Received by O Review of the Canada	Page 1 of 211
Mesa#2 2023 Annual Groundwater Report: 2023 ANNUA Content Satisfactory	AL GROUNDWATER REPORT
1. Please update copies	Canada Mesa #2 t Number: nAUTOfAB000065
from NMOSE for installation of additional T2	Meter Code: 87640 4N, R6W, Sec 24, Unit I
well MW-12 2. Continue to recover SI LNAPL during quarterly site visits where present	REVIEWED By Mike Buchanan at 3:57 pm, May 02, 2024
Si and readily removable 3. Continue Latitude: 36.296 Federal	5081 N, Longitude: -107.414109 W Gas (well P&A'd)
Simethod 8260, and ND conduct site-wide Ersamping biennarning of activities at setherzhorquarter of 2024 entitled, " <i>Rem</i> Activision of the stediation plan, El Paso N	Canada Mesa #2 (Site) are managed pursuant to the procedures <i>rediation Plan for Groundwater Encountered During Pit Closure</i> Natural Gas Company / El Paso Field Services Company, 1995). ally approved by the New Mexico Oil Conservation Division

Therefore the New Mexico Oil Conservation Division (Neport by Aprilot, 2025 dence dated November 30, 1995; and the NMOCD approval conditions were adopted into El Paso CGP's (EPCGP's) program methods. Formerly, the Site was operated by Merrion Oil & Gas Company and is no longer active.

Canada Mesa #2 is located on Federal land. An initial site assessment was completed in July 1994, and an excavation to approximately 12 feet below ground surface (bgs) was completed in August 1994. Various site investigations have occurred since 1994. Monitoring wells were installed in 1995 (MW-1) and 2000 (MW-2 and MW-3). Monitoring wells MW-2 and MW-3 were abandoned in May 2016, ahead of Merrion Oil and Gas Company's reclamation activities. Monitoring wells MW2R, MW-3R, and MW-4 through MW-7 were installed in 2018 and monitoring wells MW-8 and MW-9 were installed in 2019. In 2022, monitoring wells MW-10 and MW-11 were installed. In July 2023, monitoring well MW-12 and test well TW-1 were installed. A detailed Site history is presented in Appendix A.

The location of the Site is depicted on Figure 1. A Site Plan map depicting the locations of monitoring wells and current and historical site features is provided as Figure 2. Historically, light non-aqueous phase liquid (LNAPL) has periodically been encountered and recovered from MW-1, MW-2R, MW-4, and MW-9. Mobile dual-phase extraction (MDPE) events to enhance LNAPL recovery from MW-1 and MW-4 were conducted in 2018, and from MW-9 in August 2023. Quarterly manual LNAPL recovery began in the second quarter of 2020 and has continued through 2023. Groundwater sampling is being conducted on a semi-annual basis.

MONITORING AND TEST WELL INSTALLATION ACTIVITIES

The planned monitoring well locations for MW-12 and TW-1 were staked for permitting and utility locating purposes prior to completing public 811 locating activities. The monitoring well advancement and installation activities were completed in accordance with the July 17, 2023 *Well Installation and Remedial Feasibility Testing Work Plan* (Work Plan), subsequently approved by the NMOCD. The NMOCD was notified of the start of the monitoring well installation activities on July 20, 2023 (Appendix B). Permits for installing the monitoring and test well were obtained from the New Mexico Office of the State Engineer (NMOSE) prior to drilling activities, and are included in Appendix C. One soil boring, labeled SB-6, was advanced at the Site in anticipation of installing well TW-1 but was plugged and abandoned pursuant to the approved NMOSE plan of plugging as field -apparent hydrocarbons requiring remediation were not readily evident at this location. A copy of the NMOSE well abandonment form for SB-6 is included in Appendix D.

Canada Mesa #2 Incident Number: nAUTOfAB000065 Meter Code: 87640 T24N, R6W, Sec 24, Unit I

One monitoring well, MW-12, was advanced and installed in July 2023, to further characterize the extent of hydrocarbons around monitoring well MW-9. Installation of Air Sparge (AS) test well TW-1, and soil boring SB-6 occurred near MW-12 to facilitate testing of future remediation efforts, as described in the Work Plan. Ground surface and casing elevations of the new and modified monitoring wells were subsequently surveyed to tie-in to the existing monitoring well network. Monitoring well MW-12 and test well TW-1 were constructed of 2-inch-diameter, Schedule 40 polyvinyl chloride (PVC), with 0.010-inch, continuous, factory-slotted PVC screen. MW-12 was installed with 20 feet of screen, set from 31.5 to 51.5 feet below ground surface (bgs). Test well TW-1 was installed with 2 feet of well screen, set from 38 to 40 feet bgs.

The wells were installed at depths that bisected the field-observed or expected water tables. A 3-foot seal of bentonite chips was placed above the sandpack and hydrated, and the remaining annular space was filled with bentonite grout. Each new well was completed as a stick-up with locking protective casing and a concrete surface completion. Four protective bollards were installed around the new monitoring well and test well. Copies of the NMOSE Well Completion Forms for MW-12 and TW-1 are provided in Appendix E. The soil boring logs and well construction diagrams for MW-12 and TW-1 are provided in Appendix F.

During advancement of the monitoring well, two soil samples were retained from above the fieldinterpreted water table for laboratory analysis. During advancement of the test well, one soil sample was retained from above the field-interpreted water table, in the same manner. Two soil samples were retained during advancement of SB-6. Retained sample jars were placed in laboratory-provided 4-ounce jars, sealed, labeled, packed on ice and shipped under standard chain-of-custody protocols to Eurofins Environment Testing Southeast, LLC, (Eurofins) in Pensacola, Florida. The soil samples were analyzed for the presence of benzene, toluene, ethylbenzene, and total xylenes (BTEX) according to United States Environmental Protection Agency (EPA) Method SW846 8021B, gasoline range organics, diesel range organics, and motor oil range organics using EPA Method 8015B; and chloride according to EPA Method 325.2.

Monitoring well development was performed using a down-hole pump until visibly clear groundwater was observed. Development and decontamination water were containerized and transported to Envirotech, Inc. (Envirotech) in Bloomfield, NM for disposal. A copy of the wastewater disposal documentation is included as Appendix G. Soil cuttings were drummed and staged on site for later removal and disposal at Envirotech. Documentation of soil drum disposal at Envirotech is contained in Appendix G.

GROUNDWATER SAMPLING ACTIVITIES

Pursuant to the Remediation Plan, Stantec provided field work notifications via electronic mail (e-mail) to NMOCD on May 12, 2023, and November 2, 2023, prior to initiating groundwater sampling activities at the Site. Copies of the 2023 NMOCD notifications are provided in Appendix B. On May 20, 2023, groundwater samples were collected from MW-2R, MW-3R, MW-5, MW-8, and MW-11. On November 12, 2023, groundwater samples were collected from MW-2R, MW-3R, MW-5 through MW-8, and MW-10 through MW-12.

Groundwater samples were collected using HydraSleeveTM (HydraSleeve) no-purge groundwater sampling devices. The HydraSleeves were set during the previous sampling event using a suspension

Canada Mesa #2 Incident Number: nAUTOfAB000065 Meter Code: 87640 T24N, R6W, Sec 24, Unit I

tether and stainless-steel weights. The HydraSleeves were positioned to collect a sample from the screened interval by setting the bottom of the sleeve approximately 0.5 foot above the bottom of the screened interval.

Groundwater samples were placed into laboratory-supplied sample containers, packed on ice, and shipped under standard chain-of-custody protocols to Eurofins where they were analyzed for BTEX using EPA Method 8260. One laboratory-supplied trip blank and one blind field duplicate were also collected during each groundwater sampling event.

The unused sample water was placed in a waste container and transported to Envirotech for disposal. Wastewater disposal documentation for Envirotech is included as Appendix G.

LNAPL RECOVERY

As documented in EPCGP's letter dated January 5, 2021, EPCGP initiated quarterly LNAPL recovery activities beginning in the second calendar quarter of 2020. Documentation of NMOCD notification of site LNAPL recovery activities in 2023 is provided in Appendix B. LNAPL was observed in monitoring wells MW-4, and MW-9 during the March, May, August, and November LNAPL recovery site visits. Trace LNAPL was observed in MW-1 during the August and November site visit.

During the groundwater sampling site visits in May and November, the recovered LNAPL was disposed of with wastewater generated during the monitoring well sampling activities. Recovered LNAPL from the March and August site visits was disposed at Envirotech (Appendix G).

Pursuant to the July 17, 2023 *Well Installation and Remedial Testing Feasibility Work Plan*, an MDPE event was completed in August 2023 by AcuVac Remediation, LLC, of Houston, Texas (AcuVac). NMOCD was notified of the start of these activities via email on August 16, 2023. A copy of this notification is included in Appendix B.

The purpose of the MDPE event is to enhance free product recovery from monitoring well MW-9. MDPE is a process combining soil vapor extraction (SVE) with groundwater depression to enhance the removal of liquid and vapor phase hydrocarbons. A submersible pump is used to simultaneously remove the groundwater, inducing a hydraulic gradient toward the extraction well, and creating groundwater depression to expose the hydrocarbon smear zone to SVE. Recovered liquids were transferred to a portable storage tank for off-site disposal. Recovered vapors were used as fuel and burned in the MDPE internal combustion engine (ICE), resulting in little to no emissions. Power generated by the ICE is used to create the induced vacuum for SVE.

On August 27, 2023, an MDPE event was completed using MW-9 as an extraction well. Measurable LNAPL as detected in MW-1, MW-4, and MW-9 prior to the August 2023 MDPE event. Measurable LNAPL of less than one foot was detected in MW-1 (0.16 foot), MW-4 (0.06 foot), and MW-9 (0.16 foot) prior to the August 27, 2023, MDPE event. Based on field data collected by AcuVac, approximately 30.5 gallons of hydrocarbons were recovered from MW-9 in 2023. AcuVac's report summarizing the 2023 MDPE event is presented as Appendix H. Recovered fluids from the MDPE events were transported to Envirotech for disposal. Waste documentation is included in Appendix G.

Canada Mesa #2 Incident Number: nAUTOfAB000065 Meter Code: 87640 T24N, R6W, Sec 24, Unit I

AIR SPARGE FEASIBILITY TESTING

An air sparge (AS) feasibility test was conducted on August 26, 2023 in accordance with July 17, 2023 *Well Installation and Remedial Testing Feasibility Work Plan.* Pursuant to the Work Plan, Stantec provided field work notification via electronic mail (email) to the NMOCD August 16, 2023, prior to initiating the feasibility test, and a copy is provided in Appendix B.

AcuVac conducted the AS test on air sparge test wells TW-1. The AS test location was selected to evaluate areas where remediation of hydrocarbons may be required. The purpose of the AS feasibility tests was to evaluate effectiveness of AS for use as a remedial technology. The intent of AS remedial method is to reduce concentrations of volatile organic compounds (VOCs) within the saturated zone through oxygenation and volatilization.

The tests were conducted using AcuVac's SVE/AS I-6 System. The air sparge portion of the AcuVac system is an engine driven air compressor, which directed air through an oil/moisture separator and then a knockout tank. The air then flowed through three aftercoolers (heat exchangers) and then a metering system, prior to injection into the AS test well. During the test, air flow was incrementally applied to the test well up to a maximum pressure. Pressure data and groundwater elevation data was recorded from a primary monitoring well and from the test well. Nearby monitoring wells were also used to observe pressure/vacuum influence at various distances from the test well. Overall, the AS test indicated air can be injected into the formation at a low rate (less than four cubic feet per minute). AS testing indicated a limited radius of influence (less than 12 feet) from TW-1.

AcuVac's report documenting the feasibility testing is presented as Appendix I.

SVE FEASIBILITY TESTING

SVE feasibility step testing was conducted on monitoring wells MW-1 and MW-12 in accordance with the July 17, 2023 *Well Installation and Remedial Testing Feasibility Work Plan*. An SVE step test was also completed on monitoring well MW-9 prior to beginning of the MDPE event on that well. Pursuant to the Work Plan, Stantec provided field work notification via email to the NMOCD August 16, 2023, prior to initiating the feasibility step tests (Appendix B). AcuVac Remediation, LLC, of Houston, Texas (AcuVac) was the selected contractor for the SVE feasibility testing.

AcuVac conducted the SVE feasibility testing on August 26, 2023. The SVE tests were conducted using the AcuVac I-6 System; the vacuum extraction portion of the AcuVac system consists of a vacuum pump powered by an internal combustion engine (ICE). The vacuum pump was connected to the extraction well via hose and induced a vacuum on each tested well. Any recovered vapors from the SVE blower were combusted using AcuVac's ICE system.

SVE quick tests were conducted to evaluate pressures and flow rate response from monitoring wells MW-1, MW-9 and MW-12. During the tests, various vacuum pressure rates were induced at the well and flow rate, water level, carbon dioxide, oxygen, carbon monoxide, hydrogen sulfide, and hydrocarbon concentration data was collected to evaluate performance. Pressure/vacuum influence was also monitored at select monitoring wells of varying distances from the test well to provide data for evaluating a radius of influence.

Canada Mesa #2 Incident Number: nAUTOfAB000065 Meter Code: 87640 T24N, R6W, Sec 24, Unit I

AcuVac's report summarizing the SVE feasibility testing activities at the Site is presented as Appendix J. Based on the data obtained during testing activities, SVE appears feasible at the MW-1 based on hydrocarbon concentrations and flow rates, and marginally effective at the MW-9 and MW-12 locations. In each case, a radius of influence of less than 23 feet should be expected. No wastes were generated during the SVE feasibility testing activities that required off-site disposal.

SUMMARY TABLES

Historic groundwater analytical and water level data are summarized in Table 2 and Table 3. LNAPL recovery data is summarized on Table 1. Soil analytical data is summarized in Table 4.

SITE MAPS

Groundwater analytical maps (Figures 3 and 5) and groundwater elevation contour maps (Figures 4 and 6) summarize results of the 2023 groundwater sampling and gauging events. Figure 7 summarizes soil sample analytical results.

ANALYTICAL LAB REPORTS

The groundwater analytical lab reports are included as Appendix K. The soil analytical lab report is included in Appendix L.

GROUNDWATER RESULTS

- The groundwater elevations indicate the flow direction at the Site was generally to the northeast during 2023 (see Figures 4 and 6).
- LNAPL was observed in MW-4, and MW-9 during the May 2023 event and in MW-1, MW-4, and MW-9 during the November 2023 groundwater event; therefore, no groundwater samples were collected at these locations.
- Concentrations of benzene were either below the NMWQCC standard (10 micrograms per liter [µg/L]) or were not detected in each of the Site monitoring wells sampled in 2023.
- Concentrations of toluene were either below the NMWQCC standard (750 µg/L) or were not detected in each of the Site monitoring wells sampled in 2023.
- Concentrations of ethylbenzene were either below the NMWQCC standard (750 μg/L) or were not detected in each of the Site monitoring wells sampled in 2023.
- Concentrations of total xylenes were either below the NMWQCC standard (620 µg/L) or were not detected in each of the Site monitoring wells sampled in 2023.
- A field duplicate was collected from monitoring well MW-5 during both 2023 sampling events. There were no significant differences between the primary and duplicate samples in 2023.
- Detectable concentrations of BTEX constituents were not reported in the trip blanks collected and analyzed as part of the 2023 groundwater monitoring events.

Canada Mesa #2 Incident Number: nAUTOfAB000065 Meter Code: 87640 T24N, R6W, Sec 24, Unit I

SOIL RESULTS

- Soil samples were collected during advancement of monitoring well MW-12, test well TW-1, and soil boring SB-6. Results are shown in tabular format in Table 4 and graphically in Figure 7.
- Concentrations of benzene were not detected above laboratory reporting limits in soil samples collected during advancement of MW-12, TW-1, and SB-6.
- Concentrations of total BTEX were not detected above laboratory reporting limits in soil samples collected during advancement of MW-12, TW-1, and SB-6.
- Concentrations of TPH were present at concentrations below the applicable NMOCD soil closure criteria (100 milligrams per kilogram [mg/kg]) in the soil sample collected from 35 to 36 feet bgs. Detectable concentrations were not reporting in the remaining soil samples analyzed.
- Concentrations of chloride were detected in the soil samples collected from SB-6 (15-26') and MW-12 (22-23 and 35-36) at 28, 100, and 100 mg/kg, respectively, less than the applicable NMOCD soil closure criteria (600 mg/kg). Chloride concentrations above laboratory reporting limits were not detected in the remaining soil samples collected.

PLANNED FUTURE ACTIVITIES

Quarterly site visits will continue at the Site in 2024 to facilitate removal of measurable LNAPL where it is present.

Groundwater monitoring events will also continue on a semi-annual basis in 2024. Groundwater samples will be collected from key monitoring wells not containing LNAPL on a semi-annual basis and analyzed for BTEX constituents using EPA Method 8260. A field duplicate and trip blank will also be collected during each groundwater sampling event. Sampling of all Site monitoring wells is conducted on a biennial basis, with the next site-wide sampling event to be conducted in the second calendar quarter of 2024.

The activities completed in 2024 and their results will be summarized in the 2024 Annual Report, to be submitted by April 1, 2025.

TABLES

TABLE 1 – LIGHT NON-AQUEOUS PHASE LIQUID RECOVERY SUMMARY

- TABLE 2 GROUNDWATER ANALYTICAL RESULTS
- TABLE 3 GROUNDWATER ELEVATION RESULTS
- TABLE 4 SOIL ANALYTICAL RESULTS

•

			anada Mesa			1
	Depth to	Depth to	Measured	LNAPL	Water	
	LNAPL	Water	Thickness	Recovered	Recovered	
Well ID - MW-1	(Feet)	(Feet)	(Feet)	(gal)	(gal)	Recovery Typ
Date		-	1			1
4/14/2016	34.74	35.17	0.43	0.61	0.00	manual
5/23/2016	ND	34.77	0.00	0.00	0.00	manual
6/17/2016	NM	NM	0.22	0.08	0.01	manual
7/17/2016	NM	NM	0.11	0.05	0.00	manual
8/19/2016	NM	NM	0.11	0.08	0.01	manual
9/24/2016	NM	NM	0.06	<0.01	<0.01	manual
10/13/2016	35.32	35.41	0.09	0.01	0.00	manual
11/15/2016	36.49	36.50	0.01	<0.01	<0.01	manual
12/14/2016	36.37	36.40	0.03	<0.01	<0.01	manual
11/14/2017	35.41	35.50	0.09	Trace	<0.01	manual
5/15/2018	35.04	35.72	0.68	<0.01	<0.01	manual
7/16/2018	35.39	36.16	0.77			Mobile DPE
10/18/2018	36.78	37.15	0.37	4.3	646	Mobile DPE*
10/19/2018	36.93	37.02	0.09	7.0	994	Mobile DPE*
10/27/2018	35.67	35.68	0.01	<0.01	<0.01	manual
5/21/2019	35.46	35.46	<0.01	<0.01	<0.01	manual
11/10/2019	35.87	35.96	0.09	0.05	0.37	manual
5/11/2020	35.83	36.04	0.21	0.16	0.24	manual
11/12/2020	36.13	36.17	0.04	0.03	0.05	manual
3/18/2021	36.21	36.22	0.01	0.04	0.45	manual
5/19/2021	36.17	36.30	0.13	0.02	0.06	manual
9/18/2021	36.36	36.68	0.32	2.20	0.06	manual
11/11/2021	36.38	36.48	0.10	0.02	0.29	manual
3/21/2022	36.33	36.35	0.02	<0.01	0.11	manual
5/22/2022	36.35	36.45	0.10	0.03	0.12	manual
8/1/2022	36.49	36.50	0.01	< 0.01	0.09	manual
8/27/2023	36.26	36.28	0.02	< 0.01	0.87	manual
11/12/2023	36.28	36.30	0.02	0.02	0.28	manual
			Total:	14.7	1643	
	1				1010]
Vell ID - MW-2R						1
5/11/2020	36.29	36.30	0.01	Trace	Trace	manual
8/19/2020	36.50	36.50	<0.01	Trace	0.13	manual
3/18/2021	36.65	36.65	<0.01	<0.01	0.23	manual
3/21/2022	36.74	36.75	0.01	<0.01	0.15	manual
8/1/2022	36.98	36.99	0.01	<0.01	<0.01	manual
			Total:	Trace	0.51]
Well ID - MW-4						
5/15/2018	39.16	39.16	<0.01	Trace	0.26	manual
7/16/2018	39.44	40.60	1.16	2.7	817	Mobile DPE*
10/18/2018	39.63	40.82	1.10	1.1	470	Mobile DPE*
10/19/2018	40.00	40.02	0.18	3.4	1379	Mobile DPE*
5/21/2019	39.60	39.60	<0.01	<0.01	0	

TABLE 1 - LIGHT NON-AQUEOUS PHASE LIQUID RECOVERY SUMMARY

		C	anada Mesa	a #2		
	Depth to	Depth to	Measured	LNAPL	Water	
	LNAPL	Water	Thickness	Recovered	Recovered	
Well ID - MW-4	(Feet)	(Feet)	(Feet)	(gal)	(gal)	Recovery Type
Date						
11/10/2019	39.92	40.62	0.70	0.13	0.37	manual
5/11/2020	39.91	40.40	0.49	0.21	0.48	manual
8/19/2020	40.16	40.36	0.20	0.42	0.11	manual
11/12/2020	40.10	41.13	1.03	0.28	0.09	manual
3/18/2021	39.42	40.17	0.75	0.40	0.40	manual
5/19/2021	40.13	41.11	0.98	0.38	0.16	manual
9/18/2021	40.29	41.43	1.14	0.25	3.01	manual
11/11/2021	40.32	41.44	1.12	0.41	0.5	manual
3/21/2022	40.24	41.22	0.98	0.35	0.28	manual
5/22/2022	38.29	39.30	1.01	0.43	0.23	manual
8/1/2022	38.48	39.55	1.07	0.44	0.53	manual
11/6/2022	38.28	39.16	0.88	0.65	0.33	manual
3/29/2023	38.03	38.29	0.26	0.06	0.82	manual
5/20/2023	37.98	38.01	0.03	<0.01	0.17	manual
8/27/2023	38.35	38.60	0.25	0.03	0.81	manual
11/12/2023	38.39	38.58	0.19	0.04	0.15	manual
			Total:	11.7	2675	
Well ID - MW-9						-
11/10/2019	36.72	37.45	0.73	0.18	0.26	manual
5/11/2020	36.66	37.30	0.64	2.5	0.18	manual
8/19/2020	36.87	37.57	0.70	2.14	0.17	manual
11/12/2020	36.98	37.67	0.69	2.17	0.44	manual
3/18/2021	37.07	37.49	0.42	0.49	0.22	manual
5/19/2021	37.04	37.46	0.42	0.05	0.08	manual
9/18/2021	37.21	37.75	0.54	0.08	5.00	manual
11/11/2021	37.21	37.75	0.54	0.74	0.54	manual
3/21/2022	37.18	37.47	0.29	0.32	0.20	manual
5/22/2022	35.20	35.56	0.36	0.27	0.10	manual
8/1/2022	35.35	35.70	0.35	0.32	0.66	manual
11/6/2022	35.19	35.39	0.00	0.43	0.02	manual
3/29/2023	34.80	34.89	0.20	0.04	0.45	manual
5/20/2023	34.73	34.79	0.03	0.07	0.43	manual
8/27/2023	35.60	35.95	0.00	0.07	0.42	manual
11/12/2023	35.16	35.21	0.05	0.04	0.40	manual
11/12/2020	00.10	00.21	Total:	9.85	9.41	manuar

Notes:

gal = gallons.

NM - Not Measured. Measured thickness was obtained by measuring the thickness within a bailer.

ND = Not Detected.

* = Mobile Dual Phase Extraction (DPE) includes calculated recovered hydrocarbon vapors.

LNAPL = Light non-aqueous phase liquid

LNAPL recovery data for 2015 and previous years documented in previously-submitted reports.

	_	Canad	a Mesa #2	_	
Location	Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)
	CC Standards:	10	750	750	620
MW-1	11/04/96	5520	8880	469	3920
MW-1	02/05/97	3450	5200	214	1770
MW-1	05/07/97	4650	8440	317	2580
MW-1	01/09/00	NS	NS	NS	NS
MW-1	01/26/00	NS	NS	NS	NS
MW-1	02/15/00	NS	NS	NS	NS
MW-1	10/06/00	NS	NS	NS	NS
MW-1	11/14/00	NS	NS	NS	NS
MW-1	01/03/01	NS	NS	NS	NS
MW-1	01/15/01	NS	NS	NS	NS
MW-1	01/22/01	NS	NS	NS	NS
MW-1	01/30/01	NS	NS	NS	NS
MW-1	02/13/01	NS	NS	NS	NS
MW-1	02/20/01	NS	NS	NS	NS
MW-1	02/28/01	NS	NS	NS	NS
MW-1	06/04/01	NS	NS	NS	NS
MW-1	07/03/01	NS	NS	NS	NS
MW-1	08/06/01	NS	NS	NS	NS
MW-1	08/20/01	NS	NS	NS	NS
MW-1	08/31/01	NS	NS	NS	NS
MW-1	09/14/01	NS	NS	NS	NS
MW-1	09/26/01	NS	NS	NS	NS
MW-1	10/02/01	NS	NS	NS	NS
MW-1	10/10/01	NS	NS	NS	NS
MW-1	12/05/01	NS	NS	NS	NS
MW-1	12/14/01	NS	NS	NS	NS
MW-1	12/21/01	NS	NS	NS	NS
MW-1	12/28/01	NS	NS	NS	NS
MW-1	01/02/02	NS	NS	NS	NS
MW-1	01/07/02	NS	NS	NS	NS
MW-1	01/23/02	NS	NS	NS	NS
MW-1	01/30/02	NS	NS	NS	NS
MW-1	02/07/02	NS	NS	NS	NS
MW-1	02/14/02	NS	NS	NS	NS
MW-1	02/20/02	NS	NS	NS	NS
MW-1	02/26/02	NS	NS	NS	NS
MW-1	03/07/02	NS	NS	NS	NS
MW-1	03/12/02	NS	NS	NS	NS
MW-1	03/28/02	NS	NS	NS	NS
MW-1	04/03/02	NS	NS	NS	NS
MW-1	04/25/02	NS	NS	NS	NS

•

		a Mesa #2		
Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)
C Standards:	10	750	750	620
05/21/02	NS	NS	NS	NS
06/10/02	NS	NS	NS	NS
09/23/02	NS	NS	NS	NS
03/25/03	NS	NS	NS	NS
06/22/03	NS	NS	NS	NS
09/15/03	NS	NS	NS	NS
12/15/03	NS	NS	NS	NS
03/17/04	NS	NS	NS	NS
03/22/04	NS	NS	NS	NS
06/03/04	NS	NS	NS	NS
06/04/04	NS	NS	NS	NS
09/13/04	NS	NS	NS	NS
09/14/04	NS	NS	NS	NS
12/15/04	NS	NS	NS	NS
	NS	NS	NS	NS
				6110
				NS
				NS
				NS
				27200
				NS
				NS
				NS
	C Standards: 05/21/02 06/10/02 09/23/02 03/25/03 06/22/03 09/15/03 12/15/03 03/17/04 03/22/04 06/03/04 06/03/04 09/13/04 09/13/04	Date(µg/L)C Standards:1005/21/02NS06/10/02NS09/23/02NS03/25/03NS03/25/03NS06/22/03NS09/15/03NS12/15/03NS03/17/04NS03/22/04NS06/03/04NS06/03/04NS06/04/04NS09/13/04NS09/13/04NS09/14/04NS09/14/05NS03/22/05NS06/24/05NS03/28/06NS03/28/06NS03/28/06NS03/28/07NS03/26/07NS03/26/07NS03/26/07NS03/05/08NS06/13/07NS03/05/08NS06/16/08NS03/02/09NS11/03/09197002/16/10NS06/02/10NS01/02/10NS03/02/09NS11/08/1057102/01/11NS05/02/11NS	Date(μg/L)(μg/L)C Standards:1075005/21/02NSNS06/10/02NSNS09/23/02NSNS03/25/03NSNS03/25/03NSNS03/25/03NSNS06/22/03NSNS09/15/03NSNS09/15/03NSNS03/22/04NSNS03/22/04NSNS03/22/04NSNS06/03/04NSNS06/03/04NSNS06/04/04NSNS09/13/04NSNS09/14/04NSNS09/14/05NSNS03/22/05NSNS03/22/05NSNS03/22/05NSNS03/28/06NSNS03/28/06NSNS03/28/06NSNS03/28/07NSNS03/26/07NSNS03/26/07NSNS03/26/07NSNS03/26/07NSNS03/26/07NSNS03/26/07NSNS03/26/07NSNS03/26/07NSNS03/02/08NSNS03/02/09NSNS03/02/09NSNS03/02/09NSNS04/10/08NSNS05/02/10NSNS04/10/09NSNS05/0	Date (μg/L) (μg/L) (μg/L) C Standards: 10 750 750 05/21/02 NS NS NS 06/10/02 NS NS NS 09/23/02 NS NS NS 03/25/03 NS NS NS 06/22/03 NS NS NS 06/22/03 NS NS NS 09/15/03 NS NS NS 03/22/04 NS NS NS 03/22/04 NS NS NS 03/22/04 NS NS NS 03/22/04 NS NS NS 06/03/04 NS NS NS 09/14/04 NS NS NS 09/14/04 NS NS NS 03/22/05 NS NS NS 03/28/06 NS NS NS 03/28/06 NS NS NS 03/26/07

		Canad	a Mesa #2		
Location	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)
NMWQC	C Standards:	10	750	750	620
MW-1	11/10/11	1340	9510	1260	20800
MW-1	02/22/12	NS	NS	NS	NS
MW-1	05/15/12	NS	NS	NS	NS
MW-1	06/05/13	720	2200	92	4000
MW-1	09/10/13	570	1700	63	2900
MW-1	12/10/13	190	740	40	1000
MW-1	04/04/14	NS	NS	NS	NS
MW-1	10/22/14	NS	NS	NS	NS
MW-1	05/28/15	NS	NS	NS	NS
MW-1	11/21/15	NS	NS	NS	NS
MW-1	04/14/16	NS	NS	NS	NS
MW-1	12/14/16	NS	NS	NS	NS
MW-1	06/07/17	1400	5900	470	21000
MW-1	11/14/17	NS	NS	NS	NS
MW-1	05/15/18	NS	NS	NS	NS
MW-1	10/27/18	NS	NS	NS	NS
MW-1	05/21/19	NS	NS	NS	NS
MW-1	11/10/19	NS	NS	NS	NS
MW-1	05/11/20	NS	NS	NS	NS
MW-1	03/18/21	NS	NS	NS	NS
MW-1	05/19/21	NS	NS	NS	NS
MW-1	09/18/21	NS	NS	NS	NS
MW-1	11/11/21	NS	NS	NS	NS
MW-1	05/22/22	NS	NS	NS	NS
MW-1	08/01/22	NS	NS	NS	NS
MW-1	11/06/22	45	180	120	730
MW-1	05/20/23	NS	NS	NS	NS
MW-1	11/12/23	NS	NS	NS	NS
MW-2	11/16/00	3200	330	1200	1100
MW-2	06/04/01	NS	NS	NS	NS
MW-2	07/03/01	NS	NS	NS	NS
MW-2	08/06/01	NS	NS	NS	NS
MW-2	08/31/01	NS	NS	NS	NS
MW-2	09/14/01	NS	NS	NS	NS
MW-2	03/19/02	22	<5	150	14
MW-2	12/24/02	12.1	2.1	129	16.4
MW-2	03/25/03	NS	NS	NS	NS
MW-2	06/22/03	NS	NS	NS	NS
MW-2	09/15/03	NS	NS	NS	NS
MW-2	12/15/03	10	11.7	55.3	29.7

		Canad	a Mesa #2		_
Location	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQC	C Standards:	10	750	750	620
MW-2	03/22/04	NS	NS	NS	NS
MW-2	06/04/04	NS	NS	NS	NS
MW-2	09/14/04	NS	NS	NS	NS
MW-2	12/15/04	6.3	3.8	8	5.9
MW-2	03/22/05	NS	NS	NS	NS
MW-2	06/24/05	NS	NS	NS	NS
MW-2	09/14/05	NS	NS	NS	NS
MW-2	12/14/05	NS	NS	NS	NS
MW-2	12/15/05	12.1	30.9	5.6	61.9
MW-2	03/28/06	NS	NS	NS	NS
MW-2	06/07/06	NS	NS	NS	NS
MW-2	09/29/06	NS	NS	NS	NS
MW-2	12/26/06	5.3	5	1.8	7.1
MW-2	03/26/07	NS	NS	NS	NS
MW-2	06/13/07	NS	NS	NS	NS
MW-2	09/28/07	NS	NS	NS	NS
MW-2	12/18/07	<2	<2	<2	<6
MW-2	03/05/08	NS	NS	NS	NS
MW-2	06/16/08	NS	NS	NS	NS
MW-2	09/10/08	NS	NS	NS	NS
MW-2	12/10/08	1.2	2.7	1.7	4.9
MW-2	03/02/09	NS	NS	NS	NS
MW-2	06/10/09	NS	NS	NS	NS
MW-2	08/25/09	NS	NS	NS	NS
MW-2	11/03/09	0.68 J	<1	<1	1.5 J
MW-2	02/16/10	NS	NS	NS	NS
MW-2	06/02/10	NS	NS	NS	NS
MW-2	09/27/10	NS	NS	NS	NS
MW-2	11/08/10	<2	<2	<2	<6
MW-2	02/01/11	NS	NS	NS	NS
MW-2	09/23/11	NS	NS	NS	NS
MW-2	11/10/11	1.1	<1	<1	1.4 J
MW-2	02/22/12	NS	NS	NS	NS
MW-2	05/15/12	NS	NS	NS	NS
MW-2	06/05/13	<0.140	<0.30	<0.20	<0.23
MW-2	09/10/13	0.22	<0.30	<0.020	<0.23
MW-2	12/10/13	0.24 J	<0.38	<0.20	<0.65
MW-2	04/04/14	0.46 J	<0.38	<0.20	<0.65
MW-2	10/22/14	<0.38	<0.70	<0.50	<1.6
MW-2	05/28/15	0.57 J	<5.0	<1.0	<5.0

		Canad	a Mesa #2		
Location	Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)
NMWQC	C Standards:	10	750	750	620
MW-2	11/21/15	<1.0	<1.0	<1.0	<3.0
MW-2	04/14/16	NS	NS	NS	NS
	MW	/-2 abandon	ed on May 2	2, 2016	-
MW-2R	05/15/18	<10	<10	300	1800
MW-2R	10/27/18	<1.0	<1.0	7.8	59
MW-2R	05/21/19	<1.0	<1.0	<1.0	<10
MW-2R	11/10/19	<1.0	<1.0	<1.0	<10
DUP-1(MW-2R)*	11/10/19	<1.0	<1.0	<1.0	18
MW-2R	05/11/20	NS	NS	NS	NS
MW-2R	03/18/21	NS	NS	NS	NS
MW-2R	05/19/21	<1.0	<1.0	<1.0	<10
MW-2R	09/18/21	NS	NS	NS	NS
MW-2R	11/11/21	<1.0	<1.0	<1.0	<10
MW-2R	05/22/22	<1.0	<1.0	<1.0	34
MW-2R	08/01/22	NS	NS	NS	NS
MW-2R	11/06/22	<1.0	<1.0	<1.0	<10
MW-2R	05/20/23	<1.0	<1.0	<1.0	<10
MW-2R	11/12/23	<1.0	<1.0	<1.0	<10
MW-3	11/16/00	880	1300	420	3700
MW-3	06/04/01	NS	NS	NS	NS
MW-3	07/03/01	NS	NS	NS	NS
MW-3	08/06/01	NS	NS	NS	NS
MW-3	08/31/01	NS	NS	NS	NS
MW-3	09/14/01	NS	NS	NS	NS
MW-3	03/19/02	1100	29	360	3700
MW-3	06/10/02	NS	NS	NS	NS
MW-3	09/23/02	NS	NS	NS	NS
MW-3	12/24/02	1430	95	483	2359
MW-3	03/25/03	NS	NS	NS	NS
MW-3	06/22/03	NS	NS	NS	NS
MW-3	09/15/03	NS	NS	NS	NS
MW-3	12/15/03	503	79.7	148	891
MW-3	03/22/04	NS	NS	NS	NS
MW-3	06/04/04	NS	NS	NS	NS
MW-3	09/14/04	NS	NS	NS	NS
MW-3	12/15/04	410	54.9	88.7	420
MW-3	03/22/05	NS	NS	NS	NS
MW-3	06/24/05	NS	NS	NS	NS
MW-3	09/14/05	NS	NS	NS	NS
MW-3	12/15/05	482	32.7	74.1	399

	Canada Mesa #2							
Location	Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)			
NMWQC	C Standards:	10	750	750	620			
MW-3	03/28/06	NS	NS	NS	NS			
MW-3	06/07/06	NS	NS	NS	NS			
MW-3	09/29/06	NS	NS	NS	NS			
MW-3	12/26/06	679	78.9	106	565			
MW-3	03/26/07	NS	NS	NS	NS			
MW-3	06/13/07	NS	NS	NS	NS			
MW-3	09/28/07	NS	NS	NS	NS			
MW-3	12/18/07	412	39.4	31.5	207			
MW-3	03/05/08	NS	NS	NS	NS			
MW-3	06/16/08	NS	NS	NS	NS			
MW-3	09/10/08	NS	NS	NS	NS			
MW-3	12/10/08	653	63.2	55.5	253			
MW-3	03/02/09	NS	NS	NS	NS			
MW-3	06/10/09	NS	NS	NS	NS			
MW-3	08/25/09	NS	NS	NS	NS			
MW-3	11/03/09	715	220	80	570			
MW-3	02/16/10	NS	NS	NS	NS			
MW-3	06/02/10	NS	NS	NS	NS			
MW-3	09/27/10	NS	NS	NS	NS			
MW-3	11/08/10	426	15	22.1	85.1			
MW-3	02/01/11	NS	NS	NS	NS			
MW-3	09/23/11	NS	NS	NS	NS			
MW-3	11/10/11	167	5.3	16.5	54.3			
MW-3	02/22/12	NS	NS	NS	NS			
MW-3	05/15/12	NS	NS	NS	NS			
MW-3	06/05/13	340	1.3	31	47			
MW-3	09/10/13	340	0.9	12	4.2			
MW-3	12/10/13	220	13	6.3	2.6			
MW-3	04/04/14	320	5.4 J	<0.80	<2.6			
MW-3	10/22/14	240	<0.70	0.52 J	<1.6			
MW-3	05/28/15	390	<25	<5.0	26			
MW-3	11/21/15	380	1.5	1.3	8.8			
MW-3	04/14/16	370	<25	<5.0	<25			
		/-3 abandon			1			
MW-3R	05/15/18	3.6	1.4	2.3	16			
DP-01(MW-3R)*	05/15/18	3.6	1.2	1.9	12			
MW-3R	10/27/18	<1.0	<1.0	<1.0	<10			
MW-3R	05/21/19	<1.0	<1.0	<1.0	<10			
MW-3R	11/10/19	<1.0	<1.0	<1.0	<10			
MW-3R	05/11/20	<1.0	<1.0	<1.0	<10			

	Canada Mesa #2							
Location	Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)			
	C Standards:	10	750	750	620			
MW-3R	11/12/20	<1.0	<1.0	<1.0	<10			
MW-3R	05/19/21	<1.0	<1.0	<1.0	<10			
MW-3R	11/11/21	<1.0	<1.0	<1.0	<10			
MW-3R	05/22/22	<1.0	<1.0	<1.0	<10			
MW-3R	11/06/22	<1.0	<1.0	<1.0	<10			
MW-3R	05/20/23	<1.0	<1.0	<1.0	<10			
MW-3R	11/12/23	<1.0	<1.0	<1.0	<10			
MW-4	05/15/18	NS	NS	NS	NS			
MW-4	10/27/18	25	2500	740	12000			
MW-4	05/21/19	NS	NS	NS	NS			
MW-4	11/10/19	NS	NS	NS	NS			
MW-4	08/19/20	NS	NS	NS	NS			
MW-4	03/18/21	NS	NS	NS	NS			
MW-4	05/19/21	NS	NS	NS	NS			
MW-4	09/18/21	NS	NS	NS	NS			
MW-4	11/11/21	NS	NS	NS	NS			
MW-4	05/22/22	NS	NS	NS	NS			
MW-4	08/01/22	NS	NS	NS	NS			
MW-4	11/06/22	NS	NS	NS	NS			
MW-4	05/20/23	NS	NS	NS	NS			
MW-4	11/12/23	NS	NS	NS	NS			
MW-5	05/15/18	<1.0	<1.0	<1.0	<10			
MW-5	10/27/18	<1.0	<1.0	1.9	<10			
MW-5	05/21/19	<1.0	<1.0	<1.0	<10			
MW-5	11/10/19	<1.0	<1.0	<1.0	<10			
MW-5	05/11/20	<1.0	<1.0	<1.0	<10			
MW-5	11/12/20	<1.0	<1.0	<1.0	<10			
MW-5	05/19/21	<1.0	<1.0	<1.0	<10			
MW-5	09/18/21	NS	NS	NS	NS			
MW-5	11/11/21	<1.0	<1.0	<1.0	<10			
MW-5	05/22/22	<1.0	<1.0	<1.0	<10			
MW-5	11/06/22	<1.0	<1.0	<1.0	<10			
MW-5	05/20/23	<1.0	<1.0	<1.0	<10			
DUP-01 (MW-5)*	05/20/23	<1.0	<1.0	<1.0	<10			
MW-5	11/12/23	<1.0	<1.0	<1.0	<10			
DUP-01 (MW-5)*	11/12/23	<1.0	<1.0	<1.0	<10			
MW-6	05/15/18	<2.0	26	7.1	450			
MW-6	10/27/18	<1.0	<1.0	<1.0	<10			
DUP-01(MW-6)*	10/27/18	<1.0	<1.0	<1.0	<10			

		Canad	a Mesa #2		
Location	Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)
	C Standards:	10	750	750	620
MW-6	05/21/19	<1.0	<1.0	<1.0	<10
MW-6	11/10/19	<1.0	<1.0	<1.0	<10
MW-6	05/11/20	NS	NS	NS	NS
MW-6	11/12/20	NS	NS	NS	NS
MW-6	05/19/21	NS	NS	NS	NS
MW-6	09/18/21	NS	NS	NS	NS
MW-6	11/11/21	<1.0	<1.0	<1.0	<10
MW-6	05/22/22	NS	NS	NS	NS
MW-6	11/06/22	NS	NS	NS	NS
MW-6	05/20/23	NS	NS	NS	NS
MW-6	11/12/23	<1.0	<1.0	<1.0	<10
MW-7	05/15/18	<1.0	<1.0	<1.0	<10
MW-7	10/27/18	<1.0	<1.0	<1.0	<10
MW-7	05/21/19	<1.0	<1.0	<1.0	<10
MW-7	11/10/19	<1.0	<1.0	<1.0	<10
MW-7	05/11/20	NS	NS	NS	NS
MW-7	11/12/20	NS	NS	NS	NS
MW-7	05/19/21	NS	NS	NS	NS
MW-7	09/18/21	NS	NS	NS	NS
MW-7	11/11/21	<1.0	<1.0	<1.0	<10
MW-7	05/22/22	NS	NS	NS	NS
MW-7	11/06/22	NS	NS	NS	NS
MW-7	05/20/23	NS	NS	NS	NS
MW-7	11/12/23	<1.0	<1.0	<1.0	<10
MW-8	11/10/19	110	<20	910	8100
MW-8	05/11/20	100	<20	630	3900
DUP-01 (MW-8)*	05/11/20	60	<20	440	2400
MW-8	11/12/20	30	<20	1500	13000
DUP-01 (MW-8)*	11/12/20	<20	<20	1200	9800
MW-8	05/19/21	10	3.2	390	1200
DUP-01 (MW-8)*	05/19/21	1.3	<1.0	15	45
MW-8	09/18/21	NS	NS	NS	NS
MW-8	11/11/21	5.7	<1.0	1.4	<10
DUP-01 (MW-8)*	11/11/21	5.8	<1.0	1.6	<10
MW-8	05/22/22	1.7	<1.0	1.8	<10
DUP-01 (MW-8)*	05/22/22	2.0	<1.0	1.7	<10
MW-8	11/06/22	2.2	<1.0	2.3	<10
MW-8	05/20/23	2.2	<1.0	38	16
MW-8	11/12/23	<1.0	<1.0	4.3	14

TABLE 2 - GROUNDWATER ANALYTICAL RESULTS

Canada Mesa #2							
Location	Date	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)		
NMWQC	C Standards:	10	750	750	620		
MW-9	11/10/19	NS	NS	NS	NS		
MW-9	05/11/20	NS	NS	NS	NS		
MW-9	03/18/21	NS	NS	NS	NS		
MW-9	05/19/21	NS	NS	NS	NS		
MW-9	09/18/21	NS	NS	NS	NS		
MW-9	11/11/21	NS	NS	NS	NS		
MW-9	03/21/22	NS	NS	NS	NS		
MW-9	05/22/22	NS	NS	NS	NS		
MW-9	08/01/22	NS	NS	NS	NS		
MW-9	11/06/22	NS	NS	NS	NS		
MW-9	05/20/23	NS	NS	NS	NS		
MW-9	11/12/23	NS	NS	NS	NS		
MW-10	05/22/22	<1.0	<1.0	<1.0	<10		
MW-10	11/06/22	<1.0	<1.0	<1.0	<10		
MW-10	05/20/23	NS	NS	NS	NS		
MW-10	11/12/23	<1.0	<1.0	<1.0	<10		
MW-11	05/22/22	<1.0	<1.0	<1.0	<10		
MW-11	11/06/22	<1.0	<1.0	<1.0	<10		
MW-11	05/20/23	<1.0	<1.0	<1.0	<10		
MW-11	11/12/23	<1.0	<1.0	<1.0	<10		
MW-12	11/12/23	<1.0	<1.0	1.0	<10		

Notes:

NS = Not sampled

 μ g/L = micrograms per liter

Results highlighted yellow exceed their respective New Mexico Water Quality Control Commission (NMWQCC) standards.

"J" = Result is less than the reporting limit but greater than or equal to the method detection limit and the result in an approximate value.

"<" = analyte was not detected at the indicated reporting limit (some historic data were reported at the detection limit).

*Field Duplicate results presented immediately below primary sample result

		C	Canada Me	sa #2		
					LNAPL	
			Depth to	Depth to	Thickness	GW Elevation
Location	Date	тос	LNAPL (ft.)	Water (ft.)	(ft.)	(ft.)
MW-1	11/04/96	6503.37	33.67	34.42	0.75	6469.51
MW-1	02/05/97	6503.37	33.64	34.35	0.71	6469.55
MW-1	05/07/97	6503.37	33.61	34.24	0.63	6469.60
MW-1	01/09/00	6503.37	33.79	33.93	0.14	6469.54
MW-1	01/26/00	6503.37	35.03	35.22	0.19	6468.29
MW-1	02/15/00	6503.37	34.93	35.11	0.18	6468.39
MW-1	10/06/00	6503.37	33.82	34.11	0.29	6469.47
MW-1	11/14/00	6503.37	33.81	33.98	0.17	6469.51
MW-1	01/03/01	6503.37	33.83	33.96	0.13	6469.50
MW-1	01/15/01	6503.37	33.78	33.93	0.15	6469.55
MW-1	01/22/01	6503.37	NR	33.81		6469.56
MW-1	01/30/01	6503.37	33.82	33.83	0.01	6469.54
MW-1	02/13/01	6503.37	NR	33.80		6469.57
MW-1	02/20/01	6503.37	NR	33.81		6469.56
MW-1	02/28/01	6503.37	NR	33.81		6469.56
MW-1	06/04/01	6503.37	33.81	34.13	0.32	6469.48
MW-1	07/03/01	6503.37	33.96	34.09	0.13	6469.37
MW-1	08/06/01	6503.37	34.07	34.08	0.01	6469.29
MW-1	08/20/01	6503.37	34.09	34.10	0.01	6469.27
MW-1	08/31/01	6503.37	NR	34.17		6469.20
MW-1	09/14/01	6503.37	34.13	34.14	0.01	6469.23
MW-1	09/26/01	6503.37	34.14	34.15	0.01	6469.22
MW-1	10/02/01	6503.37	34.15	34.17	0.02	6469.21
MW-1	10/10/01	6503.37	34.16	34.18	0.02	6469.20
MW-1	12/05/01	6503.37	34.25	34.26	0.01	6469.11
MW-1	12/14/01	6503.37	NR	34.27		6469.10
MW-1	12/21/01	6503.37	NR	34.24		6469.13
MW-1	12/28/01	6503.37	NR	34.22		6469.15
MW-1	01/02/02	6503.37	NR	34.23		6469.14
MW-1	01/07/02	6503.37	34.23	34.25	0.02	6469.13
MW-1	01/23/02	6503.37	34.37	34.42	0.05	6468.98
MW-1	01/30/02	6503.37	34.50	34.51	0.01	6468.86
MW-1	02/07/02	6503.37	34.49	34.50	0.01	6468.87
MW-1	02/14/02	6503.37	34.41	34.42	0.01	6468.95
MW-1	02/20/02	6503.37	34.99	35.00	0.01	6468.37
MW-1	02/26/02	6503.37	NR	34.25		6469.12
MW-1	03/07/02	6503.37	34.24	34.25	0.01	6469.12
MW-1	03/12/02	6503.37	34.24	34.25	0.01	6469.12

TABLE 3- GROUNDWATER ELEVATION RESULTS

		C	Canada Me	sa #2			
Location	Date TOC		Depth to LNAPL (ft.)	Depth to Water (ft.)	LNAPL Thickness (ft.)	GW Elevation (ft.)	
MW-1	03/28/02	6503.37	NR	34.27		6469.10	
MW-1	04/03/02	6503.37	NR	34.26		6469.11	
MW-1	04/25/02	6503.37	NR	34.45		6468.92	
MW-1	05/21/02	6503.37	NR	34.30		6469.07	
MW-1	06/10/02	6503.37	NR	34.32		6469.05	
MW-1	09/23/02	6503.37	NR	34.50		6468.87	
MW-1	03/25/03	6503.37	ND	34.50		6468.87	
MW-1	06/22/03	6503.37	34.48	34.55	0.07	6468.87	
MW-1	09/15/03	6503.37	34.65	34.97	0.32	6468.64	
MW-1	12/15/03	6503.37	34.41	34.98	0.57	6468.81	
MW-1	03/17/04	6503.37	34.24	34.80	0.56	6468.99	
MW-1	03/22/04	6503.37	34.29	34.49	0.20	6469.03	
MW-1	06/03/04	6503.37	34.30	34.44	0.14	6469.03	
MW-1	06/04/04	6503.37	34.20	34.30	0.10	6469.14	
MW-1	09/13/04	6503.37	34.64	35.30	0.66	6468.56	
MW-1	09/14/04	6503.37	34.65	34.95	0.30	6468.64	
MW-1	12/15/04	6503.37	34.74	35.32	0.58	6468.48	
MW-1	03/22/05	6503.37	34.36	35.01	0.65	6468.84	
MW-1	06/24/05	6503.37	34.39	34.97	0.58	6468.83	
MW-1	09/14/05	6503.37	34.60	35.65	1.05	6468.50	
MW-1	12/14/05	6503.37	34.74	35.05	0.31	6468.55	
MW-1	03/28/06	6503.37	34.59	35.14	0.55	6468.64	
MW-1	06/07/06	6503.37	34.52	35.11	0.59	6468.70	
MW-1	09/29/06	6503.37	34.85	35.14	0.29	6468.44	
MW-1	12/26/06	6503.37	34.44	34.85	0.41	6468.82	
MW-1	03/26/07	6503.37	34.35	34.60	0.25	6468.95	
MW-1	06/13/07	6503.37	34.20	35.39	1.19	6468.87	
MW-1	09/28/07	6503.37	34.86	35.12	0.26	6468.44	
MW-1	12/18/07	6503.37	34.18	34.34	0.16	6469.15	
MW-1	03/05/08	6503.37	34.15	34.17	0.02	6469.21	
MW-1	06/16/08	6503.37	ND	34.17		6469.20	
MW-1	09/10/08	6503.37	ND	34.35		6469.02	
MW-1	12/10/08	6503.37	ND	34.30		6469.07	
MW-1	03/02/09	6503.37	ND	34.22		6469.15	
MW-1	06/10/09	6503.37	ND	35.14		6468.23	
MW-1	08/25/09	6503.37	ND	34.50		6468.87	
MW-1	11/03/09	6503.37	ND	34.57		6468.80	

		C	Canada Me	sa #2			
Location	Date	тос	Depth to LNAPL (ft.)	Depth to Water (ft.)	LNAPL Thickness (ft.)	GW Elevation (ft.)	
MW-1	02/16/10	6503.37	34.54	34.57	0.03	6468.82	
MW-1	06/02/10	6503.37	34.34	34.58	0.03	6468.97	
MW-1	09/27/10	6503.37	34.71	35.26	0.24	6468.52	
MW-1	11/08/10	6503.37	34.71	34.98	0.35	6468.57	
MW-1	02/01/11	6503.37	34.63	34.98	0.23	6468.65	
MW-1	02/01/11	6503.37	ND	35.52	0.34	6467.85	
MW-1	09/23/11	6503.37	34.93	35.40	0.47	6468.32	
MW-1	11/10/11	6503.37	34.95	35.40	0.47	6468.35	
				34.98	0.20		
MW-1 MW-1	02/22/12 05/15/12	6503.37 6503.37	ND ND	34.98		6468.39 6468.33	
MW-1		6503.37					
MW-1	06/05/13 09/10/13		ND ND	39.13		6464.24	
		6503.37		36.50	0.10	6466.87	
MW-1	12/10/13	6503.37	35.35	35.45	0.10	6467.99	
MW-1	04/04/14	6503.37	35.00	35.78	0.78	6468.17	
MW-1	10/22/14	6503.37	35.37	36.25	0.88	6467.78	
MW-1	05/28/15	6503.37	34.80	35.42	0.62	6468.41	
MW-1	11/21/15	6503.37	35.01	35.55	0.54	6468.22	
MW-1	04/14/16	6503.37	34.74	35.17	0.43	6468.52	
MW-1	05/23/16	6503.37	34.77	34.77		6468.60	
MW-1	06/17/16	6503.37	NM	NM		NM	
MW-1	07/17/16	6503.37	NM	NM		NM	
MW-1	08/19/16	6503.37	NM	NM		NM	
MW-1	09/24/16	6503.37	NM 05.00	NM	0.00	NM	
MW-1	10/13/16	6503.37	35.32	35.41	0.09	6468.02	
MW-1	11/15/16	6503.37	36.49	36.50	0.01	6466.87	
MW-1	12/14/16	6503.37	36.37	36.40	0.03	6466.99	
MW-1	06/07/17	6503.37	ND	34.90		6468.47	
MW-1	11/14/17	6503.37	35.41	35.50	0.09	6467.93	
MW-1	05/15/18	6503.37	35.04	35.72	0.68	6468.16	
MW-1	07/16/18	6503.37	35.39	36.16	0.77	6467.78	
MW-1	10/18/18	6503.37	36.78	37.15	0.37	6466.49	
MW-1	10/27/18	6503.37	35.67	35.68	0.01	6467.69	
MW-1	05/21/19	6503.37	35.46	35.46	<0.01	6467.91	
MW-1	11/10/19	6503.37	35.87	35.96	0.09	6467.41	
MW-1	05/11/20	6503.37	35.83	36.04	0.21	6467.48	
MW-1	08/19/20	6503.37	ND	35.96		6467.41	
MW-1	11/12/20	6503.37	36.13	36.17	0.04	6467.23	

		C	Canada Me	sa #2		
Location	Date	тос	Depth to LNAPL (ft.)	Depth to	LNAPL Thickness (ft.)	GW Elevation
MW-1					0.01	(ft.) 6467.15
MW-1	03/18/21 05/19/21	6503.37	36.21 36.17	36.22 36.30	0.01	6467.15
MW-1		6503.37		36.68	0.13	
	09/18/21	6503.37	36.36			6466.93
MW-1	11/11/21	6503.37	36.38	36.48	0.10	6466.96
MW-1	03/21/22	6503.37	36.33	36.35	0.02	6467.03
MW-1 MW-1	05/22/22	6503.37	36.35	36.45	0.10	6466.99
MW-1	08/01/22	6503.37	36.49	36.50	0.01	6466.87
MW-1	03/29/23	6503.37	ND ND	36.34 35.94		6467.03
MW-1	03/29/23	6503.37	ND ND	35.94 35.87		6467.43 6467.50
MW-1	03/20/23	6503.37 6503.37	36.26	36.28	0.02	6467.10
MW-1	11/12/23	6503.37	36.28	36.30	0.02	6467.08
	11/12/23	0003.37	30.20	30.30	0.02	0407.00
MW-2	11/16/00	6504.34	NR	34.90		6469.44
MW-2	06/04/01	6504.34	NR	34.97		6469.37
MW-2	07/03/01	6504.34	NR	35.07		6469.27
MW-2	08/06/01	6504.34	NR	35.14		6469.20
MW-2	08/31/01	6504.34	NR	35.19		6469.15
MW-2	09/14/01	6504.34	NR	35.21		6469.13
MW-2	03/19/02	6504.34	NR	35.36		6468.98
MW-2	12/24/02	6504.34	NR	35.52		6468.82
MW-2	03/25/03	6504.34	ND	35.54		6468.80
MW-2	06/22/03	6504.34	ND	35.60		6468.74
MW-2	09/15/03	6504.34	ND	35.60		6468.74
MW-2	12/15/03	6504.34	ND	35.63		6468.71
MW-2	03/22/04	6504.34	ND	35.41		6468.93
MW-2	06/04/04	6504.34	ND	35.31		6469.03
MW-2	09/14/04	6504.34	ND	35.80		6468.54
MW-2	12/15/04	6504.34	ND	35.79		6468.55
MW-2	03/22/05	6504.34	ND	35.63		6468.71
MW-2	06/24/05	6504.34	ND	35.60		6468.74
MW-2	09/14/05	6504.34	ND	35.92		6468.42
MW-2	12/14/05	6504.34	ND	35.85		6468.49
MW-2	12/15/05	6504.34	ND	35.85		6468.49
MW-2	03/28/06	6504.34	ND	35.73		6468.61
MW-2	06/07/06	6504.34	ND	35.73		6468.61
MW-2	09/29/06	6504.34	ND	35.91		6468.43
MW-2	12/26/06	6504.34	ND	35.63		6468.71
MW-2	03/26/07	6504.34	ND	35.41		6468.93
MW-2	06/13/07	6504.34	ND	35.32		6469.02
MW-2	09/28/07	6504.34	ND	35.93		6468.41
MW-2	12/18/07	6504.34	ND	35.32		6469.02

		C	anada Me	sa #2		
			Depth to	Depth to	LNAPL Thickness	GW Elevation
Location	Date	TOC	LNAPL (ft.)	. ,	(ft.)	(ft.)
MW-2	03/05/08	6504.34	ND	35.22		6469.12
MW-2	06/16/08	6504.34	ND	35.15		6469.19
MW-2	09/10/08	6504.34	ND	35.45		6468.89
MW-2	12/10/08	6504.34	ND	35.37		6468.97
MW-2	03/02/09	6504.34	ND	35.27		6469.07
MW-2	06/10/09	6504.34	ND	35.23		6469.11
MW-2	08/25/09	6504.34	ND	35.58		6468.76
MW-2	11/03/09	6504.34	ND	35.65		6468.69
MW-2	02/16/10	6504.34	ND	35.65		6468.69
MW-2	06/02/10	6504.34	ND	35.48		6468.86
MW-2	09/27/10	6504.34	ND	35.85		6468.49
MW-2	11/08/10	6504.34	ND	35.85		6468.49
MW-2	02/01/11	6504.34	ND	35.75		6468.59
MW-2	09/23/11	6504.34	ND	36.07		6468.27
MW-2	11/10/11	6504.34	ND	36.08		6468.26
MW-2	02/22/12	6504.34	ND	36.97		6467.37
MW-2	05/15/12	6504.34	ND	36.10		6468.24
MW-2	06/05/13	6504.34	ND	36.18		6468.16
MW-2	09/10/13	6504.34	ND	36.58		6467.76
MW-2	12/10/13	6504.34	ND	36.44		6467.90
MW-2	04/04/14	6504.34	ND	35.25		6469.09
MW-2	10/22/14	6504.34	ND	36.65		6467.69
MW-2	05/28/15	6504.34	ND	36.02		6468.32
MW-2	11/21/15	6504.34	ND	36.20		6468.14
MW-2	04/14/16	6504.34	ND	35.91		6468.43
		MW-2 at	andoned on	May 22, 201	6	
MW-2R	05/15/18	6503.35	ND	35.60		6467.75
MW-2R	10/27/18	6503.35	ND	36.18		6467.17
MW-2R	05/21/19	6503.35	ND	35.92		6467.43
MW-2R	11/10/19	6503.35	ND	36.36		6466.99
MW-2R	05/11/20	6503.35	36.29	36.30	0.01	6467.05
MW-2R	08/19/20	6503.35	36.50	36.50	<0.01	6466.85
MW-2R	11/12/20	6503.35	ND	36.62		6466.73
MW-2R	03/18/21	6503.35	36.65	36.65	< 0.01	6466.70
MW-2R	05/19/21	6503.35	ND	36.63		6466.72
MW-2R	09/18/21	6503.35	ND	36.84		6466.51
MW-2R	11/11/21	6503.35	ND	36.85		6466.50
MW-2R	03/21/22	6503.35	36.34	36.35	0.01	6467.00
MW-2R	05/22/22	6503.35	ND	36.82		6466.53
MW-2R	08/01/22	6503.35	36.98	36.99	0.01	6466.36

TABLE 3- GROUNDWATER ELEVATION RESULTS

		C	Canada Me	sa #2		
					LNAPL	
			Depth to	Depth to	Thickness	GW Elevation
Location	Date	тос	LNAPL (ft.)	Water (ft.)	(ft.)	(ft.)
MW-2R	05/20/23	6503.35	ND	36.29		6467.06
MW-2R	11/12/23	6503.35	ND	36.71		6466.64
MW-3	11/16/00	6503.67	NR	34.46		6469.21
MW-3	06/04/01	6503.67	NR	34.64		6469.03
MW-3	07/03/01	6503.67	NR	34.66		6469.01
MW-3	08/06/01	6503.67	NR	34.74		6468.93
MW-3	08/31/01	6503.67	NR	34.79		6468.88
MW-3	09/14/01	6503.67	NR	34.81		6468.86
MW-3	03/19/02	6503.67	NR	34.92		6468.75
MW-3	06/10/02	6503.67	NR	34.98		6468.69
MW-3	09/23/02	6503.67	NR	35.11		6468.56
MW-3	12/24/02	6503.67	NR	35.15		6468.52
MW-3	03/25/03	6503.67	ND	35.12		6468.55
MW-3	06/22/03	6503.67	ND	35.17		6468.50
MW-3	09/15/03	6503.67	ND	35.41		6468.26
MW-3	12/15/03	6503.67	ND	35.17		6468.50
MW-3	03/22/04	6503.67	ND	34.95		6468.72
MW-3	06/04/04	6503.67	ND	34.88		6468.79
MW-3	09/14/04	6503.67	ND	35.39		6468.28
MW-3	12/15/04	6503.67	ND	35.17		6468.50
MW-3	03/22/05	6503.67	ND	35.17		6468.50
MW-3	06/24/05	6503.67	ND	35.21		6468.46
MW-3	09/14/05	6503.67	ND	35.51		6468.16
MW-3	12/15/05	6503.67	ND	35.40		6468.27
MW-3	03/28/06	6503.67	ND	35.27		6468.40
MW-3	06/07/06	6503.67	ND	35.32		6468.35
MW-3	09/29/06	6503.67	ND	35.47		6468.20
MW-3	12/26/06	6503.67	ND	35.16		6468.51
MW-3	03/26/07	6503.67	ND	34.96		6468.71
MW-3	06/13/07	6503.67	ND	34.88		6468.79
MW-3	09/28/07	6503.67	ND	35.51		6468.16
MW-3	12/18/07	6503.67	ND	34.88		6468.79
MW-3	03/05/08	6503.67	ND	34.79		6468.88
MW-3	06/16/08	6503.67	ND	34.75		6468.92
MW-3	09/10/08	6503.67	ND	35.13		6468.54
MW-3	12/10/08	6503.67	ND	34.95		6468.72
MW-3	03/02/09	6503.67	ND	34.83		6468.84
MW-3	06/10/09	6503.67	ND	34.83		6468.84
MW-3	08/25/09	6503.67	ND	35.18		6468.49
MW-3	11/03/09	6503.67	ND	35.23		6468.44
MW-3	02/16/10	6503.67	ND	35.23		6468.44
MW-3	06/02/10	6503.67	ND	35.05		6468.62

		C	anada Me	sa #2			
			Depth to	Depth to	LNAPL Thickness	GW Elevation	
Location	Date	TOC	LNAPL (ft.)		(ft.)	(ft.)	
MW-3	09/27/10	6503.67	ND	35.43		6468.24	
MW-3	11/08/10	6503.67	ND	35.43		6468.24	
MW-3	02/01/11	6503.67	ND	35.31		6468.36	
MW-3	09/23/11	6503.67	ND	35.70		6467.97	
MW-3	11/10/11	6503.67	ND	35.66		6468.01	
MW-3	02/22/12	6503.67	ND	35.60		6468.07	
MW-3	05/15/12	6503.67	ND	35.67		6468.00	
MW-3	06/05/13	6503.67	ND	35.79		6467.88	
MW-3	09/10/13	6503.67	ND	36.20		6467.47	
MW-3	12/10/13	6503.67	ND	36.00		6467.67	
MW-3	04/04/14	6503.67	ND	35.81		6467.86	
MW-3	10/22/14	6503.67	ND	36.20		6467.47	
MW-3	05/28/15	6503.67	ND	35.55		6468.12	
MW-3	11/21/15	6503.67	ND	35.74		6467.93	
MW-3	04/14/16	6503.67	ND	35.46		6468.21	
		MW-3 ab	andoned on	May 22, 201	6		
MW-3R	05/15/18	6498.85	ND	31.28		6467.57	
MW-3R	10/27/18	6498.85	ND	31.84		6467.01	
MW-3R	05/21/19	6498.85	ND	31.60		6467.25	
MW-3R	11/10/19	6498.85	ND	32.02		6466.83	
MW-3R	05/11/20	6498.85	ND	31.99		6466.86	
MW-3R	11/12/20	6498.85	ND	32.29		6466.56	
MW-3R	05/19/21	6498.85	ND	32.32		6466.53	
MW-3R	09/18/21	6498.85	ND	33.52		6465.33	
MW-3R	11/11/21	6498.85	ND	32.52		6466.33	
MW-3R	05/22/22	6498.85	ND	32.50		6466.35	
MW-3R	11/06/22	6498.85	ND	32.45		6466.40	
MW-3R	05/20/23	6498.85	ND	31.95		6466.90	
MW-3R	11/12/23	6498.85	ND	32.38		6466.47	
MW-4	05/15/18	6507.17	39.16	39.16	<0.01	6468.01	
MW-4	07/16/18	6507.17	39.44	40.60	1.16	6467.44	
MW-4	10/18/18	6507.17	39.63	40.82	1.19	6467.24	
MW-4	10/27/18	6507.17	ND	39.92		6467.25	
MW-4	05/21/19	6507.17	39.60	39.60	<0.01	6467.57	
MW-4	11/10/19	6507.17	39.92	40.62	<0.02	6468.57	
MW-4	08/19/20	6507.17	40.16	40.36	0.20	6466.96	
MW-4	05/11/20	6507.17	39.91	40.40	0.49	6467.14	
MW-4	11/12/20	6507.17	40.10	41.13	1.03	6466.81	
MW-4	03/18/21	6507.17	39.42	40.17	0.75	6467.56	
MW-4	05/19/21	6507.17	40.13	40.17	0.75	6466.80	
MW-4	09/18/21	6507.17		41.11	1.14	6466.60	
11117-4	09/10/21	0007.17	40.29	41.43	1.14	0400.00	

		C	Canada Me	sa #2		
Location	Date	тос	Depth to LNAPL (ft.)	Depth to	LNAPL Thickness (ft.)	GW Elevation (ft.)
MW-4	11/11/21	6507.17	40.32	41.44	1.12	6466.57
MW-4	03/21/22	6507.17	40.24	41.22	0.98	6466.69
MW-4	05/22/22	6505.17	38.29	39.30	1.01	6466.63
MW-4	08/01/22	6505.17	38.40	39.55	1.15	6466.48
MW-4	11/06/22	6505.17	38.28	39.16	0.88	6466.67
MW-4	03/29/23	6505.17	38.03	38.29	0.26	6467.08
MW-4	05/20/23	6505.17	37.98	38.01	0.03	6467.18
MW-4	08/27/23	6505.17	38.35	38.60	0.25	6466.76
MW-4	11/12/23	6505.17	38.39	38.58	0.19	6466.73
MW-5	05/15/18	6503.72	ND	35.89		6467.83
MW-5	10/27/18	6503.72	ND	36.45		6467.27
MW-5	05/21/19	6503.72	ND	36.20		6467.52
MW-5	11/10/19	6503.72	ND	36.60		6467.12
MW-5	05/11/20	6503.72	ND	36.58		6467.14
MW-5	11/12/20	6503.72	ND	36.90		6466.82
MW-5	05/19/21	6503.72	ND	36.92		6466.80
MW-5	09/18/21	6503.72	ND	37.12		6466.60
MW-5	11/11/21	6503.72	ND	37.12		6466.60
MW-5	05/22/22	6503.72	ND	37.09		6466.63
MW-5	11/06/22	6503.72	ND	37.06		6466.66
MW-5	05/20/23	6503.72	ND	36.55		6467.17
MW-5	11/12/23	6503.72	ND	37.00		6466.72
MW-6	05/15/18	6504.29	ND	36.41		6467.88
MW-6	10/27/18	6504.29	ND	36.98		6467.31
MW-6	05/21/19	6504.29	ND	36.74		6467.55
MW-6	11/10/19	6504.29	ND	37.11		6467.18
MW-6	05/11/20	6504.29	ND	37.10		6467.19
MW-6	11/12/20	6504.29	ND	37.42		6466.87
MW-6	05/19/21	6504.29	ND	37.42		6466.87
MW-6	09/18/21	6504.29	ND	37.64		6466.65
MW-6	11/11/21	6504.29	ND	37.65		6466.64
MW-6	05/22/22	6504.29	ND	37.61		6466.68
MW-6	11/06/22	6504.29	ND	37.58		6466.71
MW-6	05/20/23	6504.29	ND	37.08		6467.21
MW-6	11/12/23	6504.29	ND	37.52		6466.77
MW-7	05/15/18	6504.59	ND	36.71		6467.88
MW-7	10/27/18	6504.59	ND	37.28		6467.31
MW-7	05/21/19	6504.59	ND	37.03		6467.56
MW-7	11/10/19	6504.59	ND	37.43		6467.16
MW-7	05/11/20	6504.59	ND	37.40		6467.19

		(Canada Me	sa #2			
	Dete	тоо	Depth to	Depth to	LNAPL Thickness	GW Elevation	
	Date	TOC	LNAPL (ft.)		(ft.)	(ft.)	
MW-7	11/12/20	6504.59	ND ND	37.71		6466.88	
MW-7	05/19/21	6504.59	ND ND	37.73		6466.86	
MW-7	09/18/21	6504.59	ND	37.94		6466.65	
MW-7	11/11/21	6504.59	ND	37.95		6466.64	
MW-7	05/22/22	6504.59	ND	37.91		6466.68	
MW-7	11/06/22	6504.59	ND	37.88		6466.71	
MW-7	05/20/23	6504.59	ND	37.40		6467.19	
MW-7	11/12/23	6504.59	ND	37.82		6466.77	
MW-8	11/10/19	6508.27	ND	41.21		6467.06	
MW-8	05/11/20	6508.27	ND	41.17		6467.10	
MW-8	11/12/20	6508.27	ND	41.46		6466.81	
MW-8	05/19/21	6508.27	ND	41.48		6466.79	
MW-8	09/18/21	6508.27	ND	41.67		6466.60	
MW-8	11/11/21	6508.27	ND	41.70		6466.57	
MW-8	05/22/22	6508.27	ND	41.65		6466.62	
MW-8	11/06/22	6508.27	ND	41.60		6466.67	
MW-8	05/20/23	6508.27	ND	41.14		6467.13	
MW-8	11/12/23	6508.27	ND	41.55		6466.72	
MW-9	11/10/19	6503.86	36.72	37.45	0.73	6466.96	
MW-9	05/11/20	6503.86	36.66	37.30	0.64	6467.04	
MW-9	08/19/20	6503.86	36.87	37.57	0.70	6466.81	
MW-9	11/12/20	6503.86	36.98	37.67	0.69	6466.71	
MW-9	03/18/21	6503.86	37.07	37.49	0.42	6466.68	
MW-9	05/19/21	6503.86	37.04	37.46	0.42	6466.71	
MW-9	09/18/21	6503.86	37.21	37.75	0.54	6466.51	
MW-9	11/11/21	6503.86	37.24	37.74	0.50	6466.49	
MW-9	03/21/22	6503.86	37.18	37.47	0.29	6466.61	
MW-9	05/22/22	6501.81	35.20	35.56	0.36	6466.52	
MW-9	08/01/22	6501.81	35.35	35.70	0.35	6466.37	
MW-9	11/06/22	6501.81	35.19	35.39	0.20	6466.57	
MW-9	03/29/23	6501.81	34.80	34.89	0.09	6466.99	
MW-9	05/20/23	6501.81	34.73	34.79	0.06	6467.07	
MW-9	08/27/23	6501.81	35.60	35.95	0.35	6466.12	
MW-9	11/12/23	6501.81	35.16	35.21	0.05	6466.64	
MW-10	05/22/22	6506.23	ND	39.68		6466.55	
MW-10	11/06/22	6506.23	ND	39.63		6466.60	
MW-10	05/20/23	6506.23	ND	39.15		6467.08	
MW-10	11/12/23	6506.23	ND	39.57		6466.66	
MW-11	05/22/22	6503.08	ND	36.82		6466.26	
MW-11	11/06/22	6503.08	ND	36.75		6466.33	

TABLE 3- GROUNDWATER ELEVATION RESULTS

	Canada Mesa #2									
Location Depth to LNAPL Location Depth to Depth to										
MW-11	05/20/23	6503.08	ND	36.20		6466.88				
MW-11	11/12/23	6503.08	ND	36.68		6466.40				
MW-12	WW-12 11/12/23 6503.08 ND 37.56 6465.52									

Notes:

"ft" = feet

"TOC" = Top of casing

"LNAPL" = Light non-aqueous phase liquid

"ND" = LNAPL not detected

"NR" = LNAPL not recorded

"NM" = Not Measured(Free Product thickness determined from bailer thickness) Groundwater elevation = Top of Casing elevation (TOC, ft) - Depth to Water [ft] + (LPH thickness [ft] x 0.75). A specific gravity of 0.75 is within the range of gas condensate (https://www.sciencedirect.com/topics/earth-and-planetary-sciences/gas-condensate)

		-	•	-	Canada Mes	a #2					
Location (depth in feet bgs)	Date (mm/dd/yy)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	BTEX Total (mg/kg)	GRO C6-10 (mg/kg)	DRO C10-28 (mg/kg)	MRO C28-35 (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
	NMOCD Criteria:	10	NE	NE	NE	50	NE	NE	NE	100	600
MW-2R (32-33)	04/05/18	0.38	8.1	31	240	280	2200	400	6.1	2606	170
MW-3R (12-12.7)	04/04/18	<0.0057	6.3	21	480	507	5500	5100	11	10611	740
MW-3R (25-26)	04/04/18	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	23	<5.2	23	430
MW-4 (35-36)	04/04/18	<0.0057	0.77	2.0	13	16	280	9.4	<5.2	289	1400
MW-5 (30.2-31.2)	04/05/18	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	56
MW-6 (32-33)	04/03/18	<0.0057	<0.0057	0.78	2.8	3.6	180	76	<5.2	256	250
MW-7 (32-33)	04/03/18	<0.0057	<0.0057	0.08	<0.011	0.1	16	6.6	<5.2	23	260
MW-8 (36-37)	07/18/19	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	<21
MW-9 (33-34)	07/19/19	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	<21
MW-10 (38-39)	04/12/22	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	<21
MW-11 (17-18)	04/13/22	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	160
MW-12 (22-23)	07/25/23	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	100
MW-12 (35-36)	07/25/23	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	31	12	<5.2	43	100
SB-1 (17.3-18.3)	04/05/18	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	97
SB-1 (22-23)	04/05/18	<0.0057	<0.0057	0.072	1.1	1.2	34	31	<5.2	65	240
SB-1 (29-30)	04/05/18	0.37	4.9	2.3	65	72.6	620	49	<5.2	669	710
SB-2 (37-38)	07/17/19	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	<21
SB-3 (31-32)	07/17/19	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	<21
SB-4 (10-11)	07/17/19	<0.0057	160	54	760	974	6600	1400	6.9	8007	160
SB-5 (24-25)	07/18/19	<0.0057	<0.0057	0.39	7.9	8.3	1500	870	<5.2	2370	<21
SB-5 (28-29)	07/18/19	<0.0057	21	18	190	229	3100	1200	<5.2	4300	<21
SB-6 (15-26)	07/25/23	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	28
SB-6 (35-36)	07/25/23	<0.0057	<0.0057	<0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	<21
TW-1 (33-34)	07/25/23	< 0.0057	< 0.0057	< 0.0057	<0.011	<0.0281	<5.4	<5.2	<5.2	<15.8	<21

Notes:

mg/kg Milligrams per kilogram

NE New Mexico Oil Conservation Division (NMOCD) Standard Not Established

BTEX Benzene, toluene, ethylbenzene, xylenes

GRO Gasoline range organics

DRO Diesel range organics

MRO Motor oil range organics

Total BTEX Sum of the detectable concentrations of individual BTEX constituents

TPH Total Petroleum Hydrocarbon concentration is calculated by adding the detectable concentrations of GRO, DRO, and MRO and rounded to the nearest mg/kg.

NMOCD Criteria New Mexico Oil Conservation Division closure criteria for groundwater ≤50 feet below bottom of pit to groundwater less than 10,000 mg/L TDS

Results bolded and highlighted yellow exceed their respective NMOCD Standards

FIGURES

FIGURE 1: SITE LOCATION

- FIGURE 2: SITE PLAN
- FIGURE 3: GROUNDWATER ANALYTICAL RESULTS MAY 20, 2023
- FIGURE 4: GROUNDWATER ELEVATION MAP MAY 20, 2023
- FIGURE 5: GROUNDWATER ANALYTICAL RESULTS NOVEMBER 12, 2023
- FIGURE 6: GROUNDWATER ELEVATION MAP NOVEMBER 12, 2023
- FIGURE 7: SOIL ANALYTICAL RESULTS

WIs0389-ppfss01\shared_projects\193710238\07_historica\SJRB_GENERAL\GIS-NEW_MXDs\CANADA_MESA_#2\2020_MAPS\Canada_Mesa#2_LocationMap.mxd

Page 31 of 211

Released to Imaging: 5/2/2024 4:22:08 PM

CANADA MESA #2\2023 MAPS\Canada Mesa#2 SITEMAP

ACCESS ROAD BARRICADE **GA-S** — NATURAL GAS LINE MONITORING WELL MONITORING WELL WITH MEASURABLE LNAPL ABANDONED MONITORING WELL SMA BENCHMARK PIPE FENCING FORMER WELLHEAD **FORMER UNLINED PIT** FORMER FEATURES CORRECTED WATER LEVEL ELEVATION CONTOUR DASHED WHERE INFERRED (FEET ABOVE MEAN SEA LEVEL) ->> DIRECTION OF GROUNDWATER FLOW LNAPL = LIGHT NON-AQUEOUS PHASE LIQUID SCALE IN FEET 30 DATE DESIGN BY DRAWN BY REVIEWED BY 2024-02-19 SAH SAH SRV REVISION 2024-02-19 GROUNDWATER ELEVATION MAP MAY 20, 2023 CANADA MESA #2 SAN JUAN RIVER BASIN RIO ARRIBA COUNTY, NEW MEXICO iaure No. **Stantec** 4

6

APPENDICES

APPENDIX A – SITE HISTORY

- APPENDIX B NMOCD NOTIFICATION OF SITE ACTIVITIES
- APPENDIX C NMOCD WELL PERMITS
- APPENDIX D NMOCD PLUGGING FORMS
- APPENDIX E NMOCD WELL CONSTRUCTION FORMS
- APPENDIX F BORING LOGS AND WELL CONSTRUCTION DIAGRAMS
- APPENDIX G WASTE DISPOSAL DOCUMENTATION
- APPENDIX H ACUVAC MDPE REPORT
- APPENDIX I ACUVAC AS TEST REPORT
- APPENDIX J ACUVAC SVE TEST REPORT

APPENDIX K – GROUNDWATER ANALYTICAL LAB REPORTS

APPENDIX L – SOIL ANALYTICAL LAB REPORT

APPENDIX A

Site History

Date	Source (Regulatory File #)	Event/Action	Description/Comments
10/2/1972	API # 30-039-20571	Application for Permit to Drill	Operator shown as Merrion and Bayless.
12/13/1972	API # 30-039-20571	Well Completion Report and Log	Date spudded 11/11/1972, first production 11/27/1972, date completed 11/28/1972.
6/9/1994	API # 30-039-20571	Pit Remediation and Closure Report	Remediation of 2 pits - the "Old BS&W Pit" and the "Old Earthen Pit". New fiberglass pit with liner was installed.
9/16/1995	Unknown	EPFS Remediation Plan for Groundwater Encountered During Pit Closure Activities to NMOCD	Outlines approach to investigating and remediating soil and groundwater at closed pit sites.
11/29/1995	Unknown	EPFS Addendum to the Remediation Plan for Groundwater Encountered During Pit Closure Activities to NMOCD	Amends work plan for include installation of additional wells for delienation, define groundwater sampling parameters, and release closure following four consecutive quarters of results below NMWQCC standards.
11/30/1995	Unknown	NMOCD approval of the Remediation Plan with conditions	Approval of Remediation Plan and Addendum.
6/2/1997	nAUTOfAB000065 (Case # 3RP-155)	Semi-annual EPFS Pit Projects Groundwater Report	Lists pits where groundwater was encountered.
8/6/1997	nAUTOfAB000065 (Case # 3RP-155)	NMOCD review letter	Approves modifying reporting schedule from semi-annual to annual basis
2/27/1998	nAUTOfAB000065 (Case # 3RP-155)	Philip Services Corp 1997 Annual Report (for EPFS)	Pit closure and installation of MW-1, quarterly groundwater monitoring and Passive LNAPL recovery from MW-1.
7/8/1998	nAUTOfAB000065 (Case # 3RP-155)		NMOCD requested EPFS work cooperatively with operator to investigate and remediate site.
3/31/1999	nAUTOfAB000065 (Case # 3RP-155)	Philip Services Corp 1998 Annual Report (for EPFS)	LNAPL recovery activities at MW-1.

.

3/24/2000	nAUTOfAB000065 (Case # 3RP-155)		LNAPL recovery activities and quarterly groundwater monitoring.
2/26/2001	nAUTOfAB000065 (Case # 3RP-155)	Philip Services Corp 2000 Annual Report (for EPFS)	Two additional monitoring wells (MW-2 and MW-3) installed and LNAPL recovery activiities at MW-1
7/18/2001	nAUTOfAB000065 (Case # 3RP-155)	NMOCD review letter for 2000 Annual Groundwater Report (EPFS)	NMOCD requests EPFS work cooperatively with operator to investigate and remediate site.
2/28/2002	nAUTOfAB000065 (Case # 3RP-155)	MWH 2001 Annual Report (for EPFS)	LNAPL recovery activities at MW-1.
2/28/2003	nAUTOfAB000065 (Case # 3RP-155)	MWH 2002 Annual Report (for EPFS)	Annual groundwater monitoring. LNAPL recovery activities at MW-1.
2/26/2004	nAUTOfAB000065 (Case # 3RP-155)	MWH 2003 Annual Report (for EPFS)	Annual groundwater monitoring. LNAPL recovery activities at MW-1.
2/21/2005	nAUTOfAB000065 (Case # 3RP-155)	MWH 2004 Annual Report (for EPFS)	Quarterly LNAPL recovery at MW-1. Annual groundwater monitoring activities.
3/16/2006	nAUTOfAB000065 (Case # 3RP-155)	MWH 2005 Annual Report (for EPFS)	Annual groundwater monitoring. LNAPL recovery activities at MW-1.
3/2/2007	nAUTOfAB000065 (Case # 3RP-155)	MWH Final 2006 Annual Report (for EPTPC)	Annual groundwater monitoring. LNAPL recovery activities at MW-1.
4/2/2008	nAUTOfAB000065 (Case # 3RP-155)	MWH 2007 Annual Report (for EPTPC)	Annual groundwater monitoring. Passive skimmer installed for LNAPL recovery at MW-1.
2/28/2009	nAUTOfAB000065 (Case # 3RP-155)	MWH 2008 Annual Groundwater Report (for EPTPC)	Quarterly LNAPL recovery at MW-1. Annual groundwater monitoring activities.
4/16/2010	nAUTOfAB000065 (Case # 3RP-155)	MWH Final 2009 Annual Report (for EPTPC)	Quarterly LNAPL recovery at MW-1. Annual groundwater monitoring activities.
3/2/2011	nAUTOfAB000065 (Case # 3RP-155)	MWH Final 2010 Annual Report (for EPTPC)	Quarterly LNAPL recovery at MW-1. Annual groundwater monitoring activities.
8/16/2012	nAUTOfAB000065 (Case # 3RP-155)	MWH 2011 Annual Report (for EPCGP)	Quarterly LNAPL recovery at MW-1. Annual groundwater monitoring activities.

nAUTOfAB000065		
(Case # 3RP-155)	MWH 2013 Annual Report (for EPCGP)	Annual groundwater monitoring. LNAPL recovery activities at MW-1.
nAUTOfAB000065 (Case # 3RP-155)	MWH 2014 Annual Report (for EPCGP)	Annual groundwater monitoring. LNAPL recovery activities at MW-1.
nAUTOfAB000065 (Case # 3RP-155)	Stantec 2015 Annual Report (for EPCGP)	Annual groundwater monitoring. LNAPL recovery activities at MW-1.
nAUTOfAB000065 (Case # 3RP-155)	Stantec 2016 Annual Report (for EPCGP)	Annual groundwater monitoring activities. LNAPL recovery at MW-1. Monitoring wells MW-2 and MW-3 abandoned in May 2016, ahead of Merrion Oil and Gas Company's reclamation activities.
nAUTOfAB000065 (Case # 3RP-155)	NMOCD review letter for 2016 Annual Report	Requested remediation plan.
nAUTOfAB000065 (Case # 3RP-155)	Response letter from EPCGP to NMOCD	Site was reclaimed in late 2016 by former operator, and delineation around monitoring well MW-1 is planned for 2018. Work plan will be submitted to NMOCD prior to that activity.
nAUTOfAB000065 (Case # 3RP-155)	Stantec 2017 Annual Report (for EPCGP)	Annual groundwater monitoring activities.
nAUTOfAB000065 (Case # 3RP-155)	NMOCD letter approving Stantec Groundwater Monitoring and Air Sparge/Soil Vapor Extraction Work Plan	Per the Work Plan, six additional monitoring wells would be installed.
Not in NMOCD files	Stantec 2018 Annual Report (for EPCGP)	Six new monitoring wells installed and one soil boring advanced. Semi-annual groundwater monitoring activies. Two MDPE events conducted for LNAPL recovery.
Not in NMOCD files	Stantec 2019 Monitoring Well Installation Work Plan (for EPCGP)	Two additional monitoring wells and four soil borings are proposed for further delineation of contamination.
Not in NMOCD files	Stantec 2019 Annual Report (for EPCGP)	Two additional monitoring wells installed and four soil borings advanced. Semi-annual groundwater monitoring activities. LNAPL recovery activities.
	nAUTOfAB000065 (Case # 3RP-155) nAUTOfAB000065 (Case # 3RP-155) nAUTOfAB000065 (Case # 3RP-155) nAUTOfAB000065 (Case # 3RP-155) nAUTOfAB000065 (Case # 3RP-155) nAUTOfAB000065 (Case # 3RP-155) nAUTOfAB000065 (Case # 3RP-155)	NUTOfAB000065 (Case # 3RP-155)MWH 2014 Annual Report (for EPCGP)nAUTOfAB000065 (Case # 3RP-155)Stantec 2015 Annual Report (for EPCGP)nAUTOfAB000065 (Case # 3RP-155)Stantec 2016 Annual Report (for EPCGP)nAUTOfAB000065 (Case # 3RP-155)NMOCD review letter for 2016 Annual ReportnAUTOfAB000065 (Case # 3RP-155)Response letter from EPCGP to NMOCDnAUTOfAB000065 (Case # 3RP-155)Stantec 2017 Annual Report (for EPCGP)nAUTOfAB000065 (Case # 3RP-155)Stantec 2017 Annual Report (for EPCGP)nAUTOfAB000065 (Case # 3RP-155)NMOCD letter approving Stantec Groundwater Monitoring and Air Sparge/Soil Vapor Extraction Work PlanNot in NMOCD filesStantec 2018 Annual Report (for EPCGP)Not in NMOCD filesStantec 2019 Monitoring Well Installation Work Plan (for EPCGP)

4/8/2021	nAUTOfAB000065	Stantec 2020 Annual Report (for EPCGP)	Semi-annual groundwater monitoring activities. Quartelry LNAPL recovery activities.
8/23/2021	nAUTOfAB000065	Stantec Work Plan for LNAPL Recovery Activities	Work Plan for LNAPL recovery using MDPE.
3/22/2022	nAUTOfAB000065	Stantec Monitoring Well Installation Activities Work Plan	Work plan proposed installation of two monitoring wells, MW-10 and MW-11.
3/29/2022	nAUTOfAB000065	Stantec 2021 Annual Report (for EPCGP)	Quarterly LNAPL recovery by manual methods. Semi-annual groundwater monitoring activities.
3/22/2023	nAUTOfAB000065	Stantec 2022 Annual Report (for EPCGP)	Two additional monitoring wells installed. Semi-annual groundwater monitoring. Quarterly LNAPL recovery activities.
7/17/2023	nAUTOfAB000065	Stantec Well Installation and Remedial Testing Feasibility Work Plan (for EPCGP)	Work Plan proposed installation of one monitoring well (MW-12) and one air sparge (AS) test well (TW-1). Work Plan also proposed AS and soil vapor extraction (SVE) feasibility testing. MDPE event was proposed to recover LNAPL.

.

APPENDIX B

NMOCD Notification of Site Activities

From:	Varsa, Steve
To:	nelson.valez@state.nm.us
Cc:	Bratcher, Mike, EMNRD; Wiley, Joe
Bcc:	Varsa, Steve
Subject:	El Paso CGP Company - Notice of upcoming product recovery activities
Date:	Wednesday, August 16, 2023 1:56:00 PM

Hi Nelson -

This correspondence is to provide notice to the NMOCD of upcoming quarterly product recovery activities at the following EPCGP project sites:

Site Name	Incident Number	Sample Date
Canada Mesa #2	nAUTOfAB000065	8/27/2023
Fields A#7A	nAUTOfAB000176	8/30/2023
Fogelson 4-1	nAUTOfAB000192	8/31/2023
Gallegos Canyon Unit #124E	nAUTOfAB000205	8/31/2023
James F. Bell #1E	nAUTOfAB000291	8/25/2023
Johnston Fed #4	nAUTOfAB000305	8/30/2023
K27 LDO72	nAUTOfAB000316	8/31/2023
State Gas Com N #1	nAUTOfAB000668	8/29/2023

Please feel free to contact Joe Wiley, Project Manager at EPCGP, or me, if you need further information.

Thank you, Steve

Stephen Varsa, P.G., R.G.

Principal Hydrogeologist Stantec Environmental Services 11311 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

From:	Varsa, Steve
То:	nelson.valez@state.nm.us
Cc:	Bratcher, Mike, EMNRD; Wiley, Joe
Bcc:	Varsa, Steve
Subject:	Canada Mesa #2 site (nAUTOfAB000065) - notice of upcoming activities
Date:	Wednesday, August 16, 2023 1:35:00 PM

Hi Nelson – on behalf of El Paso CGP Company, Stantec is planning to complete soil vapor extraction testing, air sparge testing, and free product recovery activities using mobile dualphase extraction methods at the subject site on August 26 and 27, 2023. A work plan with additional details regarding these activities has been submitted in the e-permitting portal.

Please feel free to contact Joe Wiley, Project Manager at EPCGP, or me, if you need further information.

Thank you, Steve

Stephen Varsa, P.G.

Senior Hydrogeologist Stantec Environmental Services 11311 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

From:	Varsa, Steve
То:	nelson.valez@state.nm.us
Subject:	FW: El Paso CGP Company - Notice of upcoming product recovery activities
Date:	Wednesday, March 22, 2023 9:51:09 PM

From: Varsa, Steve <steve.varsa@stantec.com>

Sent: Wednesday, March 22, 2023 9:33 PM

To: nelson.valez@state.nm

Cc: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Wiley, Joe

<joe_wiley@kindermorgan.com>

Subject: El Paso CGP Company - Notice of upcoming product recovery activities

Hi Nelson -

This correspondence is to provide notice to the NMOCD of upcoming quarterly product recovery activities at the following EPCGP project sites:

Site Name	Incident Number	Sample Date
Canada Mesa #2	nAUTOfAB000065	3/28/2023
Fields A#7A	nAUTOfAB000176	3/29/2023
Fogelson 4-1	nAUTOfAB000192	3/29/2023
Gallegos Canyon Unit #124E	nAUTOfAB000205	3/28/2023
James F. Bell #1E	nAUTOfAB000291	3/29/2023
Johnston Fed #4	nAUTOfAB000305	3/30/2023
K27 LDO72	nAUTOfAB000316	3/28/2023
Lateral L-40	nAUTOfAB000335	3/29/2023
State Gas Com N #1	nAUTOfAB000668	3/29/2023

Please feel free to contact Joe Wiley, Project Manager at EPCGP, or me, if you need further information.

Thank you, Steve

Stephen Varsa, P.G., R.G.

Principal Hydrogeologist Stantec Environmental Services 11311 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

From:	Varsa, Steve
То:	nelson.valez@state.nm.us
Cc:	Bratcher, Mike, EMNRD; Wiley, Joe
Subject:	El Paso CGP Company - Notice of upcoming groundwater sampling activities
Date:	Friday, May 12, 2023 9:54:16 PM

Hi Nelson -

This correspondence is to provide notice to the NMOCD of upcoming semi-annual groundwater sampling and monitoring activities at the following EPCGP project sites:

Site Name	Incident Number	Sample Date
Canada Mesa #2	nAUTOfAB000065	5/20/2023
Fields A#7A	nAUTOfAB000176	5/21/2023
Fogelson 4-1	nAUTOfAB000192	5/18/2023
Gallegos Canyon Unit #124E	nAUTOfAB000205	5/17/2023
GCU Com A #142E	nAUTOfAB000219	5/21/2023
James F. Bell #1E	nAUTOfAB000291	5/18/2023
Johnston Fed #4	nAUTOfAB000305	5/19/2023
Johnston Fed #6A	nAUTOfAB000309	5/19/2023
K27 LDO72	nAUTOfAB000316	5/20/2023
Knight #1	nAUTOfAB000324	5/17/2023
Lateral L 40 Line Drip	nAUTOfAB000335	5/21/2023
Sandoval GC A #1A	nAUTOfAB000635	5/19/2023
Standard Oil Com #1	nAUTOfAB000666	5/20/2023
State Gas Com N #1	nAUTOfAB000668	5/22/2023

We also plan to conduct quarterly operation and maintenance activities on the Knight #1 air sparge/soil vapor extraction system (Incident number nAUTOAB000324) on Wednesday, May 17, 2023.

Please feel free to contact Joe Wiley, Project Manager at EPCGP, or me, if you need further information.

Thank you, Steve

Stephen Varsa, P.G., R.G.

Principal Hydrogeologist Stantec Environmental Services 11311 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

From:	Varsa, Steve
To:	nelson.valez@state.nm.us
Cc:	Bratcher, Mike, EMNRD; Wiley, Joe
Subject:	Canada Mesa #2 (Incident Number nAUTOfAB000065) - Notice of upcoming site activities
Date:	Thursday, July 20, 2023 8:59:52 PM

Hi Nelson, on behalf of El Paso CGP Company (EPCGP), Stantec is conducting well installation activities at the subject site beginning on July 25, 2023, and expected to go through July 27, 2023. A work plan for these activities has been submitted in the e-permitting portal.

Please feel free to contact me Joe Wiley, with EPCGP, if you have need anything further.

Thank you, Steve

Stephen Varsa, P.G., R.G.

Principal Hydrogeologist Stantec Environmental Services 11311 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

From:	Varsa, Steve
То:	nelson.valez@state.nm.us
Cc:	Bratcher, Mike, EMNRD; Wiley, Joe
Subject:	El Paso CGP Company - Notice of upcoming groundwater sampling activities
Date:	Thursday, November 2, 2023 6:17:33 AM

Hi Nelson -

This correspondence is to provide notice to the NMOCD of upcoming semi-annual groundwater sampling and monitoring activities at the following EPCGP project sites:

Site Name	Incident Number	Sample Date
Canada Mesa #2	nAUTOfAB000065	11/12/2023
Fields A#7A	nAUTOfAB000176	11/15/2023
Fogelson 4-1	nAUTOfAB000192	11/8/2023
Gallegos Canyon Unit #124E	nAUTOfAB000205	11/9/2023
GCU Com A #142E	nAUTOfAB000219	11/9/2023
James F. Bell #1E	nAUTOfAB000291	11/15/2023
Johnston Fed #4	nAUTOfAB000305	11/11/2023
Johnston Fed #6A	nAUTOfAB000309	11/11/2023
K27 LDO72	nAUTOfAB000316	11/12/2023
Knight #1	nAUTOfAB000324	11/7/2023
Lateral L 40 Line Drip	nAUTOfAB000335	11/16/2023
Sandoval GC A #1A	nAUTOfAB000635	11/11/2023
Standard Oil Com #1	nAUTOfAB000666	11/12/2023
State Gas Com N #1	nAUTOfAB000668	11/10/2023

We also plan to conduct quarterly operation and maintenance activities on the Knight #1 air sparge/soil vapor extraction system (Incident number nAUTOAB000324) on Tuesday, November 7, 2023.

Please feel free to contact Joe Wiley, Project Manager at EPCGP, or me, if you need further information.

Thank you, Steve

Stephen Varsa, P.G., R.G.

Principal Hydrogeologist Stantec Environmental Services 11311 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

APPENDIX C

NMOCD Well Permits

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER AZTEC

Mike A. Hamman, P.E. State Engineer

100 Gossett Drive, Suite A Aztec, New Mexico 87410

July 11, 2023

El Paso CGP Company, LLC Attn: Joseph Wiley 1001 Lousiana Street, Room 1445B Houston, Texas 77002

RE: Permit for Use of Four Wells for Temporary Pollution Recovery, SJ-4279 PODs 1, 10, 13 & 14, El Paso CGP Company, LLC, Canada Mesa #2 Site Investigation

Dear Mr. Wiley:

On June 14, 2023, the New Mexico Office of the State Engineer received an application for a permit for the temporary use of an existing water well for pollution recovery purposes at the above referenced location. Enclosed is a copy of the above numbered permit that has been approved subject to the conditions set forth on the approval page and in the attached Conditions of Approval. Also enclosed is a receipt for the fees paid.

Please be aware that there are time and extraction volume limitations for this pollution recovery permit (Condition 3 of the Condition of Approval). Also, quarterly reporting of the volumes of water extracted is required in accordance with Condition 4 of the Conditions of Approval.

If you have any questions regarding this permitting action, please call (505) 383-4571.

Sincerely,

Miles Juett

When Jueff Watermaster Water Rights Division – District V Office

Enclosures

cc: Aztec Reading (w/o enclosures) SJ-4279 File WATERS

OFFICE OF THE STATE ENGINEER/INTERSTATE STREAM COMMISSION - AZTEC OFFICE

OFFICIAL RECEIPT NUMBER: 5 - 7277	DATE: 10-14-2023	JJ- YIII, (J_ 42]) (J_ 421) (J_ 40)
TOTAL: 75. 00 RECEIVED:	Seventy- Five	DOLLARS CASH: CHECK NO.: _/2_(0
PAYOR: Stephen Varsa	ADDRESS: _	63179 270th St.
CITY: Neveral STATE	: (A ZIP: 50	ZOI RECEIVED BY: MT

INSTRUCTIONS: Indicate the number of actions to the left of the appropriate type of filing. Complete the receipt information. **Original** to payor; **pink** copy to Program Support/ASD; **yellow** copy remains in district office; and **goldenrod** copy to accompany application being filed. If a mistake is made, void the original and all copies and submit to Program Support/ASD as part of the daily deposit.

A. Ground Water Filing Fees

	1. 2.	Change of Ownership of Water Right Application to Appropriate or Supplement	\$ nt	2.00
	3.	Domestic 72-12-1 Well Application to Repair or Deepen		125.00
	4.	72-12-1 Well Application for Replacement 72-12-1 Well		75.00
-	5.	Application to Change Purpose of Use 72-12-1 Well		75.00 75.00
5	6.	Application for Stock Well/Temp. Use	₽ \$	5.00
	7.	Application to Appropriate Irrigation,	*	25.00
	8.	Municipal, or Commercial Use Declaration of Water Right	\$ ¢	25.00

		raniepar of commercial ogc	P	20.00
	8.	Declaration of Water Right	\$	1.00
-	9.	Application for Supplemental Non		
		72-12-1 Well	\$	25.00
<u>.</u>	10.	Application to Change Place or		
		Purpose of Use Non 72-12-1 Well		25.00
	11.	Application to Change Point of Diversion		
		and Place and/or Purpose of Use from		
		Surface Water to Ground Water	\$	50.00
	12.	Application to Change Point of Diversion		
		and Place and/or Purpose of Use from		
		Ground Water to Ground Water	\$	50.00
	13.	Application to Change Point of		
		Diversion of Non 72-12-1 Well	\$	25.00
	14.	Application to Repair or Deepen		
		Non 72-12-1 Well	\$	5.00

15	15.	Application for Test, Expl. Observ. Wet	\$ 5,00
	16.	Application for Extension of Time	\$ 25.00
		Proof of Application to Beneficial Use	\$ 25.00
	18.	Notice of Intent to Appropriate	\$ 25.00

B. Surface Water Filing Fees

		and tracer rining reco			
	1.	Change of Ownership of a Water Right	\$	5.00	
_	2.	Declaration of Water Right	\$	10.00	
	3.	Amended Declaration	\$	25.00	
	4.	Application to Change Point of Diversion			
		and Place and/or Purpose of Use from			
		Surface Water to Surface Water	\$	200.00	
	5.	Application to Change Point of Diversion	т		
		and Place and/or Purpose of Use from			
		Ground Water to Surface Water	\$	200.00	
	6.	Application to Change Point of	Ψ	200100	
		Diversion	\$	100.00	
	7.	Application to Change Place and/or	Ψ	100.00	
		Purpose of Use	\$	100.00	
	8.	Application to Appropriate	\$	25.00	
	9.	Notice of Intent to Appropriate	\$	25.00	
			Ψ \$	50.00	
	11.	Supplemental Well to a Surface Right	Ψ.	100.00	
	12.	Return Flow Credit		100.00	
		Proof of Completion of Works	₽ \$	25.00	
		Proof of Application of Water to	₽	23.00	
	2	Beneficial Use	\$	25.00	
	15	Water Development Plan	· ·		
		Declaration of Livestock Water	Þ	100.00	
	10.	· · · ·	÷	10.00	
	17	Application for Livestock Water	\$	10.00	
	11.	· · · · · · · · · · · · · · · · · · ·	÷	10.00	
		mpoundment	\$	10.00	

C. Well Driller Fees 1. Application for Well Driller's License 2. Application for Renewal of Well	\$ 50.00
Driller's License	\$ 50.00
D. Reproduction of Documents @ 25¢/copy	\$
Map(s)	\$
E. Certification	\$
F. *Credit Card Convenience Fee	\$
G. Other	\$
Comments:	

All fees are non-refundable.

NEV	V ME	XICO OFFICE OF	THE STATE ENGINEER	ATTAL STATE	
Interstelle Streem Commission	WR-07 APPLICATION FOR PERMIT TO DRILL A WELL WITH NO WATER RIGHT (check applicable box):				
	Fo	r fees, see State Engineer websi	te: http://www.ose.state.nm.us/		
Purpose: Pollution Control And/Or Recovery		Ground Source Heat Pur	η		
Exploratory Weil*(Pump test)	,		Other(Describe):		
Monitoring Well		Mine Dewatering			
A separate permit will be required to app	ly water	to beneficial use regardless if use	is consumptive or nonconsumptive.		
*New Mexico Environment Department-Drinking Water Bureau (NMED-DWB) will be notified if a proposed exploratory well is used for public water supply.					
Temporary Request - Requested Start Date: July 24, 2023 Requested End Date: TBD. For Pollation					
Plugging Plan of Operations Submitted? Yes No control, 09/30/2023.					

1. APPLICANT(S)

Name: El Paso CGP Company, L	TC	Name:		
Contact or Agent: check here if Agent		Contact or Agent:	check here if Agent	
Joseph Wiley				
Mailing Address: 1001 Louisiana Street, Ro	om 1445B	Mailing Address:		
City: Houston		City:		
State: Texas	Zip Code: 77002	State:	Zip Code:	
Phone:	🗌 Home 🔲 Cell	Phone:	Home Cell	
Phone (Work): (713) 420-	-3475	Phone (Work):		
E-mail (optional): joe_wiley@kindermorgan.c	com	E-mail (optional):		

	Application for Permit, Form WR-07, Rev 07/12/22	
SJ-4279 PODs 1, File No. 10, 13 & 14	Receipt No.: 5-7277	
Trans Description (optional):		
Sub-Basin:	PCW/LOG Due Date: 7-11-2024	

Page 1 of 3

Released to Imaging: 5/2/2024 4:22:08 PM

2WELL(S) Describe the well(s) applicable to this application.

Location Required: Coordinate location must be reported in NM State Plane (NAD 83), UTM (NAD 83), or Latitude/Longitude (Lat/Long - WGS84).

District II (Roswell) and District VII (Cimarron) customers, provide a PLSS location in addition to above.

 NM State Plane (NAD83) NM West Zone NM East Zone NM Central Zone 		JTM (NAD83) (M]Zone 12N]Zone 13N	eters) Ext/Long (WGS84) (to the nearest 1/10 th of second)			
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (Quarters or Halves, Section, Township, Range) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name			
(SJ-4279 POD13) MW-12	-107.414082	36.295987	NE/4 SE/4, Sec. 24, T24N, R6W, Rio Arriba County, NM			
(POD14) TW-1	-107.414065	36.295967	NE/4 SE/4, Sec. 24, T24N, R6W, Rio Arriba County, NM			
MW-1 (SJ-4279 POD 1)	-107.41419	36.29585	NE/4 SE/4, Sec. 24, T24N, R6W, Rio Arriba County, NM			
MW-9 (SJ-4279 POD 10)	-107.41418	36.29601	NE/4 SE/4, Sec. 24, T24N, R6W, Rio Arriba County, NM			
		ad a small to the feature				
Additional well descriptions	s need to be describ are attached:	red, complete fo Yes 🔳 No	rm WR-08 (Attachment 1 – POD Descriptions) If yes, how many			
Other description relating well	to common landmark	s, streets, or othe	ər:			
Permit SJ-4279. Canada Mesa #2 site.						
Well is on land owned by: Bur	eau of Land Manager	ment (BLM)				
Well Information: NOTE: If m If yes, how many	ore than one (1) we	Il needs to be de	escribed, provide attachment. Attached? 🗌 Yes 🔳 No			
Approximate depth of well (fee	et): 50 (MW-12), 55 (T	W-1)	Outside diameter of well casing (inches): 2			
Driller Name: Cascade Environmental Drilling Driller License Number: WD-1664						

3. ADDITIONAL STATEMENTS OR EXPLANATIONS

New wells MW-12 and TW-1 are being installed to better characterize the extent of LNAPL at the site and facilitate feasibility testing of air sparge remedies. Soil vapor extraction (SVE) feasibility testing will be completed on monitoring well MW-12, therefore a pollution recovery permit is necessary. Additionally, pollution recovery permitting for PODs 1 and 10 (existing wells MW-1 and MW-9, respectively) is requested. SVE testing will be conducted at MW-1 and a mobile dual phase extraction (MDPE) event will be conducted at MW-9. All monitoring wells will be abandoned once a No Further Action determination has been granted by the New Mexico Oil Conservation Division (NMOCD) for the release.

 FOR OSE INTERNAL USE
 Application for Permit, Form WR-07 Version 07/12/22

 SJ-4279 PODs 1, 10,

 File No.
 13 & 14
 Trn No.

Page 2 of 3

Released to Imaging: 5/2/2024 4:22:08 PM

Exploratory:	Pollution Control and/or Recovery:	Construction	Mine De-Watering:
Is proposed	Include a plan for pollution	De-Watering:	Include a plan for pollution
well a future	control/recovery, that includes the	Include a description of the	control/recovery, that includes the following:
public water	following:	proposed dewatering	A description of the need for mine
supply well?	A description of the need for the	operation,	dewatering.
Subbia Meil ?	pollution control or recovery operation.	The estimated duration of	The estimated maximum period of time
Yes NO	The estimated maximum period of	the operation,	for completion of the operation.
f Yes, an	time for completion of the operation.	The maximum amount of	The source(s) of the water to be diverted.
application must	The annual diversion amount.	water to be diverted,	The geohydrologic characteristics of the
be filed with	The annual consumptive use	A description of the need	aquifer(s).
MED-DWB,	amount.	for the dewatering operation,	The maximum amount of water to be
Concurrently.	The maximum amount of water to be	and,	diverted per annum.
Include a	diverted and injected for the duration of	A description of how the	The maximum amount of water to be
description of	the operation.	diverted water will be disposed	diverted for the duration of the operation.
the requested	The method and place of discharge.	of.	The quality of the water.
pump test if	The method of measurement of	Ground Source Heat Pump:	The method of measurement of water
applicable.	water produced and discharged.	Include a description of the	diverted.
Explicable.	The source of water to be injected.	geothermal heat exchange	The recharge of water to the aquifer.
Maultantan	The method of measurement of	project,	Description of the estimated area of
Monitoring	water injected.	The number of boreholes	hydrologic effect of the project.
The reason	The characteristics of the aquifer.	for the completed project and	The method and place of discharge.
and duration	The method of determining the	required depths.	An estimation of the effects on surface
of the	resulting annual consumptive use of	The time frame for	water rights and underground water rights
monitoring is	water and depletion from any related	constructing the geothermal	from the mine dewatering project.
required.	stream system.	heat exchange project, and,	A description of the methods employed to
	Proof of any permit required from the	The duration of the project.	estimate effects on surface water rights and
	New Mexico Environment Department.	Preliminary surveys, design	underground water rights.
	An access agreement if the	data, and additional	Information on existing wells, rivers,
	applicant is not the owner of the land on	information shall be included to	springs, and wetlands within the area of
	which the pollution plume control or	provide all essential facts	hydrologic effect.
	recovery well is to be located.	relating to the request.	

ACKNOWLEDGEMENT

I, We (name of applicant(s)), Joseph Wiley

Print Name(s)

affirm that the foregoing statements are true to the best of (my, our) knowledge and belief.

approved

Applicant Signature

Applicant Signature

ACTION OF THE STATE ENGINEER

This	applica	ation	is:
------	---------	-------	-----

partially approved denied

Miles Juett

provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare and further subject to the <u>attached</u> conditions of approval.

, State Engineer

Print

Witness my hand and seal this <u>11</u> day of <u>Ju1y</u> 20 <u>23</u>, for the State Engineer,

Mike A. Hamman, P.E.

By:

Signature

Watermaster Title: Print

FOR OSE INTERNAL USE		n for Permit, Form WR-07 Version 07/12/22
SJ-4279 PODs 1, File No.: 13 & 14	10,	Tm No.:

Page 3 of 3

Released to Imaging: 5/2/2024 4:22:08 PM

NMOSE Permit for Temporary Use of Groundwater for Contaminant Remediation **Conditions of Approval** SJ-4279 PODs 1, 10, 13 & 14

Upon review of the proposed pollution recovery plan, the New Mexico Office of the State Engineer (NMOSE) has determined that existing water rights will not be permanently impaired by this activity. This application is approved without publication provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare of the state. This application is further subject to the following conditions of approval.

1. This application is approved as follows:

Permittee(s):	El Paso CGP Company, LLC via Steve Varsa, Stantec Consulting Services, as Agent 1001 Louisiana St, Room 1445B Houston, TX 77002
Permit Number:	SJ-4279
Application File Date:	June 14, 2023
Priority:	N/A
Source:	Groundwater
Point(s) of Diversion:	Four points of diversion (PODs), SJ-4279 PODs 1, 10, 13 & 14, are proposed for use in pollution control or recovery activities. Two PODs (Table 1) are existing monitoring wells, and two PODs (Table 2) are newly proposed monitoring wells, which are all proposed for temporary use for pollution recovery and ongoing groundwater monitoring. The wells are located at the applicant's Canada Mesa #2 site on land owned by the U.S. Department of Interior Bureau of Land Management in rural Rio Arriba County, New Mexico. The PODs are located within the NE¼ SE¼ of Section 24, Township 24 North, Range 6 West,

Table 1: Existing Monitoring Wells with temporary Pollution Recovery Use

WGS84).

POD Number and Owner's Well Name	Diameter	sing: (inches) and h (feet)	Longitude (DD)	Latitude (DD)
SJ-4279 POD1 (MW-1)	2	On file	-107.41419	36.29585
SJ-4279 POD10 (MW-9)	2	On file	-107.41418	36.29601

NMPM, at the following approximate point locations (Long/Lat,

Table 2: New Monitoring Wells with temporary Pollution Recovery Use

POD Number and Owner's Well Name	Diameter	sing: (inches) and h (feet)	Longitude (DD)	Latitude (DD)	
SJ-4279 POD13 (MW-12)	2	50	-107.414082	36.295987	
SJ-4279 POD14 (TW-1)	2	55	-107.414065	36.295967	

NMOSE Permit for Temporary Use of Groundwater for Contaminant RemediationPage 2 of 4Conditions of ApprovalSJ-4279 PODs 1, 10, 13 & 14July 11, 2023

Purpose of Use:	Groundwater monitoring and dual phase pollution recovery
Place of Use:	N/A
Amount of Water:	The permittee my produce up to a total volume of one acre-foot (325,851 gallons), including light non-aqueous phase liquid (LNAPL). This is the total maximum annual volume allowed to be pumped from all water wells at the facility.

- 2. No extraction of water which is inconsistent with the purpose, date, and volume limitation amounts authorized by this permit shall occur from the wells identified herein.
- 3. Only *de minimis* amounts of water generated as a result of pollution remediation activities are permitted to be removed from the approved PODs. The application states that contaminants and entrained water will be removed from the wells during multiple dual phase extraction events conducted between July 24, 2023, and September 30, 2023. Approval under this permit to use wells SJ-4279 PODs 1, 10, 13 & 14 for the purpose of pollution extraction/recovery shall expire September 30, 2023, or once the total volume extracted from all approved PODs is equal to one acre-foot, whichever occurs first.
- 4. The total volume of water extracted shall be determined quarterly using a totalizing flow meter(s) and submitted to the NMOSE District V office in Aztec based on the following schedule. The quarterly reports shall include the beginning and ending meter readings with units of measurement, meter information, and total volume extracted for the quarterly period. Should no extraction occur during a quarterly measurement period a statement indicating such shall be included in the quarterly report(s). Meter reporting forms are available at: http://www.ose.state.nm.us/Meter/index.php.

Total volumes extracted shall be determined for the following quarters and submitted as follows:

- January 1st through March 31st due by May 1st
- April 1st through June 30th due by August 1st
- July 1st through September 30th due by November 1st
- October 1st through December 31st due by February 1st
- 5. The well(s) may continue to be used indefinitely for groundwater sampling or monitoring purposes, as required for the current site investigation and any associated remediation, so long as they are required for such activities and remain in good repair. A new application shall be submitted and a permit obtained from the NMOSE prior to replacing a well(s) or for any change in use as approved herein.
- 6. Water well drilling and well drilling activities, including well plugging, are regulated under NMOSE Regulations 19.27.4 NMAC. These regulations apply, and provide both general and specific direction regarding the drilling of wells in New Mexico. Note that the construction of any well that allows groundwater to flow uncontrolled to the land surface or to move appreciably between geologic units is prohibited.
- 7. In accordance with Subsection A of 19.27.4.29 NMAC, on-site supervision of well drilling/plugging is required by the holder of a New Mexico Well Driller License or a NMOSE-registered Drill Rig Supervisor. The New Mexico licensed Well Driller shall ensure that well

NMOSE Permit for Temporary Use of Groundwater for Contaminant Remediation Page 3 of 4 Conditions of Approval SJ-4279 PODs 1, 10, 13 & 14

July 11, 2023

drilling activities are completed in accordance with 19.27.4.29, 19.27.4.30 and 19.27.4.31 NMAC. However, pursuant to 72-12-12 NMSA 1978 and 19.27.4.8 NMAC, a driller's license is not required for the construction of a driven well with an outside casing diameter of 2³/₄ inches or less and that does not require the use of a drill rig (e.g., auger) for installation. This exemption is not applicable to well plugging.

- When the permittee receives approval or direction to permanently abandon the well(s), the 8. District V Office of NMOSE shall be notified and provided with a plugging plan for review, modification as necessary, and approval. Approval of a plugging plan is required *prior* to initiation of any well plugging activities. The well(s) shall be plugged in accordance with Subsection C of 19.27.4.30 NMAC.
- 9. Should another regulatory agency sharing jurisdiction of the project authorize, or by regulation require, more stringent requirements than stated herein, the more stringent procedure should be followed. These, among others, may include provisions regarding pre-authorization to proceed, type of methods and materials used, inspection, or prohibition of free discharge of any fluid or other material to or from the well that is related to the drilling and/or monitoring process.
- 10. The State Engineer retains jurisdiction of this permit.

The application for temporary use of non-consumptive use well(s) SJ-4279 PODs 1, 10, 13 & 14 for pollution recovery purposes, submitted on June 14, 2023, is hereby approved with the aforesaid conditions applied, when signed by an authorized designee of the State Engineer:

Witness my hand and seal this <u>11th</u> day of July, A.D. 2023. Mike A. Hamman, P.E., State Engineer

By:

Miles Juett, Watermaster Water Rights Division District V

Received by OCD: 3/20/2024 2:14:26 PM

File number: SJ-4279 PODs 1, 10, 13 & 14

Aerial Photography: World Imagery

NMOSE Permit for Temporary Use of Groundwater for Contaminant RemediationPage 4 of 4Conditions of ApprovalSJ-4279 PODs 1, 10, 13 & 14July 11, 2023

MW-13 (SJ-4279 POD14) -107.414065, 36.295967 MW-12 (SJ-4279 POD13) -107.414082, 36.295987 VESE MW-2R (SJ-4279 POD2) Lat: 36.29593 N, Long: 107.41404 W MW-1 (SJ-4279 POD1) Lat: 36.29585 N, Long: 107.41419 W 024 Legend 1/4 1/4 Section Section Services ESR, NEXER, Participar Geoglephiles, and the GIS Use Township/Range 200 Feet 100 50 n Coordinate Projection: Long./Lat. (DD), WGS84 STATE OF NEW MEXICO Map Description: El Paso CGP Co., LLC Canada Mesa #2 Office of the State Engineer N Site Investigation, Rio Arriba County, New Mexico Mike A. Hamman, P.E. Data sources: Application materials State Engineer

District V Office, Aztec

Well Location Map

nn

aterstate Stream Co

APPENDIX D

NMOCD Plugging Forms

PLUGGING RECORD

JEAN TEL

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

I. GENE	RAL / WELL OWNERS	HIP:			
State Eng	ineer Well Number: SB-6	····-			
Well own	er: El Paso CGP Compan	y,LLC Attn: Joseph	Wiley	Phone No.:	713-420-3475
Mailing a	ddress: 1001 Louisiana St	reet, Room 1445B		-	
	uston			Texas	Zip code: 77002
II. WEL	L PLUGGING INFORM	ATION:			
1) 1	Name of well drilling comp	any that plugged w	ell: Cascade D	rilling L.P	
					Expiration Date:
	Well plugging activities we Shawn Cain	ere supervised by the	e following well	driller(s)/rig superv	isor(s):
4) [Date well plugging began:	7-26-2023	Date	well plugging conclu	ided: 7-26-2023
5) (GPS Well Location:	Latitude: <u>36°</u> Longitude: <u>-10</u>	deg,)7deg,	17 min, 45. 24 min, 50.	4812 sec 6340 sec, WGS 84
6) [b	Depth of well confirmed at by the following manner:	initiation of pluggir foil boring that did n	ng as: 40 ot make water. I	ft below ground lo Backfill with native so	evel (bgl), il
7) S	Static water level measured	at initiation of plug	gging: 0	ft bgl	
8) E	Date well plugging plan of	operations was appi	roved by the Sta	te Engineer:	
9) V d	Were all plugging activities differences between the app	consistent with an proved plugging plan	approved plugg n and the well a	ing plan? s it was plugged (atta	If not, please describe ach additional pages as needed):

Drilled Soil Boring to 40' BGS and boring did not make water so client decided to abandon boring.

- Page 63 of 211
- Log of Plugging Activities Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary. 10)

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of Material Placed (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
-	0-40' No well just soil boring backfilled with native soil.				
-					
-					
-					
-					
-					
III. SIGN		cubic feet x 7.4 cubic yards x 201.5	1805 = gallons 17 = gallons		
I, Engineer p are true to t	ertaining to the plugging of the best of my knowledge at	wells and that each and	at I am familiar with I all of the statements in	the rules of t this Plugging	he Office of the State Record and attachments

For each interval plugged, describe within the following columns:

Date

Version: September 8, 2009

8-11-23

Page 2 of 2

APPENDIX E

NMOCD Well Construction Forms

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

mb-12

NO	OSE POD NO POD-13 M	•	0.)		WELL TAG ID N	D.		OSE FILE NO(S). SJ-4279					
AND WELL LOCATION	WELL OWN	-	S)					PHONE (OP 713-420-3					
1	WELL OWNER MAILING ADDRESS								CITY STATE				ZIP
WEL	1001 Louis	siana Stre	et, Room 1445B					Houston			Texas	77002	
ĝ	WELL		1	EGREES	MINUTES	SECC	NDS						
TV	LOCATION			36°	17	45.:	5532 _N	+ ACCURA	CY REQU	IRED: ONE TEN	TH OF A S	SECOND	
GENERAL	(FROM GF	s)	ONGITUDE	-107°	24	50.	6952 W	• DATUM R	EQUIRE): WGS 84			
EN	DESCRIPTIO			O STREET ADD	RESS AND COMMO	N LANDA	MARKS - PL	SS (SECTION, 1	IOWNSHI	IIP. RANGE) WH	EREAVA	ILABLE	
DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS – PLSS (SECTION, TOWNSHJIP, RANGE) WHERE AVAILABLE NE/4 SE/4, Sec. 24, T24N,R6W, Rio Arriba county, NM													
	LICENSE NO),	NAME OF LICENSE	D DRILLER					NAM	IE OF WELL DR	ILLING C	OMPANY	
	160	54			Shawn Cain					Cas	cade Dri	lling L.P	
	DRILLING S		DRILLING ENDED	DEPTH OF CO	OMPLETED WELL (FT)	BORE HO	LE DEPTH (FT) DEP	TH WATER FIR	ST ENCO	UNTERED (FT))
	7-25-2	2023	7-26-2023		50			51			30		
Z	COMPLETE	O WELL IS	ARTESIAN *ad		LE 🔽 SHALL	OW (UNC	ONFINED)		IC WATEI MPLETEI		0	DATE STATIC 7/28/	
0 E	DRILLING FLUID: AIR MUD ADDITIVES – SPECIFY												
DRMA	DRILLING M	ETHOD:	ROTARY HAN	MER CABLE TOOL 🔽 OTHER - SPECIFY:			Sonic	>	CHECK INSTAL	HERE IF	PITLESS ADA	PTER IS	
NE	DEPTH (feet bgl) BORE HOLE			CASING	MATERIAL AN	D/OR		ASING		CASING CA		CASING WALL	
CASING INFORMATION	FROM	то	DIAM	0.11	GRADE			NECTION		IDE DIAM.		CKNESS	SLOT SIZE
			(inches)		(include each casing string, and note sections of screen) (add or			TYPE bling diameter)		(inches)		inches)	(inches)
& C/	0	30	6		2" sch 40 PVC		Flush Thread			2.067		.154	
ġ	30	50	6	2" s	ch 40 PVC Scree	n	Flush Thread			2.067		.154	.010
DRILLING					,		1						
DRI													
2.1							-						
												·	
					<u>-</u>		ļ						
	L												
	DEPTH	(feet bgl)	BORE HOLE	LIST ANN	ULAR SEAL MAT	ERIAL AI BY INTEI		L PACK SIZE	PACK SIZE- AMOUNT			METHO	DOF
IAL	FROM	ТО	DIAM. (inches) *(if using Co	entralizers for Arte			e spacing below	<u>z)</u>	(cubic feet)		PLACE	MENT
ER	0	2	6			oncrete				.5		Hand p	our
IAT	2	23.5	6		Р	ortland				3.85		Trem	nie
LR N	23.5	27.5	6		3/	8 Chips	• • •			1.32		Hand j	our
ANNULAR MATERIAL	27.5	51	6		10	/20 Sand				4.21		Hand p	our
NN													
3. A													
]												
FOR	OSE INTER	NAL US	E					WR	-20 WE	LL RECORD	& LOG (Version 09/2	2/2022)
	E NO.				POD N	Ю.			NO.				
LOC	CATION							WELL TAG				PAGE	1 OF 2

Lag	DEPTH (feet bgl) TO	THICKNESS (feet)	INCLUDE WAT	ND TYPE OF MATERIAL I ER-BEARING CAVITIES (pplemental sheets to fully (OR FRACTURE ZONE	S BI	WATER EARING? 'ES / NO)	ESTIMATED YIELD FOR WATER- BEARING
					ZONES (gpm)				
	0	5		Ý N					
	5	51			Sandstone				1.00
	<u></u> ,				· · · · ·			Y N	
					<u> </u>	-		/ N	
			·····					<u> </u>	
WELL								ζ <u>Ν</u> ζΝ	
OF W								· · · · · · · · ·	
LOG 0		· - · · ·						ί Ν (Ν	
CEC						· · · · · · · · · · · · · · · · · · ·		/ N	
061									
HYDROGEOLOGIC					· · · · · · · · · · · · · · · · · · ·			/ N	
SOG								(N	
IdXi									
4						· · · · · · · · · · · · · · · · · · ·		(N	
					,,,,,,,,	·		(N	
								r n	
						······································		(N	
]					í N	
				· ·····				ί N	
								(N	
	METHOD U	JSED TO ES	STIMATE YIELD	OF WATER-BEARIN	IG STRATA:	TOTAL ES			
	PUM	р 🔲 А		BAILER	THER - SPECIFY:		WELL YI	ELD (gpm):	1
NO	WELL TES	T TEST	CLUDING D ER THE TES	ISCHARGE I	METHOD,)D.				
NISI	MISCELLA	NEOUS INI	FORMATION:	· ·					
PER									
GSL									
G RI									
TEST; RIG SUPERVISION	PRINT NAM	AE(S) OF D	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPERV	ISION OF WELL CON	STRUCTIO	NOTHER TH	IAN LICENSEE:
5.	Brett Gresha								
?			•						
2:14:20 PM RE 5.7	THE UNDE	RSIGNED I RECORD O	HEREBY CERTIF	IES THAT, TO THE I DESCRIBED HOLE AT	BEST OF HIS OR HER KN ND THAT HE OR SHE WII	OWLEDGE AND BEL LL FILE THIS WELL I	IEF, THE FO	DREGOING I	S A TRUE AND
					PLETION OF WELL DRI				
GNA		11	1	1	A .		<i>C</i> .	11-23	
5/2(6. SI		Shawn CAin 8							>
0.0D: 3/20/2024 6. SIGNATU		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME			DATE	
	R OSE INTER				<u> </u>	WD 20 WD			mion 00/00/00000
	LE NO.	INAL USE			POD NO,	TRN NO.	LL RECORL	A LUU (Ve	rsion 09/22/2022)
	CATION					WELL TAG ID NO.			PAGE 2 OF 2
Kec									1

Page 67 of 211

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

N	OSE POD NO POD-14 T		D.)		WELL TAG ID NO.		<u></u>	OSE FILE NO SJ-4279	(S).				
OCATIC	WELL OWN Joseph Wil		3)					PHONE (OPT 713-420-34					· · ·
AND WELL LOCATION			G ADDRESS et, Room 1445B					CITY Houston			state Texas	77002	ZIP
RAL AND V	WELL LOCATIO (FROM GI	×S)	TITUDE	GREES MINUTES SECONDS 36° 17 45.4812 N -107° 24 50.6340 W				required: Quired: WG		H OF A SI	ECOND		
1. GENERAL	DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS – PLSS (SECTION, TOWNSHIIP, RANGE) WHERE AVAILABLE NE/4 SE/4, Sec. 24, T24N,R6W, Rio Arriba county, NM												
	LICENSE NO. 1664 NAME OF LICENSED DRILLER Shawn Cain Cascade Drilling L.P												
	DRILLING S		DRILLING ENDED 7-27-2023	DEPTH OF CO	MPLETED WELL (FT))	BORE HO	LE DEPTH (FT) 41			TENCOU	NTERED (FT)	· · · · · · · · · · · · · · · · · · ·
NO	COMPLETE	D WELL IS:	ARTESIAN *add Centralizer info be		E 🔽 SHALLOW	V (UNCO	ONFINED)		WATER LEV) D.	ATE STATIC 7/28/2	
ATH	DRILLING F			MUD	ADDITIVE					CHECK	IFRE IF P	ITLESS ADAI	TER IS
ORN	DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER-SPECIFY: Sonic									CHECK HERE IF PITLESS ADAPTER IS			
IN C	DEPTH (feet bgl) BORE HOLE FROM TO DIAM			CASING	MATERIAL AND GRADE	OR		ASING	1	1		CASING WALL SI THICKNESS S	
CASING INFORMATION	rkow	10	(inches)		(include each casing string, and		,	NECTION FYPE lling diameter)	INSIDE DIAM. (inches)		(inches)		SIZE (inches)
8	0	36	6		" sch 40 PVC			h Thread	2.067			.154	
ING	36	38	6	2" sc	ch 40 PVC Screen		Flus	h Thread	2.067			.154	.010
DRILLING									<u> </u>				
2. DF								· · · · ·					
					· · ·· · · · · · · · · · · · · · · · ·								
	DEPTH	(feet bgl)	BORE HOLE	LIST ANNU	LAR SEAL MATER			L PACK SIZE-	AM	OUNT		METHO	DOF
AL	FROM	то	DIAM. (inches)	*(if using Cos	RANGE BY			snacing helow)	(cub	vic feet)		PLACEM	
ERI	0	2	6			crete		STRATE PRIVIL		.5		Hand p	our
IAT	2	30	6		Port	land				5.12		Trem	ie
RN	30	35.5	6		3/8 (Chips				1		Hand p	our
ANNULAR MATERIAL	35.5	41	6		10/20 Sand					1		Hand p	our
3. AN													
	OSE INTER	NAL USE						1	0 WELL RE	ECORD &	LOG (V	ersion 09/2	2/2022)
FILE		···· ·			POD NO.		T	TRN					
LOC	OCATION WELL TAG ID NO. PAGE 1 OF 2												

	DEPTH (feet bgl)		COLOR AND TYPE OF MATERIAL ENCOUNTERED -					ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)		
	FROM	то	THICKNESS (feet)	INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)		WAT BEARI (YES /	ING?				
	0	5			Sand			Y	N		
	5	41			Sandstone			✓ Y	N	0.89	
					· · · · · · · · · · · · · · · · · · ·			Y	N		
								Y	N		
								Y	N		
н								Y	N		
WEI								Y	N		
OF								Y	N		
Log								Y	N		
BICI								Y	N		
LOC								Y	N		
GEO								Y	N		
HYDROGEOLOGIC LOG OF WELL								Y	N		
IN								Y	N		
4								Y	N		
								Y	N		
								Y	N		
								Y	N		
								Y	N		
								Y	N		
					<u> </u>			Y	N		
	METHOD USED TO ESTIMATE YIELD OF WATER-BEA				G STRATA:			OTAL ESTIM WELL YIELD		.89	
	PUMI	P 🗌 A	IR LIFT	BAILER 0	HER - SPECIFY:			WELL HELD	(gpm):		
N	WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.										
VISI	MISCELLANEOUS INFORMATION:										
TEST; RIG SUPERVISION											
C SU											
; RH											
EST	PRINT NAM	IE(S) OF D	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE SUPE	RVISION OF	WELL CONST	RUCTION OT	HER TH	AN LICENSEE	
້ະ	Brett Gresha										
URE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:										
SIGNATURE											
	Shalin Cain 8-11-23									>	
6.	SIGNATURE OF DRILLER / PRINT SIGNEE NAME DATE										
	· · · · · · · · · · · · · · · · · · ·										
	R OSE INTERI E NO.	NAL USE			POD NO.		WR-20 WELL TRN NO.	RECORD & L	.OG (Vei	rsion 09/22/2022)	
<u> </u>	CATION						TAG ID NO.			PAGE 2 OF 2	

•

APPENDIX F

Boring Logs and Well Construction Diagrams

Received by OCD: 3/20/2024 2:14:26 PM

Drilling Log

Monitoring Well MW-12

•

Project _ Location Surface E Top of Ca Hole Depi Hole Dian Drill Co. Driller _G Start Date	Rio Ar lev. 6 sing 6 th 51.4 neter 8 Cascad	riba Co 502.80 5505.2 5ft 3.25 in de ith 2023	Dunty, N DftN 5_ft Ca	North _ Water L reen: Di sing: Di Drille	192906 evel In ameter ameter Drilli er Reg. Comple	OwnerEl Paso CGP Company, LLCCOMMENTSProject Number193709649 39.728 East 1297385.749 initial \bigtriangledown 6466.3 $07/25/23$ $00:00$ Static \blacksquare 6466.72 $00:00$ Static \blacksquare 6466.72 $00:00$ Type/SizeSchedule 40/0.01 inr2 inLength31.5 ftTypeSchedule 40ing MethodsonicSand Pack10/20#WD-1210Log ByRob Malcomsonetion Date7/26/2023Checked ByS. VarsaImage: Grout Image Portland Cement Image	T	
Depth (ff)	(mdd) Old	% Recovery	Blow Count Recovery	Graphic Log	nscs	Description (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS.	Well	
- 0 - - 5 - 	0.0	100%			SM	Sand, silty, tan, loose. Sand, silty, tan/gray, loose, dry, fine-grained.		
- 10 - - 10 - 	0.0 0.0 0.0 0.0 0.0 0.0 12.6				SM	Sand, silty, clayey with depth, tan to brown, loose, dry, fine-grained.		
 	43.2 37.9 89.3 25.9 92.9 365 8.6 4.6	100%			SM	Sand, silty, clayey, tan to gray-brown, minor orange, loose to weakly cemented, dry, fine-grained, no odor.		
- 02	1.7 1.6 0.7 1.7 5.3 0.0	100% * 100%			SM	Sand, silty, gray, loose, dry, Sand, silty, clayey, gray, orange, dry, weakly cemented, fine-grained, fractured, no odor.		

Drilling Log

Monitoring Well

Page 71 of 211

MW-12 Page: 2 of 2

ocation	Rio Ai	rriba Co	ounty, I	Vew Mex	ico T	Project Number <u>193709649</u>	
Depth (ft)	DIA (mqq)	% Recovery	Blow Count Recovery	Graphic Log	nscs	Description (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS.	Well
20						Continued	
30 —	2.2 0.7 14.2				CL	Clay, sandy, gray, medium stiff, dry.	
- 35	3.2 56.1	*			CL SC SM	orange, olive, dry, loose sand.	
⊻	0.6 0.3 0.5				SM CL	Sand, silty, orange-brown, medium dense, moist. *MW-12 @ 35' Clay, sandy, orange-brown-gray, stiff.	
- 40	0.3	100%	_		SC CL	Sand, clayey, silty, orange-tan, loose to medium dense, moist, fine-grained. Clay, gray to brown-gray, stiff, non-fractured.	
-	0.8 1.4 0.5 1.1 0.5				SM	Sand, silty, clayey, orange-brown, dense, moist to wet, fine-grained, minor sandstone cobbles and coarse gravel.	
45 — -	0.5 0.0 0.0 0.0	100%	_		SM	Sand, silty, clayey, dark orange-brown-tan, loose to medium dense, wet, fine to medium-grained.	
- 50 —	0.0 0.0 0.0	100%				(Not logged)	
-		100 / 0				End of boring = 51.5' Set well at 51.5'.	
55 — - -							
- 60 -							
-							
- 65 — -							
- 70 -							

Drilling Log

Soil Boring SB-6

	•••	, , , , , , , , , , , , , , , , , , , 		Ÿ			Page: 1 of 2									
Project	Canada	Mesa #	2			Owner _ El Paso CGP Company, LLC	COMMENTS 0-5' hand-augered.									
Location Rio Arriba County, New Mexico Project Number 193709649																
Surface Elev. <u>6501.00 ft</u> North <u>1929046</u> East <u>1297389.671</u>																
Top of Casing <u>NA</u> Water Level Initial <u>√</u> Static <u>√</u>																
Hole Depth <u>40.0 ft</u> Screen: Diameter <u>NA</u> Length <u>NA</u> Type/Size <u>NA</u>																
Hole Dian			_ Ca	ising: Diar												
Drill Co.						g Method <u>Sonic</u> Sand Pack <u>NA</u>										
Driller <u>G</u>				-	-	# WD-1210 Log By Rob Malcomson										
Start Date			- K			Checked By <u>S. Varsa</u>	-									
Ber	ntonite C	hips Ӂ	∦ B∈	ntonite Gra	nules	Grout E Bentonite Pellets Sand Pack PP Sand Pack										
Depth (ft)	(mqq) DIA	% Recovery	Blow Count Recovery	Graphic Log	NSCS	Description (Color, Moisture, Texture, Structure, O Geologic Descriptions are Based on the USC										
- 0 -	0.0					Sand, silty, brown, tan, loose to medium dense, dry, fine to	medium-grained.									
	0.0					- · · · · · · · · · · · · · · · · · · ·	-									
L -	0.0															
	0.0	100%														
	0.0				SM											
	0.0															
- 5 -	-															
	0.2															
	0.1															
L _	0.1					Sand, silty, tan/gray, dry, weakly cemented becoming stror very-fine-grained with depth.	iger with depth, line to									
	0.4															
	0.1															
- 10 -	0.1	100%	100%													
						SM										
	0.1															
	0.1															
	0.5															
	3.6	*														
- 15 -	0.4					Sand, silty, tan to gray, some dark orange, loose with depti	n, dry, weakly cemented,									
	-					fine-grained, some caliche 17-17.5'. *SB-6 @ 15'										
	0.3				SM											
 - 20	0.3															
	0.2															
	0.3															
- 20 -	0.4	100%														
				SN		Sand, silty, thin gray and olive clayey zones at 22' and 24.5', tan-gray, dry, weakly to moderately cemented.										
	0.2					,										
	0.4				SM											
	0.1															
	0.3															
- 25 -	1			· · · · · · · · · · · ·		Continued Next Page										

Drilling Log

Soil Boring SB-6

Page 73 of 211

•

Page: 2 of 2

cation	Rio Ar	riba Cou	inty, N	Vew Mex	ico	Project Number <u>193709649</u>
Depth (ft)	(mqq)	% Recovery	Blow Count Recovery	Graphic Log	NSCS	Description (Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS.
						Continued
25 –	0.2		П	[]]]]]]		Clay, sandy, to clayey sand, olive-gray, minor orange, medium stiff, dry.
-	-					
_	0.3					
_	0.1				CL SC	
	0.1					
-	0.6					
30 -	0.0	100%				Sand, clayey, orange-brown to yellow-brown, dry, loose to medium dense,
-	-					fine-grained, minor sandstone fragments.
_	0.0					
	0.0				sc	
-	0.0					
-		*				
35 -	0.8			[]]]]		Sand alayou gray brown maint madium dance fine to madium grained
_	0.6					Sand, clayey, gray-brown, moist, medium dense, fine to medium-grained. *SB-6 @ 35'
	1.6				sc	
-	0.1	100%				
-	0.1	100%				Clay, sandy, brown-gray, moist, stiff, non-fractured, moderate plasticity.
-	-				CL CH	
40 -	0.1				On	
40						
-						
-	-					End of boring = 40'.
-						
_						
45 -						
-						
-	-					
_						
-	1					
50 -						
-	-					
_						
_						
-	1					
-	-					
55 —						
-						
-	1					
-						

Drilling Log

Monitoring Well **TW-1**

•

		·				Page: 1 of 2		
Project (Canada	Mesa	a #2			Owner El Paso CGP Company, LLC COMMENTS		
Location				Vew Mex	ico	Project Number 193709649		
Surface E	lev. 6	502.5	0 ft	North	19290	62.387 East 1297390.671		
Top of Ca	sing _	6505.0	01 ft	Water L	evel Ir	itial $\sqrt{2}_{0000}$ 6466.78 $\frac{07/27/23}{00:00}$ Static $\sqrt{2}_{000}$ 6466.72 $\frac{08/26/23}{00:00}$		
Hole Dept	h <u>40.</u>	Oft	Sc	reen: Dia	amete	r <u>2 in</u> Length <u>2.0 ft</u> Type/Size Schedule 40/0.01 in		
Hole Diam	neter _a	8.25 in		asing: Dia				
Drill Co.	Casca	de			Drill	ing Method sonic Sand Pack 10/20		
Driller G	reg Sm	ith		Drille	r Reg	# WD-1210 Log By Rob Malcomson		
Start Date	7/27/2	2023				etion Date <u>7/27/2023</u> Checked By <u>S. Varsa</u>		
Ber	ntonite G	rout	В	entonite G	ranuals	Grout Portland Cement Sand Pack		
		ŗŊ	nt /			Description		5
Depth (ft)	(mqq) DID	Recovery	Blow Count Recovery	Graphic Log	nscs		/ell	Completion
l °	ਰ ਕੁ	% Re	Rec	Gra	ŝ	(Color, Moisture, Texture, Structure, Odor)	5	l l
		~	ш.			Geologic Descriptions are Based on the USCS.		<u> </u>
								┓
- 0 -				시작된		Sand, silty, tan, brown, loose to dense, dry.		
								間
					SM		Ē	囙
- 5 -								
L _								目
								間
		4000/					ÊЩ.	囙
	0.7	100%	1 1			Sand, silty, gray-brown, loose/weakly cemented, dry, fine-grained.	EIII	
- 10 -	1.4							
	0.8				SM			테
	0.8				SIVI		Ē	囙
	1.2							
							Ē	間
	1.1							間
15	2.4			· · · · · · · · ·		Weathered sandstone, orange/yellow-brown, gray, moderately cemented, dry, fine to medium-grained.	則	囙
15	0.9							LI.
	1.2						目	目
				· · · · · · · ·	SW			間
	1.8	100%		· · · · · · · · ·			剾	間
<u>≥</u>	1.2						Ē	Ê
	2.0						目	目
ġ ⊢ 20 −	1.0				CL	Clay, sandy, gray, dry.	<u>ا</u>	圓
					~-	Sand, silty, gray and orange-brown, loose/weakly cemented, dry,	EU.	間
	4.3				SM	fine-grained.	Ē	囙
	3.2					Sand, clayey, gray and orange to gray with depth, weakly cemented, dry.	L.	罰
	0.7				SC		匚	間
10	1.6	1000					F <u>I</u>	間
፼─ 25 ─	-	100%		/////			,=	
51	1		1	I		Communed Next Fage	1	

Project Canada Mesa #2

Drilling Log

Monitoring Well

Owner El Paso CGP Company, LLC

Page: 2 of 2

TW-1

th O	ر بو	overy	count /ery	hic B	s	Description	_	etion
Depth (ft)	(wdd) OId	% Recovery	Blow Count Recovery	Graphic Log	nscs	(Color, Moisture, Texture, Structure, Odor) Geologic Descriptions are Based on the USCS.	Ň	Completion
25 —				77100		Continued		
	0.8 0.7					Sand, silty, clayey, orange-brown and gray-brown, loose, dry, fine to medium-grained.		
-	0.7	100%			SC SM			Ë
_	0.7							
30 —	0.7 4.0				CL	Clay, gray to dark gray, medium stiff to stiff, dry, Sand, silty, tan, thin light tan/white layers, loose, dry, fine-grained.		X
_	3.1				SM			X
_	8.2					Sand, silty, clayey to sandy clay, orange/yellow-brown, loose, dry *TW-1 @ 33'		
_	3.1 1.6				SC SM			XXXXX
35 – ⊻⊻_	830				SM	Sand, silty, gray, loose to medium dense, wet, fine to medium-grained, odor and staining.		Č
_	8.1				SC SM	Sand, silty, clayey, yellow-brown, medium dense, moist to wet, fine to medium-grained, no odor.		
_	2.9 1.0	100% *	-		CL	Clay, gray and brown, minor orange mottling, stiff, dry, wet from 38-38.5', no odor, some iron nodules.		
- 40 —	4.1	100%					Ę	
_						End of boring = 40'. Well set at 40'		
_								
45 —								
_								
_								
- 50 —								
-								
_								
-								
55 —								
_								

.

APPENDIX G

Waste Disposal Documentation

E	env	irc	otech		Bill c	of Lac	ding	MANIFES GENERA POINT O TRANSPO	T# 784 TOR Kinc FORIGIN E	76 Der mon ELPASO TVirotes	QQA pitsites th 14073-0073
PHONE	: (505) 632-0615 •	5796	J.S. HIGHWAY 64 •	FARMING	TON, NE	W MEXICO	87401	DATE 🕐	3/31/2=	3_ JOB #_	14073-0073
LOAD			COMPLETE DESCRIPTI	ON OF SHIF	IIPMENT				/ TRANSPO	ORTING COMPA	NY
NO.	DESTINATION		MATERIAL	GRID	YDS	BBLS	DRUMS	TKT#	TRK#	TIME	DRIVER SIGNATURE
1	BF	7	ankbottoms						991	1130	by Cary R
						1		7			
						2		d.			
											5 - x
RESULT	S CHLORIDE TEST	l	LANDFARM EMPLOYEE	All	· fals	mlo	n	NOTES			
	CHLORIDE TEST	RIDE TEST 🛛 Soil w/ Debris 🗆 After Hours//Veekend Receival 🗆 Scrape Out 🗆 Wash									
Pass	CHLORIDE TEST PAINT FILTER TEST	١	By signing as the dri certify the material is into the load. Landfar	s from the a	above ment	tioned Gene	rator/Point o	f Origin and th	at no addition	nal material has	I to or tampered with. I s been added or mixed

Generator Onsite Contact

Phone _

Signatures required prior to distribution of the legal document. DISTRIBUTION: White - Company Records / Billing Yellow - Customer Pink - LF Copy

Benvi	otech	BOL# 78476	
CHL	ORIDE TESTING / F	PAINT FILTER TES	STING
DATE 03	21/23 TIME	1130	Attach test strip here
CUSTOMER	Kinder Morg	an	8
SITE	ELPOSO pit	Sites	
DRIVER	by Gary Robinson	·	9
SAMPLE	Soil Straight	With Dirt	8
CHLORIDE TEST	~ 2 8/ mg/Kg	·	7.
ACCEPTED	YES X	NO	-5-
PAINT FILTER TEST	Time started _//30	Time completed 1142	4-
PASS	YES +	NO	3-
SAMPLER/ANALYST	Cary Kol	inson	
5796 US Hwy 64 Farmington N	M 874011 Ph (505 622 0015 5- (800) 200 4070		

5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 info@envirotech-inc.com envirotech-inc.com *Released to Imaging: 5/2/2024 4:22:08 PM*

	envi (505) 632-0615 • 5					of Lac	•	GENERA POINT C TRANSP	T # 794 TOR KIN FORIGIN B ORTER E	der M io Viste uvirote	
.OAD	(303) 032-0013 - 3	COMPLETE DESCRIPT				TRANSPORTING COMPANY					
NO.	DESTINATION		MATERIAL	GRID	YDS	BBLS	DRUMS	TKT#	TRK#	TIME	DRIVER SIGNATURE
1	ßF		wtamivated Water				1		992/ /105	1550	Aust Fonts
							1				
<u> </u>										SC	NNNED)
SULT			LANDFARM			<u> </u>		NOTE	c		
50LI	CHLORIDE TEST	1	EMPLOYEE	Imelo	×11	/		From	Sunchian E	wer Plank	Blanco N.Flare, a
• 1	CHLORIDE TEST		Soil w/ Debris	er Hours/Wee	kend Receiv	al 🗆 Scrape (Out .□ Wash C	Dut	mumerous,	or sites.	
_	CHLORIDE TEST		By signing as the dr	iver/transp	orter, I cert	ify the mate	rial hauled fi	rom the above	location has n	ot been adde	d to or tampered with.
55	PAINT FILTER TEST	1	certify the material into the load. Landfa	is from the rm employ	above mer ee signatur	ntioned Gene e is certifica	erator/Point of the a	of Origin and t bove material	that no additior being received	al material ha	is been added or mixe cordingly.
	or Onsite Contact res required prior to d			mont			Beneral / f			e(<u>515)</u>	557-0109
าสเน	res requirea prior to a	ISUIDU	aon oi me iegai docu	ment. D	ISTRIBUTION:	wnite - Con	pany Records / I	Billing Yellow - (Customer Pink - L	-r cohà	SAN JUAN PRINTING 2021 407

Cenvir	rotech	להווחר יומ	
Sentin	oreen	BOL# 79427	
CHL	ORIDE TESTING / PA	AINT FILTER TES	TING
DATE 5/22	2023	1550	Attach test strip here
CUSTOMER	Kinder Morgan		,
SITE	Rio Vista Comp	Station Blanco N	Piter B
DRIVER	-Austa Sale		SIFES
SAMPLE	Soil Straight W	Vith Dirt	0
CHLORIDE TEST	-28/ mg/Kg		6
ACCEPTED	YES	NO	
PAINT FILTER TEST	「 Time started <u>1550</u>	Time completed /////	4
PASS	YES	NO	2
SAMPLER/ANALYST	Mande Tal		

5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 info@envirotech-inc.com

eived by	OCD: 3/20/2024 2:14:2	6 PM		MANIFEST # 80398				11					
C	う envi	rotech		Bill o	flac	lina	MAI	NIFEST		aca			
F			Bill of Lading					POINT OF ORIGIN CANAda Mesa#Z					
									RANSPORTER RILLAY				
PHONE	:: (505) 632-0615 • 57	96 U.S. HIGHWAY 64 •	FARMING	TON, NEV	W MEXICO	87401		TE_Ø		23 JOB # [1073-0078		
LOAD		COMPLETE DESCRIPT	ON OF SHIP	PMENT					TRANSPOR	TING COMPA	NY		
NO.	DESTINATION	MATERIAL	GRID	YDS	BBLS	DRUMS	ТКТ	T#	TRK#	TIME	DRIVER SIGNATURE		
	BBF2	CUN't Soil			25				17012	- 1230	-70-		
	BF	Hydrovoc Conitsoil Washout by Riley			5				17012 17012	1230	TO .		
					30				, , , , ,	,	C		
RESULT	S	LANDFARM	1.					NOTES					
-281	CHLORIDE TEST	EMPLOYEE	Duy	1fdl	Im.		-						
	CHLORIDE TEST 🛛 Soil w/ Debris 🗋 After Hours/Weekend Receival 🗆 Scrape Out 🗆 Wash									*			
0	CHLORIDE TEST										I to or tampered with. I		
lass	PAINT FILTER TEST	PAINT FILTER TEST Certify the material is from the above mentioned Generator/Point of Origin and that no additional material has been added or mixed into the load. Landfarm employee signature is certification of the above material being received and placed accordingly.											

Generator Onsite Contact

Phone

Signatures required prior to distribution of the legal document. DISTRIBUTION: White - Company Records / Billing Yellow - Customer Pink - LF Copy

Benvir	rotech	BOL# 80398	•
CHL	ORIDE TESTING	/ PAINT FILTER TE	STING
DATE 07/ -	2 <u>5/23</u> TIM	E 1230	Attach test strip here
CUSTOMER	EL POSO		G
SITE	Canada mesi	a #2	
DRIVER	1600		9
SAMPLE	Soil Straight	With Dirt	8
CHLORIDE TEST	- <u>28/ mg/Kg</u>		
ACCEPTED	YES X	NO	-5
PAINT FILTER TEST	T Time started <u>1230</u>	Time completed 1442	4
PASS	YES X	NO	-2
SAMPLER/ANALYST	- Cary folm	20	3-
5700 HO H. 04 5		per la companya de la	

5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 info@envirotech-inc.com envirotech-inc.com *Released to Imaging: 5/2/2024 4:22:08 PM*

Released to Imaging: 5/2/2024 4:22:08 PM	PHONE		96 U.S. HIGHWAY 64	FARMING	TON, NE	of Lac		MANIFEST # 80485 GENERATOR HEAVEST EL PASO POINT OF ORIGIN CANADA MESA # 2 TRANSPORTER ENVIRONMESA # 2 DATE 07/28/23 JOB # 14073 -0031 TRANSPORTING COMPANY			
12/2	NO.	DESTINATION	MATERIAL	GRID YDS BBLS			DRUMS	TKT# TRK# TIME DRIVER SIGNATU			
024 4:22:0	l	LFZ-5		E-38	L				978	0950	DRIVER SIGNATORE
98 PM	2	BF	Con't Soil	-			1		978	0900	A
					-4		1				
	RESULT	S	LANDFARM	. 16	2.1			NOTE	S ,	1	
	272	CHLORIDE TEST	EMPLOYEE	met a	2//			6	BBE.D	SOIL DO	les_
	272	CHLORIDE TEST	Soil w/ Debris 🗆 Afte	er Hours/Wee	kend Receiva	I 🗆 Scrape (Dut 🗆 Wash (Dut 1	BBT)	Men 1's	
	5 50	CHLORIDE TEST							location has n	ot been added	d to or tampered with.
	Pass	PAINT FILTER TEST	- cortify the motorial	s from the	above ment	ioned Gene	rator/Point	of Origin and t	hat no addition	al material ha	s been added or mixed

Generator Onsite Contact

Phone

Signatures required prior to distribution of the legal document. DISTRIBUTION: White - Company Records / Billing Yellow - Customer Pink - LF Copy

Benvirotech	BOL# \$0485
CHLORIDE TESTING / P	AINT FILTER TESTING
DATE 07/28/23 TIME	0950 Attach test strip here
CUSTOMER <u>ELPaso</u>	
SITE <u>Canada meso</u>	5#2
DRIVER ~ Patrich Mesa	
SAMPLE Soil Straight	With Dirt
CHLORIDE TEST - 272 mg/Kg	
ACCEPTED YES	NO5
PAINT FILTER TEST Time started 0950	Time completed //////
PASS YES	7 NO 2
SAMPLER/ANALYST	1
5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879	Ex (505) 632-1865 info@envirotech inc.com onvirotech inc.com

5/96 US Hwy 64, Farmington, NM 87401|| Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865|| info@envirotech-inc.com envirotech-inc.com Released to Imaging: 5/2/2024 4:22:08 PM

Benvir	rotech	BOL# 80485	
CHL	ORIDE TESTING) / PAINT FILTER TE	STING
DATE 07	28/22 TIM	NE 0950	Attach test strip here
CUSTOMER	Harvest	ELPASO	C
SITE	canada m	1830 # 2	AB
DRIVER	< Patera mesq	A	9
SAMPLE	Soil Straight	With Dirt	8
CHLORIDE TEST	<i>-272</i> mg/Kg		6
ACCEPTED	YES	NO	5
PAINT FILTER TEST	Time started <u>0950</u>	Time completed /000	4
PASS	YES	NO	2-
SAMPLER/ANALYST	_//melo /d	SIL	1.
5796 US Hwy 64 Earmington M	M 974011 DE (505) 000 0045 E (00		

5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 info@envirotech-inc.com envirotech-inc.com *Released to Imaging: 5/2/2024 4:22:08 PM*

Bill of Lading

MANIFEST # 80964	
GENERATOR EL Paso	
POINT OF ORIGIN James F Bell #15	
TRANSPORTER ENVIROTECH	
DATE 8/26/2023 JOB # 14073-0080	
	•

Page 86 of 211

PHONE: (505) 632-0615 • 5796 U.S. HIGHWAY 64 • FARMINGTON, NEW MEXICO 87401

LOAD		COMPLETE DESCRIPTION OF SHIPMENT								TRANSPORTING COMPANY			
NO.	DESTINATION		MATERIAL	GRID	YDS	BBLS	DRUMS	TK	T#	TRK#	TIME	DRIVER SIGNATURE	
1	BF	Ce	Water		-	2				992	0750	h	
						12				W			
						2. 1	1	Bill 2	hrs	callout			
RESULT	S		LANDFARM	11	1 ×	1//			NOTEC		0.004	00	
-272	CHLORIDE TEST)	EMPLOYEE	Klone	a			ŀ	Love	. & OUT	@ 090	0	
	CHLORIDE TEST		🗆 Soil w/ Debris 🗙 Afte										
	CHLORIDE TEST		By signing as the dri	iver/transpo	rter, / certi	fy the mater	rial hauled fi	om the	above I	ocation has r	ot been added	d to or tampered with.	
Pass	PAINT FILTER TEST	1	into the load. Landfa	s from the a	e signature	is certificat	tion of the al	of Origin bove ma	and th	at no additior eing received	and placed ac	s been added or mixed cordingly.	

Generator Onsite Contact

Phone

Signatures required prior to distribution of the legal document. DISTRIBUTION: White - Company Records / Billing Yellow - Customer Pink - LF Copy

Benvirotech	BOL# <u>8096 4</u>
CHLORIDE TESTING / P	PAINT FILTER TESTING
DATE 8/26/2023 TIME	0750 Attach test strip here
CUSTOMER <u>EL Paso</u>	2
SITE James F Bell	#IE
DRIVER Colton John	-9
SAMPLE Soil Straight	With Dirt
CHLORIDE TEST - 272 mg/Kg	6
ACCEPTED YES	NO5
PAINT FILTER TEST Time started 0760	Time completed DEDD
PASS YES	190 2.
SAMPLER/ANALYST	S//

5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 info@envirotech-inc.com envirotech-inc.com *Released to Imaging:* 5/2/2024 4:22:08 PM

Page	88	of	2	1	1

e	envirotech	
---	------------	--

Bill of Lading

MANIFEST #	80981		
GENERATOR	ELPASO		
POINT OF OR	IGIN Canada	mesq	#2
TRANSPORTE	REprint	ech '	
DATE OCI	10/22 100 "	14077	0070

PHONE	E: (505) 632-0615 •	5796	U.S. HIGHWAY 64 •	FARMING	TON, NE	N MEXICC	87401	DATE 💋	\$128/2		14073-0078
LOAD			COMPLETE DESCRIPTI	ON OF SHIP	PMENT				TRANSPO	RTING COMPA	NY
NO.	DESTINATION		MATERIAL	GRID	YDS	BBLS	DRUMS	TKT#	TRK#	TIME	DRIVER SIGNATURE
	BF	T	antbottoms			9	-	<u>^</u>	958	1130	Austin Inte
						19					
											-
	-										
RESULT	'S		LANDFARM 1		0		II	NOTES	5		1
-272	CHLORIDE TEST	1	EMPLOYEE	PUL	IKA	lins	BN				
	CHLORIDE TEST		□ Soil w/ Debris □ Afte	er Hours/Wee	kend Receiva	I Scrape C	Dut 🗆 Wash C	Dut			
	CHLORIDE TEST										d to or tampered with.
Pass	PAINT FILTER TEST	1	into the load. Landfa								s been added or mixe cordingly.

Generator Onsite Contact _

Phone

Signatures required prior to distribution of the legal document. DISTRIBUTION: White - Company Records / Billing Yellow - Customer Pink - LF Copy

CHLORIDE TESTING / PAINT FILTER TESTING

DATE 8/28	(23	TIME	1130	Attach test strip here
CUSTOMER	Kinder-Mo	rgan ELPASO		
SITE	Canada	Mesa #2		ÅB
DRIVER	Vature	- Just		9
SAMPLE	Soil	Straight	With Dirt	8
CHLORIDE TEST	-27	Z mg/Kg		6
ACCEPTED	YES	<u>X</u>	NO	5
PAINT FILTER TEST	Time started	1130	Time completed 1140	4
PASS	YES	_X	NO	2
SAMPLER/ANALYST	Can	folines	2	1-

5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 info@envirotech-inc.com envirotech-inc.com *Released to Imaging: 5/2/2024 4:22:08 PM*

- 73		00		C ~	-
- 13	aaa		01		
	age	711			
_	o -		~ .	_	

E	3 env	iro	otech		Bill o	of Lac	ding	GENERA	ST # 825 ATOR <u>EL</u> OF ORIGIN S ORTER E	ree the	ech
PHONE	E: (505) 632-0615 •	5796	U.S. HIGHWAY 64 •			W MEXICO	0 87401	DATE _	1/16/2	JOB #	14073-0087
LOAD			COMPLETE DESCRIPTI		1	1	T			RTING COMPA	1
NO.	DESTINATION		MATERIAL	GRID	YDS	BBLS	DRUMS	TKT#	TRK#	TIME	DRIVER SIGNATURE
	BF	7	ank bottomy				-	_	725	1430	Mala
						1			10		
				~		/					
RESULT	S CHLORIDE TEST	1	LANDFARM EMPLOYEE	C	MC			NOTE	S		
L1L	CHLORIDE TEST		🗆 Soil w/ Debris 🗆 Afte	er Hours/Wee	ekend Receiva	al 🗆 Scrape (Dut 🗆 Wash O	ut			
	CHLORIDE TEST		By signing as the dri	ver/transpo	orter, I certi	ify the mate	rial hauled fro	om the above			d to or tampered with. I
Pass	PAINT FILTER TEST	1	certify the material i i into the load. Landfa								as been added or mixed ccordingly.

Generator Onsite Contact

Phone

Signatures required prior to distribution of the legal document. DISTRIBUTION: White - Company Records / Billing Yellow - Customer Pink - LF Copy

Benvir	rotech BOL#_ <u>8257</u> 7	
CHL	ORIDE TESTING / PAINT FILTER TEST	ING
DATE _1(/16	2 <u>2</u> 3 TIME 1430 A	Attach test strip here
CUSTOMER	FLPaso	Q
SITE	See Bol 82577	P E
DRIVER	Steven by Comple	9
SAMPLE	Soil Straight With Dirt	8
CHLORIDE TEST	-272 mg/Kg	
ACCEPTED	YES NO	- 5
PAINT FILTER TEST	T Time started 1430 Time completed 1441	4
PASS	YES NO	2
SAMPLER/ANALYST	r_C-pl	1

5796 US Hwy 64, Farmington, NM 87401 Ph (505) 632-0615 Fr (800) 362-1879 Fx (505) 632-1865 info@envirotech-inc.com envirotech-inc.com *Released to Imaging: 5/2/2024 4:22:08 PM*

APPENDIX H

AcuVac MDPE Report

December 20, 2023

Mr. Stephen Varsa Supervising Hydrogeologist Stantec Consulting Services, Inc. 11311 Aurora Avenue Des Moines, IA 50322

Dear Steve:

Re: Canada Mesa, Rio Arriba County, NM (Event #3)

At your request, AcuVac Remediation, LLC (AcuVac) performed one 8.0-hour combined Soil Vapor Extraction (SVE)/Mobile Dual Phase Extraction (MDPE) event on well MW-9 at the above referenced site (Site). SVE was performed through event hour 1.5, at which point MDPE was started. The following is the report and a copy of the operating data collected during Event #3. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

The purpose of the MDPE event was to enhance recovery of petroleum hydrocarbon impacts present at the Site through the removal of both Phase Separated Hydrocarbons (PSH) and vapor phase petroleum hydrocarbons. PSH is referred to as Light Non-Aqueous Phase Liquids (LNAPL). The source of the petroleum hydrocarbon impacts is a historical release of natural gas condensate.

Wells Utilized for SVE / MDPE Event #3												
Well Number	Diameter (in)	Total Depth (ft)	Screen Interval (ft bgs)	Distance from Extraction Well (ft)	Influence Recorded							
Extraction Well												
MW-9	2.0	45.00	25.00 - 45.00	-	Hydraulic & Vacuum							
Monitoring F	Points											
MW-12	2.0	51.50	31.50 - 51.50	23.0	Vacuum							
TW-1	2.0	40.00	38.00 - 40.00	24.6	Vacuum							
MW-2R	2.0	45.40	25.40- 45.40	29.9	Vacuum							
MW-11	2.0	47.00	27.00- 47.00	32.0	Vacuum							
MW-10	2.0	57.00	37.00- 57.00	32.2	Vacuum							

All wells utilized in Event #3 and their related data are outlined in the table below.

OBJECTIVES

The objectives of the MDPE event were to:

- Maximize the removal of liquid and vapor phase petroleum hydrocarbons from the groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area to an induced vacuum.
- Increase the liquid and vapor phase petroleum hydrocarbon specific yields with high induced vacuums.
- Create an induced hydraulic gradient to gain hydraulic control of the area surrounding the extraction well during the event period.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE/MDPE testing. No third-party equipment was utilized. The testing at the Site was conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The following table lists equipment and instrumentation employed during the testing and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac						
Measurement Equipment	Data Element					
Extraction Well Induced Vacuum and Flow						
Dwyer Magnehelic Gauges	Extraction Well Vacuum					
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extractions Well Vapor Flow					
Observation Wells						
Dwyer Digital Manometer	Vacuum / Pressure Influence					
Extraction Well Vapor Monitoring						
V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection					
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration					
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content					
NAPL Thickness (if present)						
Solinst Interface Probe Model 122	Depth to NAPL and Depth to Groundwater					
Liquid Recovery						
Totalizer Flow Meter	Liquid Flow and Total Volume					
Grundfos Red-Flo 2 Total Fluids Pump	In-Well Pumping					
Grundfos Variable Frequency Drive	Pump Speed and Other Diagnostics					
Groundwater Depression / Upwelling						
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells					
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure					
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls					
Atmospheric Conditions						
Testo Model 511	Relative and Absolute Barometric Pressure					

ACUVAC MOBILE DUAL PHASE SYSTEM

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine.

Groundwater extraction was provided by an in-well, Redi-Flo 2 total fluids pump that discharged through a total flow meter. The discharge line from the volume meter was then connected to the stand-by tank. A data logger (pressure transducer) was used to monitor the groundwater level relative to the in-well pump inlet. This enabled the AcuVac team to upwell the groundwater and then pump the well nearly dry to maximize the groundwater recovery. The electrical power for the groundwater pump was supplied from a 120v Honda generator. The groundwater flow rate was adjusted to maintain a target level. An interface meter was used to collect depth to groundwater and depth to LNAPL measurements. Groundwater samples were taken periodically in a graduated cylinder to determine the average LNAPL percentage being recovered.

The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #3

The Recovery Summary Table below lists the total liquid and LNAPL recovery data for Event #3.

Petroleum Hydrocarbon Recovery Summary Event #3							
Event Number Event #3							
Event Date		08/27/2023					
Event Hours	Units	8.0					
Total Liquid Recovery	gals	435					
Petroleum Hydrocarbon Recov	ery						
Liquid	gals	30.5					
Vapor	gals	0.5					
Total	gals	30.9					
Gallons/Hour		3.87					

DISCUSSION OF RESULTS OF MDPE EVENT #3

- At the start of the event, SVE only was performed to determine the extent, if any, the vacuum would mound the liquid level in the well. The induced vacuum was on an increasing trend making it difficult to determine the mounding. However, the well vapor flow continued to increase with the vacuum, indication that the well screen was not being occluded by any liquid mounding in the well.
- Total influent vapor hydrocarbons burned as IC engine fuel in the Petroleum Hydrocarbon Recovery Summary Table above is based on the HORIBA[®] data recorded in the Influent Vapor Data Table below. Influent vapor samples were obtained 30 minutes after the start of the event and every hour thereafter until the conclusion the event. All samples were tested on-site by AcuVac.

Influent Vapor Data Extraction Well MW-9						
Event Number		Event #3				
Event Date		08/27/2023				
Event Hours	Units	8.0				
Data Element						
TPH- Maximum	ppmv	1,680				
TPH- Average	ppmv	1,403				
TPH- Minimum	ppmv	1,122				
TPH- Initial	ppmv	1,126				
TPH- Ending	ppmv	1,600				
CO ₂	%	4.28				
O ₂	%	15.24				
H₂S	ppm	0				

• The extraction well induced vacuum and well vapor flow for Event #3 are presented in the table below.

Well Vacuum and Well Vapor Flow Extraction Well MW-9							
Event Number		Event #3					
Event Date		08/27/2023					
Event Hours	Units	8.0					
Data Element	Data Element						
Well Vacuum- Maximum	"H₂O	15.00					
Well Vacuum- Average	"H₂O	13.88					
Well Vacuum- Minimum	"H₂O	5.00					
Well Vapor Flow- Maximum	scfm	21.55					
Well Vapor Flow- Average	scfm	20.02					
Well Vapor Flow- Minimum	scfm	7.90					

• The groundwater pump inlet was initially set at approximately 41.00 ft BTOC. The average groundwater pump rate was 0.85 gpm, and the maximum groundwater pump rate was 1.53 gpm.

Total Liquids Pump Data Extraction Well MW-9					
Event Number		Event #3			
Event Date	08/27/2023				
Event Hours	Units	8.0			
Data Element					
Maximum GW Pump Rate	gpm	1.53			
Average GW Pump Rate	gpm	0.85			

• Depth to groundwater, depth to LNAPL, and LNAPL thickness at the start and end of Event #3 are presented in the table below.

LNAPL Thickness Data Well MW-9						
Event Number		Event #3				
Event Date		08/27/2023				
Event Hours	Units	8.0				
Event Start						
Depth to Groundwater	Ft BTOC	35.30				
Depth to LNAPL	Ft BTOC	35.14				
LNAPL Thickness	ft	0.16				
Hydro Equivalent	Ft BTOC	35.18				
Event Conclusion						
Depth to Groundwater	Ft BTOC	35.95				
Depth to LNAPL	Ft BTOC	35.60				
LNAPL Thickness	ft	0.35				
Hydro Equivalent	Ft BTOC	35.69				

VACUUM INFLUENCE ON MONITORING POINTS- EVENT #3

Graph 1A: Monitoring Point Vacuum Influence and Graph 1B: Percentage of Vacuum Influence represents the influence of the induced vacuum on well MW-9 on the monitoring points during Event #3. During the event, the vacuum influence on the monitoring points was recorded every 30 minutes.

The graphical representations of Event #3 are shown below and on the following page.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with hexane, carbon monoxide and carbon dioxide. The formula used to calculate the emission rate is:

```
ER = TPH (ppmv) x MW (hexane) x Flow Rate (scfm) x 1.58E<sup>-7</sup> (<u>min)(lb mole</u>) = lbs/hr
(hr)(ppmv)(ft<sup>3</sup>)
```

INFORMATION INCLUDED WITH REPORT

- Table #1A Summary Well Data- Well MW-9
- Table #1B Summary Recovery Data- Well MW-9
- Recorded Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely, ACUVAC REMEDIATION, LLC

Pauland

Paul D. Faucher President

Summary Well Data Table #1

Event		3
EXTRACTION WELL ID		MW-9
Event Date		08/27/2023
Current Event Hours		8.0
Total Event Hours		8.0
Total Depth	ft BGS	45.00
Well Screen	ft BGS	25.0 - 50.0
Well Diameter	in	2.0
Extraction Well Data		
Depth To Groundwater - Static - Start Event	ft BTOC	35.30
Depth To LNAPL - Static - Start Event	ft BTOC	35.14
LNAPL	ft	0.16
Hydro-Equivalent- Beginning	ft BTOC	35.18
Depth To Groundwater - End Event	ft BTOC	35.95
Depth To LNAPL - End Event	ft BTOC	35.60
LNAPL	ft	0.35
Hydro-Equivalent- Ending	ft BTOC	35.69
Extraction Well Data		
Maximum Extraction Well Vacuum	InH ₂ O	15.00
Average Extraction Well Vacuum	InH ₂ O	13.88
Minimum Extraction Well Vacuum	InH ₂ O	5.00
Maximum Extraction Well Vapor Flow	scfm	21.55
Average Extraction Well Vapor Flow	scfm	20.02
Minimum Extraction Well Vapor Flow	scfm	7.90
Maximum GW / LNAPL Pump Rate	gpm	1.53
Average GW / LNAPL Pump Rate	gpm	0.85
Influent Data		
Maximum TPH	ppmv	1,680
Average TPH	ppmv	1,403
Minimum TPH	ppmv	1,122
Initial TPH	ppmv	1,126
Final TPH	ppmv	1,600
Average CO ₂	%	4.28
Average O ₂	%	15.24
Average H ₂ S	ppm	0

.

Summary Recovery Data Table #2

Event		3
WELL NO.	MW-9	
Recovery Data- Current Event		
Total Liquid Volume Recovered	gals	435
Total Liquid LNAPL Recovered	gals	30.5
Total Liquid LNAPL Recovered / Total Liquid	%	7.0
Total Liquid LNAPL Recovered / Total LNAPL	%	98.4
Total Vapor LNAPL Recovered	gals	0.5
Total Vapor LNAPL Recovered / Total LNAPL	%	1.6
Total Vapor and Liquid LNAPL Recovered	gals	40.0
Average LNAPL Recovery	gals/hr	3.87
Total LNAPL Recovered	lbs	217
Total Volume of Well Vapors	cu. ft	9,610
Recovery Data- Cumulative		
Total Liquid Volume Recovered	gals	435
Total Liquid LNAPL Recovered	gals	30.5
Total Vapor LNAPL Recovered	gals	0.5
Total Vapor and Liquid LNAPL Recovered	gals	30.9
Average LNAPL Recovery	gals/hr	3.87
Total LNAPL Recovered	lbs	217
Total Volume of Well Vapors	cu. ft	9,610

•			DATA - EVEN	NI# >	PAGE #	-		IDP SYSTE
Loca	tion: Canada Mesa, R	lio Arriba	County, NM	1	Pro	oject Manag ∣	ers: Hendle	y / George
Wel	1# MW-9	Date Time Hr Meter	07145	0815	0845	0915	0945	1015
	Engine Speed	RPM	1800	1000	1800	1800	1800	1800
NER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	130	140	140	140	140	150
ENGINE / BLOWER	Alternator	Volts	/3	13	13	13	13	13
NGI	Intake Vacuum	"Hg	16	16	16	10	16	16
ш	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H ₂ O	5	9	12	15	15	15
III	Extraction Well Flow	scfm	7.90	13.95	18.19	21.55	21.51	2151
M / A	Well Flow Ref Number		9	16	21	25	25	25
cuu	Dilution Air	cfh	0	0	0	0	0	0
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	64	64	66	66	68	68
HERI	Groundwater Temp	°F		-	-	-	-	-
OSPI	Air Temp	°F	70	72	74	75	78	29
ATM	Barometric Pressure	"Hg	29.68	29.68	29,68	29,70	29.71	29,72
	Absolute Pressure	"Hg	23.96	23.96	23.96	2398	24,00	24.00
	ТРН	ppmv		1126		1122	-	1330
IENT	CO ₂	%	-	5,36	-	4.78	-	4.32
VAPOR / INFLUENT	O ₂	%	-	13.7	-	14.5	1	15.2
-=	H ₂ S	ppm	_	-	-	-	-	~
NOTES	Arrie e site : Step cutil og	Failgche 915 - 5	Sakety J	meetig, 2 @ 091	Event 5.	sht c	0745,	SUE
	Totalizer 18/0	🤣 gals	18100	18100	18100	18100	18/24	18146
۲. ۲	Pump Rate	gals/min	0	0	0	0,80	0.73	. 03
RECOVERY	Total Volume	gals	-	-	-	-	24	46
REC	NAPL	% Vol					7%	7%
	NAPL	Gals					1.68	154
	Data Logger Head	ft	-	_	-	-	_	_
	GW Depression	ft	-	-	-	_	~	_
"[Extraction Well	DTNAPL						
[Extraction Well	DTGW						

	19.119.5		DATA – EVEN	# ~	PAGE #			IDP SYSTEM
Loca	tion: Canada Mesa, I	Rio Arriba		1	Pro	oject Manag	ers: Hendle	y / George
Wel	1# MW -9	Date Time Hr Meter	8-)7-73 1045	1115	1145	1215	12.45	1315
~	Engine Speed	RPM	1800	1800	1200	1800	1800	1200
ENGINE / BLOWER	Oil Pressure	psi	50	50	50	1800	1800	1800
вго	Water Temp	°F	150	150	160	160	160	160
NE /	Alternator	Volts	13	13	13	13	13	13
IDNE	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	120	120	120	110	110	110
-	Extraction Well Vac.	"H₂O	15	15	15	15	15	15
AIR	Extraction Well Flow	scfm	21.47	21.47	21.47	21.45	21.45	21.43
/ W(Well Flow Ref Number		25	25	25	25	25	25
CUL	Dilution Air	cfh	Ø	0	0	0	0	0
EVA	Influent Vapor Temp.	°F	70	70	70	71	71	72
ATMOSPHERE VACUUM / AIR	Groundwater Temp	°F	-	-	-		-	
IOSP	Air Temp	°F	77	78	78	20	81	82
ATM	Barometric Pressure	"Hg	29.68	29.65	29,64	29.63	29.62	29.61
	Absolute Pressure	"Hg	23,96	23.93	23.92	23.92	23,91	23.90
	ТРН	ppmv	_	1252	_	1667		1680
VAPOR / INFLUENT	CO ₂	%	-	4,06	-	4.09	-	3,98
VAP	O ₂	%	1	15.4	(15,5	-	15,6
=	H ₂ S	ppm	-		-	-	-	
NOTES	Apport, 1020 gene be power lost, Compressor would not ren end sumping Stopped. Public fixed and proping resultation 1059							/ @
	Totalizer	gals	18147	18184	18207	18231	18275	183M
ERY	Pump Rate	gals/min	1.23	0.77	.80	1.47	1.47	1.53
RECOVERY	Total Volume	gals	47	84	107	131	175	217
R	NAPL	% Vol	7%	72	7%	7%	72	22
	NAPL	Gals	.07	2.59	1.61	1.68	3.08	3.08
	Data Logger Head	ft	-	-	-	~	~	~
	GW Depression	ft	-	(-	-	-	
-	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

V	Remediation	PERATING	DATA – EVEN	IT # 3	PAGE #	3	ACUVAC M	DP SYSTE
Loca	ation: Canada Mesa, F	Rio Arriba	County, NM		Pro	oject Manag	jers: Hendley	/ George
		Date	8-27-23					
Wel	1#	Time	1345	1415	1445	1515	1545	
	" pow-9	Hr Meter						
~	Engine Speed	RPM	1200	1200	1800	1800	1800	
WE	Oil Pressure	psi	50	50	50	50	50	
вго	Water Temp	°F	160	160	160	160	160	
NE /	Alternator	Volts	13	13	13	13	13	
ENGINE / BLOWER	Intake Vacuum	"Hg	16	16	16	16	16	
_	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	
	Extraction Well Vac.	"H ₂ O	15	15	15	15	15	
AIR	Extraction Well Flow	scfm	21.43	21.41	21.41	21.38	2139	
/ Wi	Well Flow Ref Number		25	25	25	25	25	
CUL	Dilution Air	cfh	0	0	0	0	0	
EVA	Influent Vapor Temp.	°F	72	73	73	74	74	
HER	Groundwater Temp	°F	-	-		-	_	
ATMOSPHERE VACUUM / AIR	Air Temp	°F	82	83	84	84	85	
ATN	Barometric Pressure	"Hg	29.50	29.57	29,56	29,55	29,54	
	Absolute Pressure	"Hg		3.87	23,86	29,85	23,85	
	ТРН	ppmv	_	1600	-	1450	-	
VAPOR / INFLUENT	CO ₂	%		3,86)	3.76	1	
VAP	O ₂	%	-	15.9	1	16.1	-	
=	H ₂ S	ppm	1	-	5		-	
	Event end		45. Ma	asing y	lokes to	= 070	NAPL	
		3.12.1	<u> </u>					
NOTES								
9								
						1.01		
	Totalizer	gals	18365	183407	18453	18499	18535	
RECOVERY	Pump Rate	gals/min	1,4	1,53	1.53	1.20	-	
ŝ	Total Volume	gals	265	307	353	399	435	
R I	NAPL	% Vol	72	72	7%	7%	72	
	NAPL	Gals	3.22	2.94	3.22	3.22	2.52	
	Data Logger Head	ft		-	-	-	-	
	GW Depression	ft	-	-	-	-	2	
-	Extraction Well	DTNAPL						
- 1	Extraction Well	DTGW						

APPENDIX I

AcuVac AS Test Report

December 29, 2023

Mr. Stephen Varsa Supervising Hydrogeologist Stantec Consulting Services, Inc. 11311 Aurora Avenue Des Moines, IA 50322

Dear Steve:

Re: Canada Mesa #2, Rio Arriba County, NM (Air Sparge Test #1)

At your request, AcuVac Remediation (AcuVac) performed one 4.0-hour Air Sparge (AS) Test utilizing well TW-1 as the injection well and the monitoring points as contained in the table below. Following is the Report and a copy of the Operating Data collected during the Air Sparge Test. The contaminant is Light Non-Aqueous Phase Liquid (LNAPL).

Table A Wells Utilized for Air Sparge Test #1								
Well Number	Diameter (in)	Total Depth (ft btoc)	Screen Interval (ft btoc)	Distance from Injection Well (ft btoc)	Influence Recorded			
Injection Well								
TW-1	2.0	40.0	38.0 - 40.0	-	Pressure			
Monitoring P	oints							
MW-12	2.0	51.5	31.5 - 51.5	8.0 ft	Pressure			
MR-2R	2.0	45.4	25.4 - 45.4	15.8 ft	Pressure			
MW-9	2.0	45.0	25.0 - 45.0	24.6 ft	Pressure			
MW-4	2.0	50.0	30.0 - 50.0	35.7 ft	Pressure			
MW-8	2.0	50.0	30.0 - 50.0	37.0 ft	Pressure			

OBJECTIVES

The Objectives of the Air Sparge Test were to:

- Evaluate the potential for removing Light Non-Aqueous Phase Liquids (LNAPL) and dissolved phase LNAPL from the groundwater and soils in the subsurface formation (smear zone) by injecting clean ambient air below the static groundwater level.
- Provide data on the pressure and the resulting flow volume during the Test.
- Determine the AS radius of influence to remove dissolved phase LNAPL from the groundwater and soils.

The air injection well induced vacuum variable rate test defines the pressure/flow characteristics of sub-surface soils around the injection well and estimates potential conditions for an operational Air Sparge System. Starting a test with lower variable rates of pressure and flow allows the injection well and outer wells sufficient time to adjust and stabilize and minimizes the risk of developing preferential paths. This will also assist the development of newly installed extraction wells.

METHODS AND EQUIPMENT

The tests were conducted using AcuVac's SVE/AS I-6 System, with Roots RAI-33 and RAI-22 blowers, Midland 16.5 cfm engine driven air compressor, various instrumentation, including the HORIBA® Analyzer, RKI 1200 O₂ Analyzer, Solinst Interface Probes, In-situ data loggers, magnehelic gauges, Dwyer digital manometer, flow and pressure gauges, a Test 511 absolute pressure and altitude meter to determine barometric pressure, and other special equipment.

The air sparge portion of the AcuVac system was an engine driven 16.5 Midland air compressor. The compressed air was directed through an oil/moisture separator with a filter to remove any oil contaminants from the compressed air. The air was then channeled through a second moisture knockout tank before it was metered into the AS well. The compressed air flowed through flexible stainless-steel tubing to aid in reducing the injected air temperature. The injected air metering system contained a pressure gauge and a flow gauge located on the air sparge manifold. The compressed air then flowed through a high-pressure hose to the air sparge well manifold.

An alternate positive displacement blower driven by the IC engine was available if higher injected air flow was required. The blower inlet would be connected to an oversized fresh air filter. Air from the discharge side of the blower would be directed through three after-coolers and then through a metering system which controlled the flow and pressure. After the metering control system, the air would be directed to the air sparge well through a flexible hose. During these tests, the engine was the power source for all equipment, and. the air compressor supplied 100% of the air sparge requirements.

PROJECT SCOPE AND PROCEDURES

Air Sparge

- Record the distances from the AS wells to the outer observation wells.
- Connect the AcuVac System to the air sparge well manifold.
- Gauge and record depth to groundwater/depth to LNAPL in the air sparge and selected outer observation wells.
- Install the well manifolds on the air sparge wells and seal the outer observation wells with expandable plugs with quick connects.
- Record the static well data, well size, total depth and screen intervals and connect the air sparge system to the air sparge well with a high-pressure hose.
- Record all required baseline data.
- Start the air sparge test. Record the initial pressure, air flow and elapsed time to achieve breakthrough and continue to record this data for the remainder of the test.
- Provides variable rates of air sparge pressure and flow over the test period.

- Comply with all safety regulations.
- Complete the air sparge test by providing a report consisting of operating and analytical data.

CONDITIONS AFFECTING AIR SPARGE TESTS

- Generally, a decreasing barometric pressure results in increased well pressures (decreased vacuums) on those wells plugged and sealed at the top of casing, while an increasing barometric pressure results in increased well vacuums. There are many variables that can affect test data, but barometric pressure fluctuations have the most immediate and profound effect.
- To offset the induced vacuum/pressure as a result of groundwater depression or upwelling in the outer monitoring wells, the wells are vented periodically to atmosphere and then replugged prior to recording data at each 0.5-hour interval. The potential for increased vacuum or pressure as a result of in/decreasing groundwater levels will help to minimize the effect on the outer observation wells. A groundwater depression surrounding an outer observation well will result in an induced vacuum not associated with the induced vacuum created in the extraction well. Likewise, groundwater mounding will create the opposite effect on well pressures.

We appreciate the opportunity to have conducted this Pilot Test for Stantec. If you should have any questions or need to have explanations on any of the tests or test data, please contact us.

Sincerely, ACUVAC REMEDIATION, LLC

Paul D. Faucher President
<u>AS Test #1</u> Well TW-1 (Sparge Well)

Pre-Test Functions

Prior to starting this test, the Air Sparge (AS) system and equipment were checked for safe and normal operation. Each magnehelic gauge was checked and calibrated to zero. The static (baseline) data was recorded for all wells. This included well vacuums/pressures.

The AS well (TW-1) was fitted with a threaded connection to securely attach the AS manifold to safely inject high pressure air. The manifold was then connected to AcuVac AS controller via a high-pressure hose. All safety checks were again performed on the system. The AS injection system was mobilized for the start of the test.

Discussion of Data

The Well TW-1 Data Table on the following page contains the injection pressure, resulting well flow and the influence on the outer observation wells listed.

The workplan was to start with a low injection pressure to prevent the creation of any preferential pathways. The initial injection pressure was 3 psi with a flowrate of 4.3 cfm. At test hour 1.0, the pressure was increased to 6 psi, to maintain the flow rate of 3.6 cfm. The injection pressure remained steady at 6.0 psi, and the flow rate remained steady at 3.3 cfm, until test hour 2.0.

At test hour 2.0, the injection pressure was increased to 8.0 psi, and the flow rate remained steady at 3.3 cfm. The injection pressure remained steady at 8.0 psi, and the flow rate remained steady at 3.33 cfm, until test hour 2.42.

At test hour 2.42, the injection pressure was increased to 10 psi, and the flow rate remained steady at 3.33 cfm. The injection pressure remained steady at 10.0 psi, and the flow rate remained steady at 3.33 cfm, until test hour 3.0.

At test hour 3.0, the injection pressure was increased to 12 psi, and the flow rate decreased to 3.00 cfm. At test hour 3.42, the flow rate increased to 3.17 cfm. At test hour 3.58, the injection pressure increased to 14.0 psi, and the flow rate remained steady at 3.17 cfm, until test hour 4.0.

The outer wells. MW-12 (8.0 ft), MW-2R (15.8 ft), MW-9 (24.6 ft), MW-4 (35.7 ft), and well MW-8 (37.0 ft) recorded little measurable influence from the injection well.

The summary data for AS Test #1 is presented in the table on the following page.

ACUVAC REMEDIATION, LLC CANADA MESA AS TEST #1 WELL TW-1 DATA

psi cfm cf	13:00 0.00 3.00 4.33	13:05 0.08 3.00	13:10 0.17 3.00	13:15 0.25	13:20 0.33	13:25 0.42	13:30 0.50	13:35 0.58	13:40 0.67	13:45 0.75	13:50 0.83	14:00 1.00
cfm	3.00				0.33	0.42	0.50	0.58	0.67	0.75	0.83	1.00
cfm		3.00	3.00									
cfm		3.00	3.00									
	4 33			3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	6.00
cf	4.00	3.67	3.67	3.67	3.67	3.67	3.67	3.67	3.67	3.67	3.67	3.67
	21.67	18.33	18.33	18.33	18.33	18.33	18.33	18.33	18.33	18.33	36.67	18.33
/ (VACU	UM) INFLU	UENCE										
in H₂O	0.00	NM	NM	0.059	NM	0.058	NM	NM	0.059	NM	NM	0.059
in H₂O	0.02	NM	NM	0.007	NM	0.006	NM	NM	0.007	NM	NM	0.006
in H ₂ O	0.00	NM	NM	0.017	NM	0.017	NM	NM	0.017	NM	NM	0.017
in H ₂ O	0.00	NM	NM	0.003	NM	0.002	NM	NM	0.002	NM	NM	0.002
in H ₂ O	0.00	NM	NM	0.002	NM	0.002	NM	NM	0.002	NM	NM	0.002
	14:05	14.10	14.15	14:20	14.25	14:30	14.35	14:40	14:45	14:50	14-55	15:00
												2.00
							1.50					2.00
nsi	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
												3.33
												16.67
			10.55	10.55	10.55	10.55	10.55	10.55	10.55	10.55	10.55	10.01
			0.059	NM	NM	0.059	NM	NM	0.058	NM	NM	0.059
-												0.007
												0.017
_												0.002
												0.002
	15:05	15:10	15:15	15:20	15:25	15:30	15:35	15:40	15:45	15:50	15:55	16:00
	2.08	2.17	2.25	2.33	2.42	2.50	2.58	2.67	2.75	2.83	2.92	3.00
psi	8.00	8.00	8.00	8.00	8.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
cfm	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33	3.33
cf	16.67	16.67	16.67	16.67	16.67	16.67	16.67	16.67	16.67	16.67	16.67	16.67
/ (VACU	UM) INFL	JENCE										
in H ₂ O	NM	NM	0.057	NM	NM	0.058	NM	NM	0.058	NM	NM	0.057
in H ₂ O	NM	NM	0.007	NM	NM	0.007	NM	NM	0.005	NM	NM	0.006
in H ₂ O	NM	NM	0.016	NM	NM	0.016	NM	NM	0.016	NM	NM	0.015
in H ₂ O	NM	NM	0.002	NM	NM	0.002	NM	NM	0.001	NM	NM	0.000
in H ₂ O	NM	NM	0.001	NM	NM	0.001	NM	NM	0.001	NM	NM	0.001
	16:05	16:10	16:15	16:20	16:25	16:30	16:35	16:40	16:45	16:50	16:55	17:00
	3.08	3.17	3.25	3.33	3.42	3.50	3.58	3.67	3.75	3.83	3.92	4.00
psi	12.00	12.00	12.00	12.00	12.00	12.00	14.00	14.00	14.00	14.00	14.00	14.00
cfm	3.00	3.00	3.00	3.00	3.17	3.17	3.17	3.17	3.17	3.17	3.17	3.17
cf	15.00	15.00	15.00	15.00	15.83	15.83	15.83	15.83	15.83	15.83	15.83	15.83
/ (VACU	IUM) INFLU	UENCE										
1.1.0	NM	NM	0.057	NM	NM	0.057	NM	NM	0.057	NM	NM	0.053
in H ₂ O												
in H ₂ O in H ₂ O		NM	0.007	NM	NM	0.005	NM	NM	0.005	NM	NM	0.004
	NM	NM NM	0.007 0.016	NM NM	NM NM	0.005	NM NM	NM NM	0.005	NM NM	NM NM	0.004
in H ₂ O	NM NM											
	in H ₂ O in H ₂ O psi cfm cf / (VACU in H ₂ O in H ₂ O	in H₂O 0.00 in H₂O 0.00 in H₂O 0.00 in H₂O 0.00 jn H₂O 0.00 in H₂O 1.08 je si 6.00 cfm 3.67 cf 18.33 / (VACUW) INFLU in H₂O NM in H₂O NM	in H₂O 0.00 NM in H₂O 0.00 NM in H₂O 0.00 NM 14:05 14:10 1.08 1.17 psi 6.00 6.00 cfm 3.67 3.67 cf 18.33 18.33 / (VACUW) INFLUENCE in H₂O NM NM in H₂O NM NM	n h NM NM in H ₂ O 0.00 NM NM 1H ₂ O 0.00 NM NM 14:05 14:10 14:15 1.08 1.17 1.25 psi 6.00 6.00 6.00 cfm 3.67 3.67 3.67 cf 18.33 18.33 18.33 / (VACUUM) INFLUENCE in H ₂ O NM NM 0.059 in H ₂ O NM NM 0.007 in H ₂ O NM NM 0.002 psi 8.00 8.00 8.00 cfm 3.33 3.33 3.33 cf 16.67 16.67 in H ₂ O NM NM 0.001	n H_2O 0.00 NM NM 0.003 in H_2O 0.00 NM NM 0.002 14:05 14:10 14:15 14:20 1.08 1.17 1.25 1.33 psi 6.00 6.00 6.00 6.00 cfm 3.67 3.67 3.67 3.67 cf 18.33 18.33 18.33 18.33 / (VACUUM) INFLUENCE in H_2O NM NM 0.059 NM in H_2O NM NM 0.002 NM in H_2O NM NM 0.007 NM in H_2O NM	in H ₂ O 0.00 NM NM 0.003 NM in H ₂ O 0.00 NM NM 0.002 NM 14:05 14:10 14:15 14:20 14:25 1.33 1.42 psi 6.00 6.00 6.00 6.00 6.00 6.00 cfm 3.67 3.67 3.67 3.67 3.67 3.67 cf 18.33 18.33 18.33 18.33 18.33 18.33 / (VACUUM) INFLUENCE in H ₂ O NM NM 0.059 NM NM in H ₂ O NM NM 0.007 NM NM in M in H ₂ O NM NM 0.002 NM NM in M in H ₂ O NM NM 0.002 NM NM in M in H ₂ O NM NM 0.002 NM NM in M in H ₂ O NM NM 0.0057 <td>in H_2O 0.00 NM NM 0.003 NM 0.002 in H_2O 0.00 NM NM 0.002 NM 0.002 14:05 14:10 14:15 14:20 14:25 14:30 1.08 1.17 1.25 1.33 1.42 1.50 psi 6.00 6.00 6.00 6.00 6.00 6.00 cf 18.33 18.33 18.33 18.33 18.33 18.33 18.33 /VACUUM) INFLUENCE in H₂O NM NM 0.007 NM NM 0.007 in H₂O NM NM 0.007 NM NM 0.007 in H₂O NM NM 0.007 NM NM 0.002 in H₂O NM NM 0.002 NM NM 0.002 in H₂O NM NM 0.002 NM NM 0.002 in H₂O NM NM 0.002 NM</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>in H₂O 0.00 NM NM 0.003 NM 0.002 NM NM in H₂O 0.00 NM NM 0.002 NM 0.002 NM NM 14:05 14:10 14:15 14:20 14:25 14:30 14:35 14:40 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 psi 6.00 8.00 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>in H₂O 0.00 NM NM 0.003 NM 0.002 NM NM 0.002 NM in H₂O 0.00 NM NM 0.002 NM 0.002 NM NM 0.002 NM 14:05 14:10 14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 1.75 1.83 psi 6.00</td><td>in H₂O 0.00 NM NM 0.002 NM NM 1.425 1.433 1.433 1.433 1.833<!--</td--></td></td<></td>	in H_2O 0.00 NM NM 0.003 NM 0.002 in H_2O 0.00 NM NM 0.002 NM 0.002 14:05 14:10 14:15 14:20 14:25 14:30 1.08 1.17 1.25 1.33 1.42 1.50 psi 6.00 6.00 6.00 6.00 6.00 6.00 cf 18.33 18.33 18.33 18.33 18.33 18.33 18.33 /VACUUM) INFLUENCE in H ₂ O NM NM 0.007 NM NM 0.007 in H ₂ O NM NM 0.007 NM NM 0.007 in H ₂ O NM NM 0.007 NM NM 0.002 in H ₂ O NM NM 0.002 NM NM 0.002 in H ₂ O NM NM 0.002 NM NM 0.002 in H ₂ O NM NM 0.002 NM	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	in H ₂ O 0.00 NM NM 0.003 NM 0.002 NM NM in H ₂ O 0.00 NM NM 0.002 NM 0.002 NM NM 14:05 14:10 14:15 14:20 14:25 14:30 14:35 14:40 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 psi 6.00 8.00 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 18.33 <td< td=""><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>in H₂O 0.00 NM NM 0.003 NM 0.002 NM NM 0.002 NM in H₂O 0.00 NM NM 0.002 NM 0.002 NM NM 0.002 NM 14:05 14:10 14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 1.75 1.83 psi 6.00</td><td>in H₂O 0.00 NM NM 0.002 NM NM 1.425 1.433 1.433 1.433 1.833<!--</td--></td></td<>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	in H ₂ O 0.00 NM NM 0.003 NM 0.002 NM NM 0.002 NM in H ₂ O 0.00 NM NM 0.002 NM 0.002 NM NM 0.002 NM 14:05 14:10 14:15 14:20 14:25 14:30 14:35 14:40 14:45 14:50 1.08 1.17 1.25 1.33 1.42 1.50 1.58 1.67 1.75 1.83 psi 6.00	in H ₂ O 0.00 NM NM 0.002 NM NM 1.425 1.433 1.433 1.433 1.833 </td

.

APPENDIX J

AcuVac SVE Test Report

December 20, 2023

Mr. Stephen Varsa, P.G. Senior Hydrogeologist Stantec Environnemental Services 11311 Aurora Avenue Des Moines, IA 50322

Re: Canada Mesa, Rio Arriba County, NM (Site) (Step Test #1)

Dear Steve:

At your request, AcuVac Remediation (AcuVac) performed three Soil Vapor Extraction (SVE) Step Tests on extraction wells MW-1, MW-9 and MW-12 at the above referenced site (Site) as outlined in Table A (page 2). Following is the Report and a copy of the Operating Data collected during the SVE Step Tests. Table B (page 6) contains the summary data for each of the SVE Quick Tests. The primary contaminant was natural gas condensate also referred to as Light Non-Aqueous Phase Liquids (LNAPL).

SVE Quick Test Objectives

- Determine well vacuum and vapor flow of each well.
- Provide vapor phase total petroleum hydrocarbons (TPH) concentrations in the influent vapors.
- Provide background data on the soil vapor plume area.

SVE Quick Test Description

A Step Test is a short SVE Test of up to 1.5 hours conducted from existing extraction wells or monitoring wells. In the case of Step Tests, outer monitoring wells are selected, and vacuum influence is recorded during each test. Each Step Test provides well vacuum and well vapor flow data. From a soil gas sample (influent vapor), the HORIBA[®] Analyzer can provide TPH in ppmv and the percent of CO₂. Additional instrumentation provides O₂ data. The depth to groundwater and depth to LNAPL are also recorded. This collective data helps assess whether the screened interval of one or more of the outer monitoring wells is within the vacuum radius of influence of the tested extraction well.

			Table A Wells Tested		
Well Number	Diameter (in)	Total Depth (ft BTOC)	Screen Interval (ft BGS)	Distance From Extraction Well	Influence Recorded
Quick Test #	#1 - Extraction	n Well	• • • •	•	
MW-1	4.0	43.00	28.0 - 43.0	-	Vacuum
Monitoring	Wells				
MW-4	2.0	50.0	30.0 - 50.0	23.2	Vacuum
MW-5	2.0	45.4	20.0 - 45.4	39.6	Vacuum
MW-2R	2.0	45.4	25.4- 45.4	52.6	Vacuum
TW-1	2.0	40.0	38.0 - 40.0	53.2	Vacuum
MW-12	2.0	51.5	31.5 - 51.5	57.4	Vacuum
Quick Test #	2 - Extraction	n Well			
MW-12	2.0	51.5	31.5 - 51.5	-	Vacuum
Monitoring	Wells				
MW-9	2.0	45.0	25.0 - 45.0	23.2	Vacuum
MW-2R	2.0	45.5	25.5 - 45.5	23.7	Vacuum
MW-8	2.0	50.0	30.0 - 50.0	30.6	Vacuum
MW-4	2.0	50.0	30.0 - 50.0	37.6	Vacuum
MW-1	4.0	43.00	28.0 - 43.0	57.4	Vacuum
Quick Test #	#3 - Extraction	n Well			
MW-9	2.0	45.00	25.0 - 45.0	-	Vacuum
Monitoring	Wells		1		
MW-12	2.0	51.50	31.5 - 51.5	23.2	Vacuum
TW-1	2.0	40.00	38.0 - 40.0	24.6	Vacuum
MW-2R	2.0	45.40	25.4- 45.4	29.9	Vacuum
MW-11	2.0	47.00	27.0 - 47.0	32.0	Vacuum
MW-10	2.0	57.00	37.0 - 57.0	32.2	Vacuum

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE/MDPE testing. No third-party equipment was utilized. The testing at the Site was conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The following table lists equipment and instrumentation employed during the testing and the data element captured by each.

Equipment and Employed	Instrumentation by AcuVac
Data Element	Measurement Equipment
Extraction Well Induced Vacuum and Flow	
Extraction Well Vacuum	Dwyer Magnehelic Gauges
Extractions Well Vapor Flow	Dwyer Rotameter
Monitoring Wells	
Vacuum / Pressure Influence	Dwyer Digital Manometer
Well Connections	
Manifold to Seal the Well and Hold a Data Logger	Data Logger Manifold
Manifold to Seal the Well and Accept a Manometer	Monitoring Well Manifold/Plug
Well Vapor Samples	
Extraction Well Non-Diluted Vapor Samples	V-1 Vacuum Box
Extraction Well TPH Vapor Concentrations	HORIBA Analyzer
Extraction Well Vapor Oxygen, Carbon Dioxide Content	RKI GX 2012 O ₂ Gas Meter
NAPL Thickness (if present)	
Depth to NAPL and Depth to Groundwater	Solinst Interface Probes Model 122
Groundwater Depression / Upwelling	
Liquid Column in Extraction and Monitoring Wells	In-Situ Level Troll 700 Data Logger (Pressure Transducer)
Equalize Well Vacuum/Pressure	In-Situ Vented Cable with Chamber
Capture Readings from Data Logger Trolls	In-Situ Rugged Reader Data Logger Interface
Atmospheric Conditions	
Relative and Absolute Barometric Pressure	Testo Model 511

THE ACUVAC SYSTEM

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy. he IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine.

SVE QUICK TEST PROCEDURES

- Gauge the extraction well for depth to groundwater and record static data.
- Install the SVE manifold which supports the data logger and the vacuum hose.
- Connect the AcuVac System to the extraction well and then apply vacuum.
- Record the well vacuum and well vapor flow and all system data (including fuel flow of propane), ambient temperature, and barometric pressure.
- Collect non-diluted influent vapor (well gas) samples to provide on-site analytical data consisting of TPH ppmv, VOCs ppm, CO₂%, and O₂% every 15 minutes during the Quick Test. The vapor samples are processed with the HORIBA Analyzer, a PID and an RKI GX 2012.
- Provide variable rates of induced well vacuum and well vapor flow over the test period.

INFORMATION INCLUDED WITH REPORT

- > Table B Summary Data for all wells
- Table #1 Operating Data Step Test #1 MW-1
 - Test #1- Extraction Well Data
 - Test #1 Monitoring Well Data
- > Table #2 Operating Data Step Test #2 MW-12
 - Test #2- Extraction Well Data
 - Test #2 Monitoring Well Data
- Table #3 Operating Data Step Test #3 MW-9
 - Test #3- Extraction Well Data
 - Test #3 Monitoring Well Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely, ACUVAC REMEDIATION, LLC

Much

Paul D. Faucher President

	TABLE B SVE STEP TESTS SUMMARY DATA			
SVE Step Test Number		#1	#2	#3
Extraction Well ID		MW-1	MW-12	MW-9
Test Duration	hours	1.50	1.50	1.50
Well Data				
то	ft BGS	43.00	51.50	45.00
Well Size	inches	4.0	2.0	2.0
Screen Interval	ft BGS	28.0 - 43.0	31.5 - 51.5	25.0 - 45.0
Site Elevation	ft	6,502	6,502	6,502
Well Vacuum and Well Vapor Flow				
Maximum Extraction Well Vacuum	In H ₂ O	60.00	60.00	15.00
Average Extraction Well Vacuum	In H ₂ O	34.29	34.29	11.00
Minimum Extraction Well Vacuum	In H ₂ O	15.00	15.00	5.00
Maxium Extraction Well Vapor Flow	scfm	13.48	9.49	23.04
Average Extraction Well Vapor Flow	scfm	10.55	6.57	16.31
Minimum Extraction Well Vapor Flow	scfm	6.88	3.43	7.91
Vapor Data				
Maximum TPH	ppmv	7,160	2,490	1,126
Average TPH	ppmv	6,858	2,129	1,124
Minimum TPH	ppmv	6,270	1,850	1,122
Average CO ₂	%	9.79	6.19	5.07
Average O ₂	%	6.7	10.6	14.1

TABLE #1 SVE STEP TEST #1 EXTRACTION WELL MW-1										
TIME	8:30	8:45	9:00	9:15	9:30	9:45	10:00			
TEST HOUR	0.00	0.25	0.50	0.75	1.00	1.25	1.50	AVG	MAX	
EXTRACTION WELL MW-9										
Extraction Well Vacuum In H ₂) 15	15	30	30	45	45	60	34.29	60.00	
Well Vapor Flow scfm	6.88	6.88	9.23	9.22	12.25	12.23	13.48	10.55	13.48	
VAPOR CONCENTRATIONS						-				
TPH ppmv	NM	6,270	6,810	6,670	7,160	7,140	7,100	6,858	7,160	
CO ₂ %	NM	10.48	10.56	9.56	9.76	9.22	9.18	9.79	10.56	
0 ₂ %	NM	6.6	5.9	6.8	6.5	7.0	7.2	6.7	7.2	
ATMOSPHERIC CONDITIONS										
Ambient Temperature °	70	70	72	72	73	74	74	72	74	
Influent Temperature °	68	68	68	69	69	70	70	69	70	
Barometric Pressure In Hg	29.69	29.69	29.69	29.69	29.69	29.69	29.68	29.69	29.69	
Absolute Pressure In Hg	23.96	23.96	23.96	23.96	23.86	23.86	23.85	23.92	23.96	
MONITORING WELLS VACUUM / (PRESSURE)										
MW-4 23.3 ft In H ₂ 4	0.28	0.31	0.58	0.58	0.78	0.81	0.85	0.60	0.85	
MW-5 39.6 ft In H ₂ 4	0.00	0.03	0.05	0.04	0.04	0.05	0.06	0.04	0.06	
MW-2R 52.6 ft In H ₂ 4	0.00	0.03	0.02	0.02	0.03	0.01	0.03	0.02	0.03	
TW-1 53.2 ft In H ₂ 4	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.01	
MW-12 57.4 ft In H ₂ 4	0.00	0.01	0.03	0.01	0.03	0.02	0.02	0.02	0.03	
MONITORING WELLS / (PRESSURE) INFLUENCE PERCENTA	GE									
MW-4 23.3 ft 9	6 0.93	1.03	1.93	1.93	1.73	1.80	1.89	1.72	1.93	
MW-5 39.6 ft 9	6 0.00	0.10	0.17	0.13	0.09	0.11	0.10	0.12	0.17	
MW-2R 52.6 ft 9	6 0.00	0.10	0.07	0.07	0.07	0.02	0.05	0.06	0.10	
TW-1 53.2 ft 9	6 0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.01	0.03	
MW-12 57.4 ft 9		0.03	0.10	0.03	0.07	0.07	0.03	0.06	0.10	

.

TABLE #2 SVE STEP TEST #2 EXTRACTION WELL MW-12											
Time	10:15	10:30	10:45	11:00	11:15	11:30	11:45				
Test Hour	0.00	0.25	0.50	0.75	1.00	1.25	1.50	AVG	MAX		
EXTRACTION WELL MW-12											
Extraction Well Vacuum In H ₂ C	15	15	30	30	45	45	60	34.29	60.00		
Well Flow SCFM scfm	3.43	3.43	6.69	6.68	8.13	8.13	9.49	6.57	9.49		
VAPOR CONCENTRATIONS		1									
TPH ppmv	NM	2,490	2,240	2,270	2,060	1,862	1,850	2,129	2,490		
CO ₂ %	NM	6.38	6.50	6.58	6.04	5.86	5.78	6.19	6.58		
0 ₂ %	NM	10.2	9.9	10.1	11.1	11.1	11.1	10.6	11.1		
ATMOSPHERIC CONDITIONS		1									
Ambient Temperature °F	76	76	77	79	79	79	80	78	80		
Influent Temperature °F	72	72	72	73	73	73	73	73	73		
Baromteric Pressure In Hg	29.68	29.38	29.67	29.67	29.69	29.69	29.68	29.64	29.64		
MONITORING WELLS VACUUM / (PRESSURE)											
MW-12 23.2 ft In H ₂ O	0.15	0.15	0.17	0.48	0.47	0.52	0.58	0.36	0.58		
TW-1 23.7 ft In H ₂ O	0.04	0.03	0.05	0.15	0.15	0.18	0.18	0.11	0.18		
MW-2R 30.6 ft In H ₂ C	0.03	0.07	0.03	0.09	0.10	0.12	0.13	0.08	0.13		
MW-4 37.6 ft In H ₂ C	0.05	0.50	0.05	0.11	0.10	0.12	0.12	0.15	0.50		
MW-9 57.4 ft In H ₂ O	0.07	0.04	0.04	0.05	0.04	0.06	0.07	0.05	0.07		
MONITORING WELLS VACUUM / (PRESSURE) INFLUENCE											
MW-12 23.2 ft %	1.00	1.00	0.57	1.60	1.04	1.16	0.97	1.05	1.60		
TW-1 23.7 ft %	0.27	0.20	0.17	0.50	0.33	0.40	0.30	0.31	0.50		
MW-2R 30.6 ft %	0.20	0.47	0.10	0.30	0.22	0.27	0.22	0.25	0.47		
MW-4 37.6 ft %	0.33	3.33	0.17	0.37	0.22	0.27	0.20	0.70	3.33		
MW-9 57.4 ft %	0.47	0.27	0.13	0.17	0.09	0.13	0.12	0.20	0.47		

.

TABLE #3 SVE STEP TEST #3 EXTRACTION WELL MW-9										
TIME	7:45	8:00	8:15	8:30	8:45	9:00	9:15	-		
TEST HOUR	0.00	0.25	0.50	0.75	1.00	1.25	1.50	AVG	MAX	
EXTRACTION WELL MW-9	1	1	1	1	1	1		1		
Extraction Well Vacuum In H ₂ C	5.00		12.00		12.00		15.00	11.00	15.00	
Well Flow scfm	7.91		14.82		19.45		23.04	16.31	23.04	
VAPOR CONCENTRATIONS	1	1	1							
TPH ppmv			1,126				1,122	1,124	1,126	
CO2 %			5.36				4.78	5.07	5.36	
0 ₂ %			13.7				14.5	14.1	14.5	
ATMOSPHERIC CONDITIONS										
Ambient Temperature °F	70		64		74		75	71	75	
Influent Temperature °F	64		72		66		66	67	72	
Baromteric Pressure In Hg	29.68		29.68		2968		29.70	29.69	29.69	
Absolute Pressure In Hg	23.98		23.96		23.96		23.98	23.97	23.97	
MONITORING WELLS VACUUM / (PRESSURE)		_								
MW-12 23.2 ft In H ₂ C	1.48		1.39		1.63		1.65	1.54	1.65	
TW-1 24.6 ft In H ₂ C	0.12		0.11		0.14		0.15	0.13	0.15	
MW-2R 29.9 ft In H ₂ C	0.71		0.73		0.82		0.85	0.78	0.85	
MW-11 32 ft In H ₂ C	0.26		0.26		0.30		0.32	0.29	0.32	
MW-10 32.2 ft In H ₂ C	0.47		0.48		0.55		0.57	0.52	0.57	
MONITORING WELLS VACUUM / (PRESSURE) INFLUENCE		•								
MW-12 23.2 ft %	29.60		11.58		13.58		11.00	16.44	29.60	
TW-1 24.6 ft %	2.40		0.92		1.17		1.00	1.37	2.40	
MW-2R 29.9 ft %	14.20		6.08		6.83		5.67	8.20	14.20	
MW-11 32 ft %	5.20		2.17		2.50		2.13	3.00	5.20	
MW-10 32.2 ft %			4.00		4.58		3.80	5.45	9.40	

•

APPENDIX K

Groundwater Analytical Lab Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Steve Varsa Stantec Consulting Services Inc 11311 Aurora Avenue Des Moines, Iowa 50322-7904 Generated 6/13/2023 5:55:14 PM

JOB DESCRIPTION

Canada Mesa #2.00 SDG NUMBER Canada Mesa

JOB NUMBER

400-238117-1

Eurofins Pensacola 3355 McLemore Drive Pensacola FL 32514

5 6 7

> 12 13

Eurofins Pensacola

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 6/13/2023 5:55:14 PM

Authorized for release by Isabel Enfinger, Project Manager I <u>isabel.enfinger@et.eurofinsus.com</u> Designee for Cheyenne Whitmire, Project Manager II <u>Cheyenne.Whitmire@et.eurofinsus.com</u> (850)471-6222

2

Laboratory Job ID: 400-238117-1 SDG: Canada Mesa

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	15
Chronicle	16
QC Association	19
QC Sample Results	20
Chain of Custody	23
Receipt Checklists	24
Certification Summary	25

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Job ID: 400-238117-1

Laboratory: Eurofins Pensacola

Narrative

Job Narrative 400-238117-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 5/23/2023 9:10 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.8° C.

GC/MS VOA

Method 8260D: Surrogate recovery for the following samples were outside the upper control limit: TRIP BLANK (400-238117-1), DUP-01 (400-238117-2), MW-3R (400-238117-4), MW-5 (400-238117-5) and MW-11 (400-238117-7). These samples did not contain any target analytes above the method detection limit (MDL); therefore, re-extraction and/or re-analysis was not performed.

Method 8260D: The surrogate recovery for the blank associated with analytical batch 400-627498 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Released to Imaging: 5/2/2024 4:22:08 PM

Job ID: 400-238117-1 SDG: Canada Mesa

		Detect	tion Sun	nmary					
Client: Stantec Consulting Services Project/Site: Canada Mesa #2.00	Inc				Job ID: 400-238117-1 SDG: Canada Mesa				
Client Sample ID: TRIP BLA	NK				Lab Sa	mple ID: 4	00-238117-1		
No Detections.									
Client Sample ID: DUP-01					Lab Sa	mple ID: 4	00-238117-2		
No Detections.									
Client Sample ID: MW-2R	Lab Sa	mple ID: 4	00-238117-3						
No Detections.									
Client Sample ID: MW-3R					Lab Sample ID: 400-238117-4				
No Detections.									
Client Sample ID: MW-5					Lab Sa	mple ID: 4	00-238117-5		
No Detections.									
Client Sample ID: MW-8					Lab Sample ID: 400-238117-6				
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac) Method	Prep Type		
Benzene	2.2		1.0	ug/L	1	8260D	Total/NA		
Ethylbenzene	38		1.0	ug/L	1	8260D	Total/NA		
Xylenes, Total	16		10	ug/L	1	8260D	Total/NA		
Client Sample ID: MW-11					Lab Sa	mple ID: 4	00-238117-7		
No Detections.									

No Detections.

This Detection Summary does not include radiochemical test results.

Eurofins Pensacola

Method Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Job ID: 400-238117-1 SDG: Canada Mesa

				- 3
Method	Method Description	Protocol	Laboratory	
8260D	Volatile Organic Compounds by GC/MS	SW846	EET PEN	_
5030C	Purge and Trap	SW846	EET PEN	

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins Pensacola

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00 Job ID: 400-238117-1 SDG: Canada Mesa

ab Sample ID.	Client Sample ID	Matrix	Collected	Received
00-238117-1	TRIP BLANK	Water	05/20/23 07:50	05/23/23 09:10
00-238117-2	DUP-01	Water	05/20/23 07:55	05/23/23 09:10
00-238117-3	MW-2R	Water	05/20/23 09:00	05/23/23 09:10
00-238117-4	MW-3R	Water	05/20/23 08:50	05/23/23 09:10
00-238117-5	MW-5	Water	05/20/23 08:30	05/23/23 09:10
00-238117-6	MW-8	Water	05/20/23 08:55	05/23/23 09:10
00-238117-7	MW-11	Water	05/20/23 08:35	05/23/23 09:10

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: TRIP BLANK Date Collected: 05/20/23 07:50 Date Received: 05/23/23 09:10

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Job ID: 400-238117-1 SDG: Canada Mesa

Lab Sample ID: 400-238117-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<1.0		1.0		ug/L			06/02/23 17:10	1	ī.
Toluene	<1.0		1.0		ug/L			06/02/23 17:10	1	
Ethylbenzene	<1.0		1.0		ug/L			06/02/23 17:10	1	2
Xylenes, Total	<10		10		ug/L			06/02/23 17:10	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	ī
Toluene-d8 (Surr)	95		64 - 132			-		06/02/23 17:10	1	
Dibromofluoromethane	115		75 - 126					06/02/23 17:10	1	
4-Bromofluorobenzene	96		72 - 130					06/02/23 17:10	1	
—										

Eurofins Pensacola

Page 135 of 211

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: DUP-01 Date Collected: 05/20/23 07:55 Date Received: 05/23/23 09:10

Lab Sample ID: 400-238117-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			06/02/23 17:37	1
Toluene	<1.0		1.0		ug/L			06/02/23 17:37	1
Ethylbenzene	<1.0		1.0		ug/L			06/02/23 17:37	1
Xylenes, Total	<10		10		ug/L			06/02/23 17:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		64 - 132			-		06/02/23 17:37	1
Dibromofluoromethane	117		75 - 126					06/02/23 17:37	1
4-Bromofluorobenzene	98		72 - 130					06/02/23 17:37	1

5

7

RL

1.0

1.0

1.0

10

Limits

64 - 132

75 - 126

72 - 130

MDL Unit

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Result Qualifier

<1.0

<1.0

<1.0

<10

%Recovery Qualifier

96

110

90

Client Sample ID: MW-2R Date Collected: 05/20/23 09:00 Date Received: 05/23/23 09:10

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Toluene-d8 (Surr)

Dibromofluoromethane

4-Bromofluorobenzene

Surrogate

05/26/23 13:49	1	C
05/26/23 13:49	1	

1

Dil Fac

Dil Fac

1

1

1

1

Job ID: 400-238117-1 SDG: Canada Mesa

Lab Sample ID: 400-238117-3

Analyzed

05/26/23 13:49

05/26/23 13:49

05/26/23 13:49

05/26/23 13:49

Analyzed

05/26/23 13:49

Matrix: Water

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-3R Date Collected: 05/20/23 08:50 Date Received: 05/23/23 09:10

4-Bromofluorobenzene

6/13/2023

Date Received. 03/23/23 0	5.10								
Method: SW846 8260D -	Volatile Organic	Compoun	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			06/02/23 18:04	1
Toluene	<1.0		1.0		ug/L			06/02/23 18:04	1
Ethylbenzene	<1.0		1.0		ug/L			06/02/23 18:04	1
Xylenes, Total	<10		10		ug/L			06/02/23 18:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		64 - 132					06/02/23 18:04	1
Dibromofluoromethane	116		75 - 126					06/02/23 18:04	1

72 - 130

96

Page 138 of 211

5 6 7

Lab Sample ID: 400-238117-4

06/02/23 18:04

Matrix: Water

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-5 Date Collected: 05/20/23 08:30 Date Received: 05/23/23 09:10

Job ID: 400-238117-1 SDG: Canada Mesa

Lab Sample ID: 400-238117-5

Matrix: Water

Page 139 of 211

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			06/02/23 18:31	1
Toluene	<1.0		1.0		ug/L			06/02/23 18:31	1
Ethylbenzene	<1.0		1.0		ug/L			06/02/23 18:31	1
Xylenes, Total	<10		10		ug/L			06/02/23 18:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	93		64 - 132			-		06/02/23 18:31	1
Dibromofluoromethane	117		75 - 126					06/02/23 18:31	1
4-Bromofluorobenzene	95		72 - 130					06/02/23 18:31	1

Eurofins Pensacola

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-8 Date Collected: 05/20/23 08:55 Date Received: 05/23/23 09:10

Job ID: 400-238117-1 SDG: Canada Mesa

Lab Sample ID: 400-238117-6

Matrix: Water

Page 140 of 211

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.2		1.0		ug/L			06/03/23 16:06	1
Toluene	<1.0		1.0		ug/L			06/03/23 16:06	1
Ethylbenzene	38		1.0		ug/L			06/03/23 16:06	1
Xylenes, Total	16		10		ug/L			06/03/23 16:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	97		64 - 132			-		06/03/23 16:06	1
Dibromofluoromethane	96		75 - 126					06/03/23 16:06	1
4-Bromofluorobenzene	96		72 - 130					06/03/23 16:06	1

Eurofins Pensacola

Released to Imaging: 5/2/2024 4:22:08 PM

RL

1.0

1.0

1.0

10

Limits

64 - 132

75 - 126

72 - 130

MDL Unit

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Result Qualifier

<1.0

<1.0

<1.0

<10

%Recovery Qualifier

93

118

94

Client Sample ID: MW-11 Date Collected: 05/20/23 08:35 Date Received: 05/23/23 09:10

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Toluene-d8 (Surr)

Dibromofluoromethane

4-Bromofluorobenzene

Surrogate

Job ID: 400-238117-1 SDG: Canada Mesa

Lab Sample ID: 400-238117-7

Analyzed

06/02/23 19:24

06/02/23 19:24

06/02/23 19:24

06/02/23 19:24

Analyzed

06/02/23 19:24

06/02/23 19:24

06/02/23 19:24

Matrix: Water

Page 141 of 211

Dil Fac

Dil Fac

1

1

1

1

1

1

1

Eurofins Pensacola

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00 Page 142 of 211

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	13
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	13 14
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

TEF

TEQ TNTC

Matrix: Water

5 6

7 8 9

Lab Chronicle

Job ID: 400-238117-1 SDG: Canada Mesa

Lab Sample ID: 400-238117-1

Project/Site: Canada Mesa #2.00 Client Sample ID: TRIP BLANK Date Collected: 05/20/23 07:50 Date Received: 05/23/23 09:10

Client: Stantec Consulting Services Inc

Bron Turne	Batch	Batch Mathed	D	Dil Ecotor	Initial Amount	Final	Batch	Prepared	Anabest	
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	
Total/NA	Analysis	8260D		1	5 mL	5 mL	627498	06/02/23 17:10	BPO	EET PEN
Client Sam	ple ID: DUI	P-01					La	b Sample I	D: 400-	238117-2
Date Collecte									Ma	trix: Wate
Date Receive	d: 05/23/23 0	9:10								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	627498	06/02/23 17:37	BPO	EET PEN
Client Sam	ple ID: MW	/-2R					La	b Sample I	D: 400-	238117-:
Date Collecte	d: 05/20/23 0	9:00							Ma	trix: Wate
Date Receive	d: 05/23/23 0	9:10								
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	626672	05/26/23 13:49	CAR	EET PEN
Client Sam	ole ID: MW	/-3R					La	b Sample I	D: 400-	238117-
Date Collecte							-			trix: Wate
Date Receive	d: 05/23/23 0	9:10								
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	627498	06/02/23 18:04	BPO	EET PEN
		1.6					1.2	h Samala I	D. 400	
Client Sami	<u>nie II). Miw</u>								J' 4UU-	238117-
							La	n Sample I		
Date Collecte	d: 05/20/23 0	8:30					La	b Sample I		
Client Sam Date Collecte Date Receive	d: 05/20/23 0 d: 05/23/23 0	8:30 9:10		Dil	Initial	Final		· ·		
Date Collecte Date Receive	d: 05/20/23 0 d: 05/23/23 0 Batch	8:30 9:10 Batch	Run	Dil	Initial Amount	Final	Batch	Prepared	Ма	238117-{ trix: Wate
Date Collecte	d: 05/20/23 0 d: 05/23/23 0	8:30 9:10	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL		· ·		
Date Collecte Date Received Prep Type Total/NA	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis	8:30 9:10 Batch <u>Method</u> 8260D	Run	Factor	Amount	Amount	Batch Number 627498	Prepared or Analyzed 06/02/23 18:31	Ma Analyst BPO	Lab EET PEN
Date Collecte Date Received Prep Type Total/NA Client Sam	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW	8:30 9:10 Batch <u>Method</u> 8260D	Run	Factor	Amount	Amount	Batch Number 627498	Prepared or Analyzed	Ma Analyst BPO D: 400-	Lab EET PEN 238117-
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0	8:30 9:10 Batch Method 8260D 7-8 8:55	Run	Factor	Amount	Amount	Batch Number 627498	Prepared or Analyzed 06/02/23 18:31	Ma Analyst BPO D: 400-	Lab EET PEN 238117-
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0	8:30 9:10 Batch <u>Method</u> 8260D 7-8 8:55 9:10	<u>Run</u>	Factor 1	Amount 5 mL	Amount 5 mL	Batch Number 627498	Prepared or Analyzed 06/02/23 18:31 b Sample I	Ma Analyst BPO D: 400-	Lab EET PEN 238117-
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0 Batch	8:30 9:10 Batch 8260D 7-8 8:55 9:10 Batch		Factor 1 Dil	Amount 5 mL	Amount 5 mL	Batch <u>Number</u> 627498 La Batch	Prepared or Analyzed 06/02/23 18:31 b Sample I Prepared	Ma Analyst BPO D: 400- Ma	trix: Wate
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type	d: 05/20/23 0 d: 05/23/23 0 Batch <u>Type</u> Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0 Batch Type	8:30 9:10 Batch <u>Method</u> 8260D 7-8 8:55 9:10	Run	Factor 1	Amount 5 mL Initial Amount	Amount 5 mL	Batch Number 627498 La Batch Number	Prepared or Analyzed 06/02/23 18:31 b Sample I	Ma Analyst BPO D: 400-	Lab EET PEN 238117-0 trix: Wate
Date Collecte Date Received Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis	8:30 9:10 Batch 8260D 7-8 8:55 9:10 Batch 8260D Batch 8260D		Factor 1 Dil Factor	Amount 5 mL	Amount 5 mL Final Amount	Batch Number 627498 La Batch Number 627674	Prepared or Analyzed 06/02/23 18:31 b Sample I Prepared or Analyzed 06/03/23 16:06	Ma Analyst BPO D: 400- Ma Analyst WPD	trix: Wate
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam	d: 05/20/23 0 d: 05/23/23 0 Batch <u>Type</u> Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0 Batch <u>Type</u> Analysis ple ID: MW	8:30 9:10 Batch <u>Method</u> 8260D 7-8 9:10 Batch <u>Batch</u> 8260D 7-11		Factor 1 Dil Factor	Amount 5 mL Initial Amount	Amount 5 mL Final Amount	Batch Number 627498 La Batch Number 627674	Prepared or Analyzed 06/02/23 18:31 b Sample I Prepared or Analyzed	Ma Analyst BPO D: 400-/ Ma Analyst WPD D: 400-/	Lab EET PEN 238117-0 trix: Wate EET PEN 238117-7
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0	8:30 9:10 Batch <u>Method</u> 8260D 7-8 9:10 Batch <u>Method</u> 8260D 7-11 8:35		Factor 1 Dil Factor	Amount 5 mL Initial Amount	Amount 5 mL Final Amount	Batch Number 627498 La Batch Number 627674	Prepared or Analyzed 06/02/23 18:31 b Sample I Prepared or Analyzed 06/03/23 16:06	Ma Analyst BPO D: 400-/ Ma Analyst WPD D: 400-/	Lab EET PEN 238117-0 trix: Wate EET PEN 238117-7
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0	8:30 9:10 Batch <u>Method</u> 8260D 7-8 9:10 Batch <u>Method</u> 8260D 7-11 8:35		Factor 1 Dil Factor 1	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount	Batch Number 627498 La Batch Number 627674	Prepared or Analyzed 06/02/23 18:31 b Sample I Prepared or Analyzed 06/03/23 16:06	Ma Analyst BPO D: 400-/ Ma Analyst WPD D: 400-/	Lab EET PEN 238117-0 trix: Wate EET PEN 238117-7
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Collecte Date Collecte	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 Batch DI DI DI DI DI DI DI DI DI DI	8:30 9:10 Batch Method 8260D 7-8 8:55 9:10 Batch Method 8260D 7-11 98:35 9:10 Batch Batch 9:10	Run	Factor 1 Dil Factor 1 Dil	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount 5 mL	Batch Number 627498 La Batch Number 627674 La Batch	Prepared or Analyzed 06/02/23 18:31 b Sample I Prepared or Analyzed 06/03/23 16:06 b Sample I Prepared	Ma Analyst BPO D: 400-7 Ma Analyst WPD D: 400-7 Ma	trix: Wate
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 d: 05/23/23 0 Batch Type Analysis ple ID: MW d: 05/20/23 0 d: 05/20/23 0 d: 05/23/23 0	8:30 9:10 Batch Method 8260D 7-8 8:55 9:10 Batch Method 8260D 7-11 8:35 9:10		Factor 1 Dil Factor 1	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount 5 mL	Batch <u>Number</u> 627498 La Batch <u>Number</u> 627674 La	Prepared or Analyzed 06/02/23 18:31 b Sample I Prepared or Analyzed 06/03/23 16:06 b Sample I	Ma Analyst BPO D: 400-/ Ma Analyst WPD D: 400-/	Lab EET PEN 238117- trix: Wate EET PEN 238117-

Project/Site: Canada Mesa #2.00

Lab Chronicle

Page 144 of 211

Matrix: Water

5 6

9

Job ID: 400-238117-1 SDG: Canada Mesa

Lab Sample ID: MB 400-626672/4

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

Client: Stantec Consulting Services Inc

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260D	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 626672	Prepared or Analyzed 05/26/23 12:50	Analyst CAR	Lab EET PEN
Client Samp Date Collected Date Received	d: N/A	hod Blank					Lab Sa	ample ID: N		627498/4 trix: Water
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	627498	06/02/23 10:55	BPO	EET PEN
Client Samp Date Collected Date Received	d: N/A	hod Blank					Lab Sa	ample ID: N		627674/4 trix: Water
Prep Type	Batch Type Analysis	Batch Method 8260D	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 627674	Prepared or Analyzed 06/03/23 07:47	Analyst WPD	Lab EET PEN
Client Samp Date Collected Date Received	d: N/A	Control S	ample			Lat	o Sampl	e ID: LCS 4		672/1002 trix: Water
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
								•		
Prep Type Total/NA	Type Analysis	Method 8260D	Run	Factor	Amount 5 mL	Amount 5 mL	Number 626672	or Analyzed 05/26/23 10:44	Analyst CAR	Lab EET PEN
Total/NA Client Samp Date Collected	Analysis Die ID: Lab	8260D				5 mL	Number 626672	or Analyzed	CAR 00-627	EET PEN
Total/NA Client Samp Date Collected	Analysis Die ID: Lab	8260D				5 mL	Number 626672	or Analyzed 05/26/23 10:44	CAR 00-627	EET PEN
Total/NA Client Samp Date Collected	Analysis Die ID: Lab d: N/A d: N/A	8260D Control S		1	5 mL	5 mL	Number 626672 Sampl	or Analyzed 05/26/23 10:44 e ID: LCS 4	CAR 00-627	EET PEN
Total/NA Client Samp Date Collected Date Received	Analysis Die ID: Lab d: N/A d: N/A Batch	8260D Control Sa Batch	ample	1	5 mL	5 mL	Number 626672 Sampl Batch	or Analyzed 05/26/23 10:44 e ID: LCS 4 Prepared	CAR 00-627 Ma	EET PEN 498/1002 trix: Water
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A	8260D Control S Batch Method 8260D	ample	1 Dil Factor	5 mL Initial Amount	5 mL Lat Final Amount 5 mL	Number 626672 Sampl Batch Number 627498	or Analyzed 05/26/23 10:44 e ID: LCS 4 Prepared or Analyzed	CAR 00-627 Ma Analyst BPO 00-627	EET PEN 498/1002 trix: Water Lab EET PEN 674/1002
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A	8260D Control S Batch Method 8260D	ample	1 Dil Factor	5 mL Initial Amount	5 mL Lat Final Amount 5 mL	Number 626672 Sampl Batch Number 627498	or Analyzed 05/26/23 10:44 e ID: LCS 4 Prepared or Analyzed 06/02/23 09:53	CAR 00-627 Ma Analyst BPO 00-627	EET PEN 498/1002 trix: Water Lab EET PEN 674/1002
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A d: N/A	8260D Control S Batch Method 8260D Control S	ample	Dil Factor	5 mL Initial Amount 5 mL	5 mL Lat Final Amount 5 mL	Number 626672 Sampl Batch Number 627498 Sampl	or Analyzed 05/26/23 10:44 e ID: LCS 4 Prepared or Analyzed 06/02/23 09:53 e ID: LCS 4	CAR 00-627 Ma Analyst BPO 00-627	EET PEN 498/1002 trix: Water Lab EET PEN 674/1002
Total/NA Client Samp Date Collected Date Received Total/NA Client Samp Date Collected Date Received	Analysis Die ID: Lab d: N/A Batch Type Analysis Die ID: Lab d: N/A Batch H.A H.A H.A H.A H.A H.A H.A H.A	Batch Method Batch Control Sa Batch	ample Run ample	Dil Factor 1	5 mL Initial Amount 5 mL Initial	5 mL Lat Final Amount 5 mL Lat Final	Number 626672 Sampl Batch Number 627498 Sampl Batch Batch	or Analyzed 05/26/23 10:44 e ID: LCS 4 Prepared or Analyzed 06/02/23 09:53 e ID: LCS 4 Prepared	CAR 00-627 Ma Analyst BPO 00-627 Ma	EET PEN 498/1002 trix: Water Lab EET PEN 674/1002 trix: Water
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Total/NA Client Samp Date Collected	Analysis Die ID: Lab d: N/A Batch Type Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A	Batch Method Batch Control S Control S Control S Batch Method 8260D Control S Control S Control S	ample Run ample	Dil Factor 1 Dil Factor	5 mL Initial Amount 5 mL Initial Amount	5 mL Lat Final Amount 5 mL Lat Final Amount	Number 626672 Sampl Batch Number 627498 Sampl Sampl Batch Number 627674	or Analyzed 05/26/23 10:44 e ID: LCS 4 Prepared or Analyzed 06/02/23 09:53 e ID: LCS 4 Prepared or Analyzed	CAR 00-627 Ma Analyst BPO 00-627 Ma Analyst WPD 00-238	EET PEN 498/1002 trix: Water Lab EET PEN 674/1002 trix: Water Lab EET PEN 117-3 MS
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	Analysis Die ID: Lab d: N/A Batch Type Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A	Batch Method Batch Control S Control S Control S Batch Method 8260D Control S Control S Control S	ample Run ample	Dil Factor 1 Dil Factor	5 mL Initial Amount 5 mL Initial Amount 5 mL	5 mL Lat Final Amount 5 mL Lat Final Amount	Number 626672 Sampl Batch Number 627498 Sampl Sampl Batch Number 627674	or Analyzed 05/26/23 10:44 e ID: LCS 4 Prepared or Analyzed 06/02/23 09:53 e ID: LCS 4 Prepared or Analyzed 06/03/23 07:08	CAR 00-627 Ma Analyst BPO 00-627 Ma Analyst WPD 00-238	EET PEN 498/1002 trix: Water Lab EET PEN 674/1002 trix: Water Lab EET PEN 117-3 MS
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	Analysis Die ID: Lab d: N/A Batch Type Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A d: N/A Batch Type Analysis Die ID: Lab d: N/A d: N/A	8260D Control S Batch Method 8260D Control S Batch Method 8260D Control S 9 Control S 9 9:00 9:10	ample Run ample	Dil Factor 1 Factor 1	5 mL Initial Amount 5 mL Initial Amount	5 mL Lat Final Amount 5 mL Lat Final Amount 5 mL	Number 626672 Sampl Batch Number 627498 Sampl Batch Number 627674 Lab Sa	or Analyzed 05/26/23 10:44 e ID: LCS 4 Prepared or Analyzed 06/02/23 09:53 e ID: LCS 4 Prepared or Analyzed 06/03/23 07:08 ample ID: 4	CAR 00-627 Ma Analyst BPO 00-627 Ma Analyst WPD 00-238	EET PEN 498/1002 trix: Water EET PEN 674/1002 trix: Water Lab EET PEN

Eurofins Pensacola
Client: Stantec Consulting Services Inc

Lab Chronicle

Job ID: 400-238117-1 SDG: Canada Mesa

Matrix: Water

Lab Sample ID: 400-238117-3 MSD

Client Sample ID: MW-2R Date Collected: 05/20/23 09:00 Date Received: 05/23/23 09:10

Project/Site: Canada Mesa #2.00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260D		1	5 mL	5 mL	626672	05/26/23 16:56	CAR	EET PEN	

Laboratory References:

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins Pensacola

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID

GC/MS VOA

Lab Sample ID

Analysis Batch: 626672

400-238117-3	MW-2R	Total/NA	Water	-
MB 400-626672/4	Method Blank	Total/NA	Water	
LCS 400-626672/1002	Lab Control Sample	Total/NA	Water	
400-238117-3 MS	MW-2R	Total/NA	Water	
400-238117-3 MSD	MW-2R	Total/NA	Water	

Analysis Batch: 627498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-238117-1	TRIP BLANK	Total/NA	Water	8260D	
400-238117-2	DUP-01	Total/NA	Water	8260D	9
400-238117-4	MW-3R	Total/NA	Water	8260D	
400-238117-5	MW-5	Total/NA	Water	8260D	10
400-238117-7	MW-11	Total/NA	Water	8260D	
MB 400-627498/4	Method Blank	Total/NA	Water	8260D	
LCS 400-627498/1002	Lab Control Sample	Total/NA	Water	8260D	
Analysis Batch: 6276	574				

QC Association Summary

Prep Type

Matrix

Lab Sample ID 400-238117-6	Client Sample ID MW-8	Prep Type Total/NA	Matrix Water	Method 8260D	Prep Batch
MB 400-627674/4	Method Blank	Total/NA	Water	8260D	
LCS 400-627674/1002	Lab Control Sample	Total/NA	Water	8260D	

Eurofins Pensacola

Job ID: 400-238117-1 SDG: Canada Mesa

Method

8260D

8260D

8260D

8260D

8260D

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 400-626672/4 **Matrix: Water**

Analysis Batch: 626672

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			05/26/23 12:50	1
Toluene	<1.0		1.0		ug/L			05/26/23 12:50	1
Ethylbenzene	<1.0		1.0		ug/L			05/26/23 12:50	1
Xylenes, Total	<10		10		ug/L			05/26/23 12:50	1

	MB	MB	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		64 - 132
Dibromofluoromethane	112		75 - 126
4-Bromofluorobenzene	94		72 - 130

Lab Sample ID: LCS 400-626672/1002 Matrix: Water Analysis Batch: 626672

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	42.2		ug/L		84	70 - 130	
Toluene	50.0	42.3		ug/L		85	70 - 130	
Ethylbenzene	50.0	46.2		ug/L		92	70 - 130	
Xylenes, Total	100	95.0		ug/L		95	70 - 130	

	LCS	LCS LCS					
Surrogate	%Recovery	Qualifier	Limits				
Toluene-d8 (Surr)	96		64 - 132				
Dibromofluoromethane	104		75 - 126				
4-Bromofluorobenzene	92		72 - 130				

Lab Sample ID: 400-238117-3 MS **Matrix: Water** Analysis Batch: 626672

-	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<1.0		50.0	40.8		ug/L		82	56 - 142	
Toluene	<1.0		50.0	38.6		ug/L		77	65 - 130	
Ethylbenzene	<1.0		50.0	42.3		ug/L		85	58 - 131	
Xylenes, Total	<10		100	88.9		ug/L		89	59 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	93		64 - 132
Dibromofluoromethane	102		75 - 126
4-Bromofluorobenzene	87		72 - 130

Lab Sample ID: 400-238117-3 MSD **Matrix: Water** Analysis Batch: 626672

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	42.9		ug/L		86	56 - 142	5	30
Toluene	<1.0		50.0	42.1		ug/L		84	65 - 130	9	30
Ethylbenzene	<1.0		50.0	44.4		ug/L		89	58 - 131	5	30

Eurofins Pensacola

Client Sample ID: MW-2R

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

Analyzed

05/26/23 12:50

05/26/23 12:50

05/26/23 12:50

Client Sample ID: MW-2R

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prepared

Dil Fac

1

1

1

	•	Sample Qualifier	Spike Added	
)	<1.0		50.0	
	<1.0		50.0	
izene	<10		50.0	

Released to Imaging: 5/2/2024 4:22:08 PM

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Page 148 of 211

Job ID: 400-238117-1 SDG: Canada Mesa

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 400-238 Matrix: Water	117-3 MSD							Clie	ent Sample Prep Typ		
Analysis Batch: 626672	Sample	•	Spike	-	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added		Qualifier	Unit		D %Rec	Limits	RPD	Limit
Xylenes, Total	<10		100	91.2		ug/L		91	59 - 130	3	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Toluene-d8 (Surr)	98		64 - 132								
Dibromofluoromethane	100		75_126								
4-Bromofluorobenzene	99		72 - 130								
Lab Sample ID: MB 400- Matrix: Water Analysis Batch: 627498	627498/4						C	lient Sam	nple ID: Me Prep Typ		
Matrix: Water	I	MB MB sult Qualifie	· F	RL	MDL Unit		D	Client Sam	-	e: To	tal/NA
Matrix: Water Analysis Batch: 627498	Res			RL	MDL Unit				Prep Typ	e: To	
Matrix: Water Analysis Batch: 627498 Analyte	<u>Res</u>	ult Qualifie	1						Prep Typ	ed 10:55	tal/NA
Matrix: Water Analysis Batch: 627498 Analyte Benzene	Res <	ult Qualifie	1 1	.0	ug/L				Prep Typ 	ed 0:55	tal/NA
Matrix: Water Analysis Batch: 627498 Analyte Benzene Toluene	 Res < <	ult 1.0 1.0	1 1 1	.0 .0	ug/L ug/L				Prep Typ Analyze 06/02/23 1 06/02/23 1	ed 0:55 0:55 0:55	tal/NA
Matrix: Water Analysis Batch: 627498 Analyte Benzene Toluene Ethylbenzene	 	Qualifie 1.0 1.0 1.0	1 1 1	.0 .0 .0	ug/L ug/L ug/L				Prep Typ Analyze 06/02/23 1 06/02/23 1	ed 0:55 0:55 0:55	tal/NA
Matrix: Water Analysis Batch: 627498 Analyte Benzene Toluene Ethylbenzene	Res < <	Ault Qualifie 1.0 1.0 1.0 10 MB MB ery Qualifie	1 1 1 r Limits	.0 .0 .0 10	ug/L ug/L ug/L				Prep Typ Analyze 06/02/23 1 06/02/23 1 06/02/23 1 Analyze	ed 0:55 0:55 0:55 0:55	tal/NA
Matrix: Water Analysis Batch: 627498 Analyte Benzene Toluene Ethylbenzene Xylenes, Total	Res < <	Qualifie1.01.01.01.01.0MB	1 1 1	.0 .0 .0 10	ug/L ug/L ug/L			Prepared	Analyze 06/02/23 1 06/02/23 1 06/02/23 1 06/02/23 1	ed 0:55 0:55 0:55 0:55	Dil Fac
Matrix: Water Analysis Batch: 627498 Analyte Benzene Toluene Ethylbenzene Xylenes, Total Surrogate	Res < < < %Recov	Ault Qualifie 1.0 1.0 1.0 10 MB MB ery Qualifie	1 1 1 r Limits	.0 .0 .0 10 2	ug/L ug/L ug/L			Prepared	Prep Typ Analyze 06/02/23 1 06/02/23 1 06/02/23 1 Analyze	ed 0:55 0:55 0:55 0:55 0:55	Dil Fac

Lab Sample ID: LCS 400-627498/1002 **Matrix: Water** Analysis Batch: 627498

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit Limits D %Rec Benzene 50.0 70 - 130 43.0 ug/L 86 Toluene 50.0 41.3 ug/L 83 70 - 130 Ethylbenzene 50.0 46.4 ug/L 93 70 - 130 Xylenes, Total 100 93.7 70 - 130 ug/L 94

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	97		64 - 132
Dibromofluoromethane	102		75 - 126
4-Bromofluorobenzene	99		72 - 130

Lab Sample ID: MB 400-627674/4 **Matrix: Water** Analysis Batch: 627674

	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			06/03/23 07:47	1
Toluene	<1.0	1.0	ug/L			06/03/23 07:47	1
Ethylbenzene	<1.0	1.0	ug/L			06/03/23 07:47	1
Xylenes, Total	<10	10	ug/L			06/03/23 07:47	1

Eurofins Pensacola

06/02/23 10:55	1
06/02/23 10:55	1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Released to Imaging: 5/2/2024 4:22:08 PM

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 400-627674/4 **Matrix: Water**

Analysis Batch: 627674

	MI	3 MB				
Su	rogate %Recover	/ Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tol	Jene-d8 (Surr) 9	9	64 - 132		06/03/23 07:47	1
Dib	romofluoromethane 10	9	75 - 126		06/03/23 07:47	1
4-E	romofluorobenzene 9.	2	72 - 130		06/03/23 07:47	1

Lab Sample ID: LCS 400-627674/1002 **Matrix: Water** Analysis Batch: 627674

Analysis Buton: 021014	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	44.5		ug/L		89	70 - 130
Toluene	50.0	45.8		ug/L		92	70 - 130
Ethylbenzene	50.0	44.9		ug/L		90	70 - 130
Xylenes, Total	100	87.0		ug/L		87	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	101		64 - 132
Dibromofluoromethane	93		75 - 126
4-Bromofluorobenzene	95		72 - 130

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Eurofins Pensacola

Eurofins Pensacola

• Drive 3355 McL Pen

- -_

Received by OCD: 3/20/2024 2:14:26 PM

Pensacola, FL 32514	Ch	ain of Cus	stody Re	cord	t t									Curonns	Environment Test
Phone: 850-474-1001 Fax: 850-478-2671															
Client Information	Sampler:	Sampler: Sarch Gardu & Sear Clay Whitmire, Cheyenne R					Carrier Tracking No(s):				COC No: 400-120288-41	339.1			
Client Contact:		man							State	of Origi	in:			Page:	
Steve Varsa Company:	Phone: 303 291	PWSID:	Cheyer	nne.Whi	tmire@)et.euro	ofinsus.	com						Page 1 of 1 Job #:	
Stantec Consulting Services Inc						1	Analys	sis Re	eques	sted				000 #.	
Address: 11311 Aurora Avenue	Due Date Requested:	d												Preservation Co	odes: M - Hexane
City:	TAT Requested (days):	<u> </u>												A - HCL B - NaOH	N - None
Des Moines State, Zip:	- Starc	lard												C - Zn Acetate D - Nitric Acid	0 - AsNaO2 P - Na2O4S
IA, 50322-7904		Δ Yes Δ No						ļ						E - NaHSO4 F - MeOH	Q - Na2SO3 R - Na2S2O3
Phone:	PO #: WD1040036								L+ .	1				G - Amchlor H - Ascorbic Acid	S - H2SO4 T - TSP Dodecahydrat
Email:	WO #:		N				1		04;		I			I - Ice	U - Acetone V - MCAA
steve.varsa@stantec.com Project Name:	Canada Mesa #2_E Project #:	ERG_ARF_04-26-2	023					R	<i>IR</i>	Ŧ	1		lers	J - DI Water K - EDTA	W - pH 4-5 Y - Trizma
Canada Mesa #2.00	40015823		2 e	3			400		^{>} coc	•			ntair	L - EDA	Z - other (specify)
site anada Mesa	SSOW#:		amp	260	- 8260			-<3811	70-	1			of co	Contraction Contra	
			Matrix	- XE					~°C				ber	8	
		Sample Type	(W=water,	- BTEX	- BTEX								Total Number		
		ample (C=comp,	S=solid, O=waste/oil,	8260D	8260D								otal		((b) - (-
Sample Identification			BT=Tissue, A=Air)		N N	100	10 100			-				- Special I	nstructions/Note:
			Water -	1 1		2000	1950 - 20 19-306 - 1	1996296 1999						TripBI	a t
Trip Blank		50					++					_		ינוקוזו	une
DUPOI		155 G	Water -	+ 2	++		++								
MW-2P	5 20 23 9	100 G	Water _	+-	2	+		_					- 2	Unprese	erved
mw-3R	5 20 23 8	350 G	Water -	+2	<u>'</u> -+								- 2		
MW-S	1 1 1 1	330 G	Water _	-2	. -		+-+						- 2		
mw-8		55 G	Water -	- 2					_					2	
mw-II		335 G-	Water -	+2	1-1								-	2	
~			Water												
												+		8	
							+-+	+	-			_			
											\Rightarrow	+-			
Possible Hazard Identification		Г-]										oles ar		ned longer than	
Von-Hazard Flammable Skin Irritant eliverable Requested: I, II, III, IV, Other (specify)	Poison B Unknow	n Radiologica	a/			To Clie	ent QC Red	Z	Dispo	sal By	Lab		Arc	chive For	Months
											- (0) -				
Empty Kit Relinquished by:	Da	ite:		ime:						Method	d of Ship				
Reliaquished by:	SZZZZ	1200	Company Stante	?	ceived by	1_							3/2	13 910	Company
Removished by:	Date/Time:		Company	Re	ceived by	y:					Da	e/Time:	/		Company
Relinquished by:	Date/Time:		Company	Re	ceived by	y:					Da	te/Time:			Company
Outbody Social Interation Outbody Social Name					.1			1.01				80		11 4	
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No				Co	oler Tem	perature((s) °C and	Uther I	Remarks	: /	1, 8	12	-1	TR 8	
						·							-		Ver: 06/08/2021

12

ω

6/13/2023

Job Number: 400-238117-1 SDG Number: Canada Mesa

List Source: Eurofins Pensacola

Login Sample Receipt Checklist

Client: Stantec Consulting Services Inc

Login Number: 238117 List Number: 1 Creator: Perez, Trina M

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	N/A		8
The cooler or samples do not appear to have been compromised or tampered with.	True		9
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		10
Cooler Temperature is recorded.	True	1.8°C IR-8	
COC is present.	True		11
COC is filled out in ink and legible.	True		12
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		13
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00 Job ID: 400-238117-1 SDG: Canada Mesa

Laboratory: Eurofins Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Alabama	State	40150	06-30-23	
ANAB	ISO/IEC 17025	L2471	02-22-26	
Arkansas DEQ	State	88-0689	09-01-23	
California	State	2510	06-30-23	
Florida	NELAP	E81010	06-30-23	
Georgia	State	E81010(FL)	06-30-23	
Illinois	NELAP	200041	10-09-23	
Kansas	NELAP	E-10253	10-31-23	
Kentucky (UST)	State	53	06-30-23	
_ouisiana (All)	NELAP	30976	06-30-23	
ouisiana (DW)	State	LA017	12-31-23	
Maryland	State	233	09-30-23	
Michigan	State	9912	06-30-23	
North Carolina (WW/SW)	State	314	12-31-23	
Dklahoma	NELAP	9810	08-31-23	
Pennsylvania	NELAP	68-00467	01-31-24	
South Carolina	State	96026	06-30-23	
Tennessee	State	TN02907	06-30-23	
Texas	NELAP	T104704286	09-30-23	
JS Fish & Wildlife	US Federal Programs	A22340	06-30-23	
JSDA	US Federal Programs	P330-21-00056	05-17-24	
JSDA	US Federal Programs	FLGNV23001	01-08-26	
/irginia	NELAP	460166	06-14-23	
West Virginia DEP	State	136	03-31-24	

6/13/2023

4

Page 152 of 211

Environment Testing

Page 153 of 211

PREPARED FOR

Attn: Steve Varsa Stantec Consulting Services Inc 11311 Aurora Avenue Des Moines, Iowa 50322-7904 Generated 11/30/2023 2:43:20 PM

ANALYTICAL REPORT

JOB DESCRIPTION

Canada Mesa #2.00

JOB NUMBER

400-246743-1

Eurofins Pensacola 3355 McLemore Drive Pensacola FL 32514

Eurofins Pensacola

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 11/30/2023 2:43:20 PM

Authorized for release by Cheyenne Whitmire, Project Manager II Cheyenne.Whitmire@et.eurofinsus.com (850)471-6222

2

Table of Contents

Cover Page	1
Table of Contents	3
Detection Summary	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	18
Chronicle	19
QC Association	22
QC Sample Results	23
Chain of Custody	25
Receipt Checklists	26
Certification Summary	27

		Detect	tion Sum	nmary	/		
Client: Stantec Consulting Services Project/Site: Canada Mesa #2.00	Inc					Job ID:	400-246743-1
Client Sample ID: MW-2R						Lab Sample ID: 40	0-246743-1
No Detections.							
Client Sample ID: MW-3R						Lab Sample ID: 40	0-246743-2
No Detections.							
Client Sample ID: MW-7						Lab Sample ID: 40	0-246743-3
No Detections.							
Client Sample ID: MW-5						Lab Sample ID: 40	0-246743-4
No Detections.							
Client Sample ID: MW-6						Lab Sample ID: 40	0-246743-5
No Detections.							
Client Sample ID: MW-8						Lab Sample ID: 40	0-246743-6
Analyte		Qualifier	RL	MDL	Unit	Dil Fac D Method	Ргер Туре
Ethylbenzene	4.3 14		1.0		ug/L	1 8260D 1 8260D	Total/NA Total/NA
Xylenes, Total			10		ug/L		
Client Sample ID: MW-10						Lab Sample ID: 40	0-246743-7
No Detections.							
Client Sample ID: MW-11						Lab Sample ID: 40	0-246743-8
No Detections.							
Client Sample ID: MW-12						Lab Sample ID: 40	0-246743-9
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method	Ргер Туре
Ethylbenzene	1.0		1.0		ug/L	1 8260D	Total/NA
Client Sample ID: DUP-01						Lab Sample ID: 400)-246743-10
No Detections.							
Client Sample ID: TB-01						Lab Sample ID: 400)-246743-11
No Detections.							

This Detection Summary does not include radiochemical test results.

Eurofins Pensacola

Method Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Job ID: 400-246743-1

				- 3
Method	Method Description	Protocol	Laboratory	
8260D	Volatile Organic Compounds by GC/MS	SW846	EET PEN	_
5030C	Purge and Trap	SW846	EET PEN	

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins Pensacola

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Job	ID: 400-246743-	1
JOD	ID. 400-240743-	I.

		Madala		Builded
Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-246743-1	MW-2R	Water	11/12/23 09:10	11/14/23 08:56
400-246743-2	MW-3R	Water	11/12/23 09:17	11/14/23 08:56
400-246743-3	MW-7	Water	11/12/23 09:35	11/14/23 08:56
400-246743-4	MW-5	Water	11/12/23 09:00	11/14/23 08:56
400-246743-5	MW-6	Water	11/12/23 09:26	11/14/23 08:56
400-246743-6	MW-8	Water	11/12/23 09:44	11/14/23 08:56
400-246743-7	MW-10	Water	11/12/23 09:51	11/14/23 08:56
400-246743-8	MW-11	Water	11/12/23 09:58	11/14/23 08:56
400-246743-9	MW-12	Water	11/12/23 10:04	11/14/23 08:56
400-246743-10	DUP-01	Water	11/12/23 12:00	11/14/23 08:56
400-246743-11	TB-01	Water	11/12/23 08:30	11/14/23 08:56

Released to Imaging: 5/2/2024 4:22:08 PM

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-2R Date Collected: 11/12/23 09:10 **Date Received: 11**

Job ID: 400-246743-1

Lab Sample ID: 400-246743-1

Matrix: Water

Page 159 of 211

Method: SW846 8260D -	volatile Organic	Compound	ds by GC/MS						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<1.0		1.0	ug/L			11/17/23 17:50	1	
Ethylbenzene	<1.0		1.0	ug/L			11/17/23 17:50	1	
Toluene	<1.0		1.0	ug/L			11/17/23 17:50	1	2
Xylenes, Total	<10		10	ug/L			11/17/23 17:50	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	Ī
4-Bromofluorobenzene	110		72 - 130				11/17/23 17:50	1	
Dibromofluoromethane	113		75 - 126				11/17/23 17:50	1	
Toluene-d8 (Surr)	100		64 - 132				11/17/23 17:50	1	

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-3R Date Collected: 11/12/23 09:17 Date Received: 11/14/23 08:56

|--|

Eurofins Pensacola

Job ID: 400-246743-1

Lab Sample ID: 400-246743-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			11/21/23 19:27	
Ethylbenzene	<1.0		1.0		ug/L			11/21/23 19:27	
Toluene	<1.0		1.0		ug/L			11/21/23 19:27	
Xylenes, Total	<10		10		ug/L			11/21/23 19:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene	111		72 - 130			-		11/21/23 19:27	
Dibromofluoromethane	87		75 - 126					11/21/23 19:27	
Toluene-d8 (Surr)	106		64 - 132					11/21/23 19:27	

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-7 Date Collected: 11/12/23 09:35 Date Received: 11/14/23 08:56

Eurofins Pensacola

Lab Sample ID: 400-246743-3

Matrix: Water

Job ID: 400-246743-1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/21/23 22:47	1
Ethylbenzene	<1.0		1.0	ug/L			11/21/23 22:47	1
Toluene	<1.0		1.0	ug/L			11/21/23 22:47	1
Xylenes, Total	<10		10	ug/L			11/21/23 22:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		72 - 130				11/21/23 22:47	1
Dibromofluoromethane	88		75 - 126				11/21/23 22:47	1
Toluene-d8 (Surr)	108		64 - 132				11/21/23 22:47	1

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-5 Date Collected: 11/12/23 09:00 Date Received: 11/14/23 08:56

Released to Imaging: 5/2/2024 4:22:08 PM

Eurofins Pensacola

Job ID: 400-246743-1

Lab Sample ID: 400-246743-4

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			11/21/23 23:12	1
Ethylbenzene	<1.0		1.0		ug/L			11/21/23 23:12	1
Toluene	<1.0		1.0		ug/L			11/21/23 23:12	1
Xylenes, Total	<10		10		ug/L			11/21/23 23:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	112		72 - 130			-		11/21/23 23:12	1
Dibromofluoromethane	89		75 - 126					11/21/23 23:12	1
Toluene-d8 (Surr)	107		64 - 132					11/21/23 23:12	1

RL

1.0

1.0

1.0

10

Limits

72 - 130

75 - 126

64 - 132

MDL Unit

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Result Qualifier

<1.0

<1.0

<1.0

<10

%Recovery Qualifier

108

89

106

Client Sample ID: MW-6 Date Collected: 11/12/23 09:26 Date Received: 11/14/23 08:56

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

4-Bromofluorobenzene

Dibromofluoromethane

Toluene-d8 (Surr)

Surrogate

Dil Fac

1

1

1

1

1

1

Job ID: 400-246743-1

Matrix: Water

Lab Sample ID: 400-246743-5

Analyzed

11/21/23 23:37

11/21/23 23:37

11/21/23 23:37

11/21/23 23:37

11/21/23 23:37

11/21/23 23:37

Client: Stantec Consulting Services Inc

Client Sample ID: MW-8 Date Collected: 11/12/23 09:44 Date Received: 11/14/23 08:56

11/30/2023

Project/Site: Canada Mesa #2.00

Method: SW846 8260D - Volatile Organic Compo	unds by GC/MS
method. Offorto 0200D - Volatile Organic Compe	

	Torallio organio								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			11/22/23 00:03	1
Ethylbenzene	4.3		1.0		ug/L			11/22/23 00:03	1
Toluene	<1.0		1.0		ug/L			11/22/23 00:03	1
Xylenes, Total	14		10		ug/L			11/22/23 00:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	115		72 - 130					11/22/23 00:03	1
Dibromofluoromethane	88		75 - 126					11/22/23 00:03	1
Toluene-d8 (Surr)	103		64 - 132					11/22/23 00:03	1

Page 12 of 27

5

6

Job ID: 400-246743-1

Lab Sample ID: 400-246743-6

Matrix: Water

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-10 Date Collected: 11/12/23 09:51 Date Received: 11/14/23 08:56

Page 165 of 211

Job ID: 400-246743-1

Lab Sample ID: 400-246743-7

Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			11/22/23 00:28	1
Ethylbenzene	<1.0		1.0		ug/L			11/22/23 00:28	1
Toluene	<1.0		1.0		ug/L			11/22/23 00:28	1
Xylenes, Total	<10		10		ug/L			11/22/23 00:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	112		72 - 130					11/22/23 00:28	1
Dibromofluoromethane	89		75 - 126					11/22/23 00:28	1
Toluene-d8 (Surr)	105		64 - 132					11/22/23 00:28	1

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-11 Date Collected: 11/12/23 09:58 Date Received: 11/14/23 08:56

Eurofins	Pensacola

Job ID: 400-246743-1

Lab Sample ID: 400-246743-8 Matrix: Water

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			11/22/23 00:53	1
Ethylbenzene	<1.0		1.0		ug/L			11/22/23 00:53	1
Toluene	<1.0		1.0		ug/L			11/22/23 00:53	1
Xylenes, Total	<10		10		ug/L			11/22/23 00:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	109		72 - 130			-		11/22/23 00:53	1
Dibromofluoromethane	90		75 - 126					11/22/23 00:53	1
Toluene-d8 (Surr)	105		64 - 132					11/22/23 00:53	1

RL

1.0

1.0

1.0

10

Limits

72 - 130

75 - 126

64 - 132

MDL Unit

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Method: SW846 8260D - Volatile Organic Compounds by GC/MS

Result Qualifier

<1.0

1.0

<1.0

<10

%Recovery Qualifier

111

89

103

Client Sample ID: MW-12 Date Collected: 11/12/23 10:04 Date Received: 11/14/23 08:56

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

4-Bromofluorobenzene

Dibromofluoromethane

Toluene-d8 (Surr)

Surrogate

1

1

Job ID: 400-246743-1

Lab Sample ID: 400-246743-9

Analyzed

11/22/23 01:18

11/22/23 01:18

11/22/23 01:18

11/22/23 01:18

Analyzed

11/22/23 01:18

11/22/23 01:18

11/22/23 01:18

Matrix: Water

Released to Imaging: 5/2/2024 4:22:08 PM

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: DUP-01 Date Collected: 11/12/23 12:00 Date Received: 11/14/23 08:56

Job ID: 400-246743-1

Lab Sample ID: 400-246743-10

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			11/22/23 01:43	1
Ethylbenzene	<1.0		1.0		ug/L			11/22/23 01:43	1
Toluene	<1.0		1.0		ug/L			11/22/23 01:43	1
Xylenes, Total	<10		10		ug/L			11/22/23 01:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	111		72 - 130			-		11/22/23 01:43	1
Dibromofluoromethane	91		75 - 126					11/22/23 01:43	1
Toluene-d8 (Surr)	105		64 - 132					11/22/23 01:43	1

11/30/2023

Eurofins Pensacola

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: TB-01 Date Collected: 11/12/23 08:30 Date Received: 11/14/23 08:56

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			11/21/23 22:22	1
Ethylbenzene	<1.0		1.0		ug/L			11/21/23 22:22	1
Toluene	<1.0		1.0		ug/L			11/21/23 22:22	1
Xylenes, Total	<10		10		ug/L			11/21/23 22:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	108		72 - 130			-		11/21/23 22:22	1
Dibromofluoromethane	87		75 - 126					11/21/23 22:22	1
Toluene-d8 (Surr)	107		64 - 132					11/21/23 22:22	1

Job ID: 400-246743-1

Matrix: Water

5 6

Lab Sample ID: 400-246743-11

Definitions/Glossary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Glossary Abbreviation

¤

D: 3/20/2024 2:14:26 PM Page 170 of 2	11				
Definitions/Glossary	1				
c Consulting Services Inc Job ID: 400-246743- Canada Mesa #2.00					
These commonly used abbreviations may or may not be present in this report.	3				
Listed under the "D" column to designate that the result is reported on a dry weight basis	Δ				

%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Lab Chronicle

Job ID: 400-246743-1

Matrix: Water

Lab Sample ID: 400-246743-1

Project/Site: Canada Mesa #2.00 Client Sample ID: MW-2R Date Collected: 11/12/23 09:10

Client: Stantec Consulting Services Inc

ID: MW-2R	
1/12/23 09:10	
1/14/23 08:56	

Date Received	d: 11/14/23 0	8:56								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	650761	11/17/23 17:50	WPD	EET PEN
lient Samp	ole ID: MW	-3R					La	b Sample I	D: 400-2	246743
Date Collected										trix: Wat
Date Received	d: 11/14/23 0	8:56								
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	651377	11/21/23 19:27	BPO	EET PEN
Client Samp	ole ID: MW	-7					La	b Sample I	D: 400-2	246743
Date Collected										trix: Wat
Date Received										
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	651377	11/21/23 22:47	BPO	EET PEN
Client Samp	ole ID: MW	-5					La	b Sample I	D: 400-	246743
Date Collected										trix: Wat
Date Received									ina	that wat
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	651377	11/21/23 23:12	-	EET PEN
Client Samp	ole ID: MW	/-6					La	b Sample I	D: 400-	246743
Date Collected										trix: Wat
Date Received										
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	651377	11/21/23 23:37	BPO	EET PEN
liont Sam	ole ID: MW	-8					La	b Sample I	D: 400-2	246743.
Shent Samp										
Date Collected										trix: Wat
Date Collected										trix: Wat
Date Collected Date Received				Dil	Initial	Final	Batch	Prepared		trix: Wat
Date Collected	d: 11/14/23 0	8:56	Run	Dil Factor	Initial Amount	Final Amount				Lab
Date Collected Date Received	d: 11/14/23 0 Batch	8:56 Batch	Run				Batch	Prepared	Ма	Lab
Date Collected Date Received Prep Type Total/NA	d: 11/14/23 0 Batch Type Analysis	8:56 Batch Method 8260D	Run	Factor	Amount	Amount	Batch Number 651377	Prepared or Analyzed	Ma Analyst BPO	Lab EET PEN
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	d: 11/14/23 0 Batch Type Analysis Die ID: MW d: 11/12/23 0	8:56 Batch Method 8260D 7-10 9:51	Run	Factor	Amount	Amount	Batch Number 651377	Prepared or Analyzed 11/22/23 00:03	Ma Analyst BPO D: 400-2	Lab EET PEN 246743
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	d: 11/14/23 0 Batch Type Analysis Die ID: MW d: 11/12/23 0	8:56 Batch Method 8260D 7-10 9:51	Run	Factor	Amount	Amount	Batch Number 651377	Prepared or Analyzed 11/22/23 00:03	Ma Analyst BPO D: 400-2	Lab EET PEN 246743
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	d: 11/14/23 0 Batch Type Analysis Die ID: MW d: 11/12/23 0	8:56 Batch Method 8260D 7-10 9:51	Run	Factor	Amount	Amount	Batch Number 651377	Prepared or Analyzed 11/22/23 00:03	Ma Analyst BPO D: 400-2	Lab EET PEN 246743
Date Collected Date Received Prep Type	d: 11/14/23 0 Batch Type Analysis Die ID: MW d: 11/12/23 0 d: 11/14/23 0	8:56 Batch Method 8260D 7-10 9:51 8:56	Run Run	Factor 1	Amount 5 mL	Amount 5 mL	Batch Number 651377 La	Prepared or Analyzed 11/22/23 00:03 b Sample I	Ma Analyst BPO D: 400-2	EET PEN

Eurofins Pensacola

Released to Imaging: 5/2/2024 4:22:08 PM

Lab Chronicle

Job ID: 400-246743-1

Matrix: Water

4 5

Lab Sample ID: 400-246743-8

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW-11
Date Collected: 11/12/23 09:58
Date Received: 11/14/23 08:56

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	- 8260D		1	5 mL	5 mL	651377	11/22/23 00:53	BPO	EET PEN
-				-					-	
Client Samp Date Collected Date Received	1: 11/12/23 1	0:04					La	b Sample I		246743- trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	651377	11/22/23 01:18	BPO	EET PEN
Client Samp Date Collected Date Received	1: 11/12/23 1	2:00					Lab	Sample ID		46743-1 trix: Wate
- -	Batch	Batch		Dil	Initial	Final	Batch	Prepared	A	1.1
Prep Type Total/NA	Type Analysis	_ Method 8260D	Run	Factor	Amount 5 mL	Amount 5 mL	- Number 651377	or Analyzed 11/22/23 01:43	Analyst BPO	EET PEN
				· ·						
Client Samp Date Collected Date Received	1: 11/12/23 0	8:30					Lau	Sample ID		trix: Wate
-										
	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 8260D	Run	Dil Factor 1	Initial Amount 5 mL	Final Amount 5 mL	Number 651377	or Analyzed 11/21/23 22:22	Analyst BPO	Lab EET PEN
	Type Analysis Die ID: Met I: N/A	Method 8260D	Run	Factor	Amount	Amount	Number 651377	or Analyzed	вро IB 400-	EET PEN
Total/NA Client Samp Date Collected	Type Analysis Die ID: Met I: N/A	Method 8260D	<u>Run</u>	Factor	Amount	Amount	Number 651377	or Analyzed 11/21/23 22:22	вро IB 400-	EET PEN
Total/NA Client Samp Date Collected	Type Analysis	Method 8260D hod Blank	Run Run	Factor 1	Amount 5 mL	Amount 5 mL	Number 651377 Lab Sa	or Analyzed 11/21/23 22:22	вро IB 400-	EET PEN
Total/NA Client Samp Date Collected Date Received	Type Analysis DIE ID: Met 1: N/A 1: N/A Batch	Method 8260D hod Blank Batch		Factor 1 Dil	Amount 5 mL	Amount 5 mL	Number 651377 Lab Sa Batch	or Analyzed 11/21/23 22:22 ample ID: N Prepared	вро IB 400- Ма	EET PEN 650761/ trix: Wate
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	Type Analysis Die ID: Met I: N/A I: N/A Batch Type Analysis Die ID: Met I: N/A	Method 8260D hod Blank Batch Method 8260D	Run	Factor 1 Dil Factor	Amount 5 mL Initial Amount	Amount 5 mL Final Amount	Number 651377 Lab Sa Batch Number 650761	or Analyzed 11/21/23 22:22 ample ID: N Prepared or Analyzed	BPO BPO Ma Analyst WPD B 400-	EET PEN 650761/ trix: Wate EET PEN 651377/
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	Type Analysis Die ID: Met I: N/A I: N/A Batch Type Analysis Die ID: Met I: N/A	Method 8260D hod Blank Batch Method 8260D	Run	Factor 1 Dil Factor	Amount 5 mL Initial Amount	Amount 5 mL Final Amount	Number 651377 Lab Sa Batch Number 650761	or Analyzed 11/21/23 22:22 ample ID: N Prepared or Analyzed 11/17/23 12:53	BPO BPO Ma Analyst WPD B 400-	EET PEN 650761/ trix: Wate EET PEN 651377/
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	Type Analysis DIE ID: Met I: N/A I: N/A Batch Type Analysis DIE ID: Met I: N/A I: N/A	Method 8260D hod Blank Batch Method 8260D hod Blank	Run	Factor 1 Dil Factor 1	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount 5 mL	Number 651377 Lab Sa Batch Number 650761 Lab Sa	or Analyzed 11/21/23 22:22 ample ID: N Prepared or Analyzed 11/17/23 12:53 ample ID: N	BPO BPO Ma Analyst WPD B 400-	EET PEN 650761/4 trix: Wate Lab EET PEN
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	Type Analysis DIE ID: Met I: N/A I: N/A Batch Type Analysis DIE ID: Met I: N/A I: N/A Batch	Method 8260D hod Blank Batch Method 8260D hod Blank Batch	Run	Factor 1 Dil Factor 1 Dil	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount 5 mL	Number 651377 Lab Sa Batch Number 650761 Lab Sa Batch	or Analyzed 11/21/23 22:22 ample ID: N Prepared or Analyzed 11/17/23 12:53 ample ID: N Prepared	BPO BPO Ma Analyst WPD B 400- Ma	EET PEN 650761/ trix: Wate EET PEN 651377/ trix: Wate Lab
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Prep Type Total/NA Client Samp Date Collected Date Collected	Type Analysis DIE ID: Met I: N/A Batch Type Analysis DIE ID: Met I: N/A Batch Type Analysis DIE ID: Lab	Method 8260D hod Blank Batch Method 8260D hod Blank Batch Method 8260D	Run	Factor 1 Dil Factor 1 Dil Factor	Amount 5 mL Initial Amount 5 mL Initial Amount	Amount 5 mL Final Amount 5 mL Final Amount 5 mL	Number 651377 Lab Sa Batch Number 650761 Lab Sa Batch Number 651377	or Analyzed 11/21/23 22:22 ample ID: N Prepared or Analyzed 11/17/23 12:53 ample ID: N Prepared or Analyzed	BPO BPO BPO Ma Analyst WPD B 400- Ma Analyst BPO 00-650	EET PEN 650761/ trix: Wate EET PEN 651377/ trix: Wate EET PEN 761/100
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Prep Type Total/NA Client Samp Date Collected Date Collected	Type Analysis DIE ID: Met I: N/A Batch Type Analysis DIE ID: Met I: N/A Batch Type Analysis DIE ID: Lab	Method 8260D hod Blank Batch Method 8260D hod Blank Batch Method 8260D	Run	Factor 1 Dil Factor 1 Dil Factor	Amount 5 mL Initial Amount 5 mL Initial Amount	Amount 5 mL Final Amount 5 mL Final Amount 5 mL	Number 651377 Lab Sa Batch Number 650761 Lab Sa Batch Number 651377	or Analyzed 11/21/23 22:22 ample ID: N Prepared or Analyzed 11/17/23 12:53 ample ID: N Prepared or Analyzed 11/21/23 18:37	BPO BPO BPO Ma Analyst WPD B 400- Ma Analyst BPO 00-650	EET PEN 650761/ trix: Wate EET PEN 651377/ trix: Wate EET PEN
Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type	Type Analysis DIE ID: Met N/A Batch Type Analysis DIE ID: Met N/A N/A Batch Type Analysis DIE ID: Lab SIE ID: Lab SIE N/A	Method 8260D hod Blank Batch Method 8260D hod Blank Batch Method 8260D Control Sa	Run	Factor 1 Dil Factor 1 Factor 1	Amount 5 mL Initial Amount 5 mL 5 mL	Amount 5 mL Final Amount 5 mL Final Amount 5 mL Lat	Number 651377 Lab Sa Batch Number 650761 Lab Sa Batch Number 651377 Sample	or Analyzed 11/21/23 22:22 ample ID: N Prepared or Analyzed 11/17/23 12:53 ample ID: N Prepared or Analyzed 11/21/23 18:37 e ID: LCS 4	BPO BPO BPO Ma Analyst WPD B 400- Ma Analyst BPO 00-650	EET PEN 650761/ trix: Wate EET PEN 651377/ trix: Wate EET PEN 761/100

Lab Chronicle

Job ID: 400-246743-1

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Lab Sample ID: LCS 400-651377/1001

Matrix: Water

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	651377	11/21/23 17:37	BPO	EET PEN
Client Sam	ple ID: MW	-3R					Lab Sa	ample ID: 4	00-2467	743-2 MS
Date Collecte	d: 11/12/23 0	9:17						-	Ma	trix: Water
Date Receive	d: 11/14/23 0	8: 56								
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260D		1	5 mL	5 mL	651377	11/21/23 20:42	BPO	EET PEN
Client Sam	ple ID: MW	-3R					Lab San	nple ID: 40	0-24674	3-2 MSD
Date Collecte	d: 11/12/23 0	9:17						-	Ma	trix: Water
Date Receive	d: 11/14/23 0	8:56								
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab

Laboratory References:

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Eurofins Pensacola

Page 21 of 27

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

GC/MS VOA

Analysis Batch: 650761

lient Sample ID IW-2R	Prep Type Total/NA	Matrix Water	Method	Prep Batch
 lethod Blank ab Control Sample	Total/NA Total/NA	Water Water	8260D 8260D	

Analysis Batch: 651377

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-246743-2	MW-3R	Total/NA	Water	8260D	
400-246743-3	MW-7	Total/NA	Water	8260D	
400-246743-4	MW-5	Total/NA	Water	8260D	
400-246743-5	MW-6	Total/NA	Water	8260D	
400-246743-6	MW-8	Total/NA	Water	8260D	
400-246743-7	MW-10	Total/NA	Water	8260D	
400-246743-8	MW-11	Total/NA	Water	8260D	
400-246743-9	MW-12	Total/NA	Water	8260D	
400-246743-10	DUP-01	Total/NA	Water	8260D	
400-246743-11	TB-01	Total/NA	Water	8260D	
MB 400-651377/3	Method Blank	Total/NA	Water	8260D	
LCS 400-651377/1001	Lab Control Sample	Total/NA	Water	8260D	
400-246743-2 MS	MW-3R	Total/NA	Water	8260D	
400-246743-2 MSD	MW-3R	Total/NA	Water	8260D	

Page 174 of 211

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 400-650761/3 **Matrix: Water**

Analysis Batch: 650761

Ν	IB MB							
Analyte Res	ult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene <	.0	1.0		ug/L			11/17/23 12:53	1
Ethylbenzene <	.0	1.0		ug/L			11/17/23 12:53	1
Toluene <	.0	1.0		ug/L			11/17/23 12:53	1
Xylenes, Total <	10	10		ug/L			11/17/23 12:53	1

	MB	MB	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	107		72 - 130
Dibromofluoromethane	110		75 - 126
Toluene-d8 (Surr)	103		64 - 132

Lab Sample ID: LCS 400-650761/1001 **Matrix: Water** Analysis Batch: 650761

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	53.7		ug/L		107	70 - 130
m-Xylene & p-Xylene	50.0	52.6		ug/L		105	70 - 130
o-Xylene	50.0	51.8		ug/L		104	70 - 130
Ethylbenzene	50.0	53.9		ug/L		108	70 - 130
Toluene	50.0	55.5		ug/L		111	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	105		72 - 130
Dibromofluoromethane	106		75 - 126
Toluene-d8 (Surr)	103		64 - 132
1,2-Dichloroethane-d4 (Surr)	111		67 - 134

Lab Sample ID: MB 400-651377/3 Matrix: Water Analysis Batch: 651377

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0		ug/L			11/21/23 18:37	1
Ethylbenzene	<1.0		1.0		ug/L			11/21/23 18:37	1
Toluene	<1.0		1.0		ug/L			11/21/23 18:37	1
Xylenes, Total	<10		10		ug/L			11/21/23 18:37	1

	MB	MB			
Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene	110		72 - 130	11/21/23 18:37	1
Dibromofluoromethane	95		75 - 126	11/21/23 18:37	1
Toluene-d8 (Surr)	106		64 - 132	11/21/23 18:37	1

Lab Sample ID: LCS 400-651377/1001				Clie	nt Sar	nple ID	: Lab Control Sample
Matrix: Water							Prep Type: Total/NA
Analysis Batch: 651377							
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	45.2		ug/L		90	70 - 130

Eurofins Pensacola

Page 175 of 211

Job ID: 400-246743-1

Prep Type: Total/NA

Client Sample ID: Method Blank

Analyzed

11/17/23 12:53

11/17/23 12:53

11/17/23 12:53

Dil Fac

1

1

1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Type: Total/NA

Prepared

Released to Imaging: 5/2/2024 4:22:08 PM

5

10

Job ID: 400-246743-1

Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued) **Client Sample ID: Lab Control Sample**

Lab Sample ID: LCS 400-651377/1001 Matrix: Water

Analysis Batch: 651377								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
m-Xylene & p-Xylene	50.0	52.1		ug/L		104	70 - 130	
o-Xylene	50.0	48.9		ug/L		98	70 - 130	
Ethylbenzene	50.0	49.9		ug/L		100	70 - 130	
Toluene	50.0	48.5		ug/L		97	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	109		72 - 130
Dibromofluoromethane	97		75 - 126
Toluene-d8 (Surr)	105		64 - 132
1,2-Dichloroethane-d4 (Surr)	124		67 - 134

Lab Sample ID: 400-246743-2 MS **Matrix: Water**

Analysis Batch: 651377

Sam	ole Sample	Spike	MS	MS				%Rec
Analyte Res	ult Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene <	1.0	50.0	47.7		ug/L		95	56 - 142
m-Xylene & p-Xylene <	5.0	50.0	46.8		ug/L		94	57 - 130
o-Xylene <	5.0	50.0	45.4		ug/L		91	61 - 130
Ethylbenzene <	1.0	50.0	44.7		ug/L		89	58 - 131
Toluene <	1.0	50.0	48.1		ug/L		96	65 - 130

	MS	MS		
Surrogate	%Recovery	Qualifier	Limits	
4-Bromofluorobenzene	108		72 - 130	
Dibromofluoromethane	80		75 - 126	
Toluene-d8 (Surr)	104		64 - 132	
1,2-Dichloroethane-d4 (Surr)	109		67 - 134	

Lab Sample ID: 400-246743-2 MSD **Matrix: Water** Analysis Batch: 651377

Analysis Batom seren											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	55.6		ug/L		111	56 - 142	15	30
m-Xylene & p-Xylene	<5.0		50.0	47.4		ug/L		95	57 - 130	1	30
o-Xylene	<5.0		50.0	47.1		ug/L		94	61 - 130	4	30
Ethylbenzene	<1.0		50.0	45.9		ug/L		92	58 - 131	3	30
Toluene	<1.0		50.0	52.7		ug/L		105	65 - 130	9	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	110		72 - 130								
Dibromofluoromethane	81		75 - 126								
Toluene-d8 (Surr)	104		64 - 132								
1,2-Dichloroethane-d4 (Surr)	111		67 - 134								

Client Sample ID: MW-3R Prep Type: Total/NA

Eurofins Pensacola

Eurofins Pensacola					
3355 McLemore Drive Pensacola, FL 32514	Chain of Cus	stody Red	cord		eurofins Environment Testing
Phone: 850-474-1001 Fax: 850-478-2671		-		Ne a	
Client Information	Sampler SRC/ERB		e, Cheyenne R	400-246743 COC	COC № 400-124044-41339.1
Client Contact: Steve Varsa	Phone 515-253-08	30 ^{E-Mail.} Chevenr	ne.Whitmire@et.eurofinsus.com	400-246740	Page 1 of Z ERB
Company.	PWSID				Job #
Stantec Consulting Services Inc Address	Due Date Requested:	1000	Analysis Rec	luested	Preservation Codes:
11311 Aurora Avenue	Due Date Requested: STD				M - Hexane
City ⁻ Des Moines	TAT Requested (days):				B - NaOH N - None C - Zn Acetate O - AsNaO2
State, Zip					D - Nitric Acid D - Na204S
IA, 50322-7904 Phone	Compliance Project: △ Yes △ No PO #:				F - MeOH S - H2SO4
	WD1040036				G - Amchlor H - Ascorbic Acid U - Acetone
Email steve.varsa@stantec.com	wo <i>#</i> : Canada Mesa #2_ERG_ARF_10_24_2	2023		\mathbf{F}	V - MCAA
Project Name	Project #:	Xes.			K - EDTA V - PH 4-5 Y - Trizma
Canada Mesa #2.00	40015823 ssow#				Z - other (specify)
	550W#	Sam	8260		
	Sample	Matrix 2	- MIS/MIS		
	Туре	(W=water, S=solid,			
Sample Identification	Sample Date Sample (C=comp, Sample Date Time G=grab)	O=waste/oil,	8260D 8260D		Special Instructions/Note:
Gample Identification		BT=Tissue, A=Air) 亚 ation Code: X			Special instructions/Note:
mw-2R	11/12/2003 0410 (2	Water 🚺			
mw-3R	11/12/2013 0917 (2				
		· · · · · · · · · · · · · · · · · · ·	┝━╋╱┋╋╼╍╋╼╍╏╴╋╼╍┫╴╋╼╍╸		
mw-7	IV12/2023 0935 G		NX		
mw-5	1/12/2023 0900 6	Water 🚺	N X		
mw-6	11/12/2023 0926 G	Water 🚺		┟╌┽╌┼╼┼╼┼╸╎	
mw-8	1/12/2023 0944 6	Water N			
MW-10	1/12/2023 0951 1/2	Water //	MX		
mw-11	11/12/2023 0458 6	Water V			
mw-12	11/12/2023 1004 G	Water 1/	NX		
DIAP = DI	1/12/2023 12	Water λ/			
TR = AI	1/12/2023 0830 6	Water V	W X		
Possible Hazard Identification	1012/2003 0030 0		Sample Disposal (A fee may be a	seased if samples are retained	ined langer than 1 month)
	Poison B Unknown Radiologica				rchive For Months
Deliverable Requested: I, II, III, IV, Other (specify)			Special Instructions/QC Requirement		
Empty Kit Relinquished by:	Date.	Tirr	ne.	Method of Shipment:	
Relinquished by:	Date/Time / 2023 1250	Company	Received by:	Date/Time.	23 856 Company
Relinquished by	Daté/Time	Company	Received by:	Date/Time	Company
Relinquished by	Date/Time	Company	Received by	Date/Time	Company
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No		<u> </u>	Cooler Temperature(s) °C and Other Re		KRK
				0.00	Ver: 06/08/2021

_

11/30/2023

• ____

Received by OCD: 3/20/2024 2:14:26 PM

Job Number: 400-246743-1

List Source: Eurofins Pensacola

Login Sample Receipt Checklist

Client: Stantec Consulting Services Inc

Login Number: 246743 List Number: 1 Creator: Roberts, Alexis J

Login Number: 246/43			List Source: Eurofins Pensacola	
List Number: 1 Creator: Roberts, Alexis J				5
Question	Answer	Comment		6
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td> <td></td>	N/A			
The cooler's custody seal, if present, is intact.	N/A			
Sample custody seals, if present, are intact.	N/A			8
The cooler or samples do not appear to have been compromised or tampered with.	True			9
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True	0.0°C IR8		
COC is present.	True			
COC is filled out in ink and legible.	True			10
COC is filled out with all pertinent information.	True			12
Is the Field Sampler's name present on COC?	True			13
There are no discrepancies between the containers received and the COC.	True			
Samples are received within Holding Time (excluding tests with immediate HTs)	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified.	N/A			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Residual Chlorine Checked.	N/A			

Authority Alabama ANAB Arkansas DEQ California Florida Georgia Illinois Kansas Kentucky (UST) Louisiana (All) Louisiana (DW) North Carolina (WW/SW)

Oklahoma Pennsylvania South Carolina Tennessee Texas

USDA

USDA

Virginia

US Fish & Wildlife

West Virginia DEP

West Virginia DEP

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Laboratory: Eurofins Pensaco

All accreditations/certifications held by this labor

US Federal Programs

NELAP

State

State

Program	Identification Number	Expiration Date	
State	40150	06-30-24	
ISO/IEC 17025	L2471	02-22-26	5
State	88-00689	08-01-24	
State	2510	06-30-24	
NELAP	E81010	06-30-24	
State	E81010(FL)	06-30-24	
NELAP	200041	10-09-24	
NELAP	E-10253	10-31-24	8
State	53	06-30-24	Ŭ
NELAP	30976	06-30-24	Q
State	LA017	12-31-23	3
State	314	12-31-23	
NELAP	9810	08-31-24	
NELAP	68-00467	01-31-24	
State	96026	06-30-24	
State	TN02907	06-30-24	
NELAP	T104704286	09-30-24	
US Federal Programs	A22340	06-30-24	_
US Federal Programs	P330-21-00056	05-17-24	13

01-08-26

06-14-24

03-31-24

03-31-24

FLGNV23001

460166

136

136

Page 179 of 211

Job ID: 400-246743-1

Eurofins Pensacola

APPENDIX L

Soil Analytical Lab Reports

Environment Testing

Page 181 of 211

ANALYTICAL REPORT

PREPARED FOR

Attn: Steve Varsa Stantec Consulting Services Inc 11311 Aurora Avenue Des Moines, Iowa 50322-7904 Generated 8/15/2023 3:04:21 PM

JOB DESCRIPTION

Canada Mesa #2.00

JOB NUMBER

400-241285-1

Eurofins Pensacola 3355 McLemore Drive Pensacola FL 32514

See page two for job notes and contact information.

Eurofins Pensacola

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 8/15/2023 3:04:21 PM

Authorized for release by Isabel Enfinger, Project Manager I <u>isabel.enfinger@et.eurofinsus.com</u> Designee for Cheyenne Whitmire, Project Manager II <u>Cheyenne.Whitmire@et.eurofinsus.com</u> (850)471-6222

8/15/2023

Page 183 of 211

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
	13
Chronicle	14
QC Association	20
QC Sample Results	23
Chain of Custody	28
-	29
Certification Summary	30
-	

Case Narrative

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Job ID: 400-241285-1

Laboratory: Eurofins Pensacola

Narrative

Job Narrative 400-241285-1

Comments

No additional comments.

Receipt

The samples were received on 8/1/2023 8:52 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.3° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

HPLC/IC

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC VOA

Method 8015C: The following samples were diluted because the base dilution for methanol preserved soil analysis is 1:50: MW12 (22FT) (400-241285-1), MW12 (35FT) (400-241285-2), SB6 (15FT) (400-241285-3), SB6 (35FT) (400-241285-4) and TW1 (33FT) (400-241285-5).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8015C: Due to the high concentration of Diesel Range Organics (DRO), the matrix spike / matrix spike duplicate (MS/MSD) for preparation batch 400-635581 and analytical batch 400-635766 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 400-241285-1

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW12 (22FT)

Released to Imaging: 5/2/2024 4:22:08 PM

This Detection Summary does not include radiochemical test results.

Job ID: 400-241285-1

Lab Sample ID: 400-241285-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	100		20		mg/Kg	1	¢	300.0	Soluble
Client Sample ID: MW12 (35FT)					Lab Sa	am	ple ID: 4	00-241285-2
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Gasoline Range Organics (GRO) C6C10	31		5.7		mg/Kg	50	 	8015C	Total/NA
Diesel Range Organics (DRO)	12		5.2		mg/Kg	1	₽	8015C	Total/NA
Client Sample ID: SB6 (15	SFT)					Lab Sa	am	ple ID: 4	00-241285-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	28		20		mg/Kg	1	¢	300.0	Soluble
Client Sample ID: SB6 (35	SFT)					Lab Sa	am	ple ID: 4	00-241285-4
No Detections.									
Client Sample ID: TW1 (3	3FT)					Lab Sa	am	ple ID: 4	00-241285-
No Detections.									

Method Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Closed System Purge and Trap

Deionized Water Leaching Procedure

Job ID: 400-241285-1

EET PEN EET PEN

anada Mesa #2.00	-		2
Method Decemintion	Drete c cl	l alta vata va	= 3
Method Description	Protocol	Laboratory	
Volatile Organic Compounds by GC/MS	SW846	EET PEN	Α
Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)	SW846	EET PEN	
Diesel Range Organics (DRO) (GC)	EPA	EET PEN	5
Anions, Ion Chromatography	EPA	EET PEN	5
Percent Moisture	EPA	EET PEN	
Microwave Extraction	SW846	EET PEN	6

SW846

ASTM

Protocol References:

Method

8260D

8015C 8015C

300.0

3546

5035

Moisture

DI Leach

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Job ID: 400-241285-1

Lab Sample ID 400-241285-1	Client Sample ID MW12 (22FT)	Matrix Solid	Collected 07/25/23 14:10	Received
400-241285-2	MW12 (35FT)	Solid	07/25/23 15:15	08/01/23 08:52
400-241285-3	SB6 (15FT)	Solid	07/26/23 13:15	08/01/23 08:52
400-241285-4	SB6 (35FT)	Solid	07/26/23 14:45	08/01/23 08:52
400-241285-5	TW1 (33FT)	Solid	07/27/23 10:10	08/01/23 08:52

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW12 (22FT) Date Collected: 07/25/23 14:10 Date Received: 08/01/23 08:52

Job ID: 400-241285-1

Lab Sample ID: 400-241285-1

Matrix: Solid Percent Solids: 95.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.0057		0.0057		mg/Kg	\$	08/04/23 09:59	08/04/23 19:26	1
Ethylbenzene	<0.0057		0.0057		mg/Kg	☆	08/04/23 09:59	08/04/23 19:26	1
Toluene	<0.0057		0.0057		mg/Kg	☆	08/04/23 09:59	08/04/23 19:26	1
Xylenes, Total	<0.011		0.011		mg/Kg	¢	08/04/23 09:59	08/04/23 19:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130				08/04/23 09:59	08/04/23 19:26	1
Dibromofluoromethane	98		77 - 127				08/04/23 09:59	08/04/23 19:26	1
Toluene-d8 (Surr)	98		76 - 127				08/04/23 09:59	08/04/23 19:26	1
Method: SW846 8015C - Noi	nhalogenated	Organics	using GC/FI	D -Modif	ied (Gase	oline	Range Orgar	nics)	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) C6C10	<5.4		5.4		mg/Kg	¢	08/07/23 11:03	08/07/23 13:42	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	94		65 - 125				08/07/23 11:03	08/07/23 13:42	50
Method: EPA 8015C - Diesel	Range Organ	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	<5.2		5.2		mg/Kg	¢	08/02/23 13:15	08/03/23 21:44	1
Oil Range Organics (ORO)	<5.2		5.2		mg/Kg	¢	08/02/23 13:15	08/03/23 21:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	106		27 - 150				08/02/23 13:15	08/03/23 21:44	1
Method: EPA 300.0 - Anions	, Ion Chroma	tography	- Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	100		20		mg/Kg	¢		08/02/23 22:09	1
-									
General Chemistry Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
-	Result 95.5	Qualifier	RL	MDL	Unit %	<u>D</u>	Prepared	Analyzed 08/04/23 11:14	Dil Fac

Eurofins Pensacola

Released to Imaging: 5/2/2024 4:22:08 PM

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: MW12 (35FT) Date Collected: 07/25/23 15:15 Date Received: 08/01/23 08:52

Job ID: 400-241285-1

Lab Sample ID: 400-241285-2

Matrix: Solid Percent Solids: 94.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0050		0.0050		mg/Kg	☆	08/04/23 09:59	08/04/23 19:47	1
Ethylbenzene	<0.0050		0.0050		mg/Kg	₽	08/04/23 09:59	08/04/23 19:47	1
Toluene	<0.0050		0.0050		mg/Kg	₽	08/04/23 09:59	08/04/23 19:47	1
Xylenes, Total	<0.010		0.010		mg/Kg	₽	08/04/23 09:59	08/04/23 19:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		67 - 130				08/04/23 09:59	08/04/23 19:47	1
Dibromofluoromethane	99		77 - 127				08/04/23 09:59	08/04/23 19:47	1
Toluene-d8 (Surr)	100		76 - 127				08/04/23 09:59	08/04/23 19:47	1
Method: SW846 8015C - Nonh	nalogenated	Organics	using GC/FI	D -Modif	fied (Gas	oline	Range Orgar	nics)	
Analyte	-	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) C6C10	31		5.7		mg/Kg	⊅	08/07/23 11:03	08/07/23 14:09	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	97		65 - 125				08/07/23 11:03	08/07/23 14:09	50
Method: EPA 8015C - Diesel F	Range Orgar	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	12		5.2		mg/Kg	<u></u>	08/02/23 13:15	08/03/23 22:03	1
Oil Range Organics (ORO)	<5.2		5.2		mg/Kg	¢	08/02/23 13:15	08/03/23 22:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
o-Terphenyl	96		27 - 150				08/02/23 13:15	08/03/23 22:03	1
Method: EPA 300.0 - Anions,	Ion Chroma	tography	- Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<21		21		mg/Kg	¢		08/02/23 22:29	1
General Chemistry									
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
General Chemistry Analyte Percent Solids (EPA Moisture)	Result 94.4	Qualifier	RL	MDL	Unit %	D	Prepared	Analyzed	Dil Fac

Eurofins Pensacola

Page 189 of 211

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: SB6 (15FT) Date Collected: 07/26/23 13:15 Date Received: 08/01/23 08:52

D: 400-241285-1

Page 190 of 211

5

Lab Sample ID: 400-241285-3

Matrix: Solid

Percent Solids: 97.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.0050		0.0050		mg/Kg	⇒	08/08/23 10:28	08/08/23 13:53	1
Ethylbenzene	<0.0050		0.0050		mg/Kg	☆	08/08/23 10:28	08/08/23 13:53	1
Toluene	<0.0050		0.0050		mg/Kg	₽	08/08/23 10:28	08/08/23 13:53	1
Xylenes, Total	<0.010		0.010		mg/Kg	₽	08/08/23 10:28	08/08/23 13:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130				08/08/23 10:28	08/08/23 13:53	1
Dibromofluoromethane	99		77 - 127				08/08/23 10:28	08/08/23 13:53	1
Toluene-d8 (Surr)	99		76 - 127				08/08/23 10:28	08/08/23 13:53	1
Method: SW846 8015C - Nor	nhalogenated	Organics	using GC/FI	D -Modif	ied (Gase	oline	Range Orgar	nics)	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) C6C10	<5.1		5.1		mg/Kg		08/07/23 11:03	08/07/23 17:04	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	97		65 - 125				08/07/23 11:03	08/07/23 17:04	50
Method: EPA 8015C - Diesel	Range Organ	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	<5.0		5.0		mg/Kg	¢	08/02/23 13:15	08/03/23 22:39	1
Oil Range Organics (ORO)	<5.0		5.0		mg/Kg	☆	08/02/23 13:15	08/03/23 22:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
o-Terphenyl	94		27 - 150				08/02/23 13:15	08/03/23 22:39	1
Method: EPA 300.0 - Anions	, Ion Chroma	tography	- Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	28		20		mg/Kg	¢		08/02/23 22:49	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			0.01		%			08/04/23 11:14	-
Percent Solids (EPA Moisture)	97.1		0.01		%0			08/04/23 11:14	1

Eurofins Pensacola

Job II

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: SB6 (35FT) Date Collected: 07/26/23 14:45 Date Received: 08/01/23 08:52

b	ID:	400	-241	285	-1

Job ID: 400-24128

Lab Sample ID: 400-241285-4

Matrix: Solid Percent Solids: 89.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.0054		0.0054		mg/Kg	¢	08/07/23 11:43	08/07/23 22:45	1
Ethylbenzene	<0.0054		0.0054		mg/Kg	☆	08/07/23 11:43	08/07/23 22:45	1
Toluene	<0.0054		0.0054		mg/Kg	☆	08/07/23 11:43	08/07/23 22:45	1
Xylenes, Total	<0.011		0.011		mg/Kg	¢	08/07/23 11:43	08/07/23 22:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130				08/07/23 11:43	08/07/23 22:45	1
Dibromofluoromethane	99		77 - 127				08/07/23 11:43	08/07/23 22:45	1
Toluene-d8 (Surr)	101		76 - 127				08/07/23 11:43	08/07/23 22:45	1
Method: SW846 8015C - Non	halogenated	Organics	using GC/FI	D -Modif	ied (Gas	oline	Range Orgar	nics)	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) C6C10	<5.7		5.7		mg/Kg	— <u> </u>	08/07/23 11:03	08/07/23 17:58	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	98		65 - 125				08/07/23 11:03	08/07/23 17:58	50
Method: EPA 8015C - Diesel	Range Orgar	nics (DRO)	(GC)						
• • ·									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	_ Result <5.6	Qualifier	RL 5.6	MDL	Unit mg/Kg	— D #	Prepared 08/02/23 13:15	Analyzed 08/03/23 22:57	Dil Fac
Diesel Range Organics (DRO)		Qualifier		MDL				08/03/23 22:57	Dil Fac 1 1
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate	<5.6		5.6	MDL	mg/Kg	<u></u>	08/02/23 13:15 08/02/23 13:15 Prepared	08/03/23 22:57 08/03/23 22:57 Analyzed	1
Diesel Range Organics (DRO) Oil Range Organics (ORO)	<5.6 <5.6		5.6	MDL	mg/Kg	<u></u>	08/02/23 13:15 08/02/23 13:15	08/03/23 22:57 08/03/23 22:57	1
Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate	<5.6 <5.6 %Recovery 111	Qualifier	5.6 5.6 Limits 27 - 150	MDL	mg/Kg	<u></u>	08/02/23 13:15 08/02/23 13:15 Prepared	08/03/23 22:57 08/03/23 22:57 Analyzed	1
Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl	<5.6 <5.6 %Recovery 111 Ion Chromat	Qualifier	5.6 5.6 Limits 27 - 150	MDL	mg/Kg mg/Kg	<u></u>	08/02/23 13:15 08/02/23 13:15 Prepared	08/03/23 22:57 08/03/23 22:57 Analyzed	1
Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions,	<5.6 <5.6 %Recovery 111 Ion Chromat	Qualifier tography -	5.6 5.6 <u>Limits</u> 27 - 150 Soluble		mg/Kg mg/Kg	‡	08/02/23 13:15 08/02/23 13:15 Prepared 08/02/23 13:15	08/03/23 22:57 08/03/23 22:57 Analyzed 08/03/23 22:57	1 1 Dil Fac 1
Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions, Analyte	<5.6 <5.6 <u>%Recovery</u> 111 Ion Chromat Result <22	Qualifier tography - Qualifier	5.6 5.6 <u>Limits</u> 27 - 150 Soluble <u>RL</u> 22		mg/Kg mg/Kg Unit	☆ ☆ D	08/02/23 13:15 08/02/23 13:15 Prepared 08/02/23 13:15	08/03/23 22:57 08/03/23 22:57 Analyzed 08/03/23 22:57 Analyzed	1 1 Dil Fac 1
Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions, Analyte Chloride General Chemistry	<5.6 <5.6 <u>%Recovery</u> 111 Ion Chromat Result <22	Qualifier tography -	5.6 5.6 <u>Limits</u> 27 - 150 Soluble RL		mg/Kg mg/Kg <u>Unit</u> mg/Kg Unit	☆ ☆ D	08/02/23 13:15 08/02/23 13:15 Prepared 08/02/23 13:15	08/03/23 22:57 08/03/23 22:57 Analyzed 08/03/23 22:57 Analyzed	1 1 Dil Fac 1
Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions, Analyte Chloride	<5.6 <5.6 <u>%Recovery</u> 111 Ion Chromat Result <22	Qualifier tography - Qualifier	5.6 5.6 <u>Limits</u> 27 - 150 Soluble <u>RL</u> 22	MDL	mg/Kg mg/Kg <u>Unit</u> mg/Kg	<u> </u>	08/02/23 13:15 08/02/23 13:15 Prepared 08/02/23 13:15 Prepared Prepared	08/03/23 22:57 08/03/23 22:57 Analyzed 08/03/23 22:57 Analyzed 08/02/23 23:09	1 1 <i>Dil Fac</i> 1 Dil Fac

Eurofins Pensacola

Page 191 of 211

5

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID: TW1 (33FT) Date Collected: 07/27/23 10:10 Date Received: 08/01/23 08:52

Job ID: 400-241285-1

Page 192 of 211

5

Lab Sample ID: 400-241285-5

Matrix: Solid Percent Solids: 89.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.0054		0.0054		mg/Kg	¢	08/07/23 11:43	08/07/23 23:11	1
Ethylbenzene	<0.0054		0.0054		mg/Kg	¢	08/07/23 11:43	08/07/23 23:11	1
Toluene	<0.0054		0.0054		mg/Kg	¢	08/07/23 11:43	08/07/23 23:11	1
Xylenes, Total	<0.011		0.011		mg/Kg	¢	08/07/23 11:43	08/07/23 23:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	98		67 - 130				08/07/23 11:43	08/07/23 23:11	1
Dibromofluoromethane	103		77 - 127				08/07/23 11:43	08/07/23 23:11	1
Toluene-d8 (Surr)	102		76 - 127				08/07/23 11:43	08/07/23 23:11	1
Method: SW846 8015C - Non	halogenated	Organics	using GC/FI	D -Modif	ied (Gaso	oline	Range Orgar	nics)	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO) C6C10	<5.9		5.9		mg/Kg	₩ ₩	08/07/23 11:03	08/07/23 17:31	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (fid)	96		65 - 125				08/07/23 11:03	08/07/23 17:31	50
Method: EPA 8015C - Diesel	Donne Orne								
DICSCI - DICSCI	Range Organ	nics (DRO)) (GC)						
		nics (DRO) Qualifier	(<mark>GC)</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte				MDL	Unit mg/Kg	D #	Prepared 08/02/23 13:15	Analyzed 08/03/23 23:15	Dil Fac
Analyte Diesel Range Organics (DRO)	Result		RL	MDL					
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO)	Result <5.6	Qualifier	RL 5.6	MDL	mg/Kg	☆	08/02/23 13:15	08/03/23 23:15	1
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate	Result <5.6 <5.6	Qualifier	RL 5.6 5.6	MDL	mg/Kg	☆	08/02/23 13:15 08/02/23 13:15	08/03/23 23:15 08/03/23 23:15	1 1
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl	Result <5.6	Qualifier Qualifier tography -	RL 5.6 5.6 Limits 27 - 150		mg/Kg mg/Kg	☆	08/02/23 13:15 08/02/23 13:15 Prepared	08/03/23 23:15 08/03/23 23:15 Analyzed	1 1 <i>Dil Fac</i> 1
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions,	Result <5.6	Qualifier Qualifier	RL 5.6 5.6 Limits 27 - 150	MDL	mg/Kg mg/Kg	☆	08/02/23 13:15 08/02/23 13:15 Prepared	08/03/23 23:15 08/03/23 23:15 Analyzed	1 1 Dil Fac
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions, Analyte	Result <5.6	Qualifier Qualifier tography -	RL 5.6 5.6		mg/Kg mg/Kg		08/02/23 13:15 08/02/23 13:15 Prepared 08/02/23 13:15	08/03/23 23:15 08/03/23 23:15 Analyzed 08/03/23 23:15	1 1 <i>Dil Fac</i> 1
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions, Analyte Chloride General Chemistry	Result <5.6	Qualifier Qualifier tography - Qualifier	RL 5.6 5.6 27 - 150 Soluble RL 22	MDL	mg/Kg mg/Kg Unit mg/Kg		08/02/23 13:15 08/02/23 13:15 Prepared 08/02/23 13:15 Prepared Prepared	08/03/23 23:15 08/03/23 23:15 <u>Analyzed</u> 08/03/23 23:15 <u>Analyzed</u> 08/02/23 23:28	1 1 <i>Dil Fac</i> 1 Dil Fac
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions, Analyte Chloride General Chemistry Analyte	Result <5.6	Qualifier Qualifier tography -	RL 5.6 5.6		mg/Kg mg/Kg Unit Unit		08/02/23 13:15 08/02/23 13:15 Prepared 08/02/23 13:15	08/03/23 23:15 08/03/23 23:15 Analyzed 08/03/23 23:15 Analyzed 08/02/23 23:28 Analyzed	1 1 <i>Dil Fac</i> 1 Dil Fac
Analyte Diesel Range Organics (DRO) Oil Range Organics (ORO) Surrogate o-Terphenyl Method: EPA 300.0 - Anions, Analyte Chloride General Chemistry Analyte Percent Solids (EPA Moisture)	Result <5.6	Qualifier Qualifier tography - Qualifier	RL 5.6 5.6 27 - 150 Soluble RL 22	MDL	mg/Kg mg/Kg Unit mg/Kg	— <u>~</u> * — <u>D</u>	08/02/23 13:15 08/02/23 13:15 Prepared 08/02/23 13:15 Prepared Prepared	08/03/23 23:15 08/03/23 23:15 <u>Analyzed</u> 08/03/23 23:15 <u>Analyzed</u> 08/02/23 23:28	1 1 <i>Dil Fac</i> 1 Dil Fac

Eurofins Pensacola

Released to Imaging: 5/2/2024 4:22:08 PM

Definitions/Glossary

These commonly used abbreviations may or may not be present in this report.

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Glossary Abbreviation Page 193 of 211

Job ID: 400-241285-1

5-1	
	5
	8
	9

	······· ······························
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Project/Site: Canada Mesa #2.00

Date Collected: 07/25/23 14:10

Date Received: 08/01/23 08:52

Date Collected: 07/25/23 14:10

Date Received: 08/01/23 08:52

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Total/NA

Client: Stantec Consulting Services Inc

Client Sample ID: MW12 (22FT)

Batch

Type

Client Sample ID: MW12 (22FT)

Batch

Туре

Prep

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Leach

Client Sample ID: MW12 (35FT)

Analysis

Batch

Method

Moisture

Batch

5035

8260D

5035

8015C

3546

8015C

300.0

DI Leach

Method

Initial

Amount

Initial

Amount

4.60 g

5 mL

5.06 g

5 mL

15.19 g

1 mL

2.591 g

10 mL

Batch

Number

635894

Batch

Number

635909

635863

636273

636063

635581

635766

635533

635617

Final

Amount

Final

Amount

5.00 g

5 mL

5.00 g

5 mL

1 mL

1 mL

50 mL

10 mL

Dil

1

Dil

1

50

1

1

Factor

Factor

Run

Run

Job ID: 400-241285-1

Lab Sample ID: 400-241285-1 Matrix: Solid

Analyst

Analyst

MP

Lab Sample ID: 400-241285-1

Prepared or Analyzed

08/04/23 11:14

Prepared

or Analyzed

08/04/23 09:59 CAR

08/04/23 19:26 CAR

08/07/23 11:03 BJ

08/07/23 13:42 PD

08/02/23 13:15 KR

08/03/23 21:44 MP

08/02/23 10:34 RS

08/02/23 22:09 RS

Lab

EET PEN

Matrix: Solid

Lab

EET PEN

Percent Solids: 95.5

Lab Sample ID: 400-241285-2 Matrix: Solid

Date Collected: 07/25/23 15:15 Date Received: 08/01/23 08:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			635894	08/04/23 11:14	MP	EET PEN

Client Sample ID: MW12 (35FT) Date Collected: 07/25/23 15:15 Date Received: 08/01/23 08:52

Lab Sample ID: 400-241285-2 Matrix: Solid Percent Solids: 94.4

Lab Sample ID: 400-241285-3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.28 g	5.00 g	635909	08/04/23 09:59	CAR	EET PEN
Total/NA	Analysis	8260D		1	5 mL	5 mL	635863	08/04/23 19:47	CAR	EET PEN
Total/NA	Prep	5035			4.94 g	5.00 g	636273	08/07/23 11:03	BJ	EET PEN
Total/NA	Analysis	8015C		50	5 mL	5 mL	636063	08/07/23 14:09	PD	EET PEN
Total/NA	Prep	3546			15.33 g	1 mL	635581	08/02/23 13:15	KR	EET PEN
Total/NA	Analysis	8015C		1	1 mL	1 mL	635766	08/03/23 22:03	MP	EET PEN
Soluble	Leach	DI Leach			2.528 g	50 mL	635533	08/02/23 10:34	RS	EET PEN
Soluble	Analysis	300.0		1	10 mL	10 mL	635617	08/02/23 22:29	RS	EET PEN

Client Sample ID: SB6 (15FT) Date Collected: 07/26/23 13:15 Date Received: 08/01/23 08:52

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			635894	08/04/23 11:14	MP	EET PEN

Eurofins Pensacola

Matrix: Solid

Lab Chronicle

Matrix: Solid

Matrix: Solid

Matrix: Solid

Percent Solids: 89.5

Job ID: 400-241285-1

Lab Sample ID: 400-241285-3

Lab Sample ID: 400-241285-4

Lab Sample ID: 400-241285-5

Matrix: Solid Percent Solids: 97.1

Project/Site: Canada Mesa #2.00
Client Sample ID: SB6 (15FT)

Client: Stantec Consulting Services Inc

Date Collected: 07/26/23 13:15 Date Received: 08/01/23 08:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.13 g	5.00 g	636269	08/08/23 10:28	CAR	EET PEN
Total/NA	Analysis	8260D		1	5 mL	5 mL	636225	08/08/23 13:53	S1K	EET PEN
Total/NA	Prep	5035			5.19 g	5.00 g	636273	08/07/23 11:03	BJ	EET PEN
Total/NA	Analysis	8015C		50	5 mL	5 mL	636063	08/07/23 17:04	PD	EET PEN
Total/NA	Prep	3546			15.45 g	1 mL	635581	08/02/23 13:15	KR	EET PEN
Total/NA	Analysis	8015C		1	1 mL	1 mL	635766	08/03/23 22:39	MP	EET PEN
Soluble	Leach	DI Leach			2.598 g	50 mL	635533	08/02/23 10:34	RS	EET PEN
Soluble	Analysis	300.0		1	10 mL	10 mL	635617	08/02/23 22:49	RS	EET PEN

Client Sample ID: SB6 (35FT)

Date Collected: 07/26/23 14:45 Date Received: 08/01/23 08:52

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			635894	08/04/23 11:14	MP	EET PEN
Client Sam	ple ID: SB	6 (35FT)					La	b Sample I	D: 400-	241285-4

Client Sample ID: SB6 (35FT) Date Collected: 07/26/23 14:45 Date Received: 08/01/23 08:52

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.20 g	5.00 g	636136	08/07/23 11:43	BPO	EET PEN
Total/NA	Analysis	8260D		1	5 mL	5 mL	636035	08/07/23 22:45	BPO	EET PEN
Total/NA	Prep	5035			5.44 g	5.00 g	636273	08/07/23 11:03	BJ	EET PEN
Total/NA	Analysis	8015C		50	5 mL	5 mL	636063	08/07/23 17:58	PD	EET PEN
Total/NA	Prep	3546			15.05 g	1 mL	635581	08/02/23 13:15	KR	EET PEN
Total/NA	Analysis	8015C		1	1 mL	1 mL	635766	08/03/23 22:57	MP	EET PEN
Soluble	Leach	DI Leach			2.513 g	50 mL	635533	08/02/23 10:34	RS	EET PEN
Soluble	Analysis	300.0		1	10 mL	10 mL	635617	08/02/23 23:09	RS	EET PEN

Client Sample ID: TW1 (33FT) Date Collected: 07/27/23 10:10

Date Received: 08/01/23 08:52

Prep Type Total/NA	Batch Type Analysis	Batch Method Moisture	Run	Dil Factor	Initial Amount	Final Amount	Batch Number 635894	Prepared or Analyzed 08/04/23 12:18	Analyst MP	EET PEN
Client Sam	ple ID: TW	1 (33FT)					La	b Sample I	D: 400-2	241285-5
Date Collecte	d: 07/27/23 1	0:10							Ма	atrix: Solid
Date Receive	d: 08/01/23 0	8:52						Р	ercent S	olids: 89.4
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
- F - J F -					5.19 g	5 g	636136	08/07/23 11:43	BPO	EET PEN
Total/NA	Prep	5035			5.19 y	Jy	000100	00/07/23 11.45		

Eurofins Pensacola

Page 195 of 211

5

9

5035

8015C

Released to Imaging: 5/2/2024 4:22:08 PM

Prep

Analysis

Total/NA

Total/NA

50

5.23 g

5 mL

5.00 g

5 mL

636273

636063

08/07/23 11:03 BJ

08/07/23 17:31 PD

EET PEN

EET PEN

Client: Stantec Consulting Services Inc

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 400-241285-1

Lab Sample ID: 400-241285-5

Lab Sample ID: MB 400-635533/1-A

Lab Sample ID: MB 400-635581/1-A

Lab Sample ID: MB 400-635909/1-A

Client Sample ID: TW1 (33FT) Date Collected: 07/27/23 10:10 Date Received: 08/01/23 08:52

Project/Site: Canada Mesa #2.00

Date Receive	d: 08/01/23 0		Р	Percent Solids: 89.						
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3546			15.04 g	1 mL	635581	08/02/23 13:15	KR	EET PEN
Total/NA	Analysis	8015C		1	1 mL	1 mL	635766	08/03/23 23:15	MP	EET PEN
Soluble	Leach	DI Leach			2.588 g	50 mL	635533	08/02/23 10:34	RS	EET PEN
Soluble	Analysis	300.0		1	10 mL	10 mL	635617	08/02/23 23:28	RS	EET PEN

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			2.527 g	50 mL	635533	08/02/23 10:34	RS	EET PEN
Soluble	Analysis	300.0		1	10 mL	10 mL	635617	08/02/23 16:31	RS	EET PEN

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Prep	3546			15.00 g	1 mL	635581	08/02/23 13:15		EET PEN
Total/NA	Analysis	8015C		1	1 mL	1 mL	635766	08/03/23 19:02	MP	EET PEN

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5.00 g	635909	08/04/23 09:59	CAR	EET PEN
Total/NA	Analysis	8260D		1	5 mL	5 mL	635863	08/04/23 11:58	CAR	EET PEN

Client Sample ID: Method Blank Date Collected: N/A

Lab Sample ID: MB 400-636136/2-A

Lab Sample ID: MB 400-636269/1-A

Matrix: Solid

Matrix: Solid

Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5.00 g	636136	08/07/23 11:43	BPO	EET PEN
Total/NA	Analysis	8260D		1	5 mL	5 mL	636035	08/07/23 15:38	BPO	EET PEN

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analvzed	Analvst	Lab
Total/NA	Prep	5035			5.00 g	5.00 g	636269	08/08/23 10:28		EET PEN
Total/NA	Analysis	8260D		1	5 mL	5 mL	636225	08/08/23 13:09	S1K	EET PEN

Client Sample ID: Method Blank Date Collected: N/A Date Received: N/A

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5.00 g	636273	08/07/23 11:03	BJ	EET PEN
Total/NA	Analysis	8015C		1	5 mL	5 mL	636063	08/07/23 13:15	PD	EET PEN

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			2.590 g	50.75 mL	635533	08/02/23 10:34	RS	EET PEN
Soluble	Analysis	300.0		1	10 mL	10 mL	635617	08/02/23 16:51	RS	EET PEN

Client Sample ID: Lab Control Sample Date Collected: N/A

Date Received: N/A

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	3546			15.00 g	1 mL	635581	08/02/23 13:15	KR	EET PEN
Total/NA	Analysis	8015C		1	1 mL	1 mL	635766	08/03/23 19:38	MP	EET PEN

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5.00 g	635909	08/04/23 09:59	CAR	EET PEN
Total/NA	Analysis	8260D		1	5 mL	5 mL	635863	08/04/23 10:52	CAR	EET PEN

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

Í	Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
	Total/NA	Prep	5035			5.00 g	5.00 g	636136	08/07/23 11:43	BPO	EET PEN
	Total/NA	Analysis	8260D		1	5 mL	5 mL	636035	08/07/23 14:29	BPO	EET PEN

Client Sample ID: Lab Control Sample Date Collected: N/A Date Received: N/A

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5.00 g	636269	08/08/23 10:28	CAR	EET PEN
Total/NA	Analysis	8260D		1	5 mL	5 mL	636225	08/08/23 12:07	S1K	EET PEN

Matrix: Solid

Matrix: Solid

Job ID: 400-241285-1

Lab Sample ID: MB 400-636273/2-A

Lab Sample ID: LCS 400-636136/1-A

Lab Sample ID: LCS 400-636269/2-A

Matrix: Solid

Client Sample ID: Lab Control Sample

Job ID: 400-241285-1

Lab Sample ID: LCS 400-636273/1-A

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5.00 g	636273	08/07/23 11:03	BJ	EET PEN
Total/NA	Analysis	8015C		1	5 mL	5 mL	636063	08/07/23 11:45	PD	EET PEN
Client Sam	ple ID: Lab	Control Sa	ample D	up		Lab	Sampl	e ID: LCSD	400-63	5533/3-
ate Collecte									Ма	atrix: Soli
		Datah		Dil	luciti e l	Final	Detah	Davaged		
Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach		1 40101	2.512 g	50.75 mL	635533	08/02/23 10:34	RS	EET PEN
Soluble	Analysis	300.0		1	2.012 g 10 mL	10 mL	635617	08/02/23 17:11		EET PEN
-				I	10 IIIL	TO THE				
	ple ID: MW						Lab Sa	ample ID: 4		
	d: 07/25/23 1							_		atrix: Soli
Jate Receive	d: 08/01/23 0	0:52						P	ercent S	olids: 95
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.06 g	5.00 g	636273	08/07/23 11:03	BJ	EET PEN
Total/NA	Analysis	8015C		50	5 mL	5 mL	636063	08/07/23 16:10	PD	EET PEN
	ple ID: MW d: 07/25/23 1						Lab Sar	nple ID: 400		
Date Collecte	-	4:10					Lab Sar		Ма	85-1 MS atrix: Soli olids: 95
Date Collecte	d: 07/25/23 1	4:10 8:52 Batch		Dil	Initial	Final	Lab Sar		Ма	atrix: Soli
Date Collecte	d: 07/25/23 1 d: 08/01/23 0	4:10 8:52	Run	Dil Factor	Initial Amount			Р	Ма	atrix: Soli
Date Collecte Date Receive	d: 07/25/23 1 d: 08/01/23 0 Batch	4:10 8:52 Batch	Run			Final	Batch	Prepared	Ma ercent S	atrix: Soli olids: 95
Date Collecte Date Receive Prep Type	d: 07/25/23 1 d: 08/01/23 0 Batch Type	4:10 8:52 Batch Method	Run		Amount	Final Amount	Batch Number	Prepared or Analyzed	Ma ercent S Analyst BJ	atrix: Soli olids: 95
Date Collecte Date Receive Prep Type Total/NA Total/NA	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep	4:10 8:52 Batch Method 5035 8015C	Run	Factor	Amount 5.06 g	Final Amount 5.00 g	Batch Number 636273 636063	Prepared or Analyzed 08/07/23 11:03	Ma ercent S Analyst BJ PD	Lab EET PEN EET PEN
Date Collecte Date Receive Prep Type Total/NA Total/NA Client Sam Date Collecte	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15	Run	Factor	Amount 5.06 g	Final Amount 5.00 g	Batch Number 636273 636063	Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4	Ma ercent S Analyst BJ PD 00-2412 Ma	Lab EET PEN EET PEN 285-3 M atrix: Soli
Date Collecte Date Receive Prep Type Total/NA Total/NA Client Sam Date Collecte	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15	Run	Factor	Amount 5.06 g	Final Amount 5.00 g	Batch Number 636273 636063	Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4	Ma ercent S Analyst BJ PD 00-2412 Ma	Lab EET PEN EET PEN EET PEN 285-3 M
Date Collecte Date Receive Prep Type Total/NA Total/NA Client Sam Date Collecte	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15	Run	Factor	Amount 5.06 g	Final Amount 5.00 g	Batch Number 636273 636063	Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4	Ma ercent S Analyst BJ PD 00-2412 Ma	Lab EET PEN EET PEN 285-3 M atrix: Soli
Date Collecte Date Receive Prep Type Total/NA Total/NA Client Sam Date Collecte Date Receive	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52	Run	50	Amount 5.06 g 5 mL	Final Amount 5.00 g 5 mL	Batch Number 636273 636063 Lab Sa	Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4	Ma ercent S Analyst BJ PD 00-2412 Ma	Lab EET PEN EET PEN 285-3 M atrix: Soli
Date Collecte Date Receive Prep Type Total/NA Total/NA Client Sam Date Collecte	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52 Batch		Factor 50 Dil	Amount 5.06 g 5 mL	Final Amount 5.00 g 5 mL Final Amount	Batch Number 636273 636063 Lab Sa Batch	Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4 Prepared	Ma ercent S Analyst BJ PD 00-2412 Ma ercent S Analyst	Lab EET PEN EET PEN EET PEN 285-3 M atrix: Soli olids: 97
Date Collecte Date Receive Prep Type Total/NA Total/NA Client Sam Date Collecte Date Receive Prep Type	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch Type	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52 Batch Method		Factor 50 Dil	Amount 5.06 g 5 mL	Final Amount 5.00 g 5 mL Final	Batch Number 636273 636063 Lab Sa Batch Number	Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4 Prepared or Analyzed	Ma ercent S BJ PD 00-2412 Ma ercent S Analyst CAR	Lab EET PEN EET PEN EET PEN 285-3 M atrix: Soli olids: 97
Prep Type Total/NA Total/NA Client Sam Date Collecte Date Receive Prep Type Total/NA Total/NA	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch Type Prep Analysis	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52 Batch Method 5035 8260D		Factor 50 Dil Factor	Amount 5.06 g 5 mL Initial Amount 5.23 g	Final Amount 5.00 g 5 mL 5 mL Final Amount 5.00 g 5 mL	Batch Number 636273 636063 Lab Sa Batch Number 636269 636225	P Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4 P Prepared or Analyzed 08/08/23 10:28 08/08/23 14:35	Ma ercent S BJ PD 00-2412 Ma ercent S Analyst CAR S1K	Lab EET PEN EET PEN EET PEN 285-3 M atrix: Soli olids: 97 Lab EET PEN EET PEN EET PEN
Prep Type Total/NA Total/NA Client Sam Date Collecte Date Receiver Prep Type Total/NA Total/NA Total/NA	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52 Batch Method 5035 8260D 6 (15FT)		Factor 50 Dil Factor	Amount 5.06 g 5 mL Initial Amount 5.23 g	Final Amount 5.00 g 5 mL 5 mL Final Amount 5.00 g 5 mL	Batch Number 636273 636063 Lab Sa Batch Number 636269 636225	P Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4 P Prepared or Analyzed 08/08/23 10:28	Ma ercent S Analyst BJ PD 00-2412 Ma ercent S CAR S1K 0-24128	Lab EET PEN EET PEN EET PEN 285-3 M Atrix: Soli olids: 97 Lab EET PEN EET PEN EET PEN EET PEN
Prep Type Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch Type Prep Analysis	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52 Batch Method 5035 8260D 6 (15FT) 3:15		Factor 50 Dil Factor	Amount 5.06 g 5 mL Initial Amount 5.23 g	Final Amount 5.00 g 5 mL 5 mL Final Amount 5.00 g 5 mL	Batch Number 636273 636063 Lab Sa Batch Number 636269 636225	P Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4 P Prepared or Analyzed 08/08/23 10:28 08/08/23 14:35 mple ID: 400	Ma ercent S Analyst BJ PD 00-2412 Ma ercent S CAR S1K 0-24128 Ma	Lab EET PEN EET PEN EET PEN 285-3 M atrix: Soli olids: 97 Lab EET PEN EET PEN EET PEN
Prep Type Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52 Batch Method 5035 8260D 6 (15FT) 3:15 8:52		Factor 50 Dil Factor	Amount 5.06 g 5 mL Initial Amount 5.23 g 5 mL	Final Amount 5.00 g 5 mL Final Amount 5.00 g 5 mL	Batch Number 636273 636063 Lab Sa Batch Number 636269 636225 Lab Sar	P Prepared 08/07/23 11:03 08/07/23 16:37 ample ID: 4 P Prepared or Analyzed 08/08/23 10:28 08/08/23 14:35 mple ID: 400 P	Ma ercent S Analyst BJ PD 00-2412 Ma ercent S CAR S1K 0-24128 Ma	Lab EET PEN EET PEN EET PEN 285-3 M Atrix: Soli olids: 97 Lab EET PEN EET PEN EET PEN EET PEN EET PEN
Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte Date Receive Total/NA Total/NA Total/NA Client Sam Date Collecte Date Collecte Date Collecte Date Collecte	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52 Batch Method 5035 8260D 6 (15FT) 3:15 8:52 Batch	Run	Factor 50 Dil Factor 1 Dil	Amount 5.06 g 5 mL Initial Amount 5.23 g	Final Amount 5.00 g 5 mL 5 mL Final Amount 5.00 g 5 mL	Batch Number 636273 636063 Lab Sa Batch Number 636269 636225 Lab Sar Batch	P Prepared or Analyzed 08/07/23 11:03 08/07/23 16:37 ample ID: 4 P Prepared or Analyzed 08/08/23 10:28 08/08/23 14:35 mple ID: 400 P Prepared	Ma ercent S BJ PD 00-2412 Ma ercent S CAR S1K 0-24128 Ma ercent S	Lab EET PEN EET PEN EET PEN 285-3 M Atrix: Soli olids: 97 Lab EET PEN EET PEN S5-3 MS Atrix: Soli olids: 97
Prep Type Total/NA Total/NA Client Sam Date Collecte Date Received Prep Type Total/NA Total/NA Total/NA Client Sam Date Collecte	d: 07/25/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0 Batch Type Prep Analysis ple ID: SB6 d: 07/26/23 1 d: 08/01/23 0	4:10 8:52 Batch Method 5035 8015C 6 (15FT) 3:15 8:52 Batch Method 5035 8260D 6 (15FT) 3:15 8:52		Factor 50 Dil Factor 1	Amount 5.06 g 5 mL Initial Amount 5.23 g 5 mL	Final 5.00 g 5 mL Final Amount 5.00 g 5 mL 5 mL	Batch Number 636273 636063 Lab Sa Batch Number 636269 636225 Lab Sar	P Prepared 08/07/23 11:03 08/07/23 16:37 ample ID: 4 P Prepared or Analyzed 08/08/23 10:28 08/08/23 14:35 mple ID: 400 P	Ma ercent S BJ PD 00-2412 Ma ercent S Analyst CAR S1K D-24128 Ma ercent S	Lab EET PEN EET PEN EET PEN 285-3 M Atrix: Soli olids: 97 Lab EET PEN EET PEN EET PEN EET PEN EET PEN

Project/Site: Canada Mesa #2.00

Job ID: 400-241285-1

Lab Sample ID: 400-241285-5 DU

Client Sample ID: TW1 (33FT) Date Collected: 07/27/23 10:10 Date Received: 08/01/23 08:52

Client: Stantec Consulting Services Inc

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1			635894	08/04/23 12:18	MP	EET PEN

Laboratory References:

EET PEN = Eurofins Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Client Sample ID

MW12 (22FT)

MW12 (35FT)

Method Blank

Lab Control Sample

Client Sample ID

Lab Control Sample

Client Sample ID

Lab Control Sample

SB6 (35FT)

TW1 (33FT)

Method Blank

MW12 (22FT)

MW12 (35FT)

Method Blank

Lab Sample ID

400-241285-1

400-241285-2

Lab Sample ID

Lab Sample ID

400-241285-4

400-241285-5

400-241285-1

MB 400-635909/1-A

LCS 400-635909/2-A

Prep Batch: 635909

MB 400-635909/1-A

LCS 400-635909/2-A

Analysis Batch: 636035

Analysis Batch: 635863

Method

8260D

8260D

8260D

8260D

Prep Batch

635909

635909

635909

635909

				7
Prep Type	Matrix	Method	Prep Batch	
Total/NA	Solid	5035		8
Total/NA	Solid	5035		
Total/NA	Solid	5035		9
Total/NA	Solid	5035		
				10
Prep Type	Matrix	Method	Prep Batch	11
Total/NA	Solid	8260D	636136	
Total/NA	Solid	8260D	636136	12
Total/NA	Solid	8260D	636136	
Total/NA		8260D	636136	

LCS 400-636136/1-A Prep Batch: 636136

MB 400-636136/2-A

Lab Sample ID 400-241285-4	Client Sample ID SB6 (35FT)	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
400-241285-5	TW1 (33FT)	Total/NA	Solid	5035	
MB 400-636136/2-A	Method Blank	Total/NA	Solid	5035	
LCS 400-636136/1-A	Lab Control Sample	Total/NA	Solid	5035	

Analysis Batch: 636225

Lab Sample ID 400-241285-3	Client Sample ID SB6 (15FT)	Prep Type Total/NA	Matrix Solid	Method 8260D	Prep Batch 636269
MB 400-636269/1-A	Method Blank	Total/NA	Solid	8260D	636269
LCS 400-636269/2-A	Lab Control Sample	Total/NA	Solid	8260D	636269
400-241285-3 MS	SB6 (15FT)	Total/NA	Solid	8260D	636269
400-241285-3 MSD	SB6 (15FT)	Total/NA	Solid	8260D	636269

Prep Batch: 636269

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-241285-3	SB6 (15FT)	Total/NA	Solid	5035	
MB 400-636269/1-A	Method Blank	Total/NA	Solid	5035	
LCS 400-636269/2-A	Lab Control Sample	Total/NA	Solid	5035	
400-241285-3 MS	SB6 (15FT)	Total/NA	Solid	5035	
400-241285-3 MSD	SB6 (15FT)	Total/NA	Solid	5035	

GC VOA

Analysis Batch: 636063

Lab Sample ID 400-241285-1	Client Sample ID MW12 (22FT)	Prep Type Total/NA	Matrix Solid	Method 8015C	Prep Batch 636273
400-241285-2	MW12 (35FT)	Total/NA	Solid	8015C	636273
400-241285-3	SB6 (15FT)	Total/NA	Solid	8015C	636273
400-241285-4	SB6 (35FT)	Total/NA	Solid	8015C	636273
400-241285-5	TW1 (33FT)	Total/NA	Solid	8015C	636273

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

GC VOA (Continued)

Analysis Batch: 636063 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 400-636273/2-A	Method Blank	Total/NA	Solid	8015C	636273
LCS 400-636273/1-A	Lab Control Sample	Total/NA	Solid	8015C	636273
400-241285-1 MS	MW12 (22FT)	Total/NA	Solid	8015C	636273
400-241285-1 MSD	MW12 (22FT)	Total/NA	Solid	8015C	636273
Prep Batch: 636273					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-241285-1	MW12 (22FT)	Total/NA	Solid	5035	
400-241285-2	MW12 (35FT)	Total/NA	Solid	5035	
400-241285-3	SB6 (15FT)	Total/NA	Solid	5035	
400-241285-4	SB6 (35FT)	Total/NA	Solid	5035	
400-241285-5	TW1 (33FT)	Total/NA	Solid	5035	
MB 400-636273/2-A	Method Blank	Total/NA	Solid	5035	
LCS 400-636273/1-A	Lab Control Sample	Total/NA	Solid	5035	
400-241285-1 MS	MW12 (22FT)	Total/NA	Solid	5035	
400-241285-1 MSD	MW12 (22FT)	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 635581

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
400-241285-1	MW12 (22FT)	Total/NA	Solid	3546	
400-241285-2	MW12 (35FT)	Total/NA	Solid	3546	
400-241285-3	SB6 (15FT)	Total/NA	Solid	3546	
400-241285-4	SB6 (35FT)	Total/NA	Solid	3546	
400-241285-5	TW1 (33FT)	Total/NA	Solid	3546	
MB 400-635581/1-A	Method Blank	Total/NA	Solid	3546	
LCS 400-635581/2-A	Lab Control Sample	Total/NA	Solid	3546	

Analysis Batch: 635766

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-241285-1	MW12 (22FT)	Total/NA	Solid	8015C	635581
400-241285-2	MW12 (35FT)	Total/NA	Solid	8015C	635581
400-241285-3	SB6 (15FT)	Total/NA	Solid	8015C	635581
400-241285-4	SB6 (35FT)	Total/NA	Solid	8015C	635581
400-241285-5	TW1 (33FT)	Total/NA	Solid	8015C	635581
MB 400-635581/1-A	Method Blank	Total/NA	Solid	8015C	635581
LCS 400-635581/2-A	Lab Control Sample	Total/NA	Solid	8015C	635581

HPLC/IC

Leach Batch: 635533

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-241285-1	MW12 (22FT)	Soluble	Solid	DI Leach	
400-241285-2	MW12 (35FT)	Soluble	Solid	DI Leach	
400-241285-3	SB6 (15FT)	Soluble	Solid	DI Leach	
400-241285-4	SB6 (35FT)	Soluble	Solid	DI Leach	
400-241285-5	TW1 (33FT)	Soluble	Solid	DI Leach	
MB 400-635533/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 400-635533/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 400-635533/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Pensacola

Page 201 of 211

Job ID: 400-241285-1

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

HPLC/IC

Analysis Batch: 635617

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-241285-1	MW12 (22FT)	Soluble	Solid	300.0	635533
400-241285-2	MW12 (35FT)	Soluble	Solid	300.0	635533
400-241285-3	SB6 (15FT)	Soluble	Solid	300.0	635533
400-241285-4	SB6 (35FT)	Soluble	Solid	300.0	635533
400-241285-5	TW1 (33FT)	Soluble	Solid	300.0	635533
MB 400-635533/1-A	Method Blank	Soluble	Solid	300.0	635533
LCS 400-635533/2-A	Lab Control Sample	Soluble	Solid	300.0	635533
LCSD 400-635533/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	635533

General Chemistry

Analysis Batch: 635894

Lab San	ple ID Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
400-241	285-1 MW12 (22FT)	Total/NA	Solid	Moisture		
400-241	285-2 MW12 (35FT)	Total/NA	Solid	Moisture		
400-241	285-3 SB6 (15FT)	Total/NA	Solid	Moisture		
400-241	285-4 SB6 (35FT)	Total/NA	Solid	Moisture		
400-241	285-5 TW1 (33FT)	Total/NA	Solid	Moisture		
400-241	285-5 DU TW1 (33FT)	Total/NA	Solid	Moisture		

QC Sample Results

Job ID: 400-241285-1

Prep Type: Total/NA Prep Batch: 635909

Prep Type: Total/NA

Client Sample ID: Method Blank

08/04/23 09:59 08/04/23 11:58

08/04/23 09:59 08/04/23 11:58

Client Sample ID: Lab Control Sample

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 636136

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 400-635909/1-A
Matrix: Solid
Analysis Batch: 635863

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.0050		0.0050		mg/Kg		08/04/23 09:59	08/04/23 11:58	1
Ethylbenzene	<0.0050		0.0050		mg/Kg		08/04/23 09:59	08/04/23 11:58	1
Toluene	<0.0050		0.0050		mg/Kg		08/04/23 09:59	08/04/23 11:58	1
Xylenes, Total	<0.010		0.010		mg/Kg		08/04/23 09:59	08/04/23 11:58	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	101		67 - 130				08/04/23 09:59	08/04/23 11:58	1

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	101		67 - 130
Dibromofluoromethane	97		77 - 127
Toluene-d8 (Surr)	98		76 - 127

Lab Sample ID: LCS 400-635909/2-A Matrix: Solid Analysis Batch: 635863

Prep Batch: 635909 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 0.0500 65 - 130 Benzene 0.0435 mg/Kg 87 Ethylbenzene 0.0500 0.0452 70 - 130 mg/Kg 90 Toluene 0.0500 0.0406 mg/Kg 81 70 - 130 Xylenes, Total 0.100 0.0869 mg/Kg 87 70 - 130 m-Xylene & p-Xylene 0.0500 0.0436 mg/Kg 87 70 - 130 o-Xylene 0.0500 0.0433 mg/Kg 87 70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene	102		67 - 130
Dibromofluoromethane	102		77 - 127
Toluene-d8 (Surr)	89		76 - 127

Lab Sample ID: MB 400-636136/2-A Matrix: Solid Analysis Batch: 636035

	MB	MB									
Analyte	Result	Qualifier	RL	I	MDL	Unit	D	Pr	repared	Analyzed	Dil Fac
Benzene	< 0.0050		0.0050			mg/Kg		08/0	7/23 11:43	08/07/23 15:38	1
Ethylbenzene	<0.0050		0.0050			mg/Kg		08/0	7/23 11:43	08/07/23 15:38	1
Toluene	<0.0050		0.0050			mg/Kg		08/0	7/23 11:43	08/07/23 15:38	1
Xylenes, Total	<0.010		0.010			mg/Kg		08/0	7/23 11:43	08/07/23 15:38	1
	MB	MB									
Surrogate	%Recovery	Qualifier	Limits					Pi	repared	Analyzed	Dil Fac
4-Bromofluorobenzene	104		67 - 130					08/0	7/23 11:43	08/07/23 15:38	1
Dibromofluoromethane	100		77 - 127					08/0	7/23 11:43	08/07/23 15:38	1
Toluene-d8 (Surr)	105		76 - 127					08/0	7/23 11:43	08/07/23 15:38	1
Lab Sample ID: LCS 400-636	136/1-A						Clien	t Sar	nple ID:	Lab Control S	Sample
Matrix: Solid										Prep Type: To	
Analysis Batch: 636035										Prep Batch:	
			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Quali	ifier l	Unit	D	%Rec	Limits	

Benzene

Released to Imaging: 5/2/2024 4:22:08 PM

Eurofins Pensacola

1

1

1

0.0496

mg/Kg

99

65 - 130

0.0500

QC Sample Results

Spike

Added

0.0500

0.0500

0.100

0.0500

0.0500

Limits

67 - 130

77 - 127 76 - 127 LCS LCS

0.0516

0.0484

0.100

0.0509

0.0492

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D %Rec

103

97

100

102

98

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

LCS LCS %Recovery Qualifier

103

99

101

98

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Lab Sample ID: LCS 400-636136/1-A

Matrix: Solid

Analyte

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene

Dibromofluoromethane

Analysis Batch: 636225

Toluene-d8 (Surr)

Matrix: Solid

Toluene-d8 (Surr)

Analysis Batch: 636035

Job ID: 400-241285-1

11

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 636269

08/08/23 10:28 08/08/23 13:09

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec

Limits

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.0050		0.0050		mg/Kg		08/08/23 10:28	08/08/23 13:09	1
Ethylbenzene	<0.0050		0.0050		mg/Kg		08/08/23 10:28	08/08/23 13:09	1
Toluene	<0.0050		0.0050		mg/Kg		08/08/23 10:28	08/08/23 13:09	1
Xylenes, Total	<0.010		0.010		mg/Kg		08/08/23 10:28	08/08/23 13:09	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene	99		67 - 130				08/08/23 10:28	08/08/23 13:09	1
Dibromofluoromethane	95		77 - 127				08/08/23 10:28	08/08/23 13:09	1

Lab Sample ID: LCS 400-636269/2-A Matrix: Solid Analysis Batch: 636225

Lab Sample ID: MB 400-636269/1-A

Analysis Batch: 636225							Prep Batch	636269
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.0500	0.0451		mg/Kg		90	65 - 130	
Ethylbenzene	0.0500	0.0483		mg/Kg		97	70 - 130	
Toluene	0.0500	0.0503		mg/Kg		101	70 - 130	
Xylenes, Total	0.100	0.0945		mg/Kg		94	70 - 130	
m-Xylene & p-Xylene	0.0500	0.0474		mg/Kg		95	70 - 130	
o-Xylene	0.0500	0.0470		mg/Kg		94	70 - 130	

76 - 127

LCS	LCS	
%Recovery	Qualifier	Limits
101		67 - 130
97		77 - 127
87		76 - 127
	% Recovery 101 97	97

QC Sample Results

MS MS

0.0410

0.0377

0.0355

0.0731

0.0365

0.0367

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0492

0.0492

0.0492

0.0984

0.0492

0.0492

Limits

67 - 130

77 - 127

76 - 127

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Sample Sample

MS MS

99

94

88

91

Qualifier

< 0.0050

< 0.0050

< 0.0050

< 0.010

< 0.0050

< 0.0050

%Recovery

Result Qualifier

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Lab Sample ID: 400-241285-3 MS

Lab Sample ID: 400-241285-3 MSD

Analysis Batch: 636225

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene

Dibromofluoromethane

Toluene-d8 (Surr)

Matrix: Solid

Toluene-d8 (Surr)

Job ID: 400-241285-1

Prep Type: Total/NA

Prep Batch: 636269

Client Sample ID: SB6 (15FT)

%Rec Limits

38 - 131

35 - 130

42 - 130

35 - 130

35 - 130

35 - 130

%Rec

83

77

72

74

74

75

D

₽

₽

₽

₽

÷Ť

÷Ċ

Page 205 of 211

11

Client Sample ID: SB6 (15FT) Prep Type: Total/NA

Analysis Batch: 636225									Prep Ba	atch: 63	36269
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.0050		0.0500	0.0397		mg/Kg	☆	79	38 - 131	3	30
Ethylbenzene	<0.0050		0.0500	0.0349		mg/Kg	₽	70	35 - 130	8	30
Toluene	<0.0050		0.0500	0.0348		mg/Kg	₽	70	42 - 130	2	30
Xylenes, Total	<0.010		0.100	0.0672		mg/Kg	₽	67	35 - 130	8	30
m-Xylene & p-Xylene	<0.0050		0.0500	0.0335		mg/Kg	₽	67	35 - 130	9	30
o-Xylene	<0.0050		0.0500	0.0338		mg/Kg	¢	68	35 - 130	8	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene	98		67 - 130								
Dibromofluoromethane	95		77 - 127								

Method: 8015C - Nonhalogenated Organics using GC/FID -Modified (Gasoline Range Organics)

76 - 127

Lab Sample ID: MB 400-6362 Matrix: Solid Analysis Batch: 636063		МВ						le ID: Method Prep Type: To Prep Batch:	otal/NA
Analyte Gasoline Range Organics (GRO) C6C10	Result <0.10	Qualifier	RL 0.10	MDL	Unit mg/Kg	<u> </u>	Prepared 08/07/23 11:03	Analyzed 08/07/23 13:15	Dil Fac
Surrogate a,a,a-Trifluorotoluene (fid)	MB %Recovery 96	MB Qualifier	Limits 65 - 125				Prepared 08/07/23 11:03	Analyzed 08/07/23 13:15	Dil Fac

Job ID: 400-241285-1

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

_ab Sample ID: LCS 400-6	36273/1-4					Clier	nt Sar	nnle ID [.]	Lab Contro	ol Sample
Analysis Batch: 636063	00210/1-4					Cher	n oui	inpic iD.	Prep Type Prep Batc	Total/N/
,			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO) C6C10			1.00	1.09		mg/Kg		109	62 - 141	
	LCS	LCS								
Surrogate	%Recovery		Limits							
a,a,a-Trifluorotoluene (fid)	98		65 - 125							
							0.1			40 (0057
Lab Sample ID: 400-24128	5-1 MS						CII		ple ID: MW	
Matrix: Solid Analysis Batch: 636063									Prep Type: Prep Batc	
Analysis Batch. 050005	Sample	Sample	Spike	MS	MS				%Rec	1. 03027
Analyte		Qualifier	Added	-	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO) C6C10	<5.4		54.1	62.1		mg/Kg	☆	109	10 - 150	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
a,a,a-Trifluorotoluene (fid)	97		65 - 125							
Lah Campia ID: 400 24429							01	ant Cam		40 (00ET
Lab Sample ID: 400-24128 Matrix: Solid	5-1 WSD						CII		ple ID: MW Prep Type:	
Analysis Batch: 636063									Prep Batc	
Analysis Batch. 000000	Sample	Sample	Spike	MSD	MSD				%Rec	RPI
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits F	RPD Limi
Gasoline Range Organics (GRO)	<5.4		54.1	60.0		mg/Kg	₩ 	105	10 - 150	3 32
C6C10										
C6C10	MSD	MSD								
	MSD %Recovery		Limits							
Surrogate			Limits 65 - 125							
Surrogate a,a,a-Trifluorotoluene (fid)	%Recovery 97	Qualifier	65 - 125	C)						
Surrogate a,a,a-Trifluorotoluene (fid) lethod: 8015C - Diesel	%Recovery 97 Range O	Qualifier	65 - 125	C)			Clie	ent Samp	ole ID: Meth	od Blanl
Surrogate a,a,a-Trifluorotoluene (fid) lethod: 8015C - Diesel Lab Sample ID: MB 400-63	%Recovery 97 Range O	Qualifier	65 - 125	C)			Clie		ole ID: Meth Prep Type:	
Surrogate a,a,a-Trifluorotoluene (fid) lethod: 8015C - Diesel Lab Sample ID: MB 400-63 Matrix: Solid	%Recovery 97 Range O	Qualifier rganics (I	65 - 125	C)			Clie			Total/NA
Surrogate a,a,a-Trifluorotoluene (fid) lethod: 8015C - Diesel Lab Sample ID: MB 400-63 Matrix: Solid Analysis Batch: 635766	<u>%Recovery</u> 97 Range O 5581/1-A	Qualifier rganics ([MB MB	65 - 125 DRO) (GC	,					Prep Type Prep Batc	: Total/N/ h: 63558′
C6C10 <u>Surrogate</u> a,a,a-Trifluorotoluene (fid) lethod: 8015C - Diesel Lab Sample ID: MB 400-63 Matrix: Solid Analysis Batch: 635766 Analyte	<u>%Recovery</u> 97 Range O 5581/1-A Re	Qualifier rganics (I MB MB sult Qualifier	65 - 125 DRO) (GC	RL I	MDL Unit		D P	repared	Prep Type Prep Batc Analyzed	: Total/NA h: 635581
Surrogate a,a,a-Trifluorotoluene (fid) lethod: 8015C - Diesel Lab Sample ID: MB 400-63 Matrix: Solid Analysis Batch: 635766	<u>%Recovery</u> 97 Range O 5581/1-A Re	Qualifier rganics ([MB MB	65 - 125 DRO) (GC	,	MDL Unit mg/K mg/K	g –	D P 08/0	repared 2/23 13:15	Prep Type Prep Batc	Total/N/ h: 63558' Dil Fa

Eurofins Pensacola

Prep Type: Total/NA

Prep Batch: 635581

Analyzed

08/02/23 13:15 08/03/23 19:02

Client Sample ID: Lab Control Sample

%Rec

Limits

38 - 116

Prepared

D %Rec

85

Lab Sample ID: LCS 400-635581/2-A

Surrogate

o-Terphenyl

Analyte

Matrix: Solid

Analysis Batch: 635766

Diesel Range Organics (DRO)

LCS LCS

228

Result Qualifier

Unit

mg/Kg

Limits

Spike

Added

268

27 - 150

%Recovery Qualifier

110

Dil Fac

...

		QC	Samp	ble	Resı	ults							
Client: Stantec Consulting Se Project/Site: Canada Mesa #2										Job ID: 4	400-241	285-1	2
Method: 8015C - Diese	Range Orga	anics (E	DRO) (0	GC)	(Con	tinued)						
Lab Sample ID: LCS 400-6	35581/2-A						Cli	ent Sa	ample ID	: Lab Co	ntrol Sa	ample	
Matrix: Solid Analysis Batch: 635766										Prep Ty Prep B	pe: To	tal/NA	4
	LCS LCS	5											5
Surrogate	%Recovery Qua	alifier	Limits										
o-Terphenyl	113		27 - 150										
Method: 300.0 - Anions	, Ion Chroma	atograp	ohy										
Lab Sample ID: MB 400-63	5533/1-A							Cli	ient Sam	ple ID: N			8
Matrix: Solid										Prep T	ype: So	oluble	
Analysis Batch: 635617	МР	мв											9
Analyte		Qualifier		RL	1	MDL Unit	•	DI	Prepared	Analy	bozy	Dil Fac	
Chloride	<20	Quanter		20	. <u></u>	mg/	-		repured	08/02/23		1	
	05500/0 4						01						
Lab Sample ID: LCS 400-6 Matrix: Solid	35533/2-A						CII	ent Sa	ample ID	: Lab Co	introl Sa Vpe: So		11
Analysis Batch: 635617										гіері	ype. St	Juble	
			Spike		LCS	LCS				%Rec			
Analyte			Added		Result	Qualifier	Unit	D	%Rec	Limits			13
Chloride			96.5		106		mg/Kg		110	80 - 120			
Lab Sample ID: LCSD 400-	-635533/3-A						Client S	ample	e ID: Lat	o Control	Sample	e Dun	
Matrix: Solid											ype: So		
Analysis Batch: 635617													
			Spike		LCSD	LCSD				%Rec		RPD	
Analyte			Added			Qualifier		D		Limits	RPD	Limit	
Chloride			99.5		110		mg/Kg		110	80 - 120	4	15	
Method: Moisture - Per	cent Moistur	'e											
Lab Sample ID: 400-24128	5-5 DU								Client S	ample ID	: TW1 (33FT)	
Matrix: Solid										Prep Ty	•		
Analysis Batch: 635894													

	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
Percent Solids	89.4		90.4		%		 	1	10
Percent Moisture	10.6		9.6		%			9	

Eurofins Pensacola

Released to Imaging: 5/2/2024 4:22:08 PM

Eurofins Pensacola

3355 McLemore Drive Pensacola, FL 32514 Phone 850-474-1001 Fax: 850-478-2671

Chain of Custody Record

N

🔅 eurofins

Environment Testing

Received by OCD: 3/20/2024 2:14:26 PM

1	Client Information	Sampler Rob Mala Phone 515 710 9	comson		ire, Chey	/enne	400-24	41285	COC	6341 6593 613			COC № 400-121828-41778 1	
•	Client Contact Steve Varsa	Phone 515 710 4	9815	E-Mail Cheye	nne.Whi	tmire@e	t.eurof	īnsus.		State of C		IM	Page Page 1 of 1	
	Company Stantec Consulting Services Inc		PWSID				A	nalys	sis Re	queste	1		Job#1937	109649
5	Address. 11311 Aurora Avenue	Due Date Requested:						ΓŤ		İT			Preservation	
22	City [.] Des Moines	TAT Requested (days): Standa											A - HCL B - NaOH C - Zn Acetate	N - None O - AsNaO2
3	State, Zip IA, 50322-7904	$\sum_{\text{Compliance Project: } \Delta Y}$											D - Nitric Acid E - NaHSO4	Q - Na2SO3
17-08 DIA	Phone	PO#: WD1040036			28-C35								F - MeOH G - Amchior H - Ascorbic Ad	R - Na2S2O3 S - H2SO4 T - TSP Dodecahydrate U - Acetone
Ма	Email steve varsa@stantec.com	wo # Canada Mesa_ERG_A	RF_20230710	stor. N	NL ORO O								J - Ice J - DI Water K - EDTA	V - MCAA W - pH 4-5
	Project Name. Canada Mesa #2	Project # 40015823		e (Ye		Chloride							C - EDIA L - EDA	Y - Trizma Z - other (specify)
	Site	SSOW#		Samo	RO C10	28D - Ch		ane					Ö Other:	
		Sam	Sample Type ple (C=comp,	Matrix (W=water, S=solid, O=waste/oil,	sometric destruction of the second seco	300_ORGFM_28D	' I X	Moisture - Moisture					aguina Specia	
σ	Sample Identification	Sample Date Tim		BT=Tissue, A=Air)			826		aradi Gara	5 2015 1988	r 1922 OF		Specia	al Instructions/Note:
Page	MWIZ (ZZF+)	7/25/23 141		Solid		$\langle \chi \chi \rangle$			<u>1 - N.T 1818</u>					AND THE REPORT OF A DECEMBER OF
28 of 30	MW12 (35 ft.)	7/25/23 151		Solid	Τ×		$\langle x \rangle$	+		11	+			
of 3(3B6 (15ft)	7/26/23 131	15 G	Solid	X		バン							
0	SB6 (35ft.)	7/26/23 144	15 G	Solid	X		×х							
	TWI (33 ft.)	7/27/23 101	o G			(X)	x X	×			<u> </u>			
						1.1	_				+		¥	
					┨.╎	+							8 	
						+	+							
							+			$\left - \right $	+-+-		£	
					╆┾╍	┼╌┼╌					+		8 8	
	Possible Hazard Identification		l #	l	Sampl	le Dispo	sal (A	fee n	nay be a	assessed	l if sampl		ined longer that chive For	an 1 month)
	Non-Hazard Flammable Skin Irritant Pois Deliverable Requested: I (II) III, IV, Other (specify)	on B Unknown	Radiological			Return T Il Instruct					By Lab	<u>Ar</u>	chive For	Months
	Empty Kit Relinquished by:	Date:	· · · · · · · · · · · · · · · · · · ·		ime:						hod of Shipn	nent:		
	Relinquished Br. 21 Th-		1420	Stante		ceived by	Es	ar			Date	Time 1/2	123 142	Company
~	Relinquished by	Date/Time		Company	Rec C	ceived by	14	<u></u>	X Úa	XU A -	Date		2 80	Company
3/15,	Relinquished by	Date/Time.	_ 	Сотрапу	Rec	ceived by	<u>7 C</u>			agest	Date	2 <u>1</u> 2/Time	<u>, </u>	Company
8/15/2023	Custody Seals Intact: Custody Seal No.: Δ Yes Δ No		1	<u> </u>	Cog		erature(s)			emarks	<u> </u>			
5														Ver: 06/08/2021
						5	3	N			9	∞ ¬	の 0	Ο ω 4 π

Page 208 of 211

Login Sample Receipt Checklist

Client: Stantec Consulting Services Inc

Login Number: 241285 List Number: 1 Creator: Roberts, Alexis J

Question	Answer	Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	N/A		
Sample custody seals, if present, are intact.	N/A		
The cooler or samples do not appear to have been compromised or tampered with.	True		
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	2.3°C IR8	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		1
There are no discrepancies between the containers received and the COC.	True		Ľ
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	N/A		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	True		
Samples do not require splitting or compositing.	True		
Residual Chlorine Checked.	N/A		

Job Number: 400-241285-1

List Source: Eurofins Pensacola

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Project/Site: Canada Mesa #2.00

Laboratory: Eurofins Pensacola

Authority	Program	Identification Number	Expiration Date
Alabama	State	40150	06-30-24
ANAB	ISO/IEC 17025	L2471	02-22-26
Arkansas DEQ	State	88-00689	09-01-23
California	State	2510	06-30-24
Florida	NELAP	E81010	06-30-24
Georgia	State	E81010(FL)	06-30-24
Illinois	NELAP	200041	10-09-23
Kansas	NELAP	E-10253	10-31-23
Kentucky (UST)	State	53	06-30-24
Louisiana (All)	NELAP	30976	06-30-24
Louisiana (DW)	State	LA017	12-31-23
Maryland	State	233	09-30-23
North Carolina (WW/SW)	State	314	12-31-23
Oklahoma	NELAP	9810	08-31-23
Pennsylvania	NELAP	68-00467	01-31-24
South Carolina	State	96026	06-30-24
Tennessee	State	TN02907	06-30-24
Texas	NELAP	T104704286	09-30-23
US Fish & Wildlife	US Federal Programs	A22340	06-30-24
USDA	US Federal Programs	P330-21-00056	05-17-24
USDA	US Federal Programs	FLGNV23001	01-08-26
Virginia	NELAP	460166	06-14-24
West Virginia DEP	State	136	03-31-24

Job ID: 400-241285-1

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 325216

CONDITIONS				
Operator:	OGRID:			
El Paso Natural Gas Company, L.L.C	7046			
1001 Louisiana Street	Action Number:			
Houston, TX 77002	325216			
	Action Type:			
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)			

CONDITIONS				
Created By	Condition	Condition Date		
michael.buchanan	Review of the Canada Mesa#2 2023 Annual Groundwater Report: Content Satisfactory 1. Please update copies of well permits obtained from NMOSE for installation of additional well MW-12 2. Continue to recover LNAPL during quarterly site visits where present and readily removable. 3. Continue groundwater monitoring on a semi-annual basis for BTEX by EPA method 8260, and conduct site-wide sampling biennial in the the 2nd quarter of 2024. 4. Submit next groundwater annual report by April 1, 2025.	5/2/2024		