

SITE INFORMATION

Closure Report White City Penn A 28 Gas Com Unit 3 #004 (04.12.2019) Incident ID: NAB1912653924 Eddy County, New Mexico Unit K Sec 28 T24S R26E 32.186097°, -104.302101°

Point of Release: A hole developed at the bottom base of the tank due to corrosion. Release Date: 04.12.2019 Volume Released: 38 Barrels of Condensate Volume Recovered: 0 Barrels of Condensate

Prepared for: Cimarex Energy Co. of Colorado 6001 Deauville Blvd. Suite 300N Midland, Texas 79706

> Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC					
FIGURE 3	SAMPLE LOCATION	FIGURE 4A-4B	EXCAVATION					
APPENDICES								
APPENDIX A	TABLES							
APPENDIX B	РНОТОЅ							
APPENDIX C	INITIAL AND FINAL C	-141/NMOCD CC	DRRESPONDENCE					
APPENDIX D	SITE CHARACTERIZA	TION AND GRO	UNDWATER					
APPENDIX E	LABORATORY REPOR	RTS						

March 25, 2024

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report White City Penn A 28 Gas Com Unit 3 #004 (04.12.2019) Incident ID: NAB1912653924 Cimarex Energy Co. of Colorado Site Location: Unit K, S28, T24S, R26E (Lat 32.186097°, Long -104.302101°) Eddy County, New Mexico

Mr. Bratcher:

On behalf of Cimarex Energy Co. of Colorado (Cimarex), Carmona Resources, LLC has prepared this letter to document site activities for the White City Penn A 28 Gas Com Unit 3 #004. The site is located at 32.186097°, -104.302101° within Unit K, S28, T24S, R26E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the leak was discovered on April 12, 2019, caused by corrosion at the bottom of the tank. It resulted in approximately thirty-eight (38) barrels of condensate, and zero (0) barrels of condensate were recovered. The impacted area was located on the pad within the containment area. Since this release, the entire tank battery containment has been deconstructed and reconstructed to the east, giving access to remediate the spill area. Refer to Figure 3 for a spill overview. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The nearest identified well is approximately 1.09 miles Northwest of the site in S29, T24S, R26E and was drilled in 1964. The well has a reported depth to groundwater of 19' feet below the ground surface (ft bgs). A copy of the associated Summary Report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Soil Assessment

On May 11, 2023, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts. To assess the vertical and horizontal extent, three (3) test trenches (T-1 through T-3) and four (4) horizontal sample points (H-1 through H-4) were advanced to depths ranging from the surface to 12.0' bgs. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Labs in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E. Refer to Table 1.

Horizontal Delineation

The areas of H-1 through H-4 were below regulatory limits for benzene, total BTEX, TPH, and chloride concentrations. Refer to Table 1.

Vertical Delineation

The area of T-1 showed elevated chloride concentrations of 2,110 mg/kg at a depth of 1' bgs. The area of T-2 was not vertically delineated due to a dense rock layer during the initial soil assessment but was delineated during remediation. The area of T-3 showed elevated chloride concentrations with a range of 678 mg/kg to 7,020 mg/kg from surface to 5' bgs. Refer to Table 1 & Table 2.

5.0 Remediation Activities

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via web portal on March 12, 2024, March 17, 2024, and March 20, 2024, per Subsection D of 19.15.29.12 NMAC. See Appendix C. The area of T-1 was excavated to a depth of 1.5' bgs. The area of T-2 was excavated to a depth ranging from 12.5'-13.25' bgs. The area of T-3 was excavated to a depth ranging from 5.5'-6.0' bgs. A total of twelve (12) confirmation floor samples (CS-1 through CS-12) and fifteen (15) sidewall samples (SW-1 through SW-15) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA Method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

The areas of CS-2, CS-7, CS-9, SW-4, SW-8, SW-9, and SW-10 exceeded reclamation and regulatory requirements for chloride. Those areas were immediately excavated, removed, and retested.

All final confirmation samples were below the reclamation and regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Approximately 800 cubic yards of material were excavated and transported offsite for proper disposal.

6.0 Conclusions

Based on the remediation results and the analytical data, no further actions are required at the site. The final C-141 is attached, and Cimarex formally requests closure of the spill. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely,

Carmona Resources, LLC

Ashton Thielke Sr. Project Manager

Clinton Merritt Sr. Project Manager

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

.

APPENDIX A

Table 1

Cimarex White City Penn A 28 Gas Com Unit 3 #004 (04.12.2019) Eddy County, New Mexico

Sample ID	Date	Depth (ft)		TPH	l (mg/kg)		Benzene Tolue	Toluene	Ethlybenzene	Xylene	Total BTEX (mg/kg)	Chloride (mg/kg)
Sample ID			GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)		
	5/11/2023	0-1.0	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	2,110
T-1	"	1.0'-1.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	405
	"	1.5'-2.0'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	109
	5/11/2023	0-1.0	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	10,600
	"	1.0'-1.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,200
	"	1.5'-2.0'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	2,700
	"	2.0'-3.0'	<49.9	1,430	216	1,650	<0.00200	<0.00200	<0.00200	< 0.00399	<0.00399	2,780
	"	3.0'-4.0'	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	3,330
	"	4.0'-5.0'	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	4,450
T-2	"	5.0'-6.0'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	4,320
	"	6.0'-7.0'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	5,860
	"	7.0'-8.0'	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	5,620
	"	8.0'-9.0	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	4,140
	"	9.0-'10.0'	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	1,920
	"	10.0'-11.0'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	1,560
	"	11.0'-12.0'	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	1,170
	5/11/2023	0-1.0	<49.9	126	<49.9	126	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	7,020
	"	1.0'-1.5'	<49.8	<49.8	<49.8	<49.8	<0.00201	< 0.00201	<0.00201	<0.00402	<0.00402	2,240
	"	1.5'-2.0'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	1,820
Т-3	"	2.0'-3.0'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	< 0.00399	< 0.00399	678
1-5	"	3.0'-4.0'	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,060
	"	4.0'-5.0'	<49.9	115	<49.9	115	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	5,470
	"	5.0'-6.0'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	490
	"	6.0'-7.0'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	95.7
H-1	5/11/2023	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	177
H-2	5/11/2023	0-0.5'	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	97.5
Н-3	5/11/2023	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	61.8
H-4	5/11/2023	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	163
Regulato	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

 A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons ft - feet (H) Horizontal Sample (T) Trench Sample

Removed

•

Table 2 Cimarex White City Penn A 28 Gas Com Unit 3 #004 (04.12.2019) Eddy County, New Mexico

Eddy County, New Mexico												
0	D. (l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	3/14/2024	5.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	208
	3/14/2024	5.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	992
CS-2	3/14/2024	6.0	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	<0.050	<0.150	0.300	48.0
CS-3	3/14/2024	5.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	272
CS-4	3/14/2024	5.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	496
CS-5	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	352
CS-6	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	592
	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	880
CS-7	3/19/2024	13.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	832
	3/22/2024	13.25	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	1.300	80
CS-8	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	448
	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	800
CS-9	3/19/2024	13.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	592
CS-10	3/14/2024	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	96.0
CS-11	3/14/2024	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	144
CS-12	3/14/2024	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	112
SW-1	3/14/2024	5.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	176
SW-2	3/14/2024	5.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	320
SW-3	3/14/2024	5.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	64.0
	3/14/2024	7.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	608
SW-4	3/19/2024	7.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	720
	3/22/2024	7.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	208
SW-5	3/14/2024	7.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	512
SW-6	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	352
SW-7	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	320
	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	800
SW-8	3/19/2024	12.5	<10.0	<10.0	<10.0	<10.0	< 0.050	< 0.050	<0.050	<0.150	0.300	480
	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	912
SW-9	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	< 0.050	<0.050	<0.050	<0.150	0.300	496
SW-10	3/14/2024 3/19/2024	12.5 12.5	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<10.0 <10.0	<0.050 <0.050	<0.050 <0.050	<0.050 <0.050	<0.150 <0.150	0.300	944 592
0111 44	-											
SW-11	3/14/2024	12.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	544
SW-12	3/14/2024	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	240
SW-13	3/14/2024	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	336
SW-14	3/14/2024	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	304
SW-15	3/14/2024	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	0.300	32.0
	ry Criteria ^A Analyzed					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
(/ · · · ·												

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons

ft - feet (CS) Confirmation Floor Sample

(SW) Sidewall Sample

Removed

APPENDIX B

SW

PHOTOGRAPHIC LOG

Cimarex Energy Co. of Colorado

Photograph No. 1

Facility:White City Penn A 28 Gas Com Unit
3 #004

County: Eddy County, New Mexico

Description:

View Southwest, area of CS-1 through CS-9.

Photograph No. 2

- Facility:White City Penn A 28 Gas Com Unit
3 #004
- County: Eddy County, New Mexico

Description:

View Southwest, area of CS-1 through CS-9.

SE

Photograph No. 3

- Facility:White City Penn A 28 Gas Com Unit
3 #004
- County: Eddy County, New Mexico

Description:

View Southwest, area of excavation.

PHOTOGRAPHIC LOG

Cimarex Energy Co. of Colorado

Photograph No. 4

Facility:White City Penn A 28 Gas Com Unit
3 #004

County: Eddy County, New Mexico

Description:

View South, area of CS-10 through CS-12.

Photograph	n No. 5	NW 300 330	N	NE 30 60	₽ 90 1:
Facility:	White City Penn A 28 Gas Com Unit 3 #004	© 25°NE (T)	AT: 32.185988 Lo	DN: - 104.302277 :	±13ft ▲ 3394ft
County:	Eddy County, New Mexico				
Description: View Northeast, area of CS-10 through CS-12.					
		-			

Project No. 2018 Released to Imaging: 4/26/2024 1:31:09 PM

APPENDIX C

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Incident ID	NAB1912653924
District RP	2RP-5387
Facility ID	
Application ID	pAB1912653489

Release Notification

Responsible Party

Responsible Party Cimarex Energy Co. of Colorado	OGRID 162683
Contact Name Gloria Garza	Contact Telephone 432.234.3204
Contact email ggarza@cimarex.com	Incident # (assigned by OCD) NAB1912653924
Contact mailing address 600 N Marienfeld, Midland TX 79701	
Suite 600	

Location of Release Source

Latitude 32.186097_

Longitude -104.302100_ (NAD 83 in decimal degrees to 5 decimal places)

Site Name White City Penn 28 Unit 3 #4	Site Type Tank Battery
Date Release Discovered 4/12/2019	API# (if applicable) 30-015-33862

Unit Letter	Section	Township	Range	County
K	28	24S	26E	Eddy

Surface Owner: State State Federal Tribal Private (Name: _____

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls) 38 bbls	Volume Recovered (bbls) 0 bbls
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

A hole developed at the bottom base of the tank due to corrosion.

Released to Imaging: 4/26/2024 1:31:09 PM

	rm C-141	State of New Mexico		-					
-	Bige 2 Oil Conservation Division			-	Incident ID	NAB1912653924			
20 0	36 2	On Conservation Division		-	District RP Facility ID	2RP-5387			
age				-	Application ID	pAB1912653489			
4				L					
	Was this a major release as defined by 19.15.29.7(A) NMAC? Yes No	The volume of fluids recovered were > 25	ponsible party consider this a major release? 25 bbls.						
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? Yes Gloria Garza Jim Griswold, Mike Bratcher, Robert Hamlet and Victoria Venegas. Email 4/12/2019									
l		Initial Re							
	The responsible	party must undertake the following actions immediately	vunless they cou	uld create	a safety hazard that woul	ld result in injury			
 The source of the release has been stopped. The impacted area has been secured to protect human health and the environment. Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices. All free liquids and recoverable materials have been removed and managed appropriately. If all the actions described above have <u>not</u> been undertaken, explain why: 									
	has begun, please attach	IAC the responsible party may commence re a narrative of actions to date. If remedial at area (see 19.15.29.11(A)(5)(a) NMAC), p	efforts have	been suc	cessfully completed	d or if the release occurred			
	rsuant to OCD rules and eleases which may endanger should their operations have th or the environment. In federal, state, or local laws								
	Printed Name: Gloria Ga	ı'za	Title: ESH	I Special	ist				
5 AM	Signature: <u>Gloua</u>	U Garza	Date: 4/1:	5/19					
24 6:47:5.	email: ggarza@cimarex.c	com		Telepho	one: 432.234.3204				
Received by OCD: 3/26/2024 6:47:55 AM	OCD Only Received by:				Date:5/6/2019				
Received b									

•

Received by OCD: 3/26/2024 6:47:55 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 21 of 17
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Received by OCD: 3/26/	2024 6:47:55 AM State of New Mexico	Page 22 of 177
		Incident ID
Page 4	Oil Conservation Division	District RP
		Facility ID
		Application ID
regulations all operators a public health or the envir failed to adequately inves addition, OCD acceptance and/or regulations. Printed Name: Signature:	are required to report and/or file certain release notif onment. The acceptance of a C-141 report by the O stigate and remediate contamination that pose a three e of a C-141 report does not relieve the operator of r	best of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws Title: Date: Telephone:
OCD Only		
Received by:		Date:

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report. A scaled site and sampling diagram as described in 19.15.29.11 NMAC Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling) Description of remediation activities I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. Printed Name: _____ Title: _____ Signature: Date: Telephone: email: **OCD Only** Received by: Date: Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:
Printed Name:	Title:

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 24cof 177 QUESTIONS

Action 322661

QUESTIONS Operator: OGRID: CIMAREX ENERGY CO. OF COLORADO 162683 6001 Deauville Blvd, Ste 300N Action Number: Midland, TX 79706 322661

Action Type: [NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAB1912653924
Incident Name	NAB1912653924 WHITE CITY PENN A 28 GAS COM UNIT 3 #004 @ 30-015-33862
Incident Type	Release Other
Incident Status	Initial C-141 Approved
Incident Well	[30-015-33862] White City Penn A 28 Gas Com Unit 3 #004

Location of Release Source

Site Name	WHITE CITY PENN A 28 GAS COM UNIT 3 #004
Date Release Discovered	04/12/2019
Surface Owner	State

Sa

Sampling Event General Information		
Please answer all the questions in this group.		
What is the sampling surface area in square feet	2,000	
What is the estimated number of samples that will be gathered	11	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/14/2024	
Time sampling will commence	02:30 PM	
Please provide any information necessary for observers to contact samplers	Miranda Milwee - 432-813-9652	
Please provide any information necessary for navigation to sampling site	32.186097,-104.302101	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CIMAREX ENERGY CO. OF COLORADO	162683
6001 Deauville Blvd, Ste 300N	Action Number:
Midland, TX 79706	322661
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Crea By		Condition Date
llui	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	3/12/2024

CONDITIONS

Action 322661

Page 25eof 177

Released to Imaging: 4/26/2024 1:31:09 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 26cof 177

QUESTIONS

Action 323908

QUESTIONS		
Operator:	OGRID:	
CIMAREX ENERGY CO. OF COLORADO	162683	
6001 Deauville Blvd, Ste 300N	Action Number:	
Midland, TX 79706	323908	
	Action Type:	
	[NOTIFY] Notification Of Sampling (C-141N)	

QUESTIONS

Prerequisites	
Incident ID (n#)	nAB1912653924
Incident Name	NAB1912653924 WHITE CITY PENN A 28 GAS COM UNIT 3 #004 @ 30-015-33862
Incident Type	Release Other
Incident Status	Initial C-141 Approved
Incident Well	[30-015-33862] White City Penn A 28 Gas Com Unit 3 #004

Location of Release Source

Site Name	WHITE CITY PENN A 28 GAS COM UNIT 3 #004
Date Release Discovered	04/12/2019
Surface Owner	State

Sampling Event General Information

Please answer all the questions in this group.							
What is the sampling surface area in square feet	2,000						
What is the estimated number of samples that will be gathered	7						
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/18/2024						
Time sampling will commence	02:30 PM						

Warning: Notification can not be less than two business days prior to conducting final sampling.

Please provide any information necessary for observers to contact samplers	Miranda Milwee - 432-813-9652 Collection of samples after further excavation due to a few confirmation samples that exceeded standards.
Please provide any information necessary for navigation to sampling site	32.186097,-104.302101

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CIMAREX ENERGY CO. OF COLORADO	162683
6001 Deauville Blvd, Ste 300N	Action Number:
Midland, TX 79706	323908
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Create By	d Condition	Condition Date
lluig	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	3/17/2024

CONDITIONS

Action 323908

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 28cof 177

QUESTIONS

Action 325209

QUESTIONS Operator: OGRID: CIMAREX ENERGY CO. OF COLORADO 162683 6001 Deauville Blvd, Ste 300N Action Number: Midland, TX 79706 325209 Action Type: [NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites						
Incident ID (n#)	nAB1912653924					
Incident Name	NAB1912653924 WHITE CITY PENN A 28 GAS COM UNIT 3 #004 @ 30-015-33862					
Incident Type	Release Other					
Incident Status	Initial C-141 Approved					
Incident Well	[30-015-33862] White City Penn A 28 Gas Com Unit 3 #004					

Location of Release Source

Site Name	WHITE CITY PENN A 28 GAS COM UNIT 3 #004
Date Release Discovered	04/12/2019
Surface Owner	State

Sampling Event General Information

otio o in thi

Please answer all the questions in this group.							
What is the sampling surface area in square feet	2,000						
What is the estimated number of samples that will be gathered	2						
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/22/2024						
Time sampling will commence	01:30 PM						
Please provide any information necessary for observers to contact samplers	Gilbert Priego - 432-813-8988 Recollection of samples (2), after further excavation due to a few confirmation samples that exceeded standards.						
Please provide any information necessary for navigation to sampling site	32.186097,-104.302101						

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CIMAREX ENERGY CO. OF COLORADO	162683
6001 Deauville Blvd, Ste 300N	Action Number:
Midland, TX 79706	325209
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Crea By	ed Condition	Condition Date
llu	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	3/20/2024

Action 325209

Page 29eof 177 CONDITIONS

APPENDIX D

Received by OCD: 3/26/2024 6:47:55 AM Nearest water well

Cimarex Energy Co. of Colorado

168.54' - Drilled 1987

19' - Drilled 1964 🥥

72' - Drilled 1968 Y

White City Penn A 28 Gas Com Unit 3 #004 (04:12.2019)

104.42' - Drilled 2022

Google Earth Released to Imaging: 4/26/2024 1:31:09

ide © 2024 Airkus

- locitie Radius 0.50 Mile Radius
- 🍰 1.09 Miles

and the sub-

Legend

- 🕹 1.17 Miles
- 🍰 1.18 Miles
- 🍰 1.34 Miles
- 🍰 1.66 Miles
- NMSEO Water Well
- USGS Water Well
- White City Penn A 28 Gas Com Unit 3 #004 (04.12.2019)

Page 31 of 177

White City Penn A 28 Gas Com Unit 3 #004 (04.12.2019)

Page 32 of 177

• White City Penn A 28 Gas Com Unit 3 #004 (04.12.2019)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a	(R=POD has been replaced O=orphaned, C=the file is		quai	rters	s a	re 1:	=NW 2	2=NE (3=SW 4=SI	E)				
water right file.)	closed)	(quai	rters	s a	re sr	malles	st to lar	rgest) (N	AD83 UTM in me	eters)	(In feet)	
	POD Sub-		0	Q	0							Donth	Donth	Water
POD Number	Code basin C	ounty	-		-	Sec	Tws	Rng	х	Y	Distance	-	-	Column
C 01202	С	ED			1	29	24S	26E	564138	3561903* 🌍	1764	75	19	56
<u>C 01386</u>	С	ED		3	1	29	24S	26E	563937	3561702* 🌍	1898	84	72	12
<u>C 02700</u>	С	ED	1	1	3	29	24S	26E	563844	3561400* 🌍	1947	180		
<u>C 01454</u>	С	ED		1	3	20	24S	26E	563917	3562912* 🌍	2484	87	70	17
C 04270 POD2	CUB	ED	1	4	1	20	26S	26E	564309	3563438 🌍	2618	59		
<u>C 00792</u>	С	ED		4	2	27	24S	26E	568397	3561747* 🌍	2651	70	30	40
C 03200 POD1	С	ED	2	3	4	34	24S	26E	568206	3559349 🔵	3092	80	52	28
C 04586 POD1	С	ED	4	1	1	35	24S	26E	568993	3560476 🌍	3304	150		
<u>C 01089</u>	С	ED	3	4	1	03	25S	26E	567505	3558398* 🌍	3352	96	45	51
<u>C 00928</u>	С	ED		1	1	23	24S	26E	568806	3563757* 😜	3906	91	7	84
										Avera	ge Depth to	Water:	42	feet
											Minimum	Depth:	7	feet
											Maximum	Depth:	72	feet
Record Count: 10														

UTMNAD83 Radius Search (in meters):

Easting (X): 565787.51

Northing (Y): 3561276.88

Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 33 of 177

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarters are 1=N (quarters are sm				(NAD83 I	TM in meters)	
Well Tag	POD	Number	Q64 Q16 Q4		e	<i>,</i>	X	Y	
·····	-	1202	1	29	24S	0	564138	3561903*	
Driller Lic	ense:	30	Driller Compa	ny:	BA	RRON, I	EMMETT		
Driller Na	me:	BARRON, EMM	ETT						
Drill Start	Date:	06/24/1964	Drill Finish Da	ite:	0	6/27/196	4 P I	ug Date:	
Log File D	ate:	09/08/1964	PCW Rev Date	e:			So	ource:	Shallow
Dump Tup	e•		Pipe Discharge	e Size	:		Es	stimated Yield	:
Pump Typ			1 0						

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/18/22 3:00 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

			(quarters a	e 1=N	W 2=1	NE $3=S$	W 4=SE)			
			(quarters	are sm	allest t	to larges	t)	(NAD83 U		
Well Tag	POD	Number	Q64 Q1	5 Q4	Sec	Tws	Rng	Х	Y	
	C 0	0792	4	2	27	24S	26E	568397	3561747* 🍯	
Driller Lic	ense:	62	Driller Co	mpa	ny:	BE	ATTY, J.F	۶.		
Driller Na	me:	WILLARD BEATY								
Drill Start	Date:	07/24/1957	Drill Finis	h Da	te:	0	7/24/1957	Pl	ug Date:	07/26/1961
Log File D	ate:	08/12/1957	PCW Rev	Date	e:			So	ource:	Shallow
Pump Typ	e:		Pipe Discl	narge	e Size	:		Es		
Casing Size: 8.00		Depth We	ll:		7	0 feet	Depth Water:		30 feet	
	Wate	er Bearing Stratifica	tions	Т	n B	Rotton	Descri	ntion		
	•• au	i bearing Stratifica		10	γγ D	011011	Descrip	Juon		
				(50	65	5 Sandsto	one/Gravel	l/Conglomerate	

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/18/22 3:04 PM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarters are 1=NW 2=1	NE 3=SW 4=SE)		
		(quarters are smallest to largest)		(NAD83 UTM in meters)	
Well Tag	POD Number	Q64 Q16 Q4 Sec	Tws Rng	X Y	
	C 01386	3 1 29	24S 26E 5	563937 3561702* 🧲)
Driller Lic	eense: 30	Driller Company:	BARRON, EM	METT	
Driller Na	me: BARRON, EMM	IETT			
Drill Start Date: 07/25/1968		Drill Finish Date:	07/30/1968	Plug Date:	
Log File Date: 09/03/1968		PCW Rcv Date:		Source:	Shallow
Pump Type:		Pipe Discharge Size	:	Estimated Yield:	
Casing Size:		Depth Well:	84 feet	Depth Water:	72 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/18/22 3:02 PM

POINT OF DIVERSION SUMMARY

Click to hideNews Bulletins

- Attention current WaterAlert users: NextGen WaterAlert is replacing Legacy WaterAlert. You must take action before 9/30/2022 to retain your alerts. <u>Read more.</u>
- Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1 <u>Save file of selected sites</u> to local disk for future upload

USGS 321039104185201 24S.26E.32.141121

Eddy County, New Mexico Latitude 32°10'37.9", Longitude 104°19'08.6" NAD83 Land-surface elevation 3,430.20 feet above NGVD29 The depth of the well is 200 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Castile Formation (312CSTL) local aquifer.

Output formats

Table of data

Tab-separated data

<u>Graph of data</u>

Reselect period

Date	Time	? Water- level	? Parameter	Water level, feet below	Water level, feet above	Referenced vertical	?	? Method of	? Measuring	? Source
		date- time accuracy	code	land surface	specific vertical datum	datum	Status	measurement	Measuring agency	measu
1948-12-01		D	62610		3320.80	NGVD29	1	Z		
1948-12-01		D	62611		3322.48	NAVD88	1	Z		
1948-12-01		D	72019	109.40			1	Z		
1978-01-05		D	62610		3318.16	NGVD29	1	Z		
1978-01-05		D	62611		3319.84	NAVD88	1	Z		
1978-01-05		D	72019	112.04			1	Z		
1983-01-10		D	62610		3316.87	NGVD29	1	Z		
1983-01-10		D	62611		3318.55	NAVD88	1	Z		
1983-01-10		D	72019	113.33			1	Z		
1987-10-21		D	62610		3322.52	NGVD29	1	Z		
1987-10-21		D	62611		3324.20	NAVD88	1	Z		
1987-10-21		D	72019	107.68			1	Z		
1993-02-05		D	62610		3321.97	NGVD29	1	S		

Received by QCD: 3/26/2024 6:47:55 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 38 of 177

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1993-02-05		D	62611		3323.65	NAVD88	1	S		
1993-02-05		D	72019	108.23			1	S		
1998-01-09		D	62610		3320.32	NGVD29	1	S		
1998-01-09		D	62611		3322.00	NAVD88	1	S		
1998-01-09		D	72019	109.88			1	S		
2003-02-05		D	62610		3318.81	NGVD29	1	S		
2003-02-05		D	62611		3320.49	NAVD88	1	S		
2003-02-05		D	72019	111.39			1	S		
2013-01-08	22:20 UTC	m	62610		3316.97	NGVD29	1	S		
2013-01-08	22:20 UTC	m	62611		3318.65	NAVD88	1	S		
2013-01-08	22:20 UTC	m	72019	113.23			1	S		
2022-01-12	00:42 UTC	m	62610		3325.78	NGVD29	1	S		
2022-01-12	00:42 UTC	m	62611		3327.46	NAVD88	1	S		
2022-01-12	00:42 UTC	m	72019	104.42			1	S		

		Explanation
Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data?
Feedback on this web site
Automated retrievals
<u>Help</u>
<u>Data Tips</u>
Explanation of terms
Subscribe for system changes
News

Accessibility FOIA Privacy Policies and N

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-08-18 17:12:25 EDT 0.27 0.23 nadww02

.

Click to hideNews Bulletins

- Attention current WaterAlert users: NextGen WaterAlert is replacing Legacy WaterAlert. You must take action before 9/30/2022 to retain your alerts. <u>Read more.</u>
- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

Minimum number of levels = 1 <u>Save file of selected sites</u> to local disk for future upload

USGS 321214104173601 24S.26E.21.23424

Eddy County, New Mexico Latitude 32°12'14", Longitude 104°17'36" NAD27 Land-surface elevation 3,342.0 feet above NGVD29 The depth of the well is 175.0 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data	
Tab-separated data	
<u>Graph of data</u>	
Reselect period	

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1987-10-21		D	62610		3173.46	NGVD29	Р	S		
1987-10-21		D	62611		3175.14	NAVD88	Р	S		
1987-10-21		D	72019	168.54			Р	S		

Explanation							
Section	Code	Description					
Water-level date-time accuracy	D	Date is accurate to the Day					
Parameter code	62610	Groundwater level above NGVD 1929, feet					
Parameter code	62611	Groundwater level above NAVD 1988, feet					
Parameter code	72019	Depth to water level, feet below land surface					
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988					

Recained by OGD: 3/26/2024 6:47:55 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 40 of 177

Section	Code	Description
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	Р	Pumping
Method of measurement	S	Steel-tape measurement.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

USA.gov

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2022-08-18 17:09:34 EDT

0.29 0.24 nadww01

.

New Mexico NFHL Data

August 18, 2022

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

APPENDIX E

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 5/18/2023 10:33:47 AM

JOB DESCRIPTION

White City Penn 28 Gas Com (04.15.2019) SDG NUMBER Eddy County, New Mexico

JOB NUMBER

880-28379-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 5/18/2023 10:33:47 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

.15.2019) SDG: Eddy County, New Mexico Table of Contents

Cover Page	
Table of Contents 3	\$
Definitions/Glossary 4	F
Case Narrative 5	;
Client Sample Results 6	;
Surrogate Summary 9)
QC Sample Results 1	0
QC Association Summary 1	4
Lab Chronicle	6
Certification Summary 1	8
Method Summary 1	9
Sample Summary 2	20
Chain of Custody 2	!1
Receipt Checklists 2	2

Definitions/Glossary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Page 46 of 177

2

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Qualifiers

DL

		5
GC VOA		
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	
F1	MS and/or MSD recovery exceeds control limits.	5
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	1 2
CNF	Contains No Free Liquid	13
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Detection Limit (DoD/DOE)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated ND

Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL PRES Presumptive

Quality Control QC RER Relative Error Ratio (Radiochemistry)

- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Job ID: 880-28379-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-28379-1

Receipt

The samples were received on 5/12/2023 2:48 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -1.0°C

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-53453 recovered above the upper control limit for Toluene and m-Xylene & p-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-53453 recovered above the upper control limit for m-Xylene & p-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8021B: Surrogate recovery for the following samples were outside control limits: H-1 (0-0.5') (880-28379-1), H-2 (0-0.5') (880-28379-2), H-3 (0-0.5') (880-28379-3), H-4 (0-0.5') (880-28379-4), (890-4651-A-1-I), (890-4651-A-1-G MS) and (890-4651-A-1-H MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-53495 and analytical batch 880-53453 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch laboratory control sample duplicate and matrix spike duplicate (LCSD/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: The matrix spike (MS) recoveries for preparation batch 880-53495 and analytical batch 880-53453 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCSD) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-53469 and analytical batch 880-53450 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCSD 880-53469/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (890-4659-A-9-B). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: H-1 (0-0.5') (880-28379-1), H-2 (0-0.5') (880-28379-2), H-3 (0-0.5') (880-28379-3) and H-4 (0-0.5') (880-28379-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: H-1 (0-0.5') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
enzene	<0.00200	U	0.00200		mg/Kg		05/16/23 15:10	05/17/23 04:52	
oluene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 15:10	05/17/23 04:52	1
thylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 15:10	05/17/23 04:52	1
n-Xylene & p-Xylene	<0.00401	U *+	0.00401		mg/Kg		05/16/23 15:10	05/17/23 04:52	1
-Xylene	<0.00200		0.00200		mg/Kg		05/16/23 15:10	05/17/23 04:52	1
Kylenes, Total	<0.00401		0.00401		mg/Kg		05/16/23 15:10	05/17/23 04:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Bromofluorobenzene (Surr)		S1+	70 - 130				05/16/23 15:10	05/17/23 04:52	
,4-Difluorobenzene (Surr)	79		70 - 130				05/16/23 15:10	05/17/23 04:52	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal BTEX	<0.00401	U	0.00401		mg/Kg		<u> </u>	05/17/23 15:53	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (O	GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<49.9	U	49.9		mg/Kg			05/17/23 12:07	1
Aethod: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
asoline Range Organics	<49.9	U	49.9		mg/Kg		05/16/23 11:47	05/16/23 23:42	
GRO)-C6-C10									
iesel Range Organics (Over	<49.9	U	49.9		mg/Kg		05/16/23 11:47	05/16/23 23:42	
(10-C28)									
II Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/16/23 11:47	05/16/23 23:42	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane			70 - 130				05/16/23 11:47	05/16/23 23:42	
p-Terphenyl	135	S1+	70 - 130				05/16/23 11:47	05/16/23 23:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	177		5.05		mg/Kg			05/17/23 12:06	1
lient Sample ID: H-2 (0-0.5	')						Lab Sam	ple ID: 880-2	8379-2
te Collected: 05/11/23 00:00								Matri	ix: Solid
ate Received: 05/12/23 14:48									
Aethod: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
-			0.00199		mg/Kg		05/16/23 15:10	05/17/23 05:18	
Senzene	< 0.00199	0							
oluene	<0.00199	U *+	0.00199		mg/Kg		05/16/23 15:10	05/17/23 05:18	
Benzene Foluene Ethylbenzene n-Xylene & p-Xylene		U *+ U							· · · · · · · · · ·

o-Xylene	<0.00199	U	0.00199	mg/Kg	05/16/23 15:10	05/17/23 05:18	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg	05/16/23 15:10	05/17/23 05:18	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)		Qualifier S1+	Limits 70 - 130		Prepared 05/16/23 15:10	Analyzed 05/17/23 05:18	Dil Fac

Page 48 of 177

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28379-1

Matrix: Solid

5

Released to Imaging: 4/26/2024 1:31:09 PM

Client Sample Results

Page 49 of 177

5

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Client Sample ID: H-2 (0-0.5')

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/17/23 15:53	1
Method: SW846 8015 NM - Diesel Ra	ange Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Diesel F	Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/16/23 11:47	05/17/23 00:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/16/23 11:47	05/17/23 00:03	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/16/23 11:47	05/17/23 00:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				05/16/23 11:47	05/17/23 00:03	1
o-Terphenyl	137	S1+	70 - 130				05/16/23 11:47	05/17/23 00:03	1
- Method: EPA 300.0 - Anions, Ion Chi	romatograg	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	97.5		4.97		mg/Kg			05/17/23 12:22	1
Client Sample ID: H-3 (0-0.5')							Lab Sam	ple ID: 880-2	8379-3
ate Collected: 05/11/23 00:00								•	ix: Solid
ate Received: 05/12/23 14:48									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		05/16/23 15:10	05/17/23 07:02	1
Toluene	<0.00199	U *+	0.00199		mg/Kg		05/16/23 15:10	05/17/23 07:02	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/16/23 15:10	05/17/23 07:02	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398		mg/Kg		05/16/23 15:10	05/17/23 07:02	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		05/16/23 15:10	05/17/23 07:02	1
Xylenes, Total	<0.00398	U *+	0.00398		mg/Kg		05/16/23 15:10	05/17/23 07:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	153	S1+	70 - 130				05/16/23 15:10	05/17/23 07:02	1
1,4-Difluorobenzene (Surr)	81		70 - 130				05/16/23 15:10	05/17/23 07:02	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398		mg/Kg			05/17/23 15:53	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Diese	Rango Orga	nics (DRO) ((20)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		05/16/23 11:47	05/17/23 00:25	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		05/16/23 11:47	05/17/23 00:25	1
C10-C28)									

Eurofins Midland

Lab Sample ID: 880-28379-2

Matrix: Solid

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28379-3

Client Sample ID: H-3 (0-0.5')

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client: Carmona Resources

Date Collected: 05/11/23 00:00	,							Matri	x: Solid
Date Received: 05/12/23 14:48									
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO) (GC) (Continue	ed)					
Analyte		Qualifier	RL	· ·	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/16/23 11:47	05/17/23 00:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	124		70 - 130				05/16/23 11:47	05/17/23 00:25	
o-Terphenyl	143	S1+	70 - 130				05/16/23 11:47	05/17/23 00:25	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solub	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	61.8		4.98		mg/Kg			05/17/23 12:27	
lient Sample ID: H-4 (0-0.5	;')						Lab Sam	ple ID: 880-2	8379-4
ate Collected: 05/11/23 00:00	,								x: Solid
ate Received: 05/12/23 14:48								Wath	x. 50m
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC	;)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		05/16/23 15:10	05/17/23 07:29	
Toluene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 15:10	05/17/23 07:29	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 15:10	05/17/23 07:29	
m-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		05/16/23 15:10	05/17/23 07:29	
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/16/23 15:10	05/17/23 07:29	
Xylenes, Total	<0.00399	U *+	0.00399		mg/Kg		05/16/23 15:10	05/17/23 07:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	155	S1+	70 - 130				05/16/23 15:10	05/17/23 07:29	
1,4-Difluorobenzene (Surr)	82		70 - 130				05/16/23 15:10	05/17/23 07:29	
Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/17/23 15:53	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) ((GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			05/17/23 12:07	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		05/16/23 11:47	05/17/23 00:46	

Gasoline Range Organics	<49.9	U	49.9	mg/Kg		05/16/23 11:47	05/17/23 00:46	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		05/16/23 11:47	05/17/23 00:46	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		05/16/23 11:47	05/17/23 00:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	130		70 - 130			05/16/23 11:47	05/17/23 00:46	1
o-Terphenyl	149	S1+	70 - 130			05/16/23 11:47	05/17/23 00:46	1
_ Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	163		4.98	mg/Kg			05/17/23 12:33	1

Eurofins Midland

Surrogate Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-28379-1	H-1 (0-0.5')	177 S1+	79	
880-28379-2	H-2 (0-0.5')	182 S1+	82	
880-28379-3	H-3 (0-0.5')	153 S1+	81	
880-28379-4	H-4 (0-0.5')	155 S1+	82	
890-4651-A-1-G MS	Matrix Spike	146 S1+	102	
890-4651-A-1-H MSD	Matrix Spike Duplicate	137 S1+	80	
LCS 880-53495/1-A	Lab Control Sample	143 S1+	89	
LCSD 880-53495/2-A	Lab Control Sample Dup	119	98	
MB 880-53382/5-A	Method Blank	83	76	
MB 880-53495/5-A	Method Blank	85	76	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Γ				Percent Surrogate F
		1CO1	OTPH1	C C
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-28379-1	H-1 (0-0.5')	111	135 S1+	
880-28379-2	H-2 (0-0.5')	110	137 S1+	
880-28379-3	H-3 (0-0.5')	124	143 S1+	
880-28379-4	H-4 (0-0.5')	130	149 S1+	
890-4659-A-9-C MS	Matrix Spike	116	128	
890-4659-A-9-D MSD	Matrix Spike Duplicate	112	127	
LCS 880-53469/2-A	Lab Control Sample	93	117	
LCSD 880-53469/3-A	Lab Control Sample Dup	110	135 S1+	
MB 880-53469/1-A	Method Blank	164 S1+	211 S1+	

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl 6

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-53382/5-4	4									Client Sa	mple ID: Metho	
Matrix: Solid											Prep Type:	
Analysis Batch: 53453											Prep Batcl	1: 53382
		BMB						_	_			
Analyte		It Qualifier			MDL	Unit		<u>D</u>		repared	Analyzed	Dil Fac
Benzene	<0.0020		0.00200			mg/Kg				5/23 13:08	05/16/23 11:44	1
Toluene	<0.0020		0.00200			mg/Kg				5/23 13:08	05/16/23 11:44	1
Ethylbenzene	<0.0020		0.00200			mg/Kg				5/23 13:08	05/16/23 11:44	1
m-Xylene & p-Xylene	<0.0040	00 U	0.00400			mg/Kg			05/1	5/23 13:08	05/16/23 11:44	1
o-Xylene	<0.0020	00 U	0.00200			mg/Kg			05/1	5/23 13:08	05/16/23 11:44	1
Xylenes, Total	<0.0040	0 U	0.00400			mg/Kg			05/1	5/23 13:08	05/16/23 11:44	1
	N	IB MB										
Surrogate	%Recove	ry Qualifier	Limits							repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		33	70 - 130						05/1	5/23 13:08	05/16/23 11:44	1
1,4-Difluorobenzene (Surr)		76	70 - 130						05/1	5/23 13:08	05/16/23 11:44	1
Lab Sample ID: MB 880-53495/5-4	A									Client Sa	mple ID: Metho	d Blank
Matrix: Solid											Prep Type: ⁻	Total/NA
Analysis Batch: 53453											Prep Batcl	
,	N	B MB										
Analyte	Res	ılt Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Benzene	<0.0020	00 U	0.00200			mg/Kg		—		6/23 15:10	05/17/23 01:01	1
Toluene	< 0.0020	00 U	0.00200			mg/Kg			05/1	6/23 15:10	05/17/23 01:01	1
Ethylbenzene	< 0.0020		0.00200			mg/Kg				6/23 15:10	05/17/23 01:01	1
m-Xylene & p-Xylene	< 0.004		0.00400			mg/Kg				6/23 15:10	05/17/23 01:01	
o-Xylene	< 0.0020		0.00200			mg/Kg				6/23 15:10	05/17/23 01:01	1
Xylenes, Total	<0.004		0.00400			mg/Kg				6/23 15:10	05/17/23 01:01	1
	Λ	IB MB										
Surrogate	%Recove		Limits						P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		35	70 - 130							6/23 15:10	05/17/23 01:01	1
1,4-Difluorobenzene (Surr)		76	70 - 130						05/1	6/23 15:10	05/17/23 01:01	1
Lab Sample ID: LCS 880-53495/1-	•							~	liont	Somelal	D: Lab Control	Somela
Matrix: Solid	~~							C	ment	Sample	Prep Type: ¹	
Analysis Batch: 53453												
Analysis Batch. 55455			Spike	LCS	1.00						Prep Batcl %Rec	1. 55495
Analyto			Added	Result		lifior	Unit		п	%Rec	Limits	
Analyte Benzene			0.100		Qua							
Toluene				0.1280	*⊥		mg/Kg			128 133	70 - 130 70 - 130	
			0.100	0.1330	+		mg/Kg			133	70 - 130	
Ethylbenzene			0.100	0.1209	*•		mg/Kg			121	70 - 130	
m-Xylene & p-Xylene			0.200	0.2739	.+		mg/Kg			137	70 - 130	
o-Xylene			0.100	0.1251			mg/Kg			125	70 - 130	
•	LCS L											
	%Recovery Q		Limits									
4-Bromofluorobenzene (Surr)	143 S	7+	70 - 130									
1,4-Difluorobenzene (Surr)	89		70 - 130									
Lab Sample ID: LCSD 880-53495/	2-A						Cli	ent	Sam	ple ID: La	ab Control Sam	ple Dup
Matrix: Solid										-	Prep Type: ⁻	
Analysis Batch: 53453											Prep Batcl	
			Snike	LCSD		_					%Rec	RPD

Analysis Batch: 53453							Prep	Batch:	53495
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1172		mg/Kg		117	70 - 130	9	35

Eurofins Midland

SDG: Eddy County, New Mexico

Job ID: 880-28379-1

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-5	3495/2-A					Clie	nt San	ple ID:	Lab Contro		
Matrix: Solid									Prep 1	ype: To	tal/NA
Analysis Batch: 53453									Prep	Batch:	53495
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.1192		mg/Kg		119	70 - 130	11	35
Ethylbenzene			0.100	0.1089		mg/Kg		109	70 - 130	10	35
m-Xylene & p-Xylene			0.200	0.2476		mg/Kg		124	70 - 130	10	35
o-Xylene			0.100	0.1134		mg/Kg		113	70 - 130	10	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	98		70 - 130								
Matrix: Solid Analysis Batch: 53453										ype: To Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00199	U	0.0998	0.1283		mg/Kg		129	70 - 130		
Toluene	<0.00199	U F1 *+	0.0998	0.1339	F1	mg/Kg		134	70 - 130		
Ethylbenzene	<0.00199	U	0.0998	0.1167		mg/Kg		117	70 - 130		
m-Xylene & p-Xylene	<0.00398	U *+	0.200	0.2596		mg/Kg		130	70 - 130		
o-Xylene	<0.00199	U	0.0998	0.1180		mg/Kg		118	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	146	S1+	70 - 130								
1.4-Difluorobenzene (Surr)	102		70 - 130								

Lab Sample ID: 890-4651-A-1-H MSD Matrix: Solid Analysis Batch: 53453

Analysis Batch: 53453									Prep	Batch:	53495
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.0990	0.1065		mg/Kg		108	70 - 130	19	35
Toluene	<0.00199	U F1 *+	0.0990	0.1114		mg/Kg		112	70 - 130	18	35
Ethylbenzene	<0.00199	U	0.0990	0.08992		mg/Kg		91	70 - 130	26	35
m-Xylene & p-Xylene	<0.00398	U *+	0.198	0.2126		mg/Kg		107	70 - 130	20	35
o-Xylene	<0.00199	U	0.0990	0.09987		mg/Kg		101	70 - 130	17	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	137	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	80		70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-53469/1-A Matrix: Solid Analysis Batch: 53450	МВ	МВ					Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batcl	Total/NA
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <50.0	Qualifier	RL 50.0	MDL	Unit mg/Kg	<u> </u>	Prepared 05/16/23 11:47	Analyzed 05/16/23 19:50	Dil Fac 1

Page 53 of 177

Eurofins Midland

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

_ab Sample ID: MB 880-53469/1-A										Client S	ample ID:	Method	l Blank
Matrix: Solid												Гуре: То	
Analysis Batch: 53450												Batch:	
		МВ	MB								-		
Analyte	R		Qualifier	RL		MDL	Unit		D	Prepared	Analyz	zed	Dil Fac
Diesel Range Organics (Over		<50.0		50.0			mg/Kg			5/16/23 11:47	05/16/23		1
C10-C28)			C						-	07.0,20		10.01	
OII Range Organics (Over C28-C36)	<	<50.0	U	50.0			mg/Kg		0	5/16/23 11:47	05/16/23	19:50	1
							U						
		MB											
Surrogate	%Reco	-		Limits					_	Prepared	Analyz		Dil Fac
I-Chlorooctane		164		70 - 130						5/16/23 11:47			1
p-Terphenyl		211	S1+	70 - 130					0	5/16/23 11:47	05/16/23	19:50	1
_ab Sample ID: LCS 880-53469/2-A									Clie	ent Sample			
Matrix: Solid												Гуре: То	
Analysis Batch: 53450											Prep	Batch:	53469
				Spike	LCS	LCS					%Rec		
Analyte				Added	Result	Qual	ifier	Unit		D %Rec	Limits		
Gasoline Range Organics				1000	918.7			mg/Kg		92	70 - 130		
GRO)-C6-C10													
Diesel Range Organics (Over				1000	933.5			mg/Kg		93	70 - 130		
C10-C28)													
	LCS	LCS											
Surrogate %	Recovery			Limits									
'_('hiorooctane	93			70 130									
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-53469/3-	93 117 • A			70 - 130 70 - 130				Clie	ent S	ample ID: L	.ab Contro	ol Samp	le Dup
- <i>Terphenyl</i> Lab Sample ID: LCSD 880-53469/3- Matrix: Solid	117							Clie	ent S	ample ID: L	Prep ⁻	Type: To	otal/NA
p-Terphenyl	117				LCSD	LCSI	D	Clie	ent S	ample ID: L	Prep ⁻	-	otal/NA
ab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450	117			70 ₋ 130 Spike				Clie		-	Prep ⁻ Prep	Type: To	otal/NA 53469
o- <i>Terphenyl</i> Lab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450	117			70 - 130 Spike Added	Result			Unit		D %Rec	Prep Prep %Rec Limits	RPD	53469 RPD Limit
ab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 Analyte Gasoline Range Organics	117			70 ₋ 130 Spike						-	Prep ⁻ Prep %Rec	Type: To Batch:	53469 RPD
D-Terphenyl Lab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 Analyte Basoline Range Organics GRO)-C6-C10	117			70 - 130 Spike Added	Result			Unit mg/Kg		D %Rec	Prep Prep %Rec Limits	RPD	53469 RPD Limit
ab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 Analyte Gasoline Range Organics	117			70 - 130 Spike Added 1000	Result 973.4			Unit		D <u>%Rec</u> 97	Prep Prep %Rec Limits 70 - 130	Type: To Batch: RPD 6	53469 RPD Limit 20
D-Terphenyl Lab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	117 •A			70 - 130 Spike Added 1000	Result 973.4			Unit mg/Kg		D <u>%Rec</u> 97	Prep Prep %Rec Limits 70 - 130	Type: To Batch: RPD 6	53469 RPD Limit 20
Analysis Batch: 53450 Analysis Batch: 53450 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	117 •A 	LCS		70 - 130 Spike Added 1000	Result 973.4			Unit mg/Kg		D <u>%Rec</u> 97	Prep Prep %Rec Limits 70 - 130	Type: To Batch: RPD 6	53469 RPD Limit 20
Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Burrogate	117 •A LCSD Recovery	LCS		70 - 130 Spike Added 1000 1000 Limits	Result 973.4			Unit mg/Kg		D <u>%Rec</u> 97	Prep Prep %Rec Limits 70 - 130	Type: To Batch: RPD 6	53469 RPD Limit 20
Analyte Caseline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Carrogate	117 •A LCSD Recovery 110	LCSI Qual		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 973.4			Unit mg/Kg		D <u>%Rec</u> 97	Prep Prep %Rec Limits 70 - 130	Type: To Batch: RPD 6	53469 RPD Limit 20
-Terphenyl Lab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate %I Chlorooctane	117 •A LCSD Recovery 110	LCS		70 - 130 Spike Added 1000 1000 Limits	Result 973.4			Unit mg/Kg		D <u>%Rec</u> 97	Prep Prep %Rec Limits 70 - 130	Type: To Batch: RPD 6	53469 RPD Limit 20
Analyte Carbon Constraints (Over Constraints) Constraints Constraints (Cover Constraints) Constraints Cons	117 •A LCSD Recovery 110 135	LCSI Qual		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 973.4			Unit mg/Kg		D <u>%Rec</u> 97 97	Prep * Prep * * * * * * * * * * * * * * * * * * *	Type: To Batch: <u>RPD</u> 6 4	53469 RPD Limit 20 20
Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane D-Terphenyl Lab Sample ID: 890-4659-A-9-C MS	117 •A LCSD Recovery 110 135	LCSI Qual		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 973.4			Unit mg/Kg		D <u>%Rec</u> 97 97	Prep * Prep * %Rec Limits 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 6 4	stal/NA 53469 RPD Limit 20 20
Analysis Batch: 53450 Analysis Batch: 53450 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 890-4659-A-9-C MS Matrix: Solid	117 •A LCSD Recovery 110 135	LCSI Qual		70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 973.4			Unit mg/Kg		D <u>%Rec</u> 97 97	Prep Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep	Type: To Batch: <u>RPD</u> 6 4 : Matrix Type: To	stal/NA 53469 RPD Limit 20 20 20
Analysis Batch: 53450 Analysis Batch: 53450 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 890-4659-A-9-C MS Matrix: Solid	117 •A LCSD Recovery 110 135	LCSI Qual S1+	lifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130	Result 973.4 971.2	Qual		Unit mg/Kg		D <u>%Rec</u> 97 97	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep Prep	Type: To Batch: <u>RPD</u> 6 4	stal/NA 53469 RPD Limit 20 20 20
Analysis Batch: 53450 Analysis Batch: 53450 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 890-4659-A-9-C MS Matrix: Solid	LCSD Recovery 110 135 Sample	LCSJ Qual S1+	lifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 973.4 971.2 MS	Qual	ifier	Unit mg/Kg		D <u>%Rec</u> 97 97	Prep Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep	Type: To Batch: <u>RPD</u> 6 4 : Matrix Type: To	stal/NA 53469 RPD Limit 20 20 20
-Terphenyl ab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Burrogate -Chlorooctane -Terphenyl ab Sample ID: 890-4659-A-9-C MS Matrix: Solid Analysis Batch: 53450 analyte	LCSD Recovery 110 135 Sample Result	LCSI Qual S1+ Sam	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added Added	Result 973.4 971.2 MS Result	Qual	ifier	Unit mg/Kg mg/Kg		D %Rec 97 97 Client	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 9 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 6 4 : Matrix Type: To	stal/NA 53469 RPD Limit 20 20 20
Analysis Batch: 53450 Matrix: Solid Analysis Batch: 53450 Malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane -Terphenyl Lab Sample ID: 890-4659-A-9-C MS Matrix: Solid Analysis Batch: 53450 Malyte Basoline Range Organics GRO)-C6-C10	LCSD Recovery 110 135 Sample Result <49.9	LCSJ Qual S1+ Sam U	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike Added 997	Result 973.4 971.2 MS Result 952.0	Qual	ifier	Unit mg/Kg mg/Kg		D %Rec 97 97 Client D %Rec 93	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 %Rec Use %Rec Use %Rec Limits 70 - 130	Type: To Batch: <u>RPD</u> 6 4 : Matrix Type: To	stal/NA 53469 RPD Limit 20 20 20
-Terphenyl Lab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 malyte Gasoline Range Organics GRO)-C6-C10 biesel Range Organics (Over C10-C28) Currogate % C-hlorooctane -Terphenyl Lab Sample ID: 890-4659-A-9-C MS Matrix: Solid Analysis Batch: 53450 malyte Gasoline Range Organics GRO)-C6-C10 biesel Range Organics (Over	LCSD Recovery 110 135 Sample Result	LCSJ Qual S1+ Sam U	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 5pike Added Added	Result 973.4 971.2 MS Result	Qual	ifier	Unit mg/Kg mg/Kg		D %Rec 97 97 Client	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 9 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 6 4 : Matrix Type: To	stal/NA 53469 RPD Limit 20 20 20
-Terphenyl Lab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 malyte Gasoline Range Organics GRO)-C6-C10 biesel Range Organics (Over C10-C28) Currogate % C-hlorooctane -Terphenyl Lab Sample ID: 890-4659-A-9-C MS Matrix: Solid Analysis Batch: 53450 malyte Gasoline Range Organics GRO)-C6-C10 biesel Range Organics (Over	117 •A <i>LCSD</i> <u>Recovery</u> 110 135 5 5 5 5 5 5 5 5 5 5 5 5 5	LCSJ Qual S1+ Sam U	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike Added 997	Result 973.4 971.2 MS Result 952.0	Qual	ifier	Unit mg/Kg mg/Kg Unit mg/Kg		D %Rec 97 97 Client D %Rec 93	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 %Rec Use %Rec Use %Rec Limits 70 - 130	Type: To Batch: <u>RPD</u> 6 4 : Matrix Type: To	stal/NA 53469 RPD Limit 20 20 20
-Terphenyl Lab Sample ID: LCSD 880-53469/3- Matrix: Solid Analysis Batch: 53450 malyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over 10-C28) Durrogate %/ Chlorooctane -Terphenyl Lab Sample ID: 890-4659-A-9-C MS Matrix: Solid Analysis Batch: 53450 malyte Basoline Range Organics GRO)-C6-C10 Diesel RANGE ORGEN GRONGE O	117 •A •A • • • • • • • • • • • • • • • •	LCSJ Qual S1+ Sam U U U MS	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 70 - 130 997 997 997	Result 973.4 971.2 MS Result 952.0	Qual	ifier	Unit mg/Kg mg/Kg Unit mg/Kg		D %Rec 97 97 Client D %Rec 93	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 %Rec Use %Rec Use %Rec Limits 70 - 130	Type: To Batch: <u>RPD</u> 6 4 : Matrix Type: To	stal/NA 53469 RPD Limit 20 20 20
Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Burrogate -Terphenyl Lab Sample ID: 890-4659-A-9-C MS Matrix: Solid Analysis Batch: 53450 Matrix: Solid Analysis Batch: 53450 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	117 •A <i>LCSD</i> <u>Recovery</u> 110 135 5 5 5 5 5 5 5 5 5 5 5 5 5	LCSJ Qual S1+ Sam U U U MS	lifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 5pike Added 997	Result 973.4 971.2 MS Result 952.0	Qual	ifier	Unit mg/Kg mg/Kg Unit mg/Kg		D %Rec 97 97 Client D %Rec 93	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 %Rec Use %Rec Use %Rec Limits 70 - 130	Type: To Batch: <u>RPD</u> 6 4 : Matrix Type: To	stal/NA 53469 RPD Limit 20 20 20

Eurofins Midland

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-4659-A-9-D I	MSD					0	Client	Sample I	D: Matrix Sp		
Matrix: Solid									Prep 1	Type: To	tal/N/
Analysis Batch: 53450									Prep	Batch:	5346
	Sample	Sample	Spike	MSD	MSD				%Rec		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics	<49.9	U	999	907.1		mg/Kg		88	70 - 130	5	2
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	999	1064		mg/Kg		104	70 - 130	2	2
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	112		70 - 130	-							
o-Terphenyl	127		70 - 130								
lethod: 300.0 - Anions, Ion	Chromat	ography									
								0			
Lab Sample ID: MB 880-53363/1-	A							Client	Sample ID:		
Matrix: Solid									Prep	Type: So	olubl
Analysis Batch: 53573											
		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		<u>D</u>	Prepared	Analyz	ed	Dil Fa
Chloride	•	<5.00 U		5.00	mg/K	g			05/17/23	11:49	
Lab Sample ID: LCS 880-53363/2	2-A						Clie	nt Sampl	e ID: Lab Co		
Matrix: Solid									Prep	Type: So	olub
Analysis Batch: 53573											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	237.4		mg/Kg		95	90 - 110		
Lak Completing to COD 000 50000						01			Lab Cantur		- D
Lab Sample ID: LCSD 880-53363	/ 3- A					CII	ent Sa	imple ID:	Lab Contro		
Matrix: Solid									Prep	Type: So	olub
Analysis Batch: 53573									%Rec		RP
Analysis Batch: 53573			Spike	LCSD	LCSD						
Analyte			Added	Result	Qualifier	Unit	D		Limits	RPD	
Analysis Batch: 53573 Analyte Chloride					Qualifier	Unit mg/Kg	D	%Rec 95	Limits 90 - 110	RPD 0	
Analyte Chloride			Added	Result	Qualifier	-	D	95	90 - 110	0	2
Analyte Chloride Lab Sample ID: 880-28379-1 MS			Added	Result	Qualifier	-	<u>D</u>	95	90 - 110	0 D: H-1 (2 0-0.5
Analyte Chloride Lab Sample ID: 880-28379-1 MS Matrix: Solid			Added	Result	Qualifier	-	<u>D</u>	95	90 - 110	0	2 0-0.5
Analyte Chloride Lab Sample ID: 880-28379-1 MS Matrix: Solid			Added 250	Result 237.3	Qualifier	-	D	95	90 - 110 nt Sample II Prep	0 D: H-1 (2 0-0.5
Analyte Chloride Lab Sample ID: 880-28379-1 MS Matrix: Solid Analysis Batch: 53573		Sample	Added 250 Spike	Result 237.3 MS	Qualifier	mg/Kg		95 Clie	90 - 110 nt Sample II Prep %Rec	0 D: H-1 (2 0-0.5
Analyte Chloride Lab Sample ID: 880-28379-1 MS Matrix: Solid Analysis Batch: 53573 Analyte	Result	Sample Qualifier	Added 250 Spike Added	Result 237.3 MS Result	Qualifier	mg/Kg		95 Clier	90 - 110 nt Sample II Prep %Rec Limits	0 D: H-1 (
Analyte Chloride Lab Sample ID: 880-28379-1 MS Matrix: Solid Analysis Batch: 53573		-	Added 250 Spike	Result 237.3 MS	Qualifier	mg/Kg		95 Clie	90 - 110 nt Sample II Prep %Rec	0 D: H-1 (2 0-0.5
Analyte Chloride Lab Sample ID: 880-28379-1 MS Matrix: Solid Analysis Batch: 53573 Analyte Chloride	Result 177	-	Added 250 Spike Added	Result 237.3 MS Result	Qualifier	mg/Kg		95 Clien 0 %Rec 92	90 - 110 nt Sample II Prep %Rec <u>Limits</u> 90 - 110	0 D: H-1 ((Type: So	2 0-0.5 olub
Analyte Chloride Lab Sample ID: 880-28379-1 MS Matrix: Solid Analysis Batch: 53573 Analyte	Result 177	-	Added 250 Spike Added	Result 237.3 MS Result	Qualifier	mg/Kg		95 Clien 0 %Rec 92	90 - 110 nt Sample II Prep %Rec Limits 90 - 110 nt Sample II	0 D: H-1 ((Type: So	2 0-0.5 olubi 0-0.5

Analysis Batch: 53573											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	177		253	407.7		mg/Kg		91	90 - 110	0	20

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28379-1 SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 53382

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-53382/5-A	Method Blank	Total/NA	Solid	5035	
analysis Batch: 53453	l -				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28379-1	H-1 (0-0.5')	Total/NA	Solid	8021B	53495
880-28379-2	H-2 (0-0.5')	Total/NA	Solid	8021B	53495
880-28379-3	H-3 (0-0.5')	Total/NA	Solid	8021B	53495
880-28379-4	H-4 (0-0.5')	Total/NA	Solid	8021B	53495
MB 880-53382/5-A	Method Blank	Total/NA	Solid	8021B	53382
MB 880-53495/5-A	Method Blank	Total/NA	Solid	8021B	53495
LCS 880-53495/1-A	Lab Control Sample	Total/NA	Solid	8021B	53495
LCSD 880-53495/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	53495
890-4651-A-1-G MS	Matrix Spike	Total/NA	Solid	8021B	53495
890-4651-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	53495

Prep Batch: 53495

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28379-1	H-1 (0-0.5')	Total/NA	Solid	5035	
880-28379-2	H-2 (0-0.5')	Total/NA	Solid	5035	
880-28379-3	H-3 (0-0.5')	Total/NA	Solid	5035	
880-28379-4	H-4 (0-0.5')	Total/NA	Solid	5035	
MB 880-53495/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-53495/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-53495/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4651-A-1-G MS	Matrix Spike	Total/NA	Solid	5035	
890-4651-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 53611

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28379-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-28379-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-28379-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-28379-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 53450

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-28379-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	53469	
880-28379-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	53469	
880-28379-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	53469	
880-28379-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	53469	
MB 880-53469/1-A	Method Blank	Total/NA	Solid	8015B NM	53469	
LCS 880-53469/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	53469	
LCSD 880-53469/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	53469	
890-4659-A-9-C MS	Matrix Spike	Total/NA	Solid	8015B NM	53469	
890-4659-A-9-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	53469	
Prep Batch: 53469						
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
880-28379-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep		

Page 56 of 177

5 6

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

GC Semi VOA (Continued)

Prep Batch: 53469 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28379-2	H-2 (0-0.5')	Total/NA Sol		8015NM Prep	
880-28379-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-28379-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-53469/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-53469/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-53469/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4659-A-9-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4659-A-9-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
Analysis Batch: 53595					
l ab Sample ID	Client Sample ID	Pren Tyne	Matrix	Method	Pron Batch

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28379-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-28379-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-28379-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-28379-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 53363

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28379-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-28379-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-28379-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-28379-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-53363/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-53363/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-53363/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-28379-1 MS	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-28379-1 MSD	H-1 (0-0.5')	Soluble	Solid	DI Leach	

Analysis Batch: 53573

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28379-1	H-1 (0-0.5')	Soluble	Solid	300.0	53363
880-28379-2	H-2 (0-0.5')	Soluble	Solid	300.0	53363
880-28379-3	H-3 (0-0.5')	Soluble	Solid	300.0	53363
880-28379-4	H-4 (0-0.5')	Soluble	Solid	300.0	53363
MB 880-53363/1-A	Method Blank	Soluble	Solid	300.0	53363
LCS 880-53363/2-A	Lab Control Sample	Soluble	Solid	300.0	53363
LCSD 880-53363/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	53363
880-28379-1 MS	H-1 (0-0.5')	Soluble	Solid	300.0	53363
880-28379-1 MSD	H-1 (0-0.5')	Soluble	Solid	300.0	53363

Page 57 of 177

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Lab Chronicle

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: H-1 (0-0.5') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Prep Type

Batch

Туре

) }								
	Batch		Dil	Initial	Final	Batch	Prepared	
	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst

							-	-	
Total/NA	Prep	5035		4.99 g	5 mL	53495	05/16/23 15:10	MNR	EET MID
Total/NA	Analysis	8021B	1	5 mL	5 mL	53453	05/17/23 04:52	MNR	EET MID
Total/NA	Analysis	Total BTEX	1			53611	05/17/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM	1			53595	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep		10.03 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM	1	1 uL	1 uL	53450	05/16/23 23:42	SM	EET MID
Soluble	Leach	DI Leach		4.95 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0	1	50 mL	50 mL	53573	05/17/23 12:06	СН	EET MID

Client Sample ID: H-2 (0-0.5') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	53495	05/16/23 15:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53453	05/17/23 05:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53611	05/17/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			53595	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/17/23 00:03	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53573	05/17/23 12:22	СН	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	53495	05/16/23 15:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53453	05/17/23 07:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53611	05/17/23 15:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			53595	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/17/23 00:25	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53573	05/17/23 12:27	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53495	05/16/23 15:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53453	05/17/23 07:29	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53611	05/17/23 15:53	SM	EET MID

Eurofins Midland

Matrix: Solid

Lab

Page 58 of 177

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28379-1 Matrix: Solid

9

Lab Sample ID: 880-28379-2 Matrix: Solid

Lab Sample ID: 880-28379-3

Lab Sample ID: 880-28379-4

Matrix: Solid

Lab Chronicle

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: H-4 (0-0.5') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			53595	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	53469	05/16/23 11:47	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/17/23 00:46	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53573	05/17/23 12:33	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28379-4

Matrix: Solid

Page 59 of 177

Eurofins Midland

Released to Imaging: 4/26/2024 1:31:09 PM

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority		Program	Identification Number	Expiration Date	
exas		NELAP	T104704400-22-25	06-30-23	
The following analytes a the agency does not off		but the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for which	- 1
Analysis Method	Prep Method	Matrix	Analyte		
300.0		Solid	Chloride		
8015 NM		Solid	Total TPH		
8015B NM	8015NM Prep	Solid	Diesel Range Organics (Over	C10-C28)	
8015B NM	8015NM Prep	Solid	Gasoline Range Organics (GR	O)-C6-C10	
8015B NM	8015NM Prep	Solid	Oll Range Organics (Over C28	3-C36)	
8021B	5035	Solid	Benzene		
8021B	5035	Solid	Ethylbenzene		
8021B	5035	Solid	m-Xylene & p-Xylene		
8021B	5035	Solid	o-Xylene		
8021B	5035	Solid	Toluene		
8021B	5035	Solid	Xylenes, Total		
Total BTEX		Solid	Total BTEX		

Eurofins Midland

Page 60 of 177

Method Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28379-1 SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-28379-1	H-1 (0-0.5')	Solid	05/11/23 00:00	05/12/23 14:48	
880-28379-2	H-2 (0-0.5')	Solid	05/11/23 00:00	05/12/23 14:48	
880-28379-3	H-3 (0-0.5')	Solid	05/11/23 00:00	05/12/23 14:48	
880-28379-4	H-4 (0-0.5')	Solid	05/11/23 00:00	05/12/23 14:48	

()

()

Project Manager	Ashton Thielke			Bill to: (if different)		Laci Luig			Work	Work Order Comments	iments	
Company Name:	Carmona Resources			Company Name:		Cimarex Energy	lergy		Program: UST/PST PRP	Townfields	n RC	Perfund
Address:	310 W Wall St Ste 500			Address.		600 N Marienfield St,		Suite 600	State of Project:			
City, State ZIP	Midland, TX 79701			City, State ZIP		Midland, TX 79701	(79701		Reporting Level II	I ⊟st/ust		
Phone:	432-813-8988		Email	Email laci.luig@coterra.com ashton.thielke@coterra.com	ra.com asl	ton.thielk	<u>e@coterra.c</u>	<u>JM</u>	Deliverables EDD	АДаРТ 🛛	Other:	
Project Name	White City Penn 28 Gas Com (04 15 2019)	om (04 15 2019)	Turn	Turn Around				ANALYSIS REQUEST	REQUEST		Preservative Codes	ve Codes
Project Number	2018		I Routine	🗆 Rush	Pres. Code					None	None NO	DI Water H ₂ O
Project Location	Eddy County, New Mexico	v Mexico	Due Date	Normal						Cool	Cool Cool	MeOH Me
Sampler's Name:	GPJ				1	(OR				ΗC	HCL. HC	HNO ₃ HN
PO#:				(S.	W +				H ₂ S0	H ₂ S04 H ₂	NaOH Na
SAMPLE RECEIPT	IPT Tem <u>p</u> Blank.	Yes No	Wet Ice:	°2 C	 eter	в В	0.0			- HaPC	HaPO, HP	
Received Intact:	Yes No	Thermometer ID			uren T	1 + C	90C e				NaHSO, NABIS	
Cooler Custody Seals.	Yes No	 Correction Factor 		1.19	e9		orido			PH	Na-S-O- NaSO-	
Sample Custody Seals.	Yes	Temperature Reading	adino	5-1-	1		9140			A	Za AsstatatNoOH 7a	7.
Total Containers.		Corrected Temperature:	erature:	0.1-	1	9108	•				AII ACEIGIETINGOR ZII NaOH+Ascorbic Acid SADO	r zli rid SADM
					╣	8 H				Mag		kala SAPU
Sample Identification	ntification Date	Time	Soil	Water Comp	Cont	<u>ат</u>					Sample Comments	omments
H-1 (0- 0.5')	- 0.5') 5/11/2023	3	×	9		××	×				124	
H-2 (0-0 5')	- 0 5') 5/11/2023	3	×	υ	1	××	×					
H-3 (0- 0 5')	- 0 5') 5/11/2023	3	×	9	-	××	×					
H-4 (0-05')	- 0 5') 5/11/2023	3	×	U	-	××	×					
					-				880-28379 Chain of Custod	of Custod.		
										Abnieno -		
Commente.												
	Relinquishe	Relinquished by (Signature)				Date/Time		4	Received by (Signature)			Date/Time
1104	C19.91	la a l			ĥ	2-23		× /				
7~ 79	1 VUIN	111111				<i>2</i> <i>2</i> <i>2</i> <i>2</i>	~)				
							-					

5

Job Number: 880-28379-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 28379 List Number: 1

<6mm (1/4").

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

March 15, 2024

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: WHITE CITY PENN 28 GAS COM (04.15.2019)

Enclosed are the results of analyses for samples received by the laboratory on 03/14/24 16:38.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 1 (5.5') (H241342-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	105 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 2 (5.5') (H241342-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	992	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	106 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 3 (5.5') (H241342-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	112 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 4 (5.5') (H241342-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	496	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 5 (12.5') (H241342-05)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	99.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 6 (12.5') (H241342-06)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	97.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 7 (12.5') (H241342-07)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	880	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 8 (12.5') (H241342-08)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	113 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 9 (12.5') (H241342-09)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	800	16.0	03/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 10 (1.5') (H241342-10)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	110 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 11 (1.5') (H241342-11)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/14/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/14/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/14/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/14/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	101 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: CS - 12 (1.5') (H241342-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.22	111	2.00	17.1	
Toluene*	<0.050	0.050	03/15/2024	ND	2.22	111	2.00	17.2	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.16	108	2.00	17.7	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.46	108	6.00	16.0	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 1 (5.5') (H241342-13)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	104 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 2 (5.5') (H241342-14)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	116 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 3 (5.5') (H241342-15)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	210	105	200	0.565	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	205	102	200	1.50	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	108 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 4 (7.0') (H241342-16)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	94.2	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	608	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	99.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 5 (7.0') (H241342-17)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	512	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	127	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 6 (12.5') (H241342-18)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	92.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109 \$	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 7 (12.5') (H241342-19)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	86.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 8 (12.5') (H241342-20)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	800	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	100 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 9 (12.5') (H241342-21)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	912	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	99.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 10 (12.5') (H241342-22)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	13.6	
Toluene*	<0.050	0.050	03/15/2024	ND	2.15	107	2.00	13.1	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.11	106	2.00	12.6	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.18	103	6.00	13.3	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	944	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	107 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	129 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 11 (12.5') (H241342-23)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.22	111	2.00	1.58	
Toluene*	<0.050	0.050	03/15/2024	ND	2.19	110	2.00	1.40	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.13	106	2.00	1.38	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.34	106	6.00	0.650	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	544	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	96.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/14/2024	Sampling Date:	03/14/2024
Reported:	03/15/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	EDDY COUNTY, NEW MEXICO		

Sample ID: SW - 12 (1.5') (H241342-24)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.22	111	2.00	1.58	
Toluene*	<0.050	0.050	03/15/2024	ND	2.19	110	2.00	1.40	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.13	106	2.00	1.38	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.34	106	6.00	0.650	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	03/15/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

	.		Date/Time	Date	Date/		Relinquished by: (Signature)	Relinquished by:	11 1	+
						>		3/14/2024	(1.0)	Comments:
			+	+	0 0	<		3/14/2024	12.0)	CS-10 (1Z.3)
			+	-	0	×		3/14/2024	12.5')	CS-8 (12.5)
			×	1 X	0	×		3/14/2024	12.5')	CS-7 (12.5')
			×	1 X	0	×		3/14/2024	12.5')	CS-6 (12.5')
			X X	1 X	0	×		3/14/2024	12.5')	CS-5 (12.5')
			X X	1 X	0	×		3/14/2024	5.5')	CS-4 (5.5')
			X X	1 X	С	×		3/14/2024	5.5')	CS-3 (5.5')
			× ×	1 X	С	×		3/14/2024	(5.5')	CS-2 (5.5')
			X X	1 X	c	×		3/14/2024	(5.5')	CS-1 (5.5')
Sample Comments			TP	# of Cont	Water Comp	Soil	Time	Date	ntification	Sample Identification
NaOH+Ascorbic Acid: SAPC			H 80			iture:	Corrected Temperature:			I otal Containers:
Zn Acetate+NaOH: Zn			15M	в	- 2.42	ing:	Temperature Reading:	EN/A	-	Sample Custody Seals:
Na2S2O3: NaSO3			(G				Correction Factor:	INA		Cooler Custody Seals:
NaHSO4: NABIS				arai	140		Thermometer ID:	No	Yes	Received Intact:
H ₃ PO ₄ : HP			DRC	mete	Yes No	Wet Ice:	Xes No	Temp Blank:		SAMPLE RECEIPT
2) + M	rs		c=== +				PO 井
			RO)			_		MM		Sampler's Name:
					Normal	Due Date:		Eddy County, New Mexico	Eddy	Project Location
None: NO DI Water: H ₂ O				Code	Rush	Routine		2018		Project Number:
Preservative Codes	JEST	ANALYSIS REQUEST			round	Turn Around	(04.15.2019)	White City Penn 28 Gas Com (04.15.2019)	White City Pe	Project Name:
Other:	Deliverables: EDD	com	n.thielke@coterra.com	com ashton	laci.luig@coterra.	Email:			432-813-8988	Phone:
	Reporting:Level II Level III ST/UST		Midland, TX 79706	Mic	City, State ZIP:			9701	Midland, TX 79701	City, State ZIP:
	State of Project:	Suite 300N	6001 Deauville Blvd, Su	600	Address:			Ste 500	310 W Wall St Ste 500	Address:
fields RC perfund	Program: UST/PST PRP prownfields		Cimarex Energy	Cin	Company Name:			ources	Carmona Resources	Company Name:
omments	Work Order Comments		Laci Luig	Lac	Bill to: (if different)			u u	Ashton Thielke	Project Manager:
Page 1 of 3										
- 10 1011										
- 1121 PCH	Work Order No.									
			Chain of Custody	ain oi	Cn					

Page 91 of 177

Received by OCD: 3/26/2024 6:47:55 AM

1	100	
٤.	.)	
2	_	
_	5	
2		
	3	
	×.,	
1.50	8	
1.0		
e	s -	
`	ø.,	
215	44	
	~	
1	1	
C.		
х.		
ette,	80	
v	۳.,	
per	Q4.	
~		
ς.		
ē		
	Ζ.,	
	ø.,	

All	Muaka	638	24/	3-14-24					M	Mound
d by: Joseph J Date/Time	A Received by:		Date/Time	D			(Signature)	Relinquished by: (Signature)	/ , / Relinq	11
										Comments:
		×	X X	-	c	×		3/14/2024		SW-8 (12.5')
		×	X X		0	×		3/14/2024		SW-7 (12.5')
		×	× ×		0	×		3/14/2024		SW-6 (12.5')
		×	XX	1	0	×		3/14/2024		SW-5 (7.0')
		×	X X	-	c	×		3/14/2024		SW-4 (7.0')
		×	X X	1	0	×		3/14/2024		SW-3 (5.5')
		×	X X	1	c	×		3/14/2024		SW-2 (5.5')
		×	X X	1	c	×		3/14/2024		SW-1 (5.5')
		×	XX	1	c	×		3/14/2024		CS-12 (1.5')
		×	X X	1	С	×		3/14/2024		CS-11 (1.5')
Sample Comments			TPI	# of	r Comp	Soil Water	Time	Date		Sample Identification
NaOH+Ascorbic Acid: SAPC			H 801			1	Corrected Temperature:	IL		Total Containers:
Zn Acetate+NaOH: Zn					2.4°	1	Temperature Reading:	NIA TI	Yes No	Sample Custody Seals:
Na2S2O3: NaSO3		nlorid	TEX	Pa	1	1	Correction Factor:		No	Cooler Custody Seals:
NaHSO4: NABIS				iran	140		ieter ID:		Yes N	Received Intact:
0				neter	Yes No	Wet Ice: Ye	Yes No We	ink	Temp Blank:	SAMPLE RECEIPT
0			+ M	rs		24 1115				PO#
HCL: HC HNO2: HN			RO)		h7			MM		Sampler's Name:
			_		ormal	_	vico Di la Data:	Eddy County New Mexico	Eddy Cour	Project Location
None			_	Pres. Code	Rush	Routine 🗸 R		2018		Project Number:
ST Preservative Codes	ANALYSIS REQUEST					Turn Around	(04.15.2019)	Gas Com	White City Penn 28 Gas Com (04.15.2019)	Project Name: V
Deliverables: EDD ADaPT Other:		ke@coterra.com	iton.thiel	.com ash	ig@coterra	Email: laci.luig@			432-813-8988	Phone: 4:
Reporting:Level II Level III DST/UST RRP Level IV		Midland, TX 79706	Midland,		City, State ZIP:	City, S			Midland, TX 79701	City, State ZIP: M
	Suite 300N	6001 Deauville Blvd,	5001 Dea		SS:	Address:		500	310 W Wall St Ste 500	Address: 3
Program: UST/PST PRP rownfields RC perfund	q	Energy	Cimarex Energy		Company Name:	Comp		S	Carmona Resources	Company Name: C
Work Order Comments			Laci Luig		Bill to: (if different)	Bill to:			Ashton Thielke	Project Manager: A
Page 2 of 3										
Warner Hallzu										
	V	Istoc	of Cu	Chain of Custody	C					

Project Manager:	Ashton Thielke											Page 3 of 3
Company Name:	Carmona Resources	urces			Din W. (ii unierenii)	(III)	Laci Luig				Work Ord	
	310 W Wall St Ste 500	Ste 500			Company Name	ne:	Cimarex Energy	lergy			Program: UST/PST PRP Frownfields	Tec
City, State ZIP:	Midland TX 70	704			Muliess.		6001 Deauville Blvd, Suite 300N	ville Blvd, S	uite 300N		State of Project:	
	100 010 0000	ru7			City, State ZIP:		Midland, TX 79706	(79706				7
	104-010-0000			Email:	laci.luig@cot	erra.com as	ashton.thielke@coterra.com	Coterra	Com			Г
	White City Penn 28 Gas Com (04.15.2019)	n 28 Gas Co	m (04.15.2019)		Around				1			Abar D Other.
Project Number:		2018		Routin	e 🗸 Rush	Pres.	-		AN	ANALYSIS REQUEST	QUEST	Preservative Codes
Project Location	Eddy C	Eddy County, New Mexico	Mexico	Dile Data:		Code	+					None: NO DI Water: H-O
Sampler's Name:		MM		Duo Dalo.	-MOLUION-))					
PO #:			0.1	124	24 hrs 24		MRC					0
SAMPLE RECEIPT		Temp Blank-		-		ers	0+1					
Received Intact:		No	Thermometer ID:	. vvet ice:	Yes No	met		1500				H-DO-LID NACH: NA
Cooler Custody Seals:	Yes	0	Correction Factor:	a		Para		ide				NaHSO: NARIS
Sample Custody Seals:	Yes	NO CINIA	Temperature Reading:	ading:	-240		BTE	hlo				Na2S2O3: NaSO3
i otal Containers:		-	Corrected Temperature:	erature:		1		(Zn Acetate+NaOH: Zn
Sample Identification	ication	Date	Time	Soil	Water Grab/	1 # of	TPH					NaOH+Ascorbic Acid: SAPC
SW-9 (12.5')	5")	3/14/2024		×	c		+	-				Sample Comments
SW-10 (12.5')		3/14/2024		×		-	+	×				
SW-11 (12.5')		3/14/2024		×		+	+	×				
SW-12 (1.5')		3/14/2024		×		-	+	×				
SW-13 (1.5)		3/14/2024		×		+	+	×				
SW-14 (1.5')		3/14/2024		×			H	*		5		
SW-15 (1.5')		3/14/2024		<	c		×	×	0 N K	XO	DIN A	
				>	0		X X	X	-			
											are had	
											21 12	
Clarkers:												
											-	
1A	L Relir	Relinquished by: (Signature)	(Signature)			Dat	Date/Time		•	,		
March	M					3-14-2	24 /103	<u>Š</u>	1111	Rece	Received by (Signature)	Date/Time
							190	P	11111	MM	Kapan	
								ł			(

Received by OCD: 3/26/2024 6:47:55 AM

N

Page 29 of 29

Page 93 of 177

Chain of Custody

- Released to Imaging: 4/26/2024 1:31:09 PM

March 18, 2024

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: WHITE CITY PENN 28 GAS COM (04.15.2019)

Enclosed are the results of analyses for samples received by the laboratory on 03/15/24 14:32.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/15/2024	Sampling Date:	03/14/2024
Reported:	03/18/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Dionica Hinojos
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: SW - 13 (1.5') (H241362-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	2.38	
Toluene*	<0.050	0.050	03/15/2024	ND	2.16	108	2.00	2.31	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.14	107	2.00	2.01	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.26	104	6.00	2.67	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	336	16.0	03/18/2024	ND	416	104	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/18/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/18/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/18/2024	ND					
Surrogate: 1-Chlorooctane	111 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	122 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/15/2024	Sampling Date:	03/14/2024
Reported:	03/18/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Dionica Hinojos
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: SW - 14 (1.5') (H241362-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	2.38	
Toluene*	<0.050	0.050	03/15/2024	ND	2.16	108	2.00	2.31	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.14	107	2.00	2.01	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.26	104	6.00	2.67	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.8	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	304	16.0	03/18/2024	ND	416	104	400	7.41	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	87.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/15/2024	Sampling Date:	03/14/2024
Reported:	03/18/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Dionica Hinojos
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: SW - 15 (1.5') (H241362-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/15/2024	ND	2.20	110	2.00	2.38	
Toluene*	<0.050	0.050	03/15/2024	ND	2.16	108	2.00	2.31	
Ethylbenzene*	<0.050	0.050	03/15/2024	ND	2.14	107	2.00	2.01	
Total Xylenes*	<0.150	0.150	03/15/2024	ND	6.26	104	6.00	2.67	
Total BTEX	<0.300	0.300	03/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	93.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	03/18/2024	ND	416	104	400	7.41	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/15/2024	ND	239	120	200	8.62	
DRO >C10-C28*	<10.0	10.0	03/15/2024	ND	226	113	200	5.46	
EXT DRO >C28-C36	<10.0	10.0	03/15/2024	ND					
Surrogate: 1-Chlorooctane	73.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	78.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Chain of Custody

-					Sample C	
	Date/Time				Comments	
Released to 1	Imaging: 4/26	/2024 1:31	:09 PM	- <u>I_I_I_I</u>	1 1 k ja	-

	Comments:		~		SW-15 (1.5')	SW-14 (1.5')	SW-13 (1.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone: 4	City, State ZIP: N	Address: 3	Company Name: 0	Project Manager:
Reli	×.							ification		: Yes	· Ye	0	Temp Blank:			Eddy Col		White City Penn 28 Gas Com (04.15.2019)	432-813-8988	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Ashton Thielke
nquished by	×-				3/14/2024	3/14/2024	3/14/2024	Date		NIA	MA	2	lank:		MM	Eddy County. New Mexico	2018	28 Gas Com			500	ès	
Relinquished by: (Signature)					-			Time	Corrected Temperature:	Temperature Reading:	Correction Factor:		Yes No			exico		(04.15.2019)					
					×	×	×	Soil	erature:	ading:	ä		Wet Ice:			Due Date:	Routine	Tur	Ema				
								Water C	1.	2.20	1	\sim	Yes No	24 hrs		Norma	✓ Rush	Turn Around	Email: laci.luig@coterra.com ashton.thielke@coterra.com	City, State ZIP:	Address:	Company Name:	Bill to: (if different)
3-1		+	-		C 1	C 1	C 1	Grab/ # of Comp Cont			Pa		eter) s			Pres. Code		oterra.com	P.		me:	ent)
Date/Time					×	×	×	+ "		В	TEX :	3021	в						ashton.t	Midla	6001	Cima	Laci Luig
1.					×	×	×	TPH	H 801	5M (GR) + C	ORO	+ MI	२ 0)				hielke(C	Midland, TX 79706	Deauvill	Cimarex Energy	.uig
3			-		×	×	×			Ch	lorid	e 45	00			_			coterra	9706	6001 Deauville Blvd, Suite	gy	
Q.						_										-	_		.com		uite 300N		
Š												ž					_	ANALY					
Rec	8 y	 ++	-				_									_		ANALYSIS REQUEST					
Received by: (Signature)																		QUEST	Delive	Repor	State	Progr	
y: (Sign																			Deliverables: EDD	ting:Lev	State of Project:	am: US	
ature)		++					_									+	_		EDD	Reporting:Level II Level III	ct:	r/PST	
																						Program: UST/PST PRP rownfields	Work Order Comments
				_	- 19	2			N	L'	Z	Z	ŗ;	Ţ.		2	Z		ADaPT	ST/UST		rownfie	rder Co
					~			Sam	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na,S,O,: NaSO,	NaHSO .: NARIS	рО Нр	H-SOL H-		nol: Cool	None: NO	Pres				lds	mment
Dat								Sample Comments	orbic Ac	+NaOH:	laSO,	IARIC		z				Preservative Codes	Other:			RRC	5
Date/Time								nmen	id: SA	Zn			001.	NaOH: Na			DI Water: H ₂ O	Cod				Iperfund	

Received by OCD: 3/26/2024 6:47:55 AM

Page 6 of 6

Work Order No: H241362

Page 99 of 177

March 20, 2024

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: WHITE CITY PENN 28 GAS COM (04.15.2019)

Enclosed are the results of analyses for samples received by the laboratory on 03/19/24 12:52.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/19/2024	Sampling Date:	03/19/2024
Reported:	03/20/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: CS - 2 (6') (H241422-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	03/19/2024	ND	2.04	102	2.00	7.14	
Toluene*	<0.050	0.050	03/19/2024	ND	2.05	103	2.00	0.507	
Ethylbenzene*	<0.050	0.050	03/19/2024	ND	2.13	107	2.00	2.51	
Total Xylenes*	<0.150	0.150	03/19/2024	ND	6.43	107	6.00	4.91	
Total BTEX	<0.300	0.300	03/19/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	03/20/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	03/19/2024	ND	202	101	200	17.3	
DRO >C10-C28*	<10.0	10.0	03/19/2024	ND	216	108	200	14.0	
EXT DRO >C28-C36	<10.0	10.0	03/19/2024	ND					
Surrogate: 1-Chlorooctane	96.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110 9	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/19/2024	Sampling Date:	03/19/2024
Reported:	03/20/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: CS - 7 (13') (H241422-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/19/2024	ND	2.04	102	2.00	7.14	
Toluene*	<0.050	0.050	03/19/2024	ND	2.05	103	2.00	0.507	
Ethylbenzene*	<0.050	0.050	03/19/2024	ND	2.13	107	2.00	2.51	
Total Xylenes*	<0.150	0.150	03/19/2024	ND	6.43	107	6.00	4.91	
Total BTEX	<0.300	0.300	03/19/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	832	16.0	03/20/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/19/2024	ND	202	101	200	17.3	
DRO >C10-C28*	<10.0	10.0	03/19/2024	ND	216	108	200	14.0	
EXT DRO >C28-C36	<10.0	10.0	03/19/2024	ND					
Surrogate: 1-Chlorooctane	89.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/19/2024	Sampling Date:	03/19/2024
Reported:	03/20/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: CS - 9 (13') (H241422-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/19/2024	ND	2.04	102	2.00	7.14	
Toluene*	<0.050	0.050	03/19/2024	ND	2.05	103	2.00	0.507	
Ethylbenzene*	<0.050	0.050	03/19/2024	ND	2.13	107	2.00	2.51	
Total Xylenes*	<0.150	0.150	03/19/2024	ND	6.43	107	6.00	4.91	
Total BTEX	<0.300	0.300	03/19/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	03/20/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/19/2024	ND	202	101	200	17.3	
DRO >C10-C28*	<10.0	10.0	03/19/2024	ND	216	108	200	14.0	
EXT DRO >C28-C36	<10.0	10.0	03/19/2024	ND					
Surrogate: 1-Chlorooctane	92.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/19/2024	Sampling Date:	03/19/2024
Reported:	03/20/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: SW - 4 (7') (H241422-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/19/2024	ND	2.04	102	2.00	7.14	
Toluene*	<0.050	0.050	03/19/2024	ND	2.05	103	2.00	0.507	
Ethylbenzene*	<0.050	0.050	03/19/2024	ND	2.13	107	2.00	2.51	
Total Xylenes*	<0.150	0.150	03/19/2024	ND	6.43	107	6.00	4.91	
Total BTEX	<0.300	0.300	03/19/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	03/20/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/19/2024	ND	202	101	200	17.3	
DRO >C10-C28*	<10.0	10.0	03/19/2024	ND	216	108	200	14.0	
EXT DRO >C28-C36	<10.0	10.0	03/19/2024	ND					
Surrogate: 1-Chlorooctane	96.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/19/2024	Sampling Date:	03/19/2024
Reported:	03/20/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: SW - 8 (13') (H241422-05)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/19/2024	ND	2.04	102	2.00	7.14	
Toluene*	<0.050	0.050	03/19/2024	ND	2.05	103	2.00	0.507	
Ethylbenzene*	<0.050	0.050	03/19/2024	ND	2.13	107	2.00	2.51	
Total Xylenes*	<0.150	0.150	03/19/2024	ND	6.43	107	6.00	4.91	
Total BTEX	<0.300	0.300	03/19/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	480	16.0	03/20/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/20/2024	ND	202	101	200	17.3	
DRO >C10-C28*	<10.0	10.0	03/20/2024	ND	216	108	200	14.0	
EXT DRO >C28-C36	<10.0	10.0	03/20/2024	ND					
Surrogate: 1-Chlorooctane	129 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	124 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/19/2024	Sampling Date:	03/19/2024
Reported:	03/20/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: SW - 9 (13') (H241422-06)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/19/2024	ND	2.14	107	2.00	3.75	
Toluene*	<0.050	0.050	03/19/2024	ND	2.13	106	2.00	3.96	
Ethylbenzene*	<0.050	0.050	03/19/2024	ND	2.07	104	2.00	3.92	
Total Xylenes*	<0.150	0.150	03/19/2024	ND	6.28	105	6.00	3.80	
Total BTEX	<0.300	0.300	03/19/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B mg/kg		Analyzed By: HM							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	496	16.0	03/20/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/19/2024	ND	202	101	200	17.3	
DRO >C10-C28*	<10.0	10.0	03/19/2024	ND	216	108	200	14.0	
EXT DRO >C28-C36	<10.0	10.0	03/19/2024	ND					
Surrogate: 1-Chlorooctane	92.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/19/2024	Sampling Date:	03/19/2024
Reported:	03/20/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: SW - 10 (13') (H241422-07)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/19/2024	ND	2.14	107	2.00	3.75	
Toluene*	<0.050	0.050	03/19/2024	ND	2.13	106	2.00	3.96	
Ethylbenzene*	<0.050	0.050	03/19/2024	ND	2.07	104	2.00	3.92	
Total Xylenes*	<0.150	0.150	03/19/2024	ND	6.28	105	6.00	3.80	
Total BTEX	<0.300	0.300	03/19/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	592	16.0	03/20/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/19/2024	ND	202	101	200	17.3	
DRO >C10-C28*	<10.0	10.0	03/19/2024	ND	216	108	200	14.0	
EXT DRO >C28-C36	<10.0	10.0	03/19/2024	ND					
Surrogate: 1-Chlorooctane	92.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager
SW-6 (13) 3/19/2024 SW-9 (13) 3/19/2024 SW-10 (13) 3/19/2024		Total Containers: Date Sample Identification Date CS-2 (6') 3/19/2024 CS-7 (13') 3/19/2024	Project Number: Corror Project Location Eddy County, New Mexico Sampler's Name: MM PO # Temp Blank: Ye SAMPLE RECEIPT Temp Blank: Ye Received Intact: Yes No Therm Cooler Custody Seals: Yes No Mi/A Temp	nn 28	City, State ZIP: Milulariu, IX raroi Phone: 432-813-8988	ļa	
× × × × × ×	< ×	Corrected Temperature: Time Soil X	Due Date: Due Date: Wet loe: tioneter ID: tion Factor: arature Reading:		Email:		
0 0 0 0	+	Water Grab/ # C C	24 hrs 7 Yes 10 Parameters	Turn Around Pres.	It: laci.luig@coterra.com ashton.thielke@coterra.com	Address: City, State ZIP:	Bill to: (if different) Company Name:
× × >	× × :	1 1 1 Cont #of X X X X X X X TPH 8 X X X	BTEX 8021B 015M (GRO + DRO + MRO) Chloride 4500		ashton.thielke@cott	6001 Deauville Blvd, Suite 300N Midland, TX 79706	Laci Luig Cimarex Energy
				ANALYSIS REQUEST	erra.com	d, Suite 300N	
					Deliverables: EDD	Level III	ST [
		Sample Comments	Cool: Cool MeCH: Me HCL: HC HNO3: HN H ₂ S04: H2 NaOH: Na H3PO4: HP NaHSO4: NABIS Na ₂ S ₂ O3: NaSO3 Zn Acetate+NaOH: Zn NaOH+Ascorbic Acid: SAPC	None: NO DI Water:			Work Order Comments

Received by OCD: 3/26/2024 6:47:55 AM

Released to Imaging: 4/26/2024 1:31:09 PM

Page 109 of 177

Chain of Custody

Page 10 of 10

Haylyaa

Work Order No: _

March 25, 2024

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: WHITE CITY PENN 28 GAS COM (04.15.2019)

Enclosed are the results of analyses for samples received by the laboratory on 03/22/24 16:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/22/2024	Sampling Date:	03/22/2024
Reported:	03/25/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: CS - 7 (13.25') (H241519-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	03/22/2024	ND	2.14	107	2.00	1.57	
Toluene*	<0.050	0.050	03/22/2024	ND	2.10	105	2.00	1.65	
Ethylbenzene*	<0.050	0.050	03/22/2024	ND	2.06	103	2.00	1.31	
Total Xylenes*	<0.150	0.150	03/22/2024	ND	6.00	99.9	6.00	1.35	
Total BTEX	<0.300	0.300	03/22/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	92.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	03/25/2024	ND	464	116	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	03/23/2024	ND	189	94.5	200	3.63	
DRO >C10-C28*	<10.0	10.0	03/23/2024	ND	197	98.4	200	2.87	
EXT DRO >C28-C36	<10.0	10.0	03/23/2024	ND					
Surrogate: 1-Chlorooctane	87.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	03/22/2024	Sampling Date:	03/22/2024
Reported:	03/25/2024	Sampling Type:	Soil
Project Name:	WHITE CITY PENN 28 GAS COM (04.15.2	Sampling Condition:	Cool & Intact
Project Number:	2018	Sample Received By:	Tamara Oldaker
Project Location:	CIMAREX-EDDY CO., NM		

Sample ID: SW - 4 (7.0') (H241519-02)

BTEX 8021B	mg/	′kg	Analyze	d By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Benzene*	<0.050	0.050	03/22/2024	ND	2.14	107	2.00	1.57		
Toluene*	<0.050	0.050	03/22/2024	ND	2.10	105	2.00	1.65		
Ethylbenzene*	<0.050	0.050	03/22/2024	ND	2.06	103	2.00	1.31		
Total Xylenes*	<0.150	0.150	03/22/2024	ND	6.00	99.9	6.00	1.35		
Total BTEX	<0.300	0.300	03/22/2024	ND						
Surrogate: 4-Bromofluorobenzene (PID	92.8	% 71.5-13	4							
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
Chloride	208	16.0	03/25/2024	ND	464	116	400	0.00		
TPH 8015M	mg/	′kg	Analyze	d By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier	
GRO C6-C10*	<10.0	10.0	03/23/2024	ND	189	94.5	200	3.63		
DRO >C10-C28*	<10.0	10.0	03/23/2024	ND	197	98.4	200	2.87		
EXT DRO >C28-C36	<10.0	10.0	03/23/2024	ND						
Surrogate: 1-Chlorooctane	84.5	% 48.2-13	4							
Surrogate: 1-Chlorooctadecane	79.4	% 49.1-14	8							

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whother is subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

-
\sim
N 1
ENVIRONCE IN
-
2
AMAGENE IN
0
100
10000
press.
()
(PRIMA
and and
5
panifa.
0
-
0

Released to Imaging: 4/26/2024 1:31:09 PM

Received by	OCD: 3/26/	2024 6:47	7:55 AM
-------------	------------	-----------	---------

			Comments:							SW-4 (7.0')	CS-7 (13.25')	Sample Identification	I otal Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#:	Sampler's Name:	Project Nullipel.			Phone: 4	City, State ZIP: N	Address: 3	Company Name: C	Project Manager: A
										(10	5")	ication		Yes	Yes	×			EQU		White City P		432-813-8988	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Ashton Thielke
And the second s	Relinguished h								1	3/22/2024	3/22/2024	Date		NO NIA	NO NIA	Yes No	Temp Blank:		GPJ	2010	enn 28 Gas Co		00	79701	St Ste 500	sources	lke
y. (Signature)	v: (Signatura)	*	x									Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer	Yes No		Mexico		White City Penn 28 Gas Com (04.15.2019)						
		×								×	×	Soil	perature:	leading:	tor:		Wet Ice:		Due Date:	L' Koutine) ,	Ciliaii.	п 3				
												Water	1	3.60		27	Yes	24 hrs		I Rush	Turn Around			City, State ZIP:	Address:	Company Name	Bill to: (if different)
22						-				C 1	-	Grab/ # of Comp Cont			Par		eters)	7	S :	P	iaci.luig@coterra.com asnton.thielke@coterra.com		ZIP:		Name:	fferent)
Date/Time	2					+	\vdash			-	×	코 역		вт	EX 8					Code	Pres	n ashton		Midl	600	Cim	Lac
ime										×	×	TPI	H 801	5M (GRO	+ D	RO +	MR	0)			.thielke(Midland, TX 79706	1 Deauvil	Cimarex Energy	Laci Luio
8					+		\vdash	\vdash		×	×	-		Chl	oride	450	00				-	Dcoterra		9706	6001 Deauville Blvd, Suite 300N	rav	
						+			+	+	+									\vdash		.com			uite 300h		
101											1										ANAL				2		
Rec				-	+	+		_	+	+	+			_							YSIS RE						
Received by: (Stynature)										+	+					×		8			ANALYSIS REQUEST	Deliv	2	Repo	Stat	Pro	
r: (Stgna																						Deliverables: EDD		Reporting:Level II Level III	State of Project:	Iram: IIC	
iture)				+	+				$\left \right $	+	+			1								EDD			ect:	TIDET	
X															đ												
				+	+			-		_			N	7 IN		Ţ	. I	I	0	Z		ADaPT		STAIST		Tuer Co	
												Samp	NaOH+Ascorbic Acid: SAPC	Ma20203: NAOU3	NaHSO4: NABIS	H ₃ PO ₄ : HP	H ₂ SO ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	Pres			T			Page
Date/Time												Sample Comments	orbic Aci	VasU3	IABIS			н		D	Preservative Codes	Other:					
Tin												mer	d: SA				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Coo			01/0			of

Environment Testing

Page 115 of 177

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 5/22/2023 3:54:11 PM

JOB DESCRIPTION

White City Penn 28 Gas Com (04.15.2019) SDG NUMBER Eddy County, New Mexico

ANALYTICAL REPORT

JOB NUMBER

880-28380-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 5/22/2023 3:54:11 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 117 of 177

.15.2019) SDG: Eddy County, New Mexico **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	25
QC Sample Results	27
QC Association Summary	35
Lab Chronicle	41
Certification Summary	49
Method Summary	50
Sample Summary	51
Chain of Custody	52
Receipt Checklists	55

Definitions/Glossary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Qualifiers

		3
GC VOA		
Qualifier	Qualifier Description	
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	5
*1	LCS/LCSD RPD exceeds control limits.	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VC	A	8
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	Q
U	Indicates the analyte was analyzed for but not detected.	3
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	11
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	

¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Job ID: 880-28380-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-28380-1

Receipt

The samples were received on 5/12/2023 2:48 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -1.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: T-1 (0-1') (880-28380-1), T-1 (1'-1.5') (880-28380-2), T-1 (1.5'-2') (880-28380-3), T-2 (0-1') (880-28380-4), T-2 (1'-1.5') (880-28380-5), T-2 (1.5'-2') (880-28380-6), T-2 (2'-3') (880-28380-7), T-2 (3'-4') (880-28380-8), T-2 (4'-5') (880-28380-9), T-2 (5'-6') (880-28380-10), T-2 (6'-7') (880-28380-11), T-2 (7'-8'') (880-28380-12), T-2 (8'-9') (880-28380-13), T-2 (9'-10') (880-28380-14), T-2 (10'-11') (880-28380-15), T-2 (11'-12') (880-28380-16), T-3 (0-1') (880-28380-17), T-3 (1'-1.5') (880-28380-18), T-3 (1.5'-2') (880-28380-19), T-3 (2'-3') (880-28380-20), T-3 (3'-4) (880-28380-21), T-3 (4'-5') (880-28380-22), T-3 (5'-6') (880-28380-24).

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-53588 recovered above the upper control limit for Benzene, Toluene, Ethylbenzene, m-Xylene & p-Xylene, o-Xylene and Xylenes, Total. The samples associated with this CCV were non-detects for the affected analytes

Method 8021B: Surrogate recovery for the following samples were outside control limits: (CCV 880-53588/2), (CCV 880-53588/20), (CCV 880-53588/33), (LCS 880-53508/1-A) and (LCSD 880-53508/2-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (880-28380-A-1-E MS) and (880-28380-A-1-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: T-1 (0-1') (880-28380-1), T-1 (1'-1.5') (880-28380-2), T-1 (1.5'-2') (880-28380-3), T-2 (0-1') (880-28380-4), T-2 (1'-1.5') (880-28380-5), T-2 (1.5'-2') (880-28380-6), T-2 (2'-3') (880-28380-7), T-2 (3'-4') (880-28380-8), T-2 (4'-5') (880-28380-9) and T-2 (5'-6') (880-28380-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: T-2 (6'-7') (880-28380-11), T-2 (7'-8") (880-28380-12), T-2 (8'-9') (880-28380-13), T-2 (9'-10') (880-28380-14), T-2 (10'-11') (880-28380-15), T-2 (11'-12') (880-28380-16), T-3 (0-1') (880-28380-17), T-3 (1'-1.5') (880-28380-18), T-3 (1.5'-2') (880-28380-19) and T-3 (2'-3') (880-28380-20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample duplicate (LCSD) for preparation batch 880-53508 and analytical batch 880-53588 recovered outside control limits for the following analytes: Benzene, Toluene, m-Xylene & p-Xylene, o-Xylene and Xylenes, Total. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-53508 and analytical batch 880-53588 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: The laboratory control sample duplicate (LCSD) for preparation batch 880-53575 and analytical batch 880-53791 recovered outside control limits for the following analytes: Benzene. These analytes were biased high in the LCSD and were not detected in the associated samples; therefore, the data have been reported.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-53575 and analytical batch 880-53791 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 119 of 177

Case Narrative

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Job ID: 880-28380-1 (Continued)

Laboratory: Eurofins Midland (Continued)

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-53326/15), (CCV 880-53326/31), (CCV 880-53326/42) and (LCSD 880-53388/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-53388 and analytical batch 880-53326 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: T-3 (4'-5') (880-28380-22), T-3 (5'-6') (880-28380-23) and T-3 (6'-7') (880-28380-24). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-53454 and analytical batch 880-53450 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: T-1 (0-1') (880-28380-1), T-1 (1.5'-2') (880-28380-3), T-2 (1'-1.5') (880-28380-5) and T-2 (1.5'-2') (880-28380-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: T-2 (4'-5') (880-28380-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: T-2 (6'-7') (880-28380-11), T-2 (7'-8") (880-28380-12), T-2 (8'-9') (880-28380-13), T-2 (9'-10') (880-28380-14) and T-2 (10'-11') (880-28380-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: T-3 (0-1') (880-28380-17), T-3 (1'-1.5') (880-28380-18), T-3 (1.5'-2') (880-28380-19) and T-3 (2'-3') (880-28380-20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-1 (0-1') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U *+ F1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 15:20	
Toluene	<0.00200	U *+ F1 *- *1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 15:20	
Ethylbenzene	<0.00200	U F1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 15:20	
m-Xylene & p-Xylene	<0.00401	U *+ F1	0.00401		mg/Kg		05/16/23 16:07	05/17/23 15:20	
o-Xylene	<0.00200	U *+ F1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 15:20	
Xylenes, Total	<0.00401	U *+ F1	0.00401		mg/Kg		05/16/23 16:07	05/17/23 15:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	174	S1+	70 - 130				05/16/23 16:07	05/17/23 15:20	
1,4-Difluorobenzene (Surr)	73		70 - 130				05/16/23 16:07	05/17/23 15:20	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			05/18/23 15:49	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			05/17/23 12:07	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 11:11	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 11:11	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 11:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	111		70 - 130				05/16/23 08:19	05/16/23 11:11	
o-Terphenyl	137	S1+	70 - 130				05/16/23 08:19	05/16/23 11:11	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2110		50.2		mg/Kg	_		05/17/23 12:38	1
lient Sample ID: T-1 (1'-1.5	')						Lab Sam	ple ID: 880-2	8380-
ate Collected: 05/11/23 00:00								Motri	x: Soli

-Mothod: SW846 8021B - Volatilo Organic Compounds (CC)

Method: SW846 8021B - Volatil	e Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 15:46	1
Toluene	<0.00200	U *+ *- *1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 15:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/17/23 15:46	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/17/23 15:46	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 15:46	1
Xylenes, Total	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/17/23 15:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	177	S1+	70 - 130				05/16/23 16:07	05/17/23 15:46	1
1,4-Difluorobenzene (Surr)	73		70 - 130				05/16/23 16:07	05/17/23 15:46	1

Eurofins Midland

Page 121 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-1

Matrix: Solid

5

Released to Imaging: 4/26/2024 1:31:09 PM

Matrix: Solid

5

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-2

Client Sample ID: T-1 (1'-1.5')

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 12:16	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 12:16	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 12:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				05/16/23 08:19	05/16/23 12:16	1
o-Terphenyl	129		70 - 130				05/16/23 08:19	05/16/23 12:16	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubi	le						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	405		25.2		mg/Kg			05/17/23 12:54	5

Client Sample ID: T-1 (1.5'-2')

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

ab Sample ID: 880-28380-3 Matrix: Solid

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U *+	0.00199		mg/Kg		05/16/23 16:07	05/17/23 16:11	1
Toluene	<0.00199	U *+ *- *1	0.00199		mg/Kg		05/16/23 16:07	05/17/23 16:11	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/16/23 16:07	05/17/23 16:11	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398		mg/Kg		05/16/23 16:07	05/17/23 16:11	1
o-Xylene	<0.00199	U *+	0.00199		mg/Kg		05/16/23 16:07	05/17/23 16:11	1
Xylenes, Total	<0.00398	U *+	0.00398		mg/Kg		05/16/23 16:07	05/17/23 16:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	205	S1+	70 - 130				05/16/23 16:07	05/17/23 16:11	1
1,4-Difluorobenzene (Surr)	84		70 - 130				05/16/23 16:07	05/17/23 16:11	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/17/23 12:07	1
- Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 12:38	1
Gasoline Range Organics									
(GRO)-C6-C10									
0 0	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 12:38	1

Eurofins Midland

Matrix: Solid

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-3

Client Sample ID: T-1 (1.5'-2')

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Date Collected: 05/11/23 00:00

Client: Carmona Resources

				.n					
Method: SW846 8015B NM - Dies Analyte		Qualifier	(GC) (Continue RL	-	Unit	D	Prepared	Analyzad	Dil Fa
Oll Range Organics (Over C28-C36)			50.0		mg/Kg		05/16/23 08:19	Analyzed 05/16/23 12:38	
	-50.0	0	50.0		mg/itg		03/10/23 00.13	03/10/23 12:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				05/16/23 08:19	05/16/23 12:38	
o-Terphenyl	137	S1+	70 - 130				05/16/23 08:19	05/16/23 12:38	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	109		5.04		mg/Kg			05/17/23 13:00	
lient Sample ID: T-2 (0-1')							Lab Sam	ple ID: 880-2	8380-
ate Collected: 05/11/23 00:00								Matri	ix: Soli
ate Received: 05/12/23 14:48									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U *+	0.00199		mg/Kg		05/16/23 16:07	05/17/23 16:37	
Toluene	<0.00199	U *+ *- *1	0.00199		mg/Kg		05/16/23 16:07	05/17/23 16:37	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/16/23 16:07	05/17/23 16:37	
n-Xylene & p-Xylene	<0.00398	U *+	0.00398		mg/Kg		05/16/23 16:07	05/17/23 16:37	
p-Xylene	< 0.00199	U *+	0.00199		mg/Kg		05/16/23 16:07	05/17/23 16:37	
Xylenes, Total	<0.00398		0.00398		mg/Kg		05/16/23 16:07	05/17/23 16:37	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	193	S1+	70 - 130				05/16/23 16:07	05/17/23 16:37	
1,4-Difluorobenzene (Surr)	78		70 - 130				05/16/23 16:07	05/17/23 16:37	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/18/23 15:49	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			05/17/23 12:07	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 12:59	
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 12:59	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 12:59	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Chlorooctane	106		70 - 130				05/16/23 08:19	05/16/23 12:59	

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10600		250		mg/Kg			05/17/23 13:05	50

Eurofins Midland

Released to Imaging: 4/26/2024 1:31:09 PM

Client Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-2 (1'-1.5') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 17:03	1
Foluene	<0.00200	U *+ *- *1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 17:03	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/17/23 17:03	1
n-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/17/23 17:03	1
p-Xylene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 17:03	1
Kylenes, Total	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/17/23 17:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130				05/16/23 16:07	05/17/23 17:03	1
1,4-Difluorobenzene (Surr)	81		70 - 130				05/16/23 16:07	05/17/23 17:03	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal BTEX	<0.00399	U	0.00399		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sasoline Range Organics	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 13:21	
GRO)-C6-C10									
Diesel Range Organics (Over 210-C28)	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 13:21	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 13:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Chlorooctane	109		70 - 130				05/16/23 08:19	05/16/23 13:21	1
p-Terphenyl	132	S1+	70 - 130				05/16/23 08:19	05/16/23 13:21	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1200		49.6		mg/Kg			05/17/23 13:10	10
lient Sample ID: T-2 (1.5'-2	")						Lab Sam	ple ID: 880-2	8380-6
ate Collected: 05/11/23 00:00								Matri	x: Solid
ate Received: 05/12/23 14:48									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 17:29	1
Benzene	0.00200								
		U *+ *- *1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 17:29	1
Benzene Toluene Ethylbenzene			0.00200 0.00200		mg/Kg mg/Kg		05/16/23 16:07 05/16/23 16:07	05/17/23 17:29 05/17/23 17:29	1

		-					
o-Xylene	<0.00200	U *+	0.00200	mg/Kg	05/16/23 16:07	05/17/23 17:29	1
Xylenes, Total	<0.00401	U *+	0.00401	mg/Kg	05/16/23 16:07	05/17/23 17:29	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)		Qualifier S1+	Limits		Prepared 05/16/23 16:07	Analyzed 05/17/23 17:29	Dil Fac

Page 124 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-5

Matrix: Solid

5

Released to Imaging: 4/26/2024 1:31:09 PM

Matrix: Solid

5

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-6

Client Sample ID: T-2 (1.5'-2')

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 13:42	1
GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 13:42	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 13:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				05/16/23 08:19	05/16/23 13:42	1
p-Terphenyl	133	S1+	70 - 130				05/16/23 08:19	05/16/23 13:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2700		101		mg/Kg			05/17/23 13:16	20

Collected: 05/11/23 Date Received: 05/12/23 14:48

Matrix: Solid

Analyzed

05/17/23 17:54

05/17/23 17:54

05/17/23 17:54

05/17/23 17:54

05/17/23 17:54

Dil Fac

1

1

1

1

1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared
Benzene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07
Toluene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07
m-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07
Xylenes, Total	< 0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07

Xylenes, Total	<0.00399 U*+	0.00399	mg/Kg	05/16/23 16:07	05/17/23 17:54	1
Surrogate	%Recovery Qualit	fier Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	190 S1+	70 - 130		05/16/23 16:07	05/17/23 17:54	1
1,4-Difluorobenzene (Surr)	94	70 - 130		05/16/23 16:07	05/17/23 17:54	1

Method: TAL SOP Total BTEX - 1	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (C	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1650		49.9		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 14:04	1
(GRO)-C6-C10									
Diesel Range Organics (Over	1430		49.9		mg/Kg		05/16/23 08:19	05/16/23 14:04	1
C10-C28)									

Eurofins Midland

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-7

Client Sample ID: T-2 (2'-3')

Client: Carmona Resources

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48								Matri	ix: Solid
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC) (Continue	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	216		49.9		mg/Kg		05/16/23 08:19	05/16/23 14:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				05/16/23 08:19	05/16/23 14:04	1
o-Terphenyl	130		70 - 130				05/16/23 08:19	05/16/23 14:04	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2780		99.8		mg/Kg			05/17/23 13:21	20
Client Sample ID: T-2 (3'-4')							Lab Sam	ple ID: 880-2	8380-8
Date Collected: 05/11/23 00:00								-	ix: Solid
Date Received: 05/12/23 14:48									
-			_						
Method: SW846 8021B - Volatile Analyte		OUNDS (GC Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	-	0.00198		mg/Kg	<u>_</u>	05/16/23 16:07	05/17/23 18:21	1
Toluene	<0.00198		0.00198		mg/Kg		05/16/23 16:07	05/17/23 18:21	1
Ethylbenzene	< 0.00198		0.00198		mg/Kg		05/16/23 16:07	05/17/23 18:21	1
m-Xylene & p-Xylene									1
	< 0.00396		0.00396		mg/Kg		05/16/23 16:07	05/17/23 18:21	1
o-Xylene Xylenes, Total	<0.00198 <0.00396		0.00198 0.00396		mg/Kg mg/Kg		05/16/23 16:07 05/16/23 16:07	05/17/23 18:21 05/17/23 18:21	1
Aylenes, Iolai	<0.00390	0 +	0.00390		iiig/itg		03/10/23 10.07	03/17/23 10.21	
Surrogate	%Recovery	-	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	200	S1+	70 - 130				05/16/23 16:07	05/17/23 18:21	1
1,4-Difluorobenzene (Surr)	93		70 - 130				05/16/23 16:07	05/17/23 18:21	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			05/18/23 15:49	1
- Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	-	49.9		mg/Kg		·	05/17/23 12:07	1
Method: SW846 8015B NM - Dies									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 14:26	1
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 14:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9		49.9		mg/Kg			05/16/23 14:26	1

Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 107 130	Qualifier	Limits 70 - 130 70 - 130				Prepared 05/16/23 08:19 05/16/23 08:19	Analyzed 05/16/23 14:26 05/16/23 14:26	Dil Fac 1 1
Method: EPA 300.0 - Anions, Ion C Analyte Chloride	• •	hy - Soluble Qualifier		MDL	Unit mg/Kg	D	Prepared	Analyzed 05/17/23 13:37	Dil Fac

Eurofins Midland

Released to Imaging: 4/26/2024 1:31:09 PM

Client Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-2 (4'-5') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 18:47	1
oluene	<0.00200	U *+ *- *1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 18:47	1
thylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/17/23 18:47	1
n-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/17/23 18:47	
-Xylene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 18:47	
ylenes, Total	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/17/23 18:47	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	203	S1+	70 - 130				05/16/23 16:07	05/17/23 18:47	
,4-Difluorobenzene (Surr)	86		70 - 130				05/16/23 16:07	05/17/23 18:47	-
Nethod: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal BTEX	<0.00399	U	0.00399		mg/Kg			05/18/23 15:49	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	<50.0	U	50.0		mg/Kg			05/17/23 12:07	
Method: SW846 8015B NM - Dies			· · ·						
nalyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Basoline Range Organics GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 14:47	
Diesel Range Organics (Over 210-C28)	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 14:47	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 14:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	107		70 - 130				05/16/23 08:19	05/16/23 14:47	
-Terphenyl	132	S1+	70 - 130				05/16/23 08:19	05/16/23 14:47	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	4450		99.4		mg/Kg			05/17/23 13:42	20
ient Sample ID: T-2 (5'-6')							Lab Samp	le ID: 880-28	380-10
te Collected: 05/11/23 00:00 te Received: 05/12/23 14:48								Matri	x: Solie
Method: SW846 8021B - Volatile	Organic Comp	ounde (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00199	U *+	0.00199		mg/Kg		05/16/23 16:07	05/17/23 19:13	1
<0.00199	U *+ *- *1	0.00199		mg/Kg		05/16/23 16:07	05/17/23 19:13	1
<0.00199	U	0.00199		mg/Kg		05/16/23 16:07	05/17/23 19:13	1
<0.00398	U *+	0.00398		mg/Kg		05/16/23 16:07	05/17/23 19:13	1
<0.00199	U *+	0.00199		mg/Kg		05/16/23 16:07	05/17/23 19:13	1
<0.00398	U *+	0.00398		mg/Kg		05/16/23 16:07	05/17/23 19:13	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
202	S1+	70 - 130				05/16/23 16:07	05/17/23 19:13	1
79		70 - 130				05/16/23 16:07	05/17/23 19:13	1
	<0.00199 <0.00199 <0.00398 <0.00199 <0.00398 <i>%Recovery</i> 202	<pre><0.00199 U *+ <0.00199 U *+ *- *1 <0.00199 U <0.00199 U <0.00398 U *+ <0.00199 U *+ <0.00398 U *+ <0.00398 U *+ </pre> <pre>%Recovery Qualifier 202 S1+ 79</pre>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} <0.00199 U *+ *- *1 & 0.00199 \\ <0.00199 U & 0.00199 \\ <0.00398 U *+ & 0.00398 \\ <0.00199 U *+ & 0.00199 \\ <0.00398 U *+ & 0.00398 \\ \hline \\ $	<0.00199	<0.00199	<0.00199	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Eurofins Midland

Page 127 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-9

Matrix: Solid

5

Released to Imaging: 4/26/2024 1:31:09 PM

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample Results

Page 128 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-10

Client Sample ID: T-2 (5'-6')

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 15:09	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 15:09	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 15:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	105		70 - 130				05/16/23 08:19	05/16/23 15:09	1
o-Terphenyl	129		70 - 130				05/16/23 08:19	05/16/23 15:09	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4320		100		mg/Kg			05/17/23 13:59	20

Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 20:56	1
Toluene	<0.00200	U *+ *- *1	0.00200		mg/Kg		05/16/23 16:07	05/17/23 20:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/17/23 20:56	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/17/23 20:56	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/17/23 20:56	1
Xylenes, Total	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/17/23 20:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	179	S1+	70 - 130				05/16/23 16:07	05/17/23 20:56	1
1,4-Difluorobenzene (Surr)	78		70 - 130				05/16/23 16:07	05/17/23 20:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Die Analyte		nics (DRO) Qualifier	(<mark>GC)</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 15:53	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 15:53	1

Eurofins Midland

Matrix: Solid

Matrix: Solid

5

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Client Sample ID: T-2 (6'-7') Date Collected: 05/11/23 00:00

Client: Carmona Resources

Method: SW846 8015B NM - Diesel				-					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 15:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	121		70 - 130				05/16/23 08:19	05/16/23 15:53	
o-Terphenyl	142	S1+	70 - 130				05/16/23 08:19	05/16/23 15:53	
Method: EPA 300.0 - Anions, Ion Cl Analyte		hy - Soluble Qualifier	e RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	5860		101		mg/Kg			05/17/23 14:04	2
							L		000 4
Client Sample ID: T-2 (7'-8")							Lab Samp	le ID: 880-28	
Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48								Matri	x: Solid
Method: SW846 8021B - Volatile Or	manic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U *+	0.00201		mg/Kg		05/16/23 16:07	05/17/23 21:22	
Toluene	<0.00201	U *+ *- *1	0.00201		mg/Kg		05/16/23 16:07	05/17/23 21:22	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		05/16/23 16:07	05/17/23 21:22	
m-Xylene & p-Xylene	< 0.00402		0.00402		mg/Kg		05/16/23 16:07	05/17/23 21:22	
o-Xylene	<0.00201	U *+	0.00201		mg/Kg		05/16/23 16:07	05/17/23 21:22	
Xylenes, Total	<0.00201		0.00402		mg/Kg		05/16/23 16:07	05/17/23 21:22	
	~0.00402	0 +	0.00402		ilig/itg		03/10/23 10.07	03/11/23 21.22	
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	221	S1+	70 - 130				05/16/23 16:07	05/17/23 21:22	
1,4-Difluorobenzene (Surr)	84		70 - 130				05/16/23 16:07	05/17/23 21:22	
Method: TAL SOP Total BTEX - Tota	al BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			05/18/23 15:49	
Method: SW846 8015 NM - Diesel R									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0		50.0		mg/Kg			05/17/23 12:07	
-	_								
Method: SW846 8015B NM - Diesel	• •								
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:14	
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:14	
C10-C28)	~=0.0		50.0		malka		05/16/22 00.10	05/16/22 16.14	
Oll Range Organics (Over C28-C36)	<50.0	0	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	125		70 - 130				05/16/23 08:19	05/16/23 16:14	
o-Terphenyl	147	S1+	70 - 130				05/16/23 08:19	05/16/23 16:14	
Method: EPA 300.0 - Anions, Ion Cl	hromatograp	hy - Soluble	•						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
			100		mg/Kg			05/17/23 14:09	2

Lab Sample ID: 880-28380-11 Matrix: Solid 5

Page 15 of 55

Client Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-2 (8'-9') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *+	0.00201		mg/Kg		05/16/23 16:07	05/17/23 21:48	1
Toluene	<0.00201	U *+ *- *1	0.00201		mg/Kg		05/16/23 16:07	05/17/23 21:48	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		05/16/23 16:07	05/17/23 21:48	1
n-Xylene & p-Xylene	<0.00402	U *+	0.00402		mg/Kg		05/16/23 16:07	05/17/23 21:48	1
o-Xylene	<0.00201	U *+	0.00201		mg/Kg		05/16/23 16:07	05/17/23 21:48	1
Kylenes, Total	<0.00402	U *+	0.00402		mg/Kg		05/16/23 16:07	05/17/23 21:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	202	S1+	70 - 130				05/16/23 16:07	05/17/23 21:48	1
1,4-Difluorobenzene (Surr)	77		70 - 130				05/16/23 16:07	05/17/23 21:48	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal BTEX	<0.00402	U	0.00402		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:36	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:36	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				05/16/23 08:19	05/16/23 16:36	1
o-Terphenyl	135	S1+	70 - 130				05/16/23 08:19	05/16/23 16:36	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4140		101		mg/Kg			05/17/23 14:15	20
lient Sample ID: T-2 (9'-10')						Lab Samp	le ID: 880-28	380-14
ate Collected: 05/11/23 00:00								Matri	x: Solid
ate Received: 05/12/23 14:48									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U *+	0.00198		mg/Kg		05/16/23 16:07	05/17/23 22:13	1
Toluene	<0.00198	U *+ *- *1	0.00198		mg/Kg		05/16/23 16:07	05/17/23 22:13	1

m-Xylene & p-Xylene <0.00396 U*+ 0.00396 05/16/23 16:07 05/17/23 22:13 mg/Kg 1 <0.00198 U*+ 0.00198 o-Xylene mg/Kg 05/16/23 16:07 05/17/23 22:13 1 Xylenes, Total <0.00396 U*+ 0.00396 05/16/23 16:07 05/17/23 22:13 mg/Kg 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 4-Bromofluorobenzene (Surr) 205 S1+ 70 - 130 05/16/23 16:07 05/17/23 22:13 1 1,4-Difluorobenzene (Surr) 78 70 - 130 05/16/23 16:07 05/17/23 22:13 1

Eurofins Midland

Page 130 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-13

Matrix: Solid

5

Released to Imaging: 4/26/2024 1:31:09 PM

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Matrix: Solid

5

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-14

Client Sample ID: T-2 (9'-10')

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:58	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:58	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 16:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	116		70 - 130				05/16/23 08:19	05/16/23 16:58	1
o-Terphenyl	138	S1+	70 - 130				05/16/23 08:19	05/16/23 16:58	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1920		50.2		mg/Kg			05/17/23 14:20	10

Client Sample ID: T-2 (10'-11')

Date Collected: 05/11/23 00:00

Lab Sample ID: 880-28380-15 Matrix: Solid

Date Received: 05/12/23 14:48

ile Organic Comp	ounds (GC)	l						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00199	U *+	0.00199		mg/Kg		05/16/23 16:07	05/17/23 22:39	1
<0.00199	U *+ *- *1	0.00199		mg/Kg		05/16/23 16:07	05/17/23 22:39	1
<0.00199	U	0.00199		mg/Kg		05/16/23 16:07	05/17/23 22:39	1
<0.00398	U *+	0.00398		mg/Kg		05/16/23 16:07	05/17/23 22:39	1
<0.00199	U *+	0.00199		mg/Kg		05/16/23 16:07	05/17/23 22:39	1
<0.00398	U *+	0.00398		mg/Kg		05/16/23 16:07	05/17/23 22:39	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
211	S1+	70 - 130				05/16/23 16:07	05/17/23 22:39	1
83		70 - 130				05/16/23 16:07	05/17/23 22:39	1
	Result <0.00199	Result Qualifier <0.00199	<0.00199	$\begin{tabular}{ c c c c c } \hline Result & Qualifier & RL & MDL \\ \hline <0.00199 & U & & 0.00199 \\ \hline <0.00199 & U & & 0.00199 \\ \hline <0.00199 & U & & 0.00199 \\ \hline <0.00398 & U & & & 0.00398 \\ \hline <0.00199 & U & & & 0.00398 \\ \hline <0.00398 & U & & & & 0.00398 \\ \hline \\ \hline & & & & & & & & & & & & & & & &$	Result Qualifier RL MDL Unit <0.00199	Result Qualifier RL MDL Unit D <0.00199	Result Qualifier RL MDL Unit D Prepared <0.00199	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			05/17/23 12:07	1
			(GC)						
Method: SW846 8015B NM - Die	esel Range Orga	IIICS (DRO)	(00)						
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	· · /	MDL	Unit mg/Kg	<u>D</u>	Prepared 05/16/23 08:19	Analyzed 05/16/23 17:20	Dil Fac
Analyte Gasoline Range Organics	Result	Qualifier		MDL		<u>D</u>	·		Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier U		MDL		<u> </u>	·		Dil Fac

Eurofins Midland

Released to Imaging: 4/26/2024 1:31:09 PM

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Matrix: Solid

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-15

05/16/23 16:07 05/17/23 23:05

Client Sample ID: T-2 (10'-11')

Date Collected: 05/11/23 00:00

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 17:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	118		70 - 130				05/16/23 08:19	05/16/23 17:20	1
o-Terphenyl	140	S1+	70 - 130				05/16/23 08:19	05/16/23 17:20	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1560		49.8		mg/Kg			05/17/23 14:25	10
ate Collected: 05/11/23 00:00	2')						Lab Samp	le ID: 880-28 Matri	
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48		ounds (GC)					Lab Samp		
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48 Method: SW846 8021B - Volatile	Organic Comp	ounds (GC) Qualifier	RL	MDL	Unit	D	Lab Samp		ix: Solic
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48 Method: SW846 8021B - Volatile Analyte	Organic Comp			MDL	Unit mg/Kg	<u>D</u>		Matri	ix: Solic
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48 Method: SW846 8021B - Volatile Analyte Benzene	Organic Comp Result <0.00200	Qualifier	RL	MDL		<u>D</u>	Prepared	Matri Analyzed	ix: Solic
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Organic Comp Result <0.00200	Qualifier U *+ U *+	RL 0.00200	MDL	mg/Kg	<u>D</u>	Prepared 05/16/23 16:07	Matri Analyzed 05/17/23 23:05	ix: Solic
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Organic Comp Result <0.00200 <0.00200 <0.00200	Qualifier U *+ U *+	RL 0.00200 0.00200	MDL	mg/Kg mg/Kg	<u>D</u>	Prepared 05/16/23 16:07 05/16/23 16:07	Matri Analyzed 05/17/23 23:05 05/17/23 23:05	ix: Solic
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Organic Comp Result <0.00200 <0.00200 <0.00200 <0.00200 <0.00399	Qualifier U *+ U *+ U	RL 0.00200 0.00200 0.00200	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 05/16/23 16:07 05/16/23 16:07 05/16/23 16:07	Matri Analyzed 05/17/23 23:05 05/17/23 23:05 05/17/23 23:05	ix: Solic
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Organic Comp Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200	Qualifier U *+ U *+ U U *+ U	RL 0.00200 0.00200 0.00200 0.00200 0.00399	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 05/16/23 16:07 05/16/23 16:07 05/16/23 16:07 05/16/23 16:07	Matri Analyzed 05/17/23 23:05 05/17/23 23:05 05/17/23 23:05 05/17/23 23:05	ix: Solic
Client Sample ID: T-2 (11'-1 Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Organic Comp Result <0.00200 <0.00200 <0.00200 <0.00399 <0.00200	Qualifier U *+ U *+ U *+ U *+ U *+ U *+ U *+	RL 0.00200 0.00200 0.00200 0.00399 0.00200	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 05/16/23 16:07 05/16/23 16:07 05/16/23 16:07 05/16/23 16:07 05/16/23 16:07	Matri Analyzed 05/17/23 23:05 05/17/23 23:05 05/17/23 23:05 05/17/23 23:05 05/17/23 23:05	380-16 ix: Solid Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1,4-Difluorobenzene (Surr)	91	

Method:	TAL SOP	Total	BTEX	- Tota	al BTE)	Calc	ulatio	n

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/18/23 15:49	1

70 - 130

Method: SW846 8015 NM - Diesel R	Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/17/23 12:07	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 17:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 17:42	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/16/23 08:19	05/16/23 17:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 _ 130				05/16/23 08:19	05/16/23 17:42	1
o-Terphenyl	127		70 - 130				05/16/23 08:19	05/16/23 17:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1170		50.3		mg/Kg			05/17/23 14:31	10

Eurofins Midland

5

1

Client Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-3 (0-1') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Method: SW846 8021B - Volatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198		0.00198		mg/Kg		05/16/23 16:07	05/17/23 23:31	1
Toluene		U *+ *- *1	0.00198		mg/Kg		05/16/23 16:07	05/17/23 23:31	1
Ethylbenzene	< 0.00198		0.00198		mg/Kg		05/16/23 16:07	05/17/23 23:31	1
n-Xylene & p-Xylene	< 0.00397		0.00397		mg/Kg		05/16/23 16:07	05/17/23 23:31	
p-Xylene	< 0.00198		0.00198		mg/Kg		05/16/23 16:07	05/17/23 23:31	1
Xylenes, Total	< 0.00397		0.00397		mg/Kg		05/16/23 16:07	05/17/23 23:31	1
	~0.00397	0 +	0.00397		mg/ng		03/10/23 10.07	03/17/23 23:31	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	210	S1+	70 - 130				05/16/23 16:07	05/17/23 23:31	1
1,4-Difluorobenzene (Surr)	84		70 - 130				05/16/23 16:07	05/17/23 23:31	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	126		49.9		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics ′GRO)-C6-C10	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 18:04	1
Diesel Range Organics (Over C10-C28)	126		49.9		mg/Kg		05/16/23 08:19	05/16/23 18:04	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				05/16/23 08:19	05/16/23 18:04	1
o-Terphenyl	132	S1+	70 - 130				05/16/23 08:19	05/16/23 18:04	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7020		101		mg/Kg			05/18/23 17:34	20
lient Sample ID: T-3 (1'-1.5	5')						Lab Samp	le ID: 880-28	380-18
ate Collected: 05/11/23 00:00								Matri	ix: Solid
ate Received: 05/12/23 14:48									
Method: SW846 8021B - Volatile						_	. .	.	-
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *+	0.00201		mg/Kg		05/16/23 16:07	05/17/23 23:57	1
Toluene		U *+ *- *1	0.00201		mg/Kg		05/16/23 16:07	05/17/23 23:57	1
Ethylbenzene	<0.00201		0.00201		mg/Kg		05/16/23 16:07	05/17/23 23:57	1
m-Xylene & p-Xylene	<0.00402		0.00402		mg/Kg		05/16/23 16:07	05/17/23 23:57	1
o-Xvlene	<0.00201	11 *+	0.00201		ma/Ka		05/16/23 16:07	05/17/23 23:57	1

Page 133 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-17

Matrix: Solid

5

Released to Imaging: 4/26/2024 1:31:09 PM

Client Sample Results

Page 134 of 177

Matrix: Solid

5

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-18

Client Sample ID: T-3 (1'-1.5')

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 18:25	1
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 18:25	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 18:25	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				05/16/23 08:19	05/16/23 18:25	1
o-Terphenyl	136	S1+	70 - 130				05/16/23 08:19	05/16/23 18:25	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	2240		50.2		mg/Kg			05/19/23 14:00	10

Client Sample ID: T-3 (1.5'-2')

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Lab Sample ID: 880-28380-19 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/18/23 00:22	1
Toluene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/18/23 00:22	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/18/23 00:22	1
m-Xylene & p-Xylene	<0.00401	U *+	0.00401		mg/Kg		05/16/23 16:07	05/18/23 00:22	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/18/23 00:22	1
Xylenes, Total	<0.00401	U *+	0.00401		mg/Kg		05/16/23 16:07	05/18/23 00:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	195	S1+	70 - 130				05/16/23 16:07	05/18/23 00:22	1
1,4-Difluorobenzene (Surr)	80		70 - 130				05/16/23 16:07	05/18/23 00:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			05/18/23 15:49	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			05/17/23 12:07	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			49.9		mg/Kg		05/16/23 08:19	05/16/23 18:46	1
Gasoline Range Organics	<49.9	U	49.9						
0 0	<49.9	U	49.9						
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.9 <49.9		49.9 49.9		mg/Kg		05/16/23 08:19	05/16/23 18:46	1

Eurofins Midland

Matrix: Solid

5

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-19

Client Sample ID: T-3 (1.5'-2')

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/16/23 08:19	05/16/23 18:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	112		70 - 130				05/16/23 08:19	05/16/23 18:46	
	141 hromatograp	S1+ I <mark>hy - Solubl</mark>	70 ₋ 130 e				05/16/23 08:19	05/16/23 18:46	
o-Terphenyl Method: EPA 300.0 - Anions, Ion C Analyte	hromatograp			MDL	Unit	D	05/16/23 08:19 Prepared	05/16/23 18:46 Analyzed	Dil Fa
Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	e	MDL	Unit mg/Kg	D			Dil Fac
Method: EPA 300.0 - Anions, Ion C Analyte Chloride	hromatograp Result	hy - Solubl	e	MDL		D	Prepared	Analyzed	1
Method: EPA 300.0 - Anions, Ion C Analyte	hromatograp Result	hy - Solubl	e	MDL		<u>D</u>	Prepared	Analyzed 05/19/23 14:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/18/23 00:48	1
Toluene	<0.00200	U *+ *- *1	0.00200		mg/Kg		05/16/23 16:07	05/18/23 00:48	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/18/23 00:48	1
m-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/18/23 00:48	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		05/16/23 16:07	05/18/23 00:48	1
Xylenes, Total	<0.00399	U *+	0.00399		mg/Kg		05/16/23 16:07	05/18/23 00:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	219	S1+	70 - 130				05/16/23 16:07	05/18/23 00:48	1
1,4-Difluorobenzene (Surr)	86		70 - 130				05/16/23 16:07	05/18/23 00:48	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			05/18/23 15:49	1

Method: SW846 8015 NM - Diesel R	ange Organi	ics (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			05/17/23 12:07	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 19:08	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 19:08	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		05/16/23 08:19	05/16/23 19:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	111		70 - 130				05/16/23 08:19	05/16/23 19:08	1
o-Terphenyl	136	S1+	70 - 130				05/16/23 08:19	05/16/23 19:08	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	678		4.98		mg/Kg			05/18/23 18:10	1

Client Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-3 (3'-4) Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Method: SW846 8021B - Volatile Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	- <u><0.00201</u>	-	0.00201		mg/Kg	<u></u>	05/17/23 10:45	05/21/23 00:27	1
Foluene	<0.00201		0.00201				05/17/23 10:45	05/21/23 00:27	1
			0.00201		mg/Kg				
Ethylbenzene	< 0.00201				mg/Kg		05/17/23 10:45	05/21/23 00:27	1
m-Xylene & p-Xylene	< 0.00402		0.00402		mg/Kg		05/17/23 10:45	05/21/23 00:27	1
o-Xylene	<0.00201		0.00201		mg/Kg		05/17/23 10:45	05/21/23 00:27	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		05/17/23 10:45	05/21/23 00:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				05/17/23 10:45	05/21/23 00:27	1
1,4-Difluorobenzene (Surr)	93		70 - 130				05/17/23 10:45	05/21/23 00:27	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			05/22/23 12:48	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (G	iC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			05/16/23 12:24	1
0 0		Qualifier	<u></u> 49.8	MDL	Unit mg/Kg	D	Prepared 05/15/23 13:21	Analyzed 05/15/23 23:22	Dil Fac 1
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		05/15/23 13:21	05/15/23 23:22	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		05/15/23 13:21	05/15/23 23:22	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		05/15/23 13:21	05/15/23 23:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				05/15/23 13:21	05/15/23 23:22	1
o-Terphenyl	129		70 - 130				05/15/23 13:21	05/15/23 23:22	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Soluble)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1060		5.03		mg/Kg			05/18/23 18:15	1
lient Sample ID: T-3 (4'-5')							Lab Samp	le ID: 880-28	380-22
ate Collected: 05/11/23 00:00 ate Received: 05/12/23 14:48							-	Matri	ix: Solid
	Ormenta Oraș								
Method: SW846 8021B - Volatile Analyte	• •	ounds (GC) Qualifier	RL	МОІ	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200		mg/Kg		05/17/23 10:45	05/21/23 00:47	1
Toluene	<0.00200	-	0.00200		mg/Kg		05/17/23 10:45	05/21/23 00:47	1
	~0.00200	0	0.00200		inging		00/11/20 10.40	00/21/20 00.47	1

1,4-Difluorobenzene (Surr)	97		70 - 130		05/17/23 10:45	05/21/23 00:47	1
4-Bromofluorobenzene (Surr)	86		70 - 130		05/17/23 10:45	05/21/23 00:47	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00401	U	0.00401	mg/Kg	05/17/23 10:45	05/21/23 00:47	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	05/17/23 10:45	05/21/23 00:47	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg	05/17/23 10:45	05/21/23 00:47	1

0.00200

mg/Kg

05/17/23 10:45

<0.00200 U

05/21/23 00:47

Page 136 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-21

Matrix: Solid

5

Released to Imaging: 4/26/2024 1:31:09 PM

Ethylbenzene

1

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Matrix: Solid

5

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-22

Client Sample ID: T-3 (4'-5') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			05/22/23 12:48	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	115		49.9		mg/Kg			05/16/23 12:24	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		05/15/23 13:21	05/15/23 23:43	1
Diesel Range Organics (Over	115		49.9		mg/Kg		05/15/23 13:21	05/15/23 23:43	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/15/23 13:21	05/15/23 23:43	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	108		70 - 130				05/15/23 13:21	05/15/23 23:43	1
o-Terphenyl	131	S1+	70 - 130				05/15/23 13:21	05/15/23 23:43	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5470		101		mg/Kg			05/18/23 18:20	20

Client Sample ID: T-3 (5'-6')

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48 Lab Sample ID: 880-28380-23 Matrix: Solid

Jate	Received:	05/12/23	14:48	
_				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U *+	0.00199		mg/Kg		05/17/23 10:45	05/21/23 01:08	1
Toluene	<0.00199	U	0.00199		mg/Kg		05/17/23 10:45	05/21/23 01:08	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/17/23 10:45	05/21/23 01:08	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		05/17/23 10:45	05/21/23 01:08	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		05/17/23 10:45	05/21/23 01:08	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		05/17/23 10:45	05/21/23 01:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				05/17/23 10:45	05/21/23 01:08	1
1,4-Difluorobenzene (Surr)	95		70 - 130				05/17/23 10:45	05/21/23 01:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			05/22/23 12:48	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			05/16/23 12:24	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		05/15/23 13:21	05/16/23 00:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		05/15/23 13:21	05/16/23 00:05	1

Eurofins Midland

Page 1

Project/Site: White City Penn 28 Gas Com (04.15.2019)

Matrix: Solid

5

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-23

Client Sample ID: T-3 (5'-6') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:4

Client: Carmona Resources

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC) (Continue	ed)					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/15/23 13:21	05/16/23 00:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	107		70 - 130				05/15/23 13:21	05/16/23 00:05	
o-Terphenyl	132	S1+	70 - 130				05/15/23 13:21	05/16/23 00:05	
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Soluble	`						
Analyte	· · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	490		5.03		mg/Kg			05/18/23 18:26	
lient Sample ID: T-3 (6'-7')							Lab Samp	le ID: 880-28	380-24
ate Collected: 05/11/23 00:00									ix: Soli
ate Received: 05/12/23 14:48									
Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U *+	0.00199		mg/Kg		05/17/23 10:45	05/21/23 01:28	
Toluene	<0.00199	U	0.00199		mg/Kg		05/17/23 10:45	05/21/23 01:28	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		05/17/23 10:45	05/21/23 01:28	
m-Xylene & p-Xylene	<0.00398		0.00398		mg/Kg		05/17/23 10:45	05/21/23 01:28	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		05/17/23 10:45	05/21/23 01:28	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		05/17/23 10:45	05/21/23 01:28	
Crume mete	% Decession	Qualifiar	Limits				Dramawad	Analyzed	
Surrogate 4-Bromofluorobenzene (Surr)	% Recovery 92	Quaimer	70 - 130				Prepared 05/17/23 10:45	Analyzed 05/21/23 01:28	Dil Fa
1,4-Difluorobenzene (Surr)	92 94		70 - 130 70 - 130				05/17/23 10:45	05/21/23 01:28	
			10-100				00,11/2010.10	00/21/20 01:20	
Method: TAL SOP Total BTEX - To Analyte		culation Qualifier	RL	MDL	Unit	D	Prepared	Analyzod	Dil Fa
Analyte Total BTEX	- Result <0.00398		0.00398	MDL	mg/Kg		Prepared	Analyzed 05/22/23 12:48	
	~0.00390	0	0.00390		mg/rtg			03/22/23 12.40	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			05/16/23 12:24	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		05/15/23 13:21	05/16/23 00:26	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		05/15/23 13:21	05/16/23 00:26	
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		05/15/23 13:21	05/16/23 00:26	
Surrogate	%Recovery 123	Qualitier					Prepared	Analyzed	Dil Fa
1-Chlorooctane		64	70 - 130 70 - 130				05/15/23 13:21	05/16/23 00:26	
o-Terphenyl	145	S1+	70 - 130				05/15/23 13:21	05/16/23 00:26	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Soluble	•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	95.7		4.97		mg/Kg			05/18/23 18:31	

Lab Sample ID

880-28380-1 MS

880-28380-1 MSD

880-28380-1

880-28380-2

880-28380-3

880-28380-4

Surrogate Summary

DFBZ1

(70-130)

73

94

98

73

84

78

BFB1

(70-130)

174 S1+

189 S1+

192 S1+

177 S1+

205 S1+

193 S1+

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Client Sample ID

T-1 (0-1')

T-1 (0-1')

T-1 (0-1')

T-1 (1'-1.5')

T-1 (1.5'-2')

T-2 (0-1')

880-28380-5 T-2 (1'-1.5') 205 S1+ 81 880-28380-6 T-2 (1.5'-2') 195 S1+ 78 880-28380-7 T-2 (2'-3') 190 S1+ 94 880-28380-8 200 S1+ 93 T-2 (3'-4') 880-28380-9 T-2 (4'-5') 203 S1+ 86 880-28380-10 79 T-2 (5'-6') 202 S1+ 880-28380-11 T-2 (6'-7') 179 S1+ 78 880-28380-12 T-2 (7'-8") 221 S1+ 84 880-28380-13 T-2 (8'-9') 202 S1+ 77 880-28380-14 T-2 (9'-10') 205 S1+ 78 880-28380-15 T-2 (10'-11') 211 S1+ 83 880-28380-16 T-2 (11'-12') 198 S1+ 91 880-28380-17 T-3 (0-1') 210 S1+ 84 880-28380-18 T-3 (1'-1.5') 205 S1+ 86 880-28380-19 T-3 (1.5'-2') 195 S1+ 80 880-28380-20 T-3 (2'-3') 219 S1+ 86 880-28380-21 T-3 (3'-4) 86 93 880-28380-22 T-3 (4'-5') 86 97 880-28380-23 T-3 (5'-6') 91 95 880-28380-24 T-3 (6'-7') 92 94 880-28403-A-1-G MS Matrix Spike 96 118 880-28403-A-1-H MSD Matrix Spike Duplicate 97 101 LCS 880-53508/1-A Lab Control Sample 133 S1+ 64 S1-LCS 880-53575/1-A Lab Control Sample 89 107 LCSD 880-53508/2-A Lab Control Sample Dup 162 S1+ 89 116 LCSD 880-53575/2-A Lab Control Sample Dup 94 MB 880-53508/5-A Method Blank 80 102 MB 880-53575/5-A Method Blank 88 110

91

Surrogate Legend

MB 880-53741/5-A

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Method Blank

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
80-28380-1	T-1 (0-1')	111	137 S1+	
80-28380-1 MS	T-1 (0-1')	107	122	
880-28380-1 MSD	T-1 (0-1')	106	117	
880-28380-2	T-1 (1'-1.5')	106	129	

95

Eurofins Midland

Percent Surrogate Recovery (Acceptance Limits)

5 6

Prep Type: Total/NA

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Client: Carmona Resources

Surrogate Summary

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Project/Site: White City Penn 28 Gas Com (04.15.2019) Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-28380-3	T-1 (1.5'-2')	119	137 S1+		
880-28380-4	T-2 (0-1')	106	129		6
880-28380-5	T-2 (1'-1.5')	109	132 S1+		0
880-28380-6	T-2 (1.5'-2')	108	133 S1+		
880-28380-7	T-2 (2'-3')	111	130		
880-28380-8	T-2 (3'-4')	107	130		
880-28380-9	T-2 (4'-5')	107	132 S1+		8
880-28380-10	T-2 (5'-6')	105	129		
880-28380-11	T-2 (6'-7')	121	142 S1+		9
880-28380-12	T-2 (7'-8")	125	147 S1+		
880-28380-13	T-2 (8'-9')	108	135 S1+		
880-28380-14	T-2 (9'-10')	116	138 S1+		
880-28380-15	T-2 (10'-11')	118	140 S1+		
880-28380-16	T-2 (11'-12')	101	127		
880-28380-17	T-3 (0-1')	109	132 S1+		
880-28380-18	T-3 (1'-1.5')	110	136 S1+		
880-28380-19	T-3 (1.5'-2')	112	141 S1+		
880-28380-20	T-3 (2'-3')	111	136 S1+		13
880-28380-21	T-3 (3'-4)	105	129		
880-28380-22	T-3 (4'-5')	108	131 S1+		
880-28380-23	T-3 (5'-6')	107	132 S1+		
880-28380-24	T-3 (6'-7')	123	145 S1+		
890-4653-A-1-C MS	Matrix Spike	102	115		
890-4653-A-1-D MSD	Matrix Spike Duplicate	102	113		
LCS 880-53388/2-A	Lab Control Sample	105	127		
LCS 880-53454/2-A	Lab Control Sample	96	113		
LCSD 880-53388/3-A	Lab Control Sample Dup	99	131 S1+		
LCSD 880-53454/3-A	Lab Control Sample Dup	99	125		
MB 880-53388/1-A	Method Blank	145 S1+	188 S1+		
MB 880-53454/1-A	Method Blank	152 S1+	195 S1+		
Surragata Lagand					

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

Lab Sample ID: MB 880-53508/5-A

QC Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 53588								Prep Type: 1 Prep Batch	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/17/23 14:52	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/17/23 14:52	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/17/23 14:52	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		05/16/23 16:07	05/17/23 14:52	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/16/23 16:07	05/17/23 14:52	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		05/16/23 16:07	05/17/23 14:52	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				05/16/23 16:07	05/17/23 14:52	1
1,4-Difluorobenzene (Surr)	80		70 - 130				05/16/23 16:07	05/17/23 14:52	1

Lab Sample ID: LCS 880-53508/1-A Matrix: Solid

Analysis Batch: 53588

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1040		mg/Kg		104	70 - 130	_
Toluene	0.100	0.1149		mg/Kg		115	70 - 130	
Ethylbenzene	0.100	0.1057		mg/Kg		106	70 - 130	
m-Xylene & p-Xylene	0.200	0.2384		mg/Kg		119	70 - 130	
o-Xylene	0.100	0.1089		mg/Kg		109	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130
1,4-Difluorobenzene (Surr)	64	S1-	70 - 130

Lab Sample ID: LCSD 880-53508/2-A

Matrix: Solid

Analysis Batch: 53588							Prep	Batch:	53508
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1329	*+	mg/Kg		133	70 - 130	24	35
Toluene	0.100	0.1470	*+	mg/Kg		147	70 - 130	24	35
Ethylbenzene	0.100	0.1299		mg/Kg		130	70 - 130	21	35
m-Xylene & p-Xylene	0.200	0.2952	*+	mg/Kg		148	70 - 130	21	35
o-Xylene	0.100	0.1344	*+	mg/Kg		134	70 - 130	21	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	162	S1+	70 - 130
1,4-Difluorobenzene (Surr)	89		70 _ 130

Lab Sample ID: 880-28380-1 MS Matrix: Solid

Analysis Batch: 53588									Prep	Batch: 53508
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U *+ F1	0.0996	0.1506	F1	mg/Kg		151	70 - 130	

SDG: Eddy County, New Mexico

Client Sample ID: Method Blank

Job ID: 880-28380-1

Page 141 of 177

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 53508

Eurofins	Midland

Client Sample ID: T-1 (0-1')

Prep Type: Total/NA

QC Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-28380-1 Matrix: Solid	IMS									Clie	nt Sample ID Prep Type	e: To	tal/NA
Analysis Batch: 53588	•	-	_								Prep Ba	tcn:	53508
• • •	Sample		•	Spike		MS			_	~-	%Rec		
Analyte	Result			Added	Result		lifier	Unit			Limits		
Toluene	<0.00200		F1 *-	0.0996	0.1616	F1		mg/Kg		162	70 - 130		
Ethylbenzene	<0.00200	*1		0.0996	0.1442	⊑1		mg/Kg		145	70 - 130		
m-Xylene & p-Xylene	<0.00200			0.199	0.3277			mg/Kg		145	70 - 130		
				0.0996	0.3277					153	70 - 130		
o-Xylene	<0.00200	0 +	ΓI	0.0990	0.1520	ΓI		mg/Kg		105	70 - 130		
	MS	MS											
Surrogate	%Recovery	Qua	lifier	Limits									
4-Bromofluorobenzene (Surr)	189	S1+		70 - 130									
1,4-Difluorobenzene (Surr)	94			70 - 130									
Lab Sample ID: 880-28380-1 Matrix: Solid	I MSD									Clie	nt Sample ID Prep Type	e: To	tal/NA
Analysis Batch: 53588											Prep Ba	tch:	
	Sample		•	Spike		MSD					%Rec		RPD
Analyte	Result			Added	Result		lifier	Unit				RPD	Limit
Benzene	<0.00200			0.0990	0.1516			mg/Kg		153	70 - 130	1	35
Toluene	<0.00200	U *+ *1	F1 *-	0.0990	0.1555	F1		mg/Kg		157	70 - 130	4	35
Ethylbenzene	<0.00200			0.0990	0.1411	F1		mg/Kg		142	70 - 130	2	35
m-Xylene & p-Xylene	<0.00401	U *+	F1	0.198	0.3176	F1		mg/Kg		160	70 - 130	3	35
o-Xylene	<0.00200	U *+	F1	0.0990	0.1415	F1		mg/Kg		143	70 - 130	7	35
	MSD												
Surrogate	%Recovery	Qua S1+	lifier	Limits									
4-Bromofluorobenzene (Surr)		51+		70 - 130									
1,4-Difluorobenzene (Surr)	98			70 - 130									
Lab Sample ID: MB 880-535	75/5-A									Client Sa	ample ID: Met	hod	Blank
Matrix: Solid											Prep Type	: To	tal/NA
Analysis Batch: 53791											Prep Ba	tch:	53575
		MB	МВ										
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	Prepared	Analyzed		Dil Fac
Benzene	<0.0	0200	U	0.00200			mg/K	9	05	/17/23 10:45	05/20/23 19:0	4	1
Toluene	<0.0	0200	U	0.00200			mg/Kg	g	05	/17/23 10:45	05/20/23 19:0	4	1
Ethylbenzene	<0.0	0200	U	0.00200			mg/Kg	g	05	/17/23 10:45	05/20/23 19:0	4	1
m-Xylene & p-Xylene	<0.0	0400	U	0.00400			mg/K		05	/17/23 10:45	05/20/23 19:0	4	1
o-Xylene		0200		0.00200			mg/Kg			/17/23 10:45	05/20/23 19:0		1
Xylenes, Total		0400		0.00400			mg/Kg			/17/23 10:45	05/20/23 19:0		1
								5					
			МВ										
Surrogate	%Reco		Qualifier	Limits						Prepared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)		88		70 - 130						/17/23 10:45	05/20/23 19:0		1
1,4-Difluorobenzene (Surr)		110		70 - 130					05	/17/23 10:45	05/20/23 19:0	4	1
Lab Sample ID: LCS 880-53	575/1-A								Clie	nt Sample	ID: Lab Conti	ol Sa	ample
Matrix: Solid											Prep Type		
Analysis Batch: 53791											Prep Ba		
Anarysis Buton. 00101				Spike	109	LCS					%Rec		
Analyte				Added	Result			Unit	D	%Rec	Limits		
					Nesult	Gudi				/01100			

Page 142 of 177

Eurofins Midland

Benzene

0.1303

mg/Kg

130

70 - 130

0.100

QC Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-53	575/1-A						Client	Sample	D: Lab C		
Matrix: Solid										Гуре: То	
Analysis Batch: 53791										Batch:	5357
			Spike		LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Toluene			0.100	0.1118		mg/Kg		112	70 - 130		
Ethylbenzene			0.100	0.09809		mg/Kg		98	70 - 130		
m-Xylene & p-Xylene			0.200	0.1903		mg/Kg		95	70 - 130		
o-Xylene			0.100	0.08702		mg/Kg		87	70 - 130		
	105	LCS									
Surrogate	%Recovery		Limits								
4-Bromofluorobenzene (Surr)		Quanner	70 - 130								
1,4-Difluorobenzene (Surr)	107		70 - 130 70 - 130								
	101		10 - 150								
Lab Sample ID: LCSD 880-5	3575/2-4					Cli	ent San	nle ID [.] I	Lab Contro		e Du
Matrix: Solid						•	one oun			Type: To	
Analysis Batch: 53791										Batch:	
Analysis Batch. 00701			Spike	LCSD	LCSD				%Rec	Baten.	RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene			0.100	0.1383		mg/Kg		138	70 - 130	6	3
Toluene			0.100	0.1191		mg/Kg		119	70 - 130	6	3
Ethylbenzene			0.100	0.1042		mg/Kg		104	70 - 130 70 - 130	6	3
n-Xylene & p-Xylene			0.100	0.2069				104	70 - 130	8	
						mg/Kg					
o-Xylene			0.100	0.09573		mg/Kg		96	70 - 130	10	3
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 94	Qualifier	Limits								
		Qualifier									
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	94 116	Qualifier	70 - 130								
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-J	94 116	Qualifier	70 - 130					Client	Sample ID		
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-J Matrix: Solid	94 116	Qualifier	70 - 130					Client	Prep 1	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-J	94 116 A-1-G MS		70 - 130 70 - 130					Client	Prep 7 Prep		tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-/ Matrix: Solid Analysis Batch: 53791	94 94 4-1-G MS Sample	Sample	70 - 130 70 - 130 Spike		MS				Prep 1 Prep %Rec	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-/ Matrix: Solid Analysis Batch: 53791	94 116 A-1-G MS Sample Result	Sample Qualifier	70 - 130 70 - 130 Spike Added	Result	MS Qualifier	Unit	D	%Rec	Prep Prep %Rec Limits	Type: To	tal/N
I-Bromofluorobenzene (Surr) I,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791	94 94 4-1-G MS Sample	Sample Qualifier	70 - 130 70 - 130 Spike			- <mark>Unit</mark> mg/Kg	<u>D</u>		Prep 1 Prep %Rec	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-J Matrix: Solid Analysis Batch: 53791 Analyte Benzene	94 116 A-1-G MS Sample Result	Sample Qualifier U *+ F1	70 - 130 70 - 130 Spike Added	Result			D	%Rec	Prep Prep %Rec Limits	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-J Matrix: Solid	94 116 A-1-G MS Sample Result <0.00198	Sample Qualifier U *+ F1 U	70 - 130 70 - 130 Spike Added 0.0990	Result 0.1239		mg/Kg	<u>D</u>	%Rec 125	Prep 7 Prep %Rec Limits 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene	94 94 116 A-1-G MS Sample Result <0.00198 <0.00198	Sample Qualifier U *+ F1 U U	70 - 130 70 - 130 Spike Added 0.0990 0.0990	Result 0.1239 0.1040		mg/Kg mg/Kg	D	%Rec 125 105	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403- Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene	94 94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198	Sample Qualifier U *+ F1 U U	70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.0990	Result 0.1239 0.1040 0.09380		mg/Kg mg/Kg mg/Kg	D	%Rec 125 105 95	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00396 <0.00198	Sample Qualifier U *+ F1 U U U U U	70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.0990 0.198	Result 0.1239 0.1040 0.09380 0.1909		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 125 105 95 96	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00396 <0.00198 MS	Sample Qualifier U *+ F1 U U U U U U MS	70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.0990 0.198 0.0990	Result 0.1239 0.1040 0.09380 0.1909		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 125 105 95 96	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 <i>Smathematical States of the states of </i>	Sample Qualifier U *+ F1 U U U U U U MS	70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 Limits	Result 0.1239 0.1040 0.09380 0.1909		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 125 105 95 96	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr)	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 <i>MS</i> <i>%Recovery</i> 96	Sample Qualifier U *+ F1 U U U U U U MS	70 - 130 70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 1.108 70 - 130	Result 0.1239 0.1040 0.09380 0.1909		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 125 105 95 96	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr)	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 <i>Smathematical States of the states of </i>	Sample Qualifier U *+ F1 U U U U U U MS	70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 Limits	Result 0.1239 0.1040 0.09380 0.1909		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 125 105 95 96	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 MS %Recovery 96 118	Sample Qualifier U *+ F1 U U U U U U MS	70 - 130 70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 1.108 70 - 130	Result 0.1239 0.1040 0.09380 0.1909		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 125 105 95 96 89	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 	tal/N. 5357
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 MS %Recovery 96 118	Sample Qualifier U *+ F1 U U U U U U MS	70 - 130 70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 1.108 70 - 130	Result 0.1239 0.1040 0.09380 0.1909		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 125 105 95 96 89	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 	blicat
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-/ Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene b-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-/ Matrix: Solid	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 MS %Recovery 96 118	Sample Qualifier U *+ F1 U U U U U U MS	70 - 130 70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 1.108 70 - 130	Result 0.1239 0.1040 0.09380 0.1909		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 125 105 95 96 89	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Dike Dup	blicat
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene b-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 MS %Recovery 96 118 A-1-H MSD	Sample Qualifier U *+ F1 U U U U WS Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 70 - 130 70 - 130	Result 0.1239 0.1040 0.09380 0.1909 0.08821	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 125 105 95 96 89	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 190 Prep 7 Prep 7	Type: To Batch: 	blicatital/N 5357
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Foluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00396 <0.00198 <i>%Recovery</i> 96 118 A-1-H MSD Sample	Sample Qualifier U*+ F1 U U U U U MS Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 0.0990 0.130 70 - 130 70 - 130 70 - 130	Result 0.1239 0.1040 0.09380 0.1909 0.08821	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	Client S	%Rec 125 105 95 96 89	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 190 70 - 190	Dike Dup Dike Dup Dype: To Distance:	blicati tal/N 5357 Plicati tal/N 5357 RP
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 %Recovery 96 118 A-1-H MSD Sample Result	Sample Qualifier U*+ F1 U U U U MS Qualifier Sample Qualifier	70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 0.1239 0.1040 0.09380 0.1909 0.08821	<u>Qualifier</u> MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 125 105 95 96 89 89	Prep 7 Prep % %Rec Limits 70 - 130 70 - 190 %Rec Limits	Dike Dup Dike Dup Dype: To Batch: 	blicat tal/N 5357 5357 5357 RP Lim
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene	94 94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 MS %Recovery 96 118 A-1-H MSD Sample Result <0.00198	Sample Qualifier U *+ F1 U U U U MS Qualifier Qualifier U *+ F1	70 - 130 70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 0.198 70 - 130 70 - 130 70 - 130 Spike Added 0.100	Result 0.1239 0.1040 0.09380 0.1909 0.08821	<u>Qualifier</u> MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Unit	Client S	%Rec 125 105 95 96 89 89 ample IE %Rec 135	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 Prep 7 %Rec Limits 70 - 130	Dike Dup Type: To Dike Dup Type: To Distance: Batch: 9	blicat tal/N. 5357 blicat tal/N. 5357 RP Lim 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-28403-4 Matrix: Solid Analysis Batch: 53791 Analyte	94 116 A-1-G MS Sample Result <0.00198 <0.00198 <0.00198 <0.00198 <0.00198 %Recovery 96 118 A-1-H MSD Sample Result	Sample Qualifier U *+ F1 U U U U MS Qualifier U *+ F1 U	70 - 130 70 - 130 Spike Added 0.0990 0.0990 0.198 0.0990 0.198 0.0990 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 0.1239 0.1040 0.09380 0.1909 0.08821	<u>Qualifier</u> MSD Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	Client S	%Rec 125 105 95 96 89 89	Prep 7 Prep % %Rec Limits 70 - 130 70 - 190 %Rec Limits	Dike Dup Dike Dup Dype: To Batch: 	blicat

QC Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid										Matrix Spike I Prep Type:	
Analysis Batch: 53791										Prep Bato	
	Sample Sa	mple	Spike	MSD	MSD					%Rec	RP
Analyte	Result Q		Added	Result	Qualifie	er Unit		D	%Rec	Limits RF	
o-Xylene	<0.00198 U		0.100	0.1006		mg/ł	á		100		3 3
							-5				
	MSD M	SD									
Surrogate 9		ualifier	Limits								
4-Bromofluorobenzene (Surr)	97		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
Lab Sample ID: MB 880-53741/5-A									Client Sa	mple ID: Meth	od Blan
Matrix: Solid	•									Prep Type:	
Analysis Batch: 53791										Prep Bate	
	Μ	в мв									
Analyte	Resu	It Qualifier	RL		MDL U	nit	D	Р	repared	Analyzed	Dil Fa
Benzene	<0.0020	0 U	0.00200		m	ig/Kg		05/1	9/23 09:45	05/20/23 07:28	
Toluene	<0.0020	0 U	0.00200			ig/Kg		05/1	9/23 09:45	05/20/23 07:28	
Ethylbenzene	<0.0020	0 U	0.00200		m	ig/Kg		05/1	9/23 09:45	05/20/23 07:28	
m-Xylene & p-Xylene	<0.0040	0 U	0.00400		m	ig/Kg		05/1	9/23 09:45	05/20/23 07:28	
o-Xylene	<0.0020	0 U	0.00200		m	ig/Kg		05/1	9/23 09:45	05/20/23 07:28	
Xylenes, Total	<0.0040	0 U	0.00400		m	ig/Kg		05/1	9/23 09:45	05/20/23 07:28	
0		B MB	1					_		A	D.1 F.
Surrogate 4-Bromofluorobenzene (Surr)	%Recove	y Qualifier	Limits 70 - 130						repared 9/23 09:45	Analyzed 05/20/23 07:28	Dil Fa
1,4-Difluorobenzene (Surr)		5	70 - 130 70 - 130						9/23 09:45 9/23 09:45	05/20/23 07:28	
Lab Sample ID: MB 880-53388/1-A	\								Client Sa	mple ID: Meth	od Blan
										Bron Tuno:	Total/N
Matrix: Solid										Prep Type:	
Matrix: Solid		B MB								Prep Type: Prep Bato	
Matrix: Solid Analysis Batch: 53326	м	B MB It Qualifier	RL		MDL U	nit	D	P	repared	Prep Bato	h: 5338
Matrix: Solid Analysis Batch: 53326 Analyte	M Resu	B MB It Qualifier					<u>D</u>		repared 5/23 13:21		
Matrix: Solid	M Resu	It Qualifier				nit ıg/Kg	<u>D</u>		•	Prep Bato	h: 5338
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	M Resu <50	It Qualifier			m		<u>D</u>	05/1	•	Prep Bato	h: 5338
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	M Rest <50 <50	It Qualifier U U U	50.0		m	ig/Kg ig/Kg	D	05/1 05/1	5/23 13:21 5/23 13:21	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57	h: 5338
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	M Rest <50 <50	It Qualifier	50.0		m	ıg/Kg	<u>D</u>	05/1 05/1	5/23 13:21	Prep Bato Analyzed 05/15/23 14:57	h: 5338
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	M Resu <50 <50 <50	It Qualifier U U U	50.0		m	ig/Kg ig/Kg	<u>D</u>	05/1 05/1	5/23 13:21 5/23 13:21	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57	h: 5338
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	M Resu <50 <50 <50 %Recove	It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	50.0 50.0 50.0		m	ig/Kg ig/Kg	<u> </u>	05/1 05/1 05/1 P	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 repared	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 Analyzed	h: 5338
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	M Resu <50 <50 <50 <i>M</i> %Recove	ItQualifier0U0U0U0UBMBryQualifier5S1+			m	ig/Kg ig/Kg	<u>D</u>	05/1 05/1 05/1 P 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 repared 5/23 13:21	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 Analyzed 05/15/23 14:57	h: 5338 Dil Fa
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	M Resu <50 <50 <50 <i>M</i> %Recove	It Qualifier 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U 0 U	50.0 50.0 50.0		m	ig/Kg ig/Kg	<u>D</u>	05/1 05/1 05/1 P 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 repared	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 Analyzed	h: 5338 Dil Fa
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	M Resu <50 <50 <50 <i>M</i> %Recove 14 11	ItQualifier0U0U0U0UBMBryQualifier5S1+			m	ig/Kg ig/Kg		05/1 05/1 05/1 <i>P</i> 05/1 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57	h: 5338 Dil Fa Dil Fa
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-53388/2-	M Resu <50 <50 <50 <i>M</i> %Recove 14 11	ItQualifier0U0U0U0UBMBryQualifier5S1+			m	ig/Kg ig/Kg		05/1 05/1 05/1 <i>P</i> 05/1 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 D: Lab Contro	h: 5338 Dil Fa Dil Fa
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-53388/2- Matrix: Solid	M Resu <50 <50 <50 <i>M</i> %Recove 14 11	ItQualifier0U0U0U0UBMBryQualifier5S1+			m	ig/Kg ig/Kg		05/1 05/1 05/1 <i>P</i> 05/1 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 D: Lab Contro Prep Type:	h: 5338 Dil Fa Dil Fa I Sampl Total/N
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-53388/2-	M Resu <50 <50 <50 <i>M</i> %Recove 14 11	ItQualifier0U0U0U0UBMBryQualifier5S1+			m	ig/Kg ig/Kg		05/1 05/1 05/1 <i>P</i> 05/1 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21	Prep Bate Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 D: Lab Contro	h: 5338 Dil Fa Dil Fa I Sampl Total/N
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-53388/2- Matrix: Solid Analysis Batch: 53326	M Resu <50 <50 <50 <i>M</i> %Recove 14 11	ItQualifier0U0U0U0UBMBryQualifier5S1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	LCS	m	ig/Kg ig/Kg ig/Kg		05/1 05/1 05/1 <i>P</i> 05/1 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21	Prep Bato Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 D: Lab Contro Prep Type: Prep Bato	h: 5338 Dil Fa Dil Fa I Sampl Total/N
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-53388/2- Matrix: Solid	M Resu <50 <50 <50 <i>M</i> %Recove 14 11	ItQualifier0U0U0U0UBMBryQualifier5S1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 70 - 130	LCS	LCS	ig/Kg ig/Kg ig/Kg		05/1 05/1 05/1 <i>P</i> 05/1 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21	Prep Bato Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 D: Lab Contro Prep Type: Prep Bato %Rec	h: 5338 Dil Fa Dil Fa I Sampl Total/N
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-53388/2- Matrix: Solid Analysis Batch: 53326 Analyte	M Resu <50 <50 <50 <i>M</i> %Recove 14 11	ItQualifier0U0U0U0UBMBryQualifier5S1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 70 - 130 8pike Added	LCS Result	LCS	eg/Kg ng/Kg ng/Kg		05/1 05/1 05/1 <i>P</i> 05/1 05/1	5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 5/23 13:21 Sample I	Prep Bato Analyzed 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 05/15/23 14:57 D: Lab Contro Prep Type: Prep Bato %Rec Limits	h: 5338 Dil Fa Dil Fa I Sampl Total/N

Eurofins Midland
QC Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: LCS 880-533 Matrix: Solid	388/2-A						Client	Sample	ID: Lab Co Prep 1	ontrol Sa Type: Tot	
Analysis Batch: 53326										Batch:	
-											
0		LCS	1 : :4								
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	105		70 - 130 70 - 120								
o-Terphenyl	127		70 - 130								
Lab Sample ID: LCSD 880-5	3388/3-A					Clier	nt Sam	nole ID: I	Lab Contro	I Sampl	e Dur
Matrix: Solid										Type: To	
Analysis Batch: 53326										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	840.6		mg/Kg		84	70 - 130	11	20
(GRO)-C6-C10						5 5		-			
Diesel Range Organics (Over			1000	895.9		mg/Kg		90	70 - 130	15	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
o-Terphenyl		S1+	70 - 130								
Lab Sample ID: 890-4653-A-	1-C MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep 1	Type: Tot	tal/N/
Analysis Batch: 53326									Prep	Batch:	53388
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.8	U	999	1171		mg/Kg		117	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.8	U	999	932.9		mg/Kg		93	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	102		70 - 130								
o-Terphenyl	115		70 - 130								
Lab Sample ID: 890-4653-A-	1-D MSD					Cli	ent Sa	ample IC): Matrix Sp		
									Bron 1	Type: Tot	tal/N/
Matrix: Solid											
Matrix: Solid									Prep	Batch:	
Matrix: Solid Analysis Batch: 53326	•	Sample	Spike	MSD	MSD				Prep %Rec		RPD
Matrix: Solid Analysis Batch: 53326 ^{Analyte}	Result	Qualifier	Added	Result	MSD Qualifier	Unit	D	%Rec	Prep %Rec Limits	RPD	RPC Limi
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics	•	Qualifier	-			- <mark>Unit</mark> mg/Kg	D	%Rec	Prep %Rec		53388 RPE Limi 20
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.8	Qualifier	Added 997	Result 1174		mg/Kg	D	118	Prep %Rec Limits 70 - 130	RPD	RPI Limi 20
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier	Added	Result			D		Prep %Rec Limits	RPD	RPI Limi 20
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.8 <49.8	Qualifier U U	Added 997	Result 1174		mg/Kg	<u>D</u>	118	Prep %Rec Limits 70 - 130	RPD	RPE Limi 20
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		Qualifier U U MSD	Added	Result 1174		mg/Kg	<u>D</u>	118	Prep %Rec Limits 70 - 130	RPD	RPE Limi 20
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate		Qualifier U U MSD	Added 997 997 Limits	Result 1174		mg/Kg	<u>D</u>	118	Prep %Rec Limits 70 - 130	RPD	RPC Limi
Matrix: Solid Analysis Batch: 53326 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		Qualifier U U MSD	Added	Result 1174		mg/Kg	D	118	Prep %Rec Limits 70 - 130	RPD	RPI Limi 20

QC Sample Results

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-53454/1- Matrix: Solid									Sample ID: Prep T	Туре: То	
Analysis Batch: 53450										Batch:	
	,	MB MB							-		
nalyte	Res	sult Qualifie	er RL		MDL Uni	.it	D	Prepared	Analyz	2ed	Dil Fac
Basoline Range Organics	<5	50.0 U	50.0		mg	g/Kg	_	05/16/23 08:19	05/16/23	08:33	1
GRO)-C6-C10											
Diesel Range Organics (Over	<5	50.0 U	50.0		mg	g/Kg		05/16/23 08:19	05/16/23	08:33	1
C10-C28)			50.0					25/10/00 00 46	05/40/00		
II Range Organics (Over C28-C36)	<0	50.0 U	50.0		mg	g/Kg		05/16/23 08:19	9 05/16/23	08:33	1
		MB MB									
urrogate	%Recov	very Qualifie	er Limits					Prepared	Analyz	zed	Dil Fac
-Chlorooctane		152 S1+	70 - 130					05/16/23 08:19			1
-Terphenyl	,	195 S1+	70 - 130					05/16/23 08:19	9 05/16/23	08:33	1
ab Sample ID: LCS 880-53454/2	2-A						С	lient Sample	ID: Lab Ce	ontrol S	ample
Matrix: Solid									Prep 7	Type: To	tal/NA
Analysis Batch: 53450										Batch:	
			Spike	LCS	LCS				%Rec		
nalyte			Added	Result	Qualifier	r Unit		D %Rec	Limits		
asoline Range Organics			1000	1035		mg/Kg		103	70 - 130		
GRO)-C6-C10											
iesel Range Organics (Over			1000	937.7		mg/Kg		94	70 - 130		
C10-C28)											
	LCS I	LCS									
urrogate	%Recovery (Limits								
-Chlorooctane	96		70 - 130								
-Terphenyl	113		70 - 130								
Torpricity.			10-100								
ab Sample ID: LCSD 880-53454	/3-A					CI	ient	Sample ID: L	Lab Contrc	ol Samp!	le Dup
Matrix: Solid										Type: To	
Analysis Batch: 53450										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	r Unit		D %Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1093		mg/Kg		109	70 - 130	5	20
GRO)-C6-C10											
Diesel Range Organics (Over			1000	903.7		mg/Kg		90	70 - 130	4	20
C10-C28)											
	LCSD L	LCSD									
urrogate	%Recovery (Limits								
-Chlorooctane	<u>99</u>	2001110	70 - 130								
-Terphenyl	125		70 - 130 70 - 130								
- Terprienyi	125		70 - 750								
ab Sample ID: 880-28380-1 MS								Clit	ent Sample	- ID· T-1	(0-1')
Aatrix: Solid										Type: To	
Analysis Batch: 53450											
Analysis Daton. 55450	Sample S	Cample	Spike	MS	MS				%Rec	Batch:	50404
	admune .	Sample	Spike	1113	NIS .				70Rec		
Analyte	Result (-	Added		Qualifier	r Unit		D %Rec	Limits		

Diesel Range Organics (Over C10-C28)

Gasoline Range Organics

(GRO)-C6-C10

Eurofins Midland

122

96

70 - 130

70 - 130

Job ID: 880-28380-1

SDG: Eddy County, New Mexico

<49.9 U

<49.9 U

998

998

1244

982.3

mg/Kg

mg/Kg

Lab Sample ID: 880-28380-1 MS

Lab Sample ID: 880-28380-1 MSD

Matrix: Solid

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Matrix: Solid

Analyte

Chloride

Analysis Batch: 53573

Lab Sample ID: 880-28380-7 MS

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Analysis Batch: 53450

Analysis Batch: 53450

Gasoline Range Organics

Diesel Range Organics (Over

QC Sample Results

Limits

70 - 130

70 - 130

Spike

Added

997

997

Limits

70 - 130

70 - 130

MSD MSD

Qualifier

Unit

mg/Kg

mg/Kg

D

%Rec

123

94

Result

1254

963.9

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS

Sample Sample

<49.9 υ

<49.9 U

106

117

%Recovery

MSD MSD

Result Qualifier

%Recovery Qualifier

107

122

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Client Sample ID: T-1 (0-1')

%Rec

Limits

70 - 130

70 - 130

Client Sample ID: Method Blank

Prep Type: Soluble

Prep Type: Total/NA

Prep Batch: 53454

RPD

1

2

7

Client Sample ID: T-1 (0-1') Prep Type: Total/NA Prep Batch: 53454 RPD Limit 20 20

Method: 300.0 - Anions, Ion Chromatography							
Lab Sample ID: MB 880-53363/1-A							
Matrix: Solid							
Analysis Batch: 53573							

Qualifier

	МВ	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Prep	ared	Analyzed	Dil Fac
Chloride	<5.00	U		5.00			mg/Kg					05/17/23 11:49	1
Lab Sample ID: LCS 880-53363/2-A Matrix: Solid									Clie	ent Sa	ample	ID: Lab Contr Prep Typ	ol Sample e: Soluble
Analysis Batch: 53573			0		1.00							0/ D	
			Spike			LCS						%Rec	
Analyte			Added		Result	Qual	ifier	Unit		D %	6Rec	Limits	
Chloride			250		237.4			mg/Kg			95	90 - 110	
Lab Sample ID: LCSD 880-53363/3-A								CI	ient S	ampl	e ID: L	ab Control Sa	mple Dup

Prep Type: Soluble Spike LCSD LCSD %Rec RPD Result Qualifier Added Unit D %Rec Limits RPD Limit 250 237.3 mg/Kg 95 90 - 110 0 20 Client Sample ID: T-2 (2'-3')

Matrix: Solid **Prep Type: Soluble** Analysis Batch: 53573 Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D Chloride 2780 4990 8159 mg/Kg 108 90 - 110

Eurofins Midland

Released to Imaging: 4/26/2024 1:31:09 PM

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-28380-7	MSD							Clie	ent Sample	ID: T-2	(2'-3')
Matrix: Solid										Type: S	
Analysis Batch: 53573											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2780		4990	8158		mg/Kg		108	90 - 110	0	20
_ Lab Sample ID: MB 880-5336	32/1_A							Client S	Sample ID:	Mothod	Blank
Matrix: Solid								onent e		Type: S	
Analysis Batch: 53584										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		DI	Prepared	Analyz	ed	Dil Fac
Chloride	<	5.00 U		5.00	mg/Kg)			05/18/23	16:44	1
- Lab Sample ID: LCS 880-533	62/2-A						Clien	t Sample	D: Lab Co	ontrol S	ample
Matrix: Solid							enen.	Coumpie		Type: S	
Analysis Batch: 53584										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	orabio
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	248.6		mg/Kg		99	90 - 110		
_ Lab Sample ID: LCSD 880-53	3362/3-4					Cli	ont Sar	nnle ID: I	Lab Contro	l Samnl	
Matrix: Solid						0.1	one our			Type: S	-
Analysis Batch: 53584										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	245.4		mg/Kg		98	90 - 110	1	20
- 	4.0.00							Oliont	O annula ID		0
Lab Sample ID: 880-28392-A Matrix: Solid	-1-0 105							Client	Sample ID	: Matrix Type: S	
Analysis Batch: 53584									Fieh	Type. 3	oluble
Analysis Batch. 00004	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Analyte Chloride	Result 186	Qualifier	Added 250	Result 418.3	Qualifier	Unit mg/Kg	<u>D</u>	%Rec 93	Limits 90 - 110		
Chloride	186	Qualifier			Qualifier	mg/Kg		93	90 - 110		
Chloride Lab Sample ID: 880-28392-A	186	Qualifier			Qualifier	mg/Kg		93	90 ₋ 110): Matrix S p		
Chloride Lab Sample ID: 880-28392-A Matrix: Solid	186	Qualifier			Qualifier	mg/Kg		93	90 ₋ 110): Matrix S p	Dike Dup Type: S	
Chloride Lab Sample ID: 880-28392-A	-1-E MSD	Qualifier	250			mg/Kg		93	90 ₋ 110): Matrix S p		
Chloride Lab Sample ID: 880-28392-A Matrix: Solid	-1-E MSD Sample			418.3 MSD		mg/Kg		93	90 - 110 D: Matrix Sp Prep		oluble
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584	-1-E MSD Sample	Sample	250 Spike	418.3 MSD	MSD	mg/Kg	Client S	93 Sample IC	90 ₋ 110): Matrix Sp Prep %Rec	Type: S	oluble RPD
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride	-1-E MSD Sample Result 186	Sample	250 Spike Added	418.3 MSD Result	MSD	mg/Kg Unit	Client S	93 Sample IC <u>%Rec</u> 92	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110	Type: S	Oluble RPD Limit 20
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A	-1-E MSD Sample Result 186	Sample	250 Spike Added	418.3 MSD Result	MSD	mg/Kg Unit	Client S	93 Sample IC <u>%Rec</u> 92	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID	Type: S	RPD Limit 20 Spike
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid	-1-E MSD Sample Result 186	Sample	250 Spike Added	418.3 MSD Result	MSD	mg/Kg Unit	Client S	93 Sample IC <u>%Rec</u> 92	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID	Type: S	RPD Limit 20 Spike
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A	-1-E MSD Sample <u>Result</u> 186 -1-B MS	Sample	250 Spike Added	418.3 MSD Result 416.1	MSD	mg/Kg Unit	Client S	93 Sample IC <u>%Rec</u> 92	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID	Type: S	RPD Limit 20 Spike
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid	-1-E MSD Sample Result 186 -1-B MS Sample	Sample Qualifier	250 Spike Added 250	418.3 MSD Result 416.1	MSD Qualifier	mg/Kg Unit	Client S	93 Sample IC <u>%Rec</u> 92	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID Prep	Type: S	RPD Limit 20 Spike
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid Analysis Batch: 53584	-1-E MSD Sample Result 186 -1-B MS Sample	Sample Qualifier	250 Spike Added 250 Spike	418.3 MSD Result 416.1	MSD Qualifier MS	mg/Kg Unit mg/Kg	Client S	93 Sample IE <u>%Rec</u> 92 Client	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	Type: S	RPD Limit 20 Spike
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride	-1-E MSD Sample <u>Result</u> 186 -1-B MS Sample <u>Result</u> 110	Sample Qualifier	250 Spike Added 250 Spike Added	418.3 MSD Result 416.1 MS Result	MSD Qualifier MS	Unit mg/Kg Unit mg/Kg	D	93 5ample IE %Rec 92 Client %Rec 90	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	Type: S <u>RPD</u> 1 : Matrix Type: S	oluble RPD Limit 20 Spike oluble
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A	-1-E MSD Sample <u>Result</u> 186 -1-B MS Sample <u>Result</u> 110	Sample Qualifier	250 Spike Added 250 Spike Added	418.3 MSD Result 416.1 MS Result	MSD Qualifier MS	Unit mg/Kg Unit mg/Kg	D	93 5ample IE %Rec 92 Client %Rec 90	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: S <u>RPD</u> 1 : Matrix Type: S pike Dup	oluble RPD Limit 20 Spike oluble
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid	-1-E MSD Sample <u>Result</u> 186 -1-B MS Sample <u>Result</u> 110	Sample Qualifier	250 Spike Added 250 Spike Added	418.3 MSD Result 416.1 MS Result	MSD Qualifier MS	Unit mg/Kg Unit mg/Kg	D	93 5ample IE %Rec 92 Client %Rec 90	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: S <u>RPD</u> 1 : Matrix Type: S	oluble RPD Limit 20 Spike oluble
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A	-1-E MSD Sample <u>Result</u> 186 -1-B MS -1-B MS <u>Sample</u> <u>Result</u> 110 -1-C MSD	Sample Qualifier	250 Spike Added 250 Spike Added	418.3 MSD Result 416.1 MS Result 332.9	MSD Qualifier MS	Unit mg/Kg Unit mg/Kg	D	93 5ample IE %Rec 92 Client %Rec 90	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 D: Matrix Sp	Type: S <u>RPD</u> 1 : Matrix Type: S pike Dup	oluble RPD Limit 20 Spike oluble
Chloride Lab Sample ID: 880-28392-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid Analysis Batch: 53584 Analyte Chloride Lab Sample ID: 880-28418-A Matrix: Solid	-1-E MSD Sample Result 186 -1-B MS -1-B MS Sample Result 110 -1-C MSD	Sample Qualifier Sample Qualifier	250 Spike Added 250 Spike Added 249	418.3 MSD Result 416.1 MS Result 332.9	MSD Qualifier MS Qualifier	Unit mg/Kg Unit mg/Kg	D	93 5ample IE %Rec 92 Client %Rec 90	90 - 110 D: Matrix Sp Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 Contemporation of the second seco	Type: S <u>RPD</u> 1 : Matrix Type: S pike Dup	oluble RPD Limit 20 Spike oluble

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28380-1 SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 53508

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-1	T-1 (0-1')	Total/NA	Solid	5035	
880-28380-2	T-1 (1'-1.5')	Total/NA	Solid	5035	
880-28380-3	T-1 (1.5'-2')	Total/NA	Solid	5035	
880-28380-4	T-2 (0-1')	Total/NA	Solid	5035	
880-28380-5	T-2 (1'-1.5')	Total/NA	Solid	5035	
880-28380-6	T-2 (1.5'-2')	Total/NA	Solid	5035	
880-28380-7	T-2 (2'-3')	Total/NA	Solid	5035	
880-28380-8	T-2 (3'-4')	Total/NA	Solid	5035	
880-28380-9	T-2 (4'-5')	Total/NA	Solid	5035	
880-28380-10	T-2 (5'-6')	Total/NA	Solid	5035	
880-28380-11	T-2 (6'-7')	Total/NA	Solid	5035	
880-28380-12	T-2 (7'-8")	Total/NA	Solid	5035	
880-28380-13	T-2 (8'-9')	Total/NA	Solid	5035	
880-28380-14	T-2 (9'-10')	Total/NA	Solid	5035	
880-28380-15	T-2 (10'-11')	Total/NA	Solid	5035	
880-28380-16	T-2 (11'-12')	Total/NA	Solid	5035	
880-28380-17	T-3 (0-1')	Total/NA	Solid	5035	
880-28380-18	T-3 (1'-1.5')	Total/NA	Solid	5035	
880-28380-19	T-3 (1.5'-2')	Total/NA	Solid	5035	
880-28380-20	T-3 (2'-3')	Total/NA	Solid	5035	
MB 880-53508/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-53508/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-53508/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-28380-1 MS	T-1 (0-1')	Total/NA	Solid	5035	
880-28380-1 MSD	T-1 (0-1')	Total/NA	Solid	5035	

Prep Batch: 53575

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-28380-21	T-3 (3'-4)	Total/NA	Solid	5035	
880-28380-22	T-3 (4'-5')	Total/NA	Solid	5035	
880-28380-23	T-3 (5'-6')	Total/NA	Solid	5035	
880-28380-24	T-3 (6'-7')	Total/NA	Solid	5035	
MB 880-53575/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-53575/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-53575/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-28403-A-1-G MS	Matrix Spike	Total/NA	Solid	5035	
880-28403-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 53588

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28380-1	T-1 (0-1')	Total/NA	Solid	8021B	53508
880-28380-2	T-1 (1'-1.5')	Total/NA	Solid	8021B	53508
880-28380-3	T-1 (1.5'-2')	Total/NA	Solid	8021B	53508
880-28380-4	T-2 (0-1')	Total/NA	Solid	8021B	53508
880-28380-5	T-2 (1'-1.5')	Total/NA	Solid	8021B	53508
880-28380-6	T-2 (1.5'-2')	Total/NA	Solid	8021B	53508
880-28380-7	T-2 (2'-3')	Total/NA	Solid	8021B	53508
880-28380-8	T-2 (3'-4')	Total/NA	Solid	8021B	53508
880-28380-9	T-2 (4'-5')	Total/NA	Solid	8021B	53508
880-28380-10	T-2 (5'-6')	Total/NA	Solid	8021B	53508
880-28380-11	T-2 (6'-7')	Total/NA	Solid	8021B	53508

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

GC VOA (Continued)

Analysis Batch: 53588 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-12	T-2 (7'-8")	Total/NA	Solid	8021B	53508
880-28380-13	T-2 (8'-9')	Total/NA	Solid	8021B	53508
880-28380-14	T-2 (9'-10')	Total/NA	Solid	8021B	53508
880-28380-15	T-2 (10'-11')	Total/NA	Solid	8021B	53508
880-28380-16	T-2 (11'-12')	Total/NA	Solid	8021B	53508
880-28380-17	T-3 (0-1')	Total/NA	Solid	8021B	53508
880-28380-18	T-3 (1'-1.5')	Total/NA	Solid	8021B	53508
880-28380-19	T-3 (1.5'-2')	Total/NA	Solid	8021B	53508
880-28380-20	T-3 (2'-3')	Total/NA	Solid	8021B	53508
MB 880-53508/5-A	Method Blank	Total/NA	Solid	8021B	53508
LCS 880-53508/1-A	Lab Control Sample	Total/NA	Solid	8021B	53508
LCSD 880-53508/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	53508
880-28380-1 MS	T-1 (0-1')	Total/NA	Solid	8021B	53508
880-28380-1 MSD	T-1 (0-1')	Total/NA	Solid	8021B	53508

Analysis Batch: 53694

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28380-1	T-1 (0-1')	Total/NA	Solid	Total BTEX	
880-28380-2	T-1 (1'-1.5')	Total/NA	Solid	Total BTEX	
880-28380-3	T-1 (1.5'-2')	Total/NA	Solid	Total BTEX	
880-28380-4	T-2 (0-1')	Total/NA	Solid	Total BTEX	
880-28380-5	T-2 (1'-1.5')	Total/NA	Solid	Total BTEX	
880-28380-6	T-2 (1.5'-2')	Total/NA	Solid	Total BTEX	
880-28380-7	T-2 (2'-3')	Total/NA	Solid	Total BTEX	
880-28380-8	T-2 (3'-4')	Total/NA	Solid	Total BTEX	
880-28380-9	T-2 (4'-5')	Total/NA	Solid	Total BTEX	
880-28380-10	T-2 (5'-6')	Total/NA	Solid	Total BTEX	
880-28380-11	T-2 (6'-7')	Total/NA	Solid	Total BTEX	
880-28380-12	T-2 (7'-8")	Total/NA	Solid	Total BTEX	
880-28380-13	T-2 (8'-9')	Total/NA	Solid	Total BTEX	
880-28380-14	T-2 (9'-10')	Total/NA	Solid	Total BTEX	
880-28380-15	T-2 (10'-11')	Total/NA	Solid	Total BTEX	
880-28380-16	T-2 (11'-12')	Total/NA	Solid	Total BTEX	
880-28380-17	T-3 (0-1')	Total/NA	Solid	Total BTEX	
880-28380-18	T-3 (1'-1.5')	Total/NA	Solid	Total BTEX	
880-28380-19	T-3 (1.5'-2')	Total/NA	Solid	Total BTEX	
880-28380-20	T-3 (2'-3')	Total/NA	Solid	Total BTEX	
880-28380-21	T-3 (3'-4)	Total/NA	Solid	Total BTEX	
880-28380-22	T-3 (4'-5')	Total/NA	Solid	Total BTEX	
880-28380-23	T-3 (5'-6')	Total/NA	Solid	Total BTEX	
880-28380-24	T-3 (6'-7')	Total/NA	Solid	Total BTEX	

Prep Batch: 53741

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-53741/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 53791

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28380-21	T-3 (3'-4)	Total/NA	Solid	8021B	53575
880-28380-22	T-3 (4'-5')	Total/NA	Solid	8021B	53575
880-28380-23	T-3 (5'-6')	Total/NA	Solid	8021B	53575

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

GC VOA (Continued)

Analysis Batch: 53791 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-24	T-3 (6'-7')	Total/NA	Solid	8021B	53575
MB 880-53575/5-A	Method Blank	Total/NA	Solid	8021B	53575
MB 880-53741/5-A	Method Blank	Total/NA	Solid	8021B	53741
LCS 880-53575/1-A	Lab Control Sample	Total/NA	Solid	8021B	53575
LCSD 880-53575/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	53575
880-28403-A-1-G MS	Matrix Spike	Total/NA	Solid	8021B	53575
880-28403-A-1-H MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	53575

Analysis Batch: 53326

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-21	T-3 (3'-4)	Total/NA	Solid	8015B NM	53388
880-28380-22	T-3 (4'-5')	Total/NA	Solid	8015B NM	53388
880-28380-23	T-3 (5'-6')	Total/NA	Solid	8015B NM	53388
880-28380-24	T-3 (6'-7')	Total/NA	Solid	8015B NM	53388
MB 880-53388/1-A	Method Blank	Total/NA	Solid	8015B NM	53388
LCS 880-53388/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	53388
LCSD 880-53388/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	53388
890-4653-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	53388
890-4653-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	53388

Prep Batch: 53388

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28380-21	T-3 (3'-4)	Total/NA	Solid	8015NM Prep	
880-28380-22	T-3 (4'-5')	Total/NA	Solid	8015NM Prep	
880-28380-23	T-3 (5'-6')	Total/NA	Solid	8015NM Prep	
880-28380-24	T-3 (6'-7')	Total/NA	Solid	8015NM Prep	
MB 880-53388/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-53388/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-53388/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4653-A-1-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-4653-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 53450

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28380-1	T-1 (0-1')	Total/NA	Solid	8015B NM	53454
880-28380-2	T-1 (1'-1.5')	Total/NA	Solid	8015B NM	53454
880-28380-3	T-1 (1.5'-2')	Total/NA	Solid	8015B NM	53454
880-28380-4	T-2 (0-1')	Total/NA	Solid	8015B NM	53454
880-28380-5	T-2 (1'-1.5')	Total/NA	Solid	8015B NM	53454
880-28380-6	T-2 (1.5'-2')	Total/NA	Solid	8015B NM	53454
880-28380-7	T-2 (2'-3')	Total/NA	Solid	8015B NM	53454
880-28380-8	T-2 (3'-4')	Total/NA	Solid	8015B NM	53454
880-28380-9	T-2 (4'-5')	Total/NA	Solid	8015B NM	53454
880-28380-10	T-2 (5'-6')	Total/NA	Solid	8015B NM	53454
880-28380-11	T-2 (6'-7')	Total/NA	Solid	8015B NM	53454
880-28380-12	T-2 (7'-8")	Total/NA	Solid	8015B NM	53454
880-28380-13	T-2 (8'-9')	Total/NA	Solid	8015B NM	53454
880-28380-14	T-2 (9'-10')	Total/NA	Solid	8015B NM	53454
880-28380-15	T-2 (10'-11')	Total/NA	Solid	8015B NM	53454

Eurofins Midland

8

Job ID: 880-28380-1

SDG: Eddy County, New Mexico

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

GC Semi VOA (Continued)

Analysis Batch: 53450 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-16	T-2 (11'-12')	Total/NA	Solid	8015B NM	53454
880-28380-17	T-3 (0-1')	Total/NA	Solid	8015B NM	53454
880-28380-18	T-3 (1'-1.5')	Total/NA	Solid	8015B NM	53454
880-28380-19	T-3 (1.5'-2')	Total/NA	Solid	8015B NM	53454
880-28380-20	T-3 (2'-3')	Total/NA	Solid	8015B NM	53454
MB 880-53454/1-A	Method Blank	Total/NA	Solid	8015B NM	53454
LCS 880-53454/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	53454
LCSD 880-53454/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	53454
880-28380-1 MS	T-1 (0-1')	Total/NA	Solid	8015B NM	53454
880-28380-1 MSD	T-1 (0-1')	Total/NA	Solid	8015B NM	53454

Prep Batch: 53454

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-1	T-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-28380-2	T-1 (1'-1.5')	Total/NA	Solid	8015NM Prep	
880-28380-3	T-1 (1.5'-2')	Total/NA	Solid	8015NM Prep	
880-28380-4	T-2 (0-1')	Total/NA	Solid	8015NM Prep	
880-28380-5	T-2 (1'-1.5')	Total/NA	Solid	8015NM Prep	
880-28380-6	T-2 (1.5'-2')	Total/NA	Solid	8015NM Prep	
880-28380-7	T-2 (2'-3')	Total/NA	Solid	8015NM Prep	
880-28380-8	T-2 (3'-4')	Total/NA	Solid	8015NM Prep	
880-28380-9	T-2 (4'-5')	Total/NA	Solid	8015NM Prep	
880-28380-10	T-2 (5'-6')	Total/NA	Solid	8015NM Prep	
880-28380-11	T-2 (6'-7')	Total/NA	Solid	8015NM Prep	
880-28380-12	T-2 (7'-8")	Total/NA	Solid	8015NM Prep	
880-28380-13	T-2 (8'-9')	Total/NA	Solid	8015NM Prep	
880-28380-14	T-2 (9'-10')	Total/NA	Solid	8015NM Prep	
880-28380-15	T-2 (10'-11')	Total/NA	Solid	8015NM Prep	
880-28380-16	T-2 (11'-12')	Total/NA	Solid	8015NM Prep	
880-28380-17	T-3 (0-1')	Total/NA	Solid	8015NM Prep	
880-28380-18	T-3 (1'-1.5')	Total/NA	Solid	8015NM Prep	
880-28380-19	T-3 (1.5'-2')	Total/NA	Solid	8015NM Prep	
880-28380-20	T-3 (2'-3')	Total/NA	Solid	8015NM Prep	
MB 880-53454/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-53454/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-53454/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-28380-1 MS	T-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-28380-1 MSD	T-1 (0-1')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 53482

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28380-1	T-1 (0-1')	Total/NA	Solid	8015 NM	
880-28380-2	T-1 (1'-1.5')	Total/NA	Solid	8015 NM	
880-28380-3	T-1 (1.5'-2')	Total/NA	Solid	8015 NM	
880-28380-4	T-2 (0-1')	Total/NA	Solid	8015 NM	
880-28380-5	T-2 (1'-1.5')	Total/NA	Solid	8015 NM	
880-28380-6	T-2 (1.5'-2')	Total/NA	Solid	8015 NM	
880-28380-7	T-2 (2'-3')	Total/NA	Solid	8015 NM	
880-28380-8	T-2 (3'-4')	Total/NA	Solid	8015 NM	
880-28380-9	T-2 (4'-5')	Total/NA	Solid	8015 NM	
880-28380-10	T-2 (5'-6')	Total/NA	Solid	8015 NM	

Eurofins Midland

Page 152 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

.....

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

GC Semi VOA (Continued)

Analysis Batch: 53482 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-11	T-2 (6'-7')	Total/NA	Solid	8015 NM	
880-28380-12	T-2 (7'-8")	Total/NA	Solid	8015 NM	
880-28380-13	T-2 (8'-9')	Total/NA	Solid	8015 NM	
880-28380-14	T-2 (9'-10')	Total/NA	Solid	8015 NM	
880-28380-15	T-2 (10'-11')	Total/NA	Solid	8015 NM	
880-28380-16	T-2 (11'-12')	Total/NA	Solid	8015 NM	
880-28380-17	T-3 (0-1')	Total/NA	Solid	8015 NM	
880-28380-18	T-3 (1'-1.5')	Total/NA	Solid	8015 NM	
880-28380-19	T-3 (1.5'-2')	Total/NA	Solid	8015 NM	
880-28380-20	T-3 (2'-3')	Total/NA	Solid	8015 NM	
880-28380-21	T-3 (3'-4)	Total/NA	Solid	8015 NM	
880-28380-22	T-3 (4'-5')	Total/NA	Solid	8015 NM	
880-28380-23	T-3 (5'-6')	Total/NA	Solid	8015 NM	
880-28380-24	T-3 (6'-7')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 53362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-17	T-3 (0-1')	Soluble	Solid	DI Leach	
880-28380-18	T-3 (1'-1.5')	Soluble	Solid	DI Leach	
880-28380-19	T-3 (1.5'-2')	Soluble	Solid	DI Leach	
880-28380-20	T-3 (2'-3')	Soluble	Solid	DI Leach	
880-28380-21	T-3 (3'-4)	Soluble	Solid	DI Leach	
880-28380-22	T-3 (4'-5')	Soluble	Solid	DI Leach	
880-28380-23	T-3 (5'-6')	Soluble	Solid	DI Leach	
880-28380-24	T-3 (6'-7')	Soluble	Solid	DI Leach	
MB 880-53362/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-53362/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-53362/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-28392-A-1-D MS	Matrix Spike	Soluble	Solid	DI Leach	
880-28392-A-1-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
880-28418-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-28418-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 53363

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-28380-1	T-1 (0-1')	Soluble	Solid	DI Leach	
880-28380-2	T-1 (1'-1.5')	Soluble	Solid	DI Leach	
880-28380-3	T-1 (1.5'-2')	Soluble	Solid	DI Leach	
880-28380-4	T-2 (0-1')	Soluble	Solid	DI Leach	
880-28380-5	T-2 (1'-1.5')	Soluble	Solid	DI Leach	
880-28380-6	T-2 (1.5'-2')	Soluble	Solid	DI Leach	
880-28380-7	T-2 (2'-3')	Soluble	Solid	DI Leach	
880-28380-8	T-2 (3'-4')	Soluble	Solid	DI Leach	
880-28380-9	T-2 (4'-5')	Soluble	Solid	DI Leach	
880-28380-10	T-2 (5'-6')	Soluble	Solid	DI Leach	
880-28380-11	T-2 (6'-7')	Soluble	Solid	DI Leach	
880-28380-12	T-2 (7'-8")	Soluble	Solid	DI Leach	
880-28380-13	T-2 (8'-9')	Soluble	Solid	DI Leach	
880-28380-14	T-2 (9'-10')	Soluble	Solid	DI Leach	

Eurofins Midland

Page 153 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

HPLC/IC (Continued)

Leach Batch: 53363 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-15	T-2 (10'-11')	Soluble	Solid	DI Leach	
880-28380-16	T-2 (11'-12')	Soluble	Solid	DI Leach	
MB 880-53363/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-53363/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-53363/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-28380-7 MS	T-2 (2'-3')	Soluble	Solid	DI Leach	
880-28380-7 MSD	T-2 (2'-3')	Soluble	Solid	DI Leach	

Analysis Batch: 53573

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-1	T-1 (0-1')	Soluble	Solid	300.0	53363
880-28380-2	T-1 (1'-1.5')	Soluble	Solid	300.0	53363
880-28380-3	T-1 (1.5'-2')	Soluble	Solid	300.0	53363
880-28380-4	T-2 (0-1')	Soluble	Solid	300.0	53363
880-28380-5	T-2 (1'-1.5')	Soluble	Solid	300.0	53363
880-28380-6	T-2 (1.5'-2')	Soluble	Solid	300.0	53363
880-28380-7	T-2 (2'-3')	Soluble	Solid	300.0	53363
880-28380-8	T-2 (3'-4')	Soluble	Solid	300.0	53363
880-28380-9	T-2 (4'-5')	Soluble	Solid	300.0	53363
880-28380-10	T-2 (5'-6')	Soluble	Solid	300.0	53363
880-28380-11	T-2 (6'-7')	Soluble	Solid	300.0	53363
880-28380-12	T-2 (7'-8")	Soluble	Solid	300.0	53363
880-28380-13	T-2 (8'-9')	Soluble	Solid	300.0	53363
880-28380-14	T-2 (9'-10')	Soluble	Solid	300.0	53363
880-28380-15	T-2 (10'-11')	Soluble	Solid	300.0	53363
880-28380-16	T-2 (11'-12')	Soluble	Solid	300.0	53363
MB 880-53363/1-A	Method Blank	Soluble	Solid	300.0	53363
LCS 880-53363/2-A	Lab Control Sample	Soluble	Solid	300.0	53363
LCSD 880-53363/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	53363
880-28380-7 MS	T-2 (2'-3')	Soluble	Solid	300.0	53363
880-28380-7 MSD	T-2 (2'-3')	Soluble	Solid	300.0	53363

Analysis Batch: 53584

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-28380-17	T-3 (0-1')	Soluble	Solid	300.0	53362
880-28380-18	T-3 (1'-1.5')	Soluble	Solid	300.0	53362
880-28380-19	T-3 (1.5'-2')	Soluble	Solid	300.0	53362
880-28380-20	T-3 (2'-3')	Soluble	Solid	300.0	53362
880-28380-21	T-3 (3'-4)	Soluble	Solid	300.0	53362
880-28380-22	T-3 (4'-5')	Soluble	Solid	300.0	53362
880-28380-23	T-3 (5'-6')	Soluble	Solid	300.0	53362
880-28380-24	T-3 (6'-7')	Soluble	Solid	300.0	53362
MB 880-53362/1-A	Method Blank	Soluble	Solid	300.0	53362
LCS 880-53362/2-A	Lab Control Sample	Soluble	Solid	300.0	53362
LCSD 880-53362/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	53362
880-28392-A-1-D MS	Matrix Spike	Soluble	Solid	300.0	53362
880-28392-A-1-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	53362
880-28418-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	53362
880-28418-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	53362

Page 154 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Chronicle

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-1 (0-1') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 15:20	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 11:11	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	53363	05/15/23 11:45	KS	EET MID

50 mL

50 mL

53573

05/17/23 12:38

10

Client Sample ID: T-1 (1'-1.5') Date Collected: 05/11/23 00:00

Analysis

300.0

Date Received: 05/12/23 14:48

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 15:46	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 12:16	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	53573	05/17/23 12:54	СН	EET MID

Client Sample ID: T-1 (1.5'-2') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 16:11	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 12:38	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53573	05/17/23 13:00	СН	EET MID

Client Sample ID: T-2 (0-1') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 16:37	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 155 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-1 Matrix: Solid

Lab Sample ID: 880-28380-2 Matrix: Solid

Lab Sample ID: 880-28380-3

Lab Sample ID: 880-28380-4

Matrix: Solid

СН

nx: 5010

EET MID

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-2 (0-1') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 12:59	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		50	50 mL	50 mL	53573	05/17/23 13:05	СН	EET MID

Client Sample ID: T-2 (1'-1.5') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 17:03	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 13:21	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	53573	05/17/23 13:10	CH	EET MID

Client Sample ID: T-2 (1.5'-2') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 17:29	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 13:42	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53573	05/17/23 13:16	СН	EET MID

Client Sample ID: T-2 (2'-3') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 17:54	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 14:04	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 156 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-4 Matrix: Solid

Lab Sample ID: 880-28380-5

> 11 12 13

Lab Sample ID: 880-28380-6

Lab Sample ID: 880-28380-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-7

Lab Sample ID: 880-28380-8

Lab Sample ID: 880-28380-9

Lab Sample ID: 880-28380-10

Client Sample ID: T-2 (2'-3') Date Collected: 05/11/23 00:00

Client: Carmona Resources

Date Received: 05/12/23 14:48

Project/Site: White City Penn 28 Gas Com (04.15.2019)

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53573	05/17/23 13:21	СН	EET MID

Client Sample ID: T-2 (3'-4') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 18:21	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 14:26	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53573	05/17/23 13:37	СН	EET MID

Client Sample ID: T-2 (4'-5') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 18:47	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 14:47	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53573	05/17/23 13:42	СН	EET MID

Client Sample ID: T-2 (5'-6') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 19:13	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 15:09	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53573	05/17/23 13:59	СН	EET MID

Lab Chronicle

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

8015NM Prep

8015B NM

DI Leach

300.0

Client Sample ID: T-2 (6'-7') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

vcu. vc	12/20 14.4	•								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
	Prep	5035			5.01 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 20:56	EL	EET MID
	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID

10.04 g

1 uL

4.96 g

50 mL

1

20

53454

53450

53363

53573

10 mL

1 uL

50 mL

50 mL

05/16/23 08:19

05/16/23 15:53

05/15/23 11:45

05/17/23 14:04

Client Sample ID: T-2 (7'-8")

Prep

Analysis

Analysis

Leach

Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 21:22	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 16:14	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53573	05/17/23 14:09	СН	EET MID

Client Sample ID: T-2 (8'-9') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 21:48	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 16:36	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53573	05/17/23 14:15	СН	EET MID

Client Sample ID: T-2 (9'-10') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 22:13	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID

Matrix: Solid

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-11

A.I

SM

KS

СН

Lab Sample ID: 880-28380-13

Lab Sample ID: 880-28380-14

Matrix: Solid

EET MID

EET MID

EET MID

EET MID

Matrix: Solid

9

Lab Sample ID: 880-28380-12 Matrix: Solid

Lab Chronicle

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-2 (9'-10') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 16:58	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	53573	05/17/23 14:20	СН	EET MID

Client Sample ID: T-2 (10'-11') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 22:39	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 17:20	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	53573	05/17/23 14:25	СН	EET MID

Client Sample ID: T-2 (11'-12') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 23:05	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 17:42	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	53363	05/15/23 11:45	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	53573	05/17/23 14:31	СН	EET MID

Client Sample ID: T-3 (0-1') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 23:31	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 18:04	SM	EET MID

Eurofins Midland

Matrix: Solid

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-14 Matrix: Solid

Lab Sample ID: 880-28380-15

Lab Sample ID: 880-28380-16

Lab Sample ID: 880-28380-17

Matrix: Solid

Matrix: Solid

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-18

Lab Sample ID: 880-28380-19

Matrix: Solid

Matrix: Solid

Client Sample ID: T-3 (0-1') Date Collected: 05/11/23 00:00

Date Received:	05/12/23	14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	53362	05/17/23 11:43	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53584	05/18/23 17:34	СН	EET MID

Client Sample ID: T-3 (1'-1.5') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/17/23 23:57	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 18:25	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	53362	05/17/23 11:43	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	53584	05/19/23 14:00	СН	EET MID

Client Sample ID: T-3 (1.5'-2') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/18/23 00:22	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 18:46	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	53362	05/17/23 11:43	KS	EET MID
Soluble	Analysis	300.0		10	50 mL	50 mL	53584	05/19/23 14:05	СН	EET MID

Client Sample ID: T-3 (2'-3') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

Lab Sample ID: 880-28380-20 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	53508	05/16/23 16:07	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53588	05/18/23 00:48	EL	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/18/23 15:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/17/23 12:07	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	53454	05/16/23 08:19	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53450	05/16/23 19:08	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	53362	05/17/23 11:43	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53584	05/18/23 18:10	СН	EET MID

Eurofins Midland

Lab Chronicle

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-3 (3'-4) Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

		Lab Sa	imple ID): 880
				I
	 	 _		

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	53575	05/17/23 10:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53791	05/21/23 00:27	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/22/23 12:48	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/16/23 12:24	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	53388	05/15/23 13:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53326	05/15/23 23:22	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	53362	05/17/23 11:43	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53584	05/18/23 18:15	СН	EET MID

Client Sample ID: T-3 (4'-5') Date Collected: 05/11/23 00:00

Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	53575	05/17/23 10:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53791	05/21/23 00:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/22/23 12:48	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/16/23 12:24	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53388	05/15/23 13:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53326	05/15/23 23:43	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	53362	05/17/23 11:43	KS	EET MID
Soluble	Analysis	300.0		20	50 mL	50 mL	53584	05/18/23 18:20	СН	EET MID

Client Sample ID: T-3 (5'-6') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	53575	05/17/23 10:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53791	05/21/23 01:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/22/23 12:48	SM	EET MID
Total/NA	Analysis	8015 NM		1			53482	05/16/23 12:24	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	53388	05/15/23 13:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53326	05/16/23 00:05	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	53362	05/17/23 11:43	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53584	05/18/23 18:26	СН	EET MID

Client Sample ID: T-3 (6'-7') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	53575	05/17/23 10:45	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	53791	05/21/23 01:28	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			53694	05/22/23 12:48	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 161 of 177

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-21 Matrix: Solid

Lab Sample ID: 880-28380-22

Lab Sample ID: 880-28380-23

Lab Sample ID: 880-28380-24

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Client Sample ID: T-3 (6'-7') Date Collected: 05/11/23 00:00 Date Received: 05/12/23 14:48

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			53482	05/16/23 12:24	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	53388	05/15/23 13:21	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	53326	05/16/23 00:26	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	53362	05/17/23 11:43	KS	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	53584	05/18/23 18:31	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-28380-24

Matrix: Solid

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28380-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	P	rogram	Identification Number	Expiration Date	
as	N	ELAP	T104704400-22-25	06-30-23	
• •		ut the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for which	
the agency does not off					
Analysis Method	Prep Method	Matrix	Analyte		
300.0		Solid	Chloride		
8015 NM		Solid	Total TPH		
8015B NM	8015NM Prep	Solid	Diesel Range Organics (Over	C10-C28)	
8015B NM	8015NM Prep	Solid	Gasoline Range Organics (GR	O)-C6-C10	
8015B NM	8015NM Prep	Solid	Oll Range Organics (Over C28	3-C36)	
8021B	5035	Solid	Benzene		
8021B	5035	Solid	Ethylbenzene		
8021B	5035	Solid	m-Xylene & p-Xylene		
8021B	5035	Solid	o-Xylene		
8021B	5035	Solid	Toluene		
8021B	5035	Solid	Xylenes, Total		
Total BTEX		Solid	Total BTEX		

Page 163 of 177

Method Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019) Job ID: 880-28380-1 SDG: Eddy County, New Mexico

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
0.0	Anions, Ion Chromatography	EPA	EET MID
35	Closed System Purge and Trap	SW846	EET MID
15NM Prep	Microextraction	SW846	EET MID
Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: White City Penn 28 Gas Com (04.15.2019)

Job ID: 880-28380-1
SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-28380-1	T-1 (0-1')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-2	T-1 (1'-1.5')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-3	T-1 (1.5'-2')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-4	T-2 (0-1')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-5	T-2 (1'-1.5')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-6	T-2 (1.5'-2')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-7	T-2 (2'-3')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-8	T-2 (3'-4')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-9	T-2 (4'-5')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-10	T-2 (5'-6')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-11	T-2 (6'-7')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-12	T-2 (7'-8")	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-13	T-2 (8'-9')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-14	T-2 (9'-10')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-15	T-2 (10'-11')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-16	T-2 (11'-12')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-17	T-3 (0-1')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-18	T-3 (1'-1.5')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-19	T-3 (1.5'-2')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-20	T-3 (2'-3')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-21	T-3 (3'-4)	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-22	T-3 (4'-5')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-23	T-3 (5'-6')	Solid	05/11/23 00:00	05/12/23 14:48
880-28380-24	T-3 (6'-7')	Solid	05/11/23 00:00	05/12/23 14:48

Eurofins Midland 5/22/2023

.

	Project M	Company	Address:	City, Stat	Phone:	
Released to Imaging: 4/2						

冎 ()

23

٤ ٦

Work Order No: 200		Program: UST/PST DRP Drownfields RC Sperfund)]Level III	ADaPT C Other	Preservative Codes	None. NO DI Water H ₂ O	_	HCL. HC HNO3 HN H-S04. H- NAOH NA	•	Partso NABIS	Ξ Na ₂ S ₂ O ₃ NaSO ₃	Zn Acetate+NaOH Zn	NaOH+Ascorbic Acid SAPC	Sample Comments	2 UN				the second s				880-28380 Chain of Custody) Date/Time	
		Program: UST/PST	State of Project:	Reporting Level II	Deliverables EDD	REQUEST													*					880-283			Received by ⁻ (Signature)	
			uite 600		com	ANALYSIS F																					•	3
		Energy	600 N Marienfield St, Suite 600	Midland, TX 79701	<u>elke@coterra.</u>			(0	ЯМ +	0.0 0.0	46 30			108 H	IdT	××	××	××	××	x x	××	X X	X X	X X	×		ne	163
	Laci Luig	Cimarex Energy	600 N M	Midland,	<u>om ashton.thie</u>		Pres. Code				805	хэт			# of Cont	×		+ ×	+ ×	1 X	1 X	1 X	1 X	1 X	- ×		Date/Time	-21-S
	to (if different)	Company Name	Address.	City, State ZIP	Email aci.luig@coterra.com ashton.thielke@coterra.com	pur	Rush	Normal	<u> </u>	Yes No	Ì	8	w.	Q	Water Grab/ Comp		σ	9	υ	G	ŋ	თ	უ	U	ლ ს			
	Bill t	Corr	Add	City	Email laci.	Turn Around	🛙 Routine 🛛	Due Date		Wet Ice	÷.		, du	iture:	Soil Wa	×	×	×	×	×	×	×	×	×	×			
						(04 15 2019)				Yes	Thermometer ID	Correction Factor	Temperature Reading	Corrected Temperature:	Time												· (Signature)	z N S
	'hielke	Carmona Resources	310 W Wall St Ste 500	Midland, TX 79701	-8988	White City Penn 28 Gas Com (04 15 2019)	2018	Eddy County, New Mexico	5	Temp Blank:	40		Yes No WA T		Date	5/11/2023	5/11/2023	5/11/2023	5/11/2023	5/11/2023	5/11/2023	5/11/2023	5/11/2023	5/11/2023	5/11/2023		Relinquished by (Signature)	C U
	Project Manager Ashton Thielke	Company Name: Carmona	Address: 310 W M	City, State ZIP Midland,	Phone: 432-813-8988	Project Name: White C	Project Number	Project Location		SAMPLE RECEIPT	Received Intact:	Cooler Custody Seals.	Sample Custody Seals	Total Containers.	Sample Identification	T-1 (0-1')	T-1 (1'-1 5')	T-1 (1 5'- 2')	T-2 (0-1')	T-2 (1'-1.5')	T-2 (1 5'- 2')	T-2 (2'-3')	T-2 (3'-4')	T-2 (4'-5')	T-2 (5'-6')	Comments:		Juer

5/22/2023

S.

Control Description Description <thdescripication< th=""> <thdescription< th=""></thdescription<></thdescripication<>	Manager Ashton Thielke Bill to: (fr/different) v Name: Carmona Resources company Name: v Name: Carmona Resources Address. name: J10 W Wall St Ste 500 Address. te ZIP: Midland, TX 79701 Address. te ZIP: Midland, TX 79701 City. State ZIP: de Carbon Address. Cenpany Name: 4322-813-8988 Email [aci.luig@coterra.com asi Number 2018 Email [aci.luig@coterra.com asi Number 2018 a Rush Center Number Control Bush Center Number Control Due Date Normal fs Name: Address Normal Center fs Name: Address Ves No Normal fs Name: Address Normal Center fs Name: Address Ves No Normal fs Name: Address Normal Center fs Name: Address Normal Center <	Work Order Comments 00 Work Order Comments 01 State of Project: 02 State of Project: Reporting Level II State of Project: Reporting Level II State of Project: ANALYSIS REQUEST ADaPT ANALYSIS REQUEST None NO HCL. HC HCL. HC
Withing Communit Resolutions Commonistresolutions Communit Resolutions </td <td>y Name: Carmona Resources Company Name: 10 W Wall St Ste 500 Address. Address. 11 Wall St Ste 500 Email lact.luig@coterra.com as 432-813-8988 Email lact.luig@coterra.com as Number White City Penn 28 Gas Com (04 15 2019) Turm Around Number White City Penn 28 Gas Com (04 15 2019) Turm Around Number White City Penn 28 Gas Com (04 15 2019) Turm Around Number Correction Email lact.luig@coterra.com as Number Volte City Penn 28 Gas Com (04 15 2019) Turm Around Number White City Penn 28 Gas Com (04 15 2019) Turm Around Number Volte City Penn 28 Gas Com (04 15 2019) Montine Number Volte City Penn 28 Gas Com (04 15 2019) Turm Around Number Email lact.luig@coterra.com as Correction S Name GPJ Ves No Normal Custody Seals. Yes No Net Ice Yes No Custody Seals. Yes No Net Ice Yes No Custody Seals. Yes No Net Ice Are Custody Seals. Yes No Net Ice Are Custody Seals. Yes No Net Ice Are Custody Seals. Yes No Net Ice</td> <td>Program: UST/PST Prownfields Rcownfields Rcownfields 00 State of Project: State of Project: Communication Reporting Level II Level III ST/UST RRP ANALYSIS REQUEST ADaPT Other Other ANALYSIS REQUEST None NO HCL. HC HCL. HC HCL. HC</td>	y Name: Carmona Resources Company Name: 10 W Wall St Ste 500 Address. Address. 11 Wall St Ste 500 Email lact.luig@coterra.com as 432-813-8988 Email lact.luig@coterra.com as Number White City Penn 28 Gas Com (04 15 2019) Turm Around Number White City Penn 28 Gas Com (04 15 2019) Turm Around Number White City Penn 28 Gas Com (04 15 2019) Turm Around Number Correction Email lact.luig@coterra.com as Number Volte City Penn 28 Gas Com (04 15 2019) Turm Around Number White City Penn 28 Gas Com (04 15 2019) Turm Around Number Volte City Penn 28 Gas Com (04 15 2019) Montine Number Volte City Penn 28 Gas Com (04 15 2019) Turm Around Number Email lact.luig@coterra.com as Correction S Name GPJ Ves No Normal Custody Seals. Yes No Net Ice Yes No Custody Seals. Yes No Net Ice Yes No Custody Seals. Yes No Net Ice Are Custody Seals. Yes No Net Ice Are Custody Seals. Yes No Net Ice Are Custody Seals. Yes No Net Ice	Program: UST/PST Prownfields Rcownfields Rcownfields 00 State of Project: State of Project: Communication Reporting Level II Level III ST/UST RRP ANALYSIS REQUEST ADaPT Other Other ANALYSIS REQUEST None NO HCL. HC HCL. HC HCL. HC
101 3100 with State stol datamet. 5100 with State stol Base of motor: access deconduction manual state stol manual sto	Name: 310 W Wall St Ste 500 Address. ite ZIP: Midland, TX 79701 Email Iaci.luig@coterra.com as 432-813-8983 Email Iaci.luig@coterra.com as Email Iaci.luig@coterra.com as Name: White City Penn 28 Gas Com (04 15 2019) Turn Around Pres. Pres. Number: White City Penn 28 Gas Com (04 15 2019) Turn Around Pres. Pres. Number: White City Penn 28 Gas Com (04 15 2019) Turn Around Pres. Pres. Number: White City Penn 28 Gas Com (04 15 2019) Email Bruth Around Pres. Number: White City Penn 28 Gas Com (04 15 2019) Turn Around Pres. Pres. Number: Eddy County, New Mexico Due Date Normal Pres. Pres. St Name: Address Yes No Wet Ice Yes No Pres. Pres. Custody Seals Yes No Thermometer ID Dire Date Normal Pres. Custody Seals Yes No Net Ice Yes No Pres. Pres.	00 State of Project: Reporting Level II ST/UST RRP Reporting Level II Level III ST/UST RRP AMALYSIS REQUEST
decision Convention Conventio	te ZIP- Midland, TX 79701 te ZIP- 432-813-8988 Name: White City Penn 28 Gas Com (04 15 2019) Number 2018 Eddy County, New Mexico Due Dat Name: GPJ r's Name: GPJ r's Name: GPJ LE RECEIPT Temp Blank. Yes No Wet I d Intact: Yes No N/A Correction Factor Custody Seals. Yes No N/A Temperature Reading ontainers Date Time Soi	Reporting Level II Clevel III STJUST RRP Deliverables EDD ADaPT Other ANALYSIS REQUEST Other Other ANALYSIS None NO None NO HCL. HC HCL. HC
422-313-008 Enrol IEQL Indicactora.com ablton hible accorra com ablton hible accorra com ablton hible accorra com ablton hible accorra com ablton hible accorra to a lange accorra (1 1 2 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	432-813-8988 432-813-8988 432-813-8988 Name: White City Penn 28 Gas Com (04 15 2019) © Routin Number 2018 © Routin Number 2018 Ømetin Number 2018 Ømetin Number 2018 Ømetin Location Eddy County, New Mexico Due Dat r/s Name: Temp Blank. Yes No Wet I LE RECEIPT Temp Blank. Yes No Wet I Untact: Yes No NiA Correction Factor Custody Seals Yes No NiA Temperature Reading Outstingters Yes No NiA Temperature Reading	Deliverables EDD ADaPT Other ANALYSIS REQUEST Preservative ANALYSIS None None None NONe NONE
With C(h) Ferm 28 Gae Corr (M 15 2019) Turt Arcend Ant.Yasis REQUEST Presentation 2016 1 strontes 0 strint 0 strontes 0 strontes <td>Name White City Penn 28 Gas Com (04 15 2019) Turn Around Pres. Number 2018 Routine Rush Code. Pres. Pres.<td>Preservati None NO Cool Cool HCL. HC HSL. H2</td></td>	Name White City Penn 28 Gas Com (04 15 2019) Turn Around Pres. Number 2018 Routine Rush Code. Pres. Pres. <td>Preservati None NO Cool Cool HCL. HC HSL. H2</td>	Preservati None NO Cool Cool HCL. HC HSL. H2
Number 2016 2016 Control Death Number Control Nume Num Num Num	Number 2018 2018 Rush Pres. P	None NO Cool Cool HCL HC H_S04. H2
Item Eddy County, New Mexico Due Date Normal eVNmex Gal Gal Gal Gal HCL HCL <t< td=""><td>Indecidention Eddy County, New Mexico Due Date Normal Intersection GPJ Normal Intersection Intersection GPJ PLE RECEIPT Temp Blank. PLE RECEIPT Temp Blank. Yes No Wet Ice PLE RECEIPT Temp Blank. Yes No No PLE RECEIPT Temp Blank. Yes No No PLE RECEIPT Temperature Reading Internet Internet Soundainers Ontrainers Contracted Temperature Internet Sample Identification Date Time Soil Mater</td><td>3</td></t<>	Indecidention Eddy County, New Mexico Due Date Normal Intersection GPJ Normal Intersection Intersection GPJ PLE RECEIPT Temp Blank. PLE RECEIPT Temp Blank. Yes No Wet Ice PLE RECEIPT Temp Blank. Yes No No PLE RECEIPT Temp Blank. Yes No No PLE RECEIPT Temperature Reading Internet Internet Soundainers Ontrainers Contracted Temperature Internet Sample Identification Date Time Soil Mater	3
rkthme GPJ OPD	BTEX 8021B CPJ PLE RECEIPT Temp Blank. Yes <no< td=""> Wet Ice Yes<no< td=""> Wet Ice Yes<no< td=""> Themmeters Custody Seals. Yes<no< td=""> Yes<no< td=""> NA Custody Seals. Yes<no< td=""> Southainers Corrected Temperature Contrainers Corrected Temperature Sample Identification Date</no<></no<></no<></no<></no<></no<>	
LETECEIFT Targe black. Ver. No. Wettes Ver. No. Memonetrin	PLE RECEIPT Temp Blank. Yes No Wet Ice Yes No PLE RECEIPT Temp Blank. Yes No Wet Ice Yes No ed Intact: Yes No Thermometer ID Prestored Seals. Prestored Seals. Custody Seals. Yes No N/A Correction Factor Prestored Seals. Custody Seals. Yes No N/A Temperature Reading. Prestored Seals. Contrainers Corrected Temperature Soil Water Contrainers.	
Temp Blaik. Yes. No Westles Yes. No Westles Yes. No Hold Yes. No Temperature Commentation Environmentation Environmen	Temp Blank. Yes No Wet Ice Yes No Yes No Thermometer ID Parameter ID Yes No N/A Correction Factor Yes No N/A Correction Factor Yes No N/A Temperature Reading Yes No N/A Temperature Yes No N/A Temperature Yes No N/A Temperature Soil Water Contracted Temperature	-
ves No. Thermonetric Model Hould ves No. No. Termenteric Person	Yes No Thermometer ID Yes No N/A Correction Factor Yes No N/A Temperature Reading Partel Temperature Reading factor Date Date Time Soil Water Grab/	H3P04 HP
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Yes No N/A Correction Factor P Yes No N/A Temperature Reading P Corrected Temperature Corrected Temperature BTEX Ication Date Time Soil Water Control	••••••
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Yes No N/A Temperature Reading B Corrected Temperature Corrected Temperature B B B Tication Date Time Soil Water Control Control	
Image: Consistent function Date Time Soil Vector Soil FF Connectent function Pint Soil Soil </td <td>Identification Date Time Soil Water Cable For</td> <td>Zn Acetate+NaOH Zn</td>	Identification Date Time Soil Water Cable For	Zn Acetate+NaOH Zn
Instituention Date Time Soil Water Gravit Comp $\frac{1}{2}$ <	Date Time Soil Water Grab/ #of	NaOH+Ascorbic Acid S.
(6-7) 5112023 X C 1 X X X N N N (7-8) 5112023 X G 1 X X N <td></td> <td>Sample Comme</td>		Sample Comme
(7-8) 511/12023 X G 1 X X X N <	5/11/2023 X G 1 X X	
(8-9) 5/11/2023 X <	5/11/2023 X G 1 X X	
(9-10) 5/11/2023 X K K K K K K 10-11) 5/11/2023 X G 1 X X K K K 11-12) 5/11/2023 X G 1 X X K K K 11-15) 5/11/2023 X G 1 X X K K K 11-15) 5/11/2023 X G 1 X X K K 15-2) 5/11/2023 X G 1 X X K (2-3) 5/11/2023 X G 1 X X (2-3) 5/11/2023 X G 1 X K (2-3) 5/11/2023 X G 1 X K (2-10-23 X X	5/11/2023 X G 1 X X	
10-11) 5/112023 X <	5/11/2023 X G 1 X X	
11-12) 5/11/2023 X G 1 X X X K	5/11/2023 X G 1 X X	
(0-1') $S/1/2023$ X X	5/11/2023 X G 1 X X	
(1-1 5) 5/11/2023 X	5/11/2023 X G 1 X X	
15-2) 5/11/2023 × G 1 ×	5/11/2023 X G 1 X X	
(2-3') 5/1/2023 X <	5/11/2023 X G 1 X X	
Relinquished by (Signature) Date/Time Date/Time Received by: (Signattine)	(2:3) 5/11/2023 X X G 1 X X	
Date/Time Received by: (Signattine)	ments:	
5-12-23 CANANUA 1440	_	
	2	

l. Sing ğ ()

()

Work Order No: 1838

White: Carrieron Resources Common/Interest	Project Manager	Ashton Thielke			Bill to: (if different)	vrent)	Lac	Laci Luig						Work O	Work Order Comments	ments	
Image: Second in the contract of the co	Company Name:	Carmona Resources			Company N	ame:	Cim	arex Ener	λĐ,			Pro Pro	Iram: UST/PS	T PRP	rownfield	s 	
Mathematic Mathematite Mathmatic Mathematic Mathematic Mathematic Mathematic	Address.	310 W Wall St Ste 500			Address:		600	N Marien	field St, Sui	te 600		Stat	e of Project:]		2	
Image: state Event list List Control Event list List Control Control <td>City, State ZIP</td> <td>Midland, TX 79701</td> <td></td> <td></td> <td>City, State ;</td> <td><u>'IP</u></td> <td>Mid</td> <td>and TX7</td> <td>9701</td> <td></td> <td></td> <td>Rep</td> <td>orting Level II</td> <td>CLevel III</td> <td></td> <td></td> <td></td>	City, State ZIP	Midland, TX 79701			City, State ;	<u>'IP</u>	Mid	and TX7	9701			Rep	orting Level II	CLevel III			
Iteme Matrix Male Cly-Penn 31 Gas (Cam (M 15 2019) Turn Account Adv.153 FeCUEET Personnal Intermediation Edg/Cam (M 15 2019) In Account Edg/Cam (M 15 2019) In Account Max.153 FeCUEET In Account Personnal Intermediation Edg/Cam (M 15 2019) In Account Edg/Cam (M 15 2019) In Account None	Phone:	432-813-8988		Email	laci.luig@	oterra.cc	m ashtor	.thielke(<u>Dcoterra.c</u>	uo Wo			reables EDD		Арарт 🛛		
Itematic 2013 8 louine Пени. 2013 8 louine Itematic Mene NO Itematic GPJ OPI Particip <	Project Name:	White City Penn 28 Gas Con	n (04 15 2019)	Turn	Around		<u> </u>			Ā	VALYSIS	REQUES				Preenva	tive Codee
Iteletion Edge/ County, free Mexico Due Dete Montal Control, free Mexico Due County, free Mex	Project Number	2018			🗆 Rush		res. ode										DI Water H
Channel OPJ OP	Project Location	Eddy County, New N		Due Date	Norm						-						
LE Tang lan, ver ver No Month Month <th< td=""><td>Sampler's Name:</td><td>GPJ</td><td></td><td></td><td></td><td></td><td></td><td>(05</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>HND, HN</td></th<>	Sampler's Name:	GPJ						(05									HND, HN
Tareno Balenk. Vara No. Mentioneric Mention Mentioneric Mention Mentioneric Mention Vara No. Commonmention Mentionmention Mentionmention Mentionmention Mentionmention Mentionmention Vara No. Mentionmention Mention Mentionmention Mention Mentionmention Mention Me	PO#:						s	IW +							S.H	о, н, о	NaOH Na
Yes No. Hermoneter D Yes No. Amenoter D Hold Amenoter D Amenoter D Amenoter D Hold Amenoter D Bit Maine Gain Hold Amenoter D Bit Maine Gain Hold Fill Bit Still Bit X X X X X Bit Still Bit X X X X X X X Bit Still Bit X <td>SAMPLE RECEI</td> <td></td> <td>Yes No</td> <td>Wet Ice:</td> <td>1</td> <td>9</td> <td></td> <td>080</td> <td>0.0</td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td>	SAMPLE RECEI		Yes No	Wet Ice:	1	9		080	0.0				<u> </u>				
Yes No. Correction Factor Pa Hold Yes No. Correction Factor Pa Pa Pa Yes No. Correction Factor Pa Pa Pa Pa Concellent Factor Concellent Factor Pa Pa Pa Pa Pa Concellent Factor Date Time Soil V V V Pa Pa Constrained Date Time Soil X	Received Intact:	Yes No	Thermometer ID			ľ] + (90E €								
Yes Kos Temperature Temperature Entity Ent	Cooler Custody Seal:		Correction Factor			Ī		วชอ	oride								
Accordent Temperatures Concreted Temperatures Concreted Temperatures dentification Date Time Soil Water Goils	Sample Custody Sea	Yes No N/A	Temperature Res	ading			18) W9	9140						7 4 2	John Ever	а И 75
Note Grant # of F Image Soil Water Gent F T-3 (3-4) 511/12023 X G 1 X X H	Total Containers.		Corrected Tempe	srature.				108						<u>-</u>	NaC	H+Ascorbic	Acid SAPC
T-3 (3-4) 5/1/2023 X C Orint V <thv< th=""> V V</thv<>	Sample Iden		Time	Soil			Jo t	нат		·····						Samole (Comments
T-3 (if-5) 5/11/2023 X G 1 X X K <thk< th=""> K K</thk<>	T-3 (3			×					 ×							•	
T-3 (5-7) 5/11/2023 X G 1 X <thx< th=""> X X</thx<>	T-3 (4			×		U	+	+	×								
T-3 (6-7') 5/11/2023 X <thx< th=""> X X</thx<>	T-3 (5			×		0	┢	–	×		-						
Relinquished by (Signature) Data filme Data filme Data filme 2833	T-3 (6			×		υ			×						*		
Relinquished by (Signature) 2833											-					Loc: 88	
Relinquished by (Signature) Date/Time Received by (Signature)						-		1								283	3
Relinquished by (Signature) Bate/Time Received by (Signature)								 					 		-	l	
Relinquished by Signature) Date/Time Relinquished by Signature)										 							
Relinquished by (Signature) Date/Time Received by (Signature)						+											
Relinquished by (Signature) Date/Time Received by (Signature) MMM MMM F-72-23 C																	
Pate/Time Date/Time Received by (Signature)	Comments:																
Eactive DataTime Received by (Signature)																	
3		Relinquished t	oy (Signature)				Date	%Time		•		Received	by: (Signatur	e)			Date/Time
	Alla	the A.	UN					2-2	5		$\hat{\mathcal{R}}$	A I					
																_	

Page 54 of 55

5/22/2023

5

Job Number: 880-28380-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 28380 List Number: 1 Creator: Rodriguez, Leticia

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

True

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 326597

QUESTIO	NS
Operator:	OGRID:
CIMAREX ENERGY CO. OF COLORADO	162683
6001 Deauville Blvd	Action Number:
Midland, TX 79706	326597
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAB1912653924
Incident Name	NAB1912653924 WHITE CITY PENN A 28 GAS COM UNIT 3 #004 @ 30-015-33862
Incident Type	Release Other
Incident Status	Remediation Closure Report Received
Incident Well	[30-015-33862] White City Penn A 28 Gas Com Unit 3 #004

Location of Release Source

Please answer all the questions in this group.	
Site Name	WHITE CITY PENN A 28 GAS COM UNIT 3 #004
Date Release Discovered	04/12/2019
Surface Owner	State

Incident Details

	Please answer all the questions in this group.	
	Incident Type	Release Other
	Did this release result in a fire or is the result of a fire	Νο
	Did this release result in any injuries	No
	Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
	Has this release endangered or does it have a reasonable probability of endangering public health	Νο
ĺ	Has this release substantially damaged or will it substantially damage property or the environment	No
ĺ	Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	r the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Not answered.
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.
Condensate Released (bbls) Details	Cause: Corrosion Tank (Any) Condensate Released: 38 BBL Recovered: 0 BBL Lost: 38 BBL.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 326597

QUESTIONS (continued) Operator: OGRID: CIMAREX ENERGY CO. OF COLORADO 162683 6001 Deauville Blvd Action Number: Midland, TX 79706 326597 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	e. gas only) are to be submitted on the C-129 form.

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	iation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Laci Luig Title: ES&H Specialist

Date: 03/26/2024

Email: DL_PermianEnvironmental@coterra.com

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

Operator

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505

Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 326597

QUESTIONS (continued) OGRID: CIMAREX ENERGY CO. OF COLORADO 6001 Deauville Blvd Midland, TX 79706

162683 Action Number: 326597 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Between 26 and 50 (ft.)	
NM OSE iWaters Database Search	
No	
nd the following surface areas:	
Between 1 and 5 (mi.)	
Greater than 5 (mi.)	
Between 1 and 5 (mi.)	
Between 1 and 5 (mi.)	
Between 1 and 5 (mi.)	
Greater than 5 (mi.)	
Between 1000 (ft.) and ½ (mi.)	
Greater than 5 (mi.)	
Zero feet, overlying, or within area	
High	
Between 1000 (ft.) and ½ (mi.)	
No	

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 10600 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 1650 GRO+DRO (EPA SW-846 Method 8015M) 1430 BTEX (EPA SW-846 Method 8021B or 8260B) 0 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 03/13/2024 On what date will (or did) the final sampling or liner inspection occur 03/22/2024 On what date will (or was) the remediation complete(d) 03/22/2024 What is the estimated surface area (in square feet) that will be reclaimed 2000 What is the estimated volume (in cubic yards) that will be reclaimed 0 What is the estimated surface area (in square feet) that will be remediated 2000 What is the estimated volume (in cubic yards) that will be remediated 800 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

.

QUESTIONS, Page 4

Action 326597

Phone:(505) 476-3470 Fax:(505) 476-3462		
QUESTI	ONS (continued)	
Operator: CIMAREX ENERGY CO. OF COLORADO 6001 Deauville Blvd Midland, TX 79706	OGRID: 162683 Action Number: 326597 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	LEA LAND LANDFILL [fEEM0112342028]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Vot answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed eff which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	inowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Laci Luig Title: ES&H Specialist Email: DL_PermianEnvironmental@coterra.com Date: 03/26/2024 bordance with the physical realities encountered during remediation. If the responsible party has any need to	

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 326597

QUESTIONS (continued)		
Operator:	OGRID:	
CIMAREX ENERGY CO. OF COLORADO	162683	
6001 Deauville Blvd	Action Number:	
Midland, TX 79706	326597	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

Deferral Requests Only			
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 175 of 177

.

Action 326597

QUESTIONS (continued)			
Operator: CIMAREX ENERGY CO. OF COLORADO 6001 Deauville Blvd Midland, TX 79706	OGRID: 162683 Action Number: 326597 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)		
QUESTIONS			
Sampling Event Information			
Last sampling notification (C-141N) recorded 325209			
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/22/2024		
What was the (estimated) number of samples that were to be gathered	2		
What was the sampling surface area in square feet	2000		
Remediation Closure Request Only answer the questions in this group if seeking remediation closure for this release because all re			
Requesting a remediation closure approval with this submission	Yes		
Have the lateral and vertical extents of contamination been fully delineated	Yes Yes		
Was this release entirely contained within a lined containment area	No		
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes		
What was the total surface area (in square feet) remediated	2000		
What was the total volume (cubic yards) remediated	800		
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes		
What was the total surface area (in square feet) reclaimed	0		
What was the total volume (in cubic yards) reclaimed	0		
Summarize any additional remediation activities not included by answers (above)	Excavated the contaminated material onsite and have lab confirmed floor and sidewall composite samples of the entire area. Will reclaim during P/A.		
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of		
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required uses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.		
I hereby agree and sign off to the above statement	Name: Laci Luig Title: ES&H Specialist Email: DL_PermianEnvironmental@coterra.com Date: 03/26/2024		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 326597

Page 176 of 177

QUESTIONS (continued)		
Operator: CIMAREX ENERGY CO. OF COLORADO	OGRID: 162683	
6001 Deauville Blvd Midland, TX 79706	Action Number: 326597	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		

Reclamation Report			
Only answer the questions in this group if all reclamation steps have been completed.			
Requesting a reclamation approval with this submission	No		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	177	of	177

CONDITIONS

Action 326597

CONDITIONS		
Operator:	OGRID:	
CIMAREX ENERGY CO. OF COLORADO 6001 Deauville Blvd Midland, TX 79706	162683	
	Action Number:	
	326597	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

CONDITIONS

Created By Condition Condition Date 4/26/2024 scwells None