09:20	KS	EET MID
Soluble	Analysis	300.0		1			44164	01/17/23 17:32	СН	EET MID

Lab Sample ID: 890-3833-7 Matrix: Solid

Lab Sample ID: 890-3833-8

Matrix: Solid

Client Sample ID: SS07 Date Collected: 01/11/23 13:45 Date Received: 01/11/23 16:35

Project/Site: EVGSU 2437-001

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	43910	01/13/23 13:50	MNR	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	43961	01/16/23 22:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44174	01/17/23 14:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			44066	01/16/23 16:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	43909	01/13/23 13:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43947	01/16/23 00:45	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	43970	01/16/23 09:20	KS	EET MID
Soluble	Analysis	300.0		1			44164	01/17/23 17:38	СН	EET MID

Client Sample ID: SS08

Date Collected: 01/11/23 13:50 Date Received: 01/11/23 16:35

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	43910	01/13/23 13:50	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	43961	01/16/23 19:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			44174	01/17/23 14:40	SM	EET MID
Total/NA	Analysis	8015 NM		1			44066	01/16/23 16:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	43909	01/13/23 13:11	DM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	43947	01/16/23 01:50	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	43970	01/16/23 09:20	KS	EET MID
Soluble	Analysis	300.0		5			44164	01/17/23 17:43	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

> 10 11 12

Page 61 of 129

10

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority		rogram	Identification Number	Expiration Date		
exas	N	ELAP	T104704400-22-25	06-30-23		
The following analytes	are included in this report, b	ut the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for w		
the agency does not o	ffer certification.					
• •		Matrix	Analyte			
the agency does not o	ffer certification.	Matrix Solid	Analyte Total TPH			

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
SW846 = 1	= "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, N "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E = TestAmerica Laboratories, Standard Operating Procedure	•	
Laboratory Re	e ferences: = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-544	0	

Protocol References:

Laboratory References:

Sample Summary

Client: Ensolum Project/Site: EVGSU 2437-001 Job ID: 890-3833-1 SDG: Lea County

b Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
0-3833-1	SS01	Solid	01/11/23 13:15	01/11/23 16:35	0.5'	
0-3833-2	SS02	Solid	01/11/23 13:20	01/11/23 16:35	0.5'	
0-3833-3	SS03	Solid	01/11/23 13:25	01/11/23 16:35	0.5'	
0-3833-4	SS04	Solid	01/11/23 13:30	01/11/23 16:35	0.5'	
0-3833-5	SS05	Solid	01/11/23 13:35	01/11/23 16:35	0.5'	
0-3833-6	SS06	Solid	01/11/23 13:40	01/11/23 16:35	0.5'	
0-3833-7	SS07	Solid	01/11/23 13:45	01/11/23 16:35	0.5'	
0-3833-8	SS08	Solid	01/11/23 13:50	01/11/23 16:35	0.5'	
						- 2

Page 63 of 129

🛟 euro	ofins	Environ Xenco	iment Tes	sting		Midland, EL Paso	on, TX (TX (43: o, TX (91	(281) 24 2) 704-5 15) 585-	10-4200 5440, Sa -3443, L	an Antor ubbock	TX (21 nio, TX , TX (80	4) 902-030 (210) 509-3 (6) 794-129 75) 988-31	334 6								No: _		1	of	
Project Manager:	Kale	zi Jen	ning		Bill to: (if	different)	,	ac	Low	ntina	Pe	150lu.	m.c	om					W	ork Or	der Co	omments			
Company Name:	ENSO)lum)		Compan						P				Pro	ogran	n: U	JST/PS	т	PRP	Bro	wnfields	RRC	Superfur	id 🗌
Address:		National	parks ,	Hwy	Address:										Sta	te of	Projec	t:							
City, State ZIP:	Carls	bad , A	JM 88	220	City, Stat	te ZIP:									Rej	porti	ng: Le	evel II	L 1	evei III	E F	PST/UST	TRRP] Level IV	
Phone:		683 25		Email:	KJe	ining	see	enso	lum.	cam	-				De	livera	ables:	ED	D		ADal		ther:		
Project Name:	FVG	-SU 24	37-001	Turr	Around							A	NALY	SIS REC	UEST							Prese	vative	Codes	
Project Number:		205700		Routine	Rush	1	Pres. Code															None: NO		DIWater: H	20
Project Location:		Co.		Due Date:					5													Cool: Cool	1	MeOH: Me	
Sampler's Name:		able		TAT starts the				-	8015				- 1									HCL: HC		HNO 3: HN	
PO #:				the lab, if rec			rs	N	1.1	300												H ₂ SO ₄ : H ₂	1	NaOH: Na	
SAMPLE RECEIPT		emp Blank:	Yes No	Wet Ice:	Yes		Parameters	0	7×1305	a 1						1144						H ₃ PO ₄ : HP	ADIC		
Samples Received Int		Yes No	Thermometer		TIM		Para	60	1	5												NaHSO _4: Na Na 2S 2O 3: Na			
Cooler Custody Seals:		NO TA	Correction F		0	0	-	X	H	10		800-39	 233 C	Chain of	Custor	10 000 17						Zn Acetate+		70	
Sample Custody Seal	s: Yes	NO NA	Temperatur	emperature:	4	3		(L)	T	loride		-090-30	<u></u>		003100							NaOH+Asco			
Sample Iden	tification	Matrix	Date	Time Sampled	Depth	Grab/ Comp	# of Cont	10	Hdr	CAL												Samp	le Com	iments	
5501		S	1/11/23	1315	.5	G	1	X	X	X															
SSOZ	,	1	1	1325	.5	1	1	1	1	1															
5503				1325	.5																				
SS04		1		1330	.5		T																		
5505				1335	.5																				
5506				1340	.5																			<u>-</u>	
5507				1345	.5			8																	
550		5	1/11/23	1350	.5	G	1	X	X	X															
							<									_				<u> </u>					
						M	-	t												<u> </u>					
Total 200.7 / 60 Circle Method(s)		0.8 / 6020: I(s) to be ana			PM Texa																	TI Sn U V /7470 /74			
Notice: Signature of this do of service. Eurofins Xenco v of Eurofins Xenco. A minim	vill be liable only	for the cost of sam	poles and shall not	assume any resp	onsibility for a	any losses o	r expens	ses incur	red by ti	he client h	f such ío	sses are due	to circu	umstances	beyond the	e conti	rol	d.	1 1						
Relinquished by	: (Signature	2)	Received I	y: (Signatur	e)			Date	/Time		R	elinquish	ed by	y: (Signa	ature)		F	Receiv	ved b	y: (Sig	nature	2)	Date	/Time	
1 Jr Al	4	An	red	er 5-	tuy	2	1/11	123	10	.35	2														
-								1			6														

Chain of Custody

13

Revised Date: 08/25/2020 Rev. 2020.2

1/18/2023

January 15, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: EVGSAU 2437 - 001

Enclosed are the results of analyses for samples received by the laboratory on 01/12/24 13:21.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

MAVERICK 32.81668-103.50599

ENSOLUM AIMEE COLE **3122 NATIONAL PARKS HWY** CARLSBAD NM, 88220 Fax To: Received: 01/12/2024 Sampling Date: 01/12/2024 Reported: 01/15/2024 Sampling Type: Soil Project Name: EVGSAU 2437 - 001 Sampling Condition: Cool & Intact Project Number: 03E2057067 Sample Received By: Shalyn Rodriguez

Sample ID: SW 01 @ 0-4' (H240147-01)

Project Location:

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	01/15/2024	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	79.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.1	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celecz D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To: 01/12/2024 Sampling Date:

Received:	01/12/2024	Sampling Date:	01/12/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: PH 01 @ 4' (H240147-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1020	16.0	01/15/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	10.4	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	88.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	01/12/2024	Sampling Date:	01/12/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: PH 01 @ 6' (H240147-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1800	16.0	01/15/2024	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	85.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	01/12/2024	Sampling Date:	01/12/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: PH 01 @ 9' (H240147-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	01/15/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	89.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To: 01/12/2024

Received:	01/12/2024	Sampling Date:	01/12/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: PH 02 @ 4' (H240147-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	01/15/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	78.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	01/12/2024	Sampling Date:	01/12/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: PH 02 @ 6' (H240147-06)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	992	16.0	01/15/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	01/12/2024	Sampling Date:	01/12/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Shalyn Rodriguez
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: PH 02 @ 8' (H240147-07)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/12/2024	ND	1.94	96.9	2.00	1.98	
Toluene*	<0.050	0.050	01/12/2024	ND	2.06	103	2.00	2.36	
Ethylbenzene*	<0.050	0.050	01/12/2024	ND	2.08	104	2.00	2.74	
Total Xylenes*	<0.150	0.150	01/12/2024	ND	6.28	105	6.00	2.70	
Total BTEX	<0.300	0.300	01/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	01/15/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/13/2024	ND	198	99.2	200	2.17	
DRO >C10-C28*	<10.0	10.0	01/13/2024	ND	206	103	200	0.521	
EXT DRO >C28-C36	<10.0	10.0	01/13/2024	ND					
Surrogate: 1-Chlorooctane	82.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 10 of 10

101 East Marland, Hobbs, NM 88240

Company Nam	(575) 393-2326 FAX (575) 393-24		BILL TO				1	ANALYSIS	REQU	JEST		
Project Manag	ier: Ataga (p):		P.O. #:									
Address:	3122 Nutory Parts Hu	v li	Company:									
City:	Bay Shad State: NM	Zip: \$8270	Attn:									
	720 384 7365 Fax #:		Address:									
	3を 20570 Project Owner:	Moverich	City:					1.1				
Project Name:			State: Zip:									
Project Locati	ion: 32.81668,-103.505	99	Phone #:									
Sampler Name	e: Rommi Haurs		Fax #:									
FOR LAB USE ONLY		MATRIX	PRESERV. SAMP	LING								
		dwo w										
		(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE			T.	1	Ŧ	· · · · · · · · · · ·				
Lab I.D.	Sample I.D.	B OF NDV GE	R : COOI		3T	õ	A					
4211211-	2	(G)RAB OI # CONTAII GROUND/ WASTEW/ SOIL OIL SOIL	OTHER: ACID/BASE ICE / COOL OTHER: AT	TIME	1		-					
H240147			X Malay	0845	×	X	×					
- 2	SWOI @ 0-4' PHN @ 4'			WZS	1	1	1					
3	PHO1@ (2)	G		035								
Ý	PHOID 9'	61		1047								
5	PHOZ @ 4'	G		1147								
Q	pHOZ@6'	G		1153	V					-	+ +	
7	PHOZ08'	G♥ ♥	4 4	1205		V	4					
						-					+++	-
												-
PLEASE NOTE: Liabilit	ty and Damages. Cardinal's liability and client's exclusive remedy for an	y claim arising whether based in contrac	t or tort, shall be limited to the amount paid	by the client fo	r the				1 1		1 1	
analyses. All claims inc	cluding those for negligence and any other cause whatsoever shall be d	eemed walved unless made in writing al without limitation, business interruptions	loss of use, or loss of profits incurred by c	ient, its subsidia	ries,	,						
affiliates or successors	arising out of or related the performance of services hereunder by C	Received By:	n is based upon any of the above st. ed rea	Verbal Re	sult:	□ Yes	□ No	Add'l Phone				
J	Land I-bray	Sendrai	001011					e Email addre	255:			
	1201	Received By:	quey	REMARK	S:	SDIL	r. com					
Relinquished		Received by.	. 0									
	Time:			-	d Times		tondard	Bact	oria (only)	Sample Cor	ndition	
Delivered By:	(Circle One) Observed Temp. °C	Sample Condi Cool Intact	(Initials)	Turnarou		F	tandard ush	Cool	Intact	Observe	d Temp. °C	
Sampler - UPS	- Bus - Other: Corrected Temp. °C		es Sal	Thermome Correction	ter ID #1 Factor 0°	40	244	K	es 🗌 Yes No 🗌 No	Correcte	d Temp. °C	;
FORM-0	000 R 3.4 07/1 1/23 + Cardinal		hanges. Please email ch	anges to	celey.k	eene@	cardinallab	snm.com				

Page 74 of 129

January 18, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: EVGSAU 2437 - 001

Enclosed are the results of analyses for samples received by the laboratory on 01/17/24 16:18.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:	(
Received:	01/17/2024		Sampling Date:	01/17/2024
Reported:	01/18/2024		Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001		Sampling Condition:	Cool & Intact
Project Number:	03E2057067		Sample Received By:	Tamara Oldaker

MAVERICK 32.81668-103.50599

Sample ID: SW 04 @ 0-4' (H240202-01)

Project Location:

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/17/2024	ND	2.16	108	2.00	5.06	
Toluene*	<0.050	0.050	01/17/2024	ND	2.14	107	2.00	4.91	
Ethylbenzene*	<0.050	0.050	01/17/2024	ND	2.13	106	2.00	5.35	
Total Xylenes*	<0.150	0.150	01/17/2024	ND	6.22	104	6.00	5.53	
Total BTEX	<0.300	0.300	01/17/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1440	16.0	01/18/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2024	ND	175	87.4	200	3.83	
DRO >C10-C28*	62.1	10.0	01/17/2024	ND	181	90.3	200	1.12	
EXT DRO >C28-C36	<10.0	10.0	01/17/2024	ND					
Surrogate: 1-Chlorooctane	86.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.6	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:		
Received:	01/17/2024		Sampling Date:	01/17/2024
Reported:	01/18/2024		Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001		Sampling Condition:	Cool & Intact
Project Number:	03E2057067		Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.81668	8-103.50599		

Sample ID: SW 05 @ 0-4' (H240202-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/17/2024	ND	2.16	108	2.00	5.06	
Toluene*	<0.050	0.050	01/17/2024	ND	2.14	107	2.00	4.91	
Ethylbenzene*	<0.050	0.050	01/17/2024	ND	2.13	106	2.00	5.35	
Total Xylenes*	<0.150	0.150	01/17/2024	ND	6.22	104	6.00	5.53	
Total BTEX	<0.300	0.300	01/17/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	01/18/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2024	ND	175	87.4	200	3.83	
DRO >C10-C28*	60.0	10.0	01/17/2024	ND	181	90.3	200	1.12	
EXT DRO >C28-C36	11.4	10.0	01/17/2024	ND					
Surrogate: 1-Chlorooctane	78.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:		
Received:	01/17/2024		Sampling Date:	01/17/2024
Reported:	01/18/2024		Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001		Sampling Condition:	Cool & Intact
Project Number:	03E2057067		Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.81668	8-103.50599		

Sample ID: SW 06 @ 0-4' (H240202-03)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/17/2024	ND	2.16	108	2.00	5.06	
Toluene*	<0.050	0.050	01/17/2024	ND	2.14	107	2.00	4.91	
Ethylbenzene*	<0.050	0.050	01/17/2024	ND	2.13	106	2.00	5.35	
Total Xylenes*	<0.150	0.150	01/17/2024	ND	6.22	104	6.00	5.53	
Total BTEX	<0.300	0.300	01/17/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	01/18/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2024	ND	175	87.4	200	3.83	
DRO >C10-C28*	<10.0	10.0	01/17/2024	ND	181	90.3	200	1.12	
EXT DRO >C28-C36	<10.0	10.0	01/17/2024	ND					
Surrogate: 1-Chlorooctane	86.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 2/19/2024 11:28:58 AM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476	BILL TO	ANALYSIS REQUEST
Company Name: Ensoluty LLC	P.0. #:	
Project Manager: Anee Cole		
Address: 3122 Numbral Parks Huny	Company:	
City: Carlsbar State: MM Zip: 88000	Attn:	
Phone #: 720-384-7365 Fax #:	Address:	
Project #: B3E7AS 70707 Project Owner: Wany, U	City:	
Project Name: EVGSAU 2437-001	State: Zip:	
Project Name: EV6SAU 2437-001 Project Location: 32. 8 668 -103. 50599	Phone #:	
Sampler Name: Ronn Haves	Fax #:	
FOR LAB USE ONLY	PRESERV. SAMPLING	
MO OM		
(C) VATER		
Tap I'D Samble I'D (G)RAB OR (C)OMP # CONTAINERS # CONTAINERS GROUNDWATER vvastewater soll oll oll	SLUDGE OTHER : ACID/BASE ICE / COOL ICE / COOL ICE / COOL	062
(G)RA # CON WAST	SLUDGE OTHER: ACID/BASS OTHER: BMIL BAPP OTHER:	
H240202 51001 @ 041 C 1 X	× 1/17/24 1150	XXX
1 SW04 @ 0-4' C ! X 2 SW05 @ 0-4' V V 3 SW06 @ 0-4' V V	1 1 (15.2	
3 Shaving Call' VV V	V V 1445	
PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in c	ntract or tort, shall be limited to the amount paid by the client	for the
analyses. All claims including those for negligence and any other cause whatsocret shall be the the husiness interrupt	tions loss of use or loss of profits incurred by client, its subsid	idianes,
service. In no event shall Cardinal be liable for incountation consequences and you cardinal, regardless of whether suc afflitues or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether suc	claim is based upon any of the above stated reasons or other	Result: Ves No Add'I Phone #:
Relinquished By: Date: Received By:	All Resu	lits are emailed. Please provide Email address:
· TIME: 18 /////	Alland REMAR	acole @esslum .com
Relinquished By: Date: Received By:	REMAR	
Time:		Standard Bacteria (only) Sample Condition
Delivered By: (Circle One) Observed Temp. °C 3.3 Sample Co		Rush Cool Intact Observed Temp. °C
Sampler - UPS - Bus - Other: Corrected Temp. °C		neter ID #140 ZH hr □ Yes □ Yes □ Yes □ No □ No □ Corrected Temp. °C

January 18, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: EVGSAU 2437 - 001

Enclosed are the results of analyses for samples received by the laboratory on 01/15/24 12:37.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:	(
Received:	01/15/2024		Sampling Date:	(01/15/2024
Reported:	01/18/2024		Sampling Type:	9	Soil
Project Name:	EVGSAU 2437 - 001		Sampling Condition:	(Cool & Intact
Project Number:	03D2057067		Sample Received By:	I	Dionica Hinojos

MAVERICK 32.81668-103.50599

Sample ID: SW02 0-4' (H240162-01)

Project Location:

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.08	104	2.00	2.06	
Toluene*	<0.050	0.050	01/15/2024	ND	2.07	103	2.00	2.23	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.71	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.00	99.9	6.00	2.75	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	01/15/2024	ND	416	104	400	7.41	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	176	88.0	200	4.03	
DRO >C10-C28*	15.4	10.0	01/15/2024	ND	166	82.9	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	83.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:		
Received:	01/15/2024		Sampling Date:	01/15/2024
Reported:	01/18/2024		Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001		Sampling Condition:	Cool & Intact
Project Number:	03D2057067		Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK 32.81668	3-103.50599		

Sample ID: SW03 0-4' (H240162-02)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.08	104	2.00	2.06	
Toluene*	<0.050	0.050	01/15/2024	ND	2.07	103	2.00	2.23	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.71	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.00	99.9	6.00	2.75	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	01/15/2024	ND	416	104	400	7.41	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	176	88.0	200	4.03	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	166	82.9	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	81.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 2/19/2024 11:28:58 AM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

	e: Ensolum, LLC				er ter					tin.	BI	ILL TO					<mark>in de tate</mark> ns	ANA	LYS	SR	REO	UFS'	r		
Project Manage	er: Ainee Cole	2							P.O.				den mengeninenen der instanderen.	1	1	T	T	1	T	T	T	T	<u>'</u>	T	T
Address: 3	127 MANDONAL J	Parks Him	1						Com	pan	Y:		Mittabell v midya a 1291	1		1									
City: Car	shad	State: NH	Zig	x: 8	62	20		-	Attn:				*****	1											
Phone #: 72	0.384 7365	Faxt		¥					Addr		1											1			1
Project #: 03	E 2057067	Project Own	er:	M	are	ach			City:			6		1											
Project Name:	· EVGSAU 24	37-601						-	State			Zip:	· · · · · · · · · · · · · · · · · · ·												
Project Locatio		-103.5050	19						Phor				······												
Sampler Name:	Romi Hay	15							Fax 4										Cashadana						
FOR LAB USE ONLY	0					MA	TRIX		PI	RESE	RV.	SAN	IPLING												
Hay.0162			OMP.		x																				
Lab I.D.	Completo	Depth	(G)RAB OR (C)OMP.	# CONTAINERS	GROUNDWATER	WASTEWATER SOIL				-				BTEX	,	H									
	Sample I.D.	(feet)	a or	TAIN	MON	EWA		щ	ASE	0	::	200 Tableville		E	5	t, d									
			RAI	NOC	SOU	HS H		SLUDGE	OTHER : ACID/BASE:	ICE / COOL	OTHER :			Per la	\cup	t									
)	5007	0-41	0	- 14	0		ō	3	28	1	5	DATE	TIME				<u> </u>	<u> </u>	<u> </u>	L	_				
2	5W0Z 5W63	0-41	L.	H		X	$\left \right $		-	X		V15/24	1	X	×	<u>×</u>		ļ				_		1	
X		0-91	14			+		-+	+	X		- d	1)20	×	×	×						+	_		1
1					\vdash	+	+	+	+	1			+								+-	+-			+-
			\square	Η		+		+	+													+	+		+
						+		+	+												+	+-			+-
			T			T		1	1												1-	+		+	+-
					1	1		1	T												1-	+			+-
		na filologi kulon kulon kanalar kanala						1													+		+==	+	+-
					T	T		T	I												T	T	1	1	T
	d Damages. Cardinal's liability and die g those for negligence and any other n reliable to fields to instituted as														e							and a subscription	<u>oslassa</u>	A	
fillates or successors arisin	gout of or related to the performance	of services hereunder by C																							
Relinguished By	1 .	Date: 1/15/24	Ree	ceiv	ed B	A:							Verbal Res All Results	wit:	U Yes	Diozec	No	Add'l F	hone {	k					
Th	W	Time: 2:37	1	MA	1	-		~					1	1		solur			H 000						
telinguished By	d T	Date:	Ret	eiv	ed B	A:							REMARKS	:	1011	nup						1	t		
		Time:															Г	1)h	F ·	as	per	a	ent 115/2	4	
Delivered By: (Cit	rcle One) Oa	served Temp. °CF	10	T	Se	mple	Con	lition	1	CHE	CK	ED BY:	Turnaround	Time		Stand									
Sampler - UPS - E	las - Other:	reversed Temp. *C)-6		Ct	l loc	ntaci	ł			mitia	als)		M	_ 1	Rush	7		col li	nact	0	mple C Ibservi	Conditioned Temp	n). °C	
		rested lomp, C	\$140	2	E	Yes	8	No		4	1		Thermometer Correction Fi			4	Shr	3	Yes	Yes	s c	artact	ed Tema		

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Released to Imaging: 4/12/2024 8:48:54 AM

January 22, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: EVGSAU 2437 - 001

Enclosed are the results of analyses for samples received by the laboratory on 01/17/24 16:18.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

ENSOLUM AIMEE COLE **3122 NATIONAL PARKS HWY** CARLSBAD NM, 88220 Fax To: 01/17/2024 Sampling Date:

Received:	01/17/2024	Sampling Date:	01/17/2024
Reported:	01/22/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: SS 06 @ 0.5' (H240203-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2024	ND	2.04	102	2.00	11.3	
Toluene*	<0.050	0.050	01/18/2024	ND	2.02	101	2.00	11.3	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.01	101	2.00	11.4	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	5.88	98.0	6.00	11.7	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.6	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	01/18/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2024	ND	175	87.4	200	3.83	
DRO >C10-C28*	<10.0	10.0	01/17/2024	ND	181	90.3	200	1.12	
EXT DRO >C28-C36	<10.0	10.0	01/17/2024	ND					
Surrogate: 1-Chlorooctane	89.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	01/17/2024	Sampling Date:	01/17/2024
Reported:	01/22/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: SS 07 @ 0.5' (H240203-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2024	ND	2.04	102	2.00	11.3	
Toluene*	<0.050	0.050	01/18/2024	ND	2.02	101	2.00	11.3	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.01	101	2.00	11.4	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	5.88	98.0	6.00	11.7	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	01/18/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2024	ND	175	87.4	200	3.83	
DRO >C10-C28*	<10.0	10.0	01/17/2024	ND	181	90.3	200	1.12	
EXT DRO >C28-C36	<10.0	10.0	01/17/2024	ND					
Surrogate: 1-Chlorooctane	80.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	77.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	01/17/2024	Sampling Date:	01/17/2024
Reported:	01/22/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: SS 08 @ 0.5' (H240203-03)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2024	ND	2.04	102	2.00	11.3	
Toluene*	<0.050	0.050	01/18/2024	ND	2.02	101	2.00	11.3	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.01	101	2.00	11.4	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	5.88	98.0	6.00	11.7	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	01/18/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2024	ND	175	87.4	200	3.83	
DRO >C10-C28*	<10.0	10.0	01/17/2024	ND	181	90.3	200	1.12	
EXT DRO >C28-C36	<10.0	10.0	01/17/2024	ND					
Surrogate: 1-Chlorooctane	78.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	77.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

Received:	01/17/2024	Sampling Date:	01/17/2024
Reported:	01/22/2024	Sampling Type:	Soil
Project Name:	EVGSAU 2437 - 001	Sampling Condition:	Cool & Intact
Project Number:	03E2057067	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK 32.81668-103.50599		

Sample ID: SS 09 @ 0.5' (H240203-04)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2024	ND	2.04	102	2.00	11.3	
Toluene*	<0.050	0.050	01/18/2024	ND	2.02	101	2.00	11.3	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.01	101	2.00	11.4	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	5.88	98.0	6.00	11.7	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	01/18/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/17/2024	ND	175	87.4	200	3.83	
DRO >C10-C28*	<10.0	10.0	01/17/2024	ND	181	90.3	200	1.12	
EXT DRO >C28-C36	<10.0	10.0	01/17/2024	ND					
Surrogate: 1-Chlorooctane	95.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 92 of 129

Received by OCD: 2/19/2024 11:28:58 AM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name		MLLC						Т	ale for		BII	LTO		T		-										
Project Manage	er: Aine	e (ala	,					F	P.O. #	Concession of the		210		-					ANA	ALYS	SR	EQUE	ST			
Address: 317	22 NADO	nal Partis Ho	VU					C	Comp	anv				-												
City: CRA	sbud .	State: NM	Z	ip:8	82	20			Attn:	Juny																
Phone #: 77	B 3847	3/05 Fax #.				-			ddre			Ì			2				1							
Project #: 03	3E205701	97 Project Owr	er.	11	11.00	:1.				55.				-										*		
Project Name:	EVGSAL	A 2437-601		PU	we	2 CM			ity:																	
Project Location	n: 32. 81.	108 -103 50	nca	a	-				tate:		Z	lip:											1	1		-
Sampler Name:	Rosa	168 -103.50 Hayes	159	9					hone																	
FOR LAB USE ONLY		Tiones		T	T	MA	TRIX	F	ax #:	ESER		CAN		4												
	5 · · · · ·		Ę					T	FR	LOEP	w.	SAM	PLING	-												
			(C)OMP	SS	ER 0	Ľ				1	1			Ι.	1	\mathbf{x}					1					
Lab I.D.	Sam	ple I.D.	OR (IN	WA				ш	F					1	2	F									
1.			ABO	NTA			GE	2	/BAS	000	¥			C	510	5	2									
H240203	•		(G)RAB	# CONTAINERS	GROUNDWATER WASTEWATEP	SOIL	OIL	THE	ACID/BASE	ICE / COOL	OTHER	DATE	TIME	1			F									
t	550	6 @ 6.5' 7 @ 6.5' 8 @ 0.5' 1 @ 0.5'	G	i		X	0 0,			$\frac{2}{x}$		17/24	1330	X			X		-						-	
. Z	550	700.5'	T	1		1				1	1	1	1335		1		1		-							_
3	5508	3 00.51			-						+		1340	1		-	1			e.	-		-			1.
- 4	550	1 00.5'	V	\mathbf{V}		¥				1		V	1345	- 1	1		te			-				-		
													150	1	1		-				-		<u> </u>			
	•														-	+										
4												-			1										-	+
																										+
																						-				+
LEASE NOTE: Liability and D	Damages, Cardinal's liabili	ity and client's evolution remark (7.000										-				+
ervice. In no event shall Card	Inal be liable for incidental	ity and client's exclusive remedy for a any other cause whatsoever shall be I or consequental damages, including					and and	1000	veu by c	aluna	i within .	30 days after	completion of t	he annlie	able					_						
filiates or successors arising of Relinquished By:	out of or related to the per	formance of servi. >e hereunder by C	ardinal,	regard	less of wh	ess interr hether su	uptions, I ch claim i	oss of is base	use, or l ed upon	loss of p any of t	profits in the above	ncurred by clive stated reas	ent, its subsidia sons or otherwis	ries, se									•			
ph 1	11.1	Date: 1-17-24	Red	ceiv	ed By	:			/	n	1		Verbal Re	sult.		fes		No	Add'l P	hone #						
- VI	4	Time		1	11	11/	140	1	U	S	rt	Los	All Results								S:					\neg
Relinquished By:		Date:	Rec	eive	ed By	iu	M	C	xal	ea	1	X	REMARKS	0.0	ole	ω-	ensi	DIUM	n ma	m						ŀ
		Time:									/															
Delivered By: (Circ	le One)	Observed Temp. °C	23	2	Sam	nle C	nditi	m	0	IFO																
ampler - UPS - Bu	us - Other:	Corrected Temp. °C	0.0		Coo	Int	act	yar -			(ED E	BY: T	urnaround	d Time	2:		tanda ush	rd		Bacteria	a (only	() Sampl				
FORM-000 R		Corrected Temp. °C				Yes [No [act Yes No			Y	0		hermomete orrection F						_	Cool Ir	Ye	s		Temp. °(
		† Cardinal	cann	ota								and the second se	Filestion F	actor						No	No	o Cor	rected T	ſemp. °	С	

Page 7 of 7

cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

January 19, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

RE: EVGSAU 2437 - 001

Enclosed are the results of analyses for samples received by the laboratory on 01/18/24 13:02.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ENSOLUM AIMEE COLE **3122 NATIONAL PARKS HWY** CARLSBAD NM, 88220 Fax To: Received: 01/18/2024 Sampling Date: 01/18/2024 Reported: 01/19/2024 Sampling Type: Soil Project Name: EVGSAU 2437 - 001 Sampling Condition: Cool & Intact Project Number: 03E2057067 Sample Received By: Tamara Oldaker

MAVERICK 32.81668-103.50599

Sample ID: SW 04 A (H240214-01)

Project Location:

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	01/18/2024	ND	2.14	107	2.00	11.0	
Toluene*	<0.050	0.050	01/18/2024	ND	2.16	108	2.00	6.37	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.22	111	2.00	8.56	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	6.60	110	6.00	8.99	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	01/18/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	01/18/2024	ND	190	95.0	200	2.91	
DRO >C10-C28*	<10.0	10.0	01/18/2024	ND	179	89.5	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	01/18/2024	ND					
Surrogate: 1-Chlorooctane	99.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celecz D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 96 of 129

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

4 Page 4 of 4

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Project Manager: Andress: P.O. #: DILL TO ANALYSIS REQUEST Address: 3122 National Party Harry Company: City: Carlsbad State: N/M Zip: #552*0 Attr: Attr: Project #: 0 3E 205 702 7020 Froject Owner: Marked City: Address: Project #: 0 3E 205 7020 7000 per company: Attr: Address: Project Name: EVGSAM 2437-001 State: Zip: Project Name: Romit Harris Fax #: Fax #: TOR Loude over Markin Project State: Zip: Visit Use over State: Zip: Date: Visit Use over Markin	Project Manager: Amen Cale		BILL TO	1		C DEQUERT
City: Carlsbad State: N/M Zip: 85.7 20 Attr: Phone #: 720 384 7365 Fax #: Address: Project Name: EVGSAU 2437-001 State: Zip: Project Name: EVGSAU 2437-001 State: Zip: Project Name: Romi Hmyce Fax #: For Lab LD. Sample I.D. Will will will will will will will will	AITEE ONE		A REAL PROPERTY OF THE REAL PR		ANALISI	S REQUEST
City: Carlsbad State: N/M Zip: 85.7 20 Attr: Phone #: 720 384 7365 Fax #: Address: Project Name: EVGSAU 2437-001 State: Zip: Project Name: EVGSAU 2437-001 State: Zip: Project Name: Romi Hmyce Fax #: For Lab LD. Sample I.D. Will will will will will will will will	Address: 2122 National Party	Hury	Company:	1		
Phone #: 720 384 7365 Fax #: Address: Project 1: 0 3E 705 702 Project Owner: Mananch City: Project Name: FE VGSAM 2437-001 State: Zip: Project Location: 3 2. 81/668, 103.50599 Phone #: For Lab LO. Sample I.D. MATRIX PRESERV SAMPLING TOR LAB USE OWN 1 3000 21 00 02 00 00 00 00 00 00 00 00 00 00 00	City: Carlsbad State: NIM					
Project #: 0 SE 70 S	Phone #: 120 384 7365 Fax #:					
Project Location: 3 2. 81/6/8, TD3. S0599 Phone #: Sampler Name: Romit Hance Fax #: CORLAGUES ONLY Image: Forketee only Image: Forketee only Image: Forketee only Lab I.D. Sampler I.D. Image: Forketee only Image: Forketee only Image: Forketee only January Lab I.D. Sampler I.D. Image: Forketee only Image: Forketee only Image: Forketee only January Lab I.D. Sampler I.D. Image: Forketee only Image: Forketee only Image: Forketee only Image: Forketee only January Lab I.D. Sampler I.D. Image: Forketee only Image: Forketee only Image: Forketee only Image: Forketee only January Holder Image: Forketee only January Holder Image: Forketee only January Holder Image: Forketee only Image: Forketee only Image: Forkee only	Project #: 0 3 15 Zas 70 (2) Project Owner	Manzall				
Project Location: 3 2 . % I Wab, TD3. S0 S99 Phone #: Sampler Name: Romini Hay cc Fax #: Lab I.D. Sample I.D. MATEIX PRESERV SAMPLING Hay cc Hay cc Fax #: Fax #: Fax #: Fax #: Lab I.D. Sample I.D. No 800 Hay for the fax #: Fax #: Fax #: Fax #: Jatton 1.D. Subject 1.D. No 800 Hay for the fax #: Fax #: Fax #: Fax #: Fax #: Jatton 1.D. Subject 1.D. No 800 Hay for the fax #: Fax #: Fax #: Fax #: Fax #: Fax #: Jatton 1.D. Subject 1.D. No 800 Hay for the fax #:	Project Name: EVGSAU 2437-001	the concert				
Sampler Name: Bown How ce Fax #: FOR LAB USE ONLY Image: Fax #: Fax #: Image: Fax #: Image: Fax #: Lab I.D. Sample I.D. Image: Fax #: Image: Fax #: Image: Fax #: Image: Fax #: Image: Fax #: Image: Fax #: Image: Fax #: Image: Fax #: Image: Fax #: Image: Fax #: Image: Fax #: Lab I.D. Sample I.D. Image: Fax #: Image: F	Project Location: 32. SILLS The	SA SGA				
Lab I.D. Sample I.D. MATRIX PRESERV. SAMPLING 1 Sign of the second secon		30399				
Lab I.D. Sample I.D. Jate Time Jate Time Jate Time 1 Swoth A Image Stress Stre	FOR LAB USE ONLY	MATDIX				
	1 SW04a ((G)RAB OR (C)OMP. # CONTAINERS CONDWATER WÁSTEWATER N N OIL OIL	OTHER: ACID/BASE: ACID	· × Bttx × TH		

APPENDIX F NMSLO Reclamation Plan

Reclamation Plan

The release occurred in a pasture area and as such, reclamation requirements set forth in 19.15.29.13.D (1) NMAC for the top 4 feet of areas that will be reclaimed following remediation were applied.

The following Reclamation Plan addresses reclamation of the off-pad excavation area and has been developed through review and application of the *Revegetation Guidelines Handbook for Southeastern New Mexico* – Version 1-1, authored by NMSLO and dated 2018, and 19.2.100.67 NMAC – *Surface Reclamation on State Oil and Gas Leases*:

- The excavation will be backfilled with locally sourced caliche and topsoil to match surrounding grade. A minimum of 1-foot of topsoil will be placed on top of the caliche to support vegetative growth within the disturbed area;
- Soil in the vicinity of the release in the pasture will be assessed for the proper application of *Table 3 Revegetation Plans, Codes, and Soil Types for Southeastern New Mexico*;
- The backfilled areas will be seeded utilizing a weed-free seed mix designed listed in the table below;

Common Name and Preferred Variety	Scientific Name	PLS Per Acre
Annual Quick-cover Grass		
Oats	Avena sativa	1.00
Cool Season Grass		
Western Wheatgrass	Agropyron smithii	2.50
Warm-Season Grass		
Black or Blue Grama	Boutela gracilis var. Alma	1.50
Little Bluestem	Schizachyrium scoparium	0.50
Sand Dropseed	Sporobolus cryptandrus	0.50
Sand Bluestem	Andropogon hallii	1.00
Indiangrass	Sorghastrum nutans	0.50
Sideoats Grama	Bouteloua curtipendula var. Vaughn	2.00
Wildflowers/ Forbs		
White prairie clover	Dalea candida	0.10
Scarlet globemallow	Sphaeralcea coccinea	0.10
Chia Sage	Salvia columbariae	0.10
Annual sunflower	Helianthus annuus	0.10
Annual buckwheat	Eriogonum annuum	0.10

- The seed mixture will be distributed with one or more of the following methods: push broadcaster seed spreader, tractor operated broadcast seed spreader, and/or drill seeding based on Site conditions and contractor availability;
- Application of the seed mixture will be at a coverage of 10 pounds of seeds per acre of reclaimed pasture with distribution by a drilling method or 20 pounds of seeds per acre of reclaimed pasture with distribution by a broadcast method;

- Erosion control management is not anticipated since the proposed excavation area is relatively flat; however, in the event erosion control management is necessary to support vegetation growth and minimize erosion until the root structures take hold, the application of the following best management practices (BMPs) could potentially include:
 - Prompt revegetation with mulching and contouring the ground surface to limit surface water flow;
 - The placement of waddles in areas with a propensity for high run off rates;
 - Straw cover if high winds are anticipated to support moisture retention and limit wind from blowing seeds away before they have had time to germinate; and/or
 - Other erosional control best management practices (BMP) as necessary to support timely and healthy regrowth of vegetation in disturbed areas;
- Seeding is anticipated to be completed in the when temperatures and precipitation are most conducive for vegetation growth. In general, seeding should occur approximately one month after the last frost in the Spring up until approximately one month prior to the first fall frost. NMSLO has recognized the optimal time to seed is between July and early September, which will be the preferred timeframe for this Site;
- Annual inspections (at a minimum) will take place at the location until revegetation is consistent with local natural vegetation density. The Site will be inspected the following growing season to assess the success of regrowth. If necessary, an additional application of the NMSLO-approved pure live seed mixture will be applied as well as any needed BMPs will be installed to support growth and limit erosion; and
- Upon completion of revegetation, a copy of the C-103 submitted to NMOCD will also be submitted to NMSLO for final inspection and release.

APPENDIX G

NMOCD Notifications

From:	Aimee Cole
To:	Aimee Cole
Subject:	FW: [EXTERNAL] Maverick Permian, LLC - Extension Request - EVGSAU 2437-001 (Incident ID NAPP2303273838)
Date:	Wednesday, December 20, 2023 1:52:45 PM
Attachments:	image001.png
	image002.png image003.png
	image004.png
	Outlook-Olicavy/0x ppg

Aimee Cole Senior Managing Scientist 720-384-7365 Ensolum, LLC

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Sent: Wednesday, December 20, 2023 1:39 PM
To: Aimee Cole <acole@ensolum.com>
Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>
Subject: Re: [EXTERNAL] Maverick Permian, LLC - Extension Request - EVGSAU 2437-001 (Incident ID NAPP2303273838)

[**EXTERNAL EMAIL**]

Good afternoon Aimee,

Your 60-day time extension is approved. Remediation Due date has been updated to March 4, 2024.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards,

Nelson Velez • Environmental Specialist - Adv

Environmental Bureau | EMNRD - Oil Conservation Division

1000 Rio Brazos Road | Aztec, NM 87410

(505) 469-6146 | nelson.velez@emnrd.nm.gov

http://www.emnrd.state.nm.us/OCD/

From: Wells, Shelly, EMNRD <<u>Shelly.Wells@emnrd.nm.gov</u>>
Sent: Wednesday, December 20, 2023 1:07 PM
To: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>
Cc: Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>
Subject: FW: [EXTERNAL] Maverick Permian, LLC - Extension Request - EVGSAU 2437-001 (Incident ID NAPP2303273838)

From: Aimee Cole <acole@ensolum.com>
Sent: Wednesday, December 20, 2023 12:42 PM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>
Subject: [EXTERNAL] Maverick Permian, LLC - Extension Request - EVGSAU 2437-001 (Incident ID
NAPP2303273838)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To Whom It May Concern,

Extension Request - EVGSAU 2437-001 (NAPP2303273838)

Maverick Permian, LLC (Maverick) is requesting an extension of the current January 2, 2024, deadline for submitting a report required in 9.15.29.12.B.(1) NMAC, detailing remedial actions at the EVGSAU 2437-001 (Incident ID NAPP2303273838). A Remediation Work Plan for this release was approved by the NMOCD on October 2, 2023, and remediation activities were scheduled. Prior to completing the remediation activities, a second release occurred at the site (Incident ID nAPP2334650001) which affected the existing open excavation. Initial response efforts have been completed for the second release and Maverick intends to complete remediation for both releases simultaneously. In order to complete additional excavation and remediation activities, review the soil sample laboratory analytical results, and prepare a closure report for both releases at the site, Maverick requests a 60-day extension until March 2, 2024.

Thank you,

Aimee Cole Senior Managing Scientist

From:	Enviro, OCD, EMNRD
То:	Kalei Jennings
Cc:	Bratcher, Michael, EMNRD; Nobui, Jennifer, EMNRD
Subject:	RE: [EXTERNAL] Maverick Permian - Sampling Notification (Week of 5/15/2023)
Date:	Friday, May 12, 2023 3:08:14 PM
Attachments:	image005.jpg image006.png image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Friday, May 12, 2023 2:47 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick Permian - Sampling Notification (Week of 5/15/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Permian, LLC (Maverick) plans to complete sampling activities at the following site the week of May 15, 2023.

- EVGSAU 2418-001 / NAPP2231954757
 - Sampling Date: 5/17/2023 & 5/18/2023
- EVGSAU 2963-001/ NAPP2235371799
 - Sampling Date: 5/17/2023 & 5/18/2023

- MCA 400 / NAPP2305455050
 - Sampling Date: 5/17/2023
- EVGSAU 2437-001/ NAPP2303273838
 - Sampling Date: 5/17/2023 & 5/18/2023

Thank you,

Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC

From:	Enviro, OCD, EMNRD
То:	Kalei Jennings
Cc:	Bratcher, Michael, EMNRD; Velez, Nelson, EMNRD
Subject:	RE: [EXTERNAL] Maverick Permian - Sampling Notification (Week of 5/29/2023)
Date:	Friday, May 26, 2023 10:31:14 AM
Attachments:	image005.jpg image006.png image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

Kalei,

Thank you for the notification. Please include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

JΗ

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Thursday, May 25, 2023 3:53 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Maverick Permian - Sampling Notification (Week of 5/29/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Permian, LLC (Maverick) plans to complete sampling activities at the following site the week of May 29, 2023.

- EVGSAU 2963-001/ NAPP2235371799
 - Sampling Date: 6/1/2023 & 6/2/2023
- EVGSAU 2437-001/ NAPP2303273838
 - Sampling Date: 5/30/2023 & 5/31/2023

- MCA 351/ NAPP2302034681
 - Sampling Date: 6/1/2023 & 6/2/2023

Thank you,

From:	Buchanan, Michael, EMNRD
То:	Kalei Jennings; Enviro, OCD, EMNRD; Velez, Nelson, EMNRD
Cc:	Aimee Cole
Subject:	RE: [EXTERNAL] Maverick- Sampling Notification (Week of 7/3/2023)
Date:	Monday, July 3, 2023 1:01:25 PM
Attachments:	image005.jpg image006.png image007.png image008.png image009.png

[**EXTERNAL EMAIL**]

Good afternoon,

Thank you for the notification. Please include a copy of this and all notifications in the C-141, remedial and/or closure reports to ensure the notifications are documented in the project file.

Regards,

Mike Buchanan ● Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 8801 Horizon Blvd. NE | Albuquerque, NM 87113 | michael.buchanan@emnrd.nm.gov http://www.emnrd.nm.gov/ocd_

From: Kalei Jennings <kjennings@ensolum.com>
Sent: Monday, July 3, 2023 1:14 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Cc: Aimee Cole <acole@ensolum.com>
Subject: [EXTERNAL] Maverick- Sampling Notification (Week of 7/3/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Maverick Permian, LLC plans to complete sampling activities at the following site the week of July 3, 2023.

- MCA 204 / NAPP2311751602
 - Sampling Date: 7/6/2023 & 7/7/2023
MCA #1 South Transfer Line / NAPP2314650185

- Sampling Date: 7/6/2023
- EVGSAU 2437-001 / NAPP2303273838
 - Sampling Date: 7/6/2023

Thank you,

Kalei Jennings Senior Scientist 817-683-2503 Ensolum, LLC

APPENDIX H

REMEDIATION WORK PLAN (July 2023)

Released to Imaging: 4/12/2024 8:48:54 AM

July 11, 2023

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Remediation Work Plan EVGSAU 2437-001 Incident Number NAPP2303273838 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum) on behalf of Maverick Permian, LLC (Maverick), has prepared the following *Remediation Work Plan* (*Work Plan*) to document the site assessment and excavation activities completed to date and propose a work plan to address the historical impacted soil identified at the EVGSAU 2437-001 flow line release (Site). The following *Work Plan* proposes additional excavation of impacted soil and installation of a 20-mil impermeable liner in the floor of the excavation.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit P, Section 24, Township 17 South, Range 34 East, in Lea County, New Mexico (32.816832° N, -103.506018° W) and is associated with oil and gas exploration and production operations on New Mexico State Land.

On January 10, 2023, corrosion of a flow line resulted in the release of approximately 2.67 barrels (bbls) of crude oil and 6.23 bbls of produced water into the surrounding pasture. No fluids were recovered. The release occurred on the surface of a historical/reclaimed Phillips Petroleum well pad (API 30-025-27337). Maverick reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on January 19, 2023. The release was assigned Incident Number NAPP2303273838.

The NMSLO was notified of excavation and remediation activities required in the pasture on a Right of Entry Request for Remediation form, submitted to the NMSLO on March 17, 2023. The request included a copy of the Form C-141, a topographic location map, and a satellite image of the location. The Right of Entry (ROE) Permit (RE-6494) was fully executed by the NMSLO and received by Maverick on April 11, 2023. No additional cultural resource surveys were completed in connection with this release. A copy of the ROE Request for Remediation form and fully executed ROE Permit, are included in Appendix A.

SITE CHARATERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess applicability of Table 1, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC).

Results from the characterization desktop review are presented on page 3 of the Form C-141, Site Assessment/Characterization. Potential site receptors are identified on Figure 1.

Depth to groundwater at the Site is estimated to be between 51 and 100 feet below ground surface (bgs) based on the nearest groundwater well data. The closest permitted groundwater well with depth to groundwater data is United States Geologic Survey (USGS) Well 324854103301101, located approximately 925 feet southeast of the Site. The groundwater well has a reported depth to groundwater of 76.7 feet bgs and a total depth of 226 feet bgs. All wells used for depth to groundwater determination are depicted on Figure 1 and the referenced well records are included in Appendix B.

The closest continuously flowing or significant watercourse to the Site is a dry playa, located approximately 825 feet east of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). The Site is less than 1,000 feet to a water well. Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table 1 Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES

On January 11, 2023, Ensolum personnel completed a Site visit to evaluate the release extent based on information provided on the Form C-141 and visual observations. Assessment soil samples SS01 through SS09 were collected within and around the release from a depth of approximately 0.5 feet bgs, to assess the extent of the release. The soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The release extent and assessment soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included in Appendix C.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported at or below 4 degrees Celsius (°C) under strict chain-of-custody procedures to Cardinal Laboratories (Cardinal) in Carlsbad, New Mexico, for analysis of the following contaminants of concern (COC): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0.

Laboratory analytical results for assessment soil samples SS01 through SS05, collected within the release extent, indicated that BTEX, TPH, and chloride concentrations exceeded the Site Closure Criteria. Laboratory analytical results for assessment samples SS06 through SS09, collected around the release extent, indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria, and successfully defined the lateral extent of the release. The laboratory analytical results are summarized on the attached Table 1.

Based on visible staining in the release area, elevated field screening results, and laboratory analytical results for assessment soil samples SS01 through SS05, delineation and excavation activities were warranted.

EXCAVATION AND DELINEATION ACTIVITIES

Between January 18, 2023, and May 8, 2023, Ensolum personnel were at the Site to oversee excavation activities based on visible staining in the release area and laboratory analytical results for the assessment soil samples SS01 through SS05. Excavation activities were performed using a backhoe and transport vehicles. To direct excavation activities, soil was field screened for VOCs and chloride using a PID and chloride Hach[®] chloride QuanTab[®] test strips, respectively. Field screening results were declining with excavation depth, as expected, until a depth of approximately 3 feet bgs. At a 3 feet bgs, field screening results increased and there were visible indications of a historical pit on the reclaimed Phillips Petroleum well pad (API 30-025-27337). Upon encountering the historical pit, vertical excavation was halted. The excavation proceeded laterally within the release extent until field screening results indicated that excavation sidewalls were compliant with the Site Closure Criteria.

Following lateral excavation of the impacted soil, 5-point composite soil samples were collected every 200 square feet from the sidewalls of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples SW01 through SW04 were collected from the sidewalls of the excavation at depths ranging from the ground surface to 3 feet bgs. The excavation extent and soil sample locations were mapped utilizing a handheld GPS and are presented on Figure 2. Photographic documentation was completed during the excavation activities. A photographic log is included in Appendix C. The soil samples were collected, handled, and analyzed as described above.

The excavation measured approximately 5,000 square feet in areal extent. A total of approximately 600 cubic yards of impacted soil was excavated, transported, and properly disposed at R360 Environmental Solutions in Hobbs, New Mexico.

On June 16, 2023, Ensolum personnel returned to the Site to complete vertical delieation of the historical pit encountered in the floor of the open excavation. Potholes PH01 and PH02 were advanced via track mounted backhoe within the 3-foot deep excavation to depths of 11 feet and 7 feet bgs, respectively. Soil from the potholes was field screened at depths ranging from 4 feet to 11 feet bgs using a PID and chloride Hach[®] chloride QuanTab[®] test strips. Field screening results indicated elevated TPH and/or chloride concentrations in pothole PH01 at depths ranging from 4 feet to 10 feet bgs and in pothole PH02 at depths ranging from 4 feet to 6 feet bgs. Two delineation samples were submitted for laboratory analysis from each pothole (PH01A/PH01G and PH02A/PH02D) from depths ranging from 4 feet to 10 feet bgs. Field screening results and observations from the potholes were documented on lithologic/soil sampling logs, which are included in Appendix C. The pothole locations are presented on Figure 2.

Laboratory analytical results for excavation sidewall samples SW01 through SW04 indicated all COC concentrations were compliant with the Site Closure Criteria. Laboratory analytical results for pothole delineation samples PH01A and PH02A, collected at a depth of 4 feet bgs, indicated that TPH and/or chloride concentrations exceeded the Site Closure Criteria within the historical pit. Laboratory analytical results for pothole delineation samples PH01G and PH02D, collected at depths of 10 feet and 7 feet bgs, respectively, indicated all COC concentrations were compliant with the Site Closure Criteria and provided vertical delineation of impacted soil within the historical pit. The laboratory analytical results are summarized on the attached Table 1 and the complete laboratory analytical reports are included in Appendix D.

PROPOSED REMEDIATION WORK PLAN

Maverick excavated approximately 600 cubic yards of impacted soil associated with the January 10, 2023, flow line release. However, historical impacts associated with a buried historical pit on the reclaimed Phillips Petroleum well pad were encountered in the floor of the excavation. Analytical results from the delineation soil sampling indicated soil containing elevated TPH and/or chloride concentrations is present across the 5,000 square foot excavation area and extends from a depth of 3 feet bgs to a maximum depth of 10 feet bgs. The impacted soil below 3 feet bgs is associated with a historical pit containing large pieces of concrete and has a discernable visible difference between the recent release and historical impacts (photos 3 and 4). Maverick is not responsible for remediation of historical impacts on another Operators well pad; however, in order to be protective of the environment, Maverick proposes excavation of the top four feet of soil within the release footprint and installation of a liner in the floor of the open excavation to mitigate further impacts to the subsurface.

Maverick requests approval to complete the following remediation activities:

- Removal of an additional 1-foot of impacted soil from the floor of the excavation, resulting in a final excavation depth of 4 feet bgs.
- An additional estimated 185 cubic yards of impacted soil will be excavated and disposed of at a licensed disposal facility.
- Upon completion of excavation activities, a 20-mil impermeable liner will be installed over the historical pit to mitigate further impacts to the subsurface. The liner will be installed at 4 feet bgs within the open excavation.
- The excavation will be backfilled and recontoured to match pre-existing conditions. The disturbed pasture will be re-seeded with an approved seed mixture. A Reclamation Plan for the disturbed pasture area is included in Appendix F for NMSLO review.

Maverick will complete the excavation and liner installation activities within 90 days of the date of approval of this *Work Plan* by the NMOCD. NMOCD Notifications are included in Appendix G and the Form C-141 is included in Appendix H.

If you have any questions or comments, please contact please contact Ms. Kalei Jennings at (817) 683-2503 or kjennings@ensolum.com.

Sincerely, **Ensolum, LLC**

Kalui Jenningz

Kalei Jennings Senior Scientist

Aimee Cole Senior Managing Scientist

cc: Bryce Wagoner, Maverick Permian, LLC New Mexico State Land Office

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Excavation and Delineation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A ROE Request for Remediation Form and ROE Permit
- Appendix B Referenced Well Records
- Appendix C Photographic Log
- Appendix D Lithologic Soil Sampling Logs
- Appendix E Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix F NMSLO Reclamation Plan
- Appendix G NMOCD Notifications
- Appendix H Final C-141

FIGURES

Received by OCD: 2/19/2024 11:28:58 AM

Page 117 of 129

2

Maverick Permian, LLC EVGSAU 2437-001 Incident Number: NAPP2303273838 Unit P, Sec 24, T17S, R34E Lea County, New Mexico

Environmental, Engineering and

Hydrogeologic Consultants

TABLES

.

TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS EVGSAU 2437-001 Maverick Permian, LLC Lea County, New Mexico									
Sample Designation	Date	Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Table I	Closure Criteria	(NMAC 19.15.29)	10	50	NE	NE	NE	100	600
		L.		Assessment	Soil Samples	l	I		
SS01	01/11/2023	0.5	12.7	297	4,660	32,100	4,570	41,330	10,200
SS02	01/11/2023	0.5	9.37	289	3,960	31,900	4,320	40,180	8,290
SS03	01/11/2023	0.5	38.4	451	3,390	12,000	1,730	17,120	13,400
SS04	01/11/2023	0.5	9.62	260	2,190	17,600	2,350	22,140	13,600
SS05	01/11/2023	0.5	0.152	0.825	7,210	<49.9	<49.9	7,210	49.1
SS06	01/11/2023	0.5	<0.0495	0.528	<50.0	50.1	<50.0	50.1	64.1
SS07	01/11/2023	0.5	<0.0497	<0.0994	<50.0	<50.0	<50.0	<50.0	347
SS08	01/11/2023	0.5	<0.00200	<0.00399	<50.0	<50.0	<50.0	<50.0	234
SS09	06/01/2023	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	48.0
				Excavation \$	Soil Samples				
SW01	06/05/2023	0-3	<0.050	0.300	<10.0	<10.0	<10.0	<10.0	80.0
SW02	06/05/2023	0-2	<0.050	0.300	<10.0	<10.0	<10.0	<10.0	64.0
SW03	06/05/2023	0-2	<0.050	0.300	<10.0	<10.0	<10.0	<10.0	80.0
SW04	06/14/2023	0-2	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	48.0
	Delineation Soil Samples								
PH01A	06/16/2023	4	<0.100	40.2	1,320	10,900	1,770	13,990	17,200
PH01G	06/16/2023	10	<0.050	<0.300	<10.0	<10.0	12.8	12.8	160
PH02A	06/16/2023	4	<0.050	3.87	44.3	399	57.2	501	1,230
PH02D	06/16/2023	7	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	400

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

- TPH: Total Petroleum Hydrocarbon
- GRO: Gasoline Range Organics
- DRO: Diesel Range Organics

ORO: Oil Range Organics

Grey text represents samples that have been excavated

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation standard where applicable.

Received by OCD: 2/19/2024 11:28:58 AM

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 315513

QUESTIONS			
Operator:	OGRID:		
Maverick Permian LLC 1000 Main Street, Suite 2900 Houston, TX 77002	331199		
	Action Number:		
	315513		
	Action Type:		
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)		

QUESTIONS

Prerequisites		
Incident ID (n#)	nAPP2334650001	
Incident Name	NAPP2334650001 EVGSAU 2437-001 @ 0	
Incident Type	Oil Release	
Incident Status	Reclamation Report Received	
Incident Facility	[fGRL0824151757] EVGSAU Well No. 2437-001	

Location of Release Source

Please answer all the questions in this group.	
Site Name	EVGSAU 2437-001
Date Release Discovered	12/11/2023
Surface Owner	State

Incident Details

Please answer all the questions in this group.		
Incident Type	Oil Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.			
Crude Oil Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Crude Oil Released: 18 BBL Recovered: 9 BBL Lost: 9 BBL.		
Produced Water Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Produced Water Released: 6 BBL Recovered: 6 BBL Lost: 0 BBL.		
Is the concentration of chloride in the produced water >10,000 mg/l	No		
Condensate Released (bbls) Details	Not answered.		
Natural Gas Vented (Mcf) Details	Not answered.		
Natural Gas Flared (Mcf) Details	Not answered.		
Other Released Details	Not answered.		
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.		

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 122 of 129

QUESTIONS, Page 2

Action 315513

QUESTIONS (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 315513 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Nature and Volume of Release (continued)			
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.		
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No		
Reasons why this would be considered a submission for a notification of a major release	Unavailable.		
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.			

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach al information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		

	Name: Aimee Cole	
I hereby agree and sign off to the above statement	Email: acole@ensolum.com	
	Date: 02/19/2024	

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 123 of 129

QUESTIONS, Page 3

Action 315513

Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	315513	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

OUESTIONS (continued)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Between 75 and 100 (ft.)
U.S. Geological Survey
No
nd the following surface areas:
Between 500 and 1000 (ft.)
Between 500 and 1000 (ft.)
Between 1 and 5 (mi.)
Between 500 and 1000 (ft.)
Between 500 and 1000 (ft.)
Between 1 and 5 (mi.)
Between 500 and 1000 (ft.)
Between 1 and 5 (mi.)
Greater than 5 (mi.)
Low
Greater than 5 (mi.)
Yes

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 1800 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 71.4 GRO+DRO (EPA SW-846 Method 8015M) 60 BTEX (EPA SW-846 Method 8021B or 8260B) 0 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/12/2024 On what date will (or did) the final sampling or liner inspection occur 01/17/2024 On what date will (or was) the remediation complete(d) 01/22/2024 What is the estimated surface area (in square feet) that will be reclaimed 5500 What is the estimated volume (in cubic yards) that will be reclaimed 830 What is the estimated surface area (in square feet) that will be remediated 5500 What is the estimated volume (in cubic yards) that will be remediated 830 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 315513

QUESTIONS (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 315513 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	R360 Artesia LLC LANDFARM [fEEM0112340644]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No	
(In Situ) Soil Vapor Extraction	No	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No	
Ground Water Abatement pursuant to 19.15.30 NMAC	No	
OTHER (Non-listed remedial process)	No	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Aimee Cole Email: acole@ensolum.com	

Date: 02/19/2024 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 315513

QUESTIONS (continued)	
Operator: Maverick Permian LLC	OGRID: 331199
1000 Main Street, Suite 2900 Houston, TX 77002	Action Number: 315513
	Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)
QUESTIONS	

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 315513

QUESTIONS (continued)		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	315513	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	315576
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/17/2024
What was the (estimated) number of samples that were to be gathered	3
What was the sampling surface area in square feet	500

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all re	emediation steps have been completed.	
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	5500	
What was the total volume (cubic yards) remediated	830	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	5500	
What was the total volume (in cubic yards) reclaimed	830	
Summarize any additional remediation activities not included by answers (above)	Remediation activities were completed simultaneously with Incident Number nAPP2303273838. A clay liner was installed in the floor of the 4' deep excavation prior to backfilling.	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
to report and/or file certain release notifications and perform corrective actions for release the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ises which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.	

I hereby agree and sign off to the above statement	Name: Aimee Cole Email: acole@ensolum.com
	Date: 02/19/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 315513

QUESTIONS (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 315513 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Reclamation Report		
Yes		
5500		
800		
four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 over must include a top layer, which is either the background thickness of topsoil or one foot of suitable material		
Yes		
01/23/2024		
The excavation was backfilled and seeded with an NMSLO approved seed mix, as detailed in the Reclamation Plan (included with the approved Remediation Work Plan for Incident Number NAPP2303273838). Photographs of the backfilled excavation are included in Appendix D. Vegetation monitoring will be completed on an annual basis (at a minimum) until vegetation density is consistent with off-site conditions.		
reclamation requirements and any conditions or directives of the OCD. This demonstration should be in the form t field notes, photographs of reclaimed area, and a narrative of the reclamation activities. Refer to 19.15.29.13		
knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete. Name: Aimee Cole Email: acole@ensolum.com		

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 128 of 129

QUESTIONS, Page 8

Action 315513

QUESTIONS (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 315513 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Revegetation Report

Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied

Requesting a restoration complete approval with this submission

No Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	315513
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

CONDITIONS

Created By		Condition Date
nvelez	None	4/12/2024

Page 129 of 129 CONDITIONS

Action 315513