

April 15, 2024

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: First Quarter 2024 – SVE System Update

Hare #14M

San Juan County, New Mexico Hilcorp Energy Company

NMOCD Incident Number: NRM2028852747

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *First Quarter 2024 – SVE System Update* report summarizing the soil vapor extraction (SVE) system performance at the Hare #14M natural gas production well (Site), located in Unit D of Section 10, Township 29 North, Range 10 West, San Juan County, New Mexico (Figure 1). The SVE system was put into operation on June 6, 2023, to remediate subsurface soil impacts resulting from approximately 36 barrels (bbls) of natural gas condensate released from an aboveground storage tank. This report summarizes Site activities performed in January, February, and March of 2024.

SVE SYSTEM SPECIFICATIONS

The SVE system at the Site consists of a 3-phase, 6 horsepower Atlantic Blower AB-802 regenerative blower capable of producing 399 cubic feet per minute (cfm) flow and 125 inches of water column (IWC) vacuum. The system is powered by a permanent power drop and is intended to run 24 hours per day. Seven SVE wells are currently in operation and are shown on Figures 2 and 3. SVE wells SVE01, SVE07, and SVE09 are screened within "shallow zone" soil at depths up to 25 feet below ground surface (bgs). SVE wells SVE02, SVE03, SVE06, and SVE08 are screened within "deep zone" soil at depths up to 40 feet bgs.

FIRST QUARTER 2024 ACTIVITIES

The SVE system began operation on June 6, 2023. Based on the New Mexico Oil Conservation Division (NMOCD) Conditions of Approval (COAs), dated November 7, 2022, field data measurements were collected bi-weekly from the system during the first quarter of 2024 and included the following parameters: total system flow, flow rates from each SVE well, photoionization detector (PID) measurements of volatile organic compounds (VOCs) from each SVE well and the total system influent, and oxygen/carbon dioxide measurements via hand-held analyzers from each SVE well. Field notes taken during operations and maintenance (O&M) visits are presented in Appendix A.

Since startup, vacuum extraction has been performed on all Site SVE wells in order to remove mass from the impacted soil zones. Between December 20, 2023, and March 21, 2024, the SVE system operated for 2,190.8 hours for a runtime efficiency of 99 percent (%). Appendix B presents

Page 2

photographs of the runtime meter for calculating the first quarter 2024 runtime efficiency. Table 1 presents the SVE system operational hours and calculated percentage runtime.

Based on the November 2022 COAs, vapor samples were required to be collected every other month during the second through fourth quarters of the first year of operation. To comply with the aforementioned COAs, vapor samples were collected in January and March of 2024. The air samples were collected from a sample port located between the SVE piping manifold and the SVE blower using a high vacuum air sampler. Prior to collection, the samples were field screened with a PID for organic vapor monitoring (OVM). The samples were collected directly into two 1-Liter Tedlar® bags and submitted to Eurofins Environment Testing (Eurofins) in Albuquerque, New Mexico for analysis of total volatile petroleum hydrocarbons (TVPH – also known as total petroleum hydrocarbons – gasoline range organics (TPH-GRO)) following United States Environmental Protection Agency (EPA) Method 8015D, VOCs following EPA Method 8260B, and fixed gas analysis of oxygen and carbon dioxide following Gas Processors Association (GPA) Method 2261. A summary of field measurements and analytical data collected at the Site are presented in Tables 2 and 3, respectively. Full laboratory analytical reports are attached as Appendix C. Oxygen and carbon dioxide levels over time are presented at Graphs 1 and 2, respectively.

Air sample data and measured stack flow rates are used to estimate total mass recovered and total emissions generated by the SVE system (Table 4). Based on these estimates, 3,381 pounds (1.69 tons) of TVPH have been removed by the system to date. No phase-separated hydrocarbons were recovered from the SVE wells during the O&M and sampling period described above.

DISCUSSION AND RECOMMENDATIONS

Following a notable drop in both field PID readings and TVPH laboratory analytical results during the March 6, 2024 sampling event, adjustments were made to the SVE system to attempt to maximize vacuum extraction from the two wells with the highest PID readings (SVE01 and SVE07). Following the adjustments, a 30% increase in the system influent PID reading was observed during the subsequent O&M event. Vacuum continues to be applied to all seven available extraction wells.

Bi-weekly O&M visits and bi-monthly (every other month) sampling events will continue to be performed by Ensolum and/or Hilcorp personnel to verify the SVE system is operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following quarterly report.

Page 3

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely,

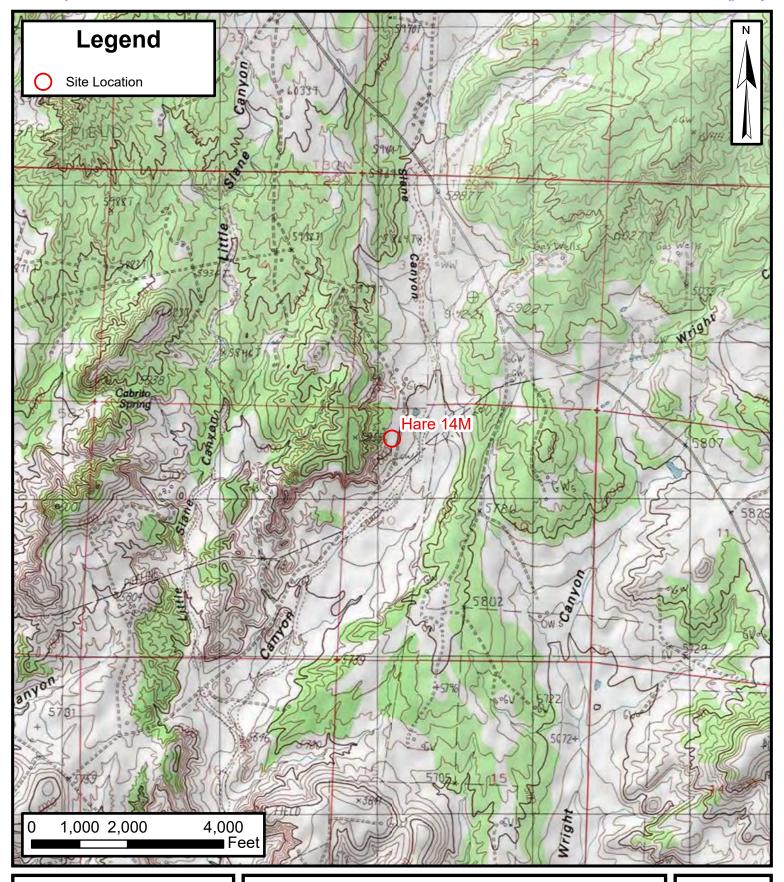
Ensolum, LLC

Stuart Hyde, LG Senior Geologist (970) 903-1607

(970) 903-1607 shyde@ensolum.com Daniel R. Moir, PG Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

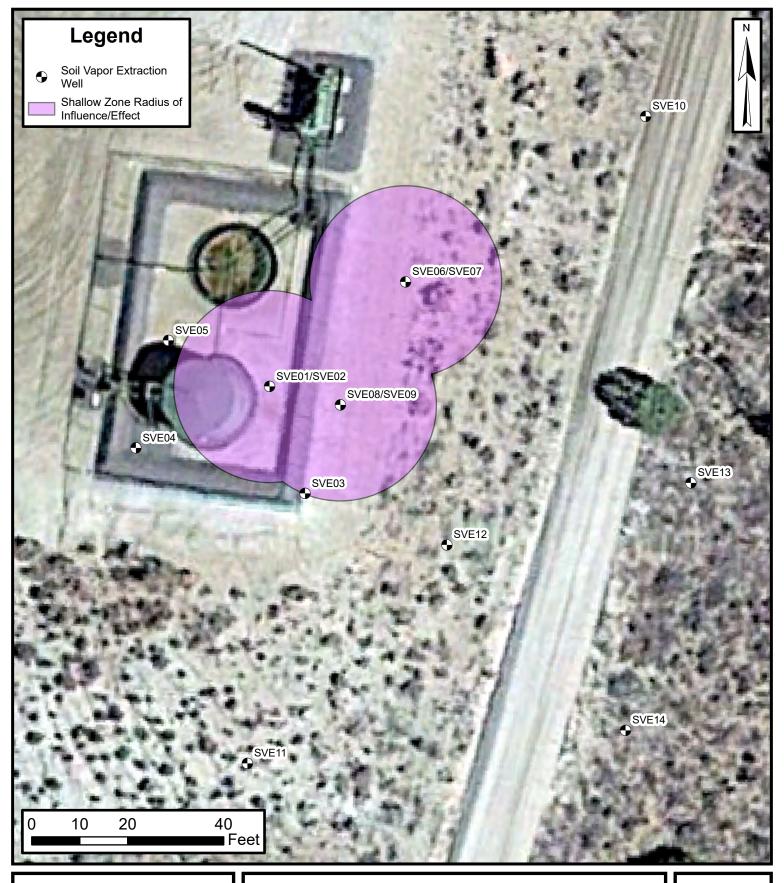
Attachments:

Appendix C


Figure 1	Site Location Map
Figure 2	SVE System Shallow Zone Wells
Figure 3	SVE System Deep Zone Wells
Table 1	Soil Vapor Extraction System Runtime Calculations
Table 2	Soil Vapor Extraction System Field Measurements
Table 3	Soil Vapor Extraction System Air Analytical Results
Table 4	Soil Vapor Extraction System Mass Removal and Emissions
Graph 1	Oxygen vs Time
Graph 2	Carbon Dioxide vs Time
Appendix A	Field Notes
Appendix B	Project Photographs

Laboratory Analytical Reports

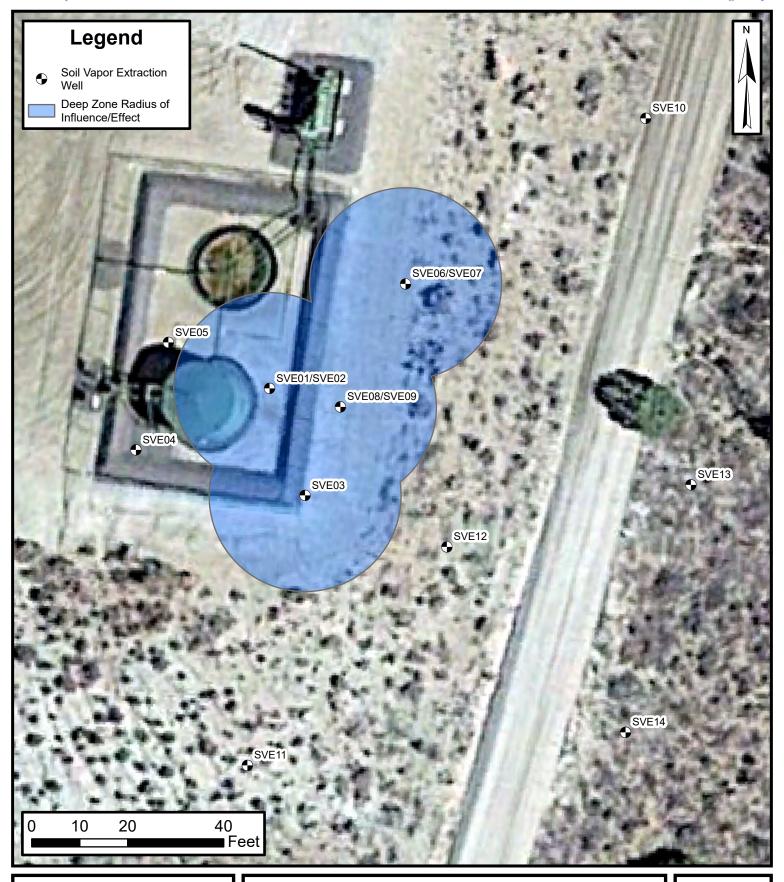
Figures



Site Location Map

Hare #14M Hilcorp Energy Company 36.7746141, -107.878021 San Juan County, New Mexico **FIGURE**

1



SVE System Shallow Zone Wells

Hare #14M Hilcorp Energy Company 36.7746141, -107.878021 San Juan County, New Mexico FIGURE

2

SVE System Deep Zone Wells

Hare #14M Hilcorp Energy Company 36.7746141, -107.878021 San Juan County, New Mexico FIGURE

3

Tables & Graphs

TABLE 1 SOIL VAPOR EXTRACTION SYSTEM RUNTIME CALCULATIONS

Hare #14M Hilcorp Energy Company San Juan County, New Mexico

Date	Total Operational Hours	Delta Hours	Days	Quarterly Percent Runtime	Cumulative Percent Runtime
9/29/2023	3,056	1	1	-	
12/20/2023	4,774	1,718.7	82.0	87%	87%
3/21/2024	6,965	2,190.8	92.0	99%	94%

Ensolum 1 of 1

				TABI					
			SOIL VAPOR E	XTRACTION SYS Hare : Hilcorp Energ	#14M	EASUREMENTS			
				San Juan Coun					
SVE Well ID	Date	PID (ppm)	Differential Pressure (IWC)	Flow Rate (acfm)	Flow Rate (scfm) ⁽¹⁾⁽²⁾⁽³⁾	Vacuum (IWC)	Vacuum (psi)	Oxygen (%)	Carbon Dioxide (%)
	6/6/2023 6/7/2023	1,769	-	-	70	 78	2.82		
	6/13/2023	1,367 1,023	-	-	35	78 44	1.59		
	6/23/2023	675	_		40	40	1.44		-
	6/29/2023	781	-		40	40	1.44	-	
	7/13/2023	745			42	37	1.34		
	7/27/2023	414			45	36	1.30		
	8/9/2023 8/24/2023	403 610			48 46	34 37	1.23		
	9/8/2023	444	-		48	36	1.30		
	9/21/2023	398			46	36	1.30		
Influent, All Wells	10/31/2023	140	3.3	159	115	33	1.19	-	
	11/2/2023	-	6.6	225	156	46	1.66	-	
	12/11/2023	126	6.3	219	152	47	1.70		
	12/20/2023 1/10/2024	103 85	6.23 6.4	218 221	151 153	49 48	1.77 1.73		
	1/24/2024	68	6.4	221	152	51	1.84		-
	1/30/2024	161	6.7	226	155	51	1.84	20.9	0.08
	2/14/2024	109	5.7	209	139	62	2.24		
	2/22/2024	150	5.6	207	138	61	2.20		
	3/6/2024	71	5.6	207	139	58	2.09		-
	3/21/2024	100	5.8	211	142	57	2.06		
	6/6/2023 6/7/2023	1,620			10	61.9	2.23	20.9	2.28
	6/13/2023	1,983 1,520			5.0	29.3	1.06	20.9	0.48
	6/23/2023	1,245	_		5.7	23.9	0.86	23.2	0.26
	6/29/2023	1,441			5.7	24.2	0.87	23.2	0.24
	7/13/2023	1,585	-		6.0			22.9	0.26
	7/27/2023	1,292	-	-	6.4	20.8	0.75	22.5	0.24
	8/9/2023	923	-		6.9	18.8	0.68	22.8	0.18
	8/24/2023 9/8/2023	982 763			6.6	21.2	0.77	22.1 22.0	0.12 0.14
	9/21/2023	435	-		6.6	20.7	0.75	21.4	0.08
SVE01	10/31/2023	8.5	_					20.9	0.04
	11/2/2023		0.20	39	27.2	46	1.66	20.9	0.04
	12/11/2023	397	0.13	32	21.9	47	1.70	20.9	0.04
	12/20/2023	412	0.09	26 34	18.1	49	1.77	20.9	0.02
	1/10/2024 1/24/2024	251 318	0.15 0.15	34	23.4	48 33	1.73 1.19	20.9 20.9	0.01 0.01
	1/30/2024	90	0.14	33	23.6	33	1.18	20.9	0.04
	2/14/2024	397	0.06	21	15.0	44	1.59	20.9	0.04
	2/22/2024	508	0.08	25	17.3	44	1.58	20.9	0.04
	3/6/2024	401	-	-	-	42	1.50	20.9	0.02
	3/21/2024	483	0.06	21	15.1	42	1.51	20.9	0.04
	6/6/2023	738	_				2.20		
	6/7/2023	195 281			10 5.0	63.3 30.2	2.28 1.09	23.2 23.3	0.04 0.04
	6/23/2023	98.0	-		5.7	24.7	0.89	23.4	0.06
	6/29/2023	120	-		5.7	24.7	0.89	23.4	0.00
	7/13/2023	109			6.0			23.3	0.00
	7/27/2023	265	-		6.4	21.2	0.77	22.6	0.02
	8/9/2023	368	_		6.9	19.7	0.71	22.9	0.04
	8/24/2023 9/8/2023	248 89.6			6.6	21.8	0.79	22.2 22.2	0.02 0.02
	9/21/2023	135	-		6.6	21.1	0.76	21.7	0.02
SVE02	10/31/2023	18	-					20.9	0.03
	11/2/2023		0.20	39.1	27.2	46	1.66	20.9	0.00
	12/11/2023	54	0.01	8.7	6.1	47	1.70	20.9	0.00
	12/20/2023	11.1	0.01	8.7	6.0	49	1.77	20.9	0.00
	1/10/2024 1/24/2024	8.7 13	0.02 0.01	12.4 8.7	8.6 6.3	48 34	1.73 1.23	20.9 20.9	0.01 0.01
	1/24/2024	44	0.01	8.7 17.5	12.6	33	1.23	20.9	0.01
	2/14/2024	19.3	0.00	0.0	0.0	45	1.64	20.9	0.00
	2/22/2024	20.1	0.03	15.1	10.6	44	1.57	20.9	0.00
	3/6/2024	23.8				43	1.55	20.9	0.00
	3/21/2024	13.4	0.02	12.4	8.7	42	1.51	20.9	0.00

			SOIL VAPOR E	TABI XTRACTION SYS Hare # Hilcorp Energ San Juan Count	STEM FIELD M #14M gy Company	EASUREMENTS			
SVE Well ID	Date	PID (ppm)	Differential Pressure (IWC)	Flow Rate (acfm)	Flow Rate (scfm) ⁽¹⁾⁽²⁾⁽³⁾	Vacuum (IWC)	Vacuum (psi)	Oxygen (%)	Carbon Dioxide
	6/6/2023	1,030	-						
	6/7/2023	130	-	-	10	61.8	2.23	23.2	0.00
	6/13/2023	35.0	-	-	5.0	30.4	1.10	23.4	0.00
	6/23/2023	15.0 29.0	-	-	5.7	25.6 25.1	0.92 0.91	23.2	0.04
	6/29/2023 7/13/2023	29.0 56.5		-	5.7 6.0	25.1	0.91	23.3	0.00
	7/27/2023	59.5	-	-	6.4	20.0	0.72	22.5	0.02
	8/9/2023	171	_	_	6.9	17.8	0.64	23.0	0.04
	8/24/2023	108			6.6	21.2	0.77	21.9	0.18
	9/8/2023	65.2	-		6.9	-		22.3	0.11
SVE03	9/21/2023	64.0	-		6.6	19.5	0.70	21.4	0.02
SVEUS	10/31/2023	7.9	-	-	-	-	-	20.9	0.05
	11/2/2023		0.20	39	27.2	46	1.66	20.9	0.01
	12/20/2023	16.3	0.76	76	52.9	47	1.70	20.9	0.01
	12/20/2023 1/10/2024	16.3 8.1	0.76 0.83	76 80	52.6 55.2	49 48	1.77 1.73	20.9	0.01
	1/10/2024	8.1 11.7	0.83	80 77	55.2 55.9	48 29	1.73	20.9	0.01
	1/30/2024	36	0.77	79	56.9	32	1.15	20.9	0.01
	2/14/2024	27.8	0.31	49	36.0	23	0.84	20.9	0.02
	2/22/2024	24.9	0.32	49	36.7	22	0.80	20.9	0.00
	3/6/2024	17.6				21	0.77	20.9	0.00
	3/21/2024	18.5	0.31	49	36.2	22	0.78	20.9	0.00
	6/6/2023	967							-
	6/7/2023	1,120	-	_	10	62.3	2.25	21.4	2.81
	6/13/2023	814			5.0	30.8	1.11	22.9	0.56
	6/23/2023	15.0	-		5.7	26.3	0.95	23.2	0.06
	6/29/2023	23.0	-	-	5.7	25.4	0.92	23.0	0.00
	7/13/2023	14.2	-		6.0	-	-	23.3	0.00
	7/27/2023	174		-	6.4	20.8	0.75	22.5	0.04
	8/9/2023	227		-	6.9	19.5	0.70	23.0	0.10
	8/24/2023	216	-	-	6.6	21.5	0.78	22.2	0.04
	9/8/2023	178	-	-	6.9			22.3	0.06
SVE06	9/21/2023	180 32.8	-	-	6.6	21.7	0.78	21.7 20.9	0.00
	11/2/2023	32.6	0.20	39.1	27.2	46	1.66	20.9	0.00
	12/11/2023	55.1	0.01	8.7	6.1	47	1.70	20.9	0.00
	12/20/2023	11.3	0.01	8.7	6.0	49	1.77	20.9	0.01
	1/10/2024	28.3	0.01	8.7	6.1	48	1.73	20.9	0.01
	1/24/2024	54.5	0.02	12.4	8.9	34	1.23	20.9	0.04
	1/30/2024	143	0.04	17.5	12.6	33	1.20	20.9	0.16
	2/14/2024	53.0	0.00	0.0	0.0	43	1.54	20.9	0.00
	2/22/2024	53.5	0.04	17.5	12.3	43	1.56	20.9	0.00
	3/6/2024	22.4				43	1.53	20.9	0.06
	3/21/2024	53.1	0.04	17.5	12.3	42	1.52	20.9	0.06
	6/6/2023	617							
	6/7/2023	967	-		10	61.7	2.23	21.1	2.12
	6/13/2023	786	-		5.0	30.2	1.09	22.8	0.52
	6/23/2023	575			5.7	24.9	0.90	22.9	0.24
	6/29/2023	649	-	-	5.7	24.6	0.89	22.8	0.28
	7/13/2023	605			6.0		0.72	23.2	0.20
	7/27/2023 8/9/2023	582 420			6.4	19.9 19.3	0.72 0.70	22.4 22.8	0.24 0.24
	8/9/2023	195			6.6	20.8	0.70	22.8	0.24
	9/8/2023	439			6.9	20.6	0.75	22.3	0.04
	9/21/2023	335	-		6.6	21.5	0.78	21.2	0.12
SVE07	10/31/2023	148						20.9	0.08
	11/2/2023		0.20	39	27.2	46	1.66	20.9	0.04
	12/11/2023	156	0.35	52	35.9	47	1.70	20.9	0.04
	12/20/2023	149	0.38	54	37.2	49	1.77	20.9	0.03
	1/10/2024	88.0	0.41	56	38.8	48	1.73	20.9	0.02
	1/24/2024	88.5	0.41	56	40.3	34	1.21	20.9	0.02
	1/30/2024	108	0.34	51	36.7	34	1.22	20.9	0.04
	2/14/2024	29.3	0.85	81	56.5	44	1.57	20.9	0.00
	2/22/2024	77.6	0.87	82	57.4	42	1.52	20.9	0.01
	3/6/2024	30.0				41	1.48	20.9	0.00
	3/21/2024	34.8	0.88	82	58.0	40	1.45	20.9	0.01

			SOIL VAPOR E	TABI XTRACTION SYS	STEM FIELD M	EASUREMENTS			
				Hare a Hilcorp Energ San Juan Count	gy Company				
SVE Well ID	Date	PID (ppm)	Differential Pressure (IWC)	Flow Rate (acfm)	Flow Rate (scfm) ⁽¹⁾⁽²⁾⁽³⁾	Vacuum (IWC)	Vacuum (psi)	Oxygen (%)	Carbon Dioxide (%)
	6/6/2023	1,065							
	6/7/2023	1,168	-	-	10	61.8	2.23	22.2	1.04
	6/13/2023	102	-		5.0	28.6	1.03	23.2	0.00
	6/23/2023	55.0	-		5.7	25.4	0.92	23.0	0.06
	6/29/2023	68.0	-	-	5.7	25.7	0.93	22.9	0.00
	7/13/2023	58.5	-	-	6.0			23.3	0.00
	7/27/2023	44.5	-	-	6.4	20.5	0.74	22.5	0.04
	8/9/2023	144	-	-	6.9	19.0	0.69	23.0	0.04
	8/24/2023	112			6.6	21.6	0.78	22.1	0.06
	9/8/2023	75.7			6.9			22.4	0.02
SVE08	9/21/2023	91.0			6.6	20.1	0.73	21.7	0.04
SVE08	10/31/2023	10.9	-	-	-	-	-	20.9	0.03
	11/2/2023	1	0.20	39.1	27.2	46	1.66	20.9	0.21
	12/11/2023	479	0.76	76.2	52.9	47	1.70	20.9	0.21
	12/20/2023	11.3	0.02	12.4	8.5	49	1.77	20.9	0.00
	1/10/2024	10.3	0.02	12.4	8.6	48	1.73	20.9	0.00
	1/24/2024	9	0.01	8.7	6.3	33	1.19	20.9	0.00
	1/30/2024	37	0.01	8.7	6.3	32	1.15	20.9	0.00
	2/14/2024	51.5	0.00	0.0	0.0	42	1.50	20.9	0.02
	2/22/2024	64.2	0.00	0.0	0.0	41	1.48	20.9	0.02
	3/6/2024	16.0	-			41	1.46	20.9	0.00
	3/21/2024	112.6	0.00	0.0	0.0	41	1.47	20.9	0.06
	6/6/2023	1,518	-	-	-	-			-
	6/7/2023	545	-	-	10	60.3	2.18	22.6	0.78
	6/13/2023	242			5.0	27.2	0.98	22.9	0.52
	6/23/2023	165			5.7	24.1	0.87	22.9	0.08
	6/29/2023	425			5.7	23.8	0.86	22.6	0.30
	7/13/2023	42.5		-	6.0	-		23.3	0.00
	7/27/2023	277			6.4	19.3	0.70	22.4	0.18
	8/9/2023	226			6.9	18.2	0.66	23.0	0.12
	8/24/2023	250			6.6	20.9	0.75	22.1	0.10
	9/8/2023	41.0			6.9	-	-	22.4	0.02
SVE09	9/21/2023	62.0		-	6.6	19.2	0.69	21.7	0.04
5.200	10/31/2023	22.6		-	-			20.9	0.04
	11/2/2023	-	0.20	39	27.2	46	1.66	20.9	0.05
	12/11/2023	139	0.76	76	52.9	47	1.70	20.9	0.05
	12/20/2023	99.3	0.38	54	37.2	49	1.77	20.9	0.00
	1/10/2024	34.6	0.19	38	26.4	48	1.73	20.9	0.01
	1/24/2024	34	0.36	52	38.0	31	1.13	20.9	0.01
	1/30/2024	232	0.29	47	34.0	32	1.17	20.9	0.06
	2/14/2024	51.5	0.32	49	37.2	17	0.63	20.9	0.00
	2/22/2024	47	0.31	49	36.6	17	0.62	20.9	0.01
	3/6/2024	18.0		-	-	16	0.56	20.9	0.00
	3/21/2024	36.1	0.32	49	37.4	15	0.54	20.9	0.01

Notes:

- (1): flow rates in scfm estimated based on total flow for total system rotometer field measurements collected between 6/6/2023 and 9/21/2023
- (2): flow rates in scfm after 9/21/2023 are calculated based on total system pitot tube differential pressure measurements
- (3): flow rates in scfm after 9/21/2023 based on an assumed temperature of 70F
- IWC: inches of water column PID: photoionization detector
- ppm: parts per million
- ppm: parts per million acfm: actual cubic feet per minute
- scfm: standard cubic feet per minute
- %: percent
- --: not measured

Received by OCD: 4/15/2024 11:04:06 AM

TABLE 3 SOIL VAPOR EXTRACTION SYSTEM EMISSIONS ANALYTICAL RESULTS

Hare #14M

Hilcorp Energy Company San Juan County, New Mexico

				adir Godiney, How is				
Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH/GRO (μg/L)	Oxygen (%)	Carbon Dioxide (%)
6/6/2023	1,769	84	480	25	270	31,000	15.34	3.53
6/7/2023	1,367	43	280	17	200	14,000	21.26	1.14
6/13/2023	1,023	27	220	14	160	11,000	21.47	0.63
6/23/2023	675	2.7	41	3.9	50	3,400	21.59	0.38
6/29/2023	781	8.8	150	13	160	5,000	21.63	0.31
7/13/2023	745	<5.0	120	11	140	4,500	21.64	0.28
7/27/2023	414	<5.0	62	5.7	73	2,700	21.70	0.22
8/9/2023	403	<5.0	55	5.5	69	2,600	21.73	0.23
8/24/2023	610	<5.0	53	7.5	99	2,700	21.66	0.24
9/8/2023	444	<5.0	37	5.6	74	2,100	21.72	0.20
9/21/2023	398	<5.0	39	6.6	96	2,300	21.75	0.18
12/11/2023	126	0.28	9.6	2.2	31	720	21.64	0.12
1/10/2024	83	<0.25	10.0	1.4	19	560	20.04	0.07
3/6/2024	71	<5.0	<5.0	<5.0	<7.5	<250	22.19	0.12

Notes:

GRO: gasoline range organics

μg/L: microgram per liter

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

%: percent

<: result less than the stated laboratory reporting limit (RL)

Ensolum 1 of 1

TABLE 4 SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS Hare #14M

Hilcorp Energy Company San Juan County, New Mexico

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)
6/6/2023	1,769	84	480	25	270	31,000
6/7/2023	1,367	43	280	17	200	14,000
6/13/2023	1,023	27	220	14	160	11,000
6/23/2023	675	2.7	41	3.9	50	3,400
6/29/2023	781	8.8	150	13	160	5,000
7/13/2023	745	5.0	120	11	140	4,500
7/27/2023	414	5.0	62	5.7	73	2,700
8/9/2023	403	5.0	55	5.5	69	2,600
8/24/2023	610	5.0	53	7.5	99	2,700
9/8/2023	444	5.0	37	5.6	74	2,100
9/21/2023	398	5.0	39	6.6	96	2,300
12/11/2023	126	0.28	9.6	2.2	31	720
1/10/2024	85	0.25	10.0	1.4	19	560
3/6/2024	71	5.0	5.0	5.0	5.0	250
Average	636	14	112	9	103	5,916

Vapor Extraction Summary

					-			
Date	Flow Rate (scfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
6/6/2023	-				System Startup			
6/7/2023	70	117,180	117,180	0.017	0.099	0.0055	0.062	5.9
6/13/2023	35	412,440	295,260	0.0069	0.049	0.0030	0.035	2.5
6/23/2023	40	987,720	575,280	0.0021	0.018	0.0013	0.015	1.0
6/29/2023	40	1,336,440	348,720	0.00086	0.014	0.0013	0.016	0.63
7/13/2023	42	2,187,948	851,508	0.0011	0.021	0.0018	0.023	0.73
7/27/2023	45	3,087,588	899,640	0.00081	0.015	0.0014	0.017	0.59
8/9/2023	48	3,992,484	904,896	0.00087	0.010	0.0010	0.012	0.46
8/24/2023	46	4,912,116	919,632	0.00088	0.0095	0.0011	0.015	0.47
9/8/2023	48	5,817,012	904,896	0.00088	0.0079	0.0012	0.015	0.42
9/21/2023	46	6,685,032	868,020	0.00088	0.0067	0.0011	0.015	0.39
12/11/2023	152	22,137,048	15,452,016	0.00098	0.0090	0.0016	0.024	0.56
1/10/2024	153	28,765,008	6,627,960	0.00015	0.0056	0.0010	0.014	0.37
3/6/2024	142	40,224,408	11,459,400	0.00145	0.0041	0.0018	0.007	0.22
			Average	0.0026	0.021	0.0018	0.021	1.1

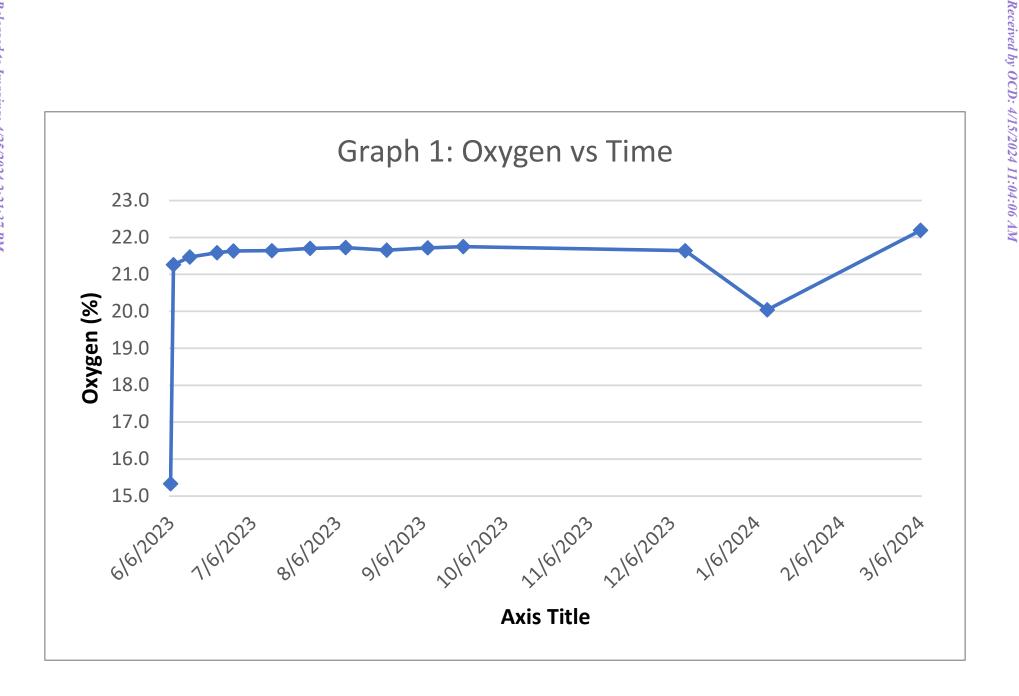
				Mass Recovery				
Date	Total Operational Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
6/6/2023	292			•	System Startup		•	•
6/7/2023	319	28	0.464	2.78	0.153	1.7	164	0.082
6/13/2023	460	141	0.966	6.90	0.43	5.0	345	0.173
6/23/2023	700	240	0.499	4.39	0.301	3.53	242	0.121
6/29/2023	845	145	0.125	2.08	0.184	2.28	91	0.046
7/13/2023	1,183	338	0.36	7.0	0.622	7.77	246	0.123
7/27/2023	1,516	333	0.27	4.9	0.45	5.8	195	0.098
8/9/2023	1,830	314	0.27	3.2	0.31	3.9	145	0.072
8/24/2023	2,191	361	0.317	3.4	0.41	5.3	168	0.084
9/8/2023	2,549	358	0.315	2.8	0.41	5.4	151	0.076
9/21/2023	2,864	315	0.276	2.1	0.34	4.7	122	0.061
12/11/2023	4,558	1,694	1.656	15.2	2.76	39.8	947	0.474
1/10/2024	5,280	722	0.109	4.0	0.74	10.3	264	0.132
3/6/2024	6,625	1,345	1.948	5.6	2.37	8.9	301	0.150
`	Total Ma	ss Recovery to Date	7.6	64	9.5	104	3,381	1.69

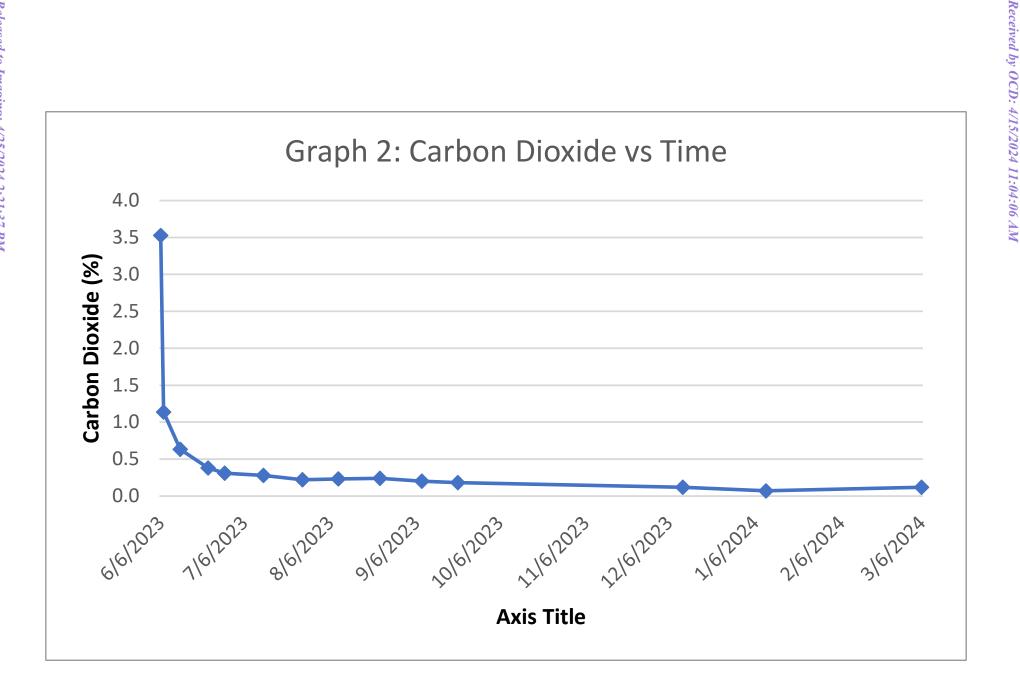
Notes:

cf: cubic feet

scfm: standard cubic feet per minute

μg/L: micrograms per liter lb/hr: pounds per hour


--: not sampled


PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

gray: laboratory reporting limit used for calculating emissions

APPENDIX A

Field Notes

ENSOLUM

HARE 14M SVE SYSTEM O&M FORM

DATE: _ TIME ONSITE: _	1-19		O&M PERSONNEL: TIME OFFSITE:	B Sincla	
		SVE SYSTEM - N	MONTHLY O&M	DEAL CLASS	
SVE ALARMS:		KO TANK HIGH LEVEL			
SVE SYSTEM Blower Hours (take photo) Inlet Vacuum (IWC) Differential Pressure Inlet PID Exhaust PID K/O Tank Liquid Level K/O Liquid Drained (gallons)	READING 5280.1 48 6.4 25.4 254.1	TIME			
		SVE SYSTEM	SAMPLING		
SAMPLE ID: Analytes: S OPERATING WELLS Change in Well Operation: WELLHEAD MEASUREMENT		th Sample Bi-Monthly (every other	er month) for TVPH (8015), BTE	X (8260), Fixed Gas (CO)	Z AND OZ)
SHALLOW ZONE WELLS				0.0000000000000000000000000000000000000	CARBON DIOXIDE (%)
WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	140
SVE01		0.15	250.6	20.9	200
SVE07		8.74	34.6	20.9	80
SVE09		0,17	7.0	2.50	
DEEP ZONE WELLS					
WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%)
SVE02		0.02	8.7	20.9	20
SVE03		0.83	8.1	20,4	120
SVE06		0.01	78.3	20.9	60
SVE08		0.02	10.3	20,9	20

Conducted sampling @ 12:00

E ENSOLUM

HARF 14M SVF SYSTEM

TIME UNSITE.	1-24		THE V ORM		
		SVE SYSTEM - I	MONTHLY O&M		
		KO TANK HIGH LEVEL			
SVE ALARMS:					
OVE OVOTEM	READING	TIME			
SVE SYSTEM Blower Hours (take photo)	5616.5	1213			
Inlet Vacuum (IWC)	54				
Differential Pressure	678	HEAVET TO SEE A SECOND			
Inlet PID	232.8				
Exhaust PID K/O Tank Liquid Level					
K/O Liquid Drained (gallons)					
CO Elquid Die		SVE SYSTEM	SAMPLING		
			SAMPLE TIME:		
SAMPLE ID:	ample Ri-Monthly (every 0	th Sample Bi-Monthly (every other	er month) for TVPH (8015), BTE	(8260), Fixed Gas (CO	2 AND O2)
Analytes. S	arriple by Working (-				
ODEDATING WELLS					
OPERATING WELLS				and the second second	
_					
Change in Well					
Change in Well Operation:					
Change in Well Operation:	rs				
Change in Well Operation: ELLHEAD MEASUREMENT		DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%
Change in Well Operation: ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%
Change in Well Operation: ELLHEAD MEASUREMENT HALLOW ZONE WELLS		0.15	318.0	20.9	CARBON DIOXIDE (%
Change in Well Operation: /ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01	VACUUM (IWC)	0.15			
Change in Well Operation: ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09	VACUUM (IWC) 33.0 33.6	0.15	318.0	20.9	190
Change in Well Operation: ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS	VACUUM (IWC) 33.0 33.6 31.3	0.15	318.0	20.9 20.9 20.9	180
Change in Well Operation: /ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9	CARBON DIOXIDE (%
Change in Well Operation: /ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID SVE02	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC)	0.15	318.0	20.9 20.9 20.9	180
Change in Well Operation: ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID	VACUUM (IWC) 33.6 31.3 VACUUM (IWC) 34.1	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	20.9 20.9 20.9 0XYGEN (%)	190 180 80 CARBON DIOXIDE (%
Change in Well Operation: /ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID SVE02 SVE03	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC) 34.1 29.2	DIFF PRESSURE (IWC)	318.0 88.5 34.3 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9	190 180 80 CARBON DIOXIDE (%
Change in Well Operation: VELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID SVE08 SVE08	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC) 34.1 29.2 34.2 34.2 32.9	0.41 0.41 0.36 DIFF PRESSURE (IWC)	318.0 88.5 34.3 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9 20.9	190 180 80 CARBON DIOXIDE (%
Change in Well Operation: VELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID SVE02 SVE03 SVE06	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC) 34.1 29.2 34.2 34.2 32.9	0.41 0.41 0.36 DIFF PRESSURE (IWC)	318.0 88.5 34.3 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9 20.9	190 180 80 CARBON DIOXIDE (%
Change in Well Operation: VELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID SVE02 SVE03 SVE06 SVE08	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC) 34.1 29.2 34.2 34.2 32.9	0.41 0.41 0.36 DIFF PRESSURE (IWC)	318.0 88.5 34.3 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9 20.9	190 180 80 CARBON DIOXIDE (%
Change in Well Operation: FELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 FP ZONE WELLS WELL ID SVE02 SVE03 SVE06 SVE08	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC) 34.1 29.2 34.2 34.2 32.9	0.41 0.41 0.36 DIFF PRESSURE (IWC)	318.0 88.5 34.3 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9 20.9	190 180 80 CARBON DIOXIDE (%
Change in Well Operation: ELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID SVE02 SVE03 SVE06 SVE08	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC) 34.1 29.2 34.2 34.2 32.9	0.41 0.41 0.36 DIFF PRESSURE (IWC)	318.0 88.5 34.3 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9 20.9	190 180 90 CARBON DIOXIDE (%
Change in Well Operation: VELLHEAD MEASUREMENT HALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EP ZONE WELLS WELL ID SVE02 SVE03 SVE06 SVE08	VACUUM (IWC) 33.0 33.6 31.3 VACUUM (IWC) 34.1 29.2 34.2 34.2 32.9	0.41 0.41 0.36 DIFF PRESSURE (IWC)	318.0 88.5 34.3 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9 20.9	190 180 80 CARBON DIOXIDE (%

■ ENSOLUM

HARE 14M SVE SYSTEM O&M FORM

O&M PERSONNEL. D. Burns 1-30-24 DATE TIME OFFSITE 11:00 TIME ONSITE: SVE SYSTEM - MONTHLY OBM KO TANK HIGH LEVEL SVI ALARMS. NA >>5,000 Hrs, check blower boarings Rotameter @ 100 SCFM TIME READING SVESYSTEM 1145 3760 Hours (take photo) Iniel vacuum (fWC) Differential Pressure Inlet PID NA, rune visible Exhaust PID K/O Tank Liquid Level SAMPLE ID: Nove collected to Sample SAMPLING

SAMPLE TIME:

Analytes: Sample Bi-Monthly (every oth Sample Bi-Monthly (every other month) for TVPH (8015), BTEX (8280), Fixed Gas (CO2 AND O2)

OPERATING WELLS K/O Liquid Drained (gallons) Tried to turn vac down 25%, on SUE 02,06,08,09 Change in Well du w loal valves of gate valves DIFF PRESSURE (IWC) PID HER O. 14 90 Operation: 50% on SVE 03 -Hard to WELLHEAD MEASUREMENTS rustead CARBON DIOXIDE (%) SHALLOW ZONE WELLS PID HEADSPACE (PPM) OXYGEN (%) VACUUM (IWC) WELL ID 32-8 SVE01 108 33.8 SVE07 0.24 232 32.4 SVE09 CARBON DIOXIDE (%) DEEP ZONE WELLS OXYGEN (%) DIFF PRESSURE (IWC) | PID HEADSPACE (PPM) VACUUM (IWC) WELL ID 0.04 44 33.2 SVE02 36 SVE03 0.16 0.04 SVE.06 37 31.8 SVE08 - some carryover liquids observed in air filter housing, not a lot, or enough to souk element, but some in housing COMMENTS/OTHER MAINTENANCE

	Influe	nt 01	02	03	06	07	08	09	
CH4 ppm	380	6.7		170	350	310	180	350	
Oxy vol/		70.9	20.9	20.9	20.9	20.9	20.9	20.9	
H2S gpm	0.0			0.0	0.0	0.0	0.0	0.0	
CO pm	0	U	ò	0	0	0	0	0	
	0.08	0 04	0.06	0.02	0.16	0.04	0,00	0.06	
Hy / LEL	7	0	O	0	7	0	o	0	

ENSOLUM

HARE 14M SVE SYSTEM O&M FORM

		SVE SYSTEM - I	MONTHLY O&M		
SVE ALARMS:		KO TANK HIGH LEVEL			
SVE SYSTEM Ower Hours (take photo) Inlet Vacuum (IWC) Differential Pressure Inlet PID	READING 6120.7 62 5.7	TIME 1138			
Exhaust PID K/O Tank Liquid Level Liquid Drained (gallons)	240.9				
CAMPLEID		SVE SYSTEM	The second secon		
SAMPLE ID: Analytes: S OPERATING WELLS	Sample Bi-Monthly (every of	h Sample Bi-Monthly (every oth	SAMPLE TIME: er month) for TVPH (8015), BTEX	((8260), Fixed Gas (CO	2 AND O2)
Change in Well Operation:	Te				
Operation:					
Operation: ELLHEAD MEASUREMENTALLOW ZONE WELLS WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	
Operation: ELLHEAD MEASUREMEN HALLOW ZONE WELLS WELL ID SVE01	VACUUM (IWC)	0.06	396.8	20.9	3.80
Operation: ELLHEAD MEASUREMENTALLOW ZONE WELLS WELL ID	VACUUM (IWC)				
Operation: ELLHEAD MEASUREMENT ALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09	VACUUM (IWC)	0.06	396.8	20.9	380
Operation: ELLHEAD MEASUREMENT ALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09	VACUUM (IWC) 44 43.5 17.46 VACUUM (IWC)	0.06 0.85 0.32 DIFF PRESSURE (IWC)	396.8 24.3 30.1 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9	20 20 20 CARBON DIOXIDE (
Operation: ELLHEAD MEASUREMENT ALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EEP ZONE WELLS	VACUUM (IWC) 43.5 17.46 VACUUM (IWC) 45.4	0.06 0.85 0.32 DIFF PRESSURE (IWC)	396.8 24.3 30.1 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9	CARBON DIOXIDE (9
Operation: ELLHEAD MEASUREMENT ALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EEP ZONE WELLS WELL ID SVE02 SVE03	VACUUM (IWC) 43.5 17.46 VACUUM (IWC) 45.4 23.4	0.06 0.85 0.32 DIFF PRESSURE (IWC)	396.8 24.3 30.1 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9	CARBON DIOXIDE (9
Operation: ELLHEAD MEASUREMENT ALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EEP ZONE WELLS WELL ID SVE02 SVE03 SVE06	VACUUM (IWC) 43.5 17.46 VACUUM (IWC) 45.4 23.4 42.8	0.06 0.85 0.32 DIFF PRESSURE (IWC)	396.8 24.3 30.1 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9 20.9	3.80 20 20 20 20 20 20 20 20 20 20 20 20 20
Operation: ELLHEAD MEASUREMENT ALLOW ZONE WELLS WELL ID SVE01 SVE07 SVE09 EEP ZONE WELLS WELL ID SVE02 SVE03	VACUUM (IWC) 43.5 17.46 VACUUM (IWC) 45.4 23.4 42.8 41.6	0.06 0.85 0.32 DIFF PRESSURE (IWC)	396.8 24.3 30.1 PID HEADSPACE (PPM)	20.9 20.9 20.9 20.9	CARBON DIOXIDE (9

ENSOLUM

HARE 14M SVE SYSTEM O&M FORM

DATE:	2-22		O&M PERSONNEL: B Sinclair TIME OFFSITE:					
		SVE SYSTEM -	MONTHLY O&M					
SVE ALARMS:		KO TANK HIGH LEVEL]					
SVE SYSTEM	READING	TIME						
Blower Hours (take photo) Inlet Vacuum (IWC)	6316,5	1509						
Differential Pressure	5.6							
Inlet PID Exhaust PID	222.							
K/O Tank Liquid Level K/O Liquid Drained (gallons)								
(gallons)								
SAMPLE ID:		SVE SYSTEM	SAMPLING SAMPLE TIME:					
Analytes:	Sample Bi-Monthly (every ot	h Sample Bi-Monthly (every oth	er month) for TVPH (8015), BTE	X (8260), Fixed Gas (Co	O2 AND O2)			
OPERATING WELLS								
Change in Well Operation:								
WELLHEAD MEASUREMEN	NTS							
SHALLOW ZONE WELLS WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%)			
SVE01	43.8	0.08	508	20.9	420			
SVE07	17,15	8.87	77.6	20.9	190			
SVE09	17,10			THE RESERVE OF THE PARTY OF THE				
DEEP ZONE WELLS WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%)			
SVE02	43.6	0,03	20.1	20,9	20			
SVE03	22.	0.04	53.5	20:3	88			
SVE06 SVE08	41	0.00	64.2	20.9	300			
COMMENTS/OTHER MAIN	TENANCE:							
COMMENTS/CTTLE								
	The State of the S							

HARE 14M SVE SYSTEM OAM FORM

		SVE SYSTEM -	MONTHLY OWN			
SVE ALARMS		KO TANK HIGH LEVEL	1			
SVE SYSTEM	READING	TIME	1			
Blower Hours (take photo) Inlet Vacuum (IWC)	6625.2	1343				
Differential Pressure Inlet PID	75.6					
Exhaust PIO K/O Tank Liquid Level	ESST					
K/O Liquid Drained (gallons)	NA	TANKS.	100000000000000000000000000000000000000			
		SVE SYSTEM	M SAMPLING			
SAMPLE ID: Analytes: S	Sample Bi-Monthly (every of	he Sample Bi-Monthly (every other	SAMPLE TIME: or month) for TVPH (8015), BTEX	(8260), Fixed Gas (CO2)	AND O2)	
OPERATING WELLS					7.77	
Change in Well Operation:	-	SUEU1 +	07 upu,	all others	gordinly upon	
WELLHEAD MEASUREMENT	s					
WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%	
SVE01	41.7	-	401	20.9	(1.02	
SVE07	41.0	-	30		0	
SVE09	15.5	-	18	20.9	0	
DEEP ZONE WELLS						
WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%	
SVE02	47.0		25.8	23.1	0	
SVE03	214	•	7.6	20.9	6	
SVE06	412.5	-	22.4	22.1	0.06	
SVE08	40.5	-	16.0	20.9	6	
	er					
COMMENTS/OTHER MAINTE	NANCE:					

ENSOLUM

HARE 14M SVE SYSTEM O&M FORM

Inlet Vacuum (IWC) Differential Pressure Inlet PID Exhaust PID K/O Tank Liquid Level Diquid Drained (gallons) SAMPLE ID: Analytes: Sample Bi-Monthly (every oth Sample Bi-Monthly (every other month) for TVPH (8015), BTEX (8260), Fixed Gas (CO2 AND O2) Change in Well Operation: ELLHEAD MEASUREMENTS ALLOW ZONE WELLS WELL ID VACUUM (IWC) SVE01 SVE07 SVE09 SVE09 EP ZONE WELLS WELL ID VACUUM (IWC) DIFF PRESSURE (IWC) DIFF PRESSURE (IWC) PID HEADSPACE (PPM) OXYGEN (%) CARBON DIOXIDE SVE09 SVE009 S	ower Hours (take photo) Inlet Vacuum (IWC) Differential Pressure Inlet PID Exhaust PID K/O Tank Liquid Level D Liquid Drained (gallons)	964.7	TIME			
SAMPLE ID: Analytes: Sample Bi-Monthly (every oth Sample Bi-Monthly (every other month) for TVPH (8015), BTEX (8260), Fixed Gas (CO2 AND O2) Change in Well Operation: ELLHEAD MEASUREMENTS ALLOW ZONE WELLS WELL ID VACUUM (IWC) DIFF PRESSURE (IWC) PID HEADSPACE (PPM) OXYGEN (%) CARBON DIOXIDE SVE07 SVE09 DIFF PRESSURE (IWC) PID HEADSPACE (PPM) OXYGEN (%) CARBON DIOXIDE CARBON D						
Carbon Dioxide Carb	Analytes: Sample OPERATING WELLS	Bi-Monthly (every ot		SAMDI E TIME.	X (8260), Fixed Gas (CC)2 AND O2)
ALLOW ZONE WELLS WELL ID	Operation:					
SVE01	IALLOW ZONE WELLS					
SVE07 40.4 0.88 34.8 20.9 80 SVE09 14.48 0.32 36.1 20.9 80 EP ZONE WELLS WELL ID VACUUM (IWC) DIFF PRESSURE (IWC) PID HEADSPACE (PPM) OXYGEN (%) CARBON DIOXIDE SVE02 41.9 0.02 13.4 70.9 0.00 SVE03 21.6 0.31 18.5 20.9 30 SVE06 42.1 0.04 53.1 20.9 58.0 SVE08 40.6 0.00 112.6 20.9 56.0			DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)		CARBON DIOXIDE (%
SVE09 14.48 0.32 36.1 20.4 100 EP ZONE WELLS WELL ID VACUUM (IWC) DIFF PRESSURE (IWC) PID HEADSPACE (PPM) OXYGEN (%) CARBON DIOXIDE SVE02 41.9 0.02 13.4 70.9 0.9 SVE03 21.6 0.31 18.5 20.9 30.9 SVE06 42.1 0.04 53.1 20.9 58.0 SVE08 40.4 0.00 1/2.6 20.9 58.0		2011	0.00	34.9	THE RESIDENCE OF THE PARTY OF T	
EP ZONE WELLS WELL ID VACUUM (IWC) DIFF PRESSURE (IWC) PID HEADSPACE (PPM) OXYGEN (%) CARBON DIOXIDE SVE02 41.9 0.02 13.4 70.9 0.09 SVE03 21.6 0.31 8.5 20.9 30 SVE06 42.1 0.09 53.1 20.9 580 SVE08 40.6 0.00 112.6 20.9 560			0.32	3/1		
WELL ID VACUUM (IWC) DIFF PRESSURE (IWC) PID HEADSPACE (PPM) OXYGEN (%) CARBON DIOXIDE SVE02 41.9 0.02 13.9 20.9 0.09 SVE03 21.6 0.31 18.5 20.9 30.9 SVE06 42.1 0.09 53.1 20.9 580 SVE08 40.6 0.00 112.6 20.9 560	EP ZONE WELLS					
SVE02 41.9 0.02 3.9 70.9 SVE03 21.6 0.31 18.5 20.9 30 SVE06 42.1 0.04 53.1 20.9 580 SVE08 40.6 0.00 112.6 20.9 560		ACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (
SVE06 42.1 0.04 53.1 20.9 580 SVE08 40.6 9.00 112.6 20.9 580		41.9				0
SVE08 40.6 0.00 112,6 20.9 560				18.5	The second secon	30
				112.6		380
	OVEGG	1010			20.7	560
MMENTS/OTHER MAINTENANCE:	MMENTS/OTHER MAINTENANC	E:				

ENSOLUM

APPENDIX B

Project Photographs

2024 at 2:08 PM Hours = 6,964.7

PROJECT PHOTOGRAPHS

Hare #14M San Juan County, New Mexico Hilcorp Energy Company

Photograph 1 Runtime meter taken on December 20, 2023 at 11:18 AM Hours = 4,774.2 Photograph 2 Runtime meter taken on March 21,

36.74620°N 107.87776°W

APPENDIX C

Laboratory Analytical Reports

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2024

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Hare 14 M OrderNo.: 2401593

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 1/16/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2401593

Date Reported: 2/1/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: SVE-1

 Project:
 Hare 14 M
 Collection Date: 1/10/2024 12:00:00 PM

 Lab ID:
 2401593-001
 Matrix: AIR
 Received Date: 1/16/2024 7:05:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	560	25	μg/L	5	1/17/2024 11:54:02 AM
Surr: BFB	313	15-412	%Rec	5	1/17/2024 11:54:02 AM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	ND	0.25	μg/L	5	1/22/2024 4:55:00 PM
Toluene	10	0.50	μg/L	5	1/22/2024 4:55:00 PM
Ethylbenzene	1.4	0.50	μg/L	5	1/22/2024 4:55:00 PM
Methyl tert-butyl ether (MTBE)	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,2,4-Trimethylbenzene	0.83	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,3,5-Trimethylbenzene	1.2	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,2-Dichloroethane (EDC)	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Naphthalene	ND	1.0	μg/L	5	1/22/2024 4:55:00 PM
1-Methylnaphthalene	ND	2.0	μg/L	5	1/22/2024 4:55:00 PM
2-Methylnaphthalene	ND	2.0	μg/L	5	1/22/2024 4:55:00 PM
Acetone	ND	5.0	μg/L	5	1/22/2024 4:55:00 PM
Bromobenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Bromodichloromethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Bromoform	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Bromomethane	ND	1.0	μg/L	5	1/22/2024 4:55:00 PM
2-Butanone	ND	5.0	μg/L	5	1/22/2024 4:55:00 PM
Carbon disulfide	ND	5.0	μg/L	5	1/22/2024 4:55:00 PM
Carbon tetrachloride	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Chlorobenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Chloroethane	ND	1.0	μg/L	5	1/22/2024 4:55:00 PM
Chloroform	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Chloromethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
2-Chlorotoluene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
4-Chlorotoluene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
cis-1,2-DCE	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
cis-1,3-Dichloropropene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,2-Dibromo-3-chloropropane	ND	1.0	μg/L	5	1/22/2024 4:55:00 PM
Dibromochloromethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Dibromomethane	ND	1.0	μg/L	5	1/22/2024 4:55:00 PM
1,2-Dichlorobenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,3-Dichlorobenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,4-Dichlorobenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Dichlorodifluoromethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,1-Dichloroethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,1-Dichloroethene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report Lab Order 2401593

Date Reported: 2/1/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: SVE-1

 Project:
 Hare 14 M
 Collection Date: 1/10/2024 12:00:00 PM

 Lab ID:
 2401593-001
 Matrix: AIR
 Received Date: 1/16/2024 7:05:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,3-Dichloropropane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
2,2-Dichloropropane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,1-Dichloropropene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Hexachlorobutadiene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
2-Hexanone	ND	5.0	μg/L	5	1/22/2024 4:55:00 PM
Isopropylbenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
4-Isopropyltoluene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
4-Methyl-2-pentanone	ND	5.0	μg/L	5	1/22/2024 4:55:00 PM
Methylene chloride	ND	1.5	μg/L	5	1/22/2024 4:55:00 PM
n-Butylbenzene	ND	1.5	μg/L	5	1/22/2024 4:55:00 PM
n-Propylbenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
sec-Butylbenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Styrene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
tert-Butylbenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,1,1,2-Tetrachloroethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Tetrachloroethene (PCE)	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
trans-1,2-DCE	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
trans-1,3-Dichloropropene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,2,3-Trichlorobenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,2,4-Trichlorobenzene	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,1,1-Trichloroethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,1,2-Trichloroethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Trichloroethene (TCE)	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Trichlorofluoromethane	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
1,2,3-Trichloropropane	ND	1.0	μg/L	5	1/22/2024 4:55:00 PM
Vinyl chloride	ND	0.50	μg/L	5	1/22/2024 4:55:00 PM
Xylenes, Total	19	0.75	μg/L	5	1/22/2024 4:55:00 PM
Surr: Dibromofluoromethane	96.5	70-130	%Rec	5	1/22/2024 4:55:00 PM
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	5	1/22/2024 4:55:00 PM
Surr: Toluene-d8	118	70-130	%Rec	5	1/22/2024 4:55:00 PM
Surr: 4-Bromofluorobenzene	116	70-130	%Rec	5	1/22/2024 4:55:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

January 30, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B24010995

Quote ID: B15626

Project Name:

Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 1/22/2024 for analysis.

Lab ID	Client Sample ID	Collect Date Receive Date	Matri x	Test
B24010995-001	2401593-001B, SVE-1	01/10/24 12:00 01/22/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental Report Date: 01/30/24 Project: Not Indicated Collection Date: 01/10/24 12:00 DateReceived: 01/22/24 Lab ID: B24010995-001 Client Sample ID: 2401593-001B, SVE-1 Matrix: Air

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT						
Oxygen	20.04	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
Nitrogen	79.88	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
Carbon Dioxide	0.07	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
Hydrogen Sulfide	< 0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
Methane	< 0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
Ethane	< 0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
Propane	< 0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
sobutane	<0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
n-Butane	<0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
sopentane	<0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
n-Pentane	< 0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
Hexanes plus	0.01	Mol %		0.01		GPA 2261-95	01/26/24 10:42 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	01/26/24 10:42 / jrj
sobutane	< 0.001	gpm		0.001		GPA 2261-95	01/26/24 10:42 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	01/26/24 10:42 / jrj
sopentane	< 0.001	gpm		0.001		GPA 2261-95	01/26/24 10:42 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	01/26/24 10:42 / jrj
Hexanes plus	0.004	gpm		0.001		GPA 2261-95	01/26/24 10:42 / jrj
GPM Total	0.004	gpm		0.001		GPA 2261-95	01/26/24 10:42 / jrj
GPM Pentanes plus	0.004	gpm		0.001		GPA 2261-95	01/26/24 10:42 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	01/26/24 10:42 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	01/26/24 10:42 / jrj
Pseudo-critical Pressure, psia	541			1		GPA 2261-95	01/26/24 10:42 / jrj
Pseudo-critical Temperature, deg R	238			1		GPA 2261-95	01/26/24 10:42 / jrj
Specific Gravity @ 60/60F	0.996			0.001		D3588-81	01/26/24 10:42 / jrj
Air, % - The analysis was not corrected for air.	91.56			0.01		GPA 2261-95	01/26/24 10:42 / jrj
,							
COMMENTS							

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

RL - Analyte Reporting Limit Report MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

01/26/24 10:42 / jrj

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.
- To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24010995 Report Date: 01/30/24

- Hall Ellvilollillollar				TTOTAL CTUOTA		0000	. коро.	. .	0 1700721	
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: GPA 2261-95									Batch:	: R415720
Lab ID: LCS012624	11 Labo	oratory Co	ntrol Sample			Run: GCNG	A-B_240126A		01/26	/24 02:28
Oxygen		0.64	Mol %	0.01	128	70	130			
Nitrogen		6.37	Mol %	0.01	106	70	130			
Carbon Dioxide		0.99	Mol %	0.01	100	70	130			
Methane		75.2	Mol %	0.01	101	70	130			
Ethane		6.08	Mol %	0.01	101	70	130			
Propane		4.48	Mol %	0.01	91	70	130			
Isobutane		1.60	Mol %	0.01	80	70	130			
n-Butane		2.03	Mol %	0.01	101	70	130			
Isopentane		0.97	Mol %	0.01	97	70	130			
n-Pentane		0.85	Mol %	0.01	85	70	130			
Hexanes plus		0.81	Mol %	0.01	101	70	130			
Lab ID: B24011070-001ADU	P 12 Sam	nple Duplic	ate			Run: GCNG	A-B_240126A		01/26	/24 01:16
Oxygen		21.8	Mol %	0.01				0.1	20	
Nitrogen		78.0	Mol %	0.01				0	20	
Carbon Dioxide		0.17	Mol %	0.01				0.0	20	
Hydrogen Sulfide		< 0.01	Mol %	0.01					20	
Methane		< 0.01	Mol %	0.01					20	
Ethane		< 0.01	Mol %	0.01					20	
Propane		<0.01	Mol %	0.01					20	
Isobutane		<0.01	Mol %	0.01					20	
n-Butane		<0.01	Mol %	0.01					20	
Isopentane		<0.01	Mol %	0.01					20	
n-Pentane		<0.01	Mol %	0.01					20	

Qualifiers:

RL - Analyte Reporting Limit

 $\ensuremath{\mathsf{ND}}$ - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

B24010995

Login completed by:	Danielle N. Harris		Date	Received: 1/22/2024
Reviewed by:	lleprowse		Re	ceived by: CMJ
Reviewed Date:	1/22/2024		Car	rier name: FedEx
Shipping container/cooler in	good condition?	Yes 🔽	No 🗌	Not Present
Custody seals intact on all shipping container(s)/cooler(s)?		Yes ✓	No 🗌	Not Present
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗸
Chain of custody present?		Yes ✓	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	sample labels?	Yes ✓	No 🗌	
Samples in proper container	bottle?	Yes √	No 🗌	
Sample containers intact?		Yes √	No 🗌	
Sufficient sample volume for	indicated test?	Yes √	No 🗌	
All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res Cl, Sulfite, Ferrous Iron, etc.)		Yes √	No 🗌	
Temp Blank received in all shipping container(s)/cooler(s)?		Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	13.6°C No Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🔽

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Eurofins Environment Testing South Central, LLC Albuquerque, NM 87109 TEL: 505-345-3975 EAX: 505-345-4107 4901 Hawkins NE Website: www.hallenvironmental.com ANALYTICAL COMMENTS (406) 252-6069 824010995 EMAIL 1/10/2024 12:00:00 PM 1 Natural Gas Analysis. 02 + CO2. (406) 869-6253 OF: # CONTAINERS CHAIN OF CUSTODY RECORD PAGE: ACCOUNT# COLLECTION PHONE DATE MATRIX Air Energy Laboratories BOTTLE TYPE TEDLAR COMPANY CLIENT SAMPLE ID 1120 South 27th Street SUB CONTRATOR Energy Labs -Billings **Environment Testing** CITY, STATE, ZIP. Billings, MT 59107 2401593-001B SVE-1 SAMPLE 💸 eurofins ADDRESS: ITEM

Refinquished By:	Fime:	7:45 AM	Received By	Date	Time.	REPORT TRANSMITTAL DESIRED:	
Relinquished By: Date:	Time:		Received By	Date	Time.	☐ HARDCOPY (extra cost) ☐ FAX ☐ EMAIL	ONLINE
Relinquished By: Date:	Time		Received Coustal Twes	Date	Time	FOR LAB USE ONLY There of consider Y	
TAT:	1	RUSH	3D	3rd B	3rd BD	remp or samples	

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2401593** *01-Feb-24*

Client: HILCORP ENERGY

Project: Hare 14 M

Sample ID: 2401593-001adup SampType: DUP TestCode: EPA Method 8015D: Gasoline Range

Client ID: **SVE-1** Batch ID: **GW102499** RunNo: **102499**

Prep Date: Analysis Date: 1/17/2024 SegNo: 3786144 Units: ug/L

Prep Date:	Analysis Date: 1/17/2024			SeqNo: 37	786144	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	540	25						3.54	20		
Surr. RER	32000		10000		322	15	412	Λ	Λ		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

2401593 *01-Feb-24*

WO#:

Client: HILCORP ENERGY

Project: Hare 14 M

 Sample ID:
 2401593-001adup
 SampType:
 DUP
 TestCode:
 EPA Method 8260B:
 Volatiles

 Client ID:
 SVE-1
 Batch ID:
 R102616
 RunNo:
 102616

 Prep Date:
 Analysis Date:
 1/22/2024
 SeqNo:
 3791029
 Units:
 µg/L

 Analyte
 Result
 PQL
 SPK value
 SPK Ref Val
 %REC
 LowLimit
 HighLimit
 %RPD
 RPDLimit
 Qual

Prep Date:	Analysis [Date: 1/ 2	22/2024	5	SeqNo: 37	791029	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.25						0	20	
Toluene	10	0.50						4.18	20	
Ethylbenzene	1.5	0.50						4.43	20	
Methyl tert-butyl ether (MTBE)	ND	0.50						0	20	
1,2,4-Trimethylbenzene	0.82	0.50						1.10	20	
1,3,5-Trimethylbenzene	1.2	0.50						1.22	20	
1,2-Dichloroethane (EDC)	ND	0.50						0	20	
1,2-Dibromoethane (EDB)	ND	0.50						0	20	
Naphthalene	ND	1.0						0	20	
1-Methylnaphthalene	ND	2.0						0	20	
2-Methylnaphthalene	ND	2.0						200	20	R
Acetone	ND	5.0						0	20	
Bromobenzene	ND	0.50						0	20	
Bromodichloromethane	ND	0.50						0	20	
Bromoform	ND	0.50						0	20	
Bromomethane	ND	1.0						0	20	
2-Butanone	ND	5.0						0	20	
Carbon disulfide	ND	5.0						0	20	
Carbon tetrachloride	ND	0.50						0	20	
Chlorobenzene	ND	0.50						0	20	
Chloroethane	ND	1.0						0	20	
Chloroform	ND	0.50						0	20	
Chloromethane	ND	0.50						0	20	
2-Chlorotoluene	ND	0.50						0	20	
4-Chlorotoluene	ND	0.50						0	20	
cis-1,2-DCE	ND	0.50						0	20	
cis-1,3-Dichloropropene	ND	0.50						0	20	
1,2-Dibromo-3-chloropropane	ND	1.0						0	20	
Dibromochloromethane	ND	0.50						0	20	
Dibromomethane	ND	1.0						0	20	
1,2-Dichlorobenzene	ND	0.50						0	20	
1,3-Dichlorobenzene	ND	0.50						0	20	
1,4-Dichlorobenzene	ND	0.50						0	20	
Dichlorodifluoromethane	ND	0.50						0	20	
1,1-Dichloroethane	ND	0.50						0	20	
1,1-Dichloroethene	ND	0.50						0	20	
1,2-Dichloropropane	ND	0.50						0	20	
1,3-Dichloropropane	ND	0.50						0	20	
2,2-Dichloropropane	ND	0.50						0	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

2401593 01-Feb-24

WO#:

Client: HILCORP ENERGY

Project: Hare 14 M

Sample ID: 2401593-001adup	Samp ⁻	Гуре: DU	P	Tes	tCode: EF	PA Method	8260B: Volati	les		
Client ID: SVE-1	Batc	h ID: R1	02616	F	RunNo: 10	02616				
Prep Date:	Analysis [Date: 1/ 3	22/2024	5	SeqNo: 37	791029	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
,1-Dichloropropene	ND	0.50						0	20	
Hexachlorobutadiene	ND	0.50						0	20	
-Hexanone	ND	5.0						0	20	
sopropylbenzene	ND	0.50						0	20	
-Isopropyltoluene	ND	0.50						0	20	
-Methyl-2-pentanone	ND	5.0						0	20	
Methylene chloride	ND	1.5						0	20	
-Butylbenzene	ND	1.5						0	20	
-Propylbenzene	ND	0.50						0	20	
ec-Butylbenzene	ND	0.50						0	20	
ityrene	ND	0.50						0	20	
ert-Butylbenzene	ND	0.50						0	20	
,1,1,2-Tetrachloroethane	ND	0.50						0	20	
,1,2,2-Tetrachloroethane	ND	0.50						0	20	
etrachloroethene (PCE)	ND	0.50						0	20	
ans-1,2-DCE	ND	0.50						0	20	
ans-1,3-Dichloropropene	ND	0.50						0	20	
,2,3-Trichlorobenzene	ND	0.50						0	20	
,2,4-Trichlorobenzene	ND	0.50						0	20	
,1,1-Trichloroethane	ND	0.50						0	20	
,1,2-Trichloroethane	ND	0.50						0	20	
richloroethene (TCE)	ND	0.50						0	20	
richlorofluoromethane	ND	0.50						0	20	
,2,3-Trichloropropane	ND	1.0						0	20	
inyl chloride	ND	0.50						0	20	
ylenes, Total	20	0.75						3.81	20	
Surr: Dibromofluoromethane	4.9		5.000		97.3	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	5.3		5.000		106	70	130	0	0	
Surr: Toluene-d8	6.0		5.000		119	70	130	0	0	
Surr: 4-Bromofluorobenzene	5.8		5.000		116	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com Sample Log-In Check List

Released to Imaging: 4/25/2024 2:21:37 PM

Client Name: Hilcorp Energy	Work Order Number:	2401593		RcptNo:	1
Received By: Tracy Casarrubias	1/16/2024 7:05:00 AM				
Completed By: Tracy Casarrubias	1/16/2024 7:38:59 AM				
Reviewed By: Ju 1/16/24					
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗌	No 🗹	Not Present	
2. How was the sample delivered?		Courier			
<u>Log In</u>					
3. Was an attempt made to cool the samples?	•	Yes 🗔	No 🗹	NA TIE	
4. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 🗌	= No □	NA 🗹	
5. Sample(s) in proper container(s)?		Yes 🔽	No 🗆		
6. Sufficient sample volume for indicated test(s	s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) proper	ly preserved?	Yes 🗸	No 🗌		
8. Was preservative added to bottles?		Yes 🗌	No 🗸	NA 🗌	
9. Received at least 1 vial with headspace <1/a>	4" for AQ VOA?	Yes 🗌	No 🗌	NA 🗹	
10. Were any sample containers received broke	en?	Yes	No 🗸	# of preserved	
11. Does paperwork match bottle labels?		Yes 🗹	No 🗆	bottles checked for pH:	
(Note discrepancies on chain of custody)					>12 unless noted)
12. Are matrices correctly identified on Chain of	Custody?	Yes 🔽	No 🗔	Adjusted?	
13. Is it clear what analyses were requested?		Yes 🗹	No 🗔	Checked by:	11 1-11-24
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🔽	No 📙	Checked by.	11-16-24
Special Handling (if applicable)				U	
15. Was client notified of all discrepancies with	this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date:				
By Whom:	Via:	_ eMail _	Phone Fax	In Person	
Regarding:					
Client Instructions: Mailing address	and phone number are mi	ssing on CC	OC- TMC 1/16/24		
16. Additional remarks:					
17. Cooler Information Cooler No Temp °C Condition S 1 N/A Good Ye		Seal Date	Signed By		

C	Chain-of-Custody Record		Turn-Around	Time:		HALL ENVIRONMENTAL															
Client:	Hile	orb		₩ Standard	□ Rush	1			\exists										TC		
***************************************		7		Project Name	e:										ment				7 76 1577		-
Mailing	Address	s:	4. 0.04,4	Hare Project #:	14 M			49	01 H								M 87	109			
				Project #:	1 60		Tel. 505-345-3975 Fax 505-345-4107														
Phone	#:						Analysis Request														
	or Fax#: Package:		. Sinclair Phileorp.co			,	TMB's (8021)	/ MRO)	PCB's		IMS		PO ₄ , SO ₄			Total Coliform (Present/Absent)	34	C02			
□ Star	ndard		☐ Level 4 (Full Validation)	Mitch Killough			B's	잁	2 P(708		2, P			ent/	+1	8		540	
Accred	itation:	☐ Az Co☐ Other	ompliance r	Sampler: Brandon Sinclair On Ice: Yes No			₹	0/0	/808	04.1	or 82		NO ₂ ,	41	₹	Pres	TVPIT	0,4	١		
) (Type)			# of Coolers:		13(140	BE/	(GR	ides)d 5	10 0	tals	√ 03,		-VO	ш (1	998			
	EDD (Type)			Cooler Temp(including CF): N/A (°C)			Ĭ	15D	estic	letho	y 83	8 Me	Br, NO ₃ ,	(A)	Semi	olifo		9	,		
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No. 2401593	BTEX / MTBE /	TPH:8015D(GRO / DRO / MRO)	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or 8270SIMS	RCRA 8 Metals	CI, F, E	8260 (VOA)	8270 (Semi-VOA)	Total C	8015	Fixed			
1-10	1200	air	SVE-1	2 Tellar	1 000 000 000 000 000 000 000 000 000 0	001								$\sqrt{}$			$\sqrt{}$	$\sqrt{}$			
					1 - 1						1	9 N I			ν,		-				
												T),	P0 :	1774	7.						
															9 60	11					
					11 11 11 77	1945 1971 1771							7-1	1	94						
					Sept. Const. 12							1	1117	160							
												h),							п		
						41 % PA WEST							1	24			11100				
															-						
					2 2 2 2 3 3							1 = 1				1					
																in			III Z		
Date:	Time:	Relinquist	ned by:	Received by:	Via: Counce	1/16/24 7:05	Rei	nark	s:												
Date:			Received by:	Via:	Date Time							-									

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 3/23/2024 10:03:51 AM

JOB DESCRIPTION

Sunrey B 1B

JOB NUMBER

885-963-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 3/23/2024 10:03:51 AM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

3

4

5

6

8

12

1,

Client: Hilcorp Energy
Laboratory Job ID: 885-963-1
Project/Site: Sunrey B 1B

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	16
Subcontract Data	17
Chain of Custody	23
Receipt Checklists	24

3

5

0

8

10

11

1:

Definitions/Glossary

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Glossary

DL, RA, RE, IN

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DII Fac DL	

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Eurofins Albuquerque

Case Narrative

Client: Hilcorp Energy

Job ID: 885-963-1

Project: Sunrey B 1B

Job ID: 885-963-1 Eurofins Albuquerque

Job Narrative 885-963-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/12/2024 7:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 21.1°C.

Subcontract Work

Method Fixed Gases: This method was subcontracted to Energy Laboratories, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

3

4

5

6

ا

9

11

12

Ш

Client Sample Results

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Client Sample ID: SVE-1 Lab Sample ID: 885-963-1

Date Collected: 03/06/24 14:45 Matrix: Air

Date Received: 03/12/24 07:15 Sample Container: Tedlar Bag 1L

Method: SW846 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)											
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Gasoline Range Organics [C6 - C10]	ND		250	ug/L			03/20/24 14:42	50			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			

4-Bromofluorobenzene (Surr)	104	70 - 130			03/20/24 14:42	50
Mathadi SW946 9260B Vala	tile Organia Compaun	de (CC/MC)				
Method: SW846 8260B - Vola Analyte	Result Qualifier	as (GC/MS) RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND Qualific	5.0	ug/L		03/20/24 14:42	50
1,1,1-Trichloroethane	ND	5.0	ug/L		03/20/24 14:42	50
1,1,2,2-Tetrachloroethane	ND	10	ug/L		03/20/24 14:42	50
1,1,2-Trichloroethane	ND	5.0	ug/L		03/20/24 14:42	50
1,1-Dichloroethane	ND	5.0	ug/L		03/20/24 14:42	50
1,1-Dichloroethene	ND	5.0	ug/L		03/20/24 14:42	50
1,1-Dichloropropene	ND	5.0	ug/L		03/20/24 14:42	50
1,2,3-Trichlorobenzene	ND	5.0	ug/L		03/20/24 14:42	50
1,2,3-Trichloropropane	ND	10	ug/L		03/20/24 14:42	50
1,2,4-Trichlorobenzene	ND	5.0	ug/L		03/20/24 14:42	50
1,2,4-Trimethylbenzene	ND	5.0	ug/L		03/20/24 14:42	50
1,2-Dibromo-3-Chloropropane	ND	10	ug/L		03/20/24 14:42	50
1,2-Dibromoethane (EDB)	ND	5.0	ug/L		03/20/24 14:42	50
1,2-Dichlorobenzene	ND	5.0	ug/L		03/20/24 14:42	50
1,2-Dichloroethane (EDC)	ND	5.0	ug/L		03/20/24 14:42	50
1,2-Dichloropropane	ND	5.0	ug/L		03/20/24 14:42	50
1,3,5-Trimethylbenzene	ND	5.0	ug/L		03/20/24 14:42	50
1,3-Dichlorobenzene	ND	5.0	ug/L		03/20/24 14:42	50
1,3-Dichloropropane	ND	5.0	ug/L		03/20/24 14:42	50
1,4-Dichlorobenzene	ND	5.0	ug/L		03/20/24 14:42	50
1-Methylnaphthalene	ND	20	ug/L		03/20/24 14:42	50
2,2-Dichloropropane	ND	10	ug/L		03/20/24 14:42	50
2-Butanone	ND	50	ug/L		03/20/24 14:42	50
2-Chlorotoluene	ND	5.0	ug/L		03/20/24 14:42	50
2-Hexanone	ND	50	ug/L		03/20/24 14:42	50
2-Methylnaphthalene	ND	20	ug/L		03/20/24 14:42	50
4-Chlorotoluene	ND	5.0	ug/L		03/20/24 14:42	50
4-Isopropyltoluene	ND	5.0	ug/L		03/20/24 14:42	50
4-Methyl-2-pentanone	ND	50	ug/L		03/20/24 14:42	50
Acetone	ND	50	ug/L		03/20/24 14:42	50
Benzene	ND	5.0	ug/L		03/20/24 14:42	50
Bromobenzene	ND	5.0	ug/L		03/20/24 14:42	50
Bromodichloromethane	ND	5.0	ug/L		03/20/24 14:42	50
Dibromochloromethane	ND	5.0	ug/L		03/20/24 14:42	50
Bromoform	ND	5.0	ug/L		03/20/24 14:42	50
Bromomethane	ND	15	ug/L		03/20/24 14:42	50
Carbon disulfide	ND	50	ug/L		03/20/24 14:42	50
Carbon tetrachloride	ND	5.0	ug/L		03/20/24 14:42	50
Chlorobenzene	ND	5.0	ug/L		03/20/24 14:42	50
Chloroethane	ND	10	ug/L		03/20/24 14:42	50
Chloroform	ND	5.0	ug/L		03/20/24 14:42	50
Chloromethane	ND	15	ug/L		03/20/24 14:42	50

Eurofins Albuquerque

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Client Sample ID: SVE-1 Lab Sample ID: 885-963-1

Date Collected: 03/06/24 14:45 Matrix: Air

Date Received: 03/12/24 07:15 Sample Container: Tedlar Bag 1L

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
cis-1,2-Dichloroethene	ND -	5.0	ug/L			03/20/24 14:42	50
cis-1,3-Dichloropropene	ND	5.0	ug/L			03/20/24 14:42	50
Dibromomethane	ND	5.0	ug/L			03/20/24 14:42	50
Dichlorodifluoromethane	ND	5.0	ug/L			03/20/24 14:42	50
Ethylbenzene	ND	5.0	ug/L			03/20/24 14:42	50
Hexachlorobutadiene	ND	5.0	ug/L			03/20/24 14:42	50
Isopropylbenzene	ND	5.0	ug/L			03/20/24 14:42	50
Methyl-tert-butyl Ether (MTBE)	ND	5.0	ug/L			03/20/24 14:42	50
Methylene Chloride	ND	15	ug/L			03/20/24 14:42	50
n-Butylbenzene	ND	15	ug/L			03/20/24 14:42	50
N-Propylbenzene	ND	5.0	ug/L			03/20/24 14:42	50
Naphthalene	ND	10	ug/L			03/20/24 14:42	50
sec-Butylbenzene	ND	5.0	ug/L			03/20/24 14:42	50
Styrene	ND	5.0	ug/L			03/20/24 14:42	50
tert-Butylbenzene	ND	5.0	ug/L			03/20/24 14:42	50
Tetrachloroethene (PCE)	ND	5.0	ug/L			03/20/24 14:42	50
Toluene	ND	5.0	ug/L			03/20/24 14:42	50
trans-1,2-Dichloroethene	ND	5.0	ug/L			03/20/24 14:42	50
trans-1,3-Dichloropropene	ND	5.0	ug/L			03/20/24 14:42	50
Trichloroethene (TCE)	ND	5.0	ug/L			03/20/24 14:42	50
Trichlorofluoromethane	ND	5.0	ug/L			03/20/24 14:42	50
Vinyl chloride	ND	5.0	ug/L			03/20/24 14:42	50
Xylenes, Total	ND	7.5	ug/L			03/20/24 14:42	50

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	70 - 130	 	3/20/24 14:42	50
Toluene-d8 (Surr)	95	70 - 130	0.	3/20/24 14:42	50
4-Bromofluorobenzene (Surr)	104	70 - 130	0.	3/20/24 14:42	50
Dibromofluoromethane (Surr)	95	70 - 130	0.	3/20/24 14:42	50

Eurofins Albuquerque

2

3

4

7

9

10

12

L,

Client Sample ID: Method Blank

Prep Type: Total/NA

QC Sample Results

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Method: 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

Lab Sample ID: MB 885-2088/3

Matrix: Air

Analysis Batch: 2088

-	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		50	ug/L			03/20/24 13:04	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 70 - 130 03/20/24 13:04 97

Lab Sample ID: LCS 885-2088/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Air

Analysis Batch: 2088

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics [C6 -	500	521		ug/L		104		

C10]

LCS LCS

Limits Surrogate %Recovery Qualifier 70 - 130 4-Bromofluorobenzene (Surr) 107

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-2090/3

Released to Imaging: 4/25/2024 2:21:37 PM

Matrix: Air

Analysis Batch: 2090

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB MB						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND	1.0	ug/L			03/20/24 13:04	1
1,1,1-Trichloroethane	ND	1.0	ug/L			03/20/24 13:04	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L			03/20/24 13:04	1
1,1,2-Trichloroethane	ND	1.0	ug/L			03/20/24 13:04	1
1,1-Dichloroethane	ND	1.0	ug/L			03/20/24 13:04	1
1,1-Dichloroethene	ND	1.0	ug/L			03/20/24 13:04	1
1,1-Dichloropropene	ND	1.0	ug/L			03/20/24 13:04	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L			03/20/24 13:04	1
1,2,3-Trichloropropane	ND	2.0	ug/L			03/20/24 13:04	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L			03/20/24 13:04	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L			03/20/24 13:04	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L			03/20/24 13:04	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L			03/20/24 13:04	1
1,2-Dichlorobenzene	ND	1.0	ug/L			03/20/24 13:04	1
1,2-Dichloroethane (EDC)	ND	1.0	ug/L			03/20/24 13:04	1
1,2-Dichloropropane	ND	1.0	ug/L			03/20/24 13:04	1
1,3,5-Trimethylbenzene	ND	1.0	ug/L			03/20/24 13:04	1
1,3-Dichlorobenzene	ND	1.0	ug/L			03/20/24 13:04	1
1,3-Dichloropropane	ND	1.0	ug/L			03/20/24 13:04	1
1,4-Dichlorobenzene	ND	1.0	ug/L			03/20/24 13:04	1
1-Methylnaphthalene	ND	4.0	ug/L			03/20/24 13:04	1
2,2-Dichloropropane	ND	2.0	ug/L			03/20/24 13:04	1
2-Butanone	ND	10	ug/L			03/20/24 13:04	1
2-Chlorotoluene	ND	1.0	ug/L			03/20/24 13:04	1
2-Hexanone	ND	10	ug/L			03/20/24 13:04	1

Eurofins Albuquerque

QC Sample Results

Client: Hilcorp Energy Job ID: 885-963-1 Project/Site: Sunrey B 1B

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-2090/3

Matrix: Air

Analysis Batch: 2090

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		4.0	ug/L			03/20/24 13:04	1
4-Chlorotoluene	ND		1.0	ug/L			03/20/24 13:04	1
4-Isopropyltoluene	ND		1.0	ug/L			03/20/24 13:04	1
4-Methyl-2-pentanone	ND		10	ug/L			03/20/24 13:04	1
Acetone	ND		10	ug/L			03/20/24 13:04	1
Benzene	ND		1.0	ug/L			03/20/24 13:04	1
Bromobenzene	ND		1.0	ug/L			03/20/24 13:04	1
Bromodichloromethane	ND		1.0	ug/L			03/20/24 13:04	1
Dibromochloromethane	ND		1.0	ug/L			03/20/24 13:04	1
Bromoform	ND		1.0	ug/L			03/20/24 13:04	1
Bromomethane	ND		3.0	ug/L			03/20/24 13:04	1
Carbon disulfide	ND		10	ug/L			03/20/24 13:04	1
Carbon tetrachloride	ND		1.0	ug/L			03/20/24 13:04	1
Chlorobenzene	ND		1.0	ug/L			03/20/24 13:04	1
Chloroethane	ND		2.0	ug/L			03/20/24 13:04	1
Chloroform	ND		1.0	ug/L			03/20/24 13:04	1
Chloromethane	ND		3.0	ug/L			03/20/24 13:04	1
cis-1,2-Dichloroethene	ND		1.0	ug/L			03/20/24 13:04	1
cis-1,3-Dichloropropene	ND		1.0	ug/L			03/20/24 13:04	1
Dibromomethane	ND		1.0	ug/L			03/20/24 13:04	1
Dichlorodifluoromethane	ND		1.0	ug/L			03/20/24 13:04	1
Ethylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Hexachlorobutadiene	ND		1.0	ug/L			03/20/24 13:04	1
Isopropylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			03/20/24 13:04	1
Methylene Chloride	ND		3.0	ug/L			03/20/24 13:04	1
n-Butylbenzene	ND		3.0	ug/L			03/20/24 13:04	1
N-Propylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Naphthalene	ND		2.0	ug/L			03/20/24 13:04	1
sec-Butylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Styrene	ND		1.0	ug/L			03/20/24 13:04	1
tert-Butylbenzene	ND		1.0	ug/L			03/20/24 13:04	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			03/20/24 13:04	1
Toluene	ND		1.0	ug/L			03/20/24 13:04	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			03/20/24 13:04	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			03/20/24 13:04	1
Trichloroethene (TCE)	ND		1.0	ug/L			03/20/24 13:04	1
Trichlorofluoromethane	ND		1.0	ug/L			03/20/24 13:04	1
Vinyl chloride	ND		1.0	ug/L			03/20/24 13:04	1
Xylenes, Total	ND		1.5	ug/L			03/20/24 13:04	1

ИΒ	MB	

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		70 - 130	-		03/20/24 13:04	1
Toluene-d8 (Surr)	89		70 - 130			03/20/24 13:04	1
4-Bromofluorobenzene (Surr)	100		70 - 130			03/20/24 13:04	1
Dibromofluoromethane (Surr)	100		70 - 130			03/20/24 13:04	1

Eurofins Albuquerque

QC Sample Results

Client: Hilcorp Energy Job ID: 885-963-1 Project/Site: Sunrey B 1B

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Samp	le ID: LCS	885-2090/2
----------	------------	------------

Matrix: Air

Analysis Batch: 2090

Client Sample ID: Lab Control Sample

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethene	20.1	18.1		ug/L		90	
Benzene	20.1	19.7		ug/L		98	
Chlorobenzene	20.1	20.7		ug/L		103	
Toluene	20.2	19.5		ug/L		97	
Trichloroethene (TCE)	20.2	19.2		ug/L		95	

LCS	LCS

	LUU	LUU	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		70 - 130
Toluene-d8 (Surr)	95		70 - 130
4-Bromofluorobenzene (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130

Prep Type: Total/NA

QC Association Summary

Client: Hilcorp Energy

Job ID: 885-963-1

Project/Site: Sunrey B 1B

GC/MS VOA

Analysis Batch: 2088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-963-1	SVE-1	Total/NA	Air	8015D	
MB 885-2088/3	Method Blank	Total/NA	Air	8015D	
LCS 885-2088/2	Lab Control Sample	Total/NA	Air	8015D	

Analysis Batch: 2090

Lab Sample ID 885-963-1	Client Sample ID SVE-1	Prep Type Total/NA	Matrix Air	Method 8260B	Prep Batch
MB 885-2090/3	Method Blank	Total/NA	Air	8260B	
LCS 885-2090/2	Lab Control Sample	Total/NA	Air	8260B	

2

3

4

R

9

11

12

1:

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Client Sample ID: SVE-1 Lab Sample ID: 885-963-1

Matrix: Air

Date Collected: 03/06/24 14:45 Date Received: 03/12/24 07:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015D		50	2088	CM	EET ALB	03/20/24 14:42
Total/NA	Analysis	8260B		50	2090	CM	EET ALB	03/20/24 14:42

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

5

7

8

4.0

11

14

13

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	ım	Identification Number	Expiration Date		
w Mexico	State		NM9425, NM0901	02-26-25		
,	s are included in this repor does not offer certification.	•	not certified by the governing authori	ity. This list may inclu		
Analysis Method	Prep Method	Matrix	Analyte			
8015D		Air	Gasoline Range Organics	Gasoline Range Organics [C6 - C10]		
8260B		Air	1,1,1,2-Tetrachloroethane	e		
8260B		Air	1,1,1-Trichloroethane			
8260B		Air	1,1,2,2-Tetrachloroethane	•		
8260B		Air	1,1,2-Trichloroethane			
8260B		Air	1,1-Dichloroethane			
8260B		Air	1,1-Dichloroethene			
8260B		Air	1,1-Dichloropropene			
8260B		Air	1,2,3-Trichlorobenzene			
8260B		Air	1,2,3-Trichloropropane			
8260B		Air	1,2,4-Trichlorobenzene			
8260B		Air	1,2,4-Trimethylbenzene			
8260B		Air	·			
8260B		Air	1,2-Dibromoethane (EDB	3)		
8260B		Air	1,2-Dichlorobenzene			
8260B		Air 1,2-Dichloroethane (EDC))		
8260B		Air	1,2-Dichloropropane			
8260B		Air	1,3,5-Trimethylbenzene			
8260B		Air	1,3-Dichlorobenzene			
8260B		Air	1,3-Dichloropropane			
8260B		Air	1,4-Dichlorobenzene			
8260B		Air	1-Methylnaphthalene			
8260B		Air	2,2-Dichloropropane			
8260B		Air	2-Butanone			
8260B		Air	2-Chlorotoluene			
8260B		Air	2-Hexanone			
8260B		Air	2-Methylnaphthalene			
8260B		Air	4-Chlorotoluene			
8260B		Air	4-Isopropyltoluene			
8260B		Air	4-Methyl-2-pentanone			
8260B		Air	Acetone			
8260B		Air	Benzene			
8260B		Air Bromobenz				
8260B		Air	Bromodichloromethane			
8260B		Air	Bromoform			
8260B		Air	Bromomethane			
8260B		Air	Carbon disulfide			

Eurofins Albuquerque

Carbon tetrachloride

Chlorobenzene

Chloromethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Chloroethane

Chloroform

1

6

5

7

9

10

12

Air

Air

Air

Air

Air

Air

Air

Air

8260B

8260B

8260B

8260B

8260B

8260B

8260B

8260B

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progran	1	Identification Number Expiration Date
The following analytes	are included in this report,	but the laboratory is r	not certified by the governing authority. This list may include analytes
for which the agency of	does not offer certification.		
Analysis Method	Prep Method	Matrix	Analyte
8260B		Air	Dibromomethane
8260B		Air	Dichlorodifluoromethane
8260B		Air	Ethylbenzene
8260B		Air	Hexachlorobutadiene
8260B		Air	Isopropylbenzene
8260B		Air	Methylene Chloride
8260B		Air	Methyl-tert-butyl Ether (MTBE)
8260B		Air	Naphthalene
8260B		Air	n-Butylbenzene
8260B		Air	N-Propylbenzene
8260B		Air	sec-Butylbenzene
8260B		Air	Styrene
8260B		Air	tert-Butylbenzene
8260B		Air	Tetrachloroethene (PCE)
8260B		Air	Toluene
8260B		Air	trans-1,2-Dichloroethene
8260B		Air	trans-1,3-Dichloropropene
8260B		Air	Trichloroethene (TCE)
8260B		Air	Trichlorofluoromethane
8260B		Air	Vinyl chloride
8260B		Air	Xylenes, Total
regon	NELAP		NM100001 02-26-25

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8015D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B	Air		1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene

Eurofins Albuquerque

3-1

0

5

7

9

10

12

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-963-1

Project/Site: Sunrey B 1B

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progra	am	Identification Number Expiration Date
The following analyte:	s are included in this repo	rt. but the laboratory is i	not certified by the governing authority. This list may include anal
	does not offer certification	•	, 3 3 , , ,
Analysis Method	Prep Method	Matrix	Analyte
8260B		Air	1-Methylnaphthalene
8260B		Air	2,2-Dichloropropane
8260B		Air	2-Butanone
8260B		Air	2-Chlorotoluene
8260B		Air	2-Hexanone
8260B		Air	2-Methylnaphthalene
8260B		Air	4-Chlorotoluene
8260B		Air	4-Isopropyltoluene
8260B		Air	4-Methyl-2-pentanone
8260B		Air	Acetone
8260B		Air	Benzene
8260B		Air	Bromobenzene
8260B		Air	Bromodichloromethane
8260B		Air	Bromoform
8260B		Air	Bromomethane
8260B		Air	Carbon disulfide
8260B		Air	Carbon tetrachloride
8260B		Air	Chlorobenzene
8260B		Air	Chloroethane
8260B		Air	Chloroform
8260B		Air	Chloromethane
8260B		Air	cis-1,2-Dichloroethene
8260B		Air	cis-1,3-Dichloropropene
8260B		Air	Dibromochloromethane
8260B		Air	Dibromomethane
8260B		Air	Dichlorodifluoromethane
8260B		Air	Ethylbenzene
8260B		Air	Hexachlorobutadiene
8260B		Air	Isopropylbenzene
8260B		Air	Methylene Chloride
8260B		Air	Methyl-tert-butyl Ether (MTBE)
8260B		Air	Naphthalene
8260B		Air	n-Butylbenzene
8260B		Air	N-Propylbenzene
8260B		Air	sec-Butylbenzene
8260B		Air	Styrene
8260B		Air	tert-Butylbenzene
8260B		Air	Tetrachloroethene (PCE)
8260B		Air	Toluene
8260B		Air	trans-1,2-Dichloroethene
8260B		Air	trans-1,3-Dichloropropene
8260B		Air	Trichloroethene (TCE)
8260B		Air	Trichlorofluoromethane
8260B		Air	Vinyl chloride
8260B		Air	Xylenes, Total

Eurofins Albuquerque

Method Summary

Client: Hilcorp Energy Project/Site: Sunrey B 1B Job ID: 885-963-1

U.	885-963-1	

Method	Method Description	Protocol	Laboratory
8015D	Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)	SW846	EET ALB
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET ALB
Subcontract	Fixed Gases	None	
5030C	Collection/Prep Tedlar Bag (P&T)	SW846	EET ALB

4

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

10

11

12

13

Trust our People. Trust our Data. www.energylab.com Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

ANALYTICAL SUMMARY REPORT

March 21, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: B24030786 Quote ID: B15626

Project Name: Sunrey B 1B, 88500415

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 3/13/2024 for analysis.

0,	· ·	o i		· ·
Lab ID	Client Sample ID	Collect Date Receive Date	Matri x	Test
B24030786-001	SVE-1 (885-963-1)	03/06/24 14:45 03/13/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

2

E

6

0

9

11

12

113

Trust our People. Trust our Data. Billings, MT 406.252.6325 . Casper, WY 307.235.0515 Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Hall Environmental Client: Project: Sunrey B 1B, 88500415 Lab ID: B24030786-001

Client Sample ID: SVE-1 (885-963-1)

Report Date: 03/21/24 Collection Date: 03/06/24 14:45 DateReceived: 03/13/24 Matrix: Air

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
	Rooun	· · · · ·	quamioro				7
GAS CHROMATOGRAPHY ANALYSIS F	REPORT						
Oxygen	22.19	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Nitrogen	77.68	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
Carbon Dioxide	0.12	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
lydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
lethane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
thane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
ropane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
sobutane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
-Butane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
sopentane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
-Pentane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
exanes plus	0.01	Mol %		0.01		GPA 2261-95	03/15/24 12:27 / jrj
ropane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
obutane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
-Butane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
opentane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
-Pentane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
exanes plus	0.004	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
PM Total	0.004	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
PM Pentanes plus	0.004	gpm		0.001		GPA 2261-95	03/15/24 12:27 / jrj
ALCULATED PROPERTIES							
ross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	03/15/24 12:27 / jrj
et BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	03/15/24 12:27 / jrj
seudo-critical Pressure, psia	546			1		GPA 2261-95	03/15/24 12:27 / jrj
seudo-critical Temperature, deg R	239			1		GPA 2261-95	03/15/24 12:27 / jrj
pecific Gravity @ 60/60F	0.999			0.001		D3588-81	03/15/24 12:27 / jrj
ir, %	101.40			0.01		GPA 2261-95	03/15/24 12:27 / jrj
- The analysis was not corrected for air.							
OMMENTS							

03/15/24 12:27 / jrj

BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.
GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.
To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.
Standard conditions: 60 F & 14.73 psi on a dry basis

Report RL - Analyte Reporting Limit MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24030786 Report Date: 03/21/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R418183
Lab ID:	B24030780-001ADUP	12 Saı	mple Duplic	ate			Run: GCNG	A-B_240315A		03/15/	24 10:40
Oxygen			21.8	Mol %	0.01				0.3	20	
Nitrogen			77.8	Mol %	0.01				0.1	20	
Carbon Di	oxide		0.30	Mol %	0.01				0.0	20	
Hydrogen	Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane			<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentan	е		<0.01	Mol %	0.01					20	
n-Pentane	•		<0.01	Mol %	0.01					20	
Hexanes p	olus		0.04	Mol %	0.01				0.0	20	
Lab ID:	LCS031524	11 Lab	oratory Co	ntrol Sample			Run: GCNG	A-B_240315A		03/18/	24 02:59
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			5.90	Mol %	0.01	98	70	130			
Carbon Di	oxide		1.01	Mol %	0.01	102	70	130			
Methane			75.2	Mol %	0.01	101	70	130			
Ethane			5.84	Mol %	0.01	97	70	130			
Propane			5.03	Mol %	0.01	102	70	130			
Isobutane			1.66	Mol %	0.01	83	70	130			
n-Butane			2.00	Mol %	0.01	100	70	130			
Isopentan	е		0.99	Mol %	0.01	99	70	130			
n-Pentane	•		0.98	Mol %	0.01	98	70	130			
Hexanes p	olus		0.77	Mol %	0.01	96	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental B24030786

Login completed by:	Date Received: 3/13/2024					
Reviewed by:	cjones	Received by: DNH				
Reviewed Date:	Reviewed Date: 3/15/2024		Carrier name: FedEx			
Shipping container/cooler in	Yes 🗸	No 🗌	Not Present			
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present		
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓		
Chain of custody present?		Yes 🗸	No 🗌			
Chain of custody signed whe	Yes 🔽	No 🗌				
Chain of custody agrees with	Yes 🔽	No 🗌				
Samples in proper container/	Yes 🔽	No 🗌				
Sample containers intact?		Yes 🔽	No 🗌			
Sufficient sample volume for	indicated test?	Yes 🔽	No 🗌			
All samples received within h (Exclude analyses that are co such as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌			
Temp Blank received in all shipping container(s)/cooler(s)?		Yes	No 🗸	Not Applicable		
Container/Temp Blank tempe	erature:	12.4°C No Ice				
Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").		Yes	No 🗌	No VOA vials submitted		
Water - pH acceptable upon	Yes	No 🗌	Not Applicable ✓			

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Eurofins Albuquerque

4901 Hawkins NE

Albuquerque, NM 87109

Chain of Custody Record

LS*	1.7
20	
w	
	1

💸 eurofins

Prione: 505-345-3975 Fax: 505-345-4107	To										F-80				- Little III
Client Information (Sub Contract Lab)	Sampler:		Fre	Lab PM: Freeman, Andy				Ca	Carrier Tracking No(s): State of Origin: New Mexico			COC No: 885-118.1 Page: Page 1 of 1			
Shipping/Receiving Company:	Phone:	Phone:			lail: dy.freen										
Energy Laboratories, Inc.					Accred	litations	Required	(See not	e);					Job #:	
address:	Due Date Request	ted:			NEL	AP - U	regon; a	state - N	lew Mex	CICO				885-963-1 Preservation	Carteri
120 South 27th Street, ,	3/22/2024					Analysis I				Requested				A - HCL	M - Hexane
Billings	TAT Requested (d	ays):												B - NaOH	N - None O - AsNaO2
State, Zip: MT, 59107														C - Zn Acetate D - Nitric Acid	P - Na2O4S Q - Na2SO3
Phone:	PO#:		-								1			E - NaHSO4 F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
mail:	WO #:				L No	10								H - Ascorbic Ad	U - Acetone
roject Name:	Project #:				es or	Gases								J - DI Water K - EDTA	V - MCAA W - pH 4-5
Sunrey B 1B	88500415	88500415			Typle (Yes	bed						L-EDA	Y - Trizma Z - other (specify)		
Site:	SSOW#:				Sampl (SD (Y	Gases)/ Fixed						1		Other:	
		Sample	Sample Type (C=comp,	Matrix (W=water, S=solid, O=waste/oil,	d Filtered form MS/A	SUB (Fixed Gase							Total		
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) B	T=Tissue, A=Air) 12 2	SU							Total	Specia	I Instructions/Note:
2/F 4 (995 000 4)		14:45	Preservati	on Code:	XX										
VE-1 (885-963-1)	3/6/24	Mountain		Air		Х								Balo	30786
		1													
			1												
		1													
ote: Since laboratory accreditations are subject to change, Eurofins Envin boratory does not currently maintain accreditation in the State of Origin lis coreditation status should be brought to Eurofins Environment Testing Soi	onment Testing South Centra sted above for analysis/tests/ uth Central, LLC attention im	al, LLC places matrix being a mediately. If a	the ownership of nalyzed, the sam ill requested acci	method, and ples must be editations ar	alyte & ac shipped e current	creditat back to to date,	ion compli the Eurof return the	iance upo ins Enviro signed C	n our subcomment Tes	contract la sting Sou ustody att	boratories th Central esting to	s. This sam , LLC labora said complia	ole shipmen tory or othe nce to Euro	nt is forwarded under instructions will be fins Environment T	er chain-of-custody. If the e provided. Any changes to esting South Central III C
ossible Hazard Identification									may b	e asse	sed if	samples a		ed longer than	
Inconfirmed					L	Re	turn To	Client		Dispo	sal By L	ab		hive For	Months
eliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	ble Rank: 2	2		Spe	ecial Ir	nstructio	ns/QC F	Requiren	ments:					WONUNG
npty Kit Relinquished by:)	Date:			Time:						Method o	of Shipment:			
Ilinquished by:	Date/Time:	.24 /	5:54 00	mpany		Receiv	ed by:					Date/Tim	e:		Company
elinquished by:	Date/Time:			mpany	Received by:				Date/Time:			9:		Company	
alinquished by:	Date/Time:		Co	mpany		Feceiv	d by:	11	. /	/		Date/T m	. /	401/	Company
Custody Seals Intact: Custody Seal No.:			11 11			Cooled	Temperat	US OF	and Other	Pomed		18/1	<u> </u>	OHR	
Δ Yes Δ No					1.0		por at		- in Juiel	- voulaiks			THE REAL PROPERTY.		

Page 62 of 65

Received by OCD: 4/15/2024 11:04:06 AM

ICOC No: 885-118

Containers

Count

Container Type Tedlar Bag 1L

<u>Preservative</u> None

~
6
2
6
-
~
_
\sim
()
-
• •
N.
4
~
Ch.
<.
17
•
9
_
12
4
-
-
-
7
1:0
1:0
1.04
1:04:
1:04:0
1:04:0
1:04:06
1:04:06
1:04:06
1:04:06 A

Client: H. lc or p Mailing Address:	Turn-Around Time: ☑ Standard □ Rush Project Name: ☐ LB Project #:	HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107
Phone #: email or Fax#: brandoh. Sinclair Dhileorp.com QA/QC Package: Standard	Project Manager: Mitch Killough Sampler: Brandon Sinclair On Ice: Yes Mono	### BTEX / MTBE / TMB's (8021) TPH:8015D(GRO / DRO / MRO)
Date Time Matrix Sample Name	# of Coolers: (°C) Cooler Temp(including CF): N/A (°C) Container Preservative HEAL No. Type and # Type	BTEX / MTBE / TMB's (802 TPH:8015D(GRO / DRO / MF 8081 Pesticides/8082 PCB's EDB (Method 504.1) PAHs by 8310 or 8270SIMS RCRA 8 Metals CI, F, Br, NO ₃ , NO ₂ , PO ₄ , S 8260 (VOA) Total Colliform (Present/Abse \$\int \text{2015} \text{TVPH}\$
23-6 1995 AIV 3VE-1	885-963 COC	
Date: Time Relinquished by	Received by: Via Date Time	Remarks:
Date: Time: Relinquished by. Solution Time: Relinquished by.	Received by: Via: rouner Date Time 7:15	S possibility. Any sub-contracted data will be clearly notated on the analytical report

1 1 N

Page 63 of 65

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-963-1

List Source: Eurofins Albuquerque Login Number: 963

List Number: 1

Creator: Cason, Cheyenne

	A nower	Comment
uestion	Answer	Comment
adioactivity wasn't checked or is = background as measured by a surve eter.</td <td>y True</td> <td></td>	y True	
ne cooler's custody seal, if present, is intact.	True	
ample custody seals, if present, are intact.	True	
ne cooler or samples do not appear to have been compromised or mpered with.	True	
amples were received on ice.	False	Thermal preservation not required.
ooler Temperature is acceptable.	True	
ooler Temperature is recorded.	False	Thermal preservation not required.
OC is present.	True	
OC is filled out in ink and legible.	True	
OC is filled out with all pertinent information.	True	
the Field Sampler's name present on COC?	True	
nere are no discrepancies between the containers received and the COC.	True	
amples are received within Holding Time (excluding tests with immediate Ts)	True	
ample containers have legible labels.	True	
ontainers are not broken or leaking.	True	
ample collection date/times are provided.	True	
ppropriate sample containers are used.	True	
ample bottles are completely filled.	True	
ample Preservation Verified.	N/A	
nere is sufficient vol. for all requested analyses, incl. any requested S/MSDs	True	
ontainers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
ultiphasic samples are not present.	True	
amples do not require splitting or compositing.	True	
esidual Chlorine Checked.	N/A	

District III

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 333277

CONDITIONS

Operator:	OGRID:		
HILCORP ENERGY COMPANY	372171		
1111 Travis Street	Action Number:		
Houston, TX 77002	333277		
	Action Type:		
	[REPORT] Alternative Remediation Report (C-141AR)		

CONDITIONS

Created By	Condition	Condition Date
nvelez	1. Continue with O & M schedule. 2. Submit next quarterly report by July 15, 2024.	4/25/2024