## E N S O L U M

April 15, 2024

**New Mexico Oil Conservation Division** New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

### Re: Closure Request Baish B Battery Incident Number NAPP2235372941 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of Maverick Permian, LLC (Maverick), has prepared this *Closure Request* as a follow-up to the *Remediation Work Plan* (Work Plan) submitted to the New Mexico Oil Conservation Division (NMOCD) on July 13, 2023, and approved by NMOCD on October 6, 2023. This *Closure Request* documents assessment, excavation, and soil sampling activities performed at the Baish B Battery (Site) to address impacts to soil resulting from a release of crude oil. Based on the remediation activities completed as outlined in the approved *Work Plan*, Maverick is submitting this *Closure Request*, describing remediation that has occurred and requesting closure for Incident Number NAPP2235372941.

### SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit K, Section 22, Township 17 South, Range 32 East, in Lea County, New Mexico (32.817358°, -103.754432°) and is associated with oil and gas exploration and production operations on Federal land managed by the Bureau of Land Management (BLM).

On November 30, 2022, approximately 7.4 barrels (bbls) of crude oil were released onto the well pad and adjacent pasture. No released fluids were recovered. Maverick reported the release to the NMOCD on a Release Notification Form C-141 (Form C-141) on December 19, 2022. The release was assigned Incident Number NAPP2235372941.

### SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization are summarized below and detailed in the NMOCD permitting portal Form C-141 Site Characterization section. Potential Site receptors are identified on Figure 1.

Depth to groundwater at the Site was determined to be between 51 and 100 feet below ground surface (bgs). The closest groundwater well/soil boring with depth to groundwater data is soil boring DTW 01, drilled at the Site during March 2024. Groundwater was encountered in the soil boring at a depth of 53 feet bgs. A field geologist logged and described soil continuously. The borehole lithologic log is included

in Appendix A. The borehole was properly abandoned using hydrated bentonite chips. All wells used for depth to groundwater determination are presented on Figure 1.

The closest continuously flowing or significant watercourse is greater than 300 feet from the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 10,000 mg/kg

A reclamation requirement of 600 mg/kg chloride and 100 mg/kg TPH applies to the top 4 feet of the pasture area that was impacted by the release, per NMAC 19.15.29.13.D (1) for the top 4 feet of areas that will be reclaimed following remediation.

### SITE ASSESSMENT AND DELINEATION ACTIVITIES

Between January 2023 and April 2024, assessment activities were conducted at the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. Assessment soil samples SS01 through SS14 were collected within and around the release from a depth of 0.5 feet bgs to assess the extent of the surface release. The release extent and assessment soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was completed during the Site visit and a photographic log is included in Appendix B.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins or Cardinal Laboratories for analysis of the following constituents of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0 or Standard Method SM4500.

Laboratory analytical results for assessment soil samples SS01, SS02, and SS09, collected within the release extent, indicated that TPH concentrations exceeded the Site Closure Criteria. Laboratory analytical results for assessment soil samples SS03 through SS08 and SS10 through SS14, collected around the release extent, indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria and defined the lateral extent of the surface release. The laboratory analytical results are summarized in Table 1. Based on the laboratory analytical results, additional assessment activities were warranted to delineate the vertical extent of the release.



During January and February 2024, Ensolum personnel were at the Site to complete additional assessment activities to delineate the vertical extent of the release. Potholes PH01 and PH02 and boreholes BH01 and BH02 were advanced via backhoe or hand auger to depths ranging from 3 feet to 5 feet bgs. Soil from the potholes and boreholes was field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach<sup>®</sup> chloride QuanTab<sup>®</sup> test strips. Field screening results and observations for the potholes and boreholes were logged on lithologic soil sampling logs, which are included in Appendix C. Delineation soil samples were collected from each pothole and borehole at depths ranging from 1-foot to 5 feet bgs. The soil samples were collected, handled, and analyzed as described above.

Laboratory analytical results for the delineation samples collected from potholes PH01 and PH02 and boreholes BH01 and BH02 indicated all COC concentrations were compliant with the most stringent Table I Closure Criteria and defined the vertical extent of the release. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included as Appendix D.

### **EXCAVATION ACTIVITIES**

Between January 2023 and February 2024, Ensolum personnel were at the Site to oversee excavation of impacted soil as outlined in the approved *Work Plan*. To direct excavation activities, soil was field screened for VOCs and chloride. Excavation activities were performed utilizing a hydrovac, hand shovels, track-mounted backhoe and transport vehicles. The excavation was completed to depths ranging from 0.5 feet to 4.25 feet bgs.

Following removal of impacted soil, 5-point composite soil samples were collected every 200 square feet from the floor and sidewalls of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil samples FS01 through FS25, FS01A, FS07A, and FS15A were collected from the floor of the excavation at depths ranging from 0.5 feet to 4.25 feet bgs. Composite soil samples SW01 through SW11 were collected from the sidewalls of the excavation at depths ranging from the ground surface to 4 feet bgs. The excavation soil samples were handled and analyzed following the same procedures as described above. The excavation extent and excavation soil sample locations were mapped utilizing a handheld GPS and are presented on Figure 3. Photographic documentation was completed during the Site visits and a photographic log is included in Appendix B.

Laboratory analytical results for excavation floor samples FS01A, FS02 through FS06, FS07A, FS08 through FS14, FS15A, and FS16 through FS25 and excavation sidewall samples SW01 through SW11, collected from the final excavation extent, indicated all COC concentrations were compliant with the Site Closure Criteria and reclamation requirements, where applicable. Laboratory analytical results for excavation floor samples FS01, FS07, and FS15 initially exceeded the reclamation requirements for TPH; additional soil was removed from these areas and subsequent floor samples FS01A, FS07A, and FS15A were compliant. Laboratory analytical results are summarized on Table 1 and the complete laboratory analytical reports are included as Appendix D.

The excavation measured approximately 5,000 square feet in areal extent. A total of approximately 700 cubic yards of impacted soil was removed during the excavation activities. The impacted soil was transported and properly disposed of at the R360 Disposal Facility located in Hobbs, New Mexico.

### **RECLAMATION ACTIVITIES**

Upon completion of excavation activities and receipt of final laboratory analytical results, the excavation was backfilled and the area was restored to its original condition. The excavation area on-pad was backfilled with caliche, the pasture excavation was backfilled with locally procured topsoil. Following backfill activities, the disturbed area was graded and contoured to match the surrounding topography.



One representative 5-point composite sample (BF01) was collected from the backfill material. The backfill soil sample was handled and analyzed following the same procedures as described above. Laboratory analytical results for the backfill soil sample confirmed compliance with the NMOCD requirement for the reclaimed area to contain non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 mg/kg and TPH concentrations less than 100 mg/kg. The laboratory analytical results are summarized in the attached Table 1 and the complete laboratory analytical report is included as Appendix D. Any soil remaining in place on the active well pad that is compliant with the Site Closure Criteria but exceeds reclamation requirements of NMAC 19.15.29.13.D (1) will be removed during plugging and abandonment of the well and final reclamation of the well pad.

The disturbed pasture area was seeded with the BLM seed mix #2 at the rate specified in pounds of pure live seed (PLS) per acre.

| Species/Cultivar                           | PLS/Acre |
|--------------------------------------------|----------|
| Sand dropseed (Sporobolus cryptandrus)     | 1.0      |
| Sand love grass (Eragrostis trichodes)     | 1.0      |
| Plains bristlegrass (Setaria macrostachya) | 2.0      |

The seed mix was distributed with a broadcast seed spreader and harrowed in. Photographs of the reclaimed excavation area are provided in Appendix B.

The Site will be monitored for vegetation growth to ensure that reclamation activities were successful. Focus for this phase will be to prevent erosion and site degradation, and to monitor for and treat invasive and noxious weed species.

- Erosion control of the newly reclaimed areas includes prompt revegetation and contouring of the surface to prevent concentrated surface water flow.
- Annual inspections will take place at the location to assess revegetation progress until vegetation is consistent with local natural vegetation density.
- If necessary, an additional application of the BLM seed mix will be applied.
- Noxious and invasive weeds will be identified and treated by licensed contracted herbicide applicator or mechanically removed.

A *Revegetation Report* will be submitted to the NMOCD once vegetation growth in the reclaimed pasture area has uniform vegetative cover that reflects a life-form ratio of plus or minus fifty percent of predisturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds, per NMAC 19.15.29.13 D.(3).

### **CLOSURE REQUEST**

As outlined in the approved *Work Plan*, assessment and excavation activities were conducted at the Site to address the November 30, 2022, release of crude oil. Laboratory analytical results for the excavation soil samples, collected from the final excavation extent, indicated all COC concentrations were compliant with the Site Closure Criteria and reclamation requirements, where applicable. Additionally, the release was laterally and vertically delineated to below the most stringent Table I Closure Criteria. Based on confirmed depth to groundwater between 51 feet and 100 feet bgs, and excavation and soil sampling activities completed as outlined in the approved Work Plan, no further remediation is required.



Excavation of impacted soil has mitigated impacts at this Site. Maverick believes the remedial actions completed are protective of human health, the environment, and groundwater and respectfully requests closure for Incident NAPP2235372941.

If you have any questions or comments, please contact Ms. Aimee Cole at (720) 384-7365 or acole@ensolum.com.

Sincerely, Ensolum, LLC

Masie Freen

Hadlie Green Project Geologist

é Cole

Aimee Cole Senior Managing Scientist

cc: Bryce Wagoner, Maverick Natural Resources

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Assessment and Delineation Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Lithologic Soil Sampling Logs
- Appendix D Laboratory Analytical Reports & Chain of Custody Documentation
- Appendix E NMOCD Correspondence





**FIGURES** 

Received by OCD: 4/17/2024 12:35:00 PM

Page 7 of 203



Received by OCD: 4/17/2024 12:35:00 PM



Released to Imaging: 5/14/2024 11:22:06 AM

Received by OCD: 4/17/2024 12:35:00 PM



Released to Imaging: 5/14/2024 11:22:06 AM



## TABLE

.

# ENSOL<sup>203</sup>

+

|                       |                               |                     |                    | E<br>Mave             | TABLE 1E ANALYTICABaish B Batteryerick Permian, LCounty, New Mex | .LC                |                    |                    |                      |                     |
|-----------------------|-------------------------------|---------------------|--------------------|-----------------------|------------------------------------------------------------------|--------------------|--------------------|--------------------|----------------------|---------------------|
| Sample<br>Designation | Date                          | Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg)                                               | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | GRO+DRO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
| NMOCD Ta              | ble I Closure Cr<br>19.15.29) | iteria (NMAC        | 10                 | 50                    | NE                                                               | NE                 | NE                 | 1,000              | 2,500                | 10,000              |
|                       |                               |                     |                    | Asses                 | sment Soil Sam                                                   | ples               |                    |                    |                      |                     |
| SS01                  | 1/9/2023                      | 0.5                 | <0.201             | 17.7                  | 1,820                                                            | 754                | <49.9              | 2,574              | 2,570                | 99.8                |
| SS02                  | 1/9/2023                      | 0.5                 | <0.199             | <0.398                | 9,810                                                            | 376                | <249               | 10,186             | 10,200               | 123                 |
| SS03                  | 1/9/2023                      | 0.5                 | <0.00199           | <0.00398              | <49.9                                                            | <49.9              | <49.9              | <49.9              | <49.9                | 55.8                |
| SS04                  | 1/9/2023                      | 0.5                 | <0.00200           | <0.00399              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 44.6                |
| SS05                  | 1/9/2023                      | 0.5                 | <0.00199           | <0.00398              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 67.7                |
| SS06                  | 1/9/2023                      | 0.5                 | <0.00199           | <0.00398              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 44.8                |
| SS07                  | 1/9/2023                      | 0.5                 | <0.00200           | <0.00399              | <49.9                                                            | <49.9              | <49.9              | <49.9              | <49.9                | 48.8                |
| SS08                  | 1/9/2023                      | 0.5                 | <0.00199           | <0.00398              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 46.3                |
| SS09                  | 1/29/2024                     | 0.5                 | <0.050             | <0.300                | <10.0                                                            | 234                | 173                | 234                | 407                  | 32.0                |
| SS10                  | 1/29/2024                     | 0.5                 | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 32.0                |
| SS11                  | 1/31/2024                     | 0.5                 | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 48.0                |
| SS12                  | 2/1/2024                      | 0.5                 | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | <16.0               |
| SS13                  | 4/11/2024                     | 0.5                 | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 48.0                |
| SS14                  | 4/11/2024                     | 0.5                 | <0.050             | <0.300                | <10.0                                                            | 61.7               | 32.8               | 61.7               | 95                   | 32.0                |
|                       |                               |                     |                    | Delien                | eation Soil Sam                                                  | nples              |                    |                    |                      |                     |
| PH01                  | 1/25/2024                     | 1                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 32.0                |
| PH01                  | 1/25/2024                     | 5                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 32.0                |
| PH02                  | 1/29/2024                     | 1                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 32.0                |
| PH02                  | 1/29/2024                     | 4                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 32.0                |
| BH01                  | 2/8/2024                      | 2                   | <0.050             | <0.300                | <10.0                                                            | 46.0               | <10.0              | 46.0               | 46.0                 | 144                 |
| BH01                  | 2/8/2024                      | 3                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 224                 |
| BH02                  | 2/8/2024                      | 2                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 48.0                |
| BH02                  | 2/8/2024                      | 4                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 80.0                |

# ENSOL<sup>1</sup><sup>1</sup><sup>203</sup>

+

|                       |                                                                                                                                     |                     |                    | l<br>Ma∨              | TABLE 1.E ANALYTICABaish B Batteryerick Permian, ICounty, New Me | .LC                |                    |                    |                      |                     |  |  |  |  |  |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------|-----------------------|------------------------------------------------------------------|--------------------|--------------------|--------------------|----------------------|---------------------|--|--|--|--|--|
| Sample<br>Designation | Date                                                                                                                                | Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg)                                               | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | GRO+DRO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |  |  |  |  |  |
| NMOCD Ta              | NMOCD Table I Closure Criteria (NMAC<br>19.15.29)       10       50       NE       NE       NE       1,000       2,500       10,000 |                     |                    |                       |                                                                  |                    |                    |                    |                      |                     |  |  |  |  |  |
|                       |                                                                                                                                     |                     |                    | Excavat               | tion Floor Soil S                                                | amples             |                    |                    |                      |                     |  |  |  |  |  |
| FS01*                 | 2/27/2023                                                                                                                           | 2                   | <0.00198           | <0.00396              | <49.9                                                            | 104                | <49.9              | 104                | 104                  | 53.7                |  |  |  |  |  |
| FS01A*                | 8/3/2023                                                                                                                            | 2.25                | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 16.0                |  |  |  |  |  |
| FS02*                 | 2/27/2023                                                                                                                           | 2                   | <0.00199           | <0.00398              | <49.9                                                            | 55.6               | <49.9              | 55.6               | 55.6                 | 60.2                |  |  |  |  |  |
| FS03*                 | 2/27/2023                                                                                                                           | 3.5                 | <0.00201           | 0.490                 | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 55.2                |  |  |  |  |  |
| FS04*                 | 2/28/2023                                                                                                                           | 2                   | <0.00199           | <0.00398              | <49.9                                                            | <49.9              | <49.9              | <49.9              | <49.9                | 69.3                |  |  |  |  |  |
| FS05*                 | 2/28/2023                                                                                                                           | 2                   | <0.00199           | <0.00398              | <49.9                                                            | <49.9              | <49.9              | <49.9              | <49.9                | 43.1                |  |  |  |  |  |
| FS06*                 | 2/28/2023                                                                                                                           | 2                   | <0.00199           | <0.00398              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 54.0                |  |  |  |  |  |
| FS07*                 | 3/1/2023                                                                                                                            | 4                   | <0.00198           | <0.00396              | <49.9                                                            | 146                | <49.9              | 146                | 146                  | 106                 |  |  |  |  |  |
| FS07A                 | 8/3/2023                                                                                                                            | 4.25                | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | <16.0               |  |  |  |  |  |
| FS08*                 | 3/1/2023                                                                                                                            | 4                   | <0.00199           | <0.00398              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 74.9                |  |  |  |  |  |
| FS09*                 | 3/1/2023                                                                                                                            | 4                   | <0.00200           | <0.00401              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 305                 |  |  |  |  |  |
| FS10*                 | 2/28/2023                                                                                                                           | 3                   | <0.00200           | <0.00401              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 61.9                |  |  |  |  |  |
| FS11*                 | 3/1/2023                                                                                                                            | 3.5                 | <0.00199           | <0.00398              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 158                 |  |  |  |  |  |
| FS12*                 | 3/1/2023                                                                                                                            | 3                   | <0.00200           | <0.00399              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 128                 |  |  |  |  |  |
| FS13*                 | 3/1/2023                                                                                                                            | 3                   | <0.00201           | <0.00402              | 70.6                                                             | <50.0              | <50.0              | <50.0              | 70.6                 | 82.4                |  |  |  |  |  |
| FS14                  | 1/25/2024                                                                                                                           | 4                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | <16.0               |  |  |  |  |  |
| FS15                  | 1/26/2024                                                                                                                           | 4                   | <0.050             | <0.300                | <10.0                                                            | 213                | 44.3               | 213                | 257                  | 16.0                |  |  |  |  |  |
| FS15A                 | 1/31/2024                                                                                                                           | 4.25                | <0.050             | <0.300                | <10.0                                                            | 158                | 45.7               | 158                | 204                  | 112                 |  |  |  |  |  |
| FS16                  | 1/29/2024                                                                                                                           | 4                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 64.0                |  |  |  |  |  |
| FS17                  | 1/30/2024                                                                                                                           | 1.5                 | <0.050             | <0.300                | <10.0                                                            | 17.9               | <10.0              | 17.9               | 17.9                 | 112                 |  |  |  |  |  |

# ENSOL<sup>203</sup>

|                       |                                |                     |                    | l<br>Ma∨              | TABLE 1.E ANALYTICABaish B Batteryerick Permian, ICounty, New Me | .LC                |                    |                    |                      |                     |
|-----------------------|--------------------------------|---------------------|--------------------|-----------------------|------------------------------------------------------------------|--------------------|--------------------|--------------------|----------------------|---------------------|
| Sample<br>Designation | Date                           | Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg)                                               | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | GRO+DRO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
| NMOCD Ta              | able I Closure Cr<br>19.15.29) | iteria (NMAC        | 10                 | 50                    | NE                                                               | NE                 | NE                 | 1,000              | 2,500                | 10,000              |
| FS18*                 | 1/31/2024                      | 0.5                 | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 32.0                |
| FS19                  | 1/31/2024                      | 0.5                 | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 16.0                |
| FS20                  | 1/31/2024                      | 1                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 752                 |
| FS21                  | 1/31/2024                      | 1                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 32.0                |
| FS22                  | 1/31/2024                      | 1                   | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 272                 |
| FS23                  | 2/1/2024                       | 1.5                 | <0.050             | <0.300                | 11.6                                                             | 582                | 87.4               | 594                | 681                  | 544                 |
| FS24                  | 2/1/2024                       | 1                   | <0.050             | <0.300                | <10.0                                                            | 63.7               | 14.3               | 63.7               | 78.0                 | 304                 |
| FS25                  | 2/1/2024                       | 1.5                 | <0.050             | <0.300                | <10.0                                                            | 255                | 70.9               | 255                | 326                  | 672                 |
|                       |                                |                     |                    | Excavatio             | on Sidewall Soil                                                 | Samples            |                    |                    |                      |                     |
| SW01*                 | 2/27/2023                      | 0 - 2               | <0.00202           | <0.00403              | 66.7                                                             | <50.0              | <50.0              | <50.0              | 66.7                 | 36.7                |
| SW02*                 | 2/28/2023                      | 0 - 2               | <0.00199           | <0.00398              | 64.7                                                             | <50.0              | <50.0              | <50.0              | 64.7                 | 51.8                |
| SW03*                 | 3/1/2023                       | 0 - 3               | <0.00199           | <0.00398              | <49.9                                                            | <49.9              | <49.9              | <49.9              | <49.9                | 80.8                |
| SW04*                 | 3/1/2023                       | 0 - 3               | <0.00200           | <0.00399              | <49.9                                                            | <49.9              | <49.9              | <49.9              | <49.9                | 88.4                |
| SW05*                 | 2/1/2024                       | 0 - 3               | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | <16.0               |
| SW06*                 | 3/1/2023                       | 0 - 4               | <0.00201           | <0.00402              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 42.3                |
| SW07*                 | 3/1/2023                       | 0 - 4               | <0.00200           | <0.00399              | <50.0                                                            | <50.0              | <50.0              | <50.0              | <50.0                | 69.3                |
| SW08*                 | 1/25/2024                      | 0 - 4               | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 16.0                |
| SW09                  | 1/30/2024                      | 0 - 4               | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 32.0                |
| SW10                  | 1/30/2024                      | 0 - 4               | <0.050             | <0.300                | <10.0                                                            | <10.0              | <10.0              | <10.0              | <10.0                | 16.0                |
| SW11                  | 2/1/2024                       | 0 - 1               | <0.050             | <0.300                | <10.0                                                            | 14.2               | <10.0              | 14.2               | 14.2                 | 336                 |



|                       | TABLE 1         SOIL SAMPLE ANALYTICAL RESULTS         Baish B Battery         Maverick Permian, LLC         Lea County, New Mexico                 |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|
| Sample<br>Designation |                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |  |
| NMOCD Ta              | NMOCD Table I Closure Criteria (NMAC<br>19.15.29)         10         50         NE         NE         NE         1,000         2,500         10,000 |  |  |  |  |  |  |  |  |  |  |  |  |
|                       | Backfill Soil Sample                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |  |
| BF01                  | BF01 4/10/2024 - <0.050 <0.300 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 48.0                                                                             |  |  |  |  |  |  |  |  |  |  |  |  |

#### Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

NA: Not Analyzed

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics
DRO: Diesel Range Organics
ORO: Oil Range Organics
TPH: Total Petroleum Hydrocarbon
Grey text represents samples that have been excavated
\* indicates sample was collected in area to be reclaimed after remediation is complete; reclamation requirement in the top 4 feet is 600 mg/kg for chloride and 100 mg/kg for TPH.

Concentrations in **bold** exceed the NMOCD Table 1 Closure Criteria or reclamation standard where applicable.



# APPENDIX A

**Referenced Well Records** 





# New Mexico Office of the State Engineer **Point of Diversion Summary**

|             |       |                       | ( <b>1</b> |       |      |       | E 3=SW |         | NA       | D83 UT  | M in meters) |         |
|-------------|-------|-----------------------|------------|-------|------|-------|--------|---------|----------|---------|--------------|---------|
| Well Tag    | POD   | Number                | •••        |       |      |       | Tws    |         | (1.1.1   | X       | Y            |         |
| 0           | RA    | 12521 POD1            | 3          | 3     | 4    | 21    | 17S    | 32E     | 61:      | 5127    | 3631271 🧲    |         |
| Driller Lic | ense: | 1456                  | Driller    | · Com | pan  | y:    | WH     | IITE D  | RILLIN   | NG CO   | MPANY        |         |
| Driller Na  | me:   | WHITE, JOHN W         |            |       |      |       |        |         |          |         |              |         |
| Drill Start | Date: | 07/21/2017            | Drill F    | ìnish | Dat  | e:    | 0′     | 7/26/20 | 017      | Plu     | g Date:      |         |
| Log File D  | ate:  | 08/22/2017            | PCW        | Rcv D | ate: | :     |        |         |          | Sou     | irce:        | Shallow |
| Pump Typ    | e:    |                       | Pipe D     | ischa | rge  | Size: |        |         |          | Est     | imated Yield | :       |
| Casing Siz  | e:    | 2.00                  | Depth      | Well: |      |       | 10     | 05 feet |          | Dej     | oth Water:   | 92 feet |
| X           | Wate  | er Bearing Stratifica | tions:     |       | То   | p I   | Bottom | Des     | criptior | ı       |              |         |
|             |       |                       |            |       | 8    | 35    | 101    | San     | dstone/0 | Gravel/ | Conglomerate | e       |
|             |       |                       |            |       | 10   | )1    | 105    | San     | dstone/0 | Gravel/ | Conglomerate | e       |
| X           |       | Casing Perfor         | ations:    |       | То   | p I   | Bottom | ı       |          |         |              |         |
|             |       |                       |            |       | 7    | 5     | 105    | i       |          |         |              |         |

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/23/23 2:20 PM

POINT OF DIVERSION SUMMARY

PAGE 1 OF 2



# WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

UTANY ENGINEERO OFFICE BARTA FE, REW MERICO

2017 AUG 22 PM 2:55

| N                         | ose pod no<br>MW-24      | WELL NO.   | PATU                          | W                                                     | ELL TAG ID NO.           |                  | -         | OSE FILE NO               | (S).                                  |                             | <u></u> _    |
|---------------------------|--------------------------|------------|-------------------------------|-------------------------------------------------------|--------------------------|------------------|-----------|---------------------------|---------------------------------------|-----------------------------|--------------|
| DCATIC                    | WELL OWN<br>Phillips 66  |            |                               |                                                       |                          |                  |           | PHONE (OPTI<br>918-914-38 |                                       | <u> </u>                    |              |
| WELL LO                   | WELL OWN<br>420 S Keel   |            | Address<br>708-01 Phillips Bu | ilding)                                               |                          |                  |           | CITY<br>Bartlesville      |                                       | STATE<br>OK                 | ZIP<br>74003 |
| GENERAL AND WELL LOCATION | WELL<br>LOCATIO          |            | DE                            | GREES<br>32                                           | 48                       | seconds<br>48.32 | N         |                           | REQUIRED: ONE TEN                     | TH OF A SECOND              |              |
| NER                       | (FROM GF                 | 'S) LON    | IGITUDE                       | 103                                                   | 46                       | 13.21            | W         | DATUM RE                  | QUIRED: WGS 84                        |                             |              |
| 1. GE                     | DESCRIPTIO<br>Maljamar ( |            | G WELL LOCATION TO            | STREET ADDRES                                         | S AND COMMON LA          | ANDMAR           | KS – PLS  | S (SECTION, TO            | WNSHJIP, RANGE) WH                    | ERE AVAILABLE               | -            |
|                           | LICENSE NO               |            | NAME OF LICENSED              |                                                       |                          |                  |           |                           | NAME OF WELL DR                       | ILLING COMPANY              |              |
| 1                         | WD-1                     | .456       |                               | Jol                                                   | ın W. White              |                  |           |                           | l                                     | Drilling Company, Inc       |              |
|                           | DRILLING S<br>07/21/     |            | DRILLING ENDED<br>07/26/2017  | DEPTH OF COMP                                         | leted well (FT)<br>105.0 | В                | ORE HOI   | LE DEPTH (FT)             | DEPTH WATER FIR                       | ST ENCOUNTERED (FT<br>92.0  | )            |
| z                         | COMPLETE                 | ) WELL IS: | ARTESIAN                      | C DRY HOLE                                            | SHALLOW (                | UNCONF           | INED)     |                           | STATIC WATER LEV                      | TEL IN COMPLETED WI<br>92.0 | ELL (FT)     |
| TIO                       | DRILLING F               | LUID:      |                               | MUD                                                   | ADDITIVES -              | - SPECIF         | Y:        | ·····                     | "I                                    |                             |              |
| & CASING INFORMATION      | DRILLING M               | ETHOD:     | ✓ ROTARY                      | HAMMER                                                | CABLE TOO                | el [             | OTHE      | R - SPECIFY:              |                                       |                             | <u> </u>     |
| NFO                       | DEPTH                    | (feet bgl) | BORE HOLE                     |                                                       | TERIAL AND/O             | PR.              | CA        | SING                      | CASING                                | CASING WALL                 | SLOT         |
| NG I                      | FROM                     | ТО         | DIAM                          | GRADE CASING<br>(include cach casing string, and TYDE |                          |                  |           |                           | INSIDE DIAM.                          | THICKNESS                   | SIZE         |
| CASI                      |                          |            | (inches)                      | note sec                                              | tions of screen)         |                  | idd coupl | YPE<br>ling dianteter)    | (inches)                              | (inches)                    | (inches)     |
| 8                         | 0.0                      | 75.0       | 7 7/8                         |                                                       | 0 PVC Riser              |                  |           | ureads                    | 2.0                                   | 1/4"                        |              |
| 2. DRILLING               | 75.0                     | 105.0      | 7 7/8                         | Sch. 40                                               | ) PVC Screen             |                  | 11        | nreads                    | 2.0                                   | 1/4"                        | .020         |
| ILL                       |                          |            |                               |                                                       |                          |                  |           |                           |                                       |                             |              |
| DF                        |                          |            |                               |                                                       |                          |                  |           |                           | 1                                     | <u>}</u>                    |              |
| 2                         |                          |            |                               |                                                       |                          |                  |           |                           |                                       |                             |              |
|                           |                          |            |                               |                                                       |                          |                  |           |                           | · · · · · · · · · · · · · · · · · · · |                             |              |
|                           |                          |            |                               |                                                       |                          |                  |           |                           |                                       |                             |              |
|                           |                          |            |                               |                                                       |                          |                  |           |                           |                                       | · · · ·                     |              |
|                           |                          |            | _                             |                                                       |                          |                  |           |                           |                                       |                             |              |
|                           | DEPTH                    | (feet bal) | BORE HOLE                     | LIST                                                  | ANNULAR SEAL             | MATE             | PIAT A    |                           | AMOUNT                                | METHO                       |              |
| AL                        | FROM                     | TO         | DIAM. (inches)                |                                                       | L PACK SIZE-RA           |                  |           |                           | (cubic feet)                          | METHO<br>PLACEM             |              |
| ERI.                      | 0.0                      | 65.0       | 7 7/8                         |                                                       | Portland (               | Grout            |           |                           | 8 Bags                                | Pump Mix w/J                | Fremmie Pi   |
| IAT                       | 65.0                     | 72.0       | 7 7/8                         |                                                       | Bentonite                | Chips            |           | <u> </u>                  | 2 Bags                                | Hand I                      |              |
| ANNULAR MATERIAL          | 72.0                     | 105.0      | 7 7/8                         |                                                       | 8/16 Sa                  | and              |           |                           | 13 Bags                               | Hand                        | <br>Mix      |
| 0LA                       |                          |            |                               |                                                       |                          |                  |           | ···· ···                  |                                       |                             |              |
| NN                        |                          |            |                               |                                                       |                          |                  |           |                           |                                       | -                           |              |
| 3. 2                      |                          |            |                               |                                                       |                          |                  |           |                           |                                       |                             |              |
|                           | ]                        |            |                               |                                                       |                          |                  |           |                           |                                       |                             |              |
| FOR                       | OSE INTER                | NAL USE    |                               |                                                       |                          |                  |           | WR-2                      | 0 WELL RECORD &                       | & LOG (Version 06/3         | 0/17)        |
| FILE                      |                          | A - 1      | 2521                          |                                                       | POD NO.                  | 1                |           | TRN 1                     | 1                                     | 310                         |              |

| LOCATION | 115.32F . 21.433 WELL TAG ID NO. |  |
|----------|----------------------------------|--|
|          |                                  |  |
|          |                                  |  |

4

•

۰.

| DEFIT: (cet bj)         UTICKNESS         COLOR AND TYPE OF MATERIAL ENCOUNTERED-<br>INCLUDE WATER, BEARING CATTIES OR FRACTUREIZONES<br>(fee)         WATER<br>BLANNOT<br>(TSD / NO         STEMATE<br>DUP DO<br>UATER.<br>(TSD / NO           no         1.0         1.0         1         Base Calide         Y         N           no         1.0         7.6         1         Base Calide         Y         N           10.0         7.6         1         Base Calide         Y         N         -           10.0         7.6         10.0         Reddit bows stays and/andatose         Y         N         -           10.0         18.0         8.0         16.0         Reddit bows stays and/andatose         Y         N         -           10.0         18.0         16.0         Reddit bows stays and/andatose         Y         N         -           10.0         18.0         16.0         Reddit bows stays and/andatose         Y         N         -           10.0         17.0         Papite hows stays and/andatose         Y         N         -           10.0         05.0         16.0         Genergits windows ftays and/andatose         Y         N         -           10.0         05.0         14.0         Genergits windows ftays and/and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |              |                                        | -              |                      | · · · · · · · · · · · · · · · · · · ·  |                 |                     | -         |            |                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|----------------------------------------|----------------|----------------------|----------------------------------------|-----------------|---------------------|-----------|------------|--------------------------------|
| 10         20         6         Brown Sand         Y         Y         N           10.0         18.0         3         Reddish brown soldsmadsame         Y         Y         N           10.0         18.0         8.0         Light from sondsmadsame         Y         Y         N           10.0         18.0         8.0         Light from sondsmadsame         Y         N         N           34.0         40.0         6.0         Dark reddish brown sondsmadsame         Y         N         N         N           34.0         40.0         6.0         Dark reddish brown sondsmadsame         Y         N         N         N           34.0         40.0         6.0         Dark reddish brown sondsmadsame         Y         N         N         N           44.0         53.0         10.0         Light brown sondsmadsame         Y         N         N         N         N           70.0         85.0         15.0         Light brown sondsmadsame         Y         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |              |                                        |                | INCLUDE WATH         | ER-BEARING CAVITIES O                  | R FRACTURE ZO   | NES                 | BEARI     | NG?        | YIELD FOR<br>WATER-<br>BEARING |
| 10         70         6         Brown Sand         Y         N           70         100         3         Keddish brows and/sandtone         Y         N           10.0         18.0         8.0         Light brows and/sandtone         Y         N           34.0         16.0         Roddish brows and/sandtone         Y         N           42.0         49.0         7.0         Reddish brows and/sandtone         Y         N           42.0         49.0         10.0         16.0         Greenish gary and/sandtone         Y         N           70.0         85.0         110.0         16.0         Green gry sity anddone bang @ 86'         Y         N           101.0         103.0         4.0         Greey sity anddone bang @ 86'         Y         N           101.0         103.0         4.0         Greey sity anddone bang @ 86'         Y         N           101.0         103.0         4.0         Greey sity an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 0.0          | 1.0                                    | 1              |                      | Base Caliche                           |                 |                     | Y         | √ N        |                                |
| 100         18.0         8.0         Tight brown subfamatone         Y         N           18.0         34.0         16.0         Reddish brown and/sandstone         Y         N           34.0         40.0         6.0         Dnrk reddish brown and/sandstone         Y         N           34.0         40.0         6.0         Dnrk reddish brown ality state         Y         N           40.0         42.0         2.0         Reddish brown ality state         Y         N           42.0         49.0         7.0         Reddish brown ality state         Y         N           43.0         40.0         Greenish gray and/sandstone         Y         N         N           53.0         15.0         Eight brown sully state         Y         N         N           70.0         85.0         101.0         16.0         Greening gray sily sandstone/baile         Y         N           10.1         105.0         4.0         Greening gray sily sandstone/baile         Y         N         N           10.1         105.0         4.0         Greening gray sily sandstone/baile         Y         N         N           10.1         105.0         4.0         Greenis gray sily sandstone/baile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 1.0          | 7.0                                    | 6              | ····                 | Brown Sand                             |                 |                     | Y         |            |                                |
| 100         18.0         8.0         Tight brown subfamatone         Y         N           18.0         34.0         16.0         Reddish brown and/sandstone         Y         N           34.0         40.0         6.0         Dnrk reddish brown and/sandstone         Y         N           34.0         40.0         6.0         Dnrk reddish brown ality state         Y         N           40.0         42.0         2.0         Reddish brown ality state         Y         N           42.0         49.0         7.0         Reddish brown ality state         Y         N           43.0         40.0         Greenish gray and/sandstone         Y         N         N           53.0         15.0         Eight brown sully state         Y         N         N           70.0         85.0         101.0         16.0         Greening gray sily sandstone/baile         Y         N           10.1         105.0         4.0         Greening gray sily sandstone/baile         Y         N         N           10.1         105.0         4.0         Greening gray sily sandstone/baile         Y         N         N           10.1         105.0         4.0         Greenis gray sily sandstone/baile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 7.0          | 10.0                                   | 3              |                      | Reddish brown clavev sa                | nd              |                     | Y         | ✓ N        |                                |
| 18.0         34.0         16.0         Reddish brown and/standatone         Y         N           34.0         40.0         6.0         Dark reddish brown and/standatone         Y         N           34.0         40.0         6.0         Dark reddish brown and/standatone         Y         N           40.0         42.0         2.0         Reddish brown and/standatone         Y         N           40.0         49.0         53.0         4.0         Greenish gavy anad/standatone         Y         N           49.0         53.0         4.0         Green and standatona         Y         N         N           70.0         85.0         15.0         Light borows and/standatone         Y         N         N           101.0         105.0         4.0         Green arey sitys and/standatone         Y         N         N         N           101.0         105.0         4.0         Green arey sitys and/standatone         Y         N         N         N           101.0         105.0         4.0         Green arey sitys and/standatone         Y         N         N         N         N         N         N         N         N         N         N         N         N <t< td=""><td></td><td>10.0</td><td>18.0</td><td>8.0</td><td></td><td></td><td></td><td></td><td>Y</td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 10.0         | 18.0                                   | 8.0            |                      |                                        |                 |                     | Y         |            |                                |
| Model         42.0         2.0         Reddish brown and brown sindstone         Y         N           42.0         49.0         7.0         Reddish brown ailty stale         Y         N           43.0         53.0         17.0         Purple brown sitty stale         Y         N           53.0         70.0         17.0         Purple brown sitty stale         Y         N           70.0         85.0         101.0         16.0         Green gray sitty standstone         Y         N           85.0         101.0         16.0         Green gray sitty standstone bang @ 8.0         Y         N           101.0         105.0         4.0         Green gray sitty standstone bang @ 8.0         Y         N           101.0         105.0         4.0         Green gray sitty standstone bang @ 8.0         Y         N           101.0         105.0         4.0         Green gray sitty standstone bang @ 8.0         Y         N           101.0         105.0         4.0         Green gray sitty standstone bang @ 8.0         Y         N           101.0         105.0         4.0         Green gray sitty standstone bang @ 8.0         Y         N           101.0         101.0         10.0         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 18.0         | 34.0                                   | 16.0           |                      |                                        |                 |                     | Y         | √ N        |                                |
| Model         42.0         2.0         Reddish brown and brown sendstone         Y         V         N           40.0         42.0         2.0         Reddish brown ailty shale         Y         V         N           43.0         53.0         4.0         Greenial gay and/sandstone         Y         V         N           53.0         70.0         85.0         15.0         Light brown subty sandstone         Y         V         N           70.0         85.0         10.0         16.0         Greening gay sind stone         Damp @ 86'         Y         N           10.0         105.0         4.0         Greening gay sind stone/shale         Y         N         N           10.1         105.0         4.0         Greening gay sind stone/shale         Y         N         N           10.1         105.0         4.0         Greening gay sind stone/shale         Y         N         N           10.1         10.5         4.0         Greening gay sind stone/shale         Y         N         N           10.1         10.5         4.0         Greening gay sind stone/shale         Y         N         N           10.1         10.1         10.0         Greening gay sind stone/shale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r    | 34.0         | 40.0                                   | 6.0            | Dark 1               | eddish brown silty shale HC            | C odor @ 39'    |                     | Y         | ✓ N        |                                |
| Image: Second | VEL  | 40.0         | 42.0                                   |                | Y                    | <b>√</b> N                             |                 |                     |           |            |                                |
| Image: Second | OF V | 42.0         | 49.0                                   | 7.0            |                      | Reddish brown silty sha                | le              |                     | Y         | √N         |                                |
| Image: Second | 0C   | 49.0         | 53.0                                   | 4.0            |                      | Greenish gray sand/sandst              | tone            |                     | Y         | <b>√</b> N |                                |
| Image: Second | ICL  | 53.0         | 70.0                                   | 17.0           |                      |                                        |                 |                     | Y         |            |                                |
| Image: Second | LOG  | 70.0         | 85.0                                   | 15.0           |                      | Light brown sand/sandsto               | one             |                     | Y         | <b>√</b> N |                                |
| Image: Second | EOI  | 85.0         | 101.0                                  | 16.0           | Gr                   | een gray silty sandstone Dan           | np @ 86'        |                     | √ Y       | N          |                                |
| Image: Second | ROC  | 101.0        | 105.0                                  | 4.0            |                      | Gray silty sandstone/sha               | le              |                     | √ Y       | N          |                                |
| Image: Second | ПХD  |              |                                        |                |                      |                                        |                 |                     | Y         | N          |                                |
| Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.1  |              | ······································ |                |                      | ·                                      |                 |                     | Y         | N          |                                |
| Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y       N         Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |              |                                        |                |                      | ······································ |                 |                     | Y         | N          |                                |
| Y       N         WETHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:       TOTAL ESTIMATED         PUMP       AIR LIFT       BAILER       OTHER - SPECIFY:       TOTAL ESTIMATED         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.       0.00         MISCELLANEOUS INFORMATION:       Hydrocarbon present in soil       William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORBECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE REMATH OLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FUENCE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FUENCE       WR-20 WELL RECORD & LOG (Version 06/30/2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |              |                                        |                |                      |                                        |                 |                     | Y         | N          |                                |
| Y       N         METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:       TOTAL ESTIMATE J         PUMP       AIR LIFT       BAILER       OTHER – SPECIFY:         WELL YIELD (gpm):       0.00         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.         MISCELLANEOUS INFORMATION:       Hydrocarbon present in soil         MISCELLANEOUS INFORMATION:       Hydrocarbon present in soil         PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:         William B. Atkins         THE UNDERSIONED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE RERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |              | · · · · · · · · · · · · · · · · · · ·  |                |                      |                                        |                 |                     | Y         | N          |                                |
| Y N         METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:       TOTAL ESTIMATED         PUMP       AIR LIFT       BAILER       OTHER - SPECIFY:       WELL YIELD (gpm):       0.00         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.         MISCELLANEOUS INFORMATION:       Hydrocarbon present in soil         MISCELLANEOUS INFORMATION:       Hydrocarbon present in soil         PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:         William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PRIMIT HOLDER WITHIN 30 DAYS AFFER COMPLETION OF WELL DRILLING:         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              |                                        |                |                      |                                        |                 |                     | Y         | N          |                                |
| METHOD USED TO ESTIMATE YIELD OF WATER-BEARING STRATA:       TOTAL ESTIMATED         PUMP       AIR LIFT       BAILER       OTHER - SPECIFY:       WELL YIELD (gpm):       0.00         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.       MISCELLANEOUS INFORMATION:         MISCELLANEOUS INFORMATION:       Hydrocarbon present in soil       Image: Comparison of Well Construction of Her Than LICENSEE:         William B. Atkins       THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FLE THIS WELL RECORD WITH THE STATE ENGINEER AND THE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL                                                                                                                                                                                                             |      |              |                                        |                |                      | • <u>.</u>                             |                 |                     | Y         | N          |                                |
| WELL YIELD (gpm):       0.00         WELL YIELD (gpm):       0.00         WELL TEST       TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.         MISCELLANEOUS INFORMATION:       Hydrocarbon present in soil         PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:         William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND COMPLET RECORD OF THE-ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         BOOM       SIGNATURE OF DRILLER / PRINT SIGNEE NAME         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017).         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |              |                                        |                |                      |                                        |                 |                     | Y         | N          |                                |
| Image: Start time in the start of the s |      | METHOD U     | SED TO ES                              | TIMATE YIELD   | OF WATER-BEARIN      | G STRATA:                              |                 | ТОТ                 | AL ESTIM  | ATED       |                                |
| WELL TEST       START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.         MISCELLANEOUS INFORMATION:       Hydrocarbon present in soil         PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:         William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         Stanture of DRILLER / PRINT SIGNEE NAME       8/8/2017         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | :    | <b>PUM</b>   |                                        | IR LIFT        | BAILER 01            | THER - SPECIFY:                        |                 | WE                  | LL YIELD  | (gpm):     | 0.00                           |
| ''       William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         Signature of Driller / PRINT SIGNEE NAME       8/8/2017         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | WELL TES     |                                        |                |                      |                                        |                 |                     |           |            |                                |
| ''       William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         Signature of Driller / PRINT SIGNEE NAME       8/8/2017         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SION | ·· ·-· ·     |                                        |                |                      | <u> </u>                               | ID DRAWDOWN (   | OVER TH             | E TESTING | J PERIO    | D.                             |
| ''       William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         Signature of Driller / PRINT SIGNEE NAME       8/8/2017         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RVI  | MISCELLAI    | NEOUS INF                              | ORMATION: Hy   | drocarbon present in | soil                                   |                 |                     |           |            |                                |
| ''       William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         Signature of Driller / PRINT SIGNEE NAME       8/8/2017         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | UPE  |              |                                        |                |                      |                                        |                 |                     |           |            |                                |
| ''       William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         Signature of Driller / PRINT SIGNEE NAME       8/8/2017         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IG S |              |                                        |                |                      |                                        |                 |                     |           |            |                                |
| ''       William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         Signature of Driller / PRINT SIGNEE NAME       8/8/2017         FOR OSE INTERNAL USE       WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T; R |              |                                        |                |                      |                                        |                 |                     |           |            |                                |
| William B. Atkins         THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:         Signature of Driller / PRINT SIGNEE NAME         FOR OSE INTERNAL USE         WR-20 WELL RECORD & LOG (Version 06/30/2017)         FILE NO.       POD NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TES  | PRINT NAM    | (E(S) OF DE                            | RILL RIG SUPER | VISOR(S) THAT PRO    | VIDED ONSITE SUPERVI                   | SION OF WELL C  | ONSTRU              | CTION OT  | HER TH     | AN LICENSEE:                   |
| CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER<br>AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:<br>SIGNATURE OF DRILLER / PRINT SIGNEE NAME DATE<br>FOR OSE INTERNAL USE FOR OSE INTERNAL USE VR-20 WELL RECORD & LOG (Version 06/30/2017)<br>FILE NO. POD NO. TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ъ,   | William B. A | Atkins                                 |                |                      |                                        |                 |                     |           |            |                                |
| CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER<br>AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:<br>SIGNATURE OF DRILLER / PRINT SIGNEE NAME DATE<br>FOR OSE INTERNAL USE FOR OSE INTERNAL USE VR-20 WELL RECORD & LOG (Version 06/30/2017)<br>FILE NO. POD NO. TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |              |                                        |                |                      |                                        |                 |                     |           |            |                                |
| G     SIGNATURE OF DRILLER / PRINT SIGNEE NAME     DATE       FOR OSE INTERNAL USE     WR-20 WELL RECORD & LOG (Version 06/30/2017)       FILE NO.     POD NO.     TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SE   | CORRECT I    | RECORD OF                              | F THE ABOVE D  | ESCRIBED HOLE AN     | ID THAT HE OR SHE WIL                  | L FILE THIS WEL | ELIEF, I<br>L RECOI | HE FOREC  | FOING IS   | S A TRUE AND<br>TE ENGINEER    |
| G     SIGNATURE OF DRILLER / PRINT SIGNEE NAME     DATE       FOR OSE INTERNAL USE     WR-20 WELL RECORD & LOG (Version 06/30/2017)       FILE NO.     POD NO.     TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m    | AND THE A    | ERMIT HO                               | LEER WITHIN 3  | 0 DAYS AFTER COM     | PLETION OF WELL DRIL                   | LING:           |                     |           |            |                                |
| G     SIGNATURE OF DRILLER / PRINT SIGNEE NAME     DATE       FOR OSE INTERNAL USE     WR-20 WELL RECORD & LOG (Version 06/30/2017)       FILE NO.     POD NO.     TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GINA |              |                                        |                |                      |                                        |                 |                     | 8/8/2     | 017        |                                |
| FOR OSE INTERNAL USE     WR-20 WELL RECORD & LOG (Version 06/30/2017)       FILE NO.     POD NO.       TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |              | A/2                                    | >              |                      |                                        |                 |                     |           |            |                                |
| FILE NO. POD NO. TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | /            | SIGNAT                                 | URE OF DRILLE  | R / PRINT SIGNEE     | NAME                                   |                 |                     | 1         | DATE       |                                |
| FILE NO. POD NO. TRN NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FOF  | OSE INTERI   | NAL USE                                |                |                      |                                        | WR-20 V         | VELL RF             | CORD & L  | .0G (Ver   | sion 06/30/2017)               |
| LOCATION WELL TAG ID NO. PAGE 2 OF 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |              |                                        |                | · · · ·              | POD NO.                                |                 |                     |           | <u></u>    |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | LOC  | CATION       |                                        |                |                      |                                        | WELL TAG ID N   | 0                   |           |            | PAGE 2 OF 2                    |



## APPENDIX B

Photographic Log

Released to Imaging: 5/14/2024 11:22:06 AM









## APPENDIX C

Lithologic Soil Sampling Logs

|                     | _                 |                |          |             |                             |                   |                     | Sample Name: PH01                                              | Date: 1/25/24                  |
|---------------------|-------------------|----------------|----------|-------------|-----------------------------|-------------------|---------------------|----------------------------------------------------------------|--------------------------------|
|                     |                   |                |          | C           |                             |                   |                     |                                                                |                                |
|                     |                   |                |          | 2           |                             | . U               |                     | Site Name: Baish B Battery<br>Incident Number: NAPP22353729    | 941                            |
|                     |                   |                |          |             |                             |                   |                     | Job Number: 03E2057054                                         |                                |
|                     | L                 | ITHOLO         | GIC      | / SOIL SA   | AMPLING                     | LOG               |                     | Logged By: Ronni Hayes                                         | Method: Hand auger             |
| Coordinat           |                   |                |          |             |                             |                   |                     | Hole Diameter: ~3"                                             | Total Depth: 5 ft bgs          |
|                     |                   |                |          |             | HACH Chlo                   | ride Test Str     | ips and PI          | D for chloride and vapor, respective                           |                                |
| with 1:4 d          | lilution fa       | actor of s     | oil to   | distilled w | ater. 40% co                | prrection fac     | tor includ          | ed.                                                            |                                |
| Moisture<br>Content | Chloride<br>(ppm) | Vapor<br>(ppm) | Staining | Sample ID   | Sample<br>Depth<br>(ft bgs) | Depth<br>(ft bgs) | USCS/Rock<br>Symbol | Lithologic De                                                  | scriptions                     |
|                     |                   |                |          |             | 1                           | 0                 |                     |                                                                |                                |
| Moist               | ~1EC 0            | 0.1            | N        |             | -                           | 0.5               | C14/ CN4            | SAND loose light to mad brow                                   | up uf mod grain                |
| WOISt               | <120.0            | 0.1            | IN       |             | _                           | 0.5               | 300-3101            | SAND, loose, light to med brown nonplastic, noncohesive, unifo |                                |
| Moist               | <156.8            | 0.2            | Ν        | PH01        | 1                           | 1                 | SAA                 | SAA                                                            |                                |
|                     |                   |                |          |             | -                           | -                 |                     |                                                                |                                |
|                     |                   |                |          |             | _                           | -                 |                     |                                                                |                                |
| Moist               | <156.8            | 0.0            | Ν        |             | _                           | 2                 | SAA                 | SAA                                                            |                                |
|                     |                   |                |          |             | -                           | -                 |                     |                                                                |                                |
| Maist               | -1FC 0            | 0.1            | N        |             | -                           | - 3               | 644                 | SAA                                                            |                                |
| Moist               | \$.0C1>           | 0.1            | Ν        |             | _                           | _ 3               | SAA                 | SAA                                                            |                                |
|                     |                   |                |          |             | _                           | -                 |                     |                                                                |                                |
| Moist               | <156.8            | 0.3            | Ν        |             | -                           | - 4               | SAA                 | SAA                                                            |                                |
|                     |                   |                |          |             | -                           | -                 |                     |                                                                |                                |
|                     |                   |                |          |             | -                           | -                 |                     |                                                                |                                |
| Moist               | <156.8            | 0.0            | Ν        | PH01        | 5                           | 5                 | SW-SC               | SAND-CLAY MIX, transition, light                               | red to tan, loose, gradational |
|                     |                   |                |          |             | _                           | _                 |                     | to gray clay, cohesive, poorly sort                            | ted, vf-coarse grain           |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             | _                 |                     | TD at 5 ft bgs                                                 |                                |
|                     |                   |                |          |             | -                           | -                 | •                   | •                                                              |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          | _           |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             | $\overline{}$     |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     | $\overline{}$                                                  |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |
|                     |                   |                |          |             |                             |                   |                     |                                                                |                                |

|                     |                   |                |          |           |                             |                   |                     | Sample Name: PH02                  | Date: 1/29/24                   |  |  |  |
|---------------------|-------------------|----------------|----------|-----------|-----------------------------|-------------------|---------------------|------------------------------------|---------------------------------|--|--|--|
|                     |                   |                |          | C         |                             |                   | R A                 | Site Name: Baish B Battery         |                                 |  |  |  |
|                     |                   |                | N        | 3         | OL                          |                   |                     | Incident Number: NAPP223537        | 72941                           |  |  |  |
|                     |                   |                |          |           |                             |                   |                     | Job Number: 03E2057054             |                                 |  |  |  |
|                     | L                 | ITHOLO         | GIC      | / SOIL S  | AMPLING                     | LOG               |                     | Logged By: Ronni Hayes             | Method: Hand auger              |  |  |  |
| Coordina            | ites: 32.8        | 173554, -      | 103.7    | 7546712   |                             |                   |                     | Hole Diameter: ~3"                 | Total Depth: 4 ft bgs           |  |  |  |
|                     |                   |                |          |           | HACH Chlor<br>ater. 40% co  |                   |                     | for chloride and vapor, respected. | tively. Chloride test performed |  |  |  |
| Moisture<br>Content | Chloride<br>(ppm) | Vapor<br>(ppm) | Staining | Sample ID | Sample<br>Depth<br>(ft bgs) | Depth<br>(ft bgs) | USCS/Rock<br>Symbol | Lithologic I                       | Descriptions                    |  |  |  |
|                     |                   |                |          |           | 1                           | 0                 |                     |                                    |                                 |  |  |  |
| Moist               | <156.8            | 0.4            | N        |           | -                           | 0.5               | SW-SM               | SAND, loose, light to med b        | rown, vf-med grain              |  |  |  |
| WICHSt              | 150.0             | 0.4            |          |           | _                           | _ 0.5             | 500 500             | nonplastic, noncohesive, ur        |                                 |  |  |  |
| Moist               | <156.8            | 0.2            | Ν        | PH02      | 1 _                         | _ 1               | SAA                 | SAA                                | , ,                             |  |  |  |
|                     |                   |                |          |           | -                           | -                 |                     |                                    |                                 |  |  |  |
| Moist               | <156.8            | 0.1            | N        |           | -                           | 2                 | SAA                 | SAA                                |                                 |  |  |  |
| worst               | <120.0            | 0.1            |          |           | _                           |                   | SAA                 | SAA                                |                                 |  |  |  |
|                     |                   |                |          |           | _                           | -<br>-            |                     |                                    |                                 |  |  |  |
| Moist               | <156.8            | 0.2            | Ν        |           | -                           | 3                 | SAA                 | SAA                                |                                 |  |  |  |
|                     |                   |                |          |           | -                           | -                 |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             | -                 |                     |                                    |                                 |  |  |  |
| Moist               | <156.8            | 0.0            | Ν        | PH02      | 4                           | _ 4               | SAA                 | SAA, color change to ligh          | t brown                         |  |  |  |
|                     |                   |                |          |           | -                           | -                 |                     | TD at 4 ft bgs                     |                                 |  |  |  |
| $\sim$              | •                 |                | •        |           | • -                         |                   | •                   | _                                  |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          | $\sim$    |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           | $\searrow$                  |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             | $\overline{}$     |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     | $\searrow$                         |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     | $\sim$                             |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     | $\sim$                             | <                               |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    | $\searrow$                      |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    | $\sim$                          |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    | $\sim$                          |  |  |  |
|                     |                   |                |          |           |                             |                   |                     |                                    |                                 |  |  |  |

|                     |                   |           |          |            |                             |                   |                     | Sample Name: BH01                                                   | Date: 02/08/2024          |
|---------------------|-------------------|-----------|----------|------------|-----------------------------|-------------------|---------------------|---------------------------------------------------------------------|---------------------------|
|                     |                   |           | NI       | C          | ΟΙ                          |                   | RЛ                  | Site Name: Baish B Batery                                           |                           |
|                     |                   |           |          | 3          |                             |                   |                     | Incident Number: nAPP22353729                                       | 941                       |
|                     |                   |           |          |            |                             |                   |                     | Job Number: 03E2057054                                              |                           |
|                     |                   | LITHOL    | OGI      | C / SOIL S | SAMPLING                    | LOG               |                     | Logged By: Chad Hamilton                                            | Method: Hand Auger        |
| Coord               | linates:          |           |          |            |                             |                   |                     | Hole Diameter: 3"                                                   | Total Depth: 3'           |
|                     |                   |           | -        |            |                             |                   |                     | PetroFLG for chloride and TPH, re<br>factors included.              | spectively. Chloride test |
| Moisture<br>Content | Chloride<br>(ppm) | (mqq) H9T | Staining | Sample ID  | Sample<br>Depth<br>(ft bgs) | Depth<br>(ft bgs) | USCS/Rock<br>Symbol | Lithologic De                                                       | escriptions               |
|                     |                   |           |          |            | 1<br>-<br>-<br>-            |                   |                     |                                                                     |                           |
| D                   | <168              | 275       | N        | BH01       | 2                           | 2                 | SW-SC               | Sand, Loose, Red in color<br>size, non-plastic, dry, no<br>uniform, | oncohesive, massive,      |
| D                   | 168               |           | N        | BH01       | 3                           | 3<br>             | SW-SC               | Sand, Loose, Red in color<br>size, non-plastic, dry, no<br>uniform, | oncohesive, massive,      |
|                     |                   |           |          |            |                             |                   |                     |                                                                     |                           |
|                     |                   |           |          |            |                             |                   |                     |                                                                     |                           |

|                     |                   |           |          |            |                             |                   |                     | Sample Name: BH02                                                                             | Date: 02/09/2024                                                |
|---------------------|-------------------|-----------|----------|------------|-----------------------------|-------------------|---------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                     |                   |           |          | C          |                             | LU                | R A                 | Site Name: Baish B Batery                                                                     |                                                                 |
|                     |                   |           |          | 3          |                             |                   |                     | Incident Number: nAPP2235372                                                                  | 941                                                             |
|                     |                   |           |          |            |                             |                   |                     | Job Number: 03E2057054                                                                        |                                                                 |
|                     |                   | LITHOL    | .OGI     | C / SOIL S | SAMPLING                    | G LOG             |                     | Logged By: Chad Hamilton                                                                      | Method: Hand Auger                                              |
| Coord               | inates:           |           |          |            |                             |                   |                     | Hole Diameter: 3"                                                                             | Total Depth: 4'                                                 |
|                     |                   |           |          |            |                             |                   |                     | PetroFLAG for chloride and TPH,<br>factors included.                                          | respectively. Chloride test                                     |
| Moisture<br>Content | Chloride<br>(ppm) | TPH (ppm) | Staining | Sample ID  | Sample<br>Depth<br>(ft bgs) | Depth<br>(ft bgs) | USCS/Rock<br>Symbol | Lithologic D                                                                                  | escriptions                                                     |
|                     |                   |           |          |            | 1<br>-<br>-                 |                   |                     |                                                                                               |                                                                 |
|                     |                   |           |          |            | -                           | 1                 |                     |                                                                                               |                                                                 |
| D                   | <168              | 17        | N        | BH02       | 2                           | 2                 | SW-SC               | Sand, Loose, Red in color, me<br>plastic, dry, noncohesive, r                                 | -                                                               |
| М                   | <168              |           | N        | BH02       | 3                           | 3                 | SW-SC               | Sand with some clay, medium c<br>color, medium to very fine gr<br>noncohesive, massive, unifi | ain size, non-plastic, moist,                                   |
| М                   | <168              |           |          | BH02       | 4                           | 4<br>             | SW-SC               | Sand with some clay, medium<br>medium to very fine grain size,<br>massive, unifo              | density, mix of grey in color,<br>low plastic, moist, cohesive, |
|                     |                   |           |          |            |                             | Total De          | epth @ 4            | tt bgs.                                                                                       |                                                                 |



## APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation



**Environment Testing** 

# **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/25/2023 3:17:52 PM

## **JOB DESCRIPTION**

Baish B Battery SDG NUMBER Lea County NM

### **JOB NUMBER**

890-3806-1

E . Marier Si J, Texas /25/2023 3 **SCRIF** Baish B \_ea Cou

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.



5 6 Received by OCD: 4/17/2024 12:35:00 PM

### **Eurofins Carlsbad**

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

### Authorization

RAMER

Generated 1/25/2023 3:17:52 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3806-1 SDG: Lea County NM

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 10 |
| QC Sample Results      | 11 |
| QC Association Summary | 15 |
| Lab Chronicle          | 17 |
| Certification Summary  | 19 |
| Method Summary         | 20 |
| Sample Summary         | 21 |
| Chain of Custody       | 22 |
| Receipt Checklists     | 23 |
|                        |    |

Page 33 of 203

|                                     | Definitions/Glossary                                                                                        |    |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------|----|
| Client: Ensolum<br>Project/Site: Ba |                                                                                                             | 2  |
| Qualifiers                          |                                                                                                             | 3  |
| GC VOA                              |                                                                                                             |    |
| Qualifier                           | Qualifier Description                                                                                       |    |
| U                                   | Indicates the analyte was analyzed for but not detected.                                                    |    |
| GC Semi VOA                         |                                                                                                             | 5  |
| Qualifier                           | Qualifier Description                                                                                       |    |
| S1+                                 | Surrogate recovery exceeds control limits, high biased.                                                     |    |
| U                                   | Indicates the analyte was analyzed for but not detected.                                                    |    |
| HPLC/IC                             |                                                                                                             |    |
| Qualifier                           | Qualifier Description                                                                                       |    |
| F1                                  | MS and/or MSD recovery exceeds control limits.                                                              | 8  |
| U                                   | Indicates the analyte was analyzed for but not detected.                                                    |    |
| Glossary                            |                                                                                                             | 9  |
| Abbreviation                        | These commonly used abbreviations may or may not be present in this report.                                 |    |
| ¤                                   | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |    |
| %R                                  | Percent Recovery                                                                                            |    |
| CFL                                 | Contains Free Liquid                                                                                        |    |
| CFU                                 | Colony Forming Unit                                                                                         |    |
| CNF                                 | Contains No Free Liquid                                                                                     |    |
| DER                                 | Duplicate Error Ratio (normalized absolute difference)                                                      | 44 |
| Dil Fac                             | Dilution Factor                                                                                             | 1: |
| DL                                  | Detection Limit (DoD/DOE)                                                                                   |    |
| DL, RA, RE, IN                      | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |    |
| DLC                                 | Decision Level Concentration (Radiochemistry)                                                               |    |
| EDL                                 | Estimated Detection Limit (Dioxin)                                                                          |    |
| LOD                                 | Limit of Detection (DoD/DOE)                                                                                |    |
| LOQ                                 | Limit of Quantitation (DoD/DOE)                                                                             |    |
| MCL                                 | EPA recommended "Maximum Contaminant Level"                                                                 |    |
| MDA                                 | Minimum Detectable Activity (Radiochemistry)                                                                |    |
| MDC                                 | Minimum Detectable Concentration (Radiochemistry)                                                           |    |
| MDL                                 | Method Detection Limit                                                                                      |    |
| ML                                  | Minimum Level (Dioxin)                                                                                      |    |
| MPN                                 | Most Probable Number                                                                                        |    |
| MQL                                 | Method Quantitation Limit                                                                                   |    |
| NC                                  | Not Calculated                                                                                              |    |
| ND                                  | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |    |
| NEG                                 | Negative / Absent                                                                                           |    |
| POS                                 | Positive / Present                                                                                          |    |
| PQL                                 | Practical Quantitation Limit                                                                                |    |
| PRES                                | Presumptive                                                                                                 |    |
| QC                                  | Quality Control                                                                                             |    |
| RER                                 | Relative Error Ratio (Radiochemistry)                                                                       |    |
|                                     |                                                                                                             |    |

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Carlsbad

### Job ID: 890-3806-1 SDG: Lea County NM

### Job ID: 890-3806-1

Project/Site: Baish B Battery

Client: Ensolum

### Laboratory: Eurofins Carlsbad

#### Narrative

Job Narrative 890-3806-1

### Receipt

The samples were received on 1/10/2023 9:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 20.6°C

### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-3806-1), SS02 (890-3806-2), SS03 (890-3806-3) and SS04 (890-3806-4).

### GC VOA

Method 8021B: The following sample was diluted due to the nature of the sample matrix: SS02 (890-3806-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### GC Semi VOA

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: SS01 (890-3806-1), SS02 (890-3806-2) and (MB 880-43869/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### HPLC/IC

Method 300\_ORGFM\_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43791 and analytical batch 880-43930 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.201 U

### **Client Sample Results**

RL

0.201

Unit

mg/Kg

D

Prepared

01/13/23 08:16

Job ID: 890-3806-1 SDG: Lea County NM

### **Client Sample ID: SS01**

Project/Site: Baish B Battery

Date Collected: 01/09/23 12:35 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

Analyte

Benzene

### Lab Sample ID: 890-3806-1

Analyzed

01/14/23 10:55

Matrix: Solid

Dil Fac

100

5

| Delizene                                                 | -0.201          | 0           | 0.201    | ing/itg |   | 01/10/20 00.10 | 01/14/20 10:00 | 100      |
|----------------------------------------------------------|-----------------|-------------|----------|---------|---|----------------|----------------|----------|
| Toluene                                                  | 1.57            |             | 0.201    | mg/Kg   |   | 01/13/23 08:16 | 01/14/23 10:55 | 100      |
| Ethylbenzene                                             | 2.89            |             | 0.201    | mg/Kg   |   | 01/13/23 08:16 | 01/14/23 10:55 | 100      |
| m-Xylene & p-Xylene                                      | 9.28            |             | 0.402    | mg/Kg   |   | 01/13/23 08:16 | 01/14/23 10:55 | 100      |
| o-Xylene                                                 | 3.96            |             | 0.201    | mg/Kg   |   | 01/13/23 08:16 | 01/14/23 10:55 | 100      |
| Xylenes, Total                                           | 13.2            |             | 0.402    | mg/Kg   |   | 01/13/23 08:16 | 01/14/23 10:55 | 100      |
| Surrogate                                                | %Recovery       | Qualifier   | Limits   |         |   | Prepared       | Analyzed       | Dil Fac  |
| 4-Bromofluorobenzene (Surr)                              |                 |             | 70 - 130 |         |   | 01/13/23 08:16 | 01/14/23 10:55 | 100      |
| 1,4-Difluorobenzene (Surr)                               | 102             |             | 70 - 130 |         |   | 01/13/23 08:16 | 01/14/23 10:55 | 100      |
| Method: TAL SOP Total BTEX -                             | Total BTEX Calo | culation    |          |         |   |                |                |          |
| Analyte                                                  | Result          | Qualifier   | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Total BTEX                                               | 17.7            |             | 0.402    | mg/Kg   |   |                | 01/25/23 16:06 | 1        |
| -<br>Method: SW846 8015 NM - Dies                        | el Range Organ  | ics (DRO) ( | GC)      |         |   |                |                |          |
| Analyte                                                  | Result          | Qualifier   | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Total TPH                                                | 2570            |             | 49.9     | mg/Kg   |   |                | 01/16/23 16:39 | 1        |
| _<br>Method: SW846 8015B NM - Die                        | sel Range Orga  | nics (DRO)  | (6C)     |         |   |                |                |          |
| Analyte                                                  |                 | Qualifier   | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10                  | 754             |             | 49.9     | mg/Kg   |   | 01/13/23 08:39 | 01/16/23 04:21 | 1        |
| Diesel Range Organics (Over<br>C10-C28)                  | 1820            |             | 49.9     | mg/Kg   |   | 01/13/23 08:39 | 01/16/23 04:21 | 1        |
| Oll Range Organics (Over C28-C36)                        | <49.9           | U           | 49.9     | mg/Kg   |   | 01/13/23 08:39 | 01/16/23 04:21 | 1        |
| Surrogate                                                | %Recovery       | Qualifier   | Limits   |         |   | Prepared       | Analyzed       | Dil Fac  |
| 1-Chlorooctane                                           | 133             | S1+         | 70 - 130 |         |   | 01/13/23 08:39 | 01/16/23 04:21 | 1        |
| o-Terphenyl                                              | 119             |             | 70 - 130 |         |   | 01/13/23 08:39 | 01/16/23 04:21 | 1        |
| Method: MCAWW 300.0 - Anions                             | s, Ion Chromato | ography - S | oluble   |         |   |                |                |          |
| Analyte                                                  | Result          | Qualifier   | RL       | Unit    | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                                                 | 99.8            |             | 4.99     | mg/Kg   |   |                | 01/14/23 09:10 | 1        |
|                                                          |                 |             |          |         |   |                |                | 3806-3   |
| Client Sample ID: SS02                                   |                 |             |          |         |   | Lab San        | nple ID: 890-  | 3000-2   |
| Client Sample ID: SS02<br>Date Collected: 01/09/23 13:50 |                 |             |          |         |   | Lab San        |                |          |
|                                                          |                 |             |          |         |   | Lab Sar        |                | x: Solid |

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.199    | U         | 0.199    | mg/Kg |   | 01/13/23 08:16 | 01/14/23 11:16 | 100     |
| Toluene                     | <0.199    | U         | 0.199    | mg/Kg |   | 01/13/23 08:16 | 01/14/23 11:16 | 100     |
| Ethylbenzene                | <0.199    | U         | 0.199    | mg/Kg |   | 01/13/23 08:16 | 01/14/23 11:16 | 100     |
| m-Xylene & p-Xylene         | <0.398    | U         | 0.398    | mg/Kg |   | 01/13/23 08:16 | 01/14/23 11:16 | 100     |
| o-Xylene                    | 0.204     |           | 0.199    | mg/Kg |   | 01/13/23 08:16 | 01/14/23 11:16 | 100     |
| Xylenes, Total              | <0.398    | U         | 0.398    | mg/Kg |   | 01/13/23 08:16 | 01/14/23 11:16 | 100     |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 99        |           | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 11:16 | 100     |

Eurofins Carlsbad

### **Client Sample Results**

Job ID: 890-3806-1 SDG: Lea County NM

### **Client Sample ID: SS02**

Project/Site: Baish B Battery

Date Collected: 01/09/23 13:50 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

# Lab Sample ID: 890-3806-2

| rrogate                              | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fa  |
|--------------------------------------|-----------------|-------------|----------|-------|---|----------------|----------------|---------|
| 1-Difluorobenzene (Surr)             | 111             |             | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 11:16 | 10      |
| ethod: TAL SOP Total BTEX -          | Total BTEX Calo | ulation     |          |       |   |                |                |         |
| alyte                                | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| tal BTEX                             | <0.398          | U           | 0.398    | mg/Kg |   |                | 01/25/23 16:06 |         |
| ethod: SW846 8015 NM - Diese         | el Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
| alyte                                | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| tal TPH                              | 10200           |             | 249      | mg/Kg |   |                | 01/16/23 16:39 |         |
| ethod: SW846 8015B NM - Die          | sel Range Orga  | nics (DRO)  | (GC)     |       |   |                |                |         |
| alyte                                | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| isoline Range Organics<br>RO)-C6-C10 | 376             |             | 249      | mg/Kg |   | 01/13/23 08:39 | 01/16/23 03:17 | Ę       |
| esel Range Organics (Over<br>0-C28)  | 9810            |             | 249      | mg/Kg |   | 01/13/23 08:39 | 01/16/23 03:17 | Ę       |
| Range Organics (Over C28-C36)        | <249            | U           | 249      | mg/Kg |   | 01/13/23 08:39 | 01/16/23 03:17 | :       |
| rrogate                              | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fa  |
| Chlorooctane                         | 73              |             | 70 - 130 |       |   | 01/13/23 08:39 | 01/16/23 03:17 |         |
| Terphenyl                            | 224             | S1+         | 70 - 130 |       |   | 01/13/23 08:39 | 01/16/23 03:17 | ł       |
| ethod: MCAWW 300.0 - Anions          | s, Ion Chromato | graphy - So | oluble   |       |   |                |                |         |
| alyte                                | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| lloride                              | 123             |             | 5.01     | mg/Kg |   |                | 01/14/23 09:16 |         |
| ent Sample ID: SS03                  |                 |             |          |       |   | Lab San        | nple ID: 890-  | 3806-3  |

Sample Depth: 0.5

| Method: SW846 8021B - Volat      | ile Organic Comp  | ounds (GC)  |          |       |   |                |                |         |
|----------------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Analyte                          | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                          | <0.00199          | U           | 0.00199  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Toluene                          | <0.00199          | U           | 0.00199  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Ethylbenzene                     | <0.00199          | U           | 0.00199  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| m-Xylene & p-Xylene              | <0.00398          | U           | 0.00398  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| o-Xylene                         | <0.00199          | U           | 0.00199  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Xylenes, Total                   | <0.00398          | U           | 0.00398  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Surrogate                        | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)      | 100               |             | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| 1,4-Difluorobenzene (Surr)       | 111               |             | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Method: TAL SOP Total BTEX       | - Total BTEX Cald | culation    |          |       |   |                |                |         |
| Analyte                          | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                       | <0.00398          | U           | 0.00398  | mg/Kg |   |                | 01/25/23 16:06 | 1       |
| -<br>Method: SW846 8015 NM - Die | esel Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                          | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                        | <49.9             | U           | 49.9     | mg/Kg |   |                | 01/16/23 16:39 | 1       |

Eurofins Carlsbad

Matrix: Solid

5
Job ID: 890-3806-1 SDG: Lea County NM

Matrix: Solid

Lab Sample ID: 890-3806-3

Lab Sample ID: 890-3806-4

## **Client Sample ID: SS03**

Project/Site: Baish B Battery

Date Collected: 01/09/23 12:45 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

| Method: SW846 8015B NM - Dies     | el Range Orga | inics (DRO) | (GC)     |       |   |                |                |
|-----------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       |
| Gasoline Range Organics           | <49.9         | U           | 49.9     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 22:16 |
| (GRO)-C6-C10                      |               |             |          |       |   |                |                |
| Diesel Range Organics (Over       | <49.9         | U           | 49.9     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 22:16 |
| C10-C28)                          |               |             |          |       |   |                |                |
| Oll Range Organics (Over C28-C36) | <49.9         | U           | 49.9     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 22:16 |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       |
| 1-Chlorooctane                    | 95            |             | 70 - 130 |       |   | 01/13/23 08:39 | 01/15/23 22:16 |
| o-Terphenyl                       | 98            |             | 70 - 130 |       |   | 01/13/23 08:39 | 01/15/23 22:16 |

### Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|-------|---|----------|----------------|---------|
| Chloride | 55.8             | 4.97 | mg/Kg |   |          | 01/14/23 09:22 | 1       |

### **Client Sample ID: SS04**

## Date Collected: 01/09/23 12:50

## Date Received: 01/10/23 09:05

| Samp | le C | )ept | th: | 0.5 |
|------|------|------|-----|-----|
|      |      |      |     |     |

| Method: SW846 8021B - Volatile      | <b>Organic Comp</b> | ounds (GC)  | )        |       |   |                |                |         |
|-------------------------------------|---------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Analyte                             | Result              | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                             | < 0.00200           | U           | 0.00200  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:29 | 1       |
| Toluene                             | <0.00200            | U           | 0.00200  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:29 | 1       |
| Ethylbenzene                        | <0.00200            | U           | 0.00200  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:29 | 1       |
| m-Xylene & p-Xylene                 | <0.00399            | U           | 0.00399  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:29 | 1       |
| o-Xylene                            | <0.00200            | U           | 0.00200  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:29 | 1       |
| Xylenes, Total                      | <0.00399            | U           | 0.00399  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:29 | 1       |
| Surrogate                           | %Recovery           | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)         | 120                 |             | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 08:29 | 1       |
| 1,4-Difluorobenzene (Surr)          | 99                  |             | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 08:29 | 1       |
| -<br>Method: TAL SOP Total BTEX - 1 | Total BTEX Cal      | culation    |          |       |   |                |                |         |
| Analyte                             | Result              | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                          | <0.00399            | U           | 0.00399  | mg/Kg |   |                | 01/25/23 16:06 | 1       |
| –<br>Method: SW846 8015 NM - Diese  | el Range Organ      | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                             | Result              | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                           | <50.0               | U           | 50.0     | mg/Kg |   |                | 01/16/23 16:39 | 1       |

## Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.0     | U         | 50.0     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 22:37 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0     | U         | 50.0     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 22:37 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| OII Range Organics (Over C28-C36) | <50.0     | U         | 50.0     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 22:37 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 118       |           | 70 - 130 |       |   | 01/13/23 08:39 | 01/15/23 22:37 | 1       |
| o-Terphenyl                       | 117       |           | 70 - 130 |       |   | 01/13/23 08:39 | 01/15/23 22:37 | 1       |

Eurofins Carlsbad

1

1

1

1

Matrix: Solid

Released to Imaging: 5/14/2024 11:22:06 AM

|                                                          |      | Client    | Sample Res | sults         |          |          |                             |                      |    |
|----------------------------------------------------------|------|-----------|------------|---------------|----------|----------|-----------------------------|----------------------|----|
| Client: Ensolum<br>Project/Site: Baish B Battery         |      |           |            |               |          |          | Job ID: 890<br>SDG: Lea Cor |                      | 2  |
| Client Sample ID: SS04<br>Date Collected: 01/09/23 12:50 |      |           |            |               |          | Lab Sa   | mple ID: 890-<br>Matri      | -3806-4<br>ix: Solid |    |
| Date Received: 01/10/23 09:05<br>Sample Depth: 0.5       |      |           |            |               |          |          |                             |                      |    |
| Method: MCAWW 300.0 - Anions,                            |      |           |            | 11:4          | -<br>-   | Ducusard | Analyzed                    |                      | 5  |
| Analyte<br>Chloride                                      | 44.6 | Qualifier | 4.98       | Unit<br>mg/Kg | <u>D</u> | Prepared | Analyzed 01/14/23 09:28     | Dil Fac              |    |
| _                                                        |      |           |            |               |          |          |                             |                      |    |
|                                                          |      |           |            |               |          |          |                             |                      | 8  |
|                                                          |      |           |            |               |          |          |                             |                      | 9  |
|                                                          |      |           |            |               |          |          |                             |                      |    |
|                                                          |      |           |            |               |          |          |                             |                      |    |
|                                                          |      |           |            |               |          |          |                             |                      |    |
|                                                          |      |           |            |               |          |          |                             |                      | 13 |
|                                                          |      |           |            |               |          |          |                             |                      |    |

Eurofins Carlsbad

### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                    |                        |          |          | Percent Surrogate Rec |
|--------------------|------------------------|----------|----------|-----------------------|
|                    |                        | BFB1     | DFBZ1    |                       |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                       |
| 890-3806-1         |                        | 117      | 102      |                       |
| 890-3806-2         | SS02                   | 99       | 111      |                       |
| 890-3806-3         | SS03                   | 100      | 111      |                       |
| 890-3806-4         | SS04                   | 120      | 99       |                       |
| 890-3819-A-1-D MS  | Matrix Spike           | 95       | 100      |                       |
| 890-3819-A-1-E MSD | Matrix Spike Duplicate | 105      | 101      |                       |
| LCS 880-43868/1-A  | Lab Control Sample     | 100      | 95       |                       |
| LCSD 880-43868/2-A | Lab Control Sample Dup | 95       | 96       |                       |
| MB 880-43747/5-A   | Method Blank           | 99       | 86       |                       |
| MB 880-43868/5-A   | Method Blank           | 100      | 90       |                       |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

| watri | x: 5 | olia |
|-------|------|------|
|       |      |      |

|                    |                        |          |          | Percent Surrogate Recove |
|--------------------|------------------------|----------|----------|--------------------------|
|                    |                        | 1CO1     | OTPH1    |                          |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                          |
| 890-3792-A-1-E MS  | Matrix Spike           | 81       | 81       |                          |
| 890-3792-A-1-F MSD | Matrix Spike Duplicate | 97       | 82       |                          |
| 890-3806-1         | SS01                   | 133 S1+  | 119      |                          |
| 890-3806-2         | SS02                   | 73       | 224 S1+  |                          |
| 890-3806-3         | SS03                   | 95       | 98       |                          |
| 890-3806-4         | SS04                   | 118      | 117      |                          |
| LCS 880-43869/2-A  | Lab Control Sample     | 113      | 105      |                          |
| LCSD 880-43869/3-A | Lab Control Sample Dup | 116      | 108      |                          |
| MB 880-43869/1-A   | Method Blank           | 158 S1+  | 167 S1+  |                          |

1CO = 1-Chlorooctane OTPH = o-Terphenyl 5 6 7

Prep Type: Total/NA

Prep Type: Total/NA

Client: Ensolum

Project/Site: Baish B Battery

### Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-43747 | 7/ <b>5-A</b> |             |                      |         |           |       |      |        | Client Sa              | mple ID: Meth                           | od Blank |
|-----------------------------|---------------|-------------|----------------------|---------|-----------|-------|------|--------|------------------------|-----------------------------------------|----------|
| Matrix: Solid               |               |             |                      |         |           |       |      |        |                        | Prep Type:                              | Total/NA |
| Analysis Batch: 43877       |               |             |                      |         |           |       |      |        |                        | Prep Bato                               | h: 43747 |
|                             | ME            | B MB        |                      |         |           |       |      |        |                        |                                         |          |
| Analyte                     | Resul         | t Qualifier | RL                   | -       | Unit      |       | D    | Р      | repared                | Analyzed                                | Dil Fac  |
| Benzene                     | <0.00200      | D U         | 0.00200              | )       | mg/K      | g     | _    | 01/1   | 1/23 13:33             | 01/13/23 16:30                          | 1        |
| Toluene                     | <0.00200      | ) U         | 0.00200              | )       | mg/K      | g     |      | 01/1   | 1/23 13:33             | 01/13/23 16:30                          | 1        |
| Ethylbenzene                | <0.00200      | ) U         | 0.00200              | )       | mg/K      | g     |      | 01/1   | 1/23 13:33             | 01/13/23 16:30                          | 1        |
| m-Xylene & p-Xylene         | <0.00400      | ) U         | 0.00400              | )       | mg/K      | g     |      | 01/1   | 1/23 13:33             | 01/13/23 16:30                          | 1        |
| o-Xylene                    | <0.00200      | ) U         | 0.00200              | )       | mg/K      | g     |      | 01/1   | 1/23 13:33             | 01/13/23 16:30                          | 1        |
| Xylenes, Total              | <0.00400      | ) U         | 0.00400              | )       | mg/K      | g     |      | 01/1   | 1/23 13:33             | 01/13/23 16:30                          | 1        |
|                             | МЕ            | 3 MB        |                      |         |           |       |      |        |                        |                                         |          |
| Surrogate                   | %Recovery     |             | Limits               |         |           |       |      |        | repared                | Analyzed                                | Dil Fac  |
| 4-Bromofluorobenzene (Surr) |               |             | 70 - 130             | -       |           |       |      |        | 1/23 13:33             | 01/13/23 16:30                          | 1        |
| 1,4-Difluorobenzene (Surr)  | 8             |             | 70 - 130<br>70 - 130 |         |           |       |      |        | 1/23 13:33             | 01/13/23 16:30                          | 1        |
|                             | 00            | 5           | 70 - 730             |         |           |       |      | 01/1   | 1/25 15.55             | 01/13/23 10:30                          | 1        |
| Lab Sample ID: MB 880-43868 | 3/ <b>5-A</b> |             |                      |         |           |       |      |        | <b>Client Sa</b>       | mple ID: Meth                           | od Blank |
| Matrix: Solid               |               |             |                      |         |           |       |      |        |                        | Prep Type:                              | Total/NA |
| Analysis Batch: 43877       |               |             |                      |         |           |       |      |        |                        | Prep Bato                               | h: 43868 |
| -                           | ME            | B MB        |                      |         |           |       |      |        |                        |                                         |          |
| Analyte                     | Resul         | t Qualifier | RL                   |         | Unit      |       | D    | Р      | repared                | Analyzed                                | Dil Fac  |
| Benzene                     | <0.00200      | ) U         | 0.00200              | )       | mg/K      | g     | _    | 01/1   | 3/23 08:16             | 01/14/23 03:14                          | 1        |
| Toluene                     | <0.00200      | ) U         | 0.00200              | )       | mg/K      | g     |      | 01/1   | 3/23 08:16             | 01/14/23 03:14                          | 1        |
| Ethylbenzene                | <0.00200      | ) U         | 0.00200              | )       | mg/K      | -     |      | 01/1   | 3/23 08:16             | 01/14/23 03:14                          | 1        |
| m-Xylene & p-Xylene         | <0.00400      |             | 0.00400              | <br>)   | mg/K      |       |      |        | 3/23 08:16             | 01/14/23 03:14                          | 1        |
| o-Xylene                    | <0.00200      |             | 0.00200              |         | mg/K      |       |      |        | 3/23 08:16             | 01/14/23 03:14                          | 1        |
| Xylenes, Total              | <0.00400      |             | 0.00400              |         | mg/K      | -     |      |        | 3/23 08:16             | 01/14/23 03:14                          | 1        |
|                             | 0.00100       |             | 0.00100              |         |           | 9     |      | • ., . | 0,20 00.10             | 0.00.0000000000000000000000000000000000 |          |
| -                           | ME            |             |                      |         |           |       |      |        |                        |                                         |          |
| Surrogate                   | %Recovery     |             | Limits               | -       |           |       |      |        | Prepared               | Analyzed                                | Dil Fac  |
| 4-Bromofluorobenzene (Surr) | 100           |             | 70 - 130             |         |           |       |      |        | 3/23 08:16             | 01/14/23 03:14                          | 1        |
| 1,4-Difluorobenzene (Surr)  | 90            | )           | 70 - 130             |         |           |       |      | 01/1   | 3/23 08:16             | 01/14/23 03:14                          | 1        |
| Lab Sample ID: LCS 880-4386 | 68/1-A        |             |                      |         |           |       | С    | lient  | Sample                 | ID: Lab Contro                          | I Sample |
| Matrix: Solid               |               |             |                      |         |           |       |      |        |                        | Prep Type:                              |          |
| Analysis Batch: 43877       |               |             |                      |         |           |       |      |        |                        | Prep Bato                               |          |
|                             |               |             | Spike                | LCS     | LCS       |       |      |        |                        | •<br>%Rec                               |          |
| Analyte                     |               |             | Added                | Result  | Qualifier | Unit  |      | D      | %Rec                   | Limits                                  |          |
| Benzene                     |               |             | 0.100                | 0.1038  |           | mg/Kg |      |        | 104                    | 70 - 130                                |          |
| Toluene                     |               |             | 0.100                | 0.09662 |           | mg/Kg |      |        | 97                     | 70 - 130                                |          |
| Ethylbenzene                |               |             | 0.100                | 0.1080  |           | mg/Kg |      |        | 108                    | 70 - 130                                |          |
| m-Xylene & p-Xylene         |               |             | 0.200                | 0.1989  |           | mg/Kg |      |        | 99                     | 70 - 130                                |          |
| o-Xylene                    |               |             | 0.100                | 0.1000  |           | mg/Kg |      |        | 104                    | 70 - 130                                |          |
|                             |               |             | 0.100                | 0.1010  |           |       |      |        |                        |                                         |          |
| •                           | LCS LC        |             |                      |         |           |       |      |        |                        |                                         |          |
| Surrogate                   | %Recovery Qu  | alifier     | Limits               |         |           |       |      |        |                        |                                         |          |
| 4-Bromofluorobenzene (Surr) | 100           |             | 70 - 130             |         |           |       |      |        |                        |                                         |          |
| 1,4-Difluorobenzene (Surr)  | 95            |             | 70 - 130             |         |           |       |      |        |                        |                                         |          |
| Lab Sample ID: LCSD 880-438 | 368/2-A       |             |                      |         |           | CI    | ient | Sam    | nnle ID <sup>.</sup> I | ab Control Sar                          | nnle Dun |
| Matrix: Solid               |               |             |                      |         |           |       | it   | Jui    |                        | Prep Type:                              |          |
| Analysis Batch: 43877       |               |             |                      |         |           |       |      |        |                        | Prep Bate                               |          |
| Analysis Datell. 43077      |               |             | Spike                |         | LCSD      |       |      |        |                        | %Rec                                    | RPD      |
| Analyte                     |               |             | Added                |         | Qualifier | Unit  |      | D      | %Rec                   | Limits RF                               |          |
| Analyte                     |               |             | Auueu                | Result  | Qualifier | Unit  |      |        | %Rec                   |                                         |          |

5

7

Eurofins Carlsbad

0

35

Benzene

0.1034

mg/Kg

103

70 - 130

0.100

Job ID: 890-3806-1

SDG: Lea County NM

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCSD 880-4                      | 3868/2-A         |           |          |         |           | Clier | nt Sam  | ple ID:  | Lab Contro   | I Sampl      | e Dup  |
|------------------------------------------------|------------------|-----------|----------|---------|-----------|-------|---------|----------|--------------|--------------|--------|
| Matrix: Solid                                  |                  |           |          |         |           |       |         |          | Prep 1       | ype: To      | tal/NA |
| Analysis Batch: 43877                          |                  |           |          |         |           |       |         |          | Prep         | Batch:       | 43868  |
|                                                |                  |           | Spike    | LCSD    | LCSD      |       |         |          | %Rec         |              | RPD    |
| Analyte                                        |                  |           | Added    | Result  | Qualifier | Unit  | D       | %Rec     | Limits       | RPD          | Limi   |
| Toluene                                        |                  |           | 0.100    | 0.09614 |           | mg/Kg |         | 96       | 70 - 130     | 0            | 3      |
| Ethylbenzene                                   |                  |           | 0.100    | 0.1036  |           | mg/Kg |         | 104      | 70 - 130     | 4            | 3      |
| m-Xylene & p-Xylene                            |                  |           | 0.200    | 0.1896  |           | mg/Kg |         | 95       | 70 - 130     | 5            | 3      |
| o-Xylene                                       |                  |           | 0.100    | 0.09875 |           | mg/Kg |         | 99       | 70 - 130     | 5            | 3      |
|                                                | LCSD             | LCSD      |          |         |           |       |         |          |              |              |        |
| Surrogate                                      | %Recovery        |           | Limits   |         |           |       |         |          |              |              |        |
| 4-Bromofluorobenzene (Surr)                    | 95               |           | 70 - 130 |         |           |       |         |          |              |              |        |
| 1,4-Difluorobenzene (Surr)                     | 96               |           | 70 - 130 |         |           |       |         |          |              |              |        |
| Lab Cample ID: 000 0040 A                      | 4 0 40           |           |          |         |           |       |         | Oliont   | O amonta ID  |              | 0      |
| Lab Sample ID: 890-3819-A                      | -1-0 105         |           |          |         |           |       |         | Client   | Sample ID    |              | -      |
| Matrix: Solid                                  |                  |           |          |         |           |       |         |          |              | ype: To      |        |
| Analysis Batch: 43877                          | <b>0</b>         | Comm!-    | 0        |         | ме        |       |         |          |              | Batch:       | 4386   |
|                                                |                  | Sample    | Spike    |         | MS        |       | _       | ~·-      | %Rec         |              |        |
| Analyte                                        |                  | Qualifier | Added    |         | Qualifier | Unit  | D       | %Rec     | Limits       |              |        |
| Benzene                                        | < 0.00201        |           | 0.0998   | 0.1043  |           | mg/Kg |         | 105      | 70 - 130     |              |        |
| Toluene                                        | < 0.00201        |           | 0.0998   | 0.09540 |           | mg/Kg |         | 96       | 70 - 130     |              |        |
| Ethylbenzene                                   | < 0.00201        |           | 0.0998   | 0.1017  |           | mg/Kg |         | 102      | 70 - 130     |              |        |
| m-Xylene & p-Xylene                            | < 0.00402        |           | 0.200    | 0.1879  |           | mg/Kg |         | 94       | 70 - 130     |              |        |
| o-Xylene                                       | <0.00201         | U         | 0.0998   | 0.09643 |           | mg/Kg |         | 97       | 70 - 130     |              |        |
|                                                | MS               | MS        |          |         |           |       |         |          |              |              |        |
| Surrogate                                      | %Recovery        | Qualifier | Limits   |         |           |       |         |          |              |              |        |
| 4-Bromofluorobenzene (Surr)                    | 95               |           | 70 - 130 |         |           |       |         |          |              |              |        |
| 1,4-Difluorobenzene (Surr)                     | 100              |           | 70 - 130 |         |           |       |         |          |              |              |        |
| Lab Sample ID: 890-3819-A                      | -1-E MSD         |           |          |         |           | CI    | ient Sa | ample IC | ): Matrix Sp | oike Dup     | olicat |
| Matrix: Solid                                  |                  |           |          |         |           |       |         |          |              | ·<br>ype: To |        |
| Analysis Batch: 43877                          |                  |           |          |         |           |       |         |          |              | Batch:       |        |
|                                                | Sample           | Sample    | Spike    | MSD     | MSD       |       |         |          | %Rec         |              | RPI    |
| Analyte                                        | Result           | Qualifier | Added    | Result  | Qualifier | Unit  | D       | %Rec     | Limits       | RPD          | Limi   |
| Benzene                                        | <0.00201         | U         | 0.101    | 0.08686 |           | mg/Kg |         | 86       | 70 - 130     | 18           | 3      |
| Toluene                                        | <0.00201         | U         | 0.101    | 0.08178 |           | mg/Kg |         | 81       | 70 - 130     | 15           | 3      |
| Ethylbenzene                                   | <0.00201         | U         | 0.101    | 0.09122 |           | mg/Kg |         | 90       | 70 - 130     | 11           | 3      |
| m-Xylene & p-Xylene                            | <0.00402         | U         | 0.202    | 0.1709  |           | mg/Kg |         | 85       | 70 - 130     | 9            | 3      |
|                                                | <0.00201         | U         | 0.101    | 0.08906 |           | mg/Kg |         | 88       | 70 - 130     | 8            | 3      |
| o-Xylene                                       |                  |           |          |         |           |       |         |          |              |              |        |
| o-Xylene                                       | MSD              | MSD       |          |         |           |       |         |          |              |              |        |
|                                                | MSD<br>%Recovery |           | Limits   |         |           |       |         |          |              |              |        |
| o-Xylene Surrogate 4-Bromofluorobenzene (Surr) |                  |           | Limits   |         |           |       |         |          |              |              |        |

## Method: 8015B NM - Diesel Range Organics (DRO) (GC)

| Lab Sample ID: MB 880-43869/1-A<br>Matrix: Solid<br>Analysis Batch: 43945 |        |           |      |       |   | Client Sa      | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA |
|---------------------------------------------------------------------------|--------|-----------|------|-------|---|----------------|---------------------------------------------------------|----------|
|                                                                           | МВ     | МВ        |      |       |   |                |                                                         |          |
| Analyte                                                                   | Result | Qualifier | RL   | Unit  | D | Prepared       | Analyzed                                                | Dil Fac  |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 | mg/Kg |   | 01/13/23 08:39 | 01/15/23 19:47                                          | 1        |
| (GRO)-C6-C10                                                              |        |           |      |       |   |                |                                                         |          |

### Job ID: 890-3806-1 SDG: Lea County NM

| Lab Sample ID: MB 880-4386              | 69/1-A    |          |           |          |        |        |       |         |   |          | <b>Client Sa</b> | ample ID: M | <b>Netho</b> | d Blank                   |
|-----------------------------------------|-----------|----------|-----------|----------|--------|--------|-------|---------|---|----------|------------------|-------------|--------------|---------------------------|
| Matrix: Solid                           |           |          |           |          |        |        |       |         |   |          |                  | Prep T      | ype: T       | otal/NA                   |
| Analysis Batch: 43945                   |           |          |           |          |        |        |       |         |   |          |                  |             |              | : 43869                   |
|                                         |           | мв       | МВ        |          |        |        |       |         |   |          |                  |             |              |                           |
| Analyte                                 | Re        |          | Qualifier | RL       |        | ı      | Unit  |         | D | Pi       | repared          | Analyze     | əd           | Dil Fac                   |
| Diesel Range Organics (Over             |           | 50.0     | U         | 50.0     |        |        | mg/Kg |         | _ |          | 3/23 08:39       | 01/15/23 1  |              | 1                         |
| C10-C28)                                |           |          |           |          |        |        |       |         |   |          |                  |             |              |                           |
| Oll Range Organics (Over C28-C36)       | <         | 50.0     | U         | 50.0     |        | r      | mg/Kg |         |   | 01/1:    | 3/23 08:39       | 01/15/23 1  | 9:47         | 1                         |
|                                         |           | MВ       | MB        |          |        |        |       |         |   |          |                  |             |              |                           |
| Surrogate                               | %Reco     | very     | Qualifier | Limits   |        |        |       |         |   | Pi       | repared          | Analyz      | ed           | Dil Fac                   |
| 1-Chlorooctane                          |           | 158      | S1+       | 70 - 130 |        |        |       |         |   | 01/1     | 3/23 08:39       | 01/15/23    | 19:47        | 1                         |
| o-Terphenyl                             |           | 167      | S1+       | 70 - 130 |        |        |       |         |   | 01/1     | 3/23 08:39       | 01/15/23 1  | 19:47        | 1                         |
| Lab Sample ID: LCS 880-438              | 69/2-A    |          |           |          |        |        |       |         | С | lient    | Sample           | ID: Lab Co  | ontrol       | Sample                    |
| Matrix: Solid                           |           |          |           |          |        |        |       |         |   |          |                  | Prep T      |              |                           |
| Analysis Batch: 43945                   |           |          |           |          |        |        |       |         |   |          |                  |             |              | : 43869                   |
|                                         |           |          |           | Spike    | LCS    | LCS    |       |         |   |          |                  | %Rec        |              |                           |
| Analyte                                 |           |          |           | Added    | Result |        | ier   | Unit    |   | D        | %Rec             | Limits      |              |                           |
| Gasoline Range Organics                 |           |          |           | 1000     | 850.0  |        |       | mg/Kg   |   | _        | 85               | 70 - 130    |              |                           |
| (GRO)-C6-C10                            |           |          |           |          |        |        |       | 3       |   |          |                  |             |              |                           |
| Diesel Range Organics (Over<br>C10-C28) |           |          |           | 1000     | 958.3  |        |       | mg/Kg   |   |          | 96               | 70 - 130    |              |                           |
|                                         | LCS       | LCS      |           |          |        |        |       |         |   |          |                  |             |              |                           |
| Surrogate                               | %Recovery | Qua      | lifier    | Limits   |        |        |       |         |   |          |                  |             |              |                           |
| 1-Chlorooctane                          | 113       |          |           | 70 - 130 |        |        |       |         |   |          |                  |             |              |                           |
| o-Terphenyl                             | 105       |          |           | 70 - 130 |        |        |       |         |   |          |                  |             |              |                           |
| Matrix: Solid<br>Analysis Batch: 43945  |           |          |           | Spike    | LCSD   | LCSD   |       |         |   |          |                  |             |              | otal/NA<br>: 43869<br>RPD |
| Analyte                                 |           |          |           | Added    |        | Qualif |       | Unit    |   | D        | %Rec             | Limits      | RPD          |                           |
| Gasoline Range Organics                 |           |          |           | 1000     | 969.8  | duum   |       | mg/Kg   |   | _        | 97               | 70 - 130    | 13           |                           |
| (GRO)-C6-C10                            |           |          |           |          |        |        |       |         |   |          |                  |             |              |                           |
| Diesel Range Organics (Over<br>C10-C28) |           |          |           | 1000     | 903.3  |        |       | mg/Kg   |   |          | 90               | 70 - 130    | 6            | 20                        |
|                                         | LCSD      | LCS      | D         |          |        |        |       |         |   |          |                  |             |              |                           |
| Surrogate                               | %Recovery |          |           | Limits   |        |        |       |         |   |          |                  |             |              |                           |
| 1-Chlorooctane                          | 116       |          |           | 70 - 130 |        |        |       |         |   |          |                  |             |              |                           |
| o-Terphenyl                             | 108       |          |           | 70 - 130 |        |        |       |         |   |          |                  |             |              |                           |
|                                         |           |          |           |          |        |        |       |         |   |          | 0                |             |              |                           |
| Lab Sample ID: 890-3792-A-              |           |          |           |          |        |        |       |         |   |          | Client           | Sample ID:  |              |                           |
| Matrix: Solid                           |           |          |           |          |        |        |       |         |   |          |                  | Prep T      |              |                           |
| Analysis Batch: 43945                   | 0         | <b>6</b> |           | Calify   |        | ме     |       |         |   |          |                  |             | Datch        | : 43869                   |
| Analuta                                 | Sample    |          |           | Spike    |        | MS     |       | l lusit |   | -        | 0/ Dc -          | %Rec        |              |                           |
| Analyte                                 | _ Result  | -        | er        | Added    |        | Qualif | ier   | Unit    |   | <u>D</u> | %Rec             | Limits      |              |                           |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9     | U        |           | 998      | 895.8  |        |       | mg/Kg   |   |          | 87               | 70 - 130    |              |                           |
| Diesel Range Organics (Over<br>C10-C28) | <49.9     | U        |           | 998      | 895.5  |        |       | mg/Kg   |   |          | 87               | 70 - 130    |              |                           |
|                                         | MS        | мs       |           |          |        |        |       |         |   |          |                  |             |              |                           |
| Surrogate                               |           | Qua      | lifier    | Limits   |        |        |       |         |   |          |                  |             |              |                           |
| 1-Chlorooctane                          | 81        |          |           | 70 - 130 |        |        |       |         |   |          |                  |             |              |                           |
|                                         | 01        |          |           |          |        |        |       |         |   |          |                  |             |              |                           |

81

o-Terphenyl

70 - 130

Client: Ensolum

### Job ID: 890-3806-1 SDG: Lea County NM

Project/Site: Baish B Battery Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: 890-3792-A-<br>Matrix: Solid                                                                                                                                                                                               |                                                        |                 |                                                |                                                 |                                    |                                | Silent S | ampie iL                               | D: Matrix Sp<br>Prep T                                                                                                         | уре: То                                 |              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------|------------------------------------------------|-------------------------------------------------|------------------------------------|--------------------------------|----------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------|
| Analysis Batch: 43945                                                                                                                                                                                                                     |                                                        |                 |                                                |                                                 |                                    |                                |          |                                        |                                                                                                                                | Batch:                                  |              |
|                                                                                                                                                                                                                                           | Sample                                                 | Sample          | Spike                                          | MSD                                             | MSD                                |                                |          |                                        | %Rec                                                                                                                           |                                         | RP           |
| Analyte                                                                                                                                                                                                                                   | Result                                                 | Qualifier       | Added                                          | Result                                          | Qualifier                          | Unit                           | D        | %Rec                                   | Limits                                                                                                                         | RPD                                     | Lim          |
| Gasoline Range Organics                                                                                                                                                                                                                   | <49.9                                                  |                 | 997                                            | 959.7                                           |                                    | mg/Kg                          |          | 93                                     | 70 - 130                                                                                                                       | 7                                       | 2            |
| (GRO)-C6-C10                                                                                                                                                                                                                              |                                                        |                 |                                                |                                                 |                                    |                                |          |                                        |                                                                                                                                |                                         |              |
| Diesel Range Organics (Over                                                                                                                                                                                                               | <49.9                                                  | U               | 997                                            | 917.4                                           |                                    | mg/Kg                          |          | 89                                     | 70 - 130                                                                                                                       | 2                                       | 2            |
| C10-C28)                                                                                                                                                                                                                                  |                                                        |                 |                                                |                                                 |                                    |                                |          |                                        |                                                                                                                                |                                         |              |
|                                                                                                                                                                                                                                           | MSD                                                    | MSD             |                                                |                                                 |                                    |                                |          |                                        |                                                                                                                                |                                         |              |
| Surrogate                                                                                                                                                                                                                                 | %Recovery                                              | Qualifier       | Limits                                         |                                                 |                                    |                                |          |                                        |                                                                                                                                |                                         |              |
| 1-Chlorooctane                                                                                                                                                                                                                            | 97                                                     |                 | 70 - 130                                       |                                                 |                                    |                                |          |                                        |                                                                                                                                |                                         |              |
| o-Terphenyl                                                                                                                                                                                                                               | 82                                                     |                 | 70 - 130                                       |                                                 |                                    |                                |          |                                        |                                                                                                                                |                                         |              |
| lethod: 300.0 - Anions,<br>Lab Sample ID: MB 880-4379<br>Matrix: Solid                                                                                                                                                                    |                                                        | ography         |                                                |                                                 |                                    |                                |          | Client S                               | Sample ID: I<br>Prep <sup>-</sup>                                                                                              | Method<br>Type: S                       |              |
| Analysis Batch: 43930                                                                                                                                                                                                                     |                                                        |                 |                                                |                                                 |                                    |                                |          |                                        |                                                                                                                                |                                         |              |
|                                                                                                                                                                                                                                           |                                                        | MB MB           |                                                |                                                 |                                    |                                |          |                                        |                                                                                                                                |                                         |              |
| Analyte                                                                                                                                                                                                                                   | R/                                                     | esult Qualifier |                                                | RL                                              | Unit                               |                                | D P      | repared                                | Analyze                                                                                                                        | ed                                      | Dil F        |
| Chloride                                                                                                                                                                                                                                  | <                                                      | 5.00 U          |                                                | 5.00                                            | mg/K                               | 9                              |          |                                        | 01/14/23 0                                                                                                                     | 06:23                                   |              |
| Analysis Batch: 43930                                                                                                                                                                                                                     |                                                        |                 | Spike                                          |                                                 | LCS                                | 11 14                          |          | 0/ D                                   | %Rec                                                                                                                           |                                         |              |
| Analyte                                                                                                                                                                                                                                   |                                                        |                 | Added<br>250                                   | 271.6                                           | Qualifier                          | Unit<br>mg/Kg                  | <u>D</u> | %Rec                                   | Limits                                                                                                                         |                                         |              |
| hloride                                                                                                                                                                                                                                   |                                                        |                 |                                                |                                                 |                                    |                                |          |                                        | QA 11A                                                                                                                         |                                         |              |
| Chloride                                                                                                                                                                                                                                  |                                                        |                 | 200                                            | 271.0                                           |                                    | iiig/itg                       |          | 109                                    | 90 - 110                                                                                                                       |                                         |              |
|                                                                                                                                                                                                                                           | 791/3-A                                                |                 | 200                                            | 271.0                                           |                                    | ilig/Kg                        | Client   |                                        | 90 - 110<br>e ID: Lab Co                                                                                                       | ontrol S                                | amp          |
| Lab Sample ID: LCS 880-437                                                                                                                                                                                                                | 791/3-A                                                |                 | 200                                            | 211.0                                           |                                    | ing/Kg                         | Client   |                                        | e ID: Lab Co                                                                                                                   | ontrol S<br>Type: S                     |              |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid                                                                                                                                                                                               | 791/3-A                                                |                 | 200                                            | 211.0                                           |                                    | ing/rtg                        | Client   |                                        | e ID: Lab Co                                                                                                                   |                                         |              |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid                                                                                                                                                                                               | 791/3-A                                                |                 | Spike                                          |                                                 | LCS                                | iiig/rtg                       | Client   |                                        | e ID: Lab Co                                                                                                                   |                                         |              |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930                                                                                                                                                                      | 791/3-A                                                |                 |                                                | LCS                                             | LCS<br>Qualifier                   | Unit                           | Client   |                                        | e ID: Lab Co<br>Prep <sup>-</sup>                                                                                              |                                         |              |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br><sup>Analyte</sup>                                                                                                                                                | 791/3-A<br>                                            |                 | Spike                                          | LCS                                             |                                    |                                |          | t Sample                               | e ID: Lab Co<br>Prep <sup>-</sup><br>%Rec                                                                                      |                                         |              |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride                                                                                                                                               |                                                        |                 | Spike<br>Added                                 | LCS<br>Result                                   |                                    | Unit                           |          | ************************************** | <b>Prep</b><br>%Rec<br>Limits<br>90 - 110                                                                                      | Type: S                                 | oluk         |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-                                                                                                                 |                                                        |                 | Spike<br>Added                                 | LCS<br>Result                                   |                                    | Unit                           |          | ************************************** | e ID: Lab Co<br>Prep <sup>-</sup><br>%Rec<br>Limits<br>90 - 110<br>: Sample ID:                                                | Type: S                                 | olub         |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid                                                                                                |                                                        |                 | Spike<br>Added                                 | LCS<br>Result                                   |                                    | Unit                           |          | ************************************** | e ID: Lab Co<br>Prep <sup>-</sup><br>%Rec<br>Limits<br>90 - 110<br>: Sample ID:                                                | Type: S                                 | olub         |
| Chloride<br>Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930                                                           | <br>1-C MS                                             | Sample          | Spike<br>Added<br>250                          | LCS<br>Result<br>270.6                          | Qualifier                          | Unit                           |          | ************************************** | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep                                                       | Type: S                                 | olub         |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930                                                                       |                                                        | Sample          | Spike<br>Added<br>250<br>Spike                 | LCS<br>Result<br>270.6                          | Qualifier                          | Unit<br>mg/Kg                  | <u>D</u> | * Sample<br>%Rec<br>108<br>Client      | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep<br>%Rec                                               | Type: S                                 | olub         |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930                                                                       |                                                        | Qualifier       | Spike<br>Added<br>250                          | LCS<br>Result<br>270.6                          | Qualifier<br>MS<br>Qualifier       | Unit                           |          | ************************************** | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep                                                       | Type: S                                 | oluk         |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride                                                | 1-C MS<br>Sample<br>Result<br>149                      | Qualifier       | Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>270.6<br>MS<br>Result          | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg<br>Unit          | <u>D</u> | *Rec<br>108<br>Client                  | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep<br>%Rec<br>Limits                                     | Type: S                                 | olub         |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte                                                            | 1-C MS<br>Sample<br>Result<br>149                      | Qualifier       | Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>270.6<br>MS<br>Result          | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg<br>Unit<br>mg/Kg | D        | %Rec<br>108<br>Client<br>%Rec<br>123   | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>C: Matrix Sp         | Type: S<br>Matrix<br>Type: S<br>ike Dup | Spil<br>oluk |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-                  | 1-C MS<br>Sample<br>Result<br>149                      | Qualifier       | Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>270.6<br>MS<br>Result          | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg<br>Unit<br>mg/Kg | D        | %Rec<br>108<br>Client<br>%Rec<br>123   | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>C: Matrix Sp         | Type: S<br>Matrix<br>Type: S            | Spil<br>oluk |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride                                                | 1-C MS<br>Sample<br>Result<br>149                      | Qualifier       | Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>270.6<br>MS<br>Result          | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg<br>Unit<br>mg/Kg | D        | %Rec<br>108<br>Client<br>%Rec<br>123   | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>C: Matrix Sp         | Type: S<br>Matrix<br>Type: S<br>ike Dup | Spil<br>olub |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid | 1-C MS<br>Sample<br><u>Result</u><br>149<br>1-D MSD    | Qualifier       | Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>270.6<br>MS<br>Result<br>455.7 | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg<br>Unit<br>mg/Kg | D        | %Rec<br>108<br>Client<br>%Rec<br>123   | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>C: Matrix Sp         | Type: S<br>Matrix<br>Type: S<br>ike Dup | Spil<br>olub |
| Lab Sample ID: LCS 880-437<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid<br>Analysis Batch: 43930<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3798-A-<br>Matrix: Solid | 1-C MS<br>Sample<br>Result<br>149<br>1-D MSD<br>Sample | Qualifier<br>F1 | Spike<br>Added<br>250<br>Spike<br>Added<br>250 | LCS<br>Result<br>270.6<br>MS<br>Result<br>455.7 | Qualifier<br>MS<br>Qualifier<br>F1 | Unit<br>mg/Kg<br>Unit<br>mg/Kg | D        | %Rec<br>108<br>Client<br>%Rec<br>123   | e ID: Lab Co<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID:<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>C: Matrix Sp<br>Prep | Type: S<br>Matrix<br>Type: S<br>ike Dup | Spik<br>olub |

Eurofins Carlsbad

Released to Imaging: 5/14/2024 11:22:06 AM

# **QC Association Summary**

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3806-1

SDG: Lea County NM

## GC VOA

## Prep Batch: 43747

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| MB 880-43747/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| Prep Batch: 43868  |                        |           |        |        |            |
| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
| 890-3806-1         | SS01                   | Total/NA  | Solid  | 5035   |            |
| 890-3806-2         | SS02                   | Total/NA  | Solid  | 5035   |            |
| 890-3806-3         | SS03                   | Total/NA  | Solid  | 5035   |            |
| 890-3806-4         | SS04                   | Total/NA  | Solid  | 5035   |            |
| MB 880-43868/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-43868/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-43868/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 890-3819-A-1-D MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 890-3819-A-1-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 43877

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-3806-1         | SS01                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3806-2         | SS02                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3806-3         | SS03                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3806-4         | SS04                   | Total/NA  | Solid  | 8021B  | 43868      |
| MB 880-43747/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 43747      |
| MB 880-43868/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 43868      |
| LCS 880-43868/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 43868      |
| LCSD 880-43868/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3819-A-1-D MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3819-A-1-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 43868      |

#### Analysis Batch: 44764

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 890-3806-1    | SS01             | Total/NA  | Solid  | Total BTEX |            |
| 890-3806-2    | SS02             | Total/NA  | Solid  | Total BTEX |            |
| 890-3806-3    | SS03             | Total/NA  | Solid  | Total BTEX |            |
| 890-3806-4    | SS04             | Total/NA  | Solid  | Total BTEX |            |

## GC Semi VOA

#### Prep Batch: 43869

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|-----------------------|------------------------|-----------|--------|-------------|------------|
| 890-3806-1            | SS01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3806-2            | SS02                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3806-3            | SS03                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3806-4            | SS04                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-43869/1-A      | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-43869/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-43869/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3792-A-1-E MS     | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3792-A-1-F MSD    | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |
| Analysis Batch: 43945 |                        |           |        |             |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
| 890-3806-1            | SS01                   | Total/NA  | Solid  | 8015B NM    | 43869      |

Eurofins Carlsbad

Page 44 of 203

# **QC Association Summary**

Client: Ensolum Project/Site: Baish B Battery

## GC Semi VOA (Continued)

## Analysis Batch: 43945 (Continued)

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|-----------------------|------------------------|-----------|--------|----------|------------|
| 890-3806-2            | SS02                   | Total/NA  | Solid  | 8015B NM | 43869      |
| 890-3806-3            | SS03                   | Total/NA  | Solid  | 8015B NM | 43869      |
| 890-3806-4            | SS04                   | Total/NA  | Solid  | 8015B NM | 43869      |
| MB 880-43869/1-A      | Method Blank           | Total/NA  | Solid  | 8015B NM | 43869      |
| LCS 880-43869/2-A     | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 43869      |
| LCSD 880-43869/3-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 43869      |
| 890-3792-A-1-E MS     | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 43869      |
| 890-3792-A-1-F MSD    | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 43869      |
| Analysis Batch: 44043 |                        |           |        |          |            |

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 890-3806-1    | SS01             | Total/NA  | Solid  | 8015 NM |            |
| 890-3806-2    | SS02             | Total/NA  | Solid  | 8015 NM |            |
| 890-3806-3    | SS03             | Total/NA  | Solid  | 8015 NM |            |
| 890-3806-4    | SS04             | Total/NA  | Solid  | 8015 NM |            |

## HPLC/IC

### Leach Batch: 43791

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-3806-1         | SS01                   | Soluble   | Solid  | DI Leach |            |
| 890-3806-2         | SS02                   | Soluble   | Solid  | DI Leach |            |
| 890-3806-3         | SS03                   | Soluble   | Solid  | DI Leach |            |
| 890-3806-4         | SS04                   | Soluble   | Solid  | DI Leach |            |
| MB 880-43791/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-43791/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCS 880-43791/3-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| 890-3798-A-1-C MS  | Matrix Spike           | Soluble   | Solid  | DI Leach |            |
| 890-3798-A-1-D MSD | Matrix Spike Duplicate | Soluble   | Solid  | DI Leach |            |

#### Analysis Batch: 43930

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-3806-1         | SS01                   | Soluble   | Solid  | 300.0  | 43791      |
| 890-3806-2         | SS02                   | Soluble   | Solid  | 300.0  | 43791      |
| 890-3806-3         | SS03                   | Soluble   | Solid  | 300.0  | 43791      |
| 890-3806-4         | SS04                   | Soluble   | Solid  | 300.0  | 43791      |
| MB 880-43791/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 43791      |
| LCS 880-43791/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 43791      |
| LCS 880-43791/3-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 43791      |
| 890-3798-A-1-C MS  | Matrix Spike           | Soluble   | Solid  | 300.0  | 43791      |
| 890-3798-A-1-D MSD | Matrix Spike Duplicate | Soluble   | Solid  | 300.0  | 43791      |

5

**8** 9

Job ID: 890-3806-1

SDG: Lea County NM

5 6

9

Job ID: 890-3806-1 SDG: Lea County NM

## Lab Sample ID: 890-3806-1 Matrix: Solid

Lab Sample ID: 890-3806-2

Matrix: Solid

Date Collected: 01/09/23 12:35 Date Received: 01/10/23 09:05

Project/Site: Baish B Battery

**Client Sample ID: SS01** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 100    | 5 mL    | 5 mL   | 43877  | 01/14/23 10:55 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 44764  | 01/25/23 16:06 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 44043  | 01/16/23 16:39 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 43869  | 01/13/23 08:39 | DM      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 43945  | 01/16/23 04:21 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 43791  | 01/12/23 09:20 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 43930  | 01/14/23 09:10 | СН      | EET MID |

## **Client Sample ID: SS02**

# Date Collected: 01/09/23 13:50

Date Received: 01/10/23 09:05

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 100    | 5 mL    | 5 mL   | 43877  | 01/14/23 11:16 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 44764  | 01/25/23 16:06 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 44043  | 01/16/23 16:39 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 43869  | 01/13/23 08:39 | DM      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 5      | 1 uL    | 1 uL   | 43945  | 01/16/23 03:17 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 43791  | 01/12/23 09:20 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 43930  | 01/14/23 09:16 | СН      | EET MID |

## **Client Sample ID: SS03**

## Date Collected: 01/09/23 12:45

Date Received: 01/10/23 09:05

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 43877  | 01/14/23 08:08 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 44764  | 01/25/23 16:06 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 44043  | 01/16/23 16:39 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 43869  | 01/13/23 08:39 | DM      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 43945  | 01/15/23 22:16 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 43791  | 01/12/23 09:20 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 43930  | 01/14/23 09:22 | СН      | EET MID |

#### **Client Sample ID: SS04** Date Collected: 01/09/23 12:50 Date Received: 01/10/23 09:05

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.01 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 43877  | 01/14/23 08:29 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 44764  | 01/25/23 16:06 | AJ      | EET MID |

**Eurofins Carlsbad** 

Matrix: Solid

Page 46 of 203

# Lab Sample ID: 890-3806-3 Matrix: Solid

Lab Sample ID: 890-3806-4

Released to Imaging: 5/14/2024 11:22:06 AM

Job ID: 890-3806-1

Matrix: Solid

SDG: Lea County NM

Lab Sample ID: 890-3806-4

## Lab Chronicle

Client: Ensolum Project/Site: Baish B Battery

# Client Sample ID: SS04

Date Collected: 01/09/23 12:50 Date Received: 01/10/23 09:05

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 44043  | 01/16/23 16:39 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 43869  | 01/13/23 08:39 | DM      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 43945  | 01/15/23 22:37 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 43791  | 01/12/23 09:20 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 43930  | 01/14/23 09:28 | CH      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 5/14/2024 11:22:06 AM

|                                                     |             | Accreditation/C                      | ertification Summary                         |                                          |    |
|-----------------------------------------------------|-------------|--------------------------------------|----------------------------------------------|------------------------------------------|----|
| Client: Ensolum<br>Project/Site: Baish B B          | attery      |                                      |                                              | Job ID: 890-3806-1<br>SDG: Lea County NM | 2  |
| Laboratory: Eurofi<br>Unless otherwise noted, all a |             | ry were covered under each acc       | reditation/certification below.              |                                          |    |
| Authority                                           |             | Program                              | Identification Number                        | Expiration Date                          |    |
| Texas                                               |             | NELAP                                | T104704400-22-25                             | 06-30-23                                 | 5  |
| • •                                                 |             | rt, but the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for which            | 5  |
| the agency does not of                              |             |                                      |                                              |                                          |    |
| Analysis Method                                     | Prep Method | Matrix                               | Analyte                                      |                                          |    |
| 8015 NM<br>Total BTEX                               |             | Solid<br>Solid                       | Total TPH<br>Total BTEX                      |                                          |    |
|                                                     |             |                                      |                                              |                                          | 8  |
|                                                     |             |                                      |                                              |                                          | 9  |
|                                                     |             |                                      |                                              |                                          | 10 |
|                                                     |             |                                      |                                              |                                          | 11 |
|                                                     |             |                                      |                                              |                                          |    |
|                                                     |             |                                      |                                              |                                          | 13 |
|                                                     |             |                                      |                                              |                                          |    |

Eurofins Carlsbad

.

## **Method Summary**

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3806-1 SDG: Lea County NM

| Nethod     | Method Description                 | Protocol | Laboratory |
|------------|------------------------------------|----------|------------|
| 3021B      | Volatile Organic Compounds (GC)    | SW846    | EET MID    |
| lotal BTEX | Total BTEX Calculation             | TAL SOP  | EET MID    |
| 3015 NM    | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 8015B NM   | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 00.0       | Anions, Ion Chromatography         | MCAWW    | EET MID    |
| 035        | Closed System Purge and Trap       | SW846    | EET MID    |
| 015NM Prep | Microextraction                    | SW846    | EET MID    |
| I Leach    | Deionized Water Leaching Procedure | ASTM     | EET MID    |

#### Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3806-1 SDG: Lea County NM

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |    |
|---------------|------------------|--------|----------------|----------------|-------|----|
| 890-3806-1    | SS01             | Solid  | 01/09/23 12:35 | 01/10/23 09:05 | 0.5   |    |
| 890-3806-2    | SS02             | Solid  | 01/09/23 13:50 | 01/10/23 09:05 | 0.5   |    |
| 890-3806-3    | SS03             | Solid  | 01/09/23 12:45 | 01/10/23 09:05 | 0.5   | 5  |
| 890-3806-4    | SS04             | Solid  | 01/09/23 12:50 | 01/10/23 09:05 | 0.5   |    |
|               |                  |        |                |                |       |    |
|               |                  |        |                |                |       |    |
|               |                  |        |                |                |       | 8  |
|               |                  |        |                |                |       | C  |
|               |                  |        |                |                |       | 9  |
|               |                  |        |                |                |       |    |
|               |                  |        |                |                |       |    |
|               |                  |        |                |                |       | 1: |
|               |                  |        |                |                |       | 1  |
|               |                  |        |                |                |       |    |

Page 50 of 203

Received by OCD: 4/17/2024 12:35:90 PM



Xenco

**Chain of Custody** 

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

Work Order No:

|                                        | 1             |              |            |                  |                  | 1           |                                        |               | r                      |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | com Page <u>1</u> of <u>1</u>                                     |  |  |
|----------------------------------------|---------------|--------------|------------|------------------|------------------|-------------|----------------------------------------|---------------|------------------------|------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|
| Project Manager:                       | Hadlie        | Green        |            |                  |                  | Bill to: (i | f different                            | )             | Kalei                  | Jennir     | ngs      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er Comments                                                       |  |  |
| Company Name:                          | Ensolu        | m, LLC       |            |                  |                  | Compar      | Company Name: Ensolum, LLC             |               |                        |            | LC       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Program: UST/PST PRP Brownfields RRC Superfund                    |  |  |
| Address:                               | 601 N         | Marienfe     | ld St S    | uite 400         |                  | Address     | Address: 601 N Marienfeld St Suite 400 |               |                        |            | enfeld   | St Suite 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State of Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                   |  |  |
| City, State ZIP:                       | Midland       | d, TX 79     | 701        |                  |                  | City, Sta   | ate ZIP:                               | 1             | Midla                  | nd, TX     | 7970     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PST/UST TRRP Level IV                                             |  |  |
| Phone:                                 | 432-55        | 7-8895       |            |                  | Email:           | kjennin     | igs@en                                 | solum         | n.com                  | ; hgre     | en@e     | ensolum.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Deliverables: EDD A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DaPT Other:                                                       |  |  |
| Project Name:                          |               | Baish        | B Batt     | ery              | Turr             | Around      |                                        |               |                        |            |          | ANALYSIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Preservative Codes                                                |  |  |
| Project Number:                        |               | 03D          | 205705     | 54               | Routine          | Rus         | sh                                     | Pres.<br>Code |                        |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | None: NO DI Water: H <sub>2</sub>                                 |  |  |
| Project Location:                      |               | Lea C        | ounty,     | NM               | Due Date:        |             |                                        |               |                        |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cool: Cool MeOH: Me                                               |  |  |
| Sampler's Name:                        |               | Dmitry       | Nikand     | orov             | TAT starts th    |             |                                        |               | [                      |            | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HCL: HC HNO <sub>3</sub> : HN                                     |  |  |
| PO #:                                  |               |              |            |                  | the lab, if re-  | ceived by   | 4:30pm                                 | 2             |                        |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H <sub>2</sub> S0 <sub>4</sub> : H <sub>2</sub> NaOH: Na          |  |  |
| SAMPLE RECE                            | IPT           | Temp B       | lank:      | Yes No           | Wet Ice:         | Yes         | No                                     | Parameters    | 6                      |            |          | THE THE THE PARTY OF THE PARTY | ATT A REAL FIRE A CONTRACT OF A CONTRACT | H₃PO₄: HP                                                         |  |  |
| Samples Received In                    | ntact:        |              | No         | Thermometer      | ID: IV           | Ino         | FO                                     | arar          | 300.                   |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NaHSO4: NABIS                                                     |  |  |
| Cooler Custody Seal                    | is:           | Yes No       | MA         | Correction Fa    | ctor:            | -0          | a                                      | đ.            | PA:                    |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> : NaSO <sub>3</sub> |  |  |
| Sample Custody Sea                     | als:          | Yes No       | N/A)       | Temperature      | Reading:         | a           | 8                                      |               | S (E                   |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zn Acetate+NaOH: Zn                                               |  |  |
| Total Containers:                      |               |              |            | Corrected Ter    | mperature:       | 0           | le                                     |               | SIDE                   | 015)       | (8021    | 890-3806 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NaOH+Ascorbic Acid: SAPC                                          |  |  |
| Sample Ider                            | ntification   | n            | Matrix     | Date<br>Sampled  | Time<br>Sampled  | Depth       | Grab/<br>Comp                          | # of<br>Cont  | CHLORIDES (EPA: 300.0) | TPH (8015) | BTEX     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Comments                                                   |  |  |
| SSO                                    | 01            |              | s          | 1/9/2023         | 12:35            | 0.5'        | Grab                                   | 1             | x                      | x          | x        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
| SSO                                    | 02            |              | S          | 1/9/2023         | 1350             | 0.5'        | Grab                                   | 1             | x                      | x          | x        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
| SSO                                    | 03            |              | S          | 1/9/2023         | 1245             | 0.5'        | Grab                                   | 1             | x                      | x          | x        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Incident Number                                                   |  |  |
| SSO                                    | 04            |              | S          | 1/9/2023         | 1250             | 0.5'        | Grab                                   | 1             | ×                      | ×          | x        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
|                                        |               |              | /          |                  | -                |             |                                        |               |                        |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
|                                        |               |              | 170        | 19/2             | <u> </u>         |             |                                        |               |                        |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
|                                        | 10            | X            | 0.1        |                  |                  |             |                                        |               |                        |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
|                                        | V             | ) [ ]        |            |                  |                  |             |                                        |               |                        |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
|                                        |               |              |            |                  |                  |             |                                        |               |                        |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
| Total 200.7 / 60<br>Dircle Method(s) a |               | 00.8 / 6     |            |                  |                  |             |                                        |               |                        |            |          | Cd Ca Cr Co Cu Fe<br>Cd Cr Co Cu Pb Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pb Mg Mn Mo Ni K Se Ag SiO<br>Mo Ni Se Ag TI U Ha: 16:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 Na Sr 11 Sn U V Zn<br>31/245.1/7470 /7471                       |  |  |
|                                        |               |              |            |                  |                  |             |                                        |               |                        | -          | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tors. It assigns standard terms and conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |  |  |
| Francica Eurofine Yong                 | oo will be li | able only fr | or the cos | t of samples and | chall not assure | ne any resr | nonsihility                            | for any       | losses                 | or expe    | inses in | curred by the client if such loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | es are due to circumstances beyond the control<br>terms will be enforced unless previously negotia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ted.                                                              |  |  |
| Relinquished by                        |               |              | (          |                  | d by: (Signa     |             |                                        |               | -                      | /Time      |          | Relinquished by: (S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
| DAMAS                                  |               |              |            | 11101            | inc              |             |                                        | 1.1           | 0.                     | 200        | 201      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |
| VIV                                    |               |              |            |                  | 7-1-1-           | >           |                                        |               | 11.                    | CAR'S      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |  |  |

Released to Imaging: 5/14/2024 11:22:06 AM

## Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3806 List Number: 1 Creator: Clifton, Cloe

| Question                                                                          | Answer | Comment                             |
|-----------------------------------------------------------------------------------|--------|-------------------------------------|
| The cooler's custody seal, if present, is intact.                                 | True   |                                     |
| Sample custody seals, if present, are intact.                                     | True   |                                     |
| The cooler or samples do not appear to have been compromised or<br>tampered with. | True   |                                     |
| Samples were received on ice.                                                     | True   |                                     |
| Cooler Temperature is acceptable.                                                 | True   |                                     |
| Cooler Temperature is recorded.                                                   | True   |                                     |
| COC is present.                                                                   | True   |                                     |
| COC is filled out in ink and legible.                                             | True   |                                     |
| COC is filled out with all pertinent information.                                 | True   |                                     |
| Is the Field Sampler's name present on COC?                                       | True   |                                     |
| There are no discrepancies between the containers received and the COC.           | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)     | True   |                                     |
| Sample containers have legible labels.                                            | True   |                                     |
| Containers are not broken or leaking.                                             | True   |                                     |
| Sample collection date/times are provided.                                        | True   |                                     |
| Appropriate sample containers are used.                                           | N/A    | Refer to Job Narrative for details. |
| Sample bottles are completely filled.                                             | True   |                                     |
| Sample Preservation Verified.                                                     | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs  | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").   | N/A    |                                     |

Job Number: 890-3806-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

14

Eurofins Carlsbad Released to Imaging: 5/14/2024 11:22:06 AM

14

Job Number: 890-3806-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 01/11/23 11:43 AM

## Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3806 List Number: 2 Creator: Teel, Brianna

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | True   |         |
| Sample custody seals, if present, are intact.                                    | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | True   |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Hadlie Green Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/16/2023 6:34:29 PM

# JOB DESCRIPTION

Baish B Battery SDG NUMBER Lea County NM

# **JOB NUMBER**

890-3807-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.



Received by OCD: 4/17/2024 12:35:00 PM

# **Eurofins Carlsbad**

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

RAMER

Generated 1/16/2023 6:34:29 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3807-1 SDG: Lea County NM

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 10 |
| QC Sample Results      | 11 |
| QC Association Summary | 15 |
| Lab Chronicle          | 17 |
| Certification Summary  | 19 |
| Method Summary         | 20 |
| Sample Summary         | 21 |
| Chain of Custody       | 22 |
| Receipt Checklists     | 23 |
|                        |    |

2

Page 57 of 203

|                  | Definitions/Glossary                                                                                        |               |   |
|------------------|-------------------------------------------------------------------------------------------------------------|---------------|---|
| Client: Ensolum  |                                                                                                             | D: 890-3807-1 |   |
| Project/Site: Ba | aish B Battery SDG: Le                                                                                      | ea County NM  |   |
| Qualifiers       |                                                                                                             |               |   |
| GC VOA           |                                                                                                             |               |   |
| Qualifier        | Qualifier Description                                                                                       |               |   |
| S1-              | Surrogate recovery exceeds control limits, low biased.                                                      |               |   |
| U                | Indicates the analyte was analyzed for but not detected.                                                    |               |   |
| GC Semi VOA      | κ                                                                                                           |               |   |
| Qualifier        | Qualifier Description                                                                                       |               |   |
| S1+              | Surrogate recovery exceeds control limits, high biased.                                                     |               |   |
| U                | Indicates the analyte was analyzed for but not detected.                                                    |               |   |
| HPLC/IC          |                                                                                                             |               |   |
| Qualifier        | Qualifier Description                                                                                       |               |   |
| F1               | MS and/or MSD recovery exceeds control limits.                                                              |               |   |
| U                | Indicates the analyte was analyzed for but not detected.                                                    |               |   |
| Glossary         |                                                                                                             |               | Ì |
| Abbreviation     | These commonly used abbreviations may or may not be present in this report.                                 |               |   |
| ¤                | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |               |   |
| %R               | Percent Recovery                                                                                            |               |   |
| CFL              | Contains Free Liquid                                                                                        |               |   |
| CFU              | Colony Forming Unit                                                                                         |               |   |
| CNF              | Contains No Free Liquid                                                                                     |               |   |
| DER              | Duplicate Error Ratio (normalized absolute difference)                                                      |               |   |
| Dil Fac          | Dilution Factor                                                                                             |               |   |
| DL               | Detection Limit (DoD/DOE)                                                                                   |               |   |
| DL, RA, RE, IN   | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |               |   |
| DLC              | Decision Level Concentration (Radiochemistry)                                                               |               |   |
| EDL              | Estimated Detection Limit (Dioxin)                                                                          |               |   |
| LOD              | Limit of Detection (DoD/DOE)                                                                                |               |   |
| LOQ              | Limit of Quantitation (DoD/DOE)                                                                             |               |   |
| MCL              | EPA recommended "Maximum Contaminant Level"                                                                 |               |   |
| MDA              | Minimum Detectable Activity (Radiochemistry)                                                                |               |   |
| MDC              | Minimum Detectable Concentration (Radiochemistry)                                                           |               |   |
| MDL              | Method Detection Limit                                                                                      |               |   |
| ML               | Minimum Level (Dioxin)                                                                                      |               |   |
| MPN              | Most Probable Number                                                                                        |               |   |
| MQL              | Method Quantitation Limit                                                                                   |               |   |
| NC               | Not Calculated                                                                                              |               |   |
| ND               | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |               |   |
| NEG              | Negative / Absent                                                                                           |               |   |
| POS              | Positive / Present                                                                                          |               |   |
| PQL              | Practical Quantitation Limit                                                                                |               |   |

Eurofins Carlsbad

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

### Job ID: 890-3807-1 SDG: Lea County NM

#### Job ID: 890-3807-1

Project/Site: Baish B Battery

Client: Ensolum

#### Laboratory: Eurofins Carlsbad

#### Narrative

Job Narrative 890-3807-1

#### Receipt

The samples were received on 1/10/2023 9:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

#### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: SS05 (890-3807-1), SS06 (890-3807-2), SS07 (890-3807-3) and SS08 (890-3807-4).

#### GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: SS06 (890-3807-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: Surrogate recovery for the following sample was outside control limits: (MB 880-43869/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300\_ORGFM\_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43792 and analytical batch 880-43924 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00199 U

<0.00199 U

<0.00199 U

<0.00398 U

<0.00199 U

<0.00398 U

<0.00398 U

<0.00199 U

<0.00398 U

%Recovery Qualifier

RL

0.00199

0.00199

0.00199

0.00398

0.00199

0.00398

Limits

Page 59 of 203

Job ID: 890-3807-1 SDG: Lea County NM

## Client Sample ID: SS05

Project/Site: Baish B Battery

Date Collected: 01/09/23 13:15 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

# Lab Sample ID: 890-3807-1

Analyzed

01/14/23 09:10

01/14/23 09:10

01/14/23 09:10

01/14/23 09:10

01/14/23 09:10

01/14/23 09:10

Analyzed

Matrix: Solid

| 807-1<br>Solid | 3  |
|----------------|----|
|                | 4  |
|                | 5  |
| Dil Fac        |    |
| 1              | 6  |
| 1              |    |
| 1              | 7  |
| 1              |    |
| 1              | 0  |
| 1              | 0  |
| Dil Fac        | 9  |
| 1<br>100       | 10 |
| 1<br>100       | 11 |
| Dil Fac        | 12 |
| 1              | 13 |
|                |    |

| 1 Dromoflyorohon-one (Cyrr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /%Recovery                               |                                           |                   |               |          | Frepareu       | Analyzeu                                            | DirFac                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------|-------------------|---------------|----------|----------------|-----------------------------------------------------|-------------------------|
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118                                      |                                           | 70 - 130          |               |          | 01/13/23 08:16 | 01/14/23 09:10                                      | 1                       |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 117                                      |                                           | 70 - 130          |               |          | 01/13/23 08:16 | 01/14/23 10:55                                      | 100                     |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 115                                      |                                           | 70 - 130          |               |          | 01/13/23 08:16 | 01/14/23 09:10                                      | 1                       |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 102                                      |                                           | 70 - 130          |               |          | 01/13/23 08:16 | 01/14/23 10:55                                      | 100                     |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | otal BTEX Cal                            | ulation                                   |                   |               |          |                |                                                     |                         |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                                   | Qualifier                                 | RL                | Unit          | D        | Prepared       | Analyzed                                            | Dil Fac                 |
| Total BTEX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <0.00398                                 | U                                         | 0.00398           | mg/Kg         |          |                | 01/16/23 17:06                                      | 1                       |
| Method: SW846 8015 NM - Diese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I Range Organ                            | ics (DRO) (                               | GC)               |               |          |                |                                                     |                         |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                                   | Qualifier                                 | RL                | Unit          | D        | Prepared       | Analyzed                                            | Dil Fac                 |
| Total TPH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <50.0                                    | U                                         | 50.0              | mg/Kg         |          |                | 01/16/23 16:39                                      | 1                       |
| Method: SW846 8015B NM - Dies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sel Range Orga                           | nics (DRO)                                | (GC)              |               |          |                |                                                     |                         |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result                                   | Qualifier                                 | RL                | Unit          | D        | Prepared       | Analyzed                                            | Dil Fac                 |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <50.0                                    | U                                         | 50.0              | mg/Kg         |          | 01/13/23 08:39 | 01/15/23 22:59                                      | 1                       |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <50.0                                    | U                                         | 50.0              | mg/Kg         |          | 01/13/23 08:39 | 01/15/23 22:59                                      | 1                       |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <50.0                                    | U                                         | 50.0              | mg/Kg         |          | 01/13/23 08:39 | 01/15/23 22:59                                      | 1                       |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | %Recovery                                | Qualifier                                 | Limits            |               |          | Prepared       | Analyzed                                            | Dil Fac                 |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 105                                      |                                           | 70 - 130          |               |          | 01/13/23 08:39 | 01/15/23 22:59                                      | 1                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109                                      |                                           | 70 - 130          |               |          | 01/13/23 08:39 | 01/15/23 22:59                                      | 1                       |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                           |                   |               |          |                |                                                     |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | , Ion Chromato                           | graphy - So                               | luble             |               |          |                |                                                     |                         |
| Method: MCAWW 300.0 - Anions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | o <mark>graphy - So</mark><br>Qualifier   | oluble<br>RL      | Unit          | D        | Prepared       | Analyzed                                            | Dil Fac                 |
| Method: MCAWW 300.0 - Anions<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                           |                   | Unit<br>mg/Kg | <u>D</u> | Prepared       | Analyzed 01/14/23 00:28                             | Dil Fac                 |
| Method: MCAWW 300.0 - Anions<br>Analyte<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result                                   |                                           | RL                |               | <u> </u> |                |                                                     | 1                       |
| Method: MCAWW 300.0 - Anions<br>Analyte<br>Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Result                                   |                                           | RL                |               | <u> </u> |                | 01/14/23 00:28                                      | 1                       |
| Method: MCAWW 300.0 - Anions<br>Analyte<br>Chloride<br>Hient Sample ID: SS06<br>ate Collected: 01/09/23 13:20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Result                                   |                                           | RL                |               | <u> </u> |                | 01/14/23 00:28                                      | 1<br>3807-2             |
| o-Terphenyl<br>Method: MCAWW 300.0 - Anions<br>Analyte<br>Chloride<br>Client Sample ID: SS06<br>late Collected: 01/09/23 13:20<br>late Received: 01/10/23 09:05<br>lample Depth: 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result                                   |                                           | RL                |               | <u> </u> |                | 01/14/23 00:28                                      | 1<br>3807-2             |
| Method: MCAWW 300.0 - Anions<br>Analyte<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Ch | 67.7                                     | Qualifier                                 | <u>RL</u><br>4.97 |               | <u>D</u> |                | 01/14/23 00:28                                      | 1<br>3807-2             |
| Method: MCAWW 300.0 - Anions<br>Analyte<br>Chloride<br>Lient Sample ID: SS06<br>(ate Collected: 01/09/23 13:20)<br>(ate Received: 01/10/23 09:05)<br>(ample Depth: 0.5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Result<br>67.7                           | Qualifier                                 | <u>RL</u><br>4.97 |               | D        |                | 01/14/23 00:28                                      | 1<br>3807-2             |
| Method: MCAWW 300.0 - Anions<br>Analyte<br>Chloride<br>Client Sample ID: SS06<br>rate Collected: 01/09/23 13:20<br>rate Received: 01/10/23 09:05<br>rample Depth: 0.5<br>Method: SW846 8021B - Volatile<br>Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result<br>67.7                           | Qualifier<br>ounds (GC)<br>Qualifier      | <u>RL</u><br>4.97 | mg/Kg         |          | Lab San        | 01/14/23 00:28<br>nple ID: 890-<br>Matri            | 1<br>3807-2<br>x: Solid |
| Method: MCAWW 300.0 - Anions<br>Analyte<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Chloride<br>Ch | Result<br>67.7<br>Organic Comp<br>Result | Qualifier<br>ounds (GC)<br>Qualifier<br>U | RL                | mg/Kg         |          | Lab San        | 01/14/23 00:28<br>nple ID: 890<br>Matri<br>Analyzed | 1<br>3807-2<br>x: Solid |

Eurofins Carlsbad

01/14/23 09:31

01/14/23 09:31

01/14/23 09:31

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

01/13/23 08:16

01/13/23 08:16

01/13/23 08:16

01/13/23 08:16

01/13/23 08:16

01/13/23 08:16

Prepared

m-Xylene & p-Xylene

o-Xylene

Xylenes, Total

0.00398

0.00199

0.00398

mg/Kg

mg/Kg

mg/Kg

01/13/23 08:16

01/13/23 08:16

01/13/23 08:16

1

1

1

Job ID: 890-3807-1 SDG: Lea County NM

Lab Sample ID: 890-3807-2

Lab Sample ID: 890-3807-3

Matrix: Solid

## **Client Sample ID: SS06**

Project/Site: Baish B Battery

Date Collected: 01/09/23 13:20 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

| Surrogate                   | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 68        | S1-       | 70 - 130 | 01/13/23 08:16 | 01/14/23 09:31 | 1       |
| 4-Bromofluorobenzene (Surr) | 99        |           | 70 - 130 | 01/13/23 08:16 | 01/14/23 11:16 | 100     |
| 1,4-Difluorobenzene (Surr)  | 67        | S1-       | 70 - 130 | 01/13/23 08:16 | 01/14/23 09:31 | 1       |
| 1,4-Difluorobenzene (Surr)  | 111       |           | 70 - 130 | 01/13/23 08:16 | 01/14/23 11:16 | 100     |

| Method: TAL SOP Total BTEX - | - Total BTEX Calculation |
|------------------------------|--------------------------|
| Analyta                      | Popult Qualifier         |

| Analyte                          | Result      | Qualifier    | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------------------------------|-------------|--------------|---------|-------|---|----------|----------------|---------|
| Total BTEX                       | <0.00398    | U            | 0.00398 | mg/Kg |   |          | 01/16/23 17:06 | 1       |
| Method: SW846 8015 NM - Diesel F | Range Organ | ics (DRO) (G | C)      |       |   |          |                |         |

| Analyte   | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-----------|--------|-----------|------|-------|---|----------|----------------|---------|
| Total TPH | <50.0  | U         | 50.0 | mg/Kg |   |          | 01/16/23 16:39 | 1       |

### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                                 | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0     | U         | 50.0     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 23:20 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0     | U         | 50.0     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 23:20 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0     | U         | 50.0     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 23:20 | 1       |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 106       |           | 70 - 130 |       |   | 01/13/23 08:39 | 01/15/23 23:20 | 1       |
| o-Terphenyl                             | 111       |           | 70 - 130 |       |   | 01/13/23 08:39 | 01/15/23 23:20 | 1       |

### Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|-------|---|----------|----------------|---------|
| Chloride | 44.8             | 5.05 | mg/Kg |   |          | 01/14/23 00:33 | 1       |

#### **Client Sample ID: SS07**

Date Collected: 01/09/23 13:25 Date Received: 01/10/23 09:05 Sample Depth: 0.5

Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                         | Result            | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------|-------------------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                         | <0.00200          | U         | 0.00200  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Toluene                         | <0.00200          | U         | 0.00200  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Ethylbenzene                    | <0.00200          | U         | 0.00200  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| m-Xylene & p-Xylene             | <0.00399          | U         | 0.00399  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| o-Xylene                        | <0.00200          | U         | 0.00200  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Xylenes, Total                  | <0.00399          | U         | 0.00399  | mg/Kg |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| Surrogate                       | %Recovery         | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)     | 100               |           | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| 4-Bromofluorobenzene (Surr)     | 110               |           | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 09:52 | 1       |
| 1,4-Difluorobenzene (Surr)      | 111               |           | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 08:08 | 1       |
| 1,4-Difluorobenzene (Surr)      | 116               |           | 70 - 130 |       |   | 01/13/23 08:16 | 01/14/23 09:52 | 1       |
| -<br>Method: TAL SOP Total BTEX | - Total BTEX Cald | ulation   |          |       |   |                |                |         |
| Analyte                         | Result            | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |

|            |           |   |         |       | <br>           |
|------------|-----------|---|---------|-------|----------------|
| Total BTEX | < 0.00399 | U | 0.00399 | mg/Kg | 01/16/23 17:06 |
|            |           |   |         |       |                |

**Eurofins Carlsbad** 

Matrix: Solid

5

1

Job ID: 890-3807-1 SDG: Lea County NM

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3807-3

## Client Sample ID: SS07

Project/Site: Baish B Battery

Date Collected: 01/09/23 13:25 Date Received: 01/10/23 09:05

Sample Depth: 0.5

Client: Ensolum

| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|---------|
| Total TPH                               | <49.9         | U           | 49.9     | mg/Kg |   |                | 01/16/23 16:39 | 1       |
| Method: SW846 8015B NM - Dies           | el Range Orga | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9         | U           | 49.9     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 23:41 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <49.9         | U           | 49.9     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 23:41 | 1       |
| Oll Range Organics (Over C28-C36)       | <49.9         | U           | 49.9     | mg/Kg |   | 01/13/23 08:39 | 01/15/23 23:41 | 1       |
| Surrogate                               | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 102           |             | 70 - 130 |       |   | 01/13/23 08:39 | 01/15/23 23:41 | 1       |
| o-Terphenyl                             | 106           |             | 70 - 130 |       |   | 01/13/23 08:39 | 01/15/23 23:41 | 1       |
| Method: MCAWW 300.0 - Anions,           | Ion Chromato  | graphy - So | oluble   |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                | 48.8          |             | 4.99     | mg/Kg |   |                | 01/14/23 00:39 | 1       |

# Date Collected: 01/09/23 13:30

Date Received: 01/10/23 09:05 Sample Depth: 0.5

#### Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier Unit Prepared Dil Fac RL D Analyzed Benzene <0.00199 U 0.00199 01/13/23 08:16 01/14/23 08:29 mg/Kg 1 Toluene <0.00199 U 0.00199 mg/Kg 01/13/23 08:16 01/14/23 08:29 Ethylbenzene <0.00199 U 0.00199 01/13/23 08:16 01/14/23 08:29 mg/Kg 1 m-Xylene & p-Xylene <0.00398 U 0.00398 mg/Kg 01/13/23 08:16 01/14/23 08:29 1 o-Xylene <0.00199 U 0.00199 mg/Kg 01/13/23 08:16 01/14/23 08:29 1 01/14/23 08:29 Xylenes, Total <0.00398 U 0.00398 mg/Kg 01/13/23 08:16 1 %Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 120 70 - 130 01/13/23 08:16 01/14/23 08:29 1 4-Bromofluorobenzene (Surr) 114 70 - 130 01/13/23 08:16 01/14/23 10:13 1 1,4-Difluorobenzene (Surr) 99 70 - 130 01/13/23 08:16 01/14/23 08:29 1 1,4-Difluorobenzene (Surr) 116 70 - 130 01/13/23 08:16 01/14/23 10:13 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00398 U 0.00398 mg/Kg 01/16/23 17:06 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH <50.0 U 50.0 mg/Kg 01/16/23 16:39 1 Mothod: SW846 8015B NM

| Method              | I: SW846 8015B NM - Dies | el Range Orga | nics (DRO) | (GC) |       |   |                |                |         |
|---------------------|--------------------------|---------------|------------|------|-------|---|----------------|----------------|---------|
| Analyte             |                          | Result        | Qualifier  | RL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline<br>(GRO)-C | Range Organics           | <50.0         | U          | 50.0 | mg/Kg |   | 01/13/23 08:39 | 01/16/23 00:02 | 1       |
| . ,                 | ange Organics (Over      | <50.0         | U          | 50.0 | mg/Kg |   | 01/13/23 08:39 | 01/16/23 00:02 | 1       |
| C10-C28             | )                        |               |            |      |       |   |                |                |         |

Eurofins Carlsbad

Job ID: 890-3807-1 SDG: Lea County NM

Matrix: Solid

5

1

1

1

1

# **Client Sample ID: SS08**

Project/Site: Baish B Battery

Client: Ensolum

Date Collected: 01/09/23 13:30 Date Received: 01/10/23 09:05

# Lab Sample ID: 890-3807-4

Sample Depth: 0.5 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Result Qualifier Dil Fac Analyte RL Unit D Prepared Analyzed <50.0 U 50.0 01/13/23 08:39 01/16/23 00:02 Oll Range Organics (Over C28-C36) mg/Kg %Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 1-Chlorooctane 105 70 - 130 01/13/23 08:39 01/16/23 00:02 01/13/23 08:39 o-Terphenyl 108 70 - 130 01/16/23 00:02 Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 46.3 5.01 mg/Kg 01/14/23 00:55

Eurofins Carlsbad

### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                        |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |    |
|------------------------|------------------------|----------|----------|------------------------------------------------|----|
|                        |                        | BFB1     | DFBZ1    |                                                | ÷. |
| Lab Sample ID          | Client Sample ID       | (70-130) | (70-130) |                                                |    |
| 890-3807-1             | SS05                   | 118      | 115      |                                                | ÷, |
| 890-3807-1             | SS05                   | 117      | 102      |                                                |    |
| 890-3807-2             | SS06                   | 68 S1-   | 67 S1-   |                                                | 2  |
| 890-3807-2             | SS06                   | 99       | 111      |                                                |    |
| 890-3807-3             | SS07                   | 100      | 111      |                                                |    |
| 890-3807-3             | SS07                   | 110      | 116      |                                                |    |
| 890-3807-4             | SS08                   | 120      | 99       |                                                |    |
| 890-3807-4             | SS08                   | 114      | 116      |                                                |    |
| 890-3819-A-1-D MS      | Matrix Spike           | 95       | 100      |                                                |    |
| 890-3819-A-1-E MSD     | Matrix Spike Duplicate | 105      | 101      |                                                |    |
| LCS 880-43868/1-A      | Lab Control Sample     | 100      | 95       |                                                |    |
| LCSD 880-43868/2-A     | Lab Control Sample Dup | 95       | 96       |                                                |    |
| MB 880-43747/5-A       | Method Blank           | 99       | 86       |                                                |    |
| MB 880-43868/5-A       | Method Blank           | 100      | 90       |                                                |    |
| Surrogate Legend       |                        |          |          |                                                |    |
| BFB = 4-Bromofluorobe  | nzene (Surr)           |          |          |                                                |    |
| DFBZ = 1,4-Difluoroben | zene (Surr)            |          |          |                                                |    |
| -                      |                        |          |          |                                                |    |

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

|                    |                        |          |          | Percent Surrog |
|--------------------|------------------------|----------|----------|----------------|
|                    |                        | 1CO1     | OTPH1    |                |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                |
| 890-3792-A-1-E MS  | Matrix Spike           | 81       | 81       |                |
| 890-3792-A-1-F MSD | Matrix Spike Duplicate | 97       | 82       |                |
| 890-3807-1         | SS05                   | 105      | 109      |                |
| 890-3807-2         | SS06                   | 106      | 111      |                |
| 890-3807-3         | SS07                   | 102      | 106      |                |
| 890-3807-4         | SS08                   | 105      | 108      |                |
| LCS 880-43869/2-A  | Lab Control Sample     | 113      | 105      |                |
| LCSD 880-43869/3-A | Lab Control Sample Dup | 116      | 108      |                |
| MB 880-43869/1-A   | Method Blank           | 158 S1+  | 167 S1+  |                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

#### Job ID: 890-3807-1 SDG: Lea County NM

Prep Type: Total/NA

Prep Type: Total/NA

Client: Ensolum

Project/Site: Baish B Battery

## Method: 8021B - Volatile Organic Compounds (GC)

|                                    | -A                       |           |                      |         |              |       |       |                   | Client Sa  | ample ID: Meth | od Blank  |
|------------------------------------|--------------------------|-----------|----------------------|---------|--------------|-------|-------|-------------------|------------|----------------|-----------|
| Matrix: Solid                      |                          |           |                      |         |              |       |       |                   |            | Prep Type:     | Total/NA  |
| Analysis Batch: 43877              |                          |           |                      |         |              |       |       |                   |            | Prep Bate      |           |
| -                                  | MB                       | МВ        |                      |         |              |       |       |                   |            | -              |           |
| Analyte                            | Result                   | Qualifier | RL                   |         | Unit         |       | D     | Pi                | repared    | Analyzed       | Dil Fac   |
| Benzene                            | <0.00200                 | U         | 0.00200              |         | mg/K         | 3     | (     | 01/1 <sup>.</sup> | 1/23 13:33 | 01/13/23 16:30 | 1         |
| Toluene                            | <0.00200                 | U         | 0.00200              |         | mg/K         | -     | (     | 01/1 <sup>.</sup> | 1/23 13:33 | 01/13/23 16:30 | 1         |
| Ethylbenzene                       | <0.00200                 | U         | 0.00200              |         | mg/K         |       | (     | 01/1 <sup>.</sup> | 1/23 13:33 | 01/13/23 16:30 | 1         |
| m-Xylene & p-Xylene                | <0.00400                 | U         | 0.00400              |         | mg/K         |       |       |                   | 1/23 13:33 | 01/13/23 16:30 |           |
| o-Xylene                           | < 0.00200                |           | 0.00200              |         | mg/K         | -     |       |                   | 1/23 13:33 | 01/13/23 16:30 | 1         |
| Xylenes, Total                     | < 0.00400                |           | 0.00400              |         | mg/K         | -     |       |                   | 1/23 13:33 | 01/13/23 16:30 | 1         |
| Nylonios, rotar                    | 0.00100                  | 0         | 0.00100              |         | ing/it       | 9     | · · · | 01/1              | 1/20 10.00 | 01/10/20 10:00 |           |
|                                    | MB                       | МВ        |                      |         |              |       |       |                   |            |                |           |
| Surrogate                          | %Recovery                | Qualifier | Limits               |         |              |       |       | PI                | repared    | Analyzed       | Dil Fac   |
| 4-Bromofluorobenzene (Surr)        | 99                       |           | 70 - 130             |         |              |       | (     | 01/1              | 1/23 13:33 | 01/13/23 16:30 | 1         |
| 1,4-Difluorobenzene (Surr)         | 86                       |           | 70 - 130             |         |              |       | (     | 01/1              | 1/23 13:33 | 01/13/23 16:30 | 1         |
| _<br>Lab Sample ID: MB 880-43868/5 | - <b>A</b>               |           |                      |         |              |       |       |                   | Client Sa  | ample ID: Meth | od Blank  |
| Matrix: Solid                      |                          |           |                      |         |              |       |       |                   |            | Prep Type:     |           |
| Analysis Batch: 43877              |                          |           |                      |         |              |       |       |                   |            | Prep Bate      |           |
|                                    | МВ                       | МВ        |                      |         |              |       |       |                   |            | p Date         |           |
| Analyte                            |                          | Qualifier | RL                   |         | Unit         |       | D     | P                 | repared    | Analyzed       | Dil Fac   |
| Benzene                            | <0.00200                 | U         | 0.00200              |         | mg/Kg        |       |       |                   | 3/23 08:16 | 01/14/23 03:14 | 1         |
| Toluene                            | <0.00200                 |           | 0.00200              |         | mg/K         | -     |       |                   | 3/23 08:16 | 01/14/23 03:14 | 1         |
| Ethylbenzene                       | <0.00200                 |           | 0.00200              |         | mg/K         | -     |       |                   | 3/23 08:16 | 01/14/23 03:14 | 1         |
|                                    | <0.00200                 |           | 0.00200              |         |              |       |       |                   | 3/23 08:16 | 01/14/23 03:14 | ····· 1   |
| m-Xylene & p-Xylene<br>o-Xylene    | <0.00400                 |           | 0.00400              |         | mg/K<br>mg/K | -     |       |                   | 3/23 08:10 | 01/14/23 03:14 | 1         |
| •                                  | <0.00200                 |           |                      |         | -            | -     |       |                   |            |                | 1         |
| Xylenes, Total                     | <0.00400                 | 0         | 0.00400              |         | mg/K         | 9     | (     | 01/1.             | 3/23 08:16 | 01/14/23 03:14 | 1         |
|                                    | MB                       | МВ        |                      |         |              |       |       |                   |            |                |           |
| Surrogate                          | %Recovery                | Qualifier | Limits               |         |              |       | _     | PI                | repared    | Analyzed       | Dil Fac   |
| 4-Bromofluorobenzene (Surr)        | 100                      |           | 70 - 130             |         |              |       | (     | 01/1              | 3/23 08:16 | 01/14/23 03:14 | 1         |
| 1,4-Difluorobenzene (Surr)         | 90                       |           | 70 - 130             |         |              |       | (     | 01/1              | 3/23 08:16 | 01/14/23 03:14 | 1         |
| Lab Sample ID: LCS 880-43868/      | 1-A                      |           |                      |         |              |       | Cli   | ent               | Sample     | ID: Lab Contro | I Sample  |
| Matrix: Solid                      |                          |           |                      |         |              |       |       |                   |            | Prep Type:     |           |
| Analysis Batch: 43877              |                          |           |                      |         |              |       |       |                   |            | Prep Bate      |           |
|                                    |                          |           | Spike                | LCS     | LCS          |       |       |                   |            | %Rec           |           |
| Analyte                            |                          |           | Added                | Result  | Qualifier    | Unit  |       | D                 | %Rec       | Limits         |           |
| Benzene                            |                          |           | 0.100                | 0.1038  |              | mg/Kg |       | _                 | 104        | 70 - 130       |           |
| Toluene                            |                          |           | 0.100                | 0.09662 |              | mg/Kg |       |                   | 97         | 70 - 130       |           |
| Ethylbenzene                       |                          |           | 0.100                | 0.1080  |              | mg/Kg |       |                   | 108        | 70 - 130       |           |
| m-Xylene & p-Xylene                |                          |           | 0.200                | 0.1989  |              | mg/Kg |       |                   | 99         | 70 - 130       |           |
| o-Xylene                           |                          |           | 0.100                | 0.1040  |              | mg/Kg |       |                   | 104        | 70 - 130       |           |
|                                    |                          |           |                      |         |              |       |       |                   |            |                |           |
| Surrogate                          | LCS LCS<br>%Recovery Qua |           | Limits               |         |              |       |       |                   |            |                |           |
| 4-Bromofluorobenzene (Surr)        | 100 gua                  |           | 70 - 130             |         |              |       |       |                   |            |                |           |
| 1,4-Difluorobenzene (Surr)         | 95                       |           | 70 - 130<br>70 - 130 |         |              |       |       |                   |            |                |           |
|                                    |                          |           |                      |         |              |       |       |                   | :          |                |           |
| Lab Sample ID: LCSD 880-43868      | 8/2-A                    |           |                      |         |              | Cli   | ent S | am                | ple ID: L  | ab Control Sar |           |
| Matrix: Solid                      |                          |           |                      |         |              |       |       |                   |            | Prep Type:     |           |
| Analysis Batch: 43877              |                          |           |                      |         |              |       |       |                   |            | Prep Bate      | :h: 43868 |
|                                    |                          |           | Spike                | LCSD    | LCSD         |       |       |                   |            | %Rec           | RPD       |
| Analyte                            |                          |           | Added                | Result  | Qualifier    | Unit  |       | D                 | %Rec       | Limits RI      | D Limit   |

5

7

35

Benzene

0.1034

mg/Kg

103

70 - 130

0.100

0

Eurofins Carlsbad

Page 65 of 203

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCSD 880-43  | 3868/2-A  |           |          |         |           | Clier | nt Sam  | ple ID: I | Lab Contro   |          |                      |
|-----------------------------|-----------|-----------|----------|---------|-----------|-------|---------|-----------|--------------|----------|----------------------|
| Matrix: Solid               |           |           |          |         |           |       |         |           | Prep T       | ype: Tot | tal/NA               |
| Analysis Batch: 43877       |           |           |          |         |           |       |         |           | Prep         | Batch:   | 43868                |
|                             |           |           | Spike    | LCSD    | LCSD      |       |         |           | %Rec         |          | RPD                  |
| Analyte                     |           |           | Added    | Result  | Qualifier | Unit  | D       | %Rec      | Limits       | RPD      | Limit                |
| Toluene                     |           |           | 0.100    | 0.09614 |           | mg/Kg |         | 96        | 70 - 130     | 0        | 35                   |
| Ethylbenzene                |           |           | 0.100    | 0.1036  |           | mg/Kg |         | 104       | 70 - 130     | 4        | 35                   |
| m-Xylene & p-Xylene         |           |           | 0.200    | 0.1896  |           | mg/Kg |         | 95        | 70 - 130     | 5        | 35                   |
| o-Xylene                    |           |           | 0.100    | 0.09875 |           | mg/Kg |         | 99        | 70 - 130     | 5        | 35                   |
|                             | LCSD      | LCSD      |          |         |           |       |         |           |              |          |                      |
| Surrogate                   | %Recovery | Qualifier | Limits   |         |           |       |         |           |              |          |                      |
| 4-Bromofluorobenzene (Surr) | 95        |           | 70 - 130 |         |           |       |         |           |              |          |                      |
| 1,4-Difluorobenzene (Surr)  | 96        |           | 70 - 130 |         |           |       |         |           |              |          |                      |
| Lab Sample ID: 890-3819-A-  | 1-D MS    |           |          |         |           |       |         | Client    | Sample ID    | : Matrix | Spike                |
| Matrix: Solid               |           |           |          |         |           |       |         |           | Prep T       | ype: Tot | tal/NA               |
| Analysis Batch: 43877       |           |           |          |         |           |       |         |           | Prep         | Batch:   | 438 <mark>6</mark> 8 |
|                             | Sample    | Sample    | Spike    | MS      | MS        |       |         |           | %Rec         |          |                      |
| Analyte                     | Result    | Qualifier | Added    | Result  | Qualifier | Unit  | D       | %Rec      | Limits       |          |                      |
| Benzene                     | <0.00201  | U         | 0.0998   | 0.1043  |           | mg/Kg |         | 105       | 70 - 130     |          |                      |
| Toluene                     | <0.00201  | U         | 0.0998   | 0.09540 |           | mg/Kg |         | 96        | 70 - 130     |          |                      |
| Ethylbenzene                | <0.00201  | U         | 0.0998   | 0.1017  |           | mg/Kg |         | 102       | 70 - 130     |          |                      |
| m-Xylene & p-Xylene         | <0.00402  | U         | 0.200    | 0.1879  |           | mg/Kg |         | 94        | 70 - 130     |          |                      |
| o-Xylene                    | <0.00201  | U         | 0.0998   | 0.09643 |           | mg/Kg |         | 97        | 70 - 130     |          |                      |
|                             | MS        | MS        |          |         |           |       |         |           |              |          |                      |
| Surrogate                   | %Recovery | Qualifier | Limits   |         |           |       |         |           |              |          |                      |
| 4-Bromofluorobenzene (Surr) | 95        |           | 70 - 130 |         |           |       |         |           |              |          |                      |
| 1,4-Difluorobenzene (Surr)  | 100       |           | 70 - 130 |         |           |       |         |           |              |          |                      |
| Lab Sample ID: 890-3819-A-4 | 1-E MSD   |           |          |         |           | CI    | ient Sa | mple ID   | ): Matrix Sp | oike Dup | olicate              |
| Matrix: Solid               |           |           |          |         |           |       |         |           | Prep T       | ype: Tot | tal/NA               |
| Analysis Batch: 43877       |           |           |          |         |           |       |         |           | Prep         | Batch:   | 438 <mark>6</mark> 8 |
|                             | Sample    | Sample    | Spike    | MSD     | MSD       |       |         |           | %Rec         |          | RPD                  |
| Analyte                     | Result    | Qualifier | Added    | Result  | Qualifier | Unit  | D       | %Rec      | Limits       | RPD      | Limit                |
| Benzene                     | <0.00201  | U         | 0.101    | 0.08686 |           | mg/Kg |         | 86        | 70 - 130     | 18       | 35                   |
| Toluene                     | <0.00201  | U         | 0.101    | 0.08178 |           | mg/Kg |         | 81        | 70 - 130     | 15       | 35                   |
| Ethylbenzene                | <0.00201  | U         | 0.101    | 0.09122 |           | mg/Kg |         | 90        | 70 - 130     | 11       | 35                   |
| m-Xylene & p-Xylene         | <0.00402  | U         | 0.202    | 0.1709  |           | mg/Kg |         | 85        | 70 - 130     | 9        | 35                   |
| o-Xylene                    | <0.00201  | U         | 0.101    | 0.08906 |           | mg/Kg |         | 88        | 70 - 130     | 8        | 35                   |
|                             |           |           |          |         |           |       |         |           |              |          |                      |
|                             | MSD       | MSD       |          |         |           |       |         |           |              |          |                      |

## Method: 8015B NM - Diesel Range Organics (DRO) (GC)

105

101

| Lab Sample ID: MB 880-43869/1-A<br>Matrix: Solid<br>Analysis Batch: 43945 |        |           |      |       |   | Client Sa      | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA |
|---------------------------------------------------------------------------|--------|-----------|------|-------|---|----------------|---------------------------------------------------------|----------|
|                                                                           | MB     | MB        |      |       |   |                |                                                         |          |
| Analyte                                                                   | Result | Qualifier | RL   | Unit  | D | Prepared       | Analyzed                                                | Dil Fac  |
| Gasoline Range Organics                                                   | <50.0  | U         | 50.0 | mg/Kg |   | 01/13/23 08:39 | 01/15/23 19:47                                          | 1        |
| (GRO)-C6-C10                                                              |        |           |      |       |   |                |                                                         |          |

70 - 130

70 - 130

Eurofins Carlsbad

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: Ensolum

Project/Site: Baish B Battery

# **QC Sample Results**

## Job ID: 890-3807-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: MB 880-43869/<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                | 1- <b>A</b>                                                                                                               |                                     |           |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          | Client S                                   | ample ID: I<br>Prep T                                                                                                                                                                | Method<br>Type: To                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|---------------------------------|-------|----------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Analysis Batch: 43945                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                     |           |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      | Batch:                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | МВ                                  | МВ        |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            | 1100                                                                                                                                                                                 | Batom                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Re                                                                                                                        | esult                               | Qualifier | RL                                                                                                                                                                                                            |                                                                                      |                | Unit                            | D     | Pi       | repared                                    | Analyz                                                                                                                                                                               | ed                                                      | Dil Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                                  | <                                                                                                                         | \$50.0                              | U         | 50.0                                                                                                                                                                                                          |                                                                                      |                | mg/Kg                           |       | 01/13    | 3/23 08:39                                 | 01/15/23                                                                                                                                                                             | 19:47                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                           |                                     |           |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                                                                                                                                            | <                                                                                                                         | \$50.0                              | U         | 50.0                                                                                                                                                                                                          |                                                                                      |                | mg/Kg                           |       | 01/1:    | 3/23 08:39                                 | 01/15/23                                                                                                                                                                             | 19:47                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | ΜВ                                  | МВ        |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %Reco                                                                                                                     | very                                | Qualifier | Limits                                                                                                                                                                                                        |                                                                                      |                |                                 |       | PI       | repared                                    | Analyz                                                                                                                                                                               | ed                                                      | Dil Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                           |                                     |           | 70 - 130                                                                                                                                                                                                      |                                                                                      |                |                                 |       | 01/1     | 3/23 08:39                                 | 01/15/23                                                                                                                                                                             | 19:47                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| p-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                           | 167                                 | S1+       | 70 - 130                                                                                                                                                                                                      |                                                                                      |                |                                 |       | 01/1     | 3/23 08:39                                 | 01/15/23                                                                                                                                                                             | 19:47                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lab Sample ID: LCS 880-43869                                                                                                                                                                                                                                                                                                                                                                                                                                 | )/2-A                                                                                                                     |                                     |           |                                                                                                                                                                                                               |                                                                                      |                |                                 | с     | lient    | Sample                                     | ID: Lab Co                                                                                                                                                                           | ontrol S                                                | ampl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |                                     |           |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      | Type: To                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analysis Batch: 43945                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |                                     |           |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      | Batch:                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           |                                     |           | Spike                                                                                                                                                                                                         | LCS                                                                                  | LCS            |                                 |       |          |                                            | %Rec                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                     |           | Added                                                                                                                                                                                                         | Result                                                                               | Quali          | fier Unit                       |       | D        | %Rec                                       | Limits                                                                                                                                                                               |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                     |           | 1000                                                                                                                                                                                                          | 850.0                                                                                |                | mg/Kg                           |       |          | 85                                         | 70 - 130                                                                                                                                                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |                                     |           |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                           |                                     |           | 1000                                                                                                                                                                                                          | 958.3                                                                                |                | mg/Kg                           |       |          | 96                                         | 70 - 130                                                                                                                                                                             |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LCS                                                                                                                       | LCS                                 |           |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0/ 🗖                                                                                                                      | Qua                                 | lifier    | Limits                                                                                                                                                                                                        |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                    | %Recovery                                                                                                                 |                                     |           |                                                                                                                                                                                                               |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113                                                                                                                       |                                     |           | 70 - 130<br>70 - 130                                                                                                                                                                                          |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                | 113<br>105                                                                                                                |                                     |           | 70 - 130<br>70 - 130                                                                                                                                                                                          |                                                                                      |                |                                 |       |          |                                            |                                                                                                                                                                                      |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386                                                                                                                                                                                                                                                                                                                                                                                                | 113<br>105                                                                                                                |                                     |           |                                                                                                                                                                                                               |                                                                                      |                | C                               | lient | Sam      | ple ID: L                                  | ab Contro                                                                                                                                                                            | -                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                               | 113<br>105                                                                                                                |                                     |           |                                                                                                                                                                                                               |                                                                                      |                | C                               | lient | Sam      | ple ID: L                                  | Prep T                                                                                                                                                                               | ype: To                                                 | otal/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                               | 113<br>105                                                                                                                |                                     |           | 70 - 130                                                                                                                                                                                                      | LCSD                                                                                 | LCSD           |                                 | lient | Sam      | ple ID: L                                  | Prep T<br>Prep                                                                                                                                                                       | -                                                       | otal/N<br>4386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte                                                                                                                                                                                                                                                                                                                              | 113<br>105                                                                                                                |                                     |           |                                                                                                                                                                                                               | LCSD<br>Result                                                                       | LCSD<br>Qualit | 1                               | lient | Sam<br>D | ple ID: L<br>%Rec                          | Prep T                                                                                                                                                                               | ype: To                                                 | otal/N<br>4386<br>RP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                               | 113<br>105                                                                                                                |                                     |           | 70 - 130<br>Spike                                                                                                                                                                                             |                                                                                      |                | 1                               | lient |          | -                                          | Prep T<br>Prep<br>%Rec                                                                                                                                                               | ype: To<br>Batch:                                       | tal/N<br>4386<br>RP<br>Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte                                                                                                                                                                                                                                                                                                                                           | 113<br>105                                                                                                                |                                     |           | 70 - 130<br>Spike<br>Added                                                                                                                                                                                    | Result                                                                               |                | fier Unit                       | lient |          | %Rec                                       | Prep T<br>Prep<br>%Rec<br>Limits                                                                                                                                                     | Batch:                                                  | tal/N<br>4386<br>RP<br>Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                 | 113<br>105                                                                                                                |                                     |           | 70 - 130<br>Spike<br>Added                                                                                                                                                                                    | Result                                                                               |                | fier Unit                       | lient |          | %Rec                                       | Prep T<br>Prep<br>%Rec<br>Limits                                                                                                                                                     | Batch:                                                  | 2 4386<br>RP<br>Lim<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                  | 113<br>105                                                                                                                |                                     |           | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                            | Result<br>969.8                                                                      |                | fier <u>Unit</u><br>mg/Kg       | lient |          | %Rec                                       | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         | Sype: To<br>Batch:<br>RPD<br>13                         | 2 4386<br>RP<br>Lim<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                                      | 113<br>105<br>69/3-A                                                                                                      | LCS                                 |           | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                            | Result<br>969.8                                                                      |                | fier <u>Unit</u><br>mg/Kg       | lient |          | %Rec                                       | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         | Sype: To<br>Batch:<br>RPD<br>13                         | 2 4386<br>RP<br>Lim<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                                                                   | 113<br>105<br>59/3-A                                                                                                      | LCS                                 |           | 70 - 130<br>Spike<br>Added<br>1000                                                                                                                                                                            | Result<br>969.8                                                                      |                | fier <u>Unit</u><br>mg/Kg       | lient |          | %Rec                                       | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         | Sype: To<br>Batch:<br>RPD<br>13                         | 2 4386<br>RP<br>Lim<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                                                                | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery                                                                          | LCS                                 |           | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits                                                                                                                                                          | Result<br>969.8                                                                      |                | fier <u>Unit</u><br>mg/Kg       | lient |          | %Rec                                       | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         | Sype: To<br>Batch:<br>RPD<br>13                         | 20100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                                                                 | 113<br>105<br>69/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108                                                            | LCS                                 |           | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                              | Result<br>969.8                                                                      |                | fier <u>Unit</u><br>mg/Kg       | lient |          | <b>%Rec</b><br>97<br>90                    | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         | Type: To<br>Batch:<br>RPD<br>13<br>6                    | otal/N<br>4386<br>RP<br>Lim<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E<br>Matrix: Solid                                                                                                                                                                | 113<br>105<br>69/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108                                                            | LCS                                 |           | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130                                                                                                                                              | Result<br>969.8                                                                      |                | fier <u>Unit</u><br>mg/Kg       | lient |          | <b>%Rec</b><br>97<br>90                    | Prep T           %Rec           Limits           70 - 130           70 - 130                                                                                                         | Type: To<br>Batch:<br>RPD<br>13<br>6                    | 2<br>4386<br>RP<br>Lim<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E                                                                                                                                                                                 | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108<br>MS                                                      | LCS                                 | lifier    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130                                                                                                                                  | <b>Result</b><br>969.8<br>903.3                                                      | Qualit         | fier <u>Unit</u><br>mg/Kg       | lient |          | <b>%Rec</b><br>97<br>90                    | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID<br>Prep T<br>Prep T                                                                                | Type: To<br>Batch:<br><u>RPD</u><br>13<br>6<br>: Matrix | A Spik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E<br>Matrix: Solid<br>Analysis Batch: 43945                                                                                                                                       | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108<br>E MS<br>Sample                                          | LCS<br>Quai                         | lifier    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>Spike                                                                                                                         | <b>Result</b><br>969.8<br>903.3<br>MS                                                | Qualit         | <mark>fier Unit</mark> mg/Kg    | lient | D        | %Rec<br>97<br>90                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7 | Type: To<br>Batch:<br>13<br>6<br>: Matrix<br>Type: To   | A Spik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte                                                                                                                            | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108<br>E MS<br>Sample<br>Result                                | LCS<br>Qual<br>Sam<br>Qual          | lifier    | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         Spike         Added             | Result           969.8           903.3           MS           Result                 | Qualit         | fier <u>Unit</u> mg/Kg<br>mg/Kg | lient |          | %Rec<br>97<br>90<br>Client 3               | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                                 | Type: To<br>Batch:<br>13<br>6<br>: Matrix<br>Type: To   | A Spik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Gasoline Range Organics                                                                                      | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108<br>E MS<br>Sample                                          | LCS<br>Qual<br>Sam<br>Qual          | lifier    | 70 - 130<br>Spike<br>Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>Spike                                                                                                                         | <b>Result</b><br>969.8<br>903.3<br>MS                                                | Qualit         | <mark>fier Unit</mark> mg/Kg    | lient | D        | %Rec<br>97<br>90                           | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>9<br>9<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7 | Type: To<br>Batch:<br>13<br>6<br>: Matrix<br>Type: To   | stal/N.<br>4386<br>RP<br>Lim<br>2<br>2<br>2<br>2<br>3<br>5<br>5<br>5<br>5<br>5<br>1<br>8<br>5<br>5<br>1<br>8<br>5<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>5<br>1<br>8<br>1<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                 | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108<br>E MS<br>Sample<br>Result<br><49.9                       | LCS<br>Qual<br>Qual<br>U            | lifier    | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         Spike         Added         998 | Result           969.8           903.3           MS           Result           895.8 | Qualit         | fier Unit<br>mg/Kg<br>mg/Kg     | lient | D        | %Rec<br>97<br>90<br>Client 3<br>%Rec<br>87 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep T<br>Prep %Rec<br>Limits<br>70 - 130                                            | Type: To<br>Batch:<br>13<br>6<br>: Matrix<br>Type: To   | Additional statements of the second statements |
| I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108<br>E MS<br>Sample<br>Result                                | LCS<br>Qual<br>Qual<br>U            | lifier    | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         Spike         Added             | Result           969.8           903.3           MS           Result                 | Qualit         | fier <u>Unit</u> mg/Kg<br>mg/Kg | lient | D        | %Rec<br>97<br>90<br>Client 3               | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                                 | Type: To<br>Batch:<br>13<br>6<br>: Matrix<br>Type: To   | Additional statements of the second statements |
| 1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E<br>Matrix: Solid<br>Analysis Batch: 43945<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                           | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108<br>MS<br>Sample<br>Result<br><49.9<br><49.9<br><49.9<br>MS | LCS<br>Qual<br>Qual<br>U<br>U<br>MS | lifier    | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         998         998         998     | Result           969.8           903.3           MS           Result           895.8 | Qualit         | fier Unit<br>mg/Kg<br>mg/Kg     | lient | D        | %Rec<br>97<br>90<br>Client 3<br>%Rec<br>87 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep T<br>Prep %Rec<br>Limits<br>70 - 130                                            | Type: To<br>Batch:<br>13<br>6<br>: Matrix<br>Type: To   | A Spik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-4386<br>Matrix: Solid<br>Analysis Batch: 43945<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: 890-3792-A-1-E<br>Matrix: Solid                                                                                                                                                                | 113<br>105<br>59/3-A<br><i>LCSD</i><br>%Recovery<br>116<br>108<br>MS<br>Sample<br>Result<br><49.9<br><49.9                | LCS<br>Qual<br>Qual<br>U<br>U<br>MS | lifier    | 70 - 130         Spike         Added         1000         1000         1000         1000         1000         1000         50 - 130         70 - 130         70 - 130         Spike         Added         998 | Result           969.8           903.3           MS           Result           895.8 | Qualit         | fier Unit<br>mg/Kg<br>mg/Kg     | lient | D        | %Rec<br>97<br>90<br>Client 3<br>%Rec<br>87 | Prep T<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>Sample ID:<br>Prep T<br>Prep T<br>Prep %Rec<br>Limits<br>70 - 130                                            | Type: To<br>Batch:<br>13<br>6<br>: Matrix<br>Type: To   | 4386<br>RP<br>Lim<br>2<br>2<br>2<br>Spik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Client: Ensolum

### Job ID: 890-3807-1 SDG: Lea County NM

Project/Site: Baish B Battery Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Matrix: Solid                                                                                                                                                                                                                                                           | -1-F MSD                                                  |                 |                                                                |                                                                     |                                                         | C                                                              | nent S   | ampie IL                                                | ): Matrix Sp<br>Brop 1                                                                                                                                    | оке Dup<br>Гуре: То                                                 |                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------|----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|----------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------|
| Analysis Batch: 43945                                                                                                                                                                                                                                                   |                                                           |                 |                                                                |                                                                     |                                                         |                                                                |          |                                                         |                                                                                                                                                           | Batch:                                                              |                                                    |
| Analysis Datch. 43343                                                                                                                                                                                                                                                   | Sample                                                    | Sample          | Spike                                                          | MSD                                                                 | MSD                                                     |                                                                |          |                                                         | %Rec                                                                                                                                                      | Datch.                                                              | RPI                                                |
| Analyte                                                                                                                                                                                                                                                                 | -                                                         | Qualifier       | Added                                                          |                                                                     | Qualifier                                               | Unit                                                           | D        | %Rec                                                    | Limits                                                                                                                                                    | RPD                                                                 | Lim                                                |
| Gasoline Range Organics                                                                                                                                                                                                                                                 | <49.9                                                     |                 | 997                                                            | 959.7                                                               |                                                         | mg/Kg                                                          |          | 93                                                      | 70 - 130                                                                                                                                                  | 7                                                                   | 2                                                  |
| (GRO)-C6-C10                                                                                                                                                                                                                                                            | 10.0                                                      | 0               | 001                                                            | 000.1                                                               |                                                         | mg/rtg                                                         |          | 00                                                      | 10-100                                                                                                                                                    |                                                                     | -                                                  |
| Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                                 | <49.9                                                     | U               | 997                                                            | 917.4                                                               |                                                         | mg/Kg                                                          |          | 89                                                      | 70 - 130                                                                                                                                                  | 2                                                                   | 2                                                  |
|                                                                                                                                                                                                                                                                         | MSD                                                       | MSD             |                                                                |                                                                     |                                                         |                                                                |          |                                                         |                                                                                                                                                           |                                                                     |                                                    |
| Surrogate                                                                                                                                                                                                                                                               |                                                           | Qualifier       | Limits                                                         |                                                                     |                                                         |                                                                |          |                                                         |                                                                                                                                                           |                                                                     |                                                    |
| 1-Chlorooctane                                                                                                                                                                                                                                                          | <u>97</u>                                                 |                 | 70 - 130                                                       |                                                                     |                                                         |                                                                |          |                                                         |                                                                                                                                                           |                                                                     |                                                    |
| o-Terphenyl                                                                                                                                                                                                                                                             | 82                                                        |                 | 70 - 130                                                       |                                                                     |                                                         |                                                                |          |                                                         |                                                                                                                                                           |                                                                     |                                                    |
| lethod: 300.0 - Anions,<br>Lab Sample ID: MB 880-437<br>Matrix: Solid<br>Analysis Batch: 43924                                                                                                                                                                          |                                                           | ography         |                                                                |                                                                     |                                                         |                                                                |          | Client S                                                | Sample ID:<br>Prep                                                                                                                                        | Method<br>Type: S                                                   |                                                    |
|                                                                                                                                                                                                                                                                         |                                                           | MB MB           |                                                                |                                                                     |                                                         |                                                                |          |                                                         |                                                                                                                                                           |                                                                     |                                                    |
| Analyte                                                                                                                                                                                                                                                                 | R                                                         | esult Qualifier |                                                                | RL                                                                  | Unit                                                    |                                                                | D P      | repared                                                 | Analyz                                                                                                                                                    | ed                                                                  | Dil Fa                                             |
| Chloride                                                                                                                                                                                                                                                                |                                                           | 5.00 U          |                                                                | 5.00                                                                | mg/K                                                    |                                                                |          |                                                         | 01/13/23                                                                                                                                                  |                                                                     |                                                    |
|                                                                                                                                                                                                                                                                         |                                                           |                 | Spiko                                                          | 100                                                                 | 1.05                                                    |                                                                |          |                                                         |                                                                                                                                                           | Type: S                                                             | olub                                               |
| Analysis Batch: 43924<br>Analyte                                                                                                                                                                                                                                        |                                                           |                 | Spike<br>Added<br>250                                          |                                                                     | LCS<br>Qualifier                                        | Unit<br>mg/Kg                                                  | <u>D</u> | %Rec<br>102                                             | Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                        | Type: So                                                            | olub                                               |
| Analysis Batch: 43924<br>Analyte<br>Chloride                                                                                                                                                                                                                            |                                                           |                 | Added                                                          | Result                                                              |                                                         | mg/Kg                                                          |          | 102                                                     | %Rec<br>Limits<br>90 - 110                                                                                                                                |                                                                     |                                                    |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4                                                                                                                                                                                               | <br>13792/3-A                                             |                 | Added                                                          | Result                                                              |                                                         | mg/Kg                                                          |          | 102                                                     | %Rec<br>Limits<br>90 - 110                                                                                                                                |                                                                     | e Du                                               |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid                                                                                                                                                                              | <br>13792/3-A                                             |                 | Added                                                          | Result                                                              |                                                         | mg/Kg                                                          |          | 102                                                     | %Rec<br>Limits<br>90 - 110                                                                                                                                |                                                                     | e Du                                               |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid                                                                                                                                                                              | <br>13792/3-A                                             |                 | Added<br>250                                                   | Result<br>255.0                                                     | Qualifier                                               | mg/Kg                                                          |          | 102                                                     | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep                                                                                                          |                                                                     | e Du<br>olubi                                      |
| Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924                                                                                                                                    | <br>13792/3-A                                             |                 | Added<br>250<br>Spike                                          | Result<br>255.0<br>LCSD                                             | Qualifier                                               | mg/Kg<br>Clie                                                  | nt San   | 102                                                     | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec                                                                                                  | J Sampl<br>Type: S                                                  | e Du<br>olubl<br>RP                                |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte                                                                                                                                          | 13792/3-A                                                 |                 | Added<br>250<br>Spike<br>Added                                 | Result<br>255.0<br>LCSD<br>Result                                   | Qualifier                                               | mg/Kg<br>Clie<br>Unit                                          |          | 102<br>nple ID:<br>%Rec                                 | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits                                                                                        | ol Sampl<br>Type: So<br>                                            | e Du<br>olubl<br>RP<br>Lim                         |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte                                                                                                                                          | <br>13792/3-A<br>                                         |                 | Added<br>250<br>Spike                                          | Result<br>255.0<br>LCSD                                             | Qualifier                                               | mg/Kg<br>Clie                                                  | nt San   | 102                                                     | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec                                                                                                  | J Sampl<br>Type: S                                                  | e Du<br>olubl<br>RP<br>Lim                         |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A                                                                                                 |                                                           |                 | Added<br>250<br>Spike<br>Added                                 | Result<br>255.0<br>LCSD<br>Result                                   | Qualifier                                               | mg/Kg<br>Clie<br>Unit                                          | nt San   | 102<br>hple ID:<br>%Rec<br>101                          | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID                                                               | ol Sampl<br>Type: So<br><u>1</u><br>: Matrix                        | e Du<br>olubl<br>RP<br>Lim<br>2<br>Spik            |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid                                                                               |                                                           |                 | Added<br>250<br>Spike<br>Added                                 | Result<br>255.0<br>LCSD<br>Result                                   | Qualifier                                               | mg/Kg<br>Clie<br>Unit                                          | nt San   | 102<br>hple ID:<br>%Rec<br>101                          | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID                                                               | ol Sampl<br>Type: So<br>                                            | e Du<br>olubi<br>RP<br>Lim<br>2<br>Spik            |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A                                                                                                 | -1-C MS                                                   |                 | Added<br>250<br>Spike<br>Added<br>250                          | Result<br>255.0<br>LCSD<br>Result<br>251.6                          | Qualifier<br>LCSD<br>Qualifier                          | mg/Kg<br>Clie<br>Unit                                          | nt San   | 102<br>hple ID:<br>%Rec<br>101                          | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep                                                       | ol Sampl<br>Type: So<br><u>1</u><br>: Matrix                        | e Du<br>olubi<br>RP<br>Lim<br>2<br>Spik            |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid<br>Analysis Batch: 43924                                                      | -1-C MS<br>Sample                                         | -               | Added<br>250<br>Spike<br>Added<br>250<br>Spike                 | Result<br>255.0<br>LCSD<br>Result<br>251.6                          | Qualifier<br>LCSD<br>Qualifier<br>MS                    | mg/Kg<br>Clie<br>Unit<br>mg/Kg                                 | <u>D</u> | 102<br>hple ID:<br>%Rec<br>101<br>Client                | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec                                               | ol Sampl<br>Type: So<br><u>1</u><br>: Matrix                        | e Du<br>olubl<br>RP<br>Lim<br>2<br>Spik            |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte                                           | -1-C MS<br>Sample                                         | Qualifier       | Added<br>250<br>Spike<br>Added<br>250                          | Result<br>255.0<br>LCSD<br>Result<br>251.6                          | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | mg/Kg<br>Clie<br>Unit                                          | nt San   | 102<br>hple ID:<br>%Rec<br>101                          | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep                                                       | ol Sampl<br>Type: So<br><u>1</u><br>: Matrix                        | e Du<br>olub<br>RP<br>Lim<br>2<br>Spik             |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte                                           | -1-C MS<br>Sample<br>Result                               | Qualifier       | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | Result<br>255.0<br>LCSD<br>Result<br>251.6<br>MS<br>Result          | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | mg/Kg<br>Clie<br>Unit<br>mg/Kg                                 | <u>D</u> | 102<br>nple ID:<br>%Rec<br>101<br>Client                | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits                                     | ol Sampl<br>Type: So<br><u>1</u><br>: Matrix                        | e Du<br>olub<br>RP<br>Lim<br>2<br>Spik             |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride                               | -1-C MS<br>Sample<br>Result<br>53.1                       | Qualifier       | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | Result<br>255.0<br>LCSD<br>Result<br>251.6<br>MS<br>Result          | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | mg/Kg       Clie       Unit       mg/Kg       Unit       mg/Kg | nt San   | 102<br>hple ID:<br>%Rec<br>101<br>Client<br>%Rec<br>117 | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits                                     | el Sampl<br>Type: So<br><u>RPD</u><br>1<br>: Matrix<br>Type: So     | e Du<br>olub<br>RP<br>Lin<br>2<br>Spik<br>olub     |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A- | -1-C MS<br>Sample<br>Result<br>53.1                       | Qualifier       | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | Result<br>255.0<br>LCSD<br>Result<br>251.6<br>MS<br>Result          | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | mg/Kg       Clie       Unit       mg/Kg       Unit       mg/Kg | nt San   | 102<br>hple ID:<br>%Rec<br>101<br>Client<br>%Rec<br>117 | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110                         | el Sampl<br>Type: So<br><u>RPD</u><br>1<br>: Matrix<br>Type: So     | e Du<br>olub<br>RPP<br>Linr<br>2<br>Spik<br>olub   |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid         | -1-C MS<br>Sample<br>Result<br>53.1                       | Qualifier       | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | Result<br>255.0<br>LCSD<br>Result<br>251.6<br>MS<br>Result          | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | mg/Kg       Clie       Unit       mg/Kg       Unit       mg/Kg | nt San   | 102<br>hple ID:<br>%Rec<br>101<br>Client<br>%Rec<br>117 | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110                         | el Sampl<br>Type: So<br><u>RPD</u><br>1<br>: Matrix<br>Type: So<br> | e Du<br>olubi<br>RPP<br>Lim<br>2<br>Spik<br>olubi  |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid         | -1-C MS<br>Sample<br>Result<br>53.1                       | Qualifier<br>F1 | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | Result<br>255.0<br>LCSD<br>Result<br>251.6<br>MS<br>Result<br>347.0 | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier       | mg/Kg       Clie       Unit       mg/Kg       Unit       mg/Kg | nt San   | 102<br>hple ID:<br>%Rec<br>101<br>Client<br>%Rec<br>117 | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110                         | el Sampl<br>Type: So<br><u>RPD</u><br>1<br>: Matrix<br>Type: So<br> | le Du<br>olubl<br>RP<br>Lim<br>2<br>Spik<br>olubl  |
| Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-4<br>Matrix: Solid<br>Analysis Batch: 43924<br>Analyte<br>Chloride<br>Lab Sample ID: 890-3804-A-<br>Matrix: Solid                                                                               | -1-C MS<br>Sample<br>Result<br>53.1<br>-1-D MSD<br>Sample | Qualifier<br>F1 | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added<br>252 | Result<br>255.0<br>LCSD<br>Result<br>251.6<br>MS<br>Result<br>347.0 | Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier<br>F1 | mg/Kg       Clie       Unit       mg/Kg       Unit       mg/Kg | nt San   | 102<br>hple ID:<br>%Rec<br>101<br>Client<br>%Rec<br>117 | %Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Sample ID<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>O: Matrix Sp<br>Prep | el Sampl<br>Type: So<br><u>RPD</u><br>1<br>: Matrix<br>Type: So<br> | e Duj<br>olubi<br>RPI<br>Lim<br>2<br>Spik<br>olubi |

Eurofins Carlsbad

# **QC Association Summary**

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3807-1

SDG: Lea County NM

## **GC VOA**

## Prep Batch: 43747

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| MB 880-43747/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| Prep Batch: 43868  |                        |           |        |        |            |
| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
| 890-3807-1         | SS05                   | Total/NA  | Solid  | 5035   |            |
| 890-3807-2         | SS06                   | Total/NA  | Solid  | 5035   |            |
| 890-3807-3         | SS07                   | Total/NA  | Solid  | 5035   |            |
| 890-3807-4         | SS08                   | Total/NA  | Solid  | 5035   |            |
| MB 880-43868/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-43868/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-43868/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 890-3819-A-1-D MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 890-3819-A-1-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 43877

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-3807-1         | SS05                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3807-1         | SS05                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3807-2         | SS06                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3807-2         | SS06                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3807-3         | SS07                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3807-3         | SS07                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3807-4         | SS08                   | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3807-4         | SS08                   | Total/NA  | Solid  | 8021B  | 43868      |
| MB 880-43747/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 43747      |
| MB 880-43868/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 43868      |
| LCS 880-43868/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 43868      |
| LCSD 880-43868/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3819-A-1-D MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 43868      |
| 890-3819-A-1-E MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 43868      |

#### Analysis Batch: 44115

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method Pre | p Batch |
|---------------|------------------|-----------|--------|------------|---------|
| 890-3807-1    | SS05             | Total/NA  | Solid  | Total BTEX |         |
| 890-3807-2    | SS06             | Total/NA  | Solid  | Total BTEX |         |
| 890-3807-3    | SS07             | Total/NA  | Solid  | Total BTEX |         |
| 890-3807-4    | SS08             | Total/NA  | Solid  | Total BTEX |         |

#### GC Semi VOA

### Prep Batch: 43869

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 890-3807-1         | SS05                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3807-2         | SS06                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3807-3         | SS07                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3807-4         | SS08                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-43869/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-43869/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-43869/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3792-A-1-E MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 890-3792-A-1-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

#### Eurofins Carlsbad

Page 68 of 203

5 6

# **QC Association Summary**

Client: Ensolum Project/Site: Baish B Battery Page 69 of 203

Job ID: 890-3807-1 SDG: Lea County NM

## GC Semi VOA

## Analysis Batch: 43945

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-3807-1         | SS05                   | Total/NA  | Solid  | 8015B NM | 43869      |
| 390-3807-2         | SS06                   | Total/NA  | Solid  | 8015B NM | 43869      |
| 390-3807-3         | SS07                   | Total/NA  | Solid  | 8015B NM | 43869      |
| 390-3807-4         | SS08                   | Total/NA  | Solid  | 8015B NM | 43869      |
| MB 880-43869/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 43869      |
| _CS 880-43869/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 43869      |
| _CSD 880-43869/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 43869      |
| 390-3792-A-1-E MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 43869      |
| 390-3792-A-1-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 4386       |

#### Analysis Batch: 44044

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 890-3807-1    | SS05             | Total/NA  | Solid  | 8015 NM |            |
| 890-3807-2    | SS06             | Total/NA  | Solid  | 8015 NM |            |
| 890-3807-3    | SS07             | Total/NA  | Solid  | 8015 NM |            |
| 890-3807-4    | SS08             | Total/NA  | Solid  | 8015 NM |            |

## HPLC/IC

#### Leach Batch: 43792

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-3807-1         | SS05                   | Soluble   | Solid  | DI Leach |            |
| 890-3807-2         | SS06                   | Soluble   | Solid  | DI Leach |            |
| 890-3807-3         | SS07                   | Soluble   | Solid  | DI Leach |            |
| 890-3807-4         | SS08                   | Soluble   | Solid  | DI Leach |            |
| MB 880-43792/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-43792/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-43792/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 890-3804-A-1-C MS  | Matrix Spike           | Soluble   | Solid  | DI Leach |            |
| 890-3804-A-1-D MSD | Matrix Spike Duplicate | Soluble   | Solid  | DI Leach |            |

#### Analysis Batch: 43924

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-3807-1         | SS05                   | Soluble   | Solid  | 300.0  | 43792      |
| 890-3807-2         | SS06                   | Soluble   | Solid  | 300.0  | 43792      |
| 890-3807-3         | SS07                   | Soluble   | Solid  | 300.0  | 43792      |
| 890-3807-4         | SS08                   | Soluble   | Solid  | 300.0  | 43792      |
| MB 880-43792/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 43792      |
| LCS 880-43792/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 43792      |
| LCSD 880-43792/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 43792      |
| 890-3804-A-1-C MS  | Matrix Spike           | Soluble   | Solid  | 300.0  | 43792      |
| 890-3804-A-1-D MSD | Matrix Spike Duplicate | Soluble   | Solid  | 300.0  | 43792      |

Initial

Amount

5.02 g

5 mL

5.02 g

5 mL

10.00 g

1 uL

5.03 g

Final

Amount

5 mL

5 mL

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

43868

43877

43868

43877

44115

44044

43869

43945

43792

43924

Number

Prepared

or Analyzed

01/13/23 08:16

01/14/23 09:10

01/13/23 08:16

01/14/23 10:55

01/16/23 17:06

01/16/23 16:39

01/13/23 08:39

01/15/23 22:59

01/12/23 09:21

01/14/23 00:28

Dil

1

100

1

1

1

1

Factor

Run

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Project/Site: Baish B Battery

### **Client Sample ID: SS05** Date Collected: 01/09/23 13:15

Date Received: 01/10/23 09:05

**Client Sample ID: SS06** 

Date Collected: 01/09/23 13:20

Date Received: 01/10/23 09:05

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 890-3807-1 SDG: Lea County NM

# Lab Sample ID: 890-3807-1

Analyst

MNR

MNR

MNR

MNR

AJ

AJ

DM

AJ

KS

СН

Matrix: Solid

Lab

EET MID

## Lab Sample ID: 890-3807-2

Lab Sample ID: 890-3807-3

Matrix: Solid

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MIC |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 43877  | 01/14/23 09:31 | MNR     | EET MI  |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 100    | 5 mL    | 5 mL   | 43877  | 01/14/23 11:16 | MNR     | EET MI  |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 44115  | 01/16/23 17:06 | AJ      | EET MIC |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 44044  | 01/16/23 16:39 | AJ      | EET MI  |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 43869  | 01/13/23 08:39 | DM      | EET MIC |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 43945  | 01/15/23 23:20 | AJ      | EET MI  |
| Soluble   | Leach    | DI Leach    |     |        | 4.95 g  | 50 mL  | 43792  | 01/12/23 09:21 | KS      | EET MI  |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 43924  | 01/14/23 00:33 | CH      | EET MI  |

### **Client Sample ID: SS07** Date Collected: 01/09/23 13:25 Date Received: 01/10/23 09:05

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 43877  | 01/14/23 08:08 | MNR     | EET MID |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 43877  | 01/14/23 09:52 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 44115  | 01/16/23 17:06 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 44044  | 01/16/23 16:39 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 43869  | 01/13/23 08:39 | DM      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 43945  | 01/15/23 23:41 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 43792  | 01/12/23 09:21 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 43924  | 01/14/23 00:39 | СН      | EET MID |

**Eurofins Carlsbad** 

Released to Imaging: 5/14/2024 11:22:06 AM

Job ID: 890-3807-1 SDG: Lea County NM

## Lab Sample ID: 890-3807-4 Matrix: Solid

Client Sample ID: SS08 Date Collected: 01/09/23 13:30 Date Received: 01/10/23 09:05

Project/Site: Baish B Battery

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 43877  | 01/14/23 08:29 | MNR     | EET MID |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 43868  | 01/13/23 08:16 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 43877  | 01/14/23 10:13 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 44115  | 01/16/23 17:06 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 44044  | 01/16/23 16:39 | AJ      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 43869  | 01/13/23 08:39 | DM      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 43945  | 01/16/23 00:02 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 43792  | 01/12/23 09:21 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 43924  | 01/14/23 00:55 | СН      | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

**Released to Imaging: 5/14/2024 11:22:06 AM** 

|                                                               |                            | Accreditation/Co                     | ertification Summary                         |                               |    |  |  |  |
|---------------------------------------------------------------|----------------------------|--------------------------------------|----------------------------------------------|-------------------------------|----|--|--|--|
| Client: EnsolumJob ID: 8Project/Site: Baish B BatterySDG: Lea |                            |                                      |                                              |                               |    |  |  |  |
| Laboratory: Eurofi                                            | ns Midland                 |                                      |                                              |                               |    |  |  |  |
| Unless otherwise noted, all a                                 | nalytes for this laborator | y were covered under each acc        | reditation/certification below.              |                               |    |  |  |  |
| Authority                                                     |                            | Program                              | Identification Number                        | Expiration Date               |    |  |  |  |
| Texas                                                         |                            | NELAP                                | T104704400-22-25                             | 06-30-23                      | -  |  |  |  |
| The following analytes a                                      | are included in this repo  | rt, but the laboratory is not certif | ied by the governing authority. This list ma | ay include analytes for which | 5  |  |  |  |
| the agency does not off                                       |                            |                                      |                                              |                               |    |  |  |  |
| Analysis Method<br>8015 NM                                    | Prep Method                | Matrix<br>Solid                      | Analyte<br>Total TPH                         |                               |    |  |  |  |
| Total BTEX                                                    |                            | Solid                                | Total BTEX                                   |                               |    |  |  |  |
|                                                               |                            |                                      |                                              |                               | 8  |  |  |  |
|                                                               |                            |                                      |                                              |                               | 9  |  |  |  |
|                                                               |                            |                                      |                                              |                               | 10 |  |  |  |
|                                                               |                            |                                      |                                              |                               |    |  |  |  |
|                                                               |                            |                                      |                                              |                               |    |  |  |  |
|                                                               |                            |                                      |                                              |                               |    |  |  |  |
|                                                               |                            |                                      |                                              |                               | 13 |  |  |  |
|                                                               |                            |                                      |                                              |                               | 14 |  |  |  |

Eurofins Carlsbad

.
## **Method Summary**

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3807-1 SDG: Lea County NM

| Method      | Method Description                 | Protocol | Laboratory |
|-------------|------------------------------------|----------|------------|
| 3021B       | Volatile Organic Compounds (GC)    | SW846    | EET MID    |
| Total BTEX  | Total BTEX Calculation             | TAL SOP  | EET MID    |
| 8015 NM     | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 300.0       | Anions, Ion Chromatography         | MCAWW    | EET MID    |
| 5035        | Closed System Purge and Trap       | SW846    | EET MID    |
| 8015NM Prep | Microextraction                    | SW846    | EET MID    |
| DI Leach    | Deionized Water Leaching Procedure | ASTM     | EET MID    |

#### Protocol References:

ASTM = ASTM International

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Client: Ensolum Project/Site: Baish B Battery Job ID: 890-3807-1 SDG: Lea County NM

| b Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |   |
|-------------|------------------|--------|----------------|----------------|-------|---|
| 0-3807-1    | SS05             | Solid  | 01/09/23 13:15 | 01/10/23 09:05 | 0.5   |   |
| 0-3807-2    | SS06             | Solid  | 01/09/23 13:20 | 01/10/23 09:05 | 0.5   |   |
| 0-3807-3    | SS07             | Solid  | 01/09/23 13:25 | 01/10/23 09:05 | 0.5   | Ę |
| 0-3807-4    | SS08             | Solid  | 01/09/23 13:30 | 01/10/23 09:05 | 0.5   |   |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       | 1 |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       |   |
|             |                  |        |                |                |       |   |

Received by OCD: 4/17/2024 12:35:40 PM

#### Chain of Custody eurofins Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 **Environment Testing** Work Order No: Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Xenco EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Page www.xenco.com Work Order Comments Kalei Jennings Hadlie Green Bill to: (if different) **Project Manager** Program: UST/PST PRP Brownfields RRC Superfund Ensolum, LLC Company Name: Ensolum, LLC Company Name: State of Project: 601 N Marienfeld St Suite 400 Address: 601 N Marienfeld St Suite 400 Address: Reporting: Level II Level III PST/UST TRRP Level IV Midland, TX 79701 City, State ZIP: Midland, TX 79701 City, State ZIP: Deliverables: EDD ADaPT Other: Email: kjennings@ensolum.com; hgreen@ensolum.com 432-557-8895 Phone: ANALYSIS REQUEST **Preservative Codes** Baish B Battery Project Name: **Turn Around** Pres. DI Water: H<sub>2</sub>O 03D2057054 Routine Rush None: NO Project Number: Code MeOH: Me Due Date: Cool: Cool Lea County, NM Project Location: HCL: HC HNO3: HN Dmitry Nikanorov Sampler's Name: TAT starts the day received by the lab, if received by 4:30pm NaOH: Na H2SO4: H2 PO #: Parameters HaPOA: HP SAMPLE RECEIPT Temp Blank: (es)No Wet Ice Yes No CHLORIDES (EPA: 300.0) NaHSO4: NABIS Samples Received Intact: Yes No Thermometer ID: Na2S2O3: NaSO3 Correction Factor: Cooler Custody Seals: Yes No NA 890-3807 Chain of Custod Zn Acetate+NaOH: Zn Sample Custody Seals: Yes No N/A Temperature Reading: NaOH+Ascorbic Acid: SAPC Corrected Temperature: TPH (8015) BTEX (8021 Total Containers: 0 Grab/ #of Time Date Sample Comments Matrix Depth Sample Identification Cont Sampled Sampled Comp S 0.5 Grab х х х SS05 1/9/2023 13:15 1 х S 1/9/2023 1320 0.5 Grab 1 х х SS06 **Incident Number** S 0.5 Grab 1 x х х SS07 1/9/2023 1325 0.5 Grab 1 x SS08 1/9/2023 1330 х х 8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn Total 200.7 / 6010 200.8 / 6020: TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Hg: 1631 / 245.1 / 7470 / 7471 Circle Method(s) and Metal(s) to be analyzed Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Relinquished by: (Signature) Received by: (Signature) Date/Time Date/Time Relinguished by: (Signature) Received by: (Signature) NO

Revised Date: 08/25/2020 Rev. 2020.2

## Login Sample Receipt Checklist

Client: Ensolum

Login Number: 3807 List Number: 1 Creator: Clifton, Cloe

| Question                                                                         | Answer | Comment                             |
|----------------------------------------------------------------------------------|--------|-------------------------------------|
| The cooler's custody seal, if present, is intact.                                | True   |                                     |
| Sample custody seals, if present, are intact.                                    | True   |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                                     |
| Samples were received on ice.                                                    | True   |                                     |
| Cooler Temperature is acceptable.                                                | True   |                                     |
| Cooler Temperature is recorded.                                                  | True   |                                     |
| COC is present.                                                                  | True   |                                     |
| COC is filled out in ink and legible.                                            | True   |                                     |
| COC is filled out with all pertinent information.                                | True   |                                     |
| Is the Field Sampler's name present on COC?                                      | True   |                                     |
| There are no discrepancies between the containers received and the COC.          | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                                     |
| Sample containers have legible labels.                                           | True   |                                     |
| Containers are not broken or leaking.                                            | True   |                                     |
| Sample collection date/times are provided.                                       | True   |                                     |
| Appropriate sample containers are used.                                          | N/A    | Refer to Job Narrative for details. |
| Sample bottles are completely filled.                                            | True   |                                     |
| Sample Preservation Verified.                                                    | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |                                     |

Job Number: 890-3807-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

14

Eurofins Carlsbad Released to Imaging: 5/14/2024 11:22:06 AM

14

Job Number: 890-3807-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 01/11/23 11:43 AM

## Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 3807 List Number: 2 Creator: Teel, Brianna

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | True   |         |
| Sample custody seals, if present, are intact.                                    | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | True   |         |

Released to Imaging: 5/14/2024 11:22:06 AM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Josh Adams Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 3/16/2023 2:48:49 PM

# JOB DESCRIPTION

Maverick Baish B Battery SDG NUMBER 03E2057054

# **JOB NUMBER**

890-4231-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.



Received by OCD: 4/17/2024 12:35:00 PM

1

# **Eurofins Carlsbad**

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## Authorization

RAMER

Generated 3/16/2023 2:48:49 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-4231-1

SDG: 03E2057054

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 22 |
| QC Sample Results      | 24 |
| QC Association Summary | 37 |
| Lab Chronicle          | 43 |
| Certification Summary  | 49 |
| Method Summary         | 50 |
| Sample Summary         | 51 |
| Chain of Custody       | 52 |
| Receipt Checklists     | 54 |
|                        |    |

|                                                           | <b>,</b>                                                 |                                                             |   |  |  |
|-----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------|---|--|--|
| Client: Ensolum<br>Project/Site: Maverick Baish B Battery |                                                          | Job ID: 890-4231-           Battery         SDG: 03E205705- |   |  |  |
| Qualifiers                                                |                                                          |                                                             | 3 |  |  |
| GC VOA                                                    |                                                          |                                                             |   |  |  |
| Qualifier                                                 | Qualifier Description                                    |                                                             |   |  |  |
| F1                                                        | MS and/or MSD recovery exceeds control limits.           |                                                             |   |  |  |
| F2                                                        | MS/MSD RPD exceeds control limits                        |                                                             | 5 |  |  |
| S1-                                                       | Surrogate recovery exceeds control limits, low biased.   |                                                             |   |  |  |
| U                                                         | Indicates the analyte was analyzed for but not detected. |                                                             |   |  |  |
|                                                           |                                                          |                                                             |   |  |  |

#### GC Semi VOA

| Qualifier | Qualifier Description                                    |   |
|-----------|----------------------------------------------------------|---|
| S1-       | Surrogate recovery exceeds control limits, low biased.   |   |
| S1+       | Surrogate recovery exceeds control limits, high biased.  | 8 |
| U         | Indicates the analyte was analyzed for but not detected. |   |
| HPLC/IC   |                                                          | 9 |
| Qualifier | Qualifier Description                                    |   |
| F1        | MS and/or MSD recovery exceeds control limits.           |   |
| U         | Indicates the analyte was analyzed for but not detected. |   |
|           |                                                          |   |

## Glossary

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |  |
|----------------|-------------------------------------------------------------------------------------------------------------|--|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |  |
| %R             | Percent Recovery                                                                                            |  |
| CFL            | Contains Free Liquid                                                                                        |  |
| CFU            | Colony Forming Unit                                                                                         |  |
| CNF            | Contains No Free Liquid                                                                                     |  |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |  |
| Dil Fac        | Dilution Factor                                                                                             |  |
| DL             | Detection Limit (DoD/DOE)                                                                                   |  |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |  |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |  |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |  |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |  |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |  |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |  |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |  |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |  |
| MDL            | Method Detection Limit                                                                                      |  |
| ML             | Minimum Level (Dioxin)                                                                                      |  |
| MPN            | Most Probable Number                                                                                        |  |
| MQL            | Method Quantitation Limit                                                                                   |  |
| NC             | Not Calculated                                                                                              |  |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |  |
| NEG            | Negative / Absent                                                                                           |  |
| POS            | Positive / Present                                                                                          |  |
| PQL            | Practical Quantitation Limit                                                                                |  |
| PRES           | Presumptive                                                                                                 |  |
| QC             | Quality Control                                                                                             |  |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |  |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |  |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |  |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |  |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |  |
| TNTC           | Too Numerous To Count                                                                                       |  |
|                |                                                                                                             |  |

#### Job ID: 890-4231-1

#### Laboratory: Eurofins Carlsbad

#### Narrative

Job Narrative 890-4231-1

#### Receipt

The samples were received on 3/3/2023 8:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

#### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: FS01 (890-4231-1), FS02 (890-4231-2), FS03 (890-4231-3), FS04 (890-4231-4), FS05 (890-4231-5), FS06 (890-4231-6), FS07 (890-4231-7), FS08 (890-4231-8), FS09 (890-4231-9), FS10 (890-4231-10), FS11 (890-4231-11), FS12 (890-4231-12), FS13 (890-4231-13), SW01 (890-4231-14), SW02 (890-4231-15), SW03 (890-4231-16), SW04 (890-4231-17), SW06 (890-4231-18) and SW07 (890-4231-19).

#### GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-48442 and analytical batch 880-48426 was outside the control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS05 (890-4231-5) and FS06 (890-4231-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-48320 and analytical batch 880-48570 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-25480-A-11-F MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Reanalysis of the following sample(s) was performed outside of the analytical holding time.: SW01 (890-4231-14).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: Surrogate recovery for the following sample was outside control limits: (890-4231-A-8-D MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: FS13 (890-4231-13), SW01 (890-4231-14) and SW02 (890-4231-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300\_ORGFM\_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-48060 and 880-48060 and analytical batch 880-48158 were outside control limits for one or more analytes, see QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits. The associated samples are: FS11 (890-4231-11), FS12 (890-4231-12), FS13 (890-4231-13), SW01 (890-4231-14), SW02 (890-4231-15), SW03 (890-4231-16), SW04 (890-4231-17), SW06 (890-4231-18), SW07 (890-4231-19), (890-4231-A-11-C MS) and (890-4231-A-11-D MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Method: SW846 8021B - Volatile Organic Compounds (GC)

Job ID: 890-4231-1 SDG: 03E2057054

## **Client Sample ID: FS01**

Date Collected: 02/27/23 13:50 Date Received: 03/03/23 08:40

Sample Depth: 2'

Client: Ensolum

## Lab Sample ID: 890-4231-1

Matrix: Solid

5 Dil Fac

| Analyte                                | Result               | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
|----------------------------------------|----------------------|--------------|----------|-------|---|----------------|----------------|----------|
| Benzene                                | <0.00198             | U            | 0.00198  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 14:37 |          |
| Foluene                                | <0.00198             | U            | 0.00198  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 14:37 |          |
| Ethylbenzene                           | <0.00198             | U            | 0.00198  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 14:37 |          |
| m-Xylene & p-Xylene                    | <0.00396             | U            | 0.00396  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 14:37 |          |
| o-Xylene                               | <0.00198             | U            | 0.00198  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 14:37 |          |
| Xylenes, Total                         | <0.00396             | U            | 0.00396  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 14:37 |          |
| Surrogate                              | %Recovery            | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fa   |
| 4-Bromofluorobenzene (Surr)            | 99                   |              | 70 - 130 |       |   | 03/13/23 08:00 | 03/13/23 14:37 |          |
| 1,4-Difluorobenzene (Surr)             | 102                  |              | 70 - 130 |       |   | 03/13/23 08:00 | 03/13/23 14:37 |          |
| Method: TAL SOP Total BTEX - T         | otal BTEX Calo       | culation     |          |       |   |                |                |          |
| Analyte                                | Result               | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total BTEX                             | <0.00396             | U            | 0.00396  | mg/Kg |   |                | 03/13/23 17:17 |          |
| Method: SW846 8015 NM - Diese          | I Range Organ        | ics (DRO) (  | GC)      |       |   |                |                |          |
| Analyte                                | Result               | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Total TPH                              | 104                  |              | 49.9     | mg/Kg |   |                | 03/07/23 13:47 |          |
| Method: SW846 8015B NM - Dies          | el Range Orga        | nics (DRO)   | (GC)     |       |   |                |                |          |
| Analyte                                | • •                  | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Gasoline Range Organics<br>GRO)-C6-C10 | <49.9                | U            | 49.9     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 18:27 |          |
| Diesel Range Organics (Over            | 104                  |              | 49.9     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 18:27 |          |
| C10-C28)                               |                      |              |          |       |   |                |                |          |
| Oll Range Organics (Over C28-C36)      | <49.9                | U            | 49.9     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 18:27 |          |
| Surrogate                              | %Recovery            | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fa   |
| 1-Chlorooctane                         | 120                  |              | 70 - 130 |       |   | 03/06/23 08:24 | 03/06/23 18:27 |          |
| p-Terphenyl                            | 126                  |              | 70 - 130 |       |   | 03/06/23 08:24 | 03/06/23 18:27 |          |
| Method: EPA 300.0 - Anions, Ion        | Chromatograp         | ohy - Solubl | e        |       |   |                |                |          |
| Analyte                                | Result               | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Chloride                               | 53.7                 |              | 4.98     | mg/Kg |   |                | 03/08/23 22:57 |          |
| lient Sample ID: FS02                  |                      |              |          |       |   | Lab Sar        | nple ID: 890-  | 4231-2   |
| ate Collected: 02/27/23 13:55          |                      |              |          |       |   |                | Matri          | x: Solie |
| ate Received: 03/03/23 08:40           |                      |              |          |       |   |                |                |          |
| ample Depth: 2'                        |                      |              |          |       |   |                |                |          |
| Method: SW846 8021B - Volatile         | Organic Comp         | ounds (GC)   | )        |       |   |                |                |          |
|                                        |                      | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa   |
| Analyte                                | Result               | Quanner      | NL       | onic  |   | ricparca       | Analyzeu       |          |
| Analyte<br>Benzene                     | - <u>&lt;0.00199</u> | U            | 0.00199  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:03 |          |

| 4-Bromofluorobenzene (Surr) | 104       |           | 70 - 130 |       | 03/13/23 08:00 | 03/13/23 15:03 | 1       |
|-----------------------------|-----------|-----------|----------|-------|----------------|----------------|---------|
| Surrogate                   | %Recovery | Qualifier | Limits   |       | Prepared       | Analyzed       | Dil Fac |
| Xylenes, Total              | <0.00398  | U         | 0.00398  | mg/Kg | 03/13/23 08:00 | 03/13/23 15:03 | 1       |
| o-Xylene                    | <0.00199  | U         | 0.00199  | mg/Kg | 03/13/23 08:00 | 03/13/23 15:03 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.00398  | mg/Kg | 03/13/23 08:00 | 03/13/23 15:03 | 1       |
| Ethylbenzene                | <0.00199  | U         | 0.00199  | mg/Kg | 03/13/23 08:00 | 03/13/23 15:03 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  | mg/Kg | 03/13/23 08:00 | 03/13/23 15:03 | 1       |
| Benzene                     | <0.00199  | U         | 0.00199  | mg/Kg | 03/13/23 08:00 | 03/13/23 15:03 | 1       |

Eurofins Carlsbad

## **Client Sample Results**

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-2

## Client Sample ID: FS02

Date Collected: 02/27/23 13:55 Date Received: 03/03/23 08:40

Sample Depth: 2'

Client: Ensolum

| Surrogate                                | %Recovery      | Qualifier   | Limits     |       |   | Prepared       | Analyzed       | Dil Fac |
|------------------------------------------|----------------|-------------|------------|-------|---|----------------|----------------|---------|
| 1,4-Difluorobenzene (Surr)               | 91             |             | 70 - 130   |       |   | 03/13/23 08:00 | 03/13/23 15:03 | 1       |
| Method: TAL SOP Total BTEX - 1           | otal BTEX Calo | culation    |            |       |   |                |                |         |
| Analyte                                  | Result         | Qualifier   | RL         | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                               | <0.00398       | U           | 0.00398    | mg/Kg |   |                | 03/13/23 17:17 | 1       |
| Method: SW846 8015 NM - Diese            | l Range Organ  | ics (DRO) ( | GC)        |       |   |                |                |         |
| Analyte                                  |                | Qualifier   | RL         | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                                | 55.6           |             | 49.9       | mg/Kg |   |                | 03/07/23 13:47 | 1       |
|                                          |                |             |            |       |   |                |                |         |
| Method: SW846 8015B NM - Dies<br>Analyte |                | Qualifier   | (GC)<br>RL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics                  | <49.9          |             | 49.9       | mg/Kg |   | 03/06/23 08:24 | 03/06/23 18:49 | 1       |
| (GRO)-C6-C10                             |                |             |            | 5. 5  |   |                |                |         |
| Diesel Range Organics (Over              | 55.6           |             | 49.9       | mg/Kg |   | 03/06/23 08:24 | 03/06/23 18:49 | 1       |
| C10-C28)                                 |                |             |            |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)        | <49.9          | U           | 49.9       | mg/Kg |   | 03/06/23 08:24 | 03/06/23 18:49 | 1       |
| Surrogate                                | %Recovery      | Qualifier   | Limits     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                           |                |             | 70 - 130   |       |   | 03/06/23 08:24 | 03/06/23 18:49 | 1       |
| o-Terphenyl                              | 120            |             | 70 - 130   |       |   | 03/06/23 08:24 | 03/06/23 18:49 | 1       |
| Method: EPA 300.0 - Anions, Ion          | Chromatograp   | hv - Solubl | e          |       |   |                |                |         |
| Analyte                                  |                | Qualifier   | RL         | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                 | 60.2           |             | 4.98       | mg/Kg |   |                | 03/08/23 23:12 | 1       |

Date Collected: 02/27/23 14:40 Date Received: 03/03/23 08:40 Sample Depth: 3.5'

| Analyte                     | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:29 | 1       |
| Toluene                     | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:29 | 1       |
| Ethylbenzene                | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:29 | 1       |
| m-Xylene & p-Xylene         | <0.00402          | U           | 0.00402  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:29 | 1       |
| o-Xylene                    | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:29 | 1       |
| Xylenes, Total              | <0.00402          | U           | 0.00402  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:29 | 1       |
| Surrogate                   | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 84                |             | 70 - 130 |       |   | 03/13/23 08:00 | 03/13/23 15:29 | 1       |
| 1,4-Difluorobenzene (Surr)  | 91                |             | 70 - 130 |       |   | 03/13/23 08:00 | 03/13/23 15:29 | 1       |
| Method: TAL SOP Total BTEX  | - Total BTEX Cald | culation    |          |       |   |                |                |         |
| Analyte                     | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                  | 0.490             |             | 0.00402  | mg/Kg |   |                | 03/13/23 17:17 | 1       |
| Method: SW846 8015 NM - Die | esel Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
| Auchola                     | Posult            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Analyte                     | Result            | Quaimer     |          | onic  |   | Treparea       | Analyzea       | Dirrac  |

Eurofins Carlsbad

Released to Imaging: 5/14/2024 11:22:06 AM

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-3

## **Client Sample ID: FS03**

Date Collected: 02/27/23 14:40 Date Received: 03/03/23 08:40

Sample Depth: 3.5'

Client: Ensolum

| Method: SW846 8015B NM - Dies     | el Range Orga | inics (DRO) | (GC)     |       |   |                |                |
|-----------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       |
| Gasoline Range Organics           | <50.0         | U           | 50.0     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 19:11 |
| (GRO)-C6-C10                      |               |             |          |       |   |                |                |
| Diesel Range Organics (Over       | <50.0         | U           | 50.0     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 19:11 |
| C10-C28)                          |               |             |          |       |   |                |                |
| Oll Range Organics (Over C28-C36) | <50.0         | U           | 50.0     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 19:11 |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       |
| 1-Chlorooctane                    | 103           |             | 70 - 130 |       |   | 03/06/23 08:24 | 03/06/23 19:11 |
| o-Terphenyl                       | 116           |             | 70 - 130 |       |   | 03/06/23 08:24 | 03/06/23 19:11 |

### Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|-------|---|----------|----------------|---------|
| Chloride | 55.2             | 4.95 | mg/Kg |   |          | 03/08/23 23:17 | 1       |

#### **Client Sample ID: FS04**

### Date Collected: 02/28/23 11:35

### Date Received: 03/03/23 08:40

Sample Depth: 2'

| Analyte                                                                                                                                                | Result                                                                       | Qualifier                                                                        | RL                                          | Unit                           | D            | Prepared       | Analyzed                                                 | Dil Fac      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|--------------|----------------|----------------------------------------------------------|--------------|
| Benzene                                                                                                                                                | <0.00199                                                                     | U                                                                                | 0.00199                                     | mg/Kg                          |              | 03/09/23 10:06 | 03/13/23 18:16                                           | 1            |
| Toluene                                                                                                                                                | <0.00199                                                                     | U                                                                                | 0.00199                                     | mg/Kg                          |              | 03/09/23 10:06 | 03/13/23 18:16                                           | 1            |
| Ethylbenzene                                                                                                                                           | <0.00199                                                                     | U                                                                                | 0.00199                                     | mg/Kg                          |              | 03/09/23 10:06 | 03/13/23 18:16                                           | 1            |
| m-Xylene & p-Xylene                                                                                                                                    | <0.00398                                                                     | U                                                                                | 0.00398                                     | mg/Kg                          |              | 03/09/23 10:06 | 03/13/23 18:16                                           | 1            |
| o-Xylene                                                                                                                                               | <0.00199                                                                     | U                                                                                | 0.00199                                     | mg/Kg                          |              | 03/09/23 10:06 | 03/13/23 18:16                                           | 1            |
| Xylenes, Total                                                                                                                                         | <0.00398                                                                     | U                                                                                | 0.00398                                     | mg/Kg                          |              | 03/09/23 10:06 | 03/13/23 18:16                                           | 1            |
| Surrogate                                                                                                                                              | %Recovery                                                                    | Qualifier                                                                        | Limits                                      |                                |              | Prepared       | Analyzed                                                 | Dil Fac      |
| 4-Bromofluorobenzene (Surr)                                                                                                                            | 86                                                                           |                                                                                  | 70 - 130                                    |                                |              | 03/09/23 10:06 | 03/13/23 18:16                                           | 1            |
| 1,4-Difluorobenzene (Surr)                                                                                                                             | 88                                                                           |                                                                                  | 70 - 130                                    |                                |              | 03/09/23 10:06 | 03/13/23 18:16                                           | 1            |
| Method: TAL SOP Total BTEX - 1                                                                                                                         | Total BTEX Cald                                                              | culation                                                                         |                                             |                                |              |                |                                                          |              |
| Analyte<br>Total BTEX                                                                                                                                  |                                                                              | Qualifier<br>U                                                                   | RL<br>0.00398                               | Unit<br>mg/Kg                  | <u> </u>     | Prepared       | Analyzed<br>03/16/23 15:40                               | Dil Fac      |
| Method: TAL SOP Total BTEX - 1<br>Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                    | Result<br><0.00398                                                           | Qualifier<br>U                                                                   | 0.00398                                     |                                | <u>D</u><br> | Prepared       |                                                          | Dil Fac      |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese                                                                                                 | Result<br><0.00398                                                           | Qualifier<br>U<br>ics (DRO) (<br>Qualifier                                       | 0.00398                                     | mg/Kg                          |              | <u>·</u>       | 03/16/23 15:40                                           | 1            |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                         | el Range Organ<br>Result<br>4 Range Organ<br>Result<br>49.9                  | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U                                  | 0.00398<br>GC)<br>RL<br>49.9                | mg/Kg<br>Unit                  |              | <u>·</u>       | 03/16/23 15:40<br>Analyzed                               | 1            |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese                                       | el Range Organ<br>Result<br>Al Range Organ<br>Al Result<br>Al Sel Range Orga | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U                                  | 0.00398<br>GC)<br>RL<br>49.9                | mg/Kg<br>Unit                  |              | <u>·</u>       | 03/16/23 15:40<br>Analyzed                               | 1<br>Dil Fac |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics | el Range Organ<br>Result<br>Al Range Organ<br>Al Result<br>Al Sel Range Orga | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier       | 0.00398<br>GC)<br><u>RL</u><br>49.9<br>(GC) | mg/Kg Unit mg/Kg               | D            | Prepared       | 03/16/23 15:40<br>Analyzed<br>03/08/23 15:27             | 1<br>Dil Fac |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                                                      | el Range Organ<br>Result<br><49.9<br>Sel Range Orga<br>Result<br>Result      | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U<br>unics (DRO)<br>Qualifier<br>U | 0.00398<br>GC)<br>RL<br>49.9<br>(GC)<br>RL  | mg/Kg<br>Unit<br>mg/Kg<br>Unit | D            | Prepared       | 03/16/23 15:40<br>Analyzed<br>03/08/23 15:27<br>Analyzed | 1            |

#### %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 70 - 130 03/07/23 10:19 03/08/23 02:00 1-Chlorooctane 101 1 o-Terphenyl 93 70 - 130 03/07/23 10:19 03/08/23 02:00 1

Eurofins Carlsbad

1

1

1

1

1

Released to Imaging: 5/14/2024 11:22:06 AM

|                                                                 |                      | Clier      | t Sample Re        | sults          |          |                                  |                                  |          |
|-----------------------------------------------------------------|----------------------|------------|--------------------|----------------|----------|----------------------------------|----------------------------------|----------|
| Client: Ensolum                                                 |                      |            | •                  |                |          |                                  | Job ID: 890                      | )-4231-* |
| roject/Site: Maverick Baish B Batte                             | ry                   |            |                    |                |          |                                  | SDG: 03E2                        | 205705   |
| Client Sample ID: FS04                                          |                      |            |                    |                |          | Lab Sar                          | nple ID: 890-                    | 4231-4   |
| Date Collected: 02/28/23 11:35                                  |                      |            |                    |                |          |                                  | -                                | ix: Soli |
| Date Received: 03/03/23 08:40                                   |                      |            |                    |                |          |                                  |                                  |          |
| Sample Depth: 2'                                                |                      |            |                    |                |          |                                  |                                  |          |
|                                                                 |                      |            | -                  |                |          |                                  |                                  |          |
| Method: EPA 300.0 - Anions, Ion (<br>Analyte                    |                      | Qualifier  | RL                 | Unit           | D        | Prepared                         | Analyzed                         | Dil Fa   |
| Chloride                                                        | 69.3                 |            | 5.01               | mg/Kg          |          |                                  | 03/08/23 23:22                   |          |
| Client Sample ID: FS05                                          |                      |            |                    |                |          | l ah Sar                         | nple ID: 890-                    | 1231_    |
|                                                                 |                      |            |                    |                |          | Lab Sai                          | -                                |          |
| Date Collected: 02/28/23 11:40<br>Date Received: 03/03/23 08:40 |                      |            |                    |                |          |                                  | watr                             | ix: Soli |
| Sample Depth: 2'                                                |                      |            |                    |                |          |                                  |                                  |          |
| -                                                               |                      |            |                    |                |          |                                  |                                  |          |
| Method: SW846 8021B - Volatile C                                |                      |            | •                  | 11-34          | -        | December                         | A see borne al                   | DH 5-    |
| Analyte<br>Benzene                                              | <                    | Qualifier  | RL                 | Unit           | <u>D</u> | Prepared                         | Analyzed                         | Dil Fa   |
| Toluene                                                         | <0.00199             |            | 0.00199            | mg/Kg          |          | 03/09/23 10:06                   | 03/13/23 18:36                   |          |
| Ethylbenzene                                                    |                      |            | 0.00199            | mg/Kg          |          | 03/09/23 10:06                   | 03/13/23 18:36                   |          |
| m-Xylene & p-Xylene                                             | <0.00199<br><0.00398 |            | 0.00199<br>0.00398 | mg/Kg          |          | 03/09/23 10:06<br>03/09/23 10:06 | 03/13/23 18:36<br>03/13/23 18:36 |          |
| o-Xylene                                                        | <0.00398             |            | 0.00398            | mg/Kg<br>mg/Kg |          | 03/09/23 10:06                   | 03/13/23 18:36                   |          |
| Xylenes, Total                                                  | <0.00199             |            | 0.00398            | mg/Kg          |          | 03/09/23 10:00                   | 03/13/23 18:36                   |          |
| Aylenes, Iotai                                                  | <0.00590             | 0          | 0.00390            | ilig/Rg        |          | 03/09/23 10:00                   | 03/13/23 10:30                   |          |
| Surrogate                                                       | %Recovery            | Qualifier  | Limits             |                |          | Prepared                         | Analyzed                         | Dil Fa   |
| 4-Bromofluorobenzene (Surr)                                     | 50                   | S1-        | 70 - 130           |                |          | 03/09/23 10:06                   | 03/13/23 18:36                   |          |
| 1,4-Difluorobenzene (Surr)                                      | 125                  |            | 70 - 130           |                |          | 03/09/23 10:06                   | 03/13/23 18:36                   |          |
| -<br>Method: TAL SOP Total BTEX - To                            | otal BTEX Cal        | ulation    |                    |                |          |                                  |                                  |          |
| Analyte                                                         |                      | Qualifier  | RL                 | Unit           | D        | Prepared                         | Analyzed                         | Dil Fa   |
| Total BTEX                                                      | <0.00398             | U          | 0.00398            | mg/Kg          |          |                                  | 03/16/23 15:40                   |          |
|                                                                 |                      |            |                    |                |          |                                  |                                  |          |
| Method: SW846 8015 NM - Diesel                                  |                      |            |                    | 11-14          |          | Description                      | A                                | D!! E-   |
| Analyte<br>Total TPH                                            | Result<br><49.9      | Qualifier  | RL                 | Unit           | D        | Prepared                         | Analyzed<br>03/08/23 15:27       | Dil Fa   |
|                                                                 | <49.9                | 0          | 49.9               | mg/Kg          |          |                                  | 03/06/23 15.27                   |          |
| Method: SW846 8015B NM - Diese                                  | el Range Orga        | nics (DRO) | (GC)               |                |          |                                  |                                  |          |
| Analyte                                                         | Result               | Qualifier  | RL                 | Unit           | D        | Prepared                         | Analyzed                         | Dil Fa   |
| Gasoline Range Organics<br>(GRO)-C6-C10                         | <49.9                | U          | 49.9               | mg/Kg          |          | 03/07/23 10:19                   | 03/08/23 02:21                   |          |
| Diesel Range Organics (Over                                     | <49.9                | U          | 49.9               | mg/Kg          |          | 03/07/23 10:19                   | 03/08/23 02:21                   |          |
| C10-C28)                                                        |                      |            |                    |                |          |                                  |                                  |          |
| Oll Range Organics (Over C28-C36)                               | <49.9                | U          | 49.9               | mg/Kg          |          | 03/07/23 10:19                   | 03/08/23 02:21                   |          |
| Surrogate                                                       | %Recovery            | Qualifier  | Limits             |                |          | Prepared                         | Analyzed                         | Dil Fa   |
| 1-Chlorooctane                                                  | 109                  |            | 70 - 130           |                |          | 03/07/23 10:19                   | 03/08/23 02:21                   |          |
| o-Terphenyl                                                     | 105                  |            | 70 - 130           |                |          | 03/07/23 10:19                   | 03/08/23 02:21                   |          |
| Method: EPA 300.0 - Anions, Ion (                               | Chromatogram         | hy - Solub |                    |                |          |                                  |                                  |          |
| Analyte                                                         |                      | Qualifier  | RL                 | Unit           | D        | Prepared                         | Analyzed                         | Dil Fa   |
|                                                                 |                      |            |                    |                |          | -                                | -                                |          |

03/08/23 23:26

Chloride

4.98

43.1

mg/Kg

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

<0.00199 U

<0.00199 U

<0.00199 U

<0.00398 U

<0.00199 U

<0.00398 U

%Recovery Qualifier

40 S1-

97

< 0.00398

Result Qualifier

11

RL

0.00199

0.00199

0.00199

0.00398

0.00199

0.00398

Limits

70 - 130

70 - 130

RL

0.00398

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

D

D

Prepared

03/09/23 10:06

03/09/23 10:06

03/09/23 10:06

03/09/23 10:06

03/09/23 10:06

03/09/23 10:06

Prepared

03/09/23 10:06

03/09/23 10:06

Prepared

Job ID: 890-4231-1 SDG: 03E2057054

## **Client Sample ID: FS06**

Date Collected: 02/28/23 11:45 Date Received: 03/03/23 08:40

Sample Depth: 2'

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Lab Sample ID: 890-4231-6

Analyzed

03/13/23 18:56

03/13/23 18:56

03/13/23 18:56

03/13/23 18:56

03/13/23 18:56

03/13/23 18:56

Analyzed

03/13/23 18:56

03/13/23 18:56

Analyzed

03/16/23 15:40

Lab Sample ID: 890-4231-7

Matrix: Solid 5

Dil Fac

1

1

1

1

1

Matrix: Solid

Dil Fac

Dil Fac

| Analyte                           | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|--------------|----------|-------|---|----------------|----------------|---------|
| Total TPH                         | <50.0         | U            | 50.0     | mg/Kg |   |                | 03/08/23 15:27 | 1       |
| Method: SW846 8015B NM - Diese    | el Range Orga | nics (DRO)   | (GC)     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <50.0         | U            | 50.0     | mg/Kg |   | 03/07/23 10:19 | 03/08/23 02:42 | 1       |
| (GRO)-C6-C10                      |               |              |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0         | U            | 50.0     | mg/Kg |   | 03/07/23 10:19 | 03/08/23 02:42 | 1       |
| C10-C28)                          |               |              |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0         | U            | 50.0     | mg/Kg |   | 03/07/23 10:19 | 03/08/23 02:42 | 1       |
| Surrogate                         | %Recovery     | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 109           |              | 70 - 130 |       |   | 03/07/23 10:19 | 03/08/23 02:42 | 1       |
| o-Terphenyl                       | 106           |              | 70 - 130 |       |   | 03/07/23 10:19 | 03/08/23 02:42 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | ohy - Solubl | e        |       |   |                |                |         |
| Analyte                           |               | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 54.0          |              | 5.01     | mg/Kg |   |                | 03/08/23 23:41 | 1       |

#### **Client Sample ID: FS07** Date Collected: 03/01/23 08:00

Date Received: 03/03/23 08:40

Sample Depth: 4'

| Method: SW846 8021B - Volat | ile Organic Comp | ounds (GC | )        |       |   |                |                |         |
|-----------------------------|------------------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                     | Result           | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00198         | U         | 0.00198  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:05 | 1       |
| Toluene                     | <0.00198         | U         | 0.00198  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:05 | 1       |
| Ethylbenzene                | <0.00198         | U         | 0.00198  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:05 | 1       |
| m-Xylene & p-Xylene         | <0.00396         | U         | 0.00396  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:05 | 1       |
| o-Xylene                    | <0.00198         | U         | 0.00198  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:05 | 1       |
| Xylenes, Total              | <0.00396         | U         | 0.00396  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:05 | 1       |
| Surrogate                   | %Recovery        | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 44               | S1-       | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 14:05 | 1       |

**Eurofins Carlsbad** 

Released to Imaging: 5/14/2024 11:22:06 AM

## **Client Sample Results**

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-7

## Client Sample ID: FS07

Date Collected: 03/01/23 08:00 Date Received: 03/03/23 08:40

Sample Depth: 4'

Client: Ensolum

| Surrogate                               | %Recovery      | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|----------------|-------------|----------|-------|---|----------------|----------------|---------|
| 1,4-Difluorobenzene (Surr)              | 83             |             | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 14:05 | 1       |
| Method: TAL SOP Total BTEX - T          | otal BTEX Calo | culation    |          |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                              | <0.00396       | U           | 0.00396  | mg/Kg |   |                | 03/16/23 15:40 | 1       |
| Method: SW846 8015 NM - Diese           | I Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | 146            |             | 49.9     | mg/Kg |   |                | 03/08/23 15:27 | 1       |
| Method: SW846 8015B NM - Dies           | el Range Orga  | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9          | U           | 49.9     | mg/Kg |   | 03/07/23 10:19 | 03/08/23 03:03 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | 146            |             | 49.9     | mg/Kg |   | 03/07/23 10:19 | 03/08/23 03:03 | 1       |
| Oll Range Organics (Over C28-C36)       | <49.9          | U           | 49.9     | mg/Kg |   | 03/07/23 10:19 | 03/08/23 03:03 | 1       |
| Surrogate                               | %Recovery      | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 105            |             | 70 - 130 |       |   | 03/07/23 10:19 | 03/08/23 03:03 | 1       |
| o-Terphenyl                             | 95             |             | 70 - 130 |       |   | 03/07/23 10:19 | 03/08/23 03:03 | 1       |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp   | hy - Solubl | e        |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                | 106            |             | 4.98     | mg/Kg |   |                | 03/08/23 23:46 | 1       |
| lient Sample ID: FS08                   |                |             |          |       |   | Lab San        | nple ID: 890-4 | 4231-8  |

Sample Depth: 4'

| Analyte                     | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199          | U           | 0.00199  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:26 | 1       |
| Toluene                     | <0.00199          | U           | 0.00199  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:26 | 1       |
| Ethylbenzene                | <0.00199          | U           | 0.00199  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:26 | 1       |
| m-Xylene & p-Xylene         | <0.00398          | U           | 0.00398  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:26 | 1       |
| o-Xylene                    | <0.00199          | U           | 0.00199  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:26 | 1       |
| Xylenes, Total              | <0.00398          | U           | 0.00398  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 14:26 | 1       |
| Surrogate                   | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 76                |             | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 14:26 | 1       |
| 1,4-Difluorobenzene (Surr)  | 67                | S1-         | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 14:26 | 1       |
| Method: TAL SOP Total BTEX  | - Total BTEX Cald | culation    |          |       |   |                |                |         |
| Analyte                     | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                  | <0.00398          | U           | 0.00398  | mg/Kg |   |                | 03/16/23 15:40 | 1       |
| Method: SW846 8015 NM - Die | esel Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
|                             | Desult            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Analyte                     | Result            | Quaimer     |          | onit  |   | ricparca       | Analyzea       | Dirruc  |

Eurofins Carlsbad

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-8

Lab Sample ID: 890-4231-9

Matrix: Solid

## **Client Sample ID: FS08**

Date Collected: 03/01/23 07:55 Date Received: 03/03/23 08:40

Sample Depth: 4'

Client: Ensolum

# Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/08/23 21:56 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/08/23 21:56 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/08/23 21:56 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 102       |           | 70 - 130 |       |   | 03/08/23 10:34 | 03/08/23 21:56 | 1       |
| o-Terphenyl                       | 122       |           | 70 - 130 |       |   | 03/08/23 10:34 | 03/08/23 21:56 | 1       |
|                                   |           |           |          |       |   |                |                |         |

## Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|-------|---|----------|----------------|---------|
| Chloride | 74.9             | 4.95 | mg/Kg |   |          | 03/08/23 23:51 | 1       |

#### **Client Sample ID: FS09**

#### Date Collected: 03/01/23 12:00

#### Date Received: 03/03/23 08:40

Sample Depth: 4'

| Analyte                                                                                                                                                | Result                                                                                     | Qualifier                                                                       | RL                                          | Unit                           | D            | Prepared       | Analyzed                                                 | Dil Fac                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|--------------|----------------|----------------------------------------------------------|-------------------------|
| Benzene                                                                                                                                                | <0.00200                                                                                   | U                                                                               | 0.00200                                     | mg/Kg                          |              | 03/10/23 14:43 | 03/15/23 14:47                                           | 1                       |
| Toluene                                                                                                                                                | <0.00200                                                                                   | U                                                                               | 0.00200                                     | mg/Kg                          |              | 03/10/23 14:43 | 03/15/23 14:47                                           | 1                       |
| Ethylbenzene                                                                                                                                           | <0.00200                                                                                   | U                                                                               | 0.00200                                     | mg/Kg                          |              | 03/10/23 14:43 | 03/15/23 14:47                                           | 1                       |
| m-Xylene & p-Xylene                                                                                                                                    | <0.00401                                                                                   | U                                                                               | 0.00401                                     | mg/Kg                          |              | 03/10/23 14:43 | 03/15/23 14:47                                           | 1                       |
| o-Xylene                                                                                                                                               | <0.00200                                                                                   | U                                                                               | 0.00200                                     | mg/Kg                          |              | 03/10/23 14:43 | 03/15/23 14:47                                           | 1                       |
| Xylenes, Total                                                                                                                                         | <0.00401                                                                                   | U                                                                               | 0.00401                                     | mg/Kg                          |              | 03/10/23 14:43 | 03/15/23 14:47                                           | 1                       |
| Surrogate                                                                                                                                              | %Recovery                                                                                  | Qualifier                                                                       | Limits                                      |                                |              | Prepared       | Analyzed                                                 | Dil Fac                 |
| 4-Bromofluorobenzene (Surr)                                                                                                                            | 42                                                                                         | S1-                                                                             | 70 - 130                                    |                                |              | 03/10/23 14:43 | 03/15/23 14:47                                           | 1                       |
| 1,4-Difluorobenzene (Surr)                                                                                                                             | 85                                                                                         |                                                                                 | 70 - 130                                    |                                |              | 03/10/23 14:43 | 03/15/23 14:47                                           | 1                       |
| Method: TAL SOP Total BTEX -<br>Analyte                                                                                                                | Result                                                                                     | Qualifier                                                                       | RL                                          | Unit                           | D            | Prepared       | Analyzed                                                 | Dil Fac                 |
| Analyte<br>Total BTEX                                                                                                                                  | Result <0.00401                                                                            | Qualifier<br>U                                                                  | 0.00401                                     | Unit mg/Kg                     | <u>D</u>     | Prepared       | Analyzed<br>03/16/23 15:40                               | Dil Fac                 |
| Analyte                                                                                                                                                | Result<br><0.00401 el Range Organ                                                          | Qualifier<br>U                                                                  | 0.00401                                     |                                | <u>D</u><br> | Prepared       |                                                          | Dil Fac<br>1<br>Dil Fac |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese                                                                                                 | Result<br><0.00401 el Range Organ                                                          | Qualifier<br>U<br>ics (DRO) (<br>Qualifier                                      | 0.00401                                     | mg/Kg                          |              |                | 03/16/23 15:40                                           | 1                       |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                                                      | el Range Organ<br>Result<br>Solution<br>Result<br>Solution                                 | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U                                 | 0.00401<br>GC)<br>RL<br>50.0                | mg/Kg<br>Unit                  |              |                | 03/16/23 15:40<br>Analyzed                               | 1                       |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                         | el Range Organ<br>Result<br>Range Organ<br>Sel Range Organ                                 | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U                                 | 0.00401<br>GC)<br>RL<br>50.0                | mg/Kg<br>Unit                  |              |                | 03/16/23 15:40<br>Analyzed                               | 1                       |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Die                                         | el Range Organ<br>Result<br>Range Organ<br>Sel Range Organ                                 | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier      | 0.00401<br>GC)<br><u>RL</u><br>50.0<br>(GC) | mg/Kg Unit mg/Kg               | D            | Prepared       | 03/16/23 15:40<br>Analyzed<br>03/09/23 12:02             | 1<br>Dil Fac<br>1       |
| Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics | el Range Organ<br>Result<br><0.00401<br>el Range Organ<br><br><br><br><br><br><br><br><br> | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier<br>U | 0.00401<br>GC)<br>RL<br>50.0<br>(GC)<br>RL  | mg/Kg<br>Unit<br>mg/Kg<br>Unit | D            | Prepared       | 03/16/23 15:40<br>Analyzed<br>03/09/23 12:02<br>Analyzed | 1<br>Dil Fac<br>1       |

#### Dil Fac %Recovery Qualifier Limits Prepared Analyzed Surrogate 03/08/23 10:34 03/08/23 23:02 1-Chlorooctane 88 70 - 130 1 o-Terphenyl 105 70 - 130 03/08/23 10:34 03/08/23 23:02 1

**Eurofins Carlsbad** 

Matrix: Solid

|                                               |                | Clien      | t Sample Re | sults |   |                |                |          |
|-----------------------------------------------|----------------|------------|-------------|-------|---|----------------|----------------|----------|
| Client: Ensolum                               |                |            | •           |       |   |                | Job ID: 890    | -4231-1  |
| Project/Site: Maverick Baish B Batte          | ery            |            |             |       |   |                | SDG: 03E2      | 2057054  |
| Client Sample ID: FS09                        |                |            |             |       |   | Lab Sar        | nple ID: 890-  | 4231-9   |
| Date Collected: 03/01/23 12:00                |                |            |             |       |   |                |                | x: Solid |
| Date Received: 03/03/23 08:40                 |                |            |             |       |   |                |                |          |
| Sample Depth: 4'                              |                |            |             |       |   |                |                |          |
| _<br>Method: EPA 300.0 - Anions, Ion          | Chromotogram   | by Solub   |             |       |   |                |                |          |
| Analyte                                       | · · ·          | Qualifier  | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                                      | 305            |            | 5.01        | mg/Kg |   |                | 03/08/23 23:56 | 1        |
| lient Sample ID: FS10                         |                |            |             |       |   | Lab Sam        | ple ID: 890-4  | 231-10   |
| Date Collected: 02/28/23 14:35                |                |            |             |       |   |                | -              | x: Solid |
| Date Received: 03/03/23 08:40                 |                |            |             |       |   |                | Math           | x. 00110 |
| Sample Depth: 3'                              |                |            |             |       |   |                |                |          |
| -<br>Mothody SW/846 9024P Volatila            | Organia Comp   | oundo (CC  | \<br>\      |       |   |                |                |          |
| Method: SW846 8021B - Volatile (<br>Analyte   |                | Qualifier  | )<br>RL     | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Benzene                                       | <0.00200       |            | 0.00200     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 12:46 | 1        |
| Toluene                                       | <0.00200       |            | 0.00200     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 12:46 | 1        |
| Ethylbenzene                                  | <0.00200       | U          | 0.00200     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 12:46 | 1        |
| m-Xylene & p-Xylene                           | <0.00401       | U          | 0.00401     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 12:46 | 1        |
| o-Xylene                                      | <0.00200       | U          | 0.00200     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 12:46 | 1        |
| Xylenes, Total                                | <0.00401       | U          | 0.00401     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 12:46 | 1        |
| Surrogate                                     | %Recovery      | Qualifier  | Limits      |       |   | Prepared       | Analyzed       | Dil Fac  |
| 4-Bromofluorobenzene (Surr)                   | 113            |            | 70 - 130    |       |   | 03/10/23 12:35 | 03/14/23 12:46 | 1        |
| 1,4-Difluorobenzene (Surr)                    | 105            |            | 70 - 130    |       |   | 03/10/23 12:35 | 03/14/23 12:46 | 1        |
| -<br>Method: TAL SOP Total BTEX - To          | otal BTEX Cale | ulation    |             |       |   |                |                |          |
| Analyte                                       |                | Qualifier  | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Total BTEX                                    | <0.00401       | U          | 0.00401     | mg/Kg |   |                | 03/16/23 15:40 | 1        |
| Method: SW846 8015 NM - Diese                 | Panga Organ    |            | 60)         |       |   |                |                |          |
| Analyte                                       |                | Qualifier  | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Total TPH                                     | <50.0          | U          | 50.0        | mg/Kg |   |                | 03/09/23 12:02 | 1        |
| _<br>Method: SW846 8015B NM - Dies            | ol Bango Orga  |            |             |       |   |                |                |          |
| Analyte                                       |                | Qualifier  | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Gasoline Range Organics                       | <50.0          |            | 50.0        |       |   | 03/08/23 10:34 | 03/08/23 23:23 | 1        |
| (GRO)-C6-C10                                  |                |            |             |       |   |                |                |          |
| Diesel Range Organics (Over                   | <50.0          | U          | 50.0        | mg/Kg |   | 03/08/23 10:34 | 03/08/23 23:23 | 1        |
| C10-C28)<br>Oll Range Organics (Over C28-C36) | <50.0          |            | 50.0        | ma/Ka |   | 03/08/23 10:34 | 03/08/23 23.23 | 1        |
| On Mange Organics (Over 020-030)              | <b>~</b> 50.0  | 0          | 50.0        | mg/Kg |   | 03/06/23 10.34 | 03/08/23 23:23 | I        |
| Surrogate                                     | %Recovery      | Qualifier  | Limits      |       |   | Prepared       | Analyzed       | Dil Fac  |
| 1-Chlorooctane                                | 84             |            | 70 - 130    |       |   | 03/08/23 10:34 | 03/08/23 23:23 | 1        |
| o-Terphenyl                                   | 99             |            | 70 - 130    |       |   | 03/08/23 10:34 | 03/08/23 23:23 | 1        |
| Method: EPA 300.0 - Anions, Ion               | Chromatograp   | hy - Solub | le          |       |   |                |                |          |
| Analyte                                       |                | Qualifier  | RL          | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                                      | 61.9           |            | 4.99        | mg/Kg |   |                | 03/09/23 00:00 | 1        |

Eurofins Carlsbad

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-11

## **Client Sample ID: FS11**

Date Collected: 03/01/23 10:00 Date Received: 03/03/23 08:40

Sample Depth: 3.5'

Client: Ensolum

Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                                                                                                                                                                                                                                                     | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualifier                                                               | RL                                                                                              | Unit                                    | D        | Prepared                                                                                     | Analyzed                                                                                                                                                                                                 | Dil Fac |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------|----------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Benzene                                                                                                                                                                                                                                                     | <0.00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                       | 0.00199                                                                                         | mg/Kg                                   |          | 03/10/23 14:43                                                                               | 03/15/23 15:08                                                                                                                                                                                           |         |
| Toluene                                                                                                                                                                                                                                                     | <0.00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                       | 0.00199                                                                                         | mg/Kg                                   |          | 03/10/23 14:43                                                                               | 03/15/23 15:08                                                                                                                                                                                           |         |
| Ethylbenzene                                                                                                                                                                                                                                                | <0.00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                       | 0.00199                                                                                         | mg/Kg                                   |          | 03/10/23 14:43                                                                               | 03/15/23 15:08                                                                                                                                                                                           |         |
| m-Xylene & p-Xylene                                                                                                                                                                                                                                         | <0.00398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                       | 0.00398                                                                                         | mg/Kg                                   |          | 03/10/23 14:43                                                                               | 03/15/23 15:08                                                                                                                                                                                           |         |
| o-Xylene                                                                                                                                                                                                                                                    | <0.00199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                       | 0.00199                                                                                         | mg/Kg                                   |          | 03/10/23 14:43                                                                               | 03/15/23 15:08                                                                                                                                                                                           |         |
| Xylenes, Total                                                                                                                                                                                                                                              | <0.00398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U                                                                       | 0.00398                                                                                         | mg/Kg                                   |          | 03/10/23 14:43                                                                               | 03/15/23 15:08                                                                                                                                                                                           |         |
| Surrogate                                                                                                                                                                                                                                                   | %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Qualifier                                                               | Limits                                                                                          |                                         |          | Prepared                                                                                     | Analyzed                                                                                                                                                                                                 | Dil Fa  |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                                 | 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S1-                                                                     | 70 - 130                                                                                        |                                         |          | 03/10/23 14:43                                                                               | 03/15/23 15:08                                                                                                                                                                                           |         |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                                  | 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S1-                                                                     | 70 - 130                                                                                        |                                         |          | 03/10/23 14:43                                                                               | 03/15/23 15:08                                                                                                                                                                                           | -       |
| Method: TAL SOP Total BTEX - T                                                                                                                                                                                                                              | otal BTEX Calo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | culation                                                                |                                                                                                 |                                         |          |                                                                                              |                                                                                                                                                                                                          |         |
| Analyte                                                                                                                                                                                                                                                     | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualifier                                                               | RL                                                                                              | Unit                                    | D        | Prepared                                                                                     | Analyzed                                                                                                                                                                                                 | Dil Fa  |
| Total BTEX                                                                                                                                                                                                                                                  | < 0.00398                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U                                                                       | 0.00398                                                                                         | mg/Kg                                   |          |                                                                                              | 03/16/23 15:40                                                                                                                                                                                           | 1       |
| Method: SW846 8015 NM - Diese                                                                                                                                                                                                                               | l Range Organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ics (DRO) (                                                             | GC)                                                                                             |                                         | P        | Bronorod                                                                                     | Analyzad                                                                                                                                                                                                 |         |
| Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                                                    | l Range Organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                 | Unit                                    | D        | Prepared                                                                                     | Analyzed                                                                                                                                                                                                 | Dil Fac |
| :<br>Method: SW846 8015 NM - Diese                                                                                                                                                                                                                          | l Range Organ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <mark>ics (DRO) (</mark><br>Qualifier                                   | GC)                                                                                             |                                         | <u>D</u> | Prepared                                                                                     | Analyzed<br>03/09/23 12:02                                                                                                                                                                               | Dil Fac |
| Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                                                                                    | el Range Organ<br>Result<br><50.0<br>sel Range Orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ics (DRO) (<br>Qualifier<br>U                                           | GC)<br><u>RL</u><br>50.0                                                                        | Unit                                    | <u>D</u> | Prepared                                                                                     |                                                                                                                                                                                                          | 1       |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte                                                                                                                                                           | el Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier                | GC)<br><u>RL</u><br>50.0                                                                        | Unit                                    | <u>D</u> | Prepared                                                                                     | 03/09/23 12:02<br>Analyzed                                                                                                                                                                               | Dil Fac |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                                                                                                                                                       | el Range Organ<br>Result<br><50.0<br>sel Range Orga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier                | GC)<br><u>RL</u><br>50.0<br>(GC)                                                                | Unit mg/Kg                              |          | <u> </u>                                                                                     | 03/09/23 12:02                                                                                                                                                                                           | ,       |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                 | el Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U           | GC)                                                                                             | Unit<br>mg/Kg<br>Unit                   |          | Prepared                                                                                     | 03/09/23 12:02<br>Analyzed                                                                                                                                                                               |         |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                     | el Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result<br><50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U<br>U      | GC)<br><u>RL</u><br>50.0<br>(GC)<br><u>RL</u><br>50.0<br>                                       | Unit<br>mg/Kg<br>Unit<br>mg/Kg          |          | Prepared<br>03/08/23 10:34                                                                   | 03/09/23 12:02<br>Analyzed<br>03/08/23 23:45                                                                                                                                                             | 1       |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                               | el Range Organ<br>Result<br><50.0<br>sel Range Orga<br>Result<br><50.0<br><50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U<br>U      | GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0<br>50.0                                                 | Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |          | Prepared<br>03/08/23 10:34<br>03/08/23 10:34                                                 | 03/09/23 12:02<br>Analyzed<br>03/08/23 23:45<br>03/08/23 23:45                                                                                                                                           | 1       |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate                   | el Range Organ<br><u>Result</u><br><50.0 sel Range Orga Result <50.0 <50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U<br>U      | GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0<br>50.0<br>50.0<br>50.0                                 | Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |          | Prepared<br>03/08/23 10:34<br>03/08/23 10:34<br>03/08/23 10:34                               | 03/09/23 12:02<br>Analyzed<br>03/08/23 23:45<br>03/08/23 23:45<br>03/08/23 23:45                                                                                                                         | Dil Fac |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics                                                                                                                                | el Range Organ<br><u>Result</u><br><50.0 sel Range Orga Result <50.0 <50.0 <50.0 <50.0 %Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ics (DRO) (<br>Qualifier<br>U<br>mics (DRO)<br>Qualifier<br>U<br>U      | GC)<br>RL<br>50.0<br>(GC)<br>RL<br>50.0<br>50.0<br>50.0<br>Limits                               | Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |          | Prepared<br>03/08/23 10:34<br>03/08/23 10:34<br>03/08/23 10:34<br>Prepared                   | 03/09/23 12:02<br>Analyzed<br>03/08/23 23:45<br>03/08/23 23:45<br>03/08/23 23:45<br>Analyzed                                                                                                             | Dil Fac |
| Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane | el Range Organ<br>Result<br><pre></pre> <pre></pre> <pre>Sel Range Orga </pre> <pre>Sel Range Orga </pre> <pre>Sel Range Orga </pre> <pre></pre> <pre><pre></pre> <pre></pre> <pre< td=""><td>ics (DRO) ((<br/>Qualifier<br/>U<br/>Qualifier<br/>U<br/>U<br/>U<br/>Qualifier</td><td>GC)<br/>RL 50.0<br/>(GC)<br/>RL 50.0<br/>50.0<br/>50.0<br/>50.0<br/><u>Limits</u> 70 - 130<br/>70 - 130</td><td>Unit<br/>mg/Kg<br/>Unit<br/>mg/Kg<br/>mg/Kg</td><td></td><td>Prepared<br/>03/08/23 10:34<br/>03/08/23 10:34<br/>03/08/23 10:34<br/>Prepared<br/>03/08/23 10:34</td><td>O3/09/23         12:02           Analyzed         03/08/23         23:45           03/08/23         23:45         03/08/23         23:45           03/08/23         23:45         03/08/23         23:45</td><td>Dil Fac</td></pre<></pre> | ics (DRO) ((<br>Qualifier<br>U<br>Qualifier<br>U<br>U<br>U<br>Qualifier | GC)<br>RL 50.0<br>(GC)<br>RL 50.0<br>50.0<br>50.0<br>50.0<br><u>Limits</u> 70 - 130<br>70 - 130 | Unit<br>mg/Kg<br>Unit<br>mg/Kg<br>mg/Kg |          | Prepared<br>03/08/23 10:34<br>03/08/23 10:34<br>03/08/23 10:34<br>Prepared<br>03/08/23 10:34 | O3/09/23         12:02           Analyzed         03/08/23         23:45           03/08/23         23:45         03/08/23         23:45           03/08/23         23:45         03/08/23         23:45 | Dil Fac |

| Chloride                       | 158 F1 | 4.97 | mg/Kg | 03/09/23 00:05        | 1        |
|--------------------------------|--------|------|-------|-----------------------|----------|
| Client Sample ID: FS12         |        |      |       | Lab Sample ID: 890-42 | 231-12   |
| Date Collected: 03/01/23 09:40 |        |      |       | Matrix                | c: Solid |

Date Collected: 03/01/23 09:40 Date Received: 03/03/23 08:40

Sample Depth: 3'

| Method: SW846 8021B - Volat | ile Organic Comp | ounds (GC) | )        |       |   |                |                |         |
|-----------------------------|------------------|------------|----------|-------|---|----------------|----------------|---------|
| Analyte                     | Result           | Qualifier  | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200         | U          | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:28 | 1       |
| Toluene                     | <0.00200         | U          | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:28 | 1       |
| Ethylbenzene                | <0.00200         | U          | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:28 | 1       |
| m-Xylene & p-Xylene         | <0.00399         | U          | 0.00399  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:28 | 1       |
| o-Xylene                    | <0.00200         | U          | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:28 | 1       |
| Xylenes, Total              | <0.00399         | U          | 0.00399  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:28 | 1       |
| Surrogate                   | %Recovery        | Qualifier  | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 102              |            | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 15:28 | 1       |

Eurofins Carlsbad

## **Client Sample Results**

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-12

## **Client Sample ID: FS12**

Date Collected: 03/01/23 09:40 Date Received: 03/03/23 08:40

Sample Depth: 3'

Client: Ensolum

| Surrogate                          | %Recovery      | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
|------------------------------------|----------------|-------------|----------|-------|---|----------------|----------------|---------|
| 1,4-Difluorobenzene (Surr)         | 73             |             | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 15:28 | 1       |
| Method: TAL SOP Total BTEX - T     | otal BTEX Calo | culation    |          |       |   |                |                |         |
| Analyte                            | Result         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                         | <0.00399       | U           | 0.00399  | mg/Kg |   |                | 03/16/23 15:40 | 1       |
| Method: SW846 8015 NM - Diese      | Range Organ    | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                            |                | Qualifier   | ,<br>RL  | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                          | <50.0          | U           | 50.0     | mg/Kg |   |                | 03/09/23 12:02 | 1       |
| -<br>Method: SW846 8015B NM - Dies | el Range Orga  | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                            |                | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics            | <50.0          | U           | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:07 | 1       |
| (GRO)-C6-C10                       |                |             |          |       |   |                |                |         |
| Diesel Range Organics (Over        | <50.0          | U           | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:07 | 1       |
| C10-C28)                           |                |             |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)  | <50.0          | U           | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:07 | 1       |
| Surrogate                          | %Recovery      | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                     | 87             |             | 70 - 130 |       |   | 03/08/23 10:34 | 03/09/23 00:07 | 1       |
| o-Terphenyl                        | 105            |             | 70 - 130 |       |   | 03/08/23 10:34 | 03/09/23 00:07 | 1       |
| Method: EPA 300.0 - Anions, Ion    | Chromatograp   | hy - Solubl | e        |       |   |                |                |         |
|                                    | Decult         | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Analyte                            | Result         | Quaimer     | RL       | Unit  | U | Flepaleu       | Analyzeu       | Dirrac  |

#### **Client Sample ID: FS13**

Date Collected: 03/01/23 11:50 Date Received: 03/03/23 08:40 Sample Depth: 3'

## Lab Sample ID: 890-4231-13

Matrix: Solid

| Analyte                                | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Benzene                                | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:49 | 1       |
| Toluene                                | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:49 | 1       |
| Ethylbenzene                           | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:49 | 1       |
| m-Xylene & p-Xylene                    | <0.00402          | U           | 0.00402  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:49 | 1       |
| o-Xylene                               | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:49 | 1       |
| Xylenes, Total                         | <0.00402          | U           | 0.00402  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 15:49 | 1       |
| Surrogate                              | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)            | 114               |             | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 15:49 | 1       |
| 1,4-Difluorobenzene (Surr)             | 105               |             | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 15:49 | 1       |
| Method: TAL SOP Total BTEX             | - Total BTEX Cald | ulation     |          |       |   |                |                |         |
| Analyte                                | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                             | <0.00402          | U           | 0.00402  | mg/Kg |   |                | 03/16/23 15:40 | 1       |
|                                        | esel Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
| Method: SW846 8015 NM - Die            | esei Kange Organ  |             |          |       |   |                |                |         |
| Method: SW846 8015 NM - Die<br>Analyte | • •               | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-13

Lab Sample ID: 890-4231-14

Matrix: Solid

## Client Sample ID: FS13

Date Collected: 03/01/23 11:50 Date Received: 03/03/23 08:40

#### Sample Depth: 3'

Client: Ensolum

| Analyte                                 | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | 70.6      |           | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:28 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:28 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:28 | 1       |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 3         | S1-       | 70 - 130 |       |   | 03/08/23 10:34 | 03/09/23 00:28 | 1       |
| o-Terphenyl                             | 5         | S1-       | 70 - 130 |       |   | 03/08/23 10:34 | 03/09/23 00:28 | 1       |

## Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|-------|---|----------|----------------|---------|
| Chloride | 82.4             | 5.00 | mg/Kg |   |          | 03/09/23 00:25 | 1       |

#### Client Sample ID: SW01

#### Date Collected: 02/27/23 14:50 Date Received: 03/03/23 08:40

Sample Depth: 0-2'

1-Chlorooctane

o-Terphenyl

| Analyte                                  | Result         | Qualifier                | RL         | Unit  | D | Prepared       | Analyzed                   | Dil Fac |
|------------------------------------------|----------------|--------------------------|------------|-------|---|----------------|----------------------------|---------|
| Benzene                                  | <0.00202       | U                        | 0.00202    | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:56             | 1       |
| Toluene                                  | <0.00202       | U                        | 0.00202    | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:56             | 1       |
| Ethylbenzene                             | <0.00202       | U                        | 0.00202    | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:56             | 1       |
| m-Xylene & p-Xylene                      | <0.00403       | U                        | 0.00403    | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:56             | 1 1     |
| o-Xylene                                 | <0.00202       | U                        | 0.00202    | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:56             | 1       |
| Xylenes, Total                           | <0.00403       | U                        | 0.00403    | mg/Kg |   | 03/13/23 08:00 | 03/13/23 15:56             | 1       |
| Surrogate                                | %Recovery      | Qualifier                | Limits     |       |   | Prepared       | Analyzed                   | Dil Fac |
| 4-Bromofluorobenzene (Surr)              | 103            |                          | 70 - 130   |       |   | 03/13/23 08:00 | 03/13/23 15:56             | 1       |
| 1,4-Difluorobenzene (Surr)               | 96             |                          | 70 - 130   |       |   | 03/13/23 08:00 | 03/13/23 15:56             | 1       |
| Total BTEX                               | <0.00403       |                          | 0.00403    | mg/Kg |   |                | 03/13/23 17:17             |         |
| Method: SW846 8015 NM - Diese            |                | ics (DRO) (<br>Qualifier | GC)<br>RL  | Unit  | D | Dremered       | Amelymed                   | Dil Fac |
| Analyte<br>Total TPH                     | Kesuit<br>66.7 | Quaimer                  | 50.0       | mg/Kg |   | Prepared       | Analyzed<br>03/09/23 12:02 |         |
| Method: SW846 8015B NM - Dies<br>Analyte |                | nics (DRO)<br>Qualifier  | (GC)<br>RL | Unit  | D | Prepared       | Analyzed                   | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10  | 66.7           |                          | 50.0       | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:49             | 1       |
| Diesel Range Organics (Over<br>C10-C28)  | <50.0          | U                        | 50.0       | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:49             |         |
| Oll Range Organics (Over C28-C36)        | <50.0          | U                        | 50.0       | mg/Kg |   | 03/08/23 10:34 | 03/09/23 00:49             | 1       |
|                                          |                |                          |            |       |   |                |                            |         |

70 - 130

70 - 130

0.7 S1-

0.7 S1-

03/09/23 00:49

03/09/23 00:49

03/08/23 10:34

03/08/23 10:34

1

|                                                                                                                 |                | Client       | : Sample Re | sults |   |                |                          |                     |
|-----------------------------------------------------------------------------------------------------------------|----------------|--------------|-------------|-------|---|----------------|--------------------------|---------------------|
| Client: Ensolum<br>Project/Site: Maverick Baish B Batte                                                         | ery            |              |             |       |   |                | Job ID: 890<br>SDG: 03E2 |                     |
| Client Sample ID: SW01<br>Date Collected: 02/27/23 14:50<br>Date Received: 03/03/23 08:40<br>Sample Depth: 0-2' |                |              |             |       |   | Lab Sam        | ple ID: 890-4<br>Matri   | 231-14<br>ix: Solid |
| _<br>Method: EPA 300.0 - Anions, Ion                                                                            | Chromatograp   | hy - Soluble |             |       |   |                |                          |                     |
| Analyte                                                                                                         |                | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed                 | Dil Fa              |
| Chloride                                                                                                        | 36.7           |              | 4.97        | mg/Kg |   |                | 03/09/23 00:39           |                     |
| Client Sample ID: SW02<br>Date Collected: 02/28/23 11:50<br>Date Received: 03/03/23 08:40                       |                |              |             |       |   | Lab Sam        | ple ID: 890-4<br>Matri   | 231-1<br>ix: Solie  |
| Sample Depth: 0-2'<br>-<br>Method: SW846 8021B - Volatile (                                                     | Organic Comp   | ounds (GC)   |             |       |   |                |                          |                     |
| Analyte                                                                                                         | • •            | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed                 | Dil Fa              |
| Benzene                                                                                                         | <0.00199       | U            | 0.00199     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 13:07           |                     |
| Toluene                                                                                                         | <0.00199       | U            | 0.00199     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 13:07           |                     |
| Ethylbenzene                                                                                                    | <0.00199       | U            | 0.00199     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 13:07           |                     |
| m-Xylene & p-Xylene                                                                                             | <0.00398       | U            | 0.00398     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 13:07           |                     |
| o-Xylene                                                                                                        | <0.00199       | U            | 0.00199     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 13:07           |                     |
| Xylenes, Total                                                                                                  | <0.00398       | U            | 0.00398     | mg/Kg |   | 03/10/23 12:35 | 03/14/23 13:07           |                     |
| Surrogate                                                                                                       | %Recovery      | Qualifier    | Limits      |       |   | Prepared       | Analyzed                 | Dil Fa              |
| 4-Bromofluorobenzene (Surr)                                                                                     | 127            |              | 70 - 130    |       |   | 03/10/23 12:35 | 03/14/23 13:07           |                     |
| 1,4-Difluorobenzene (Surr)                                                                                      | 109            |              | 70 - 130    |       |   | 03/10/23 12:35 | 03/14/23 13:07           |                     |
| -<br>Method: TAL SOP Total BTEX - To                                                                            | otal BTEX Calo | culation     |             |       |   |                |                          |                     |
| Analyte                                                                                                         | Result         | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed                 | Dil Fa              |
| Total BTEX                                                                                                      | <0.00398       | U            | 0.00398     | mg/Kg |   |                | 03/16/23 15:40           |                     |
| Method: SW846 8015 NM - Diese                                                                                   |                |              |             |       | _ |                |                          |                     |
| Analyte                                                                                                         |                | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed                 | Dil Fa              |
| Total TPH                                                                                                       | 64.7           |              | 50.0        | mg/Kg |   |                | 03/09/23 12:02           |                     |
| Method: SW846 8015B NM - Dies                                                                                   | el Range Orga  | nics (DRO) ( | (GC)        |       |   |                |                          |                     |
| Analyte                                                                                                         | Result         | Qualifier    | RL          | Unit  | D | Prepared       | Analyzed                 | Dil Fa              |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                                         | 64.7           |              | 50.0        | mg/Kg |   | 03/08/23 10:34 | 03/09/23 01:11           |                     |
| Diesel Range Organics (Over<br>C10-C28)                                                                         | <50.0          | U            | 50.0        | mg/Kg |   | 03/08/23 10:34 | 03/09/23 01:11           |                     |
| Oll Range Organics (Over C28-C36)                                                                               | <50.0          | U            | 50.0        | mg/Kg |   | 03/08/23 10:34 | 03/09/23 01:11           |                     |
| Surrogate                                                                                                       | %Recovery      |              | Limits      |       |   | Prepared       | Analyzed                 | Dil Fa              |
| 1-Chlorooctane                                                                                                  | 0.8            | S1-          | 70 - 130    |       |   | 03/08/23 10:34 | 03/09/23 01:11           |                     |
| o-Terphenyl                                                                                                     |                | S1-          | 70 - 130    |       |   | 03/08/23 10:34 | 03/09/23 01:11           |                     |

Analyte

Chloride

RL

4.95

Unit

mg/Kg

D

Prepared

Result Qualifier

51.8

Dil Fac

1

Analyzed

03/09/23 00:44

Job ID: 890-4231-1 SDG: 03E2057054

Lab Sample ID: 890-4231-16

## Client Sample ID: SW03

Date Collected: 03/01/23 11:05 Date Received: 03/03/23 08:40

Sample Depth: 0

Client: Ensolum

| 03/03/23 00.40 |  |  |
|----------------|--|--|
| 0-3'           |  |  |

| Analyte                                                                                                                                                                                                | Result                                                                                | Qualifier                                                                           | RL                                                                 | Unit                                    | D        | Prepared                                                 | Analyzed                                                                                     | Dil Fac           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|----------|----------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|
| Benzene                                                                                                                                                                                                | <0.00199                                                                              | U                                                                                   | 0.00199                                                            | mg/Kg                                   |          | 03/10/23 14:43                                           | 03/15/23 18:13                                                                               | 1                 |
| Toluene                                                                                                                                                                                                | <0.00199                                                                              | U                                                                                   | 0.00199                                                            | mg/Kg                                   |          | 03/10/23 14:43                                           | 03/15/23 18:13                                                                               | 1                 |
| Ethylbenzene                                                                                                                                                                                           | <0.00199                                                                              | U                                                                                   | 0.00199                                                            | mg/Kg                                   |          | 03/10/23 14:43                                           | 03/15/23 18:13                                                                               | 1                 |
| m-Xylene & p-Xylene                                                                                                                                                                                    | <0.00398                                                                              | U                                                                                   | 0.00398                                                            | mg/Kg                                   |          | 03/10/23 14:43                                           | 03/15/23 18:13                                                                               | 1                 |
| o-Xylene                                                                                                                                                                                               | <0.00199                                                                              | U                                                                                   | 0.00199                                                            | mg/Kg                                   |          | 03/10/23 14:43                                           | 03/15/23 18:13                                                                               | 1                 |
| Xylenes, Total                                                                                                                                                                                         | <0.00398                                                                              | U                                                                                   | 0.00398                                                            | mg/Kg                                   |          | 03/10/23 14:43                                           | 03/15/23 18:13                                                                               | 1                 |
| Surrogate                                                                                                                                                                                              | %Recovery                                                                             | Qualifier                                                                           | Limits                                                             |                                         |          | Prepared                                                 | Analyzed                                                                                     | Dil Fac           |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                            | 120                                                                                   |                                                                                     | 70 - 130                                                           |                                         |          | 03/10/23 14:43                                           | 03/15/23 18:13                                                                               | 1                 |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                             | 103                                                                                   |                                                                                     | 70 - 130                                                           |                                         |          | 03/10/23 14:43                                           | 03/15/23 18:13                                                                               | 1                 |
| Analyte<br>Total BTEX                                                                                                                                                                                  |                                                                                       | Qualifier<br>U                                                                      | <b>RL</b><br>0.00398                                               | Unit<br>mg/Kg                           | <u>D</u> | Prepared                                                 | Analyzed<br>03/16/23 15:40                                                                   | Dil Fac           |
| Total BTEX<br>Method: SW846 8015 NM - Diese                                                                                                                                                            | <0.00398<br>el Range Organ                                                            | U<br>ics (DRO) (                                                                    | 0.00398                                                            | mg/Kg                                   |          | <u>`</u>                                                 | 03/16/23 15:40                                                                               | 1                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte                                                                                                                                                 | <0.00398<br>I Range Organ<br>Result                                                   | U<br>ics (DRO) (<br>Qualifier                                                       | 0.00398<br>GC)<br>RL                                               | mg/Kg<br>Unit                           | <u>D</u> | Prepared Prepared                                        | 03/16/23 15:40<br>Analyzed                                                                   | 1                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH                                                                                                                                    | <0.00398<br>el Range Organ<br>Result<br><49.9                                         | U<br>ics (DRO) (<br>Qualifier<br>U                                                  | 0.00398<br>GC)<br>RL<br>49.9                                       | mg/Kg                                   |          | <u>`</u>                                                 | 03/16/23 15:40                                                                               |                   |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Dies                                                                                                   | <0.00398 el Range Organ Result <49.9 sel Range Orga                                   | U<br>ics (DRO) (<br>Qualifier<br>U                                                  | 0.00398<br>GC)<br>RL<br>49.9                                       | mg/Kg<br>Unit                           |          | <u>`</u>                                                 | 03/16/23 15:40<br>Analyzed                                                                   | 1                 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics                                                            | <0.00398 el Range Organ Result <49.9 sel Range Orga                                   | U<br>ics (DRO) (<br>Qualifier<br>U<br>anics (DRO)<br>Qualifier                      | 0.00398<br>GC)<br>RL<br>49.9                                       | mg/Kg<br>Unit<br>mg/Kg                  | D        | Prepared                                                 | 03/16/23 15:40<br>Analyzed<br>03/09/23 11:59                                                 | 1<br>Dil Fac<br>1 |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over             | <0.00398<br>el Range Organ<br>Result<br><49.9<br>sel Range Orga<br>Result             | U<br>ics (DRO) (<br>Qualifier<br>U<br>anics (DRO)<br>Qualifier<br>U                 | 0.00398<br>GC)<br>RL<br>49.9<br>(GC)<br>RL                         | mg/Kg<br>Unit<br>mg/Kg<br>Unit          | D        | Prepared                                                 | 03/16/23 15:40<br>Analyzed<br>03/09/23 11:59<br>Analyzed                                     | 1<br>Dil Fac      |
| Total BTEX<br>Method: SW846 8015 NM - Diese<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - Diese<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28) | <0.00398 el Range Organ Result <49.9 sel Range Orga Result <49.9                      | U<br>ics (DRO) (<br>Qualifier<br>U<br>anics (DRO)<br>Qualifier<br>U<br>U            | 0.00398<br>GC)<br>RL<br>49.9<br>(GC)<br>RL<br>49.9                 | mg/Kg Unit mg/Kg Unit mg/Kg             | D        | Prepared<br>Prepared<br>03/08/23 10:30                   | 03/16/23 15:40<br>Analyzed<br>03/09/23 11:59<br>Analyzed<br>03/08/23 21:56                   | Dil Fac           |
|                                                                                                                                                                                                        | <0.00398 el Range Organ Result <49.9 sel Range Orga sel Range Orga Result <49.9 <49.9 | U<br>ics (DRO) (<br>Qualifier<br>U<br>encics (DRO)<br>Qualifier<br>U<br>U<br>U<br>U | 0.00398<br>GC)<br>RL<br>49.9<br>(GC)<br>RL<br>49.9<br>49.9<br>49.9 | mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg | D        | Prepared<br>Prepared<br>03/08/23 10:30<br>03/08/23 10:30 | 03/16/23 15:40<br>Analyzed<br>03/09/23 11:59<br>Analyzed<br>03/08/23 21:56<br>03/08/23 21:56 | Dil Fac           |

| _                                 |             |              |      |       |   |          |                |         |
|-----------------------------------|-------------|--------------|------|-------|---|----------|----------------|---------|
| Method: EPA 300.0 - Anions, Ion C | hromatograp | hy - Soluble | •    |       |   |          |                |         |
| Analyte                           | Result      | Qualifier    | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                          | 80.8        |              | 4.96 | mg/Kg |   |          | 03/09/23 00:49 | 1       |

70 - 130

92

#### **Client Sample ID: SW04** Date Collected: 03/01/23 11:15

Date Received: 03/03/23 08:40

Sample Depth: 0-3'

o-Terphenyl

| Method: SW846 8021B - Volat | ile Organic Comp | ounds (GC) | )        |       |   |                |                |         |
|-----------------------------|------------------|------------|----------|-------|---|----------------|----------------|---------|
| Analyte                     | Result           | Qualifier  | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200         | U          | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 18:34 | 1       |
| Toluene                     | <0.00200         | U          | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 18:34 | 1       |
| Ethylbenzene                | <0.00200         | U          | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 18:34 | 1       |
| m-Xylene & p-Xylene         | <0.00399         | U          | 0.00399  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 18:34 | 1       |
| o-Xylene                    | <0.00200         | U          | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 18:34 | 1       |
| Xylenes, Total              | <0.00399         | U          | 0.00399  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 18:34 | 1       |
| Surrogate                   | %Recovery        | Qualifier  | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 123              |            | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 18:34 | 1       |

Eurofins Carlsbad

Page 95 of 203

Matrix: Solid

5

1

Matrix: Solid

03/08/23 10:30 03/08/23 21:56

Lab Sample ID: 890-4231-17

## **Client Sample Results**

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

5

Lab Sample ID: 890-4231-17

## Client Sample ID: SW04

Date Collected: 03/01/23 11:15

Client: Ensolum

Date Received: 03/03/23 08:40 Sample Depth: 0-3'

| Surrogate                               | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| 1,4-Difluorobenzene (Surr)              |                   |             | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 18:34 | 1       |
| Method: TAL SOP Total BTEX -            | • Total BTEX Calo | culation    |          |       |   |                |                |         |
| Analyte                                 | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                              | <0.00399          | U           | 0.00399  | mg/Kg |   |                | 03/16/23 15:40 |         |
| Method: SW846 8015 NM - Dies            | sel Range Organ   | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                                 | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | <49.9             | U           | 49.9     | mg/Kg |   |                | 03/09/23 11:59 | 1       |
| Method: SW846 8015B NM - Di             | esel Range Orga   | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                                 | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9             | U           | 49.9     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:02 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <49.9             | U           | 49.9     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:02 | 1       |
| Oll Range Organics (Over C28-C36)       | <49.9             | U           | 49.9     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:02 |         |
| Surrogate                               | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 101               |             | 70 - 130 |       |   | 03/08/23 10:30 | 03/08/23 23:02 | 1       |
| o-Terphenyl                             | 107               |             | 70 - 130 |       |   | 03/08/23 10:30 | 03/08/23 23:02 | 1       |
| Method: EPA 300.0 - Anions, lo          | on Chromatograp   | hy - Solubl | e        |       |   |                |                |         |
| Analyte                                 | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                                | 88.4              |             | 5.05     | mg/Kg |   |                | 03/09/23 00:54 | 1       |

Sample Depth: 0-4'

| Analyte                                | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Benzene                                | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 19:58 | 1       |
| Toluene                                | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 19:58 | 1       |
| Ethylbenzene                           | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 19:58 | 1       |
| m-Xylene & p-Xylene                    | <0.00402          | U           | 0.00402  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 19:58 | 1       |
| o-Xylene                               | <0.00201          | U           | 0.00201  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 19:58 | 1       |
| Xylenes, Total                         | <0.00402          | U           | 0.00402  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 19:58 | 1       |
| Surrogate                              | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)            | 107               |             | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 19:58 | 1       |
| 1,4-Difluorobenzene (Surr)             | 89                |             | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 19:58 | 1       |
| Method: TAL SOP Total BTEX             | - Total BTEX Cald | culation    |          |       |   |                |                |         |
| Analyte                                | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                             | <0.00402          | U           | 0.00402  | mg/Kg |   |                | 03/16/23 15:40 | 1       |
| -                                      | sol Pango Organ   | ics (DRO) ( | GC)      |       |   |                |                |         |
| Method: SW846 8015 NM - Die            | esei Kange Organ  | /           |          |       |   |                |                |         |
| Method: SW846 8015 NM - Die<br>Analyte | • •               | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |

Eurofins Carlsbad

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

Lab Sample ID: 890-4231-18

Lab Sample ID: 890-4231-19

Analyzed

## **Client Sample ID: SW06**

Date Collected: 03/01/23 12:10 Date Received: 03/03/23 08:40

Sample Depth: 0-4'

Client: Ensolum

# Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:23 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:23 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:23 | 1       |
|                                   |           |           |          |       |   |                |                |         |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 92        |           | 70 - 130 |       |   | 03/08/23 10:30 | 03/08/23 23:23 | 1       |
| o-Terphenyl                       | 103       |           | 70 - 130 |       |   | 03/08/23 10:30 | 03/08/23 23:23 | 1       |
|                                   |           |           |          |       |   |                |                |         |

## Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|--------|-----------|------|-------|---|----------|----------------|---------|
| Chloride | 42.3   |           | 5.00 | mg/Kg |   |          | 03/09/23 00:59 | 1       |

#### **Client Sample ID: SW07**

## Date Collected: 03/01/23 12:15

Date Received: 03/03/23 08:40

#### Sample Depth: 0-4'

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 20:19 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 20:19 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 20:19 | 1       |
| m-Xylene & p-Xylene         | <0.00399  | U         | 0.00399  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 20:19 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 20:19 | 1       |
| Xylenes, Total              | <0.00399  | U         | 0.00399  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 20:19 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 103       |           | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 20:19 | 1       |
| 1,4-Difluorobenzene (Surr)  | 73        |           | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 20:19 | 1       |

#### Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier Unit Prepared RL D Total BTEX <0.00399 U 0.00399 03/16/23 15:40 mg/Kg

#### Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

| Analyte   | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-----------|--------|-----------|------|-------|---|----------|----------------|---------|
| Total TPH | <50.0  | U         | 50.0 | mg/Kg |   |          | 03/09/23 11:59 | 1       |

## Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:45 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:45 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:30 | 03/08/23 23:45 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 92        |           | 70 - 130 |       |   | 03/08/23 10:30 | 03/08/23 23:45 | 1       |
| o-Terphenyl                       | 92        |           | 70 - 130 |       |   | 03/08/23 10:30 | 03/08/23 23:45 | 1       |

**Eurofins Carlsbad** 

5

Dil Fac

1

Matrix: Solid

|                                                           |      | Client                    | Sample Res | sults |   |          |                          |                     | 1  |
|-----------------------------------------------------------|------|---------------------------|------------|-------|---|----------|--------------------------|---------------------|----|
| Client: Ensolum<br>Project/Site: Maverick Baish B Battery |      |                           |            |       |   |          | Job ID: 890<br>SDG: 03E2 |                     | 2  |
| Client Sample ID: SW07<br>Date Collected: 03/01/23 12:15  |      |                           |            |       |   | Lab San  | nple ID: 890-4<br>Matri  | 231-19<br>ix: Solid |    |
| Date Received: 03/03/23 08:40<br>Sample Depth: 0-4'       |      |                           |            |       |   |          |                          |                     | 4  |
| Method: EPA 300.0 - Anions, Ion Ch<br>Analyte             |      | hy - Soluble<br>Qualifier | RL         | Unit  | D | Prepared | Analyzed                 | Dil Fac             | 5  |
| Chloride                                                  | 69.3 |                           | 5.00       | mg/Kg |   | 1100000  | 03/09/23 01:03           | 1                   |    |
|                                                           |      |                           |            |       |   |          |                          |                     |    |
|                                                           |      |                           |            |       |   |          |                          |                     | 8  |
|                                                           |      |                           |            |       |   |          |                          |                     | 9  |
|                                                           |      |                           |            |       |   |          |                          |                     |    |
|                                                           |      |                           |            |       |   |          |                          |                     |    |
|                                                           |      |                           |            |       |   |          |                          |                     |    |
|                                                           |      |                           |            |       |   |          |                          |                     | 13 |
|                                                           |      |                           |            |       |   |          |                          |                     |    |

Eurofins Carlsbad

5 6

Job ID: 890-4231-1 SDG: 03E2057054

Prep Type: Total/NA

# Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

Client: Ensolum

|                          |                        | BFB1         | DFBZ1     |
|--------------------------|------------------------|--------------|-----------|
| Lab Sample ID            | Client Sample ID       | (70-130)     | (70-130)  |
| 880-25394-A-3-F MS       | Matrix Spike           | 91           | 108       |
| 880-25394-A-3-G MSD      | Matrix Spike Duplicate | 97           | 103       |
| 880-25480-A-11-F MS      | Matrix Spike           | 52 S1-       | 84        |
| 880-25480-A-11-G MSD     | Matrix Spike Duplicate | 117          | 97        |
| 890-4215-A-1-B MS        | Matrix Spike           | 98           | 105       |
| 890-4215-A-1-C MSD       | Matrix Spike Duplicate | 102          | 103       |
| 890-4223-A-1-E MS        | Matrix Spike           | 111          | 93        |
| 890-4223-A-1-F MSD       | Matrix Spike Duplicate | 109          | 94        |
| 890-4231-1               | FS01                   | 99           | 102       |
| 890-4231-2               | FS02                   | 104          | 91        |
| 890-4231-3               | FS03                   | 84           | 91        |
| 890-4231-3<br>890-4231-4 | FS03<br>FS04           | 86           | 91<br>88  |
| 890-4231-4<br>890-4231-5 | FS04<br>FS05           | 80<br>50 S1- |           |
|                          |                        |              | 125<br>97 |
| 890-4231-6               | FS06                   | 40 S1-       |           |
| 890-4231-7               | FS07                   | 44 S1-       | 83        |
| 890-4231-8               | FS08                   | 76           | 67 S1-    |
| 890-4231-9               | FS09                   | 42 S1-       | 85        |
| 890-4231-10              | FS10                   | 113          | 105       |
| 890-4231-11              | FS11                   | 66 S1-       | 68 S1-    |
| 890-4231-12              | FS12                   | 102          | 73        |
| 890-4231-13              | FS13                   | 114          | 105       |
| 890-4231-14              | SW01                   | 103          | 96        |
| 890-4231-15              | SW02                   | 127          | 109       |
| 890-4231-16              | SW03                   | 120          | 103       |
| 890-4231-17              | SW04                   | 123          | 112       |
| 890-4231-18              | SW06                   | 107          | 89        |
| 890-4231-19              | SW07                   | 103          | 73        |
| LCS 880-48192/1-A        | Lab Control Sample     | 93           | 102       |
| LCS 880-48320/1-A        | Lab Control Sample     | 97           | 97        |
| LCS 880-48332/1-A        | Lab Control Sample     | 102          | 89        |
| LCS 880-48442/1-A        | Lab Control Sample     | 90           | 108       |
| LCSD 880-48192/2-A       | Lab Control Sample Dup | 93           | 103       |
| LCSD 880-48320/2-A       | Lab Control Sample Dup | 93<br>94     | 105       |
| LCSD 880-48332/2-A       | Lab Control Sample Dup | 94<br>99     | 90        |
|                          |                        |              |           |
| LCSD 880-48442/2-A       | Lab Control Sample Dup | 92           | 105       |
| MB 880-48192/5-A         | Method Blank           | 93           | 95        |
| MB 880-48320/5-A         | Method Blank           | 83           | 90        |
| MB 880-48332/5-A         | Method Blank           | 84           | 94        |
| MB 880-48442/5-A         | Method Blank           | 59 S1-       | 91        |
| Surrogate Legend         |                        |              |           |

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Eurofins Carlsbad

Released to Imaging: 5/14/2024 11:22:06 AM

## **Surrogate Summary**

Page 100 of 203

5 6

Job ID: 890-4231-1 SDG: 03E2057054

Prep Type: Total/NA

#### Project/Site: Maverick Baish B Battery Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Client: Ensolum

|                      |                        |          |           | Percent Surro | ogate Recovery (Acceptance Lir |
|----------------------|------------------------|----------|-----------|---------------|--------------------------------|
|                      |                        | 1CO1     | OTPH1     |               |                                |
| Lab Sample ID        | Client Sample ID       | (70-130) | (70-130)  |               |                                |
| 380-25357-A-22-C MS  | Matrix Spike           | 115      | 111       |               |                                |
| 380-25357-A-22-D MSD | Matrix Spike Duplicate | 105      | 106       |               |                                |
| 380-25537-A-41-E MS  | Matrix Spike           | 126      | 107       |               |                                |
| 880-25537-A-41-F MSD | Matrix Spike Duplicate | 125      | 106       |               |                                |
| 890-4231-1           | FS01                   | 120      | 126       |               |                                |
| 390-4231-2           | FS02                   | 115      | 120       |               |                                |
| 390-4231-3           | FS03                   | 103      | 116       |               |                                |
| 390-4231-4           | FS04                   | 101      | 93        |               |                                |
| 390-4231-5           | FS05                   | 109      | 105       |               |                                |
| 390-4231-6           | FS06                   | 109      | 106       |               |                                |
| 890-4231-7           | FS07                   | 105      | 95        |               |                                |
| 890-4231-8           | FS08                   | 102      | 122       |               |                                |
| 890-4231-8 MS        | FS08                   | 119      | 134 S1+   |               |                                |
| 890-4231-8 MSD       | FS08                   | 106      | 121       |               |                                |
| 890-4231-9           | FS09                   | 88       | 105       |               |                                |
| 890-4231-10          | FS10                   | 84       | 99        |               |                                |
| 890-4231-11          | FS11                   | 106      | 99<br>129 |               |                                |
| 390-4231-11          | FS12                   | 87       | 129       |               |                                |
|                      |                        |          |           |               |                                |
| 90-4231-13           | FS13                   | 3 S1-    | 5 S1-     |               |                                |
| 90-4231-14           | SW01                   | 0.7 S1-  | 0.7 S1-   |               |                                |
| 90-4231-15           | SW02                   | 0.8 S1-  | 0.4 S1-   |               |                                |
| 90-4231-16           | SW03                   | 86       | 92        |               |                                |
| 390-4231-16 MS       | SW03                   | 116      | 117       |               |                                |
| 390-4231-16 MSD      | SW03                   | 124      | 117       |               |                                |
| 390-4231-17          | SW04                   | 101      | 107       |               |                                |
| 890-4231-18          | SW06                   | 92       | 103       |               |                                |
| 890-4231-19          | SW07                   | 92       | 92        |               |                                |
| LCS 880-47868/2-A    | Lab Control Sample     | 126      | 135 S1+   |               |                                |
| LCS 880-48015/2-A    | Lab Control Sample     | 101      | 89        |               |                                |
| LCS 880-48107/2-A    | Lab Control Sample     | 105      | 116       |               |                                |
| LCS 880-48109/2-A    | Lab Control Sample     | 84       | 98        |               |                                |
| LCSD 880-47868/3-A   | Lab Control Sample Dup | 114      | 119       |               |                                |
| LCSD 880-48015/3-A   | Lab Control Sample Dup | 95       | 84        |               |                                |
| LCSD 880-48107/3-A   | Lab Control Sample Dup | 119      | 118       |               |                                |
| LCSD 880-48109/3-A   | Lab Control Sample Dup | 81       | 97        |               |                                |
| MB 880-47868/1-A     | Method Blank           | 110      | 125       |               |                                |
| MB 880-48015/1-A     | Method Blank           | 110      | 125       |               |                                |
|                      |                        | 121      | 117       |               |                                |
| MB 880-48107/1-A     | Method Blank           |          |           |               |                                |
| MB 880-48109/1-A     | Method Blank           | 102      | 124       |               |                                |

#### Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-4231-1 SDG: 03E2057054

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 48192

Prep Batch: 48192

**Client Sample ID: Method Blank** 

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

# Method: 8021B - Volatile Organic Compounds (GC)

|               | • |
|---------------|---|
| Matrix: Solid |   |

Project/Site: Maverick Baish B Battery

#### Matrix: Solid Analysis Batch: 48425

Client: Ensolum

|                             | MB        | MB        |          |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/09/23 10:06 | 03/13/23 11:51 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/09/23 10:06 | 03/13/23 11:51 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/09/23 10:06 | 03/13/23 11:51 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  | mg/Kg |   | 03/09/23 10:06 | 03/13/23 11:51 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/09/23 10:06 | 03/13/23 11:51 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  | mg/Kg |   | 03/09/23 10:06 | 03/13/23 11:51 | 1       |
|                             | МВ        | МВ        |          |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 93        |           | 70 - 130 |       |   | 03/09/23 10:06 | 03/13/23 11:51 | 1       |
| 1,4-Difluorobenzene (Surr)  | 95        |           | 70 - 130 |       |   | 03/09/23 10:06 | 03/13/23 11:51 | 1       |

#### Lab Sample ID: LCS 880-48192/1-A Matrix: Solid

## Analysis Batch: 48425

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |
|---------------------|-------|---------|-----------|-------|---|------|----------|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |
| Benzene             | 0.100 | 0.08568 |           | mg/Kg |   | 86   | 70 - 130 |
| Toluene             | 0.100 | 0.08848 |           | mg/Kg |   | 88   | 70 - 130 |
| Ethylbenzene        | 0.100 | 0.08317 |           | mg/Kg |   | 83   | 70 - 130 |
| m-Xylene & p-Xylene | 0.200 | 0.1706  |           | mg/Kg |   | 85   | 70 - 130 |
| o-Xylene            | 0.100 | 0.08409 |           | mg/Kg |   | 84   | 70 _ 130 |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 93        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 102       |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-48192/2-A

#### Matrix: Solid

| Analysis Batch: 48425 |       |         |           |       |   |      |          | Prep Batch: 4 |       |  |
|-----------------------|-------|---------|-----------|-------|---|------|----------|---------------|-------|--|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |               | RPD   |  |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD           | Limit |  |
| Benzene               | 0.100 | 0.08482 |           | mg/Kg |   | 85   | 70 - 130 | 1             | 35    |  |
| Toluene               | 0.100 | 0.08647 |           | mg/Kg |   | 86   | 70 - 130 | 2             | 35    |  |
| Ethylbenzene          | 0.100 | 0.08262 |           | mg/Kg |   | 83   | 70 - 130 | 1             | 35    |  |
| m-Xylene & p-Xylene   | 0.200 | 0.1696  |           | mg/Kg |   | 85   | 70 - 130 | 1             | 35    |  |
| o-Xylene              | 0.100 | 0.08441 |           | mg/Kg |   | 84   | 70 - 130 | 0             | 35    |  |
|                       |       |         |           |       |   |      |          |               |       |  |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 93        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

## Lab Sample ID: 890-4215-A-1-B MS

## Matrix: Solid

| Analysis Batch: 48425 |          |           |        |        |           |       |   |      | Prep     | p Batch: 48192 |
|-----------------------|----------|-----------|--------|--------|-----------|-------|---|------|----------|----------------|
|                       | Sample   | Sample    | Spike  | MS     | MS        |       |   |      | %Rec     |                |
| Analyte               | Result   | Qualifier | Added  | Result | Qualifier | Unit  | D | %Rec | Limits   |                |
| Benzene               | <0.00199 | U         | 0.0998 | 0.1023 |           | mg/Kg |   | 102  | 70 - 130 |                |
| Toluene               | <0.00199 | U         | 0.0998 | 0.1046 |           | mg/Kg |   | 105  | 70 - 130 |                |

Eurofins Carlsbad

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

MS MS

0.09862

0.2013

0.09902

**Result Qualifier** 

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0998

0.200

0.0998

Limits 70 - 130

70 - 130

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: 890-4215-A-1-B MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 48425

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Sample Sample

<0.00199

<0.00398 U

<0.00199 U

%Recovery

Result Qualifier

U

MS MS

98

105

Qualifier

Prep Type: Total/NA

Prep Batch: 48192

**Client Sample ID: Matrix Spike** 

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

98

100

98

D

# 2 3 4 5 6 7 8 9 10

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

**Client Sample ID: Method Blank** 

03/14/23 11:43

03/14/23 11:43

**Client Sample ID: Lab Control Sample** 

03/10/23 12:35

03/10/23 12:35

Prep Type: Total/NA

Prep Batch: 48320

#### Matrix: Solid Analysis Batch: 48425

Lab Sample ID: 890-4215-A-1-C MSD

| Analysis Batch: 48425 |          |           |       |         |           |       |   |      | Prep     | Batch: | 481 <mark>92</mark> |   |
|-----------------------|----------|-----------|-------|---------|-----------|-------|---|------|----------|--------|---------------------|---|
|                       | Sample   | Sample    | Spike | MSD     | MSD       |       |   |      | %Rec     |        | RPD                 |   |
| Analyte               | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit               |   |
| Benzene               | <0.00199 | U         | 0.100 | 0.09603 |           | mg/Kg |   | 95   | 70 - 130 | 6      | 35                  |   |
| Toluene               | <0.00199 | U         | 0.100 | 0.09757 |           | mg/Kg |   | 97   | 70 - 130 | 7      | 35                  | ÷ |
| Ethylbenzene          | <0.00199 | U         | 0.100 | 0.09340 |           | mg/Kg |   | 92   | 70 - 130 | 5      | 35                  |   |
| m-Xylene & p-Xylene   | <0.00398 | U         | 0.201 | 0.1938  |           | mg/Kg |   | 95   | 70 - 130 | 4      | 35                  | 1 |
| o-Xylene              | <0.00199 | U         | 0.100 | 0.09584 |           | mg/Kg |   | 94   | 70 - 130 | 3      | 35                  |   |
|                       |          |           |       |         |           |       |   |      |          |        |                     |   |

|                             | MSD       | MSD       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 102       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 103       |           | 70 - 130 |

#### Lab Sample ID: MB 880-48320/5-A Matrix: Solid Analysis Batch: 48570

| _                   | MB        | MB        |         |       |   |                | -              |         |
|---------------------|-----------|-----------|---------|-------|---|----------------|----------------|---------|
| Analyte             | Result    | Qualifier | RL      | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200  | U         | 0.00200 | mg/Kg |   | 03/10/23 12:35 | 03/14/23 11:43 | 1       |
| Toluene             | <0.00200  | U         | 0.00200 | mg/Kg |   | 03/10/23 12:35 | 03/14/23 11:43 | 1       |
| Ethylbenzene        | <0.00200  | U         | 0.00200 | mg/Kg |   | 03/10/23 12:35 | 03/14/23 11:43 | 1       |
| m-Xylene & p-Xylene | <0.00400  | U         | 0.00400 | mg/Kg |   | 03/10/23 12:35 | 03/14/23 11:43 | 1       |
| o-Xylene            | <0.00200  | U         | 0.00200 | mg/Kg |   | 03/10/23 12:35 | 03/14/23 11:43 | 1       |
| Xylenes, Total      | <0.00400  | U         | 0.00400 | mg/Kg |   | 03/10/23 12:35 | 03/14/23 11:43 | 1       |
|                     | МВ        | МВ        |         |       |   |                |                |         |
| Surrogate           | %Recoverv | Qualifier | Limits  |       |   | Prepared       | Analyzed       | Dil Fac |

| luorobenzene (Surr) 83 | 70 - 130 |
|------------------------|----------|
| robenzene (Surr) 90    | 70 - 130 |
| robenzene (Surr) 90    |          |

#### Lab Sample ID: LCS 880-48320/1-A Matrix: Solid Analysis Batch: 48570

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |
|---------------------|-------|---------|-----------|-------|---|------|----------|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |
| Benzene             | 0.100 | 0.09096 |           | mg/Kg |   | 91   | 70 - 130 |
| Toluene             | 0.100 | 0.08633 |           | mg/Kg |   | 86   | 70 - 130 |
| Ethylbenzene        | 0.100 | 0.08686 |           | mg/Kg |   | 87   | 70 - 130 |
| m-Xylene & p-Xylene | 0.200 | 0.1794  |           | mg/Kg |   | 90   | 70 - 130 |

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 48320

1

Client: Ensolum Project/Site: Maverick Baish B Battery

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCS 880-48   | 320/1-A    |           |                      |         |           |       | Client   | Sample    | ID: Lab Co   | ontrol S | ample   |
|-----------------------------|------------|-----------|----------------------|---------|-----------|-------|----------|-----------|--------------|----------|---------|
| Matrix: Solid               |            |           |                      |         |           |       |          |           | Prep 1       | Type: To | tal/NA  |
| Analysis Batch: 48570       |            |           |                      |         |           |       |          |           | Prep         | Batch:   | 48320   |
|                             |            |           | Spike                | LCS     | LCS       |       |          |           | %Rec         |          |         |
| Analyte                     |            |           | Added                | Result  | Qualifier | Unit  | D        | %Rec      | Limits       |          |         |
| o-Xylene                    |            |           | 0.100                | 0.09083 |           | mg/Kg |          | 91        | 70 - 130     |          |         |
|                             | LCS        | LCS       |                      |         |           |       |          |           |              |          |         |
| Surrogate                   | %Recovery  |           | Limits               |         |           |       |          |           |              |          |         |
| 4-Bromofluorobenzene (Surr) | 97         |           | 70 - 130             |         |           |       |          |           |              |          |         |
| 1,4-Difluorobenzene (Surr)  | 97         |           | 70 - 130             |         |           |       |          |           |              |          |         |
| -                           |            |           |                      |         |           |       |          |           |              |          |         |
| Lab Sample ID: LCSD 880-4   | 8320/2-A   |           |                      |         |           | Clie  | nt San   | ple ID: I | Lab Contro   |          |         |
| Matrix: Solid               |            |           |                      |         |           |       |          |           | Prep 1       | Гуре: То | tal/NA  |
| Analysis Batch: 48570       |            |           |                      |         |           |       |          |           | Prep         | Batch:   | 48320   |
|                             |            |           | Spike                | LCSD    | LCSD      |       |          |           | %Rec         |          | RPD     |
| Analyte                     |            |           | Added                | Result  | Qualifier | Unit  | D        | %Rec      | Limits       | RPD      | Limit   |
| Benzene                     |            |           | 0.100                | 0.09452 |           | mg/Kg |          | 95        | 70 - 130     | 4        | 35      |
| Toluene                     |            |           | 0.100                | 0.08623 |           | mg/Kg |          | 86        | 70 - 130     | 0        | 35      |
| Ethylbenzene                |            |           | 0.100                | 0.08454 |           | mg/Kg |          | 85        | 70 - 130     | 3        | 35      |
| m-Xylene & p-Xylene         |            |           | 0.200                | 0.1705  |           | mg/Kg |          | 85        | 70 - 130     | 5        | 35      |
| o-Xylene                    |            |           | 0.100                | 0.08598 |           | mg/Kg |          | 86        | 70 - 130     | 5        | 35      |
|                             | 1000       | LCSD      |                      |         |           |       |          |           |              |          |         |
| Surrogate                   | %Recovery  |           | Limits               |         |           |       |          |           |              |          |         |
| 4-Bromofluorobenzene (Surr) |            |           | 70 - 130             |         |           |       |          |           |              |          |         |
| 1,4-Difluorobenzene (Surr)  | 105        |           | 70 - 130             |         |           |       |          |           |              |          |         |
| _                           |            |           |                      |         |           |       |          |           |              |          |         |
| Lab Sample ID: 880-25480-4  | A-11-F MS  |           |                      |         |           |       |          | Client    | Sample ID    | : Matrix | Spike   |
| Matrix: Solid               |            |           |                      |         |           |       |          |           |              | Type: To |         |
| Analysis Batch: 48570       |            |           |                      |         |           |       |          |           |              | Batch:   |         |
|                             | Sample     | Sample    | Spike                | MS      | MS        |       |          |           | %Rec         |          |         |
| Analyte                     | Result     | Qualifier | Added                | Result  | Qualifier | Unit  | D        | %Rec      | Limits       |          |         |
| Benzene                     | <0.00198   | U F1      | 0.0998               | 0.04568 | F1        | mg/Kg |          | 45        | 70 - 130     |          |         |
| Toluene                     | <0.00198   | U F1 F2   | 0.0998               | 0.04254 | F1        | mg/Kg |          | 41        | 70 - 130     |          |         |
| Ethylbenzene                | <0.00198   |           | 0.0998               | 0.03566 |           | mg/Kg |          | 36        | 70 - 130     |          |         |
| m-Xylene & p-Xylene         | < 0.00396  |           | 0.200                | 0.05862 |           | mg/Kg |          | 29        | 70 - 130     |          |         |
| o-Xylene                    | < 0.00198  |           | 0.0998               | 0.02939 |           | mg/Kg |          | 29        | 70 - 130     |          |         |
| ,                           |            |           |                      |         |           | 0 0   |          |           |              |          |         |
| Sumo moto                   |            | MS        | Limits               |         |           |       |          |           |              |          |         |
| Surrogate                   | %Recovery  | S1-       |                      |         |           |       |          |           |              |          |         |
| 4-Bromofluorobenzene (Surr) |            | 31-       | 70 - 130<br>70 - 130 |         |           |       |          |           |              |          |         |
| 1,4-Difluorobenzene (Surr)  | 84         |           | 70 - 130             |         |           |       |          |           |              |          |         |
| Lab Sample ID: 880-25480-4  | A-11-G MSD |           |                      |         |           | С     | lient Sa | ample IC  | ): Matrix Sp | oike Dup | olicate |
| Matrix: Solid               |            |           |                      |         |           |       |          |           |              | Type: To |         |
| Analysis Batch: 48570       |            |           |                      |         |           |       |          |           |              | Batch:   |         |
| •                           | Sample     | Sample    | Spike                | MSD     | MSD       |       |          |           | %Rec         |          | RPD     |
| Analyte                     | -          | Qualifier | Added                | Result  | Qualifier | Unit  | D        | %Rec      | Limits       | RPD      | Limit   |
| Benzene                     | <0.00198   |           | 0.100                | 0.05128 |           | mg/Kg |          | 51        | 70 - 130     | 12       | 35      |
| Toluene                     | < 0.00198  |           | 0.100                | 0.06096 |           | mg/Kg |          | 59        | 70 - 130     | 36       | 35      |
|                             | <0.00198   |           | 0.100                | 0.07369 |           |       |          | 55<br>74  |              | 70       | 35      |
| Ethylbenzene                | <0.00198   |           | 0.100                | 0.07309 | 172       | mg/Kg |          | 74        | 70 - 130     | 70       | 30      |

35

35

Eurofins Carlsbad

89

89

70 - 130

70 - 130

76

76

Job ID: 890-4231-1

SDG: 03E2057054

<0.00396 U F1 F2

<0.00198 UF1F2

m-Xylene & p-Xylene

o-Xylene

0.200

0.100

0.1519 F2

0.07690 F2

mg/Kg

mg/Kg

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: Maverick Baish B Battery

Matrix: Solid

Surrogate

Analysis Batch: 48570

4-Bromofluorobenzene (Surr)

Lab Sample ID: MB 880-48332/5-A

1,4-Difluorobenzene (Surr)

Lab Sample ID: 880-25480-A-11-G MSD

#### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MSD MSD %Recovery Qualifier

117

97

Prep Type: Total/NA

Prep Batch: 48320

**Client Sample ID: Matrix Spike Duplicate** 

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Prep Batch: 48332

7

| Matrix: Solid<br>Analysis Batch: 48639 |           |           |          |       |   |                | Prep Type: <sup>-</sup><br>Prep Batcl |         |   |
|----------------------------------------|-----------|-----------|----------|-------|---|----------------|---------------------------------------|---------|---|
| -                                      | MB        | MB        |          |       |   |                |                                       |         |   |
| Analyte                                | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed                              | Dil Fac |   |
| Benzene                                | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 13:23                        | 1       |   |
| Toluene                                | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 13:23                        | 1       |   |
| Ethylbenzene                           | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 13:23                        | 1       |   |
| m-Xylene & p-Xylene                    | <0.00400  | U         | 0.00400  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 13:23                        | 1       |   |
| o-Xylene                               | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 13:23                        | 1       |   |
| Xylenes, Total                         | <0.00400  | U         | 0.00400  | mg/Kg |   | 03/10/23 14:43 | 03/15/23 13:23                        | 1       |   |
|                                        | MB        | МВ        |          |       |   |                |                                       |         | 1 |
| Surrogate                              | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed                              | Dil Fac |   |
| 4-Bromofluorobenzene (Surr)            | 84        |           | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 13:23                        | 1       |   |
| 1,4-Difluorobenzene (Surr)             | 94        |           | 70 - 130 |       |   | 03/10/23 14:43 | 03/15/23 13:23                        | 1       |   |

### Lab Sample ID: LCS 880-48332/1-A Matrix: Solid

## Analysis Batch: 48639

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.07765 |           | mg/Kg |   | 78   | 70 - 130 |  |
| Toluene             | 0.100 | 0.07670 |           | mg/Kg |   | 77   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.07977 |           | mg/Kg |   | 80   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1622  |           | mg/Kg |   | 81   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.08264 |           | mg/Kg |   | 83   | 70 - 130 |  |
|                     |       |         |           |       |   |      |          |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 102       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 89        |           | 70 - 130 |

#### Lab Sample ID: LCSD 880-48332/2-A Matrix: Solid Analysis Batch: 48639

| Client Sample ID: | Lab | Contro | oi San | ipie D | up |
|-------------------|-----|--------|--------|--------|----|
|                   |     | Prep ' | Type:  | Total/ | NA |

| Analysis Batch: 48639 |           |           |        |         |           |       |   |      | Prep     | Batch: | 48332 |
|-----------------------|-----------|-----------|--------|---------|-----------|-------|---|------|----------|--------|-------|
|                       |           |           | Spike  | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               |           |           | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               |           |           | 0.100  | 0.08413 |           | mg/Kg |   | 84   | 70 - 130 | 8      | 35    |
| Toluene               |           |           | 0.100  | 0.08221 |           | mg/Kg |   | 82   | 70 - 130 | 7      | 35    |
| Ethylbenzene          |           |           | 0.100  | 0.08334 |           | mg/Kg |   | 83   | 70 - 130 | 4      | 35    |
| m-Xylene & p-Xylene   |           |           | 0.200  | 0.1699  |           | mg/Kg |   | 85   | 70 - 130 | 5      | 35    |
| o-Xylene              |           |           | 0.100  | 0.08958 |           | mg/Kg |   | 90   | 70 - 130 | 8      | 35    |
|                       | LCSD      | LCSD      |        |         |           |       |   |      |          |        |       |
| Surrogate             | %Recovery | Qualifier | Limits |         |           |       |   |      |          |        |       |

| 4-Bromofluorobenzene (Surr) | 99 | 70 - 130 |
|-----------------------------|----|----------|

**Eurofins Carlsbad** 

Client: Ensolum Project/Site: Maverick Baish B Battery

## Method: 80

| Method: 8021B - Volatile Org    | anic Co         | mpo      | ounds (C  | GC) (Conti           | nued)   |           |          |       |             |            |         |         |   |
|---------------------------------|-----------------|----------|-----------|----------------------|---------|-----------|----------|-------|-------------|------------|---------|---------|---|
| Lab Sample ID: LCSD 880-48332/  | 2-A             |          |           |                      |         |           | Clien    | t San | nple ID: La | ab Control | Sampl   | e Dup   |   |
| Matrix: Solid                   |                 |          |           |                      |         |           |          |       |             | Prep Ty    | ype: To | tal/NA  |   |
| Analysis Batch: 48639           |                 |          |           |                      |         |           |          |       |             | Prep       | Batch:  | 48332   |   |
|                                 | LCSD            | 100      | n         |                      |         |           |          |       |             |            |         |         | Ę |
| Surrogate                       | %Recovery       |          |           | Limits               |         |           |          |       |             |            |         |         |   |
| 1,4-Difluorobenzene (Surr)      | 90              | Qua      |           | 70 - 130             |         |           |          |       |             |            |         |         |   |
|                                 |                 |          |           | 101100               |         |           |          |       |             |            |         |         |   |
| Lab Sample ID: 890-4223-A-1-E M | IS              |          |           |                      |         |           |          |       | Client S    | Sample ID: | Matrix  | Spike   |   |
| Matrix: Solid                   |                 |          |           |                      |         |           |          |       |             | Prep Ty    | ype: To | tal/NA  |   |
| Analysis Batch: 48639           |                 |          |           |                      |         |           |          |       |             | Prep       | Batch:  | 48332   |   |
|                                 | Sample          | Sam      | ple       | Spike                | MS      | MS        |          |       |             | %Rec       |         |         |   |
| Analyte                         | Result          | Qua      | lifier    | Added                | Result  | Qualifier | Unit     | D     | %Rec        | Limits     |         |         |   |
| Benzene                         | <0.00201        | U F1     |           | 0.100                | 0.03352 | F1        | mg/Kg    |       | 33          | 70 - 130   |         |         |   |
| Toluene                         | <0.00201        | U F1     |           | 0.100                | 0.03897 | F1        | mg/Kg    |       | 39          | 70 - 130   |         |         |   |
| Ethylbenzene                    | <0.00201        | U F1     |           | 0.100                | 0.04351 | F1        | mg/Kg    |       | 43          | 70 - 130   |         |         |   |
| m-Xylene & p-Xylene             | <0.00402        | UF1      |           | 0.200                | 0.08603 | F1        | mg/Kg    |       | 43          | 70 - 130   |         |         |   |
| o-Xylene                        | <0.00201        | U F1     |           | 0.100                | 0.04474 | F1        | mg/Kg    |       | 45          | 70 - 130   |         |         |   |
|                                 | MS              | МS       |           |                      |         |           |          |       |             |            |         |         |   |
| Surrogate                       | ws<br>%Recovery |          | lifior    | Limits               |         |           |          |       |             |            |         |         |   |
| 4-Bromofluorobenzene (Surr)     | 111             | Qua      |           | 70 - 130             |         |           |          |       |             |            |         |         |   |
| 1,4-Difluorobenzene (Surr)      | 93              |          |           | 70 - 130<br>70 - 130 |         |           |          |       |             |            |         |         |   |
|                                 |                 |          |           | 10-100               |         |           |          |       |             |            |         |         |   |
| Lab Sample ID: 890-4223-A-1-F M | SD              |          |           |                      |         |           | Cli      | ent S | ample ID:   | Matrix Sp  | ike Dup | olicate |   |
| Matrix: Solid                   |                 |          |           |                      |         |           |          |       |             | Prep Ty    | -       |         |   |
| Analysis Batch: 48639           |                 |          |           |                      |         |           |          |       |             | Prep       | Batch:  | 48332   |   |
|                                 | Sample          | Sam      | ple       | Spike                | MSD     | MSD       |          |       |             | %Rec       |         | RPD     |   |
| Analyte                         | Result          | Qua      | lifier    | Added                | Result  | Qualifier | Unit     | D     | %Rec        | Limits     | RPD     | Limit   |   |
| Benzene                         | <0.00201        | U F1     |           | 0.0996               | 0.02719 | F1        | mg/Kg    |       | 27          | 70 - 130   | 21      | 35      |   |
| Toluene                         | <0.00201        | U F1     |           | 0.0996               | 0.03113 | F1        | mg/Kg    |       | 31          | 70 - 130   | 22      | 35      |   |
| Ethylbenzene                    | <0.00201        | U F1     |           | 0.0996               | 0.03380 | F1        | mg/Kg    |       | 34          | 70 - 130   | 25      | 35      |   |
| m-Xylene & p-Xylene             | < 0.00402       | UF1      |           | 0.199                | 0.06818 | F1        | mg/Kg    |       | 34          | 70 - 130   | 23      | 35      |   |
| o-Xylene                        | <0.00201        | U F1     |           | 0.0996               | 0.03787 | F1        | mg/Kg    |       | 38          | 70 - 130   | 17      | 35      |   |
|                                 | MSD             | MSD      | )         |                      |         |           |          |       |             |            |         |         |   |
| Surrogate                       | %Recovery       | Qua      | lifier    | Limits               |         |           |          |       |             |            |         |         |   |
| 4-Bromofluorobenzene (Surr)     | 109             |          |           | 70 - 130             |         |           |          |       |             |            |         |         |   |
| 1,4-Difluorobenzene (Surr)      | 94              |          |           | 70 - 130             |         |           |          |       |             |            |         |         |   |
|                                 |                 |          |           |                      |         |           |          |       |             |            |         |         |   |
| Lab Sample ID: MB 880-48442/5-4 | 4               |          |           |                      |         |           |          |       | Client Sa   | mple ID: N |         |         |   |
| Matrix: Solid                   |                 |          |           |                      |         |           |          |       |             | Prep Ty    |         |         |   |
| Analysis Batch: 48426           |                 | <b>.</b> |           |                      |         |           |          |       |             | Prep       | Batch:  | 48442   |   |
| Arrelada                        | _               |          | MB        |                      |         |           | _        | _     |             | <b>.</b> . |         |         |   |
| Analyte                         |                 |          | Qualifier |                      |         | Unit      | <u>D</u> | -     | Prepared    | Analyze    |         | Dil Fac |   |
| Benzene                         | <0.0            | 0200     | U         | 0.002                | 00      | mg/K      | g        | 03/   | 13/23 08:00 | 03/13/23 1 | 1:59    | 1       |   |

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | < 0.00200 | U         | 0.00200  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 11:59 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 11:59 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 11:59 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 11:59 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 11:59 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  | mg/Kg |   | 03/13/23 08:00 | 03/13/23 11:59 | 1       |
|                             | МВ        | МВ        |          |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 59        | S1-       | 70 - 130 |       |   | 03/13/23 08:00 | 03/13/23 11:59 | 1       |
| 1,4-Difluorobenzene (Surr)  | 91        |           | 70 - 130 |       |   | 03/13/23 08:00 | 03/13/23 11:59 | 1       |

Eurofins Carlsbad

Client: Ensolum Project/Site: Maverick Baish B Battery Job ID: 890-4231-1 SDG: 03E2057054

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCS 880-48                  | 442/1-A                                         |           |          |         |           |       | Client  | Sample    | ID: Lab Control Sample                        |
|--------------------------------------------|-------------------------------------------------|-----------|----------|---------|-----------|-------|---------|-----------|-----------------------------------------------|
| Matrix: Solid                              |                                                 |           |          |         |           |       |         |           | Prep Type: Total/NA                           |
| Analysis Batch: 48426                      |                                                 |           |          |         |           |       |         |           | Prep Batch: 48442                             |
|                                            |                                                 |           | Spike    | LCS     | LCS       |       |         |           | %Rec                                          |
| Analyte                                    |                                                 |           | Added    | Result  | Qualifier | Unit  | D       | %Rec      | Limits                                        |
| Benzene                                    |                                                 |           | 0.100    | 0.1007  |           | mg/Kg |         | 101       | 70 - 130                                      |
| Toluene                                    |                                                 |           | 0.100    | 0.08959 |           | mg/Kg |         | 90        | 70 - 130                                      |
| Ethylbenzene                               |                                                 |           | 0.100    | 0.09671 |           | mg/Kg |         | 97        | 70 - 130                                      |
| m-Xylene & p-Xylene                        |                                                 |           | 0.200    | 0.2023  |           | mg/Kg |         | 101       | 70 - 130                                      |
| o-Xylene                                   |                                                 |           | 0.100    | 0.09558 |           | mg/Kg |         | 96        | 70 - 130                                      |
|                                            | LCS                                             | LCS       |          |         |           |       |         |           |                                               |
| Surrogate                                  | %Recovery                                       | Qualifier | Limits   |         |           |       |         |           |                                               |
| 4-Bromofluorobenzene (Surr)                | 90                                              |           | 70 - 130 |         |           |       |         |           |                                               |
| 1,4-Difluorobenzene (Surr)                 | 108                                             |           | 70 - 130 |         |           |       |         |           |                                               |
| Lab Sample ID: LCSD 880-4<br>Matrix: Solid | b Sample ID: LCSD 880-48442/2-A<br>atrix: Solid |           |          |         |           | Clie  | ent Sam | ple ID: I | Lab Control Sample Dup<br>Prep Type: Total/NA |

#### Analysis Batch: 48426

| Analysis Batch: 48426 |       |         |           |       |   |      | Prep Batch: 48442 |     |       |  |  |  |
|-----------------------|-------|---------|-----------|-------|---|------|-------------------|-----|-------|--|--|--|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec              |     | RPD   |  |  |  |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits            | RPD | Limit |  |  |  |
| Benzene               | 0.100 | 0.1032  |           | mg/Kg |   | 103  | 70 - 130          | 2   | 35    |  |  |  |
| Toluene               | 0.100 | 0.08730 |           | mg/Kg |   | 87   | 70 - 130          | 3   | 35    |  |  |  |
| Ethylbenzene          | 0.100 | 0.09347 |           | mg/Kg |   | 93   | 70 - 130          | 3   | 35    |  |  |  |
| m-Xylene & p-Xylene   | 0.200 | 0.1962  |           | mg/Kg |   | 98   | 70 - 130          | 3   | 35    |  |  |  |
| o-Xylene              | 0.100 | 0.09363 |           | mg/Kg |   | 94   | 70 - 130          | 2   | 35    |  |  |  |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 92        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 105       |           | 70 - 130 |

#### Lab Sample ID: 880-25394-A-3-F MS Matrix: Solid Analysis Batch: 48426

| Analysis Batch: 48426 |          |           |       |         |           |       |   |      |          | atch: 48442 |
|-----------------------|----------|-----------|-------|---------|-----------|-------|---|------|----------|-------------|
|                       | Sample   | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |             |
| Analyte               | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |             |
| Benzene               | <0.00200 | U         | 0.100 | 0.1049  |           | mg/Kg |   | 105  | 70 - 130 |             |
| Toluene               | <0.00200 | U         | 0.100 | 0.09636 |           | mg/Kg |   | 96   | 70 - 130 |             |
| Ethylbenzene          | <0.00200 | U         | 0.100 | 0.1053  |           | mg/Kg |   | 105  | 70 - 130 |             |
| m-Xylene & p-Xylene   | <0.00400 | U         | 0.201 | 0.2196  |           | mg/Kg |   | 108  | 70 - 130 |             |
| o-Xylene              | <0.00200 | U         | 0.100 | 0.1024  |           | mg/Kg |   | 102  | 70 - 130 |             |
|                       | MS       | MS        |       |         |           |       |   |      |          |             |

|                             | 1110      | 1110      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 91        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 108       |           | 70 - 130 |

### Lab Sample ID: 880-25394-A-3-G MSD Matrix: Solid

#### Analysis Batch: 48426

|              | Sample   | Sample    | Spike  | MSD     | MSD       |       |   |      | %Rec     |     | RPD   |
|--------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|-----|-------|
| Analyte      | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene      | <0.00200 | U         | 0.0996 | 0.1009  |           | mg/Kg |   | 101  | 70 - 130 | 4   | 35    |
| Toluene      | <0.00200 | U         | 0.0996 | 0.09566 |           | mg/Kg |   | 96   | 70 - 130 | 1   | 35    |
| Ethylbenzene | <0.00200 | U         | 0.0996 | 0.1025  |           | mg/Kg |   | 103  | 70 - 130 | 3   | 35    |

**Eurofins Carlsbad** 

Prep Type: Total/NA

Prep Batch: 48442

5 6 7

**Client Sample ID: Matrix Spike** 

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

## Released to Imaging: 5/14/2024 11:22:06 AM

5

7

Job ID: 890-4231-1 SDG: 03E2057054

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| · · · · · · · · · · · · · · · · · · · | ab Sample ID: 880-25394-A-3-G MSD |           |          |        |           |         |        |      | Client Sample ID: Matrix Spike Duplicate |        |       |  |  |  |  |
|---------------------------------------|-----------------------------------|-----------|----------|--------|-----------|---------|--------|------|------------------------------------------|--------|-------|--|--|--|--|
| Matrix: Solid                         |                                   |           |          |        | Prep T    | ype: To | tal/NA |      |                                          |        |       |  |  |  |  |
| Analysis Batch: 48426                 |                                   |           |          |        |           |         |        |      | Prep                                     | Batch: | 48442 |  |  |  |  |
|                                       | Sample                            | Sample    | Spike    | MSD    | MSD       |         |        |      | %Rec                                     |        | RPD   |  |  |  |  |
| Analyte                               | Result                            | Qualifier | Added    | Result | Qualifier | Unit    | D      | %Rec | Limits                                   | RPD    | Limit |  |  |  |  |
| m-Xylene & p-Xylene                   | < 0.00400                         | U         | 0.199    | 0.2150 |           | mg/Kg   |        | 107  | 70 - 130                                 | 2      | 35    |  |  |  |  |
| o-Xylene                              | <0.00200                          | U         | 0.0996   | 0.1025 |           | mg/Kg   |        | 103  | 70 - 130                                 | 0      | 35    |  |  |  |  |
|                                       | MSD                               | MSD       |          |        |           |         |        |      |                                          |        |       |  |  |  |  |
| Surrogate                             | %Recovery                         | Qualifier | Limits   |        |           |         |        |      |                                          |        |       |  |  |  |  |
| 4-Bromofluorobenzene (Surr)           | 97                                |           | 70 - 130 |        |           |         |        |      |                                          |        |       |  |  |  |  |
| 1,4-Difluorobenzene (Surr)            | 103                               |           | 70 - 130 |        |           |         |        |      |                                          |        |       |  |  |  |  |

| Lab Sample ID: MB 880-47868/1-<br>Matrix: Solid | Α         |           |          |       |   | Client Sa      | mple ID: Metho<br>Prep Type: ⊺ |                 |
|-------------------------------------------------|-----------|-----------|----------|-------|---|----------------|--------------------------------|-----------------|
| Analysis Batch: 47856                           |           |           |          |       |   |                | Prep Batch                     | n: <b>47868</b> |
|                                                 | МВ        | МВ        |          |       |   |                |                                |                 |
| Analyte                                         | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed                       | Dil Fac         |
| Gasoline Range Organics                         | <50.0     | U         | 50.0     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 08:33                 | 1               |
| (GRO)-C6-C10                                    |           |           |          |       |   |                |                                |                 |
| Diesel Range Organics (Over                     | <50.0     | U         | 50.0     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 08:33                 | 1               |
| C10-C28)                                        |           |           |          |       |   |                |                                |                 |
| Oll Range Organics (Over C28-C36)               | <50.0     | U         | 50.0     | mg/Kg |   | 03/06/23 08:24 | 03/06/23 08:33                 | 1               |
|                                                 | МВ        | МВ        |          |       |   |                |                                |                 |
| Surrogate                                       | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed                       | Dil Fac         |
| 1-Chlorooctane                                  |           |           | 70 - 130 |       |   | 03/06/23 08:24 | 03/06/23 08:33                 | 1               |

| Lab Sample ID: LCS 880-47868/2-A |
|----------------------------------|
| Matrix: Solid                    |

## Analysis Batch: 47856

o-Terphenyl

Γ.

|                             | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Gasoline Range Organics     | 1000  | 1067   |           | mg/Kg |   | 107  | 70 - 130 |  |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |  |
| Diesel Range Organics (Over | 1000  | 1020   |           | mg/Kg |   | 102  | 70 - 130 |  |
| C10-C28)                    |       |        |           |       |   |      |          |  |

70 - 130

125

|                | LCS       |           |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 126       |           | 70 - 130 |
| o-Terphenyl    | 135       | S1+       | 70 - 130 |

| Lab Sample ID: LCSD 880-47868/3-A<br>Matrix: Solid<br>Analysis Batch: 47856 |       |        |           | Clier | nt Sam | nple ID: |          | ol Sampl<br>Type: To<br>Batch: | tal/NA |
|-----------------------------------------------------------------------------|-------|--------|-----------|-------|--------|----------|----------|--------------------------------|--------|
|                                                                             | Spike | LCSD   | LCSD      |       |        |          | %Rec     |                                | RPD    |
| Analyte                                                                     | Added | Result | Qualifier | Unit  | D      | %Rec     | Limits   | RPD                            | Limit  |
| Gasoline Range Organics                                                     | 1000  | 961.3  |           | mg/Kg |        | 96       | 70 - 130 | 10                             | 20     |
| (GRO)-C6-C10                                                                |       |        |           |       |        |          |          |                                |        |
| Diesel Range Organics (Over                                                 | 1000  | 912.4  |           | mg/Kg |        | 91       | 70 - 130 | 11                             | 20     |
| C10-C28)                                                                    |       |        |           |       |        |          |          |                                |        |

Eurofins Carlsbad

03/06/23 08:24

03/06/23 08:33

Prep Type: Total/NA

Prep Batch: 47868

**Client Sample ID: Lab Control Sample** 

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: LCSD 880-47868/3-A

Lab Sample ID: 880-25357-A-22-C MS

Lab Sample ID: 880-25357-A-22-D MSD

Matrix: Solid

Surrogate 1-Chlorooctane

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

C10-C28)

Surrogate 1-Chlorooctane

o-Terphenyl

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Matrix: Solid

(GRO)-C6-C10

Analysis Batch: 47856

Analysis Batch: 47856

Gasoline Range Organics

Diesel Range Organics (Over

Analysis Batch: 47856

Gasoline Range Organics

**Diesel Range Organics (Over** 

### Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCSD LCSD %Recovery Qualifier

Sample Sample

<49.9 U

<49.9 U

MS MS

Sample Sample

<49.9 U

<49.9 U

105

106

MSD MSD %Recovery Qualifier

Result Qualifier

%Recovery Qualifier

115

111

Result Qualifier

114

119

|                      |                |           |                 |        |                 |                    | : 03E20  |             |    |
|----------------------|----------------|-----------|-----------------|--------|-----------------|--------------------|----------|-------------|----|
| DRO) (GC) (          | Continue       | ed)       |                 |        |                 |                    |          |             |    |
|                      |                |           | Clier           | nt Sam | ple ID: I       | Lab Contro         | I Sample | e Dup       |    |
|                      |                |           |                 |        |                 |                    | ype: To  |             |    |
|                      |                |           |                 |        |                 | Prep               | Batch:   | 47868       | 5  |
|                      |                |           |                 |        |                 |                    |          |             | 5  |
| Limits<br>70 - 130   |                |           |                 |        |                 |                    |          |             |    |
| 70 - 130<br>70 - 130 |                |           |                 |        |                 |                    |          |             |    |
| 10-100               |                |           |                 |        |                 |                    |          |             | 7  |
|                      |                |           |                 |        | Client          | Sample ID          |          |             |    |
|                      |                |           |                 |        |                 |                    | ype: To  |             | 8  |
| Spike                | MS             | MS        |                 |        |                 | Prep<br>%Rec       | Batch:   | 47868       |    |
| Added                | Result         | Qualifier | Unit            | D      | %Rec            | Limits             |          |             | 9  |
| 998                  | 999.6          |           | mg/Kg           |        | 97              | 70 - 130           |          |             |    |
| 998                  | 1099           |           | mg/Kg           |        | 110             | 70 - 130           |          |             |    |
|                      |                |           |                 |        |                 |                    |          |             |    |
| Limits               |                |           |                 |        |                 |                    |          |             |    |
| 70 - 130             |                |           |                 |        |                 |                    |          |             | 10 |
| 70 - 130             |                |           |                 |        |                 |                    |          |             | 13 |
|                      |                |           | Cli             | ent Sa | mple ID         | ): Matrix Sp       | oike Dup | licate      |    |
|                      |                |           |                 |        |                 |                    | ype: To  |             |    |
|                      |                |           |                 |        |                 |                    | Batch:   |             |    |
| Spike                | MSD            | MSD       | 11 14           |        | 0/ <b>D</b> = = | %Rec               |          | RPD         |    |
| Added                | Result<br>1079 | Qualifier | _ Unit<br>mg/Kg | D      | %Rec<br>105     | Limits<br>70 - 130 | 8        | Limit<br>20 |    |
| 333                  | 1073           |           | mg/itg          |        | 100             | 70 - 150           | 0        | 20          |    |
| 999                  | 1050           |           | mg/Kg           |        | 105             | 70 - 130           | 5        | 20          |    |
| Limits               |                |           |                 |        |                 |                    |          |             |    |
| 70 - 130             |                |           |                 |        |                 |                    |          |             |    |
| 70 - 130             |                |           |                 |        |                 |                    |          |             |    |

| Lab Sample ID: MB 880-48015 | / <b>1-A</b> |
|-----------------------------|--------------|
| Matrix: Solid               |              |

#### Analysis Batch: 47992

|                                   | MB        | МВ        |          |       |   |                |                |         |
|-----------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                           | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <50.0     | U         | 50.0     | mg/Kg |   | 03/07/23 10:19 | 03/07/23 19:58 | 1       |
| (GRO)-C6-C10                      |           |           |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.0     | U         | 50.0     | mg/Kg |   | 03/07/23 10:19 | 03/07/23 19:58 | 1       |
| C10-C28)                          |           |           |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.0     | U         | 50.0     | mg/Kg |   | 03/07/23 10:19 | 03/07/23 19:58 | 1       |
|                                   | МВ        | МВ        |          |       |   |                |                |         |
| Surrogate                         | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 121       |           | 70 - 130 |       |   | 03/07/23 10:19 | 03/07/23 19:58 | 1       |
| o-Terphenyl                       | 117       |           | 70 - 130 |       |   | 03/07/23 10:19 | 03/07/23 19:58 | 1       |

Eurofins Carlsbad

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

Prep Batch: 48015

Job ID: 890-4231-1
## **QC Sample Results**

Page 109 of 203

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| latrix: Solid                                                                                                                                                                                                                                                                                                                                                                        | / <b>2-A</b>                                                                             |                                                          |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 | ID: Lab Co<br>Prep 1                                                                                             | Гуре: То                                                       |                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------|---------------------------------------|----------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------|
| Analysis Batch: 47992                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                          |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  | Batch:                                                         |                            |
| -                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                          |                                                          | Spike                                                                                             | LCS                                                                                 | LCS             |                                       |          |                                                                                 | %Rec                                                                                                             |                                                                |                            |
| Analyte                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                          | Added                                                                                             | Result                                                                              | Qualifier       | Unit                                  | D        | %Rec                                                                            | Limits                                                                                                           |                                                                |                            |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                          | 1000                                                                                              | 912.7                                                                               |                 | mg/Kg                                 |          | 91                                                                              | 70 - 130                                                                                                         |                                                                |                            |
| GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |                                                          |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                          |                                                                                          |                                                          | 1000                                                                                              | 818.2                                                                               |                 | mg/Kg                                 |          | 82                                                                              | 70 - 130                                                                                                         |                                                                |                            |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                          |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                      | LCS                                                                                      | LCS                                                      |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                            | %Recovery                                                                                | Qualifier                                                | Limits                                                                                            |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                       | 101                                                                                      |                                                          | 70 - 130                                                                                          |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
| p-Terphenyl                                                                                                                                                                                                                                                                                                                                                                          | 89                                                                                       |                                                          | 70 - 130                                                                                          |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |                                                          |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
| Lab Sample ID: LCSD 880-4801                                                                                                                                                                                                                                                                                                                                                         | 15/3-A                                                                                   |                                                          |                                                                                                   |                                                                                     |                 | Cliei                                 | nt San   | ipie ID: I                                                                      | Lab Contro                                                                                                       |                                                                |                            |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                        |                                                                                          |                                                          |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  | Гуре: То                                                       |                            |
| Analysis Batch: 47992                                                                                                                                                                                                                                                                                                                                                                |                                                                                          |                                                          | o. "                                                                                              |                                                                                     | 1.005           |                                       |          |                                                                                 |                                                                                                                  | Batch:                                                         |                            |
| an a bada                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          |                                                          | Spike                                                                                             |                                                                                     | LCSD            | 11-2                                  | _        | 0/ <b>F</b>                                                                     | %Rec                                                                                                             |                                                                | RPD                        |
| Analyte                                                                                                                                                                                                                                                                                                                                                                              |                                                                                          |                                                          | Added                                                                                             |                                                                                     | Qualifier       | Unit                                  | D        | %Rec                                                                            | Limits                                                                                                           |                                                                | Limit                      |
| Gasoline Range Organics<br>GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                               |                                                                                          |                                                          | 1000                                                                                              | 891.6                                                                               |                 | mg/Kg                                 |          | 89                                                                              | 70 - 130                                                                                                         | 2                                                              | 20                         |
| GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                           |                                                                                          |                                                          | 1000                                                                                              | 809.4                                                                               |                 | mg/Kg                                 |          | 81                                                                              | 70 - 130                                                                                                         | 1                                                              | 20                         |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          |                                                          | 1000                                                                                              | 009.4                                                                               |                 | myrry                                 |          | 01                                                                              | 70 - 150                                                                                                         |                                                                | 20                         |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |                                                          |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          | LCSD                                                     |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                            | %Recovery                                                                                | Qualifier                                                | Limits                                                                                            |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                       | 95                                                                                       |                                                          | 70 - 130                                                                                          |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                          | 84                                                                                       |                                                          | 70 - 130                                                                                          |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |                                                          |                                                                                                   |                                                                                     |                 |                                       |          |                                                                                 |                                                                                                                  |                                                                |                            |
|                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                          |                                                          |                                                                                                   |                                                                                     |                 |                                       |          | Client                                                                          | Sample ID                                                                                                        | Matrix                                                         | Spike                      |
| Lab Sample ID: 880-25537-A-41                                                                                                                                                                                                                                                                                                                                                        | I-E MS                                                                                   |                                                          |                                                                                                   |                                                                                     |                 |                                       |          | Client                                                                          | Sample ID                                                                                                        |                                                                |                            |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                       | I-E MS                                                                                   |                                                          |                                                                                                   |                                                                                     |                 |                                       |          | Client                                                                          | Prep 1                                                                                                           | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                       |                                                                                          | Samila                                                   | Snike                                                                                             | MS                                                                                  | MS              |                                       |          | Client                                                                          | Prep 1<br>Prep                                                                                                   |                                                                | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992                                                                                                                                                                                                                                                                                                              | Sample                                                                                   | Sample                                                   | Spike<br>Added                                                                                    |                                                                                     | MS              | Unit                                  | п        |                                                                                 | Prep 1<br>Prep<br>%Rec                                                                                           | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte                                                                                                                                                                                                                                                                                                   | Sample<br>Result                                                                         | Qualifier                                                | Added                                                                                             | Result                                                                              | MS<br>Qualifier | Unit                                  | D        | %Rec                                                                            | Prep<br>Prep<br>%Rec<br>Limits                                                                                   | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                        | Sample                                                                                   | Qualifier                                                | -                                                                                                 |                                                                                     |                 | - <mark>Unit</mark><br>mg/Kg          | D        |                                                                                 | Prep 1<br>Prep<br>%Rec                                                                                           | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10                                                                                                                                                                                                                                                         | Sample<br>Result                                                                         | Qualifier                                                | Added                                                                                             | Result                                                                              |                 | mg/Kg                                 | <u> </u> | %Rec                                                                            | Prep<br>Prep<br>%Rec<br>Limits                                                                                   | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Gasoline Range Organics                                                                                                                                                                                                                                                                        | Sample<br>Result<br><49.9                                                                | Qualifier                                                | Added                                                                                             | <b>Result</b><br>1051                                                               |                 |                                       | D        | <b>%Rec</b>                                                                     | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                       | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                                                                                          | Sample<br>Result<br><49.9<br><49.9                                                       | Qualifier<br>U<br>U                                      | Added                                                                                             | <b>Result</b><br>1051                                                               |                 | mg/Kg                                 | <u>D</u> | <b>%Rec</b>                                                                     | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                       | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                              | Sample<br>Result<br><49.9<br><49.9<br>MS                                                 | Qualifier<br>U<br>U<br>MS                                | Added                                                                                             | <b>Result</b><br>1051                                                               |                 | mg/Kg                                 | <u>D</u> | <b>%Rec</b>                                                                     | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                       | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate                                                                                                                                                                                                 | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery                                    | Qualifier<br>U<br>U<br>MS                                | Added<br>999<br>999<br>Limits                                                                     | <b>Result</b><br>1051                                                               |                 | mg/Kg                                 | <u> </u> | <b>%Rec</b>                                                                     | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                       | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane                                                                                                                                                                               | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126                             | Qualifier<br>U<br>U<br>MS                                | Added<br>999<br>999<br><u>Limits</u><br>70 - 130                                                  | <b>Result</b><br>1051                                                               |                 | mg/Kg                                 | <u>D</u> | <b>%Rec</b>                                                                     | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                       | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane                                                                                                                                                                               | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery                                    | Qualifier<br>U<br>U<br>MS                                | Added<br>999<br>999<br>Limits                                                                     | <b>Result</b><br>1051                                                               |                 | mg/Kg                                 | <u>D</u> | <b>%Rec</b>                                                                     | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130                                                                     | Гуре: То                                                       | tal/NA                     |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl                                                                                                                                                                | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107                      | Qualifier<br>U<br>U<br>MS                                | Added<br>999<br>999<br><u>Limits</u><br>70 - 130                                                  | <b>Result</b><br>1051                                                               |                 | mg/Kg                                 |          | %Rec<br>101<br>82                                                               | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130                                                         | Гуре: To<br>9 Batch:<br>                                       | tal/NA<br>48015            |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 880-25537-A-41                                                                                                                               | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107                      | Qualifier<br>U<br>U<br>MS                                | Added<br>999<br>999<br><u>Limits</u><br>70 - 130                                                  | <b>Result</b><br>1051                                                               |                 | mg/Kg                                 |          | %Rec<br>101<br>82                                                               | Prep 7<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                             | Type: To<br>Batch:<br>                                         | dal/NA<br>48015            |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 880-25537-A-41<br>Matrix: Solid                                                                                                              | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107                      | Qualifier<br>U<br>U<br>MS                                | Added<br>999<br>999<br><u>Limits</u><br>70 - 130                                                  | <b>Result</b><br>1051                                                               |                 | mg/Kg                                 |          | %Rec<br>101<br>82                                                               | Prep 7<br>Prep %<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>20: Matrix Sp<br>Prep 7                | Type: To<br>Batch:<br><br>pike Dup<br>Type: To                 | olicate                    |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 880-25537-A-41                                                                                                                               | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107                      | Qualifier<br>U<br>MS<br>Qualifier                        | Added<br>999<br>999<br><u>Limits</u><br>70 - 130<br>70 - 130                                      | Result<br>1051<br>837.6                                                             | Qualifier       | mg/Kg                                 |          | %Rec<br>101<br>82                                                               | Prep<br>Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>Prep                           | Type: To<br>Batch:<br>                                         | blicate<br>tal/NA<br>48015 |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>Analysis Batch: 47992                                                                                                                                                                        | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107<br>I-F MSD<br>Sample | Qualifier<br>U<br>MS<br>Qualifier<br>Sample              | Added<br>999<br>999<br><u>Limits</u><br>70 - 130<br>70 - 130<br>Spike                             | Result<br>1051<br>837.6<br>MSD                                                      | Qualifier       | mg/Kg<br>mg/Kg<br>Cl                  | ient Sa  | %Rec<br>101<br>82                                                               | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>%Rec                       | Dike Dup<br>Dike Dup<br>Dype: To<br>Datch:                     | blicate<br>tal/NA<br>48015 |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>Analyte<br>Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte                                                                                                | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107<br>I-F MSD           | Qualifier<br>U<br>MS<br>Qualifier<br>Sample<br>Qualifier | Added<br>999<br>999<br><u>Limits</u><br>70 - 130<br>70 - 130<br>Spike<br>Added                    | Result           1051           837.6           MSD           Result                | Qualifier       | mg/Kg<br>mg/Kg<br>Cl                  |          | <u>%Rec</u><br>101<br>82<br>ample IC                                            | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130       | Dike Dup<br>Dike Dup<br>Type: To<br>Distribution<br>Batch:<br> | blicate<br>tal/NA<br>48015 |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>Analyte<br>De Terphenyl<br>Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics                                                     | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107<br>I-F MSD<br>Sample | Qualifier<br>U<br>MS<br>Qualifier<br>Sample<br>Qualifier | Added<br>999<br>999<br><u>Limits</u><br>70 - 130<br>70 - 130<br>Spike                             | Result<br>1051<br>837.6<br>MSD                                                      | Qualifier       | mg/Kg<br>mg/Kg<br>Cl                  | ient Sa  | %Rec<br>101<br>82                                                               | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 190<br>%Rec                       | Dike Dup<br>Dike Dup<br>Dype: To<br>Datch:                     | blicate<br>tal/NA<br>48015 |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>(-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10                                | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107<br>I-F MSD           | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U      | Added<br>999<br>999<br><u>Limits</u><br>70 - 130<br>70 - 130<br>Spike<br>Added                    | Result           1051           837.6           MSD           Result           1056 | Qualifier       | mg/Kg<br>mg/Kg<br>Cl<br>Unit<br>mg/Kg | ient Sa  | %Rec           101           82           ample IC           %Rec           102 | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130       | Dike Dup<br>Dike Dup<br>Type: To<br>Distribution<br>Batch:<br> | blicate<br>tal/NA<br>48015 |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over | Sample<br>Result<br><49.9<br><49.9<br>MS<br>%Recovery<br>126<br>107<br>I-F MSD           | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U      | Added<br>999<br>999<br><u>Limits</u><br>70 - 130<br>70 - 130<br>70 - 130<br>Spike<br>Added<br>999 | Result           1051           837.6           MSD           Result                | Qualifier       | mg/Kg<br>mg/Kg<br>Cl                  | ient Sa  | <u>%Rec</u><br>101<br>82<br>ample IC                                            | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>0: Matrix Sp<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Dike Dup<br>Type: To<br>De Batch:<br>Batch:<br>RPD<br>1        | blicate<br>tal/NA<br>48015 |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>I-Chlorooctane<br>D-Terphenyl<br>Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over | Sample<br>Result<br><49.9<br><49.9<br><i>MS</i><br>%Recovery<br>126<br>107<br>I-F MSD    | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U<br>U | Added<br>999<br>999<br><u>Limits</u><br>70 - 130<br>70 - 130<br>70 - 130<br>Spike<br>Added<br>999 | Result           1051           837.6           MSD           Result           1056 | Qualifier       | mg/Kg<br>mg/Kg<br>Cl<br>Unit<br>mg/Kg | ient Sa  | %Rec           101           82           ample IC           %Rec           102 | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>0: Matrix Sp<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Dike Dup<br>Type: To<br>De Batch:<br>Batch:<br>RPD<br>1        | blicate<br>tal/NA<br>48015 |
| Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>Analyte<br>De Terphenyl<br>Lab Sample ID: 880-25537-A-41<br>Matrix: Solid<br>Analysis Batch: 47992<br>Analyte<br>Basoline Range Organics                                                     | Sample<br>Result<br><49.9<br><49.9<br><i>MS</i><br>%Recovery<br>126<br>107<br>I-F MSD    | Qualifier<br>U<br>MS<br>Qualifier<br>Qualifier<br>U      | Added<br>999<br>999<br><u>Limits</u><br>70 - 130<br>70 - 130<br>70 - 130<br>Spike<br>Added<br>999 | Result           1051           837.6           MSD           Result           1056 | Qualifier       | mg/Kg<br>mg/Kg<br>Cl<br>Unit<br>mg/Kg | ient Sa  | %Rec           101           82           ample IC           %Rec           102 | Prep<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>0: Matrix Sp<br>Prep<br>%Rec<br>Limits<br>70 - 130 | Dike Dup<br>Type: To<br>De Batch:<br>Batch:<br>RPD<br>1        | blicate<br>tal/NA<br>48015 |

Eurofins Carlsbad

Client: Ensolum

Job ID: 890-4231-1 SDG: 03E2057054

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Matrix: Solid                                                                                                                                                                                                                                                                                                                                  | 1-F MSD                                               |              |                                                                                                                                                                                        |                                                                                       |                                |                      | Clie | nt Sa    | ample ID:                                           | Matrix Spik<br>Prep Typ                                                                                                                                                      | -                                           |                                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------|----------------------|------|----------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                |                                                       |              |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     |                                                                                                                                                                              |                                             |                                                        |
| Analysis Batch: 47992                                                                                                                                                                                                                                                                                                                          |                                                       |              |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     | Prep B                                                                                                                                                                       | atch:                                       | 4801                                                   |
|                                                                                                                                                                                                                                                                                                                                                | MSD M                                                 | SD           |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     |                                                                                                                                                                              |                                             |                                                        |
| Surrogate                                                                                                                                                                                                                                                                                                                                      | %Recovery Q                                           | ualifier     | Limits                                                                                                                                                                                 |                                                                                       |                                |                      |      |          |                                                     |                                                                                                                                                                              |                                             |                                                        |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                    | 106                                                   |              | 70 - 130                                                                                                                                                                               |                                                                                       |                                |                      |      |          |                                                     |                                                                                                                                                                              |                                             |                                                        |
|                                                                                                                                                                                                                                                                                                                                                |                                                       |              |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     |                                                                                                                                                                              |                                             |                                                        |
| Lab Sample ID: MB 880-48107                                                                                                                                                                                                                                                                                                                    | / <b>1-A</b>                                          |              |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          | <b>Client Sa</b>                                    | ample ID: Me                                                                                                                                                                 | ethod                                       | Blan                                                   |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                  |                                                       |              |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     | Ргер Тур                                                                                                                                                                     | be: To                                      | tal/N/                                                 |
| Analysis Batch: 48081                                                                                                                                                                                                                                                                                                                          |                                                       |              |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     | Prep B                                                                                                                                                                       | atch:                                       | 4810 <sup>°</sup>                                      |
|                                                                                                                                                                                                                                                                                                                                                | Μ                                                     | B MB         |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     |                                                                                                                                                                              |                                             |                                                        |
| Analyte                                                                                                                                                                                                                                                                                                                                        | Resu                                                  | It Qualifier | · RL                                                                                                                                                                                   |                                                                                       | Unit                           |                      | D    | P        | repared                                             | Analyzed                                                                                                                                                                     |                                             | Dil Fa                                                 |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                        | <50                                                   | .0 U         | 50.0                                                                                                                                                                                   | -                                                                                     | mg/K                           | g                    | _    | 03/0     | 8/23 10:30                                          | 03/08/23 20:                                                                                                                                                                 | 50                                          |                                                        |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                   |                                                       |              |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     |                                                                                                                                                                              |                                             |                                                        |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                    | <50                                                   | .0 U         | 50.0                                                                                                                                                                                   |                                                                                       | mg/K                           | g                    |      | 03/0     | 8/23 10:30                                          | 03/08/23 20:                                                                                                                                                                 | 50                                          |                                                        |
| C10-C28)                                                                                                                                                                                                                                                                                                                                       | -50                                                   | 0.11         | 50.0                                                                                                                                                                                   |                                                                                       | ···· ·· //                     | ·                    |      | 00/0     | 0/00 40.00                                          | 02/00/02 00                                                                                                                                                                  | 50                                          |                                                        |
| Oll Range Organics (Over C28-C36)                                                                                                                                                                                                                                                                                                              | <50                                                   | .0 U         | 50.0                                                                                                                                                                                   |                                                                                       | mg/K                           | g                    |      | 03/0     | 8/23 10:30                                          | 03/08/23 20:                                                                                                                                                                 | 50                                          |                                                        |
|                                                                                                                                                                                                                                                                                                                                                | N                                                     | B MB         |                                                                                                                                                                                        |                                                                                       |                                |                      |      |          |                                                     |                                                                                                                                                                              |                                             |                                                        |
| Surrogate                                                                                                                                                                                                                                                                                                                                      | %Recove                                               | ry Qualifie  | r Limits                                                                                                                                                                               |                                                                                       |                                |                      |      | P        | repared                                             | Analyzed                                                                                                                                                                     |                                             | Dil Fa                                                 |
| 1-Chlorooctane                                                                                                                                                                                                                                                                                                                                 |                                                       |              | 70 - 130                                                                                                                                                                               |                                                                                       |                                |                      |      | 03/0     | 8/23 10:30                                          | 03/08/23 20:                                                                                                                                                                 | 50                                          |                                                        |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                    | 1:                                                    | 10           | 70 - 130                                                                                                                                                                               |                                                                                       |                                |                      |      | 03/0     | 8/23 10:30                                          | 03/08/23 20:                                                                                                                                                                 | 50                                          |                                                        |
|                                                                                                                                                                                                                                                                                                                                                |                                                       |              | Spike                                                                                                                                                                                  | LCS                                                                                   | LCS                            |                      |      | lient    | -                                                   | Prep Typ<br>Prep B<br>%Rec                                                                                                                                                   |                                             |                                                        |
| Analysis Batch: 48081<br>Analyte                                                                                                                                                                                                                                                                                                               |                                                       |              | Spike<br>Added                                                                                                                                                                         |                                                                                       | LCS<br>Qualifier               | Unit                 |      |          | % <b>Rec</b>                                        | Prep B                                                                                                                                                                       |                                             |                                                        |
| Matrix: Solid<br>Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                                                                                                   |                                                       |              | Added                                                                                                                                                                                  | Result                                                                                |                                | Unit<br>mg/Kg        |      |          |                                                     | Prep B<br>%Rec<br>Limits                                                                                                                                                     |                                             |                                                        |
| Analysis Batch: 48081 Analyte Gasoline Range Organics                                                                                                                                                                                                                                                                                          |                                                       |              | Added                                                                                                                                                                                  | Result                                                                                |                                |                      |      |          |                                                     | Prep B<br>%Rec<br>Limits                                                                                                                                                     |                                             |                                                        |
| Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10                                                                                                                                                                                                                                                                             |                                                       |              | Added                                                                                                                                                                                  | Result<br>951.6                                                                       |                                | mg/Kg                |      |          | 95                                                  | Prep B<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         |                                             |                                                        |
| Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                                                                                                                                                                                                                                 |                                                       | <br>         | Added                                                                                                                                                                                  | Result<br>951.6                                                                       |                                | mg/Kg                |      |          | 95                                                  | Prep B<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         |                                             |                                                        |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                                                                                                         | LCS               |              | Added                                                                                                                                                                                  | Result<br>951.6                                                                       |                                | mg/Kg                |      |          | 95                                                  | Prep B<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         |                                             |                                                        |
| Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                                                                                                                                                                                                                                 |                                                       |              | Added<br>1000<br>1000                                                                                                                                                                  | Result<br>951.6                                                                       |                                | mg/Kg                |      |          | 95                                                  | Prep B<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         |                                             |                                                        |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane                                                                                                                                                                                          | %Recovery Q                                           |              | Added<br>1000<br>1000<br><i>Limits</i>                                                                                                                                                 | Result<br>951.6                                                                       |                                | mg/Kg                |      |          | 95                                                  | Prep B<br>%Rec<br>Limits<br>70 - 130                                                                                                                                         |                                             |                                                        |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                                                                                                                                                           | %Recovery Q<br>105<br>116                             |              | Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                                                                                                                     | Result<br>951.6                                                                       |                                | mg/Kg<br>mg/Kg       |      | <u> </u> | 95<br>121                                           | Prep B           %Rec           Limits           70 - 130           70 - 130                                                                                                 | atch:                                       | 4810                                                   |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-481                                                                                                                                            | %Recovery Q<br>105<br>116                             |              | Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                                                                                                                     | Result<br>951.6                                                                       |                                | mg/Kg<br>mg/Kg       |      | <u> </u> | 95<br>121                                           | Prep B           %Rec           Limits           70 - 130           70 - 130                                                                                                 | atch:                                       | 4810<br>                                               |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-481<br>Matrix: Solid                                                                                                                           | %Recovery Q<br>105<br>116                             |              | Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130                                                                                                                                     | Result<br>951.6                                                                       |                                | mg/Kg<br>mg/Kg       |      | <u> </u> | 95<br>121                                           | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>ab Control S<br>Prep Typ                                                                                     | Samploe: To                                 | 4810<br>e Duj<br>tal/N/                                |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-481                                                                                                                                            | %Recovery Q<br>105<br>116                             |              | Added<br>1000<br>1000<br><u>Limits</u><br>70 - 130<br>70 - 130                                                                                                                         | <b>Result</b><br>951.6<br>1208                                                        | Qualifier                      | mg/Kg<br>mg/Kg       |      | <u> </u> | 95<br>121                                           | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>Prep Typ<br>Prep B                                                                   | Samploe: To                                 | 4810<br>e Duj<br>tal/N/<br>4810                        |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-481<br>Matrix: Solid<br>Analysis Batch: 48081                                                                                                  | %Recovery Q<br>105<br>116                             |              | Added<br>1000<br>1000<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130                                                                                                                    | <b>Result</b><br>951.6<br>1208<br>LCSD                                                | Qualifier                      | mg/Kg<br>mg/Kg<br>Cl |      | Sam      | 95<br>121                                           | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>8<br>8<br>8<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9<br>7<br>9 | atch:<br><br>Sampl<br>be: To<br>atch:       | e Dup<br>tal/N/<br>48107<br>RPI                        |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-481<br>Matrix: Solid<br>Analysis Batch: 48081<br>Analyte                                                                                       | %Recovery Q<br>105<br>116                             |              | Added<br>1000<br>1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130                                                                                                             | Result<br>951.6<br>1208<br>LCSD<br>Result                                             | Qualifier<br>LCSD<br>Qualifier | mg/Kg<br>mg/Kg<br>Cl |      | <u> </u> | 95<br>121<br>pple ID: L                             | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                                 | Sampl<br>De: To<br>atch:                    | 48107<br>e Dur<br>tal/N/<br>48107<br>RPI<br>Limi       |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-481<br>Matrix: Solid<br>Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                            | %Recovery Q<br>105<br>116                             |              | Added<br>1000<br>1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130<br>Spike<br>Added<br>1000                                                                                   | Result           951.6           1208           LCSD           Result           941.9 | Qualifier<br>LCSD<br>Qualifier | CI<br>Unit<br>mg/Kg  |      | Sam      | 95<br>121<br><b>ople ID: L</b><br><u>%Rec</u><br>94 | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>ab Control S<br>Prep Typ<br>Prep B<br>%Rec<br>Limits<br>70 - 130                                             | Sampl<br>be: To<br>atch:<br><u>RPD</u><br>1 | e Du<br>tal/N/<br>4810<br>RPI<br>Lim<br>2              |
| Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                    | %Recovery Q<br>105<br>116                             |              | Added<br>1000<br>1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130                                                                                                             | Result<br>951.6<br>1208<br>LCSD<br>Result                                             | Qualifier<br>LCSD<br>Qualifier | mg/Kg<br>mg/Kg<br>Cl |      | Sam      | 95<br>121<br>pple ID: L                             | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130<br>70 - 130                                                                 | Sampl<br>De: To<br>atch:                    | e Du<br>tal/N/<br>4810<br>RPI<br>Lim<br>2              |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-481<br>Matrix: Solid<br>Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics                                                            | %Recovery Q<br>105<br>116                             | ualifier     | Added<br>1000<br>1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130<br>Spike<br>Added<br>1000                                                                                   | Result           951.6           1208           LCSD           Result           941.9 | Qualifier<br>LCSD<br>Qualifier | CI<br>Unit<br>mg/Kg  |      | Sam      | 95<br>121<br><b>ople ID: L</b><br><u>%Rec</u><br>94 | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>ab Control S<br>Prep Typ<br>Prep B<br>%Rec<br>Limits<br>70 - 130                                             | Sampl<br>be: To<br>atch:<br><u>RPD</u><br>1 | 4810<br>e Duj<br>tal/N/<br>4810<br>RPI<br>Limi<br>2    |
| Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Lab Sample ID: LCSD 880-481<br>Matrix: Solid<br>Analysis Batch: 48081<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28) | <u>%Recovery</u> <u>Q</u><br>105<br>116<br>07/3-A     | ualifier     | Added<br>1000<br>1000<br><i>Limits</i><br>70 - 130<br>70 - 130<br>70 - 130<br>Spike<br>Added<br>1000                                                                                   | Result           951.6           1208           LCSD           Result           941.9 | Qualifier<br>LCSD<br>Qualifier | CI<br>Unit<br>mg/Kg  |      | Sam      | 95<br>121<br><b>ople ID: L</b><br><u>%Rec</u><br>94 | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>ab Control S<br>Prep Typ<br>Prep B<br>%Rec<br>Limits<br>70 - 130                                             | Sampl<br>be: To<br>atch:<br><u>RPD</u><br>1 | e Dup<br>tal/N/<br>48107<br>RPI                        |
| Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-481 Matrix: Solid Analysis Batch: 48081 Analysis Batch: 48081 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                    | <u>%Recovery</u> <u>Q</u><br>105<br>116<br>07/3-A<br> | ualifier     | Added           1000           1000           1000           1000           1000           70 - 130           70 - 130           70 - 130           1000           1000           1000 | Result           951.6           1208           LCSD           Result           941.9 | Qualifier<br>LCSD<br>Qualifier | CI<br>Unit<br>mg/Kg  |      | Sam      | 95<br>121<br><b>ople ID: L</b><br><u>%Rec</u><br>94 | Prep B<br>%Rec<br>Limits<br>70 - 130<br>70 - 130<br>70 - 130<br>ab Control S<br>Prep Typ<br>Prep B<br>%Rec<br>Limits<br>70 - 130                                             | Sampl<br>be: To<br>atch:<br><u>RPD</u><br>1 | 48107<br>e Dug<br>tal/N/<br>48107<br>RPI<br>Limi<br>20 |

**Released to Imaging: 5/14/2024 11:22:06 AM** 

## QC Sample Results

MS MS

MSD MSD

1008

988.9

Result Qualifier

Unit

mg/Kg

mg/Kg

D

%Rec

97

99

Spike

Added

998

998

Limits

70 - 130

70 - 130

Spike

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: 890-4231-16 MS

Lab Sample ID: 890-4231-16 MSD

Matrix: Solid

(GRO)-C6-C10

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

Matrix: Solid

Analysis Batch: 48081

Analyte

Analysis Batch: 48081

Gasoline Range Organics

Diesel Range Organics (Over

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Sample Sample

<49.9 U

<49.9 U

116

117

MS MS %Recovery Qualifier

Sample Sample

124

Result Qualifier

**Client Sample ID: SW03** 

%Rec

Limits

70 - 130

70 - 130

Prep Type: Total/NA

Prep Batch: 48107

| 5 |
|---|
|   |
| 7 |
| 8 |
| 9 |
|   |
|   |
|   |

#### Client Sample ID: SW03 Prep Type: Total/NA Prep Batch: 48107

|    | гіер   | Daten. | 40107 |
|----|--------|--------|-------|
|    | %Rec   |        | RPD   |
| ec | Limits | RPD    | Limit |

**Client Sample ID: Method Blank** 

03/08/23 20:50

Prep Type: Total/NA

Prep Batch: 48109

**Client Sample ID: Lab Control Sample** 

03/08/23 10:34

Prep Type: Total/NA

Prep Batch: 48109

| Analyte                                 | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
|-----------------------------------------|--------|-----------|-------|--------|-----------|-------|---|------|----------|-----|-------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.9  | U         | 999   | 947.7  |           | mg/Kg |   | 91   | 70 - 130 | 6   | 20    |
| Diesel Range Organics (Over<br>C10-C28) | <49.9  | U         | 999   | 994.0  |           | mg/Kg |   | 99   | 70 - 130 | 1   | 20    |
|                                         | MSD    | MSD       |       |        |           |       |   |      |          |     |       |

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 124       |           | 70 - 130 |
| o-Terphenyl    | 117       |           | 70 - 130 |

| Lab Sample ID: MB 880-48109/1-A |
|---------------------------------|
| Matrix: Solid                   |
| Analysis Batch: 48083           |

| -                                       | МВ        | MB        |          |       |   |                |                |         |
|-----------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                                 | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/08/23 20:50 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/08/23 20:50 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0     | U         | 50.0     | mg/Kg |   | 03/08/23 10:34 | 03/08/23 20:50 | 1       |
|                                         | МВ        | МВ        |          |       |   |                |                |         |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 102       |           | 70 - 130 |       |   | 03/08/23 10:34 | 03/08/23 20:50 | 1       |

70 - 130

## Lab Sample ID: LCS 880-48109/2-A Matrix: Solid Analysis Batch: 48083

o-Terphenyl

|                             | Spike | LCS    | LCS       |       |   |      | %Rec     |      |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|------|
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |      |
| Gasoline Range Organics     | 1000  | 1190   |           | mg/Kg |   | 119  | 70 - 130 | <br> |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |      |
| Diesel Range Organics (Over | 1000  | 1034   |           | mg/Kg |   | 103  | 70 - 130 |      |
| C10-C28)                    |       |        |           |       |   |      |          |      |

Eurofins Carlsbad

## **QC Sample Results**

Client: Ensolum Project/Site: Maverick Baish B Battery

Lab Sample ID: LCS 880-48109/2-A

Lab Sample ID: LCSD 880-48109/3-A

Matrix: Solid

Surrogate 1-Chlorooctane

o-Terphenyl

Analyte

C10-C28)

Surrogate

o-Terphenyl

C10-C28)

1-Chlorooctane

Matrix: Solid

Analysis Batch: 48083

Analysis Batch: 48083

Gasoline Range Organics (GRO)-C6-C10

Diesel Range Organics (Over

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS %Recovery Qualifier

84

98

LCSD LCSD

%Recovery Qualifier

81

|      | •            |          |           |       |        |            | 1.1.1      | D. 000 4  | 004 4 |    |
|------|--------------|----------|-----------|-------|--------|------------|------------|-----------|-------|----|
|      |              |          |           |       |        |            |            | D: 890-4  |       |    |
|      |              |          |           |       |        |            | SDG        | : 03E20   | 57054 | 2  |
| s (C | ORO) (GC) (0 | Continue | ed)       |       |        |            |            |           |       | 2  |
|      | / / / /      |          | ,         |       |        |            |            |           |       | 5  |
|      |              |          |           |       | Client | Sample     | ID: Lab C  |           |       |    |
|      |              |          |           |       |        |            |            | Type: Tot |       | 4  |
|      |              |          |           |       |        |            | Prep       | Batch:    | 48109 | -  |
|      |              |          |           |       |        |            |            |           |       | 5  |
|      | Limits       |          |           |       |        |            |            |           |       |    |
|      | 70 - 130     |          |           |       |        |            |            |           |       | 0  |
|      | 70 - 130     |          |           |       |        |            |            |           |       |    |
|      |              |          |           | 0     |        |            |            |           |       | 7  |
|      |              |          |           | Clier | nt Sam | ipie iD: i | Lab Contro |           |       |    |
|      |              |          |           |       |        |            |            | Type: To  |       | 8  |
|      | 0            | 1.000    | 1.000     |       |        |            |            | Batch:    |       |    |
|      | Spike        | LCSD     |           | 11    | _      | 0/ D       | %Rec       |           | RPD   | 9  |
|      | Added        |          | Qualifier | Unit  | D      | %Rec       | Limits     | RPD       | Limit |    |
|      | 1000         | 1057     |           | mg/Kg |        | 106        | 70 - 130   | 12        | 20    | 10 |
|      | 1000         | 857.9    |           | mg/Kg |        | 86         | 70 - 130   | 19        | 20    |    |
|      |              |          |           |       |        |            |            |           |       | 11 |
|      |              |          |           |       |        |            |            |           |       | 12 |
|      | Limits       |          |           |       |        |            |            |           |       |    |
|      | 70 - 130     |          |           |       |        |            |            |           |       |    |

| 70 _ 130 |  |  |
|----------|--|--|
|          |  |  |

| Lab Sample ID: 890-4231-8 MS<br>Matrix: Solid<br>Analysis Batch: 48083 |        |           |       |        |           |       |   |      | Prep Ty  | nple ID: FS08<br>/pe: Total/NA<br>Batch: 48109 |
|------------------------------------------------------------------------|--------|-----------|-------|--------|-----------|-------|---|------|----------|------------------------------------------------|
|                                                                        | Sample | Sample    | Spike | MS     | MS        |       |   |      | %Rec     |                                                |
| Analyte                                                                | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |                                                |
| Gasoline Range Organics<br>(GRO)-C6-C10                                | <50.0  | U         | 1000  | 1010   |           | mg/Kg |   | 101  | 70 - 130 |                                                |
| Diesel Range Organics (Over                                            | <50.0  | U         | 1000  | 1068   |           | mg/Kg |   | 107  | 70 - 130 |                                                |

|                | MS        | MS        |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 119       |           | 70 - 130 |
| o-Terphenyl    | 134       | S1+       | 70 - 130 |

| Lab Sample ID: 890-4231-8 MS<br>Matrix: Solid<br>Analysis Batch: 48083 | SD        |           |        |        |           |       |   |      |          | nple ID:<br>ype: To<br>Batch: | tal/NA |
|------------------------------------------------------------------------|-----------|-----------|--------|--------|-----------|-------|---|------|----------|-------------------------------|--------|
|                                                                        | Sample    | Sample    | Spike  | MSD    | MSD       |       |   |      | %Rec     |                               | RPD    |
| Analyte                                                                | Result    | Qualifier | Added  | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD                           | Limit  |
| Gasoline Range Organics<br>(GRO)-C6-C10                                | <50.0     | U         | 1000   | 884.3  |           | mg/Kg |   | 88   | 70 - 130 | 13                            | 20     |
| Diesel Range Organics (Over C10-C28)                                   | <50.0     | U         | 1000   | 959.6  |           | mg/Kg |   | 96   | 70 - 130 | 11                            | 20     |
|                                                                        | MSD       | MSD       |        |        |           |       |   |      |          |                               |        |
| Surrogate                                                              | %Recovery | Qualifier | Limits |        |           |       |   |      |          |                               |        |

| Surrogate      | %Recovery Q | ualifier | Limits   |
|----------------|-------------|----------|----------|
| 1-Chlorooctane | 106         |          | 70 - 130 |
| o-Terphenyl    | 121         |          | 70 - 130 |

Client: Ensolum

## **QC Sample Results**

Job ID: 890-4231-1 SDG: 03E2057054

Project/Site: Maverick Baish B Battery Method: 300.0 - Anions, Ion Chromatography

|                                                                                                                                                                                                                                                     |                                                               |                                        |                                                |                                                        |                                    |                              |        |     | Client S            | Sample ID: N                                                                                                               |                                                  |                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------|------------------------------------------------|--------------------------------------------------------|------------------------------------|------------------------------|--------|-----|---------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                       |                                                               |                                        |                                                |                                                        |                                    |                              |        |     |                     | Prep 7                                                                                                                     | Type: So                                         | olubl                                     |
| Analysis Batch: 48158                                                                                                                                                                                                                               |                                                               |                                        |                                                |                                                        |                                    |                              |        |     |                     |                                                                                                                            |                                                  |                                           |
|                                                                                                                                                                                                                                                     |                                                               | MB MB                                  |                                                |                                                        |                                    |                              |        |     |                     |                                                                                                                            |                                                  |                                           |
| Analyte                                                                                                                                                                                                                                             | R                                                             | esult Qualifier                        |                                                | RL                                                     | Unit                               |                              | D      | Р   | repared             | Analyze                                                                                                                    | ed                                               | Dil Fa                                    |
| Chloride                                                                                                                                                                                                                                            | ~                                                             | <5.00 U                                |                                                | 5.00                                                   | mg/K                               | g                            |        |     |                     | 03/08/23 2                                                                                                                 | 22:43                                            |                                           |
|                                                                                                                                                                                                                                                     |                                                               |                                        |                                                |                                                        |                                    |                              | 0      |     | 0                   |                                                                                                                            |                                                  |                                           |
| Lab Sample ID: LCS 880-48060/2-4<br>Matrix: Solid                                                                                                                                                                                                   | •                                                             |                                        |                                                |                                                        |                                    |                              | Cile   | ent | Sample              | ID: Lab Co<br>Prep 1                                                                                                       | Type: So                                         |                                           |
| Analysis Batch: 48158                                                                                                                                                                                                                               |                                                               |                                        |                                                |                                                        |                                    |                              |        |     |                     | Tiop                                                                                                                       | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          |                                           |
| Analysis Baton: 40100                                                                                                                                                                                                                               |                                                               |                                        | Spike                                          | LCS                                                    | LCS                                |                              |        |     |                     | %Rec                                                                                                                       |                                                  |                                           |
| Analyte                                                                                                                                                                                                                                             |                                                               |                                        | Added                                          |                                                        | Qualifier                          | Unit                         |        | D   | %Rec                | Limits                                                                                                                     |                                                  |                                           |
| Chloride                                                                                                                                                                                                                                            |                                                               |                                        | 250                                            | 273.7                                                  |                                    | mg/Kg                        |        | _   | 109                 | 90 - 110                                                                                                                   |                                                  |                                           |
|                                                                                                                                                                                                                                                     |                                                               |                                        |                                                |                                                        |                                    | 0 0                          |        |     |                     |                                                                                                                            |                                                  |                                           |
| Lab Sample ID: LCSD 880-48060/3                                                                                                                                                                                                                     | <b>-A</b>                                                     |                                        |                                                |                                                        |                                    | CI                           | ient S | am  | ple ID:             | Lab Control                                                                                                                |                                                  |                                           |
| Matrix: Solid                                                                                                                                                                                                                                       |                                                               |                                        |                                                |                                                        |                                    |                              |        |     |                     | Prep 1                                                                                                                     | Type: So                                         | olubl                                     |
| Analysis Batch: 48158                                                                                                                                                                                                                               |                                                               |                                        |                                                |                                                        |                                    |                              |        |     |                     |                                                                                                                            |                                                  |                                           |
|                                                                                                                                                                                                                                                     |                                                               |                                        | Spike                                          | LCSD                                                   | LCSD                               |                              |        |     |                     | %Rec                                                                                                                       |                                                  | RP                                        |
| Analyte                                                                                                                                                                                                                                             |                                                               |                                        | Added                                          |                                                        | Qualifier                          | Unit                         |        | D   | %Rec                | Limits                                                                                                                     | RPD                                              | Lim                                       |
| Chloride                                                                                                                                                                                                                                            |                                                               |                                        | 250                                            | 274.0                                                  |                                    | mg/Kg                        |        |     | 110                 | 90 - 110                                                                                                                   | 0                                                | 2                                         |
| Lab Sample ID: 890-4231-1 MS                                                                                                                                                                                                                        |                                                               |                                        |                                                |                                                        |                                    |                              |        |     |                     | Client San                                                                                                                 | nnle ID:                                         | ES(                                       |
| Matrix: Solid                                                                                                                                                                                                                                       |                                                               |                                        |                                                |                                                        |                                    |                              |        |     |                     |                                                                                                                            | Type: So                                         |                                           |
| Analysis Batch: 48158                                                                                                                                                                                                                               |                                                               |                                        |                                                |                                                        |                                    |                              |        |     |                     | Trop                                                                                                                       | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,          | orab                                      |
| Analysis Baton: 40100                                                                                                                                                                                                                               | Sample                                                        | Sample                                 | Spike                                          | MS                                                     | MS                                 |                              |        |     |                     | %Rec                                                                                                                       |                                                  |                                           |
| Analyte                                                                                                                                                                                                                                             |                                                               | Qualifier                              | Added                                          | Result                                                 | Qualifier                          | Unit                         |        | D   | %Rec                | Limits                                                                                                                     |                                                  |                                           |
|                                                                                                                                                                                                                                                     | 53.7                                                          |                                        | 249                                            |                                                        |                                    |                              |        | _   |                     | 00 440                                                                                                                     |                                                  |                                           |
| Chloride                                                                                                                                                                                                                                            | 00.1                                                          |                                        | 249                                            | 323.3                                                  |                                    | mg/Kg                        |        |     | 108                 | 90 _ 110                                                                                                                   |                                                  |                                           |
| -                                                                                                                                                                                                                                                   | 00.1                                                          |                                        | 249                                            | 323.3                                                  |                                    | шу/ку                        |        |     | 108                 |                                                                                                                            |                                                  |                                           |
| Lab Sample ID: 890-4231-1 MSD                                                                                                                                                                                                                       | 00.1                                                          |                                        | 249                                            | 323.3                                                  |                                    | ilig/Kg                      |        |     | 108                 | Client San                                                                                                                 |                                                  |                                           |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid                                                                                                                                                                                                      | 00.1                                                          |                                        | 249                                            | 323.3                                                  |                                    | ing/Kg                       |        |     | 108                 | Client San                                                                                                                 | nple ID:<br>Type: Se                             |                                           |
| Chloride<br>Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158                                                                                                                                                                 |                                                               |                                        |                                                |                                                        |                                    | ing/Kg                       |        |     | 108                 | Client San<br>Prep ⊺                                                                                                       |                                                  | olubl                                     |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158                                                                                                                                                                             | Sample                                                        | Sample                                 | Spike                                          | MSD                                                    | MSD                                |                              |        |     |                     | Client San<br>Prep T<br>%Rec                                                                                               | Type: So                                         | olubl<br>RP                               |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte                                                                                                                                                                  | Sample<br>Result                                              | Sample<br>Qualifier                    | Spike<br>Added                                 | MSD<br>Result                                          | MSD<br>Qualifier                   | Unit                         |        | D   | %Rec                | Client San<br>Prep<br>%Rec<br>Limits                                                                                       | RPD                                              | olubl<br>RP<br>Lim                        |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte                                                                                                                                                                  | Sample                                                        | •                                      | Spike                                          | MSD                                                    |                                    |                              |        | D   |                     | Client San<br>Prep T<br>%Rec                                                                                               | Type: So                                         | olubi<br>RP<br>Lim                        |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride                                                                                                                                                      | Sample<br>Result                                              | •                                      | Spike<br>Added                                 | MSD<br>Result                                          |                                    | Unit                         |        | D   | %Rec                | Client San<br>Prep<br>%Rec<br>Limits<br>90 - 110                                                                           | RPD                                              | olub<br>RP<br>Lim                         |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS                                                                                                                     | Sample<br>Result                                              | •                                      | Spike<br>Added                                 | MSD<br>Result                                          |                                    | Unit                         |        | D   | %Rec                | Client San<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client San                                                           | RPD<br>0<br>nple ID:                             | RP<br>Lim<br>2<br>: FS1                   |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS<br>Matrix: Solid                                                                                                    | Sample<br>Result                                              | •                                      | Spike<br>Added                                 | MSD<br>Result                                          |                                    | Unit                         |        | D   | %Rec                | Client San<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client San                                                           | RPD                                              | RP<br>Lim<br>2<br>: FS1                   |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS                                                                                                                     | Sample<br>Result<br>53.7                                      | •                                      | Spike<br>Added                                 | MSD<br>Result<br>323.0                                 |                                    | Unit                         |        | D   | %Rec                | Client San<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client San                                                           | RPD<br>0<br>nple ID:                             | RP<br>Lim<br>2<br>: FS1                   |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS<br>Matrix: Solid                                                                                                    | Sample<br>Result<br>53.7<br>Sample                            | Qualifier                              | Spike<br>Added<br>249                          | MSD<br>Result<br>323.0<br>MS                           | Qualifier                          | Unit                         |        | D   | %Rec                | Client San<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client San<br>Prep 7                                                 | RPD<br>0<br>nple ID:                             | RPI<br>Lim<br>2<br>: FS1                  |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS<br>Matrix: Solid<br>Analysis Batch: 48158                                                                           | Sample<br>Result<br>53.7<br>Sample                            | Qualifier<br>Sample<br>Qualifier       | Spike<br>Added<br>249 –                        | MSD<br>Result<br>323.0<br>MS                           | Qualifier<br>MS<br>Qualifier       | - <mark>Unit</mark><br>mg/Kg |        |     | %Rec<br>108         | Client San<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client San<br>Prep                                                     | RPD<br>0<br>nple ID:                             | RPI<br>Lim<br>2<br>: FS1                  |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride                                                    | Sample<br>Result<br>53.7<br>Sample<br>Result                  | Qualifier<br>Sample<br>Qualifier       | Spike<br>Added<br>249<br>Spike<br>Added        | MSD<br>Result<br>323.0<br>MS<br>Result                 | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg                |        |     | %Rec<br>108<br>%Rec | Client San<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sar<br>Prep<br>%Rec<br>Limits<br>90 - 110                       | RPD<br>0<br>nple ID:<br>Type: So                 | elubi<br>RP<br>Lim<br>2<br>: FS1<br>olubi |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MSD                  | Sample<br>Result<br>53.7<br>Sample<br>Result                  | Qualifier<br>Sample<br>Qualifier       | Spike<br>Added<br>249<br>Spike<br>Added        | MSD<br>Result<br>323.0<br>MS<br>Result                 | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg                |        |     | %Rec<br>108<br>%Rec | Client San<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client Sar<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client Sar     | Type: So<br>RPD<br>0<br>nple ID:<br>Type: So<br> | r FS1                                     |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MSD<br>Matrix: Solid | Sample<br>Result<br>53.7<br>Sample<br>Result                  | Qualifier<br>Sample<br>Qualifier       | Spike<br>Added<br>249<br>Spike<br>Added        | MSD<br>Result<br>323.0<br>MS<br>Result                 | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg                |        |     | %Rec<br>108<br>%Rec | Client San<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client Sar<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client Sar     | RPD<br>0<br>nple ID:<br>Type: So                 | r FS1                                     |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride                                                    | Sample<br>Result<br>53.7<br>Sample<br>Result<br>158           | Qualifier<br>Sample<br>Qualifier<br>F1 | Spike<br>Added<br>249<br>Spike<br>Added<br>249 | MSD<br>Result<br>323.0<br>MS<br>Result<br>345.7        | Qualifier<br>MS<br>Qualifier<br>F1 | Unit<br>mg/Kg                |        |     | %Rec<br>108<br>%Rec | Client San<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client San<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client San<br>Prep | Type: So<br>RPD<br>0<br>nple ID:<br>Type: So<br> | RPI<br>Limi<br>2:<br>: FS1:<br>oluble     |
| Lab Sample ID: 890-4231-1 MSD<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MS<br>Matrix: Solid<br>Analysis Batch: 48158<br>Analyte<br>Chloride<br>Lab Sample ID: 890-4231-11 MSD<br>Matrix: Solid | Sample<br>Result<br>53.7<br>Sample<br>Result<br>158<br>Sample | Qualifier<br>Sample<br>Qualifier       | Spike<br>Added<br>249<br>Spike<br>Added        | MSD<br>Result<br>323.0<br>MS<br>Result<br>345.7<br>MSD | Qualifier<br>MS<br>Qualifier       | Unit<br>mg/Kg                |        |     | %Rec<br>108<br>%Rec | Client San<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client Sar<br>Prep 7<br>%Rec<br>Limits<br>90 - 110<br>Client Sar     | Type: So<br>RPD<br>0<br>nple ID:<br>Type: So<br> | RPI<br>Limi<br>20<br>: FS11<br>oluble     |

Client: Ensolum Project/Site: Maverick Baish B Battery

#### Job ID: 890-4231-1 SDG: 03E2057054

## **GC VOA**

## Prep Batch: 48192

| Lab Sample ID     | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|-------------------|------------------------|-----------|--------|--------|------------|
| 390-4231-4        | FS04                   | Total/NA  | Solid  | 5035   |            |
| 90-4231-5         | FS05                   | Total/NA  | Solid  | 5035   |            |
| 90-4231-6         | FS06                   | Total/NA  | Solid  | 5035   |            |
| IB 880-48192/5-A  | Method Blank           | Total/NA  | Solid  | 5035   |            |
| CS 880-48192/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| CSD 880-48192/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 90-4215-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 90-4215-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |
| ep Batch: 48320   |                        |           |        |        |            |
| ab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
| 90-4231-10        | FS10                   | Total/NA  | Solid  | 5035   |            |
| 90-4231-15        | SW02                   | Total/NA  | Solid  | 5035   |            |
| B 880-48320/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| CS 880-48320/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

5035

5035

5035

#### Prep Batch: 48332

LCSD 880-48320/2-A

880-25480-A-11-F MS

880-25480-A-11-G MSD

Lab Control Sample Dup

Matrix Spike Duplicate

Matrix Spike

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4231-7         | FS07                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-8         | FS08                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-9         | FS09                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-11        | FS11                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-12        | FS12                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-13        | FS13                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-16        | SW03                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-17        | SW04                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-18        | SW06                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-19        | SW07                   | Total/NA  | Solid  | 5035   |            |
| MB 880-48332/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-48332/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-48332/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 890-4223-A-1-E MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 890-4223-A-1-F MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 48425

| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|-----------------------|------------------------|-----------|--------|--------|------------|
| 890-4231-4            | FS04                   | Total/NA  | Solid  | 8021B  | 48192      |
| 890-4231-5            | FS05                   | Total/NA  | Solid  | 8021B  | 48192      |
| 890-4231-6            | FS06                   | Total/NA  | Solid  | 8021B  | 48192      |
| MB 880-48192/5-A      | Method Blank           | Total/NA  | Solid  | 8021B  | 48192      |
| LCS 880-48192/1-A     | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 48192      |
| LCSD 880-48192/2-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 48192      |
| 890-4215-A-1-B MS     | Matrix Spike           | Total/NA  | Solid  | 8021B  | 48192      |
| 890-4215-A-1-C MSD    | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 48192      |
| Analysis Batch: 48426 |                        |           |        |        |            |
| Lab Sample ID         | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
| 890-4231-1            | FS01                   | Total/NA  | Solid  | 8021B  | 48442      |

Eurofins Carlsbad

Client: Ensolum Project/Site: Maverick Baish B Battery

## GC VOA (Continued)

## Analysis Batch: 48426 (Continued)

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 890-4231-2          | FS02                   | Total/NA  | Solid  | 8021B  | 48442      |
| 890-4231-3          | FS03                   | Total/NA  | Solid  | 8021B  | 48442      |
| 890-4231-14         | SW01                   | Total/NA  | Solid  | 8021B  | 48442      |
| MB 880-48442/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 48442      |
| LCS 880-48442/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 48442      |
| LCSD 880-48442/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 48442      |
| 880-25394-A-3-F MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 48442      |
| 880-25394-A-3-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 48442      |

#### Prep Batch: 48442

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 890-4231-1          | FS01                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-2          | FS02                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-3          | FS03                   | Total/NA  | Solid  | 5035   |            |
| 890-4231-14         | SW01                   | Total/NA  | Solid  | 5035   |            |
| MB 880-48442/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-48442/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-48442/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-25394-A-3-F MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-25394-A-3-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 48540

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 890-4231-1    | FS01             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-2    | FS02             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-3    | FS03             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-4    | FS04             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-5    | FS05             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-6    | FS06             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-7    | FS07             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-8    | FS08             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-9    | FS09             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-10   | FS10             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-11   | FS11             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-12   | FS12             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-13   | FS13             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-14   | SW01             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-15   | SW02             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-16   | SW03             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-17   | SW04             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-18   | SW06             | Total/NA  | Solid  | Total BTEX |            |
| 890-4231-19   | SW07             | Total/NA  | Solid  | Total BTEX |            |

#### Analysis Batch: 48570

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 890-4231-10         | FS10                   | Total/NA  | Solid  | 8021B  | 48320      |
| 890-4231-15         | SW02                   | Total/NA  | Solid  | 8021B  | 48320      |
| MB 880-48320/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 48320      |
| LCS 880-48320/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 48320      |
| LCSD 880-48320/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 48320      |
| 880-25480-A-11-F MS | Matrix Spike           | Total/NA  | Solid  | 8021B  | 48320      |

Eurofins Carlsbad

Page 115 of 203

Job ID: 890-4231-1

SDG: 03E2057054

Job ID: 890-4231-1 SDG: 03E2057054

## GC VOA (Continued)

## Analysis Batch: 48570 (Continued)

| Lab Sample ID<br>880-25480-A-11-G MSD | Client Sample ID<br>Matrix Spike Duplicate | Prep Type<br>Total/NA | Matrix<br>Solid | Method<br>8021B | Prep Batch<br>48320 |  |
|---------------------------------------|--------------------------------------------|-----------------------|-----------------|-----------------|---------------------|--|
| Analysis Batch: 48639                 |                                            |                       |                 |                 |                     |  |
| Lab Sample ID                         | Client Semple ID                           | Bron Turne            | Motrix          | Mathad          | Bron Botob          |  |

| Lab Sample ID        | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|----------------------|------------------------|-----------|--------|--------|------------|
| 380-25480-A-11-G MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 48320      |
| nalysis Batch: 48639 |                        |           |        |        |            |
| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
| 890-4231-7           | FS07                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-8           | FS08                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-9           | FS09                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-11          | FS11                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-12          | FS12                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-13          | FS13                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-16          | SW03                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-17          | SW04                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-18          | SW06                   | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4231-19          | SW07                   | Total/NA  | Solid  | 8021B  | 48332      |
| MB 880-48332/5-A     | Method Blank           | Total/NA  | Solid  | 8021B  | 48332      |
| LCS 880-48332/1-A    | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 48332      |
| LCSD 880-48332/2-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4223-A-1-E MS    | Matrix Spike           | Total/NA  | Solid  | 8021B  | 48332      |
| 890-4223-A-1-F MSD   | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 48332      |

## GC Semi VOA

#### Analysis Batch: 47856

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|----------------------|------------------------|-----------|--------|----------|------------|
| 890-4231-1           | FS01                   | Total/NA  | Solid  | 8015B NM | 47868      |
| 890-4231-2           | FS02                   | Total/NA  | Solid  | 8015B NM | 47868      |
| 890-4231-3           | FS03                   | Total/NA  | Solid  | 8015B NM | 47868      |
| MB 880-47868/1-A     | Method Blank           | Total/NA  | Solid  | 8015B NM | 47868      |
| LCS 880-47868/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 47868      |
| LCSD 880-47868/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 47868      |
| 880-25357-A-22-C MS  | Matrix Spike           | Total/NA  | Solid  | 8015B NM | 47868      |
| 880-25357-A-22-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM | 47868      |

#### Prep Batch: 47868

| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|----------------------|------------------------|-----------|--------|-------------|------------|
| 890-4231-1           | FS01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-2           | FS02                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-3           | FS03                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-47868/1-A     | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-47868/2-A    | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-47868/3-A   | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25357-A-22-C MS  | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25357-A-22-D MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8015NM Prep |            |

## Analysis Batch: 47992

| Lab Sample ID    | Client Sample ID | Ргер Туре | Matrix | Method   | Prep Batch |
|------------------|------------------|-----------|--------|----------|------------|
| 890-4231-4       | FS04             | Total/NA  | Solid  | 8015B NM | 48015      |
| 890-4231-5       | FS05             | Total/NA  | Solid  | 8015B NM | 48015      |
| 890-4231-6       | FS06             | Total/NA  | Solid  | 8015B NM | 48015      |
| 890-4231-7       | FS07             | Total/NA  | Solid  | 8015B NM | 48015      |
| MB 880-48015/1-A | Method Blank     | Total/NA  | Solid  | 8015B NM | 48015      |

Eurofins Carlsbad

Page 116 of 203

Client: Ensolum Project/Site: Maverick Baish B Battery

## GC Semi VOA (Continued)

## Analysis Batch: 47992 (Continued)

| Lab Sample ID           | Client Sample ID       | Ргер Туре | Matrix | Method      | Prep Batch |
|-------------------------|------------------------|-----------|--------|-------------|------------|
| LCS 880-48015/2-A       | Lab Control Sample     | Total/NA  | Solid  | 8015B NM    | 48015      |
| LCSD 880-48015/3-A      | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM    | 48015      |
| 880-25537-A-41-E MS     | Matrix Spike           | Total/NA  | Solid  | 8015B NM    | 48015      |
| 880-25537-A-41-F MSD    | Matrix Spike Duplicate | Total/NA  | Solid  | 8015B NM    | 48015      |
| Prep Batch: 48015       |                        |           |        |             |            |
| Lab Sample ID           | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
| 890-4231-4              | FS04                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-5              | FS05                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-6              | FS06                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-7              | FS07                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-48015/1-A        | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-48015/2-A       | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-48015/3-A      | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-25537-A-41-E MS     | Matrix Spike           | Total/NA  | Solid  | 8015NM Prep |            |
| 000-20001-/ (-+ I-L INO |                        |           | Solid  | 8015NM Prep |            |

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 890-4231-1    | FS01             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-2    | FS02             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-3    | FS03             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-4    | FS04             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-5    | FS05             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-6    | FS06             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-7    | FS07             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-8    | FS08             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-9    | FS09             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-10   | FS10             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-11   | FS11             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-12   | FS12             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-13   | FS13             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-14   | SW01             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-15   | SW02             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-16   | SW03             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-17   | SW04             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-18   | SW06             | Total/NA  | Solid  | 8015 NM |            |
| 890-4231-19   | SW07             | Total/NA  | Solid  | 8015 NM |            |

#### Analysis Batch: 48081

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-4231-16        | SW03                   | Total/NA  | Solid  | 8015B NM | 48107      |
| 890-4231-17        | SW04                   | Total/NA  | Solid  | 8015B NM | 48107      |
| 890-4231-18        | SW06                   | Total/NA  | Solid  | 8015B NM | 48107      |
| 890-4231-19        | SW07                   | Total/NA  | Solid  | 8015B NM | 48107      |
| MB 880-48107/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 48107      |
| LCS 880-48107/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 48107      |
| LCSD 880-48107/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 48107      |
| 890-4231-16 MS     | SW03                   | Total/NA  | Solid  | 8015B NM | 48107      |
| 890-4231-16 MSD    | SW03                   | Total/NA  | Solid  | 8015B NM | 48107      |

Eurofins Carlsbad

## Job ID: 890-4231-1 SDG: 03E2057054

Client: Ensolum Project/Site: Maverick Baish B Battery Job ID: 890-4231-1 SDG: 03E2057054

## GC Semi VOA

## Analysis Batch: 48083

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |   |
|--------------------|------------------------|-----------|--------|-------------|------------|---|
| 890-4231-8         | FS08                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-9         | FS09                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-10        | FS10                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-11        | FS11                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-12        | FS12                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-13        | FS13                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-14        | SW01                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-15        | SW02                   | Total/NA  | Solid  | 8015B NM    | 48109      | 8 |
| MB 880-48109/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| LCS 880-48109/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| LCSD 880-48109/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-8 MS      | FS08                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| 890-4231-8 MSD     | FS08                   | Total/NA  | Solid  | 8015B NM    | 48109      |   |
| rep Batch: 48107   |                        |           |        |             |            |   |
| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method      | Prep Batch |   |
| 890-4231-16        | SW03                   | Total/NA  | Solid  | 8015NM Prep |            |   |
| 890-4231-17        | SW04                   | Total/NA  | Solid  | 8015NM Prep |            |   |
| 890-4231-18        | SW06                   | Total/NA  | Solid  | 8015NM Prep |            |   |
| 890-4231-19        | SW07                   | Total/NA  | Solid  | 8015NM Prep |            |   |
| MB 880-48107/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |   |

#### Prep Batch: 48107

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method      | Prep Batch |  |
|--------------------|------------------------|-----------|--------|-------------|------------|--|
| 890-4231-16        | SW03                   | Total/NA  | Solid  | 8015NM Prep |            |  |
| 890-4231-17        | SW04                   | Total/NA  | Solid  | 8015NM Prep |            |  |
| 890-4231-18        | SW06                   | Total/NA  | Solid  | 8015NM Prep |            |  |
| 890-4231-19        | SW07                   | Total/NA  | Solid  | 8015NM Prep |            |  |
| MB 880-48107/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |  |
| LCS 880-48107/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |  |
| LCSD 880-48107/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |  |
| 890-4231-16 MS     | SW03                   | Total/NA  | Solid  | 8015NM Prep |            |  |
| 890-4231-16 MSD    | SW03                   | Total/NA  | Solid  | 8015NM Prep |            |  |

## Prep Batch: 48109

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 890-4231-8         | FS08                   | Total/NA  | Solid  | 8015NM Prep | -          |
| 890-4231-9         | FS09                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-10        | FS10                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-11        | FS11                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-12        | FS12                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-13        | FS13                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-14        | SW01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-15        | SW02                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-48109/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-48109/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-48109/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-8 MS      | FS08                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-4231-8 MSD     | FS08                   | Total/NA  | Solid  | 8015NM Prep |            |

## HPLC/IC

## Leach Batch: 48060

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 890-4231-1    | FS01             | Soluble   | Solid  | DI Leach |            |
| 890-4231-2    | FS02             | Soluble   | Solid  | DI Leach |            |
| 890-4231-3    | FS03             | Soluble   | Solid  | DI Leach |            |
| 890-4231-4    | FS04             | Soluble   | Solid  | DI Leach |            |
| 890-4231-5    | FS05             | Soluble   | Solid  | DI Leach |            |

Eurofins Carlsbad

Client: Ensolum Project/Site: Maverick Baish B Battery

## HPLC/IC (Continued)

## Leach Batch: 48060 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-4231-6         | FS06                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-7         | FS07                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-8         | FS08                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-9         | FS09                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-10        | FS10                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-11        | FS11                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-12        | FS12                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-13        | FS13                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-14        | SW01                   | Soluble   | Solid  | DI Leach | _          |
| 890-4231-15        | SW02                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-16        | SW03                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-17        | SW04                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-18        | SW06                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-19        | SW07                   | Soluble   | Solid  | DI Leach |            |
| MB 880-48060/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-48060/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-48060/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 890-4231-1 MS      | FS01                   | Soluble   | Solid  | DI Leach | 4          |
| 890-4231-1 MSD     | FS01                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-11 MS     | FS11                   | Soluble   | Solid  | DI Leach |            |
| 890-4231-11 MSD    | FS11                   | Soluble   | Solid  | DI Leach |            |

## Analysis Batch: 48158

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-4231-1         | FS01                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-2         | FS02                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-3         | FS03                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-4         | FS04                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-5         | FS05                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-6         | FS06                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-7         | FS07                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-8         | FS08                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-9         | FS09                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-10        | FS10                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-11        | FS11                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-12        | FS12                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-13        | FS13                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-14        | SW01                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-15        | SW02                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-16        | SW03                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-17        | SW04                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-18        | SW06                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-19        | SW07                   | Soluble   | Solid  | 300.0  | 48060      |
| MB 880-48060/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 48060      |
| LCS 880-48060/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 48060      |
| LCSD 880-48060/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-1 MS      | FS01                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-1 MSD     | FS01                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-11 MS     | FS11                   | Soluble   | Solid  | 300.0  | 48060      |
| 890-4231-11 MSD    | FS11                   | Soluble   | Solid  | 300.0  | 48060      |

Page 119 of 203

#### Job ID: 890-4231-1 SDG: 03E2057054

5

9

Job ID: 890-4231-1 SDG: 03E2057054

## Lab Sample ID: 890-4231-1 Matrix: Solid

Lab Sample ID: 890-4231-2

Lab Sample ID: 890-4231-3

Lab Sample ID: 890-4231-4

Matrix: Solid

Matrix: Solid

Date Collected: 02/27/23 13:50 Date Received: 03/03/23 08:40

**Client Sample ID: FS01** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 48442  | 03/13/23 08:00 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48426  | 03/13/23 14:37 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/13/23 17:17 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/07/23 13:47 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 47868  | 03/06/23 08:24 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47856  | 03/06/23 18:27 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/08/23 22:57 | SMC     | EET MID |

## **Client Sample ID: FS02**

## Date Collected: 02/27/23 13:55

Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 48442  | 03/13/23 08:00 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48426  | 03/13/23 15:03 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/13/23 17:17 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/07/23 13:47 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 47868  | 03/06/23 08:24 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47856  | 03/06/23 18:49 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/08/23 23:12 | SMC     | EET MID |

## **Client Sample ID: FS03**

## Date Collected: 02/27/23 14:40

Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 48442  | 03/13/23 08:00 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48426  | 03/13/23 15:29 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/13/23 17:17 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/07/23 13:47 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 47868  | 03/06/23 08:24 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47856  | 03/06/23 19:11 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/08/23 23:17 | SMC     | EET MID |

#### **Client Sample ID: FS04** Date Collected: 02/28/23 11:35 Date Received: 03/03/23 08:40

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.02 g  | 5 mL   | 48192  | 03/09/23 10:06 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 48425  | 03/13/23 18:16 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |

**Eurofins Carlsbad** 

Matrix: Solid

Released to Imaging: 5/14/2024 11:22:06 AM

Job ID: 890-4231-1 SDG: 03E2057054

## Lab Sample ID: 890-4231-4 Matrix: Solid

Lab Sample ID: 890-4231-5

#### Date Collected: 02/28/23 11:35 Date Received: 03/03/23 08:40

**Client Sample ID: FS04** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/08/23 15:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 48015  | 03/07/23 10:19 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47992  | 03/08/23 02:00 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/08/23 23:22 | SMC     | EET MID |

## Client Sample ID: FS05 Date Collected: 02/28/23 11:40

## Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 48192  | 03/09/23 10:06 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48425  | 03/13/23 18:36 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/08/23 15:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 48015  | 03/07/23 10:19 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47992  | 03/08/23 02:21 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/08/23 23:26 | SMC     | EET MID |

## **Client Sample ID: FS06**

Date Collected: 02/28/23 11:45 Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 48192  | 03/09/23 10:06 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48425  | 03/13/23 18:56 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/08/23 15:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 48015  | 03/07/23 10:19 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47992  | 03/08/23 02:42 | AJ      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/08/23 23:41 | SMC     | EET MID |

# Client Sample ID: FS07

#### Date Collected: 03/01/23 08:00 Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 14:05 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/08/23 15:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 48015  | 03/07/23 10:19 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 47992  | 03/08/23 03:03 | AJ      | EET MID |

Eurofins Carlsbad

> 11 12 13

# Lab Sample ID: 890-4231-6

Lab Sample ID: 890-4231-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

## Lab Chronicle

Job ID: 890-4231-1 SDG: 03E2057054

## Lab Sample ID: 890-4231-7 Matrix: Solid

Lab Sample ID: 890-4231-8

Lab Sample ID: 890-4231-9

Date Collected: 03/01/23 08:00 Date Received: 03/03/23 08:40

**Client Sample ID: FS07** 

Client: Ensolum

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Soluble   | Leach    | DI Leach |     |        | 5.02 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0    |     | 1      |         |        | 48158  | 03/08/23 23:46 | SMC     | EET MID |

## **Client Sample ID: FS08**

#### Date Collected: 03/01/23 07:55 Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 14:26 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 12:02 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 48109  | 03/08/23 10:34 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48083  | 03/08/23 21:56 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/08/23 23:51 | SMC     | EET MID |

#### Client Sample ID: FS09 Date Collected: 03/01/23 12:00 Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 14:47 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 12:02 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 48109  | 03/08/23 10:34 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48083  | 03/08/23 23:02 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/08/23 23:56 | SMC     | EET MID |

## **Client Sample ID: FS10** Date Collected: 02/28/23 14:35

Lab Sample ID: 890-4231-10 Matrix: Solid

## Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 48320  | 03/10/23 12:35 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48570  | 03/14/23 12:46 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 12:02 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 48109  | 03/08/23 10:34 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48083  | 03/08/23 23:23 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/09/23 00:00 | SMC     | EET MID |

**Eurofins Carlsbad** 

Page 122 of 203

Matrix: Solid

Matrix: Solid

9

## Released to Imaging: 5/14/2024 11:22:06 AM

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

**Client Sample ID: FS11** 

Date Collected: 03/01/23 10:00

Date Received: 03/03/23 08:40

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

5.03 g

5 mL

10.00 g

1 uL

5.03 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

48332

48639

48540

48051

48109

48083

48060

48158

Number

Job ID: 890-4231-1 SDG: 03E2057054

# Lab Sample ID: 890-4231-11

Analyst

MNR

AJ

SM

Matrix: Solid

Lab

EET MID

EET MID

EET MID

Dil

1

1

1

1

1

Factor

Run

Date Collected: 03/01/23 09:40 Date Received: 03/03/23 08:40

**Client Sample ID: FS12** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 15:28 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 12:02 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 48109  | 03/08/23 10:34 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48083  | 03/09/23 00:07 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/09/23 00:20 | SMC     | EET MID |

## Client Sample ID: FS13

#### Date Collected: 03/01/23 11:50 Date Received: 03/03/23 08:40

| Date Received. | 00/00/20 00. |       |  |
|----------------|--------------|-------|--|
|                | Batch        | Batch |  |

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 15:49 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 12:02 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 48109  | 03/08/23 10:34 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48083  | 03/09/23 00:28 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/09/23 00:25 | SMC     | EET MID |

#### Client Sample ID: SW01 Date Collected: 02/27/23 14:50 Date Received: 03/03/23 08:40

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 4.96 g  | 5 mL   | 48442  | 03/13/23 08:00 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 48426  | 03/13/23 15:56 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 48540  | 03/13/23 17:17 | SM      | EET MID |

Eurofins Carlsbad

Matrix: Solid

 03/09/23
 12:02
 SM
 EET MID

 03/08/23
 10:34
 AJ
 EET MID

 03/08/23
 23:45
 SM
 EET MID

 03/07/23
 14:28
 KS
 EET MID

 03/09/23
 00:05
 SMC
 EET MID

Prepared

or Analyzed

03/10/23 14:43

03/15/23 15:08

03/16/23 15:40

#### Lab Sample ID: 890-4231-12 Matrix: Solid

Lab Sample ID: 890-4231-13

Lab Sample ID: 890-4231-14

Matrix: Solid

una. Soliu

Job ID: 890-4231-1 SDG: 03E2057054

## Lab Sample ID: 890-4231-14 Matrix: Solid

Lab Sample ID: 890-4231-15

Date Collected: 02/27/23 14:50 Date Received: 03/03/23 08:40

**Client Sample ID: SW01** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 12:02 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 48109  | 03/08/23 10:34 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48083  | 03/09/23 00:49 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/09/23 00:39 | SMC     | EET MID |

## Client Sample ID: SW02 Date Collected: 02/28/23 11:50

## Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 48320  | 03/10/23 12:35 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48570  | 03/14/23 13:07 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 12:02 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.00 g | 10 mL  | 48109  | 03/08/23 10:34 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48083  | 03/09/23 01:11 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/09/23 00:44 | SMC     | EET MID |

## Client Sample ID: SW03

Date Collected: 03/01/23 11:05 Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 18:13 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 11:59 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.02 g | 10 mL  | 48107  | 03/08/23 10:30 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48081  | 03/08/23 21:56 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.04 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/09/23 00:49 | SMC     | EET MID |

## Client Sample ID: SW04

#### Date Collected: 03/01/23 11:15 Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 18:34 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 11:59 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 48107  | 03/08/23 10:30 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48081  | 03/08/23 23:02 | SM      | EET MID |

**Eurofins Carlsbad** 

> 11 12 13

# Lab Sample ID: 890-4231-16

Matrix: Solid

Matrix: Solid

3/09/23 00:49 SMC EET MID Lab Sample ID: 890-4231-17

Matrix: Solid

## Lab Chronicle

Job ID: 890-4231-1 SDG: 03E2057054

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Lab Sample ID: 890-4231-17

Lab Sample ID: 890-4231-18

Lab Sample ID: 890-4231-19

## Client Sample ID: SW04 Date Collected: 03/01/23 11:15

Client: Ensolum

Date Received: 03/03/23 08:40

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Soluble   | Leach    | DI Leach |     |        | 4.95 g  | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0    |     | 1      |         |        | 48158  | 03/09/23 00:54 | SMC     | EET MID |

## Client Sample ID: SW06

#### Date Collected: 03/01/23 12:10 Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 19:58 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 11:59 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 48107  | 03/08/23 10:30 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48081  | 03/08/23 23:23 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/09/23 00:59 | SMC     | EET MID |

#### Client Sample ID: SW07 Date Collected: 03/01/23 12:15 Date Received: 03/03/23 08:40

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 48332  | 03/10/23 14:43 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 48639  | 03/15/23 20:19 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 48540  | 03/16/23 15:40 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 48051  | 03/09/23 11:59 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.01 g | 10 mL  | 48107  | 03/08/23 10:30 | AJ      | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 48081  | 03/08/23 23:45 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 48060  | 03/07/23 14:28 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      |         |        | 48158  | 03/09/23 01:03 | SMC     | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

|                                                               |                              | Accreditation/Co                           | ertification Summary           |                                           |    |
|---------------------------------------------------------------|------------------------------|--------------------------------------------|--------------------------------|-------------------------------------------|----|
| Client: Ensolum<br>Project/Site: Maverick B                   | aish B Battery               |                                            |                                | Job ID: 890-4231-1<br>SDG: 03E2057054     | 2  |
| Laboratory: Eurofin<br>Unless otherwise noted, all ar         |                              | were covered under each acci               | editation/certification below. |                                           |    |
| Authority                                                     |                              | Program                                    | Identification Number          | Expiration Date                           |    |
| Texas<br>The following analytes a<br>the agency does not offe | are included in this report, | NELAP<br>but the laboratory is not certifi | T104704400-22-25               | 06-30-23<br>ay include analytes for which | 5  |
| Analysis Method                                               | Prep Method                  | Matrix                                     | Analyte                        |                                           |    |
| 8015 NM                                                       |                              | Solid                                      | Total TPH                      |                                           |    |
| Total BTEX                                                    |                              | Solid                                      | Total BTEX                     |                                           |    |
|                                                               |                              |                                            |                                |                                           | 8  |
|                                                               |                              |                                            |                                |                                           | 9  |
|                                                               |                              |                                            |                                |                                           | 10 |
|                                                               |                              |                                            |                                |                                           |    |
|                                                               |                              |                                            |                                |                                           |    |
|                                                               |                              |                                            |                                |                                           | 13 |
|                                                               |                              |                                            |                                |                                           |    |

Eurofins Carlsbad

## **Method Summary**

Client: Ensolum Project/Site: Maverick Baish B Battery Job ID: 890-4231-1 SDG: 03E2057054

| Method      | Method Description                                                                  | Protocol                         | Laboratory |
|-------------|-------------------------------------------------------------------------------------|----------------------------------|------------|
| 8021B       | Volatile Organic Compounds (GC)                                                     | SW846                            | EET MID    |
| Total BTEX  | Total BTEX Calculation                                                              | TAL SOP                          | EET MID    |
| 8015 NM     | Diesel Range Organics (DRO) (GC)                                                    | SW846                            | EET MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)                                                    | SW846                            | EET MID    |
| 300.0       | Anions, Ion Chromatography                                                          | EPA                              | EET MID    |
| 5035        | Closed System Purge and Trap                                                        | SW846                            | EET MID    |
| 8015NM Prep | Microextraction                                                                     | SW846                            | EET MID    |
| DI Leach    | Deionized Water Leaching Procedure                                                  | ASTM                             | EET MID    |
| EPA = US    | STM International<br>Environmental Protection Agency                                |                                  |            |
| SW846 = '   | 'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editior | , November 1986 And Its Updates. |            |
| TAL SOP =   | = TestAmerica Laboratories, Standard Operating Procedure                            |                                  |            |
|             |                                                                                     |                                  |            |
|             | = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440       |                                  |            |
|             |                                                                                     |                                  |            |
|             |                                                                                     |                                  |            |
|             |                                                                                     |                                  |            |
|             |                                                                                     |                                  |            |

Eurofins Carlsbad

## Sample Summary

Client: Ensolum Project/Site: Maverick Baish B Battery

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |
|---------------|------------------|--------|----------------|----------------|-------|
| 890-4231-1    | FS01             | Solid  | 02/27/23 13:50 | 03/03/23 08:40 | 2'    |
| 890-4231-2    | FS02             | Solid  | 02/27/23 13:55 | 03/03/23 08:40 | 2'    |
| 890-4231-3    | FS03             | Solid  | 02/27/23 14:40 | 03/03/23 08:40 | 3.5'  |
| 390-4231-4    | FS04             | Solid  | 02/28/23 11:35 | 03/03/23 08:40 | 2'    |
| 890-4231-5    | FS05             | Solid  | 02/28/23 11:40 | 03/03/23 08:40 | 2'    |
| 390-4231-6    | FS06             | Solid  | 02/28/23 11:45 | 03/03/23 08:40 | 2'    |
| 890-4231-7    | FS07             | Solid  | 03/01/23 08:00 | 03/03/23 08:40 | 4'    |
| 390-4231-8    | FS08             | Solid  | 03/01/23 07:55 | 03/03/23 08:40 | 4'    |
| 890-4231-9    | FS09             | Solid  | 03/01/23 12:00 | 03/03/23 08:40 | 4'    |
| 890-4231-10   | FS10             | Solid  | 02/28/23 14:35 | 03/03/23 08:40 | 3'    |
| 390-4231-11   | FS11             | Solid  | 03/01/23 10:00 | 03/03/23 08:40 | 3.5'  |
| 890-4231-12   | FS12             | Solid  | 03/01/23 09:40 | 03/03/23 08:40 | 3'    |
| 390-4231-13   | FS13             | Solid  | 03/01/23 11:50 | 03/03/23 08:40 | 3'    |
| 390-4231-14   | SW01             | Solid  | 02/27/23 14:50 | 03/03/23 08:40 | 0-2'  |
| 390-4231-15   | SW02             | Solid  | 02/28/23 11:50 | 03/03/23 08:40 | 0-2'  |
| 390-4231-16   | SW03             | Solid  | 03/01/23 11:05 | 03/03/23 08:40 | 0-3'  |
| 390-4231-17   | SW04             | Solid  | 03/01/23 11:15 | 03/03/23 08:40 | 0-3'  |
| 890-4231-18   | SW06             | Solid  | 03/01/23 12:10 | 03/03/23 08:40 | 0-4'  |
| 890-4231-19   | SW07             | Solid  | 03/01/23 12:15 | 03/03/23 08:40 | 0-4'  |

PM

Received by OCD: 4/17/2024 12:35:00

**eurofins** 

Page

None: NO

Cool: Cool

HCL: HC

H2S04: H2

HaPOA: HP

NaHSOA: NABIS

Na2S2O3: NaSO3

Zn Acetate+NaOH: Zn

NaOH+Ascorbic Acid: SAPC

**Sample Comments** 

Other:

**Preservative Codes** 

DI Water: H<sub>2</sub>O

MeOH: Me

HNO: HN

NaOH: Na

ADaPT

#### **Environment Testing** Work Order No: Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Xenco EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 www.xenco.com Work Order Comments Bill to: (if different) Josh Adams Project Manager: Josh Adams Program: UST/PST PRP Brownfields RRC Superfund Company Name: Ensolum, LLC Company Name: Ensolum, LLC State of Project: Address: 601 N Marienfeld St Suite 400 601 N Marienfeld St Suite 400 Address: Reporting: Level II C Level III PST/UST TRRP Level IV Midland, TX 79701 Midland, TX 79701 City, State ZIP: City, State ZIP: Deliverables: EDD Email: jadams@ensolum.com, dnikanorov@ensolum.com 303-517-8437 Phone: **ANALYSIS REQUEST** Maverick Baish B Battery **Turn Around** Project Name: Pres. Routine Rush 03E2057054 Project Number: Code Due Date: Lea County, NM Project Location: **Dmitry Nikanorov** TAT starts the day received by Sampler's Name: the lab, if received by 4:30pm PO# Parameters SAMPLE RECEIPT Temp Blank: Yes No Wet Ice. No Ves ô, 300. Thermometer ID: (Yes ) No Samples Received Intact: 00 9 (EPA: (N/A Correction Factor: 5 Cooler Custody Seals Yes No Yes No N/A X Temperature Reading: Sample Custody Seals: 890-4231 Chain of Custody CHLORIDES 3 BTEX (8021 Corrected Temperature .10 TPH (8015) Total Containers: Grab/ # of Date Time Depth Sample Identification Matrix Cont Sampled Sampled Comp s 2' х х х Comp 1 FS01 2/27/2023 13:50 . S 2/27/2023 13:55 2' Comp х х х 1 FS02 x х х S 2/27/2023 14:40 3.5 Comp 1 FS03 S х х 2/28/2023 11:35 2' Comp х FS04 1 s 2' х 11:40 Comp х х 2/28/2023 1 FS05 s 2' х 2/28/2023 11:45 Comp х х FS06 1 S 3/1/2023 8:00 4' Comp 1 х х х FS07 Comp **FS08** 3/1/2023 7:55 Х X 5 4' х S 3/1/2023 12:00 Comp х х FS09 1 3' Comp x х 2/28/2023 14:35 1 х S FS10 8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn Total 200.7 / 6010 200.8/6020: Hg: 1631 / 245.1 / 7470 / 7471 TCLP / SPLP 6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Circle Method(s) and Metal(s) to be analyzed Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Relinquished by: (Signature) Received by: (Signature) Received by: (Signature) Date/Time Relinguished by: (Signature) 841 .3.23 10 X

**Chain of Custody** 

Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300

Revised Date: 08/25/2020 Rev. 2020 2

Date/Time

Received by OCD: 4/17/2024 12:35:00 PM

# 🔅 eurofins

Environment Testing Xenco

# Chain of Custody

Houston, TX (281) 240-4200. Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199

Work Order No: \_\_\_\_

~

|                                                                                    |            |                                        |             |                   |                           |             |                               |              |                        |                                                              |          |           |          |                   |          |         |        |          |          | www      | .xenc    | o.con       | n Page                                        |         |                            |
|------------------------------------------------------------------------------------|------------|----------------------------------------|-------------|-------------------|---------------------------|-------------|-------------------------------|--------------|------------------------|--------------------------------------------------------------|----------|-----------|----------|-------------------|----------|---------|--------|----------|----------|----------|----------|-------------|-----------------------------------------------|---------|----------------------------|
| Project Manager:                                                                   | Josh       | Adams                                  |             |                   |                           | Bill to: (i | f different)                  |              | Josh                   | Adams                                                        | 6        |           |          |                   |          |         |        |          |          | W        | lork O   | rder        | Commen                                        | its     |                            |
| Company Name:                                                                      | Enso       | lum, LLC                               |             |                   | 1                         | Compar      | Company Name: Ensolum, LLC    |              |                        |                                                              |          |           |          | Prog              | ram: l   | JST/PS  | ST 🗌   |          | Brow     | vnfields | RRC      | Superfund [ |                                               |         |                            |
| Address:                                                                           | 601 N      | 601 N Marienfeld St Suite 400 Address: |             |                   | i:                        |             | 601 N Marienfeld St Suite 400 |              |                        |                                                              |          |           |          | State of Project: |          |         |        |          |          |          |          |             |                                               |         |                            |
| City, State ZIP:                                                                   | Midla      | nd, TX 7                               | 9701        |                   |                           | City, Sta   | City, State ZIP:              |              |                        | Midland, TX 79701 Reporting: Level II Level III PST/UST TRRP |          |           |          |                   |          |         |        | Level IV |          |          |          |             |                                               |         |                            |
| Phone:                                                                             |            | 517-8437                               |             |                   | Email                     | jadams      | @enso                         | lum.c        | om, d                  |                                                              |          |           |          |                   |          |         |        | Other:   |          |          |          |             |                                               |         |                            |
|                                                                                    | -          | Maverick                               |             | Patton            |                           | Around      |                               | _            |                        |                                                              |          |           |          |                   | YSIS     | REC     | UES    | r        |          |          |          |             | Pre                                           | serva   | tive Codes                 |
| Project Name:                                                                      | <u> </u>   |                                        | 205705      |                   | Routine                   | Rus         |                               | Pres.        |                        | <u> </u>                                                     | <u> </u> |           |          |                   |          |         | T      | 1        | T        | Γ        | T        |             | None: N                                       |         | DI Water: H <sub>2</sub> C |
| Project Number:                                                                    |            |                                        | _           |                   |                           |             |                               | Code         |                        |                                                              |          |           |          |                   |          |         |        |          |          |          |          |             | Cool: Co                                      |         | MeOH: Me                   |
| Project Location:                                                                  |            |                                        | County,     |                   | Due Date:                 |             | ius d hu                      |              |                        |                                                              |          |           |          |                   |          |         |        |          |          | 1        |          |             | HCL: HC                                       | -       | HNO <sub>3</sub> : HN      |
| Sampler's Name:<br>PO #:                                                           |            | Dmiti                                  | y Nikan     | orov              | TAT starts the lab, if re |             |                               |              |                        |                                                              |          |           |          |                   |          |         |        |          |          |          |          |             | H2S04: H                                      |         | NaOH: Na                   |
| SAMPLE RECE                                                                        |            | Temp                                   | Blank:      | Yes No            | Wet Ice:                  | Yes         | No                            | Parameters   |                        |                                                              |          |           |          |                   |          |         |        | 1        | 1        |          |          |             | H <sub>3</sub> PO <sub>4</sub> : H            |         |                            |
| Samples Received II                                                                |            | Yes                                    |             | Thermometer       |                           |             |                               | me           | 0.00                   |                                                              |          |           |          |                   |          |         |        |          |          |          |          |             | NaHSO <sub>4</sub>                            | NABIS   |                            |
| Cooler Custody Seal                                                                |            | Yes N                                  |             | Correction Ea     |                           |             |                               | Ра           | A: 3                   |                                                              |          |           |          |                   |          |         |        |          |          |          |          |             | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | NaSO    | 3                          |
| Sample Custody Sea                                                                 | als:       | Yes N                                  | o N/A       | Temperatura       | Reading:                  |             |                               |              | Ē                      |                                                              |          |           |          |                   |          |         |        |          |          |          |          |             | Zn Aceta                                      | te+NaC  | DH: Zn                     |
| Total Containers:                                                                  |            |                                        |             | Corrected Ter     | mperature:                |             |                               |              |                        | 15)                                                          | (8021    |           |          |                   |          |         |        |          |          |          |          |             | NaOH+A                                        | scorbic | Acid: SAPC                 |
| Sample Ider                                                                        | ntificat   | ion                                    | Matrix      | Date<br>Sampled   | Time<br>Sampled           | Depth       | 1 1                           | # of<br>Cont | CHLORIDES (EPA: 300.0) | TPH (8015)                                                   | BTEX (8  |           |          |                   |          |         |        |          |          |          |          |             | Sa                                            | mple C  | Comments                   |
| FS1                                                                                | 1          |                                        | s           | 3/1/2023          | 10:00                     | 3.5'        | Comp                          | 1            | x                      | x                                                            | x        |           |          |                   |          |         |        |          |          |          |          |             | _                                             |         |                            |
| FS1                                                                                | 2          |                                        | S           | 3/1/2023          | 9:40                      | 3'          | Comp                          | 1            | x                      | x                                                            | ×        |           |          |                   | •        |         |        |          |          |          | ļ        | I           |                                               |         |                            |
| FS1                                                                                | 3          |                                        | S           | 3/1/2023          | 11:50                     | 3'          | Comp                          | 1            | x                      | x                                                            | ×        |           |          |                   |          |         |        |          |          |          | <u> </u> |             |                                               |         |                            |
| SW                                                                                 | 01         |                                        | S           | 2/27/2023         | 14:50                     | 0-2'        | Comp                          | 1            | x                      | x                                                            | ×        |           |          |                   |          |         |        |          | <u> </u> |          | L        |             |                                               |         |                            |
| SWO                                                                                | 02         |                                        | S           | 2/28/2023         | 11:50                     | 0-2'        | Comp                          | 1            | x                      | x                                                            | ×        |           |          |                   |          |         |        |          |          |          |          |             |                                               |         |                            |
| SWO                                                                                | 03         |                                        | S           | 3/1/2023          | 11:05                     | 0-3'        | Comp                          | 1            | x                      | x                                                            | ×        |           |          |                   |          |         |        |          |          |          |          |             |                                               |         |                            |
| SWO                                                                                | )4         |                                        | S           | 3/1/2023          | 11:15                     | 0-3'        | Comp                          | 1            | x                      | x                                                            | x        |           |          |                   |          |         |        |          | -        |          |          |             |                                               |         |                            |
| SWO                                                                                | 06         |                                        | S           | 3/1/2023          | 12:10                     | 0-4'        | Comp                          | 1            | x                      | X                                                            | X        |           |          |                   |          |         | 1      |          |          |          |          |             |                                               |         |                            |
| SWO                                                                                | 07         |                                        | S           | 3/1/2023          | 12:15                     | 0-4'        | Comp                          | 1            | x                      | x                                                            | x        |           |          |                   |          | _       | -      |          |          |          | -        | -           |                                               |         |                            |
|                                                                                    | -          | D                                      | #/          |                   |                           |             |                               |              |                        |                                                              |          |           |          |                   |          |         | 1      |          |          |          | 1        |             |                                               |         |                            |
| Total 200.7 / 60<br>Circle Method(s) a                                             | nd Me      | 1.4                                    | be analy    | zed               | CRA 13PI<br>TCLP/S        | PLP 601     | 0: 8RC                        | RA           | Sb A                   | s Ba                                                         | Be       | Cd Cr     | Co       | Cu Pl             | b Mn     | Мо      | Ni Se  | e Ag     | TIU      |          | Hg:      | 1631        | Na Sr TI<br>/245.1/7                          |         |                            |
| Notice: Signature of this<br>of service. Eurofins Xen-<br>of Eurofins Xenco. A mir | no will be | liable only                            | for the cos | has solames to ta | shall not assur           | ne any rest | onsibility                    | for any      | losses                 | or expe                                                      | nses in  | curred by | / the cl | lent if s         | uch loss | ses are | due to | circums  | tances   | beyond   | the con  | trol        |                                               |         |                            |
| Relinquished by                                                                    | y (Sig     | nature)                                | 0           | Received          | d by: (Signa              | iture)      |                               |              | Date                   | /Time                                                        |          | Rel       | inqui    | shed              | by: (Si  | ignat   | ure)   |          | Rece     | eived    | by: (S   | ignati      | ure)                                          | - 1     | Date/Time                  |
| 1 PN                                                                               | /          |                                        | Clu         | CID               |                           |             |                               | 3.           | 3.2                    | 38                                                           | 340      | 2         |          |                   |          |         |        |          |          | _        |          |             |                                               |         |                            |
| 3                                                                                  |            |                                        |             |                   |                           |             |                               |              |                        |                                                              |          | 4         |          |                   |          |         | 1      |          |          |          |          |             |                                               |         |                            |
| 5                                                                                  |            |                                        |             | 1                 |                           |             |                               |              |                        |                                                              |          | 6         |          |                   |          |         |        |          |          |          |          |             |                                               |         |                            |

## Login Sample Receipt Checklist

Client: Ensolum

#### Login Number: 4231 List Number: 1 Creator: Stutzman, Amanda

| Question                                                                         | Answer | Comment                             |
|----------------------------------------------------------------------------------|--------|-------------------------------------|
| The cooler's custody seal, if present, is intact.                                | True   |                                     |
| Sample custody seals, if present, are intact.                                    | True   |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                                     |
| Samples were received on ice.                                                    | True   |                                     |
| Cooler Temperature is acceptable.                                                | True   |                                     |
| Cooler Temperature is recorded.                                                  | True   |                                     |
| COC is present.                                                                  | True   |                                     |
| COC is filled out in ink and legible.                                            | True   |                                     |
| COC is filled out with all pertinent information.                                | True   |                                     |
| Is the Field Sampler's name present on COC?                                      | True   |                                     |
| There are no discrepancies between the containers received and the COC.          | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                                     |
| Sample containers have legible labels.                                           | True   |                                     |
| Containers are not broken or leaking.                                            | True   |                                     |
| Sample collection date/times are provided.                                       | True   |                                     |
| Appropriate sample containers are used.                                          | N/A    | Refer to Job Narrative for details. |
| Sample bottles are completely filled.                                            | True   |                                     |
| Sample Preservation Verified.                                                    | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |                                     |

Job Number: 890-4231-1 SDG Number: 03E2057054

Job Number: 890-4231-1 SDG Number: 03E2057054

List Source: Eurofins Midland

List Creation: 03/06/23 12:04 PM

## Login Sample Receipt Checklist

Client: Ensolum

Login Number: 4231 List Number: 2 Creator: Kramer, Jessica

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | True   |         |
| Sample custody seals, if present, are intact.                                    | True   |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Eurofins Carlsbad Released to Imaging: 5/14/2024 11:22:06 AM



August 10, 2023

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

**RE: BAISH B BATTERY** 

Enclosed are the results of analyses for samples received by the laboratory on 08/03/23 12:29.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



Tamara Oldaker

Sample Received By:

#### Analytical Results For:

**ENSOLUM** AIMEE COLE **3122 NATIONAL PARKS HWY** CARLSBAD NM, 88220 Fax To: 08/03/2023 Sampling Date: 08/03/2023 08/10/2023 Sampling Type: Soil Project Name: **BAISH B BATTERY** Sampling Condition: Cool & Intact

#### Sample ID: FS 01 A @ 2.25' (H234126-01)

03D2057054

MAVERICK (32.817358-103.754432)

Received:

Reported:

Project Number:

Project Location:

| BTEX 8021B                           | mg/    | ′kg             | Analyze         | d By: MS     |      |            |               |        |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 08/09/2023      | ND           | 2.20 | 110        | 2.00          | 0.829  |           |
| Toluene*                             | <0.050 | 0.050           | 08/09/2023      | ND           | 2.12 | 106        | 2.00          | 0.647  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 08/09/2023      | ND           | 2.00 | 99.8       | 2.00          | 0.388  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 08/09/2023      | ND           | 6.02 | 100        | 6.00          | 0.0395 |           |
| Total BTEX                           | <0.300 | 0.300           | 08/09/2023      | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 92.9   | % 71.5-13       | 4               |              |      |            |               |        |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyzed By: AC |              |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | 16.0   | 16.0            | 08/08/2023      | ND           | 432  | 108        | 400           | 3.77   |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze         | d By: MS     |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 08/08/2023      | ND           | 154  | 77.1       | 200           | 2.22   |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 08/08/2023      | ND           | 156  | 78.0       | 200           | 2.08   |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 08/08/2023      | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 97.0   | % 48.2-13       | 4               |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | 101 9  | % 49.1-14       | 8               |              |      |            |               |        |           |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Celey D. Keene, Lab Director/Quality Manager



|                   |                    | ENSOLUM<br>AIMEE COLE<br>3122 NATIONAL PARKS HWY<br>CARLSBAD NM, 88220<br>Fax To: |                     |                |
|-------------------|--------------------|-----------------------------------------------------------------------------------|---------------------|----------------|
| Received:         | 08/03/2023         |                                                                                   | Sampling Date:      | 08/03/2023     |
| Reported:         | 08/10/2023         |                                                                                   | Sampling Type:      | Soil           |
| Project Name:     | BAISH B BATTERY    |                                                                                   | Sampling Condition: | Cool & Intact  |
| Project Number:   | 03D2057054         |                                                                                   | Sample Received By: | Tamara Oldaker |
| Project Location: | MAVERICK ( 32.8173 | 358-103.754432)                                                                   |                     |                |

#### Sample ID: FS 07 A @ 4.25' (H234126-02)

| BTEX 8021B                           | mg/         | ′kg             | Analyze         | d By: MS     |      |            |               |        |           |
|--------------------------------------|-------------|-----------------|-----------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result      | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Benzene*                             | <0.050      | 0.050           | 08/09/2023      | ND           | 2.20 | 110        | 2.00          | 0.829  |           |
| Toluene*                             | <0.050      | 0.050           | 08/09/2023      | ND           | 2.12 | 106        | 2.00          | 0.647  |           |
| Ethylbenzene*                        | <0.050      | 0.050           | 08/09/2023      | ND           | 2.00 | 99.8       | 2.00          | 0.388  |           |
| Total Xylenes*                       | <0.150      | 0.150           | 08/09/2023      | ND           | 6.02 | 100        | 6.00          | 0.0395 |           |
| Total BTEX                           | <0.300      | 0.300           | 08/09/2023      | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 93.3        | % 71.5-13       | 4               |              |      |            |               |        |           |
| Chloride, SM4500Cl-B                 | mg/         | ′kg             | Analyzed By: AC |              |      |            |               |        |           |
| Analyte                              | Result      | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | <16.0       | 16.0            | 08/08/2023      | ND           | 416  | 104        | 400           | 7.41   |           |
| TPH 8015M                            | mg/         | ′kg             | Analyze         | d By: MS     |      |            |               |        |           |
| Analyte                              | Result      | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0       | 10.0            | 08/08/2023      | ND           | 154  | 77.1       | 200           | 2.22   |           |
| DRO >C10-C28*                        | <10.0       | 10.0            | 08/08/2023      | ND           | 156  | 78.0       | 200           | 2.08   |           |
| EXT DRO >C28-C36                     | <10.0       | 10.0            | 08/08/2023      | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 90.8        | % 48.2-13       | 4               |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | <i>93.7</i> | % 49.1-14       | 8               |              |      |            |               |        |           |

#### Cardinal Laboratories

\*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



#### **Notes and Definitions**

| QR-03 | The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values. |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                                                                                    |
| RPD   | Relative Percent Difference                                                                                                                                                             |
| **    | Samples not received at proper temperature of 6°C or below.                                                                                                                             |
| ***   | Insufficient time to reach temperature.                                                                                                                                                 |
| -     | Chloride by SM4500Cl-B does not require samples be received at or below 6°C                                                                                                             |
|       | Samples reported on an as received basis (wet) unless otherwise noted on report                                                                                                         |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother business interruptors, loss of use, or loss of profits incurred by client, its subsidiaries, afflicate or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



PM

12:35:00

4/17/2024

Received by OCD:

## CHAIN-OF-CUSTODY AND ANALYS'S REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476





January 31, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

**RE: BAISH B BATTERY** 

Enclosed are the results of analyses for samples received by the laboratory on 01/26/24 14:02.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/26/2024                        | Sampling Date:      | 01/25/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 01/31/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: SW 08 @ 0-4' (H240368-01)

| BTEX 8021B                           | mg,            | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|----------------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result         | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050         | 0.050           | 01/29/2024 | ND           | 2.25 | 112        | 2.00          | 4.51 |           |
| Toluene*                             | <0.050         | 0.050           | 01/29/2024 | ND           | 2.54 | 127        | 2.00          | 4.73 |           |
| Ethylbenzene*                        | <0.050         | 0.050           | 01/29/2024 | ND           | 2.73 | 136        | 2.00          | 6.60 |           |
| Total Xylenes*                       | <0.150         | 0.150           | 01/29/2024 | ND           | 8.31 | 138        | 6.00          | 7.11 |           |
| Total BTEX                           | <0.300         | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 110 9          | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B mg/kg           |                |                 | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result         | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 16.0           | 16.0            | 01/29/2024 | ND           | 448  | 112        | 400           | 3.64 |           |
| TPH 8015M                            | mg/kg          |                 | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result         | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0          | 10.0            | 01/29/2024 | ND           | 201  | 101        | 200           | 6.47 |           |
| DRO >C10-C28*                        | <10.0          | 10.0            | 01/29/2024 | ND           | 219  | 109        | 200           | 6.96 |           |
| EXT DRO >C28-C36                     | <10.0          | 10.0            | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 117 % 48.2-134 |                 | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 101 % 49.1-148 |                 | 8          |              |      |            |               |      |           |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/26/2024                        | Sampling Date:      | 01/25/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 01/31/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: FS 14 @ 4' (H240368-02)

| BTEX 8021B                           | mg              | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|-----------------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result          | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050          | 0.050           | 01/29/2024 | ND           | 2.25 | 112        | 2.00          | 4.51 |           |
| Toluene*                             | <0.050          | 0.050           | 01/29/2024 | ND           | 2.54 | 127        | 2.00          | 4.73 |           |
| Ethylbenzene*                        | <0.050          | 0.050           | 01/29/2024 | ND           | 2.73 | 136        | 2.00          | 6.60 |           |
| Total Xylenes*                       | <0.150          | 0.150           | 01/29/2024 | ND           | 8.31 | 138        | 6.00          | 7.11 |           |
| Total BTEX                           | <0.300          | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 110 9           | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | Analyze         | d By: AC        |            |              |      |            |               |      |           |
| Analyte                              | Result          | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | <16.0           | 16.0            | 01/29/2024 | ND           | 448  | 112        | 400           | 3.64 |           |
| TPH 8015M                            | mg/             | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result          | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0           | 10.0            | 01/29/2024 | ND           | 201  | 101        | 200           | 6.47 |           |
| DRO >C10-C28*                        | <10.0           | 10.0            | 01/29/2024 | ND           | 219  | 109        | 200           | 6.96 |           |
| EXT DRO >C28-C36                     | <10.0           | 10.0            | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 110 9           | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 95.3 % 49.1-148 |                 | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To: 01/26/2024

| Received:         | 01/26/2024                        | Sampling Date:      | 01/26/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 01/31/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: FS 15 @ 4' (H240368-03)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.25 | 112        | 2.00          | 4.51 |           |
| Toluene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.54 | 127        | 2.00          | 4.73 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/29/2024 | ND           | 2.73 | 136        | 2.00          | 6.60 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/29/2024 | ND           | 8.31 | 138        | 6.00          | 7.11 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 116 9  | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B mg/kg           |        |                 | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 16.0   | 16.0            | 01/29/2024 | ND           | 448  | 112        | 400           | 3.64 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/29/2024 | ND           | 201  | 101        | 200           | 6.47 |           |
| DRO >C10-C28*                        | 213    | 10.0            | 01/29/2024 | ND           | 219  | 109        | 200           | 6.96 |           |
| EXT DRO >C28-C36                     | 44.3   | 10.0            | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 101    | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 91.2   | % 49.1-14       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



#### **Notes and Definitions**

| BS-3 | Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected. |
|------|-------------------------------------------------------------------------------------------------------------------------------------|
| BS1  | Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.                             |
| ND   | Analyte NOT DETECTED at or above the reporting limit                                                                                |
| RPD  | Relative Percent Difference                                                                                                         |
| **   | Samples not received at proper temperature of 6°C or below.                                                                         |
| ***  | Insufficient time to reach temperature.                                                                                             |
| -    | Chloride by SM4500Cl-B does not require samples be received at or below 6°C                                                         |
|      | Samples reported on an as received basis (wet) unless otherwise noted on report                                                     |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whother is subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



Page 143 of 203

Received by OCD: 4/17/2024, 12:35:00 PM

# CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

| Project Manager:       A:mee Cole       P.O. #:         Address:       3122       Newhan Parks Hung       Company:         City:       Carlshad       State: NM Zip: 88220       Attn:         Phone #:       720       384       7365       Fax #:         Project #:       () 3E2057054       Project Owner:       Marger Ch       City:         Project Name:       Baish B Rattey       State:       Zip:         Project Location:       3 <sup>-2</sup> . 817358, -103, 754432       Phone #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Company Name:                            | Ensolum LLC                                                                                                     |           | -     | 5        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  | 7                   | 1                         | 3/1     | LL TO              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T                   |      |             | -    | ANA     | I YSI   | R     | FOU | EST |   |    |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------|-------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|---------------------|---------------------------|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------|-------------|------|---------|---------|-------|-----|-----|---|----|---|
| Address:       Address:         Project #:       03520057054         Project Mame:       Build B         Bampler Name:       Build B         Address:       Phone #:         Project Mame:       Mark Hag         State:       Zip:         Project Mark       Fax #:         Project Mark       Fax #:         Project Mark       Mark Hag         Mark Hag       Wag         Mark Hag       Wag <td>Project Manager</td> <td>Amee Cole</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>P.(</td> <td>D. #</td> <td>State of Concession, Name</td> <td></td> <td></td> <td></td> <td>-</td> <td>1</td> <td></td> <td>T</td> <td></td> <td>T</td> <td>T</td> <td>T</td> <td>T</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project Manager                          | Amee Cole                                                                                                       |           |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | P.(              | D. #                | State of Concession, Name |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                   | 1    |             | T    |         | T       | T     | T   | T   |   |    |   |
| Address:       Address:         Project #:       03520057054         Project Mame:       Build B         Bampler Name:       Build B         Address:       Phone #:         Project Mame:       Mark Hag         State:       Zip:         Project Mark       Fax #:         Project Mark       Fax #:         Project Mark       Mark Hag         Mark Hag       Wag         Mark Hag       Wag <td>Address: 312</td> <td>22 Northern Parks Hung</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Co</td> <td>mpa</td> <td>anv:</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.5</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Address: 312                             | 22 Northern Parks Hung                                                                                          |           |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Co               | mpa                 | anv:                      |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                   |      |             |      |         |         |       | 1.5 |     |   |    |   |
| Address:       Address:         Project #:       03520057054         Project Mame:       Build B         Bampler Name:       Build B         Address:       Phone #:         Project Mame:       Mark Hag         State:       Zip:         Project Mark       Fax #:         Project Mark       Fax #:         Project Mark       Mark Hag         Mark Hag       Wag         Mark Hag       Wag <td>City: Corls</td> <td>and State: N</td> <td>U Zi</td> <td>p: 5</td> <td>582</td> <td>220</td> <td>&gt;</td> <td></td> <td></td> <td>terre in the second</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | City: Corls                              | and State: N                                                                                                    | U Zi      | p: 5  | 582      | 220        | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                  | terre in the second |                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       |     |     |   |    |   |
| Project #: 03E2057054 Project Owner: Www.ch. City:<br>Project Name: Bush B Bushey<br>State: Zip:<br>Project Location: 7 2 817358 - 05 754432<br>Sampler Name: Munh Yug, Fax #:<br>For UBUBEONY<br>Lab I.D. Sample I.D. UNTRIX PRESERV SAMPLING<br>WINDON UN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          |                                                                                                                 |           |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |                     | s:                        |         |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |      |             |      |         |         |       |     |     |   |    |   |
| Lab I.D. Sample I.D.<br>BUILDING WALKS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project #: ()3                           | E2057054 Project Ow                                                                                             | ner:      | ih    | and      | ch         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  | ····                |                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       |     |     |   |    |   |
| Lab I.D. Sample I.D.<br>BUILDING WALKS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project Name:                            | Baish B Batten                                                                                                  |           | 11    |          |            | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                  |                     |                           | ;       | Zin:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       |     |     |   |    |   |
| Lab I.D. Sample I.D.<br>BUILDING WALKS AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project Location:                        | 32.817358 -103,7                                                                                                | 7541      | 43    | 2        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  |                     | #.                        | -       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       |     |     |   |    |   |
| Lab I.D. Sample I.D.<br>Building of the field of the second of t | Sampler Name:                            | Jonn Hurrs                                                                                                      |           |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | -                |                     |                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       |     |     |   |    |   |
| A       FS14 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FOR LAB USE ONLY                         | J                                                                                                               |           | Г     |          | M/         | ATRI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | х              | -                | -                   | SER                       | V.      | SAMP               | LING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                   |      |             |      |         |         |       |     |     |   |    |   |
| A       FS14 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         EASE NOTE: Lability and Damages. Caldhaf's lability and clent's exclusive remedy for any claim arising whether based in contract or tort, shall be lented to the amount paid by the clent for the<br>systex. At claims including those for negligence and any other cause whatsoever shall be deemed waived unless metales in writing and received by Castriant within 30 days after completion of the applicable<br>with on sourcessors, writing out of or realised to renegleand or consequent damages, including without inflation, business interungities, too or source of othe applicable<br>interus spectra or otherwise.         Linterus Deal       Data       Data       Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                 | MP        |       | æ        | 100000     | and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                |                  |                     | 1                         | T       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                   |      |             |      |         |         |       |     |     |   |    |   |
| A       FS14 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         EASE NOTE: Lability and Damages. Caldhaf's lability and clent's exclusive remedy for any claim arising whether based in contract or tort, shall be lented to the amount paid by the clent for the<br>systex. At claims including those for negligence and any other cause whatsoever shall be deemed waived unless metales in writing and received by Castriant within 30 days after completion of the applicable<br>with on sourcessors, writing out of or realised to renegleand or consequent damages, including without inflation, business interungities, too or source of othe applicable<br>interus spectra or otherwise.         Linterus Deal       Data       Data       Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |                                                                                                                 | (C)       | ERS   | ATE      | ER<br>ER   | - Contraction of the Contraction |                |                  | 1                   |                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X                   |      |             |      |         |         |       |     |     |   |    |   |
| A       FS14 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         EASE NOTE: Lability and Damages. Caldhaf's lability and clent's exclusive remedy for any claim arising whether based in contract or tort, shall be lented to the amount paid by the clent for the<br>systex. At claims including those for negligence and any other cause whatsoever shall be deemed waived unless metales in writing and received by Castriant within 30 days after completion of the applicable<br>with on sourcessors, writing out of or realised to renegleand or consequent damages, including without inflation, business interungities, too or source of othe applicable<br>interus spectra or otherwise.         Linterus Deal       Data       Data       Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lab I.D.                                 | Sample I.D.                                                                                                     | OR        | LAIN  | NON      | WA         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ш              |                  | ASE                 | DO.                       |         |                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E                   | -    | E           | ŧ    |         |         |       |     |     |   |    |   |
| A       FS14 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         EASE NOTE: Lability and Damages. Caldhaf's lability and clent's exclusive remedy for any claim arising whether based in contract or tort, shall be lented to the amount paid by the clent for the<br>systex. At claims including those for negligence and any other cause whatsoever shall be deemed waived unless metales in writing and received by Castriant within 30 days after completion of the applicable<br>with on sourcessors, writing out of or realised to renegleand or consequent damages, including without inflation, business interungities, too or source of othe applicable<br>interus spectra or otherwise.         Linterus Deal       Data       Data       Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10102.0                                  |                                                                                                                 | RAE       | NO    | no       | \STE       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dan            | HER              | ID/8                |                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8                   | C    |             |      |         |         |       |     |     |   |    |   |
| A       FS14 0 4i       FS15 0 4i       FS15 0 4i       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         A       FS15 0 4i         EASE NOTE: Lability and Damages. Caldhaf's lability and clent's exclusive remedy for any claim arising whether based in contract or tort, shall be lented to the amount paid by the clent for the<br>systex. At claims including those for negligence and any other cause whatsoever shall be deemed waived unless metales in writing and received by Castriant within 30 days after completion of the applicable<br>with on sourcessors, writing out of or realised to renegleand or consequent damages, including without inflation, business interungities, too or source of othe applicable<br>interus spectra or otherwise.         Linterus Deal       Data       Data       Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | CIVER OF MIL                                                                                                    | 0         | #     | GR       | N SO       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SLI            | 5                | AC AC               |                           |         |                    | stream and the second sec |                     |      |             |      |         |         |       |     |     |   |    |   |
| EASE NOTE: Liability and Lengths tabling and clengths exclusive remedy for any claim arising whether based in contract or fort, shall be instead to the amount paid by the client for the update of the applicable whether such claim is based. "In early of the above stated reasons or otherwise, length of the state of th  | 2                                        | 5000 00.91                                                                                                      | C         | 1     |          | 7          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                  | 1                   | ĸ                         |         | 425/24             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                   | ×    | X           | I    |         |         |       | _   |     |   |    |   |
| EASE NOTE: Liability and Lengths liability and clength sectuality remedy for any claim arking whether based in contract or fort, shall be limited to the amount paid by the client for the update of the applicable who went shall Cardinal be liable for incidential or consequential damages, floriding whose hereunders by Cardinal withing and recorded by Cardinal withing and proceeding whether such claim is based. "In any of the above statied reasons or otherwise, leaded or the applicable weat the applicable data or to related to the performance of services hereunder by Cardinal whether such claim is based" In any of the above statied reasons or otherwise, leaded or the applicable data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                        | 1-514 00 4:                                                                                                     |           |       |          |            | and more                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                  | .  .                |                           |         | ¥                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                   | +    |             |      |         |         |       |     |     |   |    |   |
| vice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,<br>liates or successor, winding out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based, an any of the above stated reasons or otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | F215 0 4                                                                                                        | V         | ľ     |          | Y          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | -                |                     | -                         |         | 1/26/24            | 0947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                   | Y    | M           |      |         | ļ       |       | _   |     |   | -  |   |
| vice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,<br>liates or successor, winding out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based, an any of the above stated reasons or otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                                                                 |           |       |          |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                  | -                   | -                         | +       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         | ļ       |       |     |     |   | _  |   |
| vice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,<br>liates or successor, winding out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based, an any of the above stated reasons or otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                                                                 |           |       |          |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | +                | -                   | +                         | +       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       |     |     |   |    |   |
| vice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,<br>liates or successor, winding out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based, an any of the above stated reasons or otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | ander en fille fan fan en en en fil filme filfe of namer men en filfe en filme annen en fil filme en en en en e |           |       |          | and and a  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$       | +                |                     | -                         | ┢       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      | -       |         |       | +   |     |   |    |   |
| vice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,<br>liates or successor, winding out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based, an any of the above stated reasons or otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | analan dalam na alah dapanan dari dari kana ana ana ang mang ang mang ang mang ang mang ang mang ang mang ang m |           |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1                |                     | -                         | t       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      | 1       |         |       |     |     |   |    |   |
| vice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,<br>liates or successor, winding out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based, an any of the above stated reasons or otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                        |                                                                                                                 |           |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1                |                     | -                         | t       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      | 1       |         |       | -   |     |   |    |   |
| vice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries,<br>liates or successor, winding out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based. If an any of the above stated reasons or otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |                                                                                                                 |           |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | 1                | 1                   |                           | t       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       | 1   | -   |   | -  | + |
| liates or successor, which are the adde to modernan or consequence of services hereunder by Cardinal, regardless of whether such claim is based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | annalment can refer the manufactured and | voie in negligerice and any other cause whatspever shall b                                                      | e deemad  | WANA  | ർ നല്ക്ക | e made i   | es cuerdie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NOT COMPANY IN | duration site    | A burn              | and in al                 | -       | a 20 dana aller    | and the first of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |      |             |      | -       |         |       | · · | -   | - | -  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | affiliates or successor. wising or       | ier de vauve for micidental or consequental damages, inclug                                                     | ng wanout | STOLA | son, bu  | siness int | terruph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ions, los      | s of us          | se, or i            | oss of                    | profits | s incurred by clie | nt, its subsidiarie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e appricator<br>BS, |      |             |      | *       |         |       |     |     |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Relinquished 3y:                         | Date:                                                                                                           | Re        | ceiv  | ed E     | y:         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              |                  | 98. au              | ٨                         |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             | No   | Add'l F | hone #  |       |     |     |   |    |   |
| All Results are emailed. Please provide Email address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -BAI                                     | Time; 40 2                                                                                                      | 6         | ) je  | 0        | AK         | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n              | $\left( \right)$ | X                   | 1                         |         | ŕ                  | iii Kesuits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |      |             |      |         |         |       |     |     |   |    |   |
| elinquished By: Date: Received By: REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Relinquished By:                         | Date:                                                                                                           | Red       | ceiv  | ed B     | y:         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IV             |                  | )                   | K                         |         |                    | REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a                   | 1010 | 20          | insi | )/um    | can     |       | *   |     |   |    |   |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | Time:                                                                                                           | -         |       |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                  | 1                   |                           |         |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       |     |     |   |    |   |
| elivered By: (Circle Cne) Observed Temp. °C ( ) Sample Condition CHECKED BY: Turnaround Time: Standard Dt Bacteria (only) Sample Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Delivered By: (Circle                    | e Cne) Observed Temp °C                                                                                         |           |       | 80       | mole       | Cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ditio          |                  | 0                   | JEON                      | (EP     | DV.                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                   |      | <b>0</b> 4. |      | ISA.    | _       |       |     |     |   |    |   |
| Standard Cool Intact (Initials) Rush Cool Intact Observed Temp, °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                                                                 | 2.0       | E     | C        | lool       | Intac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t              | C                |                     |                           |         | 5)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             | ard  |         | Cool II | ntact | 0   |     |   | °C |   |
| Ampler - UPS - Bus - Other:     Corrected Temp. °C     Yes Yes     Thermometer ID - #140     Governmenter ID - #140       FORM-000 R 3.4 07/11/23     No     No     No     No     Corrected Temp. °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |                                                                                                                 |           |       | Ē        | Yes No     | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No             |                  | 8                   | YZ                        | -       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |      |             |      |         |         |       | s   |     |   |    |   |

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com



February 01, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

**RE: BAISH B BATTERY** 

Enclosed are the results of analyses for samples received by the laboratory on 01/29/24 12:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager


ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/29/2024                        | Sampling Date:      | 01/29/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/01/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: FS 16 4' (H240381-01)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.20 | 110        | 2.00          | 1.44 |           |
| Toluene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.19 | 109        | 2.00          | 1.45 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/29/2024 | ND           | 2.17 | 109        | 2.00          | 1.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/29/2024 | ND           | 6.35 | 106        | 6.00          | 2.04 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.3   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: CT     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 64.0   | 16.0            | 01/30/2024 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024 | ND           | 205  | 103        | 200           | 4.99 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/30/2024 | ND           | 200  | 100        | 200           | 1.67 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/30/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 85.6   | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 91.6   | % 49.1-14       | 8          |              |      |            |               |      |           |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



MAVERICK ( 32.817358-103.754432 )

|                 |                 | ENSOLUM<br>AIMEE COLE<br>3122 NATIONAL PARKS HWY<br>CARLSBAD NM, 88220<br>Fax To: | ſ                   |          |           |
|-----------------|-----------------|-----------------------------------------------------------------------------------|---------------------|----------|-----------|
| Received:       | 01/29/2024      |                                                                                   | Sampling Date:      | 01/25/20 | 024       |
| Reported:       | 02/01/2024      |                                                                                   | Sampling Type:      | Soil     |           |
| Project Name:   | BAISH B BATTERY |                                                                                   | Sampling Condition: | Cool & I | ntact     |
| Project Number: | 03E2057054      |                                                                                   | Sample Received By: | Shalyn F | lodriguez |

#### Sample ID: PH 01 1' (H240381-02)

Project Location:

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.20 | 110        | 2.00          | 1.44 |           |
| Toluene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.19 | 109        | 2.00          | 1.45 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/29/2024 | ND           | 2.17 | 109        | 2.00          | 1.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/29/2024 | ND           | 6.35 | 106        | 6.00          | 2.04 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 99.3   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: CT     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 01/30/2024 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024 | ND           | 205  | 103        | 200           | 4.99 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/30/2024 | ND           | 200  | 100        | 200           | 1.67 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/30/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 95.0   | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 104    | % 49.1-14       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/29/2024                        | Sampling Date:      | 01/25/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/01/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: PH 01 5' (H240381-03)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.20 | 110        | 2.00          | 1.44 |           |
| Toluene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.19 | 109        | 2.00          | 1.45 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/29/2024 | ND           | 2.17 | 109        | 2.00          | 1.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/29/2024 | ND           | 6.35 | 106        | 6.00          | 2.04 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.2   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: CT     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 01/30/2024 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024 | ND           | 205  | 103        | 200           | 4.99 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/30/2024 | ND           | 200  | 100        | 200           | 1.67 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/30/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 98.5   | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 108    | % 49.1-14       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



01/20/2024

## Analytical Results For:

ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To: 01/29/2024 Sampling Date: 02/01/2024

| 01/29/2024                        | Sampling Date.                              | 01/29/2024                                                                              |
|-----------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|
| 02/01/2024                        | Sampling Type:                              | Soil                                                                                    |
| BAISH B BATTERY                   | Sampling Condition:                         | Cool & Intact                                                                           |
| 03E2057054                        | Sample Received By:                         | Shalyn Rodriguez                                                                        |
| MAVERICK ( 32.817358-103.754432 ) |                                             |                                                                                         |
|                                   | 02/01/2024<br>BAISH B BATTERY<br>03E2057054 | 02/01/2024Sampling Type:BAISH B BATTERYSampling Condition:03E2057054Sample Received By: |

#### Sample ID: PH 02 1' (H240381-04)

Docoivod:

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.20 | 110        | 2.00          | 1.44 |           |
| Toluene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.19 | 109        | 2.00          | 1.45 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/29/2024 | ND           | 2.17 | 109        | 2.00          | 1.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/29/2024 | ND           | 6.35 | 106        | 6.00          | 2.04 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.5   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: CT     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 01/30/2024 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024 | ND           | 205  | 103        | 200           | 4.99 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/30/2024 | ND           | 200  | 100        | 200           | 1.67 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/30/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 100    | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 109    | % 49.1-14       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/29/2024                        | Sampling Date:      | 01/29/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/01/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: PH 02 4' (H240381-05)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.20 | 110        | 2.00          | 1.44 |           |
| Toluene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.19 | 109        | 2.00          | 1.45 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/29/2024 | ND           | 2.17 | 109        | 2.00          | 1.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/29/2024 | ND           | 6.35 | 106        | 6.00          | 2.04 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.6   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg     | /kg             | Analyze    | d By: CT     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 01/30/2024 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024 | ND           | 205  | 103        | 200           | 4.99 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/30/2024 | ND           | 200  | 100        | 200           | 1.67 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/30/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 95.8   | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 106    | % 49.1-14       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/29/2024                        | Sampling Date:      | 01/29/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/01/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: SS 09 0.5' (H240381-06)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.20 | 110        | 2.00          | 1.44 |           |
| Toluene*                             | <0.050 | 0.050           | 01/29/2024 | ND           | 2.19 | 109        | 2.00          | 1.45 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/29/2024 | ND           | 2.17 | 109        | 2.00          | 1.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/29/2024 | ND           | 6.35 | 106        | 6.00          | 2.04 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/29/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.4   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: CT     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 01/30/2024 | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024 | ND           | 205  | 103        | 200           | 4.99 |           |
| DRO >C10-C28*                        | 234    | 10.0            | 01/30/2024 | ND           | 200  | 100        | 200           | 1.67 |           |
| EXT DRO >C28-C36                     | 173    | 10.0            | 01/30/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 94.5   | 48.2-13         | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 104 9  | 6 49.1-14       | 8          |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/29/2024                        | Sampling Date:      | 01/29/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/01/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: SS 10 0.5' (H240381-07)

| BTEX 8021B                           | mg/    | /kg             | Analyze         | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/29/2024      | ND           | 2.20 | 110        | 2.00          | 1.44 |           |
| Toluene*                             | <0.050 | 0.050           | 01/29/2024      | ND           | 2.19 | 109        | 2.00          | 1.45 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/29/2024      | ND           | 2.17 | 109        | 2.00          | 1.99 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/29/2024      | ND           | 6.35 | 106        | 6.00          | 2.04 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/29/2024      | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.8   | % 71.5-13       | 4               |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/kg  |                 | Analyzed By: CT |              |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 32.0   | 16.0            | 01/30/2024      | ND           | 400  | 100        | 400           | 3.92 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze         | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024      | ND           | 205  | 103        | 200           | 4.99 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/30/2024      | ND           | 200  | 100        | 200           | 1.67 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/30/2024      | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 99.0   | % 48.2-13       | 4               |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 110 9  | % 49.1-14       | 8               |              |      |            |               |      |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| S-06  | The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's. |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| QM-07 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.                       |
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                                                   |
| RPD   | Relative Percent Difference                                                                                                                            |
| **    | Samples not received at proper temperature of 6°C or below.                                                                                            |
| ***   | Insufficient time to reach temperature.                                                                                                                |
| -     | Chloride by SM4500Cl-B does not require samples be received at or below 6°C                                                                            |
|       | Samples reported on an as received basis (wet) unless otherwise noted on report                                                                        |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



## CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476 Company Manage Engl

| Second Anciel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ie. cheolum, LLC                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            | and part of the local division of the local |                         | and the same of            |                                                                                                                 | 10 million | the second            |                              |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  |         |     |                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------|------------|-----------------------|------------------------------|------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------------------------------|--------|---------------|-------|-------------|------------------|---------|-----|-------------------------------|
| Project Manag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er: Amer (                                                                                                                                            | sle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                                                                                                 |            |                       | BALL 1                       | 0          | 19 J.          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                | AN     | ALV           | SIS   | REC         | ME               | 27      | -   |                               |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3122 Navin                                                                                                                                            | al Parks F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                                                                                                 | P.0        | <b>.</b> 款            |                              |            |                |           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T         |        |                                | T      | T             | T     | T           | T                | 31      |     | -                             |
| City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | a labord                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | truig                      | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-                      | 2                          |                                                                                                                 | Con        | npany:                |                              |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  |         |     |                               |
| Phone #: 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20-384-736                                                                                                                                            | State: NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zip                        | r: 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82                      | (0                         |                                                                                                                 | Attn       |                       |                              |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  |         |     |                               |
| Project #: (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3E20570                                                                                                                                               | S Pax #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                                                                                                 | Add        | ress:                 |                              |            |                | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  |         | 1   |                               |
| Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Barish B                                                                                                                                              | O Project Ow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ner:                       | Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | wer                     | ch                         |                                                                                                                 | City:      |                       |                              |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  | 1       | 1   |                               |
| Project Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 37.9177                                                                                                                                               | Pattery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            |                                                                                                                 | State      | 90                    | Zip:                         |            |                | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -         |        |                                |        |               |       |             |                  |         |     |                               |
| Sampler Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R. 5 - 6175                                                                                                                                           | 58, -603.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 750                        | 143                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                       |                            |                                                                                                                 | Pho        | 哈长                    |                              |            |                | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | - 1    |                                |        |               |       |             |                  |         |     |                               |
| FOR LAB USE ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOAN;                                                                                                                                                 | Huyes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                            | the second se | Fax        | k                     |                              |            |                |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |                                |        |               |       |             |                  | - 1     |     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L'                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | WATRI                      | R                                                                                                               | P          | RESERI                | S/                           | MPL        | ING            | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               | 1     |             |                  |         |     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (G)RAB OR (C)OMP.          | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                            |                                                                                                                 | TRANSPORT  | X                     | 1                            |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |        |                                |        |               |       |             |                  |         |     |                               |
| Lab I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample I.D.                                                                                                                                           | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R (C                       | NER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TER                     |                            |                                                                                                                 |            |                       |                              |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  | 1       |     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | BO                         | # CONTAINERS<br>GROUNDIMATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WASTEWATER              |                            | 3                                                                                                               | ASE        | ICE / COOL<br>OTHER : |                              |            |                | 玉<br>玉    | Hd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | ,      |                                |        |               |       | 1           |                  | 1       |     | 1                             |
| 1240381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3)R                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ABT                     | 뉨그                         | SLUDGE                                                                                                          |            | 10/11<br>10/11        |                              |            |                | F         | L L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12        | 1      |                                |        |               | 1     |             |                  |         |     |                               |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F-516                                                                                                                                                 | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C                          | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13                      | X                          | 3                                                                                                               | 2 A        | 00                    | DATE                         | - 1        | TIME           |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L         | 1      |                                |        |               |       |             |                  |         |     |                               |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHOI                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ++                      |                            | $\left  \right $                                                                                                | +          | x                     | 1/29/                        | 241        | 045            | ×         | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×         | T      | T                              |        |               | T     | T           | T                | +       | +   | -+                            |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHSI                                                                                                                                                  | 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\uparrow \uparrow$     | +                          | $\vdash$                                                                                                        | +          |                       | VZS/                         | 41         | 48             | -+-       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4         |        |                                |        |               |       | T           | +                | +       | +   | +                             |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHOZ                                                                                                                                                  | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ++                      |                            |                                                                                                                 | -          |                       | 12200                        |            | 512            |           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |        |                                |        |               |       | 1           | T                | +       | +   | -+-                           |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHOZ                                                                                                                                                  | 4'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\uparrow \uparrow$     |                            |                                                                                                                 |            | +                     | 1/29/2                       | -          |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$ | 1      | _                              |        |               |       |             | T                | +       | +   | +                             |
| <u>e</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5509                                                                                                                                                  | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GI                         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 t                     | $\mathbf{H}$               | +                                                                                                               | $\square$  |                       | J                            | 1          | 640            | ++        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | +      | _                              |        |               |       |             |                  | T       | +   | +                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$510                                                                                                                                                 | 0.5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GV                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                       | 11                         | 1                                                                                                               |            |                       | 2                            |            | 30             | ++        | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         | +      | -                              | -      |               |       |             |                  |         | 1   | 1                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 550 RH                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T                       | 11                         | 1                                                                                                               |            |                       |                              | 1          |                | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V         | +      |                                | _      |               |       |             |                  |         |     | 1                             |
| James and a descent of the second sec |                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | Ħ                          |                                                                                                                 |            |                       | 11 1-12 - 17 1 - 17 - 10 - 1 | -          |                | -+        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | +      | -                              | -      |               |       |             |                  |         |     |                               |
| ASE NOTE: Liability and D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | emages, Cardinal's lisbility and o                                                                                                                    | light's such as a second secon |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         | 11                         | T                                                                                                               |            |                       |                              | -          |                | -         | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -         | F      | +                              | 4      | -             |       |             | 1                | -       |     |                               |
| roos. All claims including t<br>ice. in no event chail Cardi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | emeges. Cerdinal's liability and c<br>lose for negligence and any othe<br>rol be fiable for incidental or cons<br>at of or related to the performance | reause whatsoever shall be d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ly claim and<br>eenoed wah | ing whe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ther base<br>as made i  | t in contra<br>in writing: | act or tor                                                                                                      | i shall b  | e linited to t        | he enount pa                 | d by the   | client for the |           | -1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -         | 1      | 1                              |        |               | -     |             |                  |         |     |                               |
| linguished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nose for negligence and any othe<br>nal be fiable for incidential or cons<br>at of or related to the performanc                                       | e of services hereunder by Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | indinal. rega              | alion, bu<br>reliecs o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | icineta in<br>Ny hetier | terraption<br>such clai    | o, loss of<br>im is base                                                                                        | iute, er   | loss of profi         | to incurred by a             | fient, its | cubaidiantes,  | pplicable |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  |         |     |                               |
| -RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                       | 1-29-24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Recei                      | ved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | By:                     |                            |                                                                                                                 |            |                       |                              | l Verl     | a Resul        | it: D     | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E         | ] No   | Ad                             | d'i Ph | one #         | -     |             | -                | -       |     |                               |
| Inquished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                       | 1-29-24<br>Time: 1255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sh                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n                       | N                          | 10                                                                                                              | A 1        | 0 1                   | 1                            | ABR        | esults ar      | e emai    | iled. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pleas     | se pro | wide                           | Email  | addre         | SS:   |             |                  |         |     |                               |
| midmaned by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Receiv                     | red E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | By:                     | 10                         | 4                                                                                                               | A          | L                     | 4                            | REM        | ARKS:          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  |         |     |                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                            | 1                                                                                                               |            | 0                     | 9                            |            |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  |         |     |                               |
| livered By: (Circl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | One) Os                                                                                                                                               | sorved Tomp. °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mple                    | Condi                      | Non                                                                                                             | 0          | Entre                 |                              | _          |                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                |        |               |       |             |                  |         |     |                               |
| npler • UPS - Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Carlos.                                                                                                                                               | Fractad Tomp, °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 12                       | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes<br>No               | niact                      |                                                                                                                 |            | IECKEL                |                              | -+         | ometer ID      |           | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tand      | dard   |                                | 60     | DF IBS        | 252   | <b>n</b> h- | ple Co<br>server | I Temp  | 0   |                               |
| POKW-000 K 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2 10/07/21                                                                                                                                            | + Cardinat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No                      |                            | 0                                                                                                               | 0          | OF                    |                              | ReHH       | ometer ID      | 0.5%      | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | 5      |                                | R      | Yes [<br>No [ | Yes   |             |                  |         |     | Constantion of the local data |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                       | † Cardinal car                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | inot ac                    | cept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | verbs                   | al cha                     | ndes                                                                                                            | Pla        | 200 000               | all about                    |            |                |           | The state of the s | -         | -      | and the second division of the |        | 1001          | 1 900 | Cor         | recter           | 1 Tenno | L°C | 1                             |

al cannot accept verbal changes. Please email changes to celey.keene@carclinallabsnm.com

Received by OCD: 4/17/2024 12:35:00 PM



January 31, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

**RE: BAISH B BATTERY** 

Enclosed are the results of analyses for samples received by the laboratory on 01/30/24 13:29.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/30/2024                        | Sampling Date:      | 01/30/2024      |
|-------------------|-----------------------------------|---------------------|-----------------|
| Reported:         | 01/31/2024                        | Sampling Type:      | Soil            |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact   |
| Project Number:   | 03E2057054                        | Sample Received By: | Dionica Hinojos |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                 |

#### Sample ID: FS 17 1.5' (H240420-01)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/30/2024 | ND           | 1.97 | 98.3       | 2.00          | 9.61  |           |
| Toluene*                             | <0.050 | 0.050           | 01/30/2024 | ND           | 1.97 | 98.6       | 2.00          | 10.2  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/30/2024 | ND           | 1.97 | 98.5       | 2.00          | 10.3  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/30/2024 | ND           | 6.05 | 101        | 6.00          | 9.19  |           |
| Total BTEX                           | <0.300 | 0.300           | 01/30/2024 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104    | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/kg  |                 | Analyze    | d By: AC     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 112    | 16.0            | 01/31/2024 | ND           | 416  | 104        | 400           | 0.00  |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/31/2024 | ND           | 185  | 92.6       | 200           | 0.794 |           |
| DRO >C10-C28*                        | 17.9   | 10.0            | 01/31/2024 | ND           | 200  | 100        | 200           | 1.18  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/31/2024 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 81.0   | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 88.1   | % 49.1-14       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| ND  | Analyte NOT DETECTED at or above the reporting limit                        |
|-----|-----------------------------------------------------------------------------|
| RPD | Relative Percent Difference                                                 |
| **  | Samples not received at proper temperature of 6°C or below.                 |
| *** | Insufficient time to reach temperature.                                     |
| -   | Chloride by SM4500Cl-B does not require samples be received at or below 6°C |

Samples reported on an as received basis (wet) unless otherwise noted on report

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



Page 157 of 203

## CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

| Company Name: Ensolum, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Project Manager: Amer Cale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BILL TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ANALYSIS REQUEST                      |
| Address: 3/22 National D. Lie U.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P.O. #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I I I I I I I I I I I I I I I I I I I |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Company:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Phone #: 720-384-7365 Fax #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Atin:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| Project & GZ & Z & C =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Address;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
| Project Name: Bash B Buttery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | City:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
| Project Location: 37,817 358 - 103 TELLING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State: Zip:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Phone it:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| Sampler Name: Ronn. Huyes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fax #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| MAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| , dwo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| Lab I.D. Sample I.D. Depth<br>(feet) Sample I.D. (feet) Sample I.D. (feet) Statement of the second seco |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| (feet) San Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| 240420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SILUDGE<br>OTHER:<br>ACID/BASE:<br>OTHER:<br>CI-<br>CI-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |
| FS17 1.5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DITHER DITHER OTHER OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                       |
| 1 F517 1.5' C 1 X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | × 1/30/24 1148 XXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| SE NOTE: Liability and Demogers, Cardinal's liability and clients exclusive remarks for any claim arbitrar based in cont<br>es. All cleams including those for negligance and any other cause utratacover arbitrar chall be deemost valued unless made in witing<br>- Is no event-chall Cardinal be liable for incidental or consequential damages, including without valued unless made in witing<br>or or succentration arbitrar without the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| All claims including those for negligance and any other cause whatboover shall be desired valued inferences of any other cause whatboover shall be desired valued inferences in rolling to a successful be desired valued inferences and in viting the second valued inferences and in viting to a successful and any other cause whatboover shall be desired valued inferences in viting to a successful and any other cause whatboover shall be desired valued inferences in viting to any other valued inferences and the inviting to a successful and any other cause of early and the second second reserves there are a successful and any other second sec         | ct or tork shall be limited to the amount paid by the client for the<br>nd teceired by Cardinal within 36 days after permission of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |
| Date: 1 Date:     | face of suce, or face of profile incurred by client, its subsidiarities,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Verbal Result- 17 Mag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d'I Dhone de                          |
| nguished By: Date: Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| Date: Received By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | REMARKS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h. Com                                |
| Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | interesto:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |
| Vered By: (Circle One) Observed Temp. *C 3 400 Sample Cond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |
| oler - UPS - Bus - Other: Corrected Temp, "C 3 40C Sample Cond<br>Cool Integet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Turnaround Time: Standowd II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bacteria (only) Sample Condition      |
| TORNI-000 K 3.2 10/07/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Thermomster ID #140 RUSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cool anact Observed Temp. °C          |
| † Cardinal cannot accept verbal ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | iges. Please email changes to celey.keene@carclinallabsnm.c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes Yes No Corrected Temp. °C         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the second | iom                                   |



February 01, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

**RE: BAISH B BATTERY** 

Enclosed are the results of analyses for samples received by the laboratory on 01/30/24 13:29.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/30/2024                        | Sampling Date:      | 01/30/2024      |
|-------------------|-----------------------------------|---------------------|-----------------|
| Reported:         | 02/01/2024                        | Sampling Type:      | Soil            |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact   |
| Project Number:   | 03E2057054                        | Sample Received By: | Dionica Hinojos |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                 |

#### Sample ID: SW 09 0-4' (H240421-01)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/31/2024 | ND           | 2.11 | 105        | 2.00          | 0.496 |           |
| Toluene*                             | <0.050 | 0.050           | 01/31/2024 | ND           | 2.09 | 105        | 2.00          | 0.277 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/31/2024 | ND           | 2.07 | 104        | 2.00          | 0.458 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/31/2024 | ND           | 6.07 | 101        | 6.00          | 0.494 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/31/2024 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.1   | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/kg  |                 | Analyze    | d By: CT     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 01/31/2024 | ND           | 432  | 108        | 400           | 7.14  |           |
| TPH 8015M                            | mg     | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024 | ND           | 201  | 101        | 200           | 0.352 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/30/2024 | ND           | 220  | 110        | 200           | 0.682 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/30/2024 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 114    | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 102    | % 49.1-14       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To: 01/20/2024

| Received:         | 01/30/2024                        | Sampling Date:      | 01/30/2024      |
|-------------------|-----------------------------------|---------------------|-----------------|
| Reported:         | 02/01/2024                        | Sampling Type:      | Soil            |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact   |
| Project Number:   | 03E2057054                        | Sample Received By: | Dionica Hinojos |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                 |

#### Sample ID: SW 10 0-4' (H240421-02)

| BTEX 8021B                           | mg/    | kg              | Analyze         | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/31/2024      | ND           | 2.11 | 105        | 2.00          | 0.496 |           |
| Toluene*                             | <0.050 | 0.050           | 01/31/2024      | ND           | 2.09 | 105        | 2.00          | 0.277 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/31/2024      | ND           | 2.07 | 104        | 2.00          | 0.458 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/31/2024      | ND           | 6.07 | 101        | 6.00          | 0.494 |           |
| Total BTEX                           | <0.300 | 0.300           | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.8   | % 71.5-13       | 4               |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyzed By: CT |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 16.0   | 16.0            | 01/31/2024      | ND           | 432  | 108        | 400           | 7.14  |           |
| TPH 8015M                            | mg/    | kg              | Analyze         | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/30/2024      | ND           | 201  | 101        | 200           | 0.352 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/30/2024      | ND           | 220  | 110        | 200           | 0.682 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/30/2024      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 95.7   | % 48.2-13       | 4               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 85.2   | % 49.1-14       | 8               |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



### **Notes and Definitions**

| S-04  | The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.                   |
|-------|----------------------------------------------------------------------------------------------------------------------------------|
| QM-07 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery. |
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                             |
| RPD   | Relative Percent Difference                                                                                                      |
| **    | Samples not received at proper temperature of 6°C or below.                                                                      |
| ***   | Insufficient time to reach temperature.                                                                                          |
| -     | Chloride by SM4500Cl-B does not require samples be received at or below 6°C                                                      |
|       | Samples reported on an as received basis (wet) unless otherwise noted on report                                                  |

#### **Cardinal Laboratories**

#### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



203

5

Page 162

PM

35:00

Q.

PCPIV  $\approx$ 

## CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240





February 05, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

**RE: BAISH B BATTERY** 

Enclosed are the results of analyses for samples received by the laboratory on 01/31/24 13:21.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/qa/lab\_accred\_certif.html">www.tceq.texas.gov/field/qa/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/31/2024                        | Sampling Date:      | 01/31/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/05/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03D2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: FS 15A 4.25' (H240438-01)

| BTEX 8021B                           | mg     | /kg             | Analyze         | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/31/2024      | ND           | 2.26 | 113        | 2.00          | 9.03  |           |
| Toluene*                             | <0.050 | 0.050           | 01/31/2024      | ND           | 2.41 | 120        | 2.00          | 15.0  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/31/2024      | ND           | 2.58 | 129        | 2.00          | 16.8  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/31/2024      | ND           | 7.79 | 130        | 6.00          | 16.9  |           |
| Total BTEX                           | <0.300 | 0.300           | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 101    | % 71.5-13       | 4               |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyzed By: CT |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 112    | 16.0            | 02/01/2024      | ND           | 416  | 104        | 400           | 10.9  |           |
| TPH 8015M                            | mg,    | /kg             | Analyze         | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/31/2024      | ND           | 216  | 108        | 200           | 0.704 |           |
| DRO >C10-C28*                        | 158    | 10.0            | 01/31/2024      | ND           | 207  | 103        | 200           | 1.60  |           |
| EXT DRO >C28-C36                     | 45.7   | 10.0            | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 101    | % 48.2-13       | 4               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 128    | % 49.1-14       | 8               |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/31/2024                        | Sampling Date:      | 01/31/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/05/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03D2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: SS 11 0.5' (H240438-02)

| BTEX 8021B                           | mg/    | kg              | Analyze         | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/31/2024      | ND           | 2.26 | 113        | 2.00          | 9.03  |           |
| Toluene*                             | <0.050 | 0.050           | 01/31/2024      | ND           | 2.41 | 120        | 2.00          | 15.0  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/31/2024      | ND           | 2.58 | 129        | 2.00          | 16.8  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/31/2024      | ND           | 7.79 | 130        | 6.00          | 16.9  |           |
| Total BTEX                           | <0.300 | 0.300           | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 104 9  | % 71.5-13       | 4               |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | 'kg             | Analyzed By: CT |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 48.0   | 16.0            | 02/01/2024      | ND           | 416  | 104        | 400           | 10.9  |           |
| TPH 8015M                            | mg/    | 'kg             | Analyze         | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/31/2024      | ND           | 216  | 108        | 200           | 0.704 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/31/2024      | ND           | 207  | 103        | 200           | 1.60  |           |
| EXT DRO >C28-C36                     | 10.9   | 10.0            | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 98.3   | % 48.2-13       | 4               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 111 9  | 49.1-14         | 8               |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| 01/31/2024                        | Sampling Date:                              | 01/31/2024                                                                              |
|-----------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|
| 02/05/2024                        | Sampling Type:                              | Soil                                                                                    |
| BAISH B BATTERY                   | Sampling Condition:                         | Cool & Intact                                                                           |
| 03D2057054                        | Sample Received By:                         | Shalyn Rodriguez                                                                        |
| MAVERICK ( 32.817358-103.754432 ) |                                             |                                                                                         |
|                                   | 02/05/2024<br>BAISH B BATTERY<br>03D2057054 | 02/05/2024Sampling Type:BAISH B BATTERYSampling Condition:03D2057054Sample Received By: |

#### Sample ID: FS 18 0.5' (H240438-03)

| BTEX 8021B                           | mg/          | kg              | Analyze         | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result       | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050       | 0.050           | 01/31/2024      | ND           | 2.26 | 113        | 2.00          | 9.03  |           |
| Toluene*                             | <0.050       | 0.050           | 01/31/2024      | ND           | 2.41 | 120        | 2.00          | 15.0  |           |
| Ethylbenzene*                        | <0.050       | 0.050           | 01/31/2024      | ND           | 2.58 | 129        | 2.00          | 16.8  |           |
| Total Xylenes*                       | <0.150       | 0.150           | 01/31/2024      | ND           | 7.79 | 130        | 6.00          | 16.9  |           |
| Total BTEX                           | <0.300       | 0.300           | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 108 9        | 6 71.5-13       | 4               |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/          | kg              | Analyzed By: CT |              |      |            |               |       |           |
| Analyte                              | Result       | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0         | 16.0            | 02/01/2024      | ND           | 416  | 104        | 400           | 10.9  |           |
| TPH 8015M                            | mg/          | kg              | Analyze         | d By: MS     |      |            |               |       |           |
| Analyte                              | Result       | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0        | 10.0            | 01/31/2024      | ND           | 216  | 108        | 200           | 0.704 |           |
| DRO >C10-C28*                        | <10.0        | 10.0            | 01/31/2024      | ND           | 207  | 103        | 200           | 1.60  |           |
| EXT DRO >C28-C36                     | <10.0        | 10.0            | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | <b>99.</b> 7 | % 48.2-13       | 4               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 114 9        | 6 49.1-14       | 8               |              |      |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 01/31/2024                        | Sampling Date:      | 01/31/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/05/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03D2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: FS 19 0.5' (H240438-04)

| BTEX 8021B                           | mg/    | kg              | Analyze         | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|-----------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/31/2024      | ND           | 2.26 | 113        | 2.00          | 9.03  |           |
| Toluene*                             | <0.050 | 0.050           | 01/31/2024      | ND           | 2.41 | 120        | 2.00          | 15.0  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/31/2024      | ND           | 2.58 | 129        | 2.00          | 16.8  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/31/2024      | ND           | 7.79 | 130        | 6.00          | 16.9  |           |
| Total BTEX                           | <0.300 | 0.300           | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 105 9  | % 71.5-13       | 4               |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | 'kg             | Analyzed By: CT |              |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 16.0   | 16.0            | 02/01/2024      | ND           | 416  | 104        | 400           | 10.9  |           |
| TPH 8015M                            | mg/    | 'kg             | Analyze         | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed        | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/31/2024      | ND           | 216  | 108        | 200           | 0.704 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/31/2024      | ND           | 207  | 103        | 200           | 1.60  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/31/2024      | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 98.4   | % 48.2-13       | 4               |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 111 9  | 6 49.1-14       | 8               |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To: 01/31/2024 Sampling Date:

| Received:         | 01/31/2024                        | Sampling Date:      | 01/31/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/05/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03D2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

#### Sample ID: FS 20 1' (H240438-05)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/31/2024 | ND           | 2.26 | 113        | 2.00          | 9.03  |           |
| Toluene*                             | <0.050 | 0.050           | 01/31/2024 | ND           | 2.41 | 120        | 2.00          | 15.0  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/31/2024 | ND           | 2.58 | 129        | 2.00          | 16.8  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/31/2024 | ND           | 7.79 | 130        | 6.00          | 16.9  |           |
| Total BTEX                           | <0.300 | 0.300           | 01/31/2024 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 108 9  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: CT     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 752    | 16.0            | 02/01/2024 | ND           | 416  | 104        | 400           | 10.9  |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/31/2024 | ND           | 216  | 108        | 200           | 0.704 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/31/2024 | ND           | 207  | 103        | 200           | 1.60  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/31/2024 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 101 9  | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 114 9  | % 49.1-14       | 8          |              |      |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager



03D2057054

MAVERICK (32.817358-103.754432)

Shalyn Rodriguez

Sample Received By:

#### Analytical Results For:

**ENSOLUM** AIMEE COLE **3122 NATIONAL PARKS HWY** CARLSBAD NM, 88220 Fax To: 01/31/2024 Sampling Date: 01/31/2024 02/05/2024 Sampling Type: Soil Project Name: BAISH B BATTERY Sampling Condition: Cool & Intact

#### Sample ID: FS 21 1' (H240438-06)

Received:

Reported:

Project Number:

Project Location:

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/31/2024 | ND           | 2.26 | 113        | 2.00          | 9.03  |           |
| Toluene*                             | <0.050 | 0.050           | 01/31/2024 | ND           | 2.41 | 120        | 2.00          | 15.0  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/31/2024 | ND           | 2.58 | 129        | 2.00          | 16.8  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/31/2024 | ND           | 7.79 | 130        | 6.00          | 16.9  |           |
| Total BTEX                           | <0.300 | 0.300           | 01/31/2024 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 103 9  | 6 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg/    | kg              | Analyze    | d By: CT     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 32.0   | 16.0            | 02/01/2024 | ND           | 416  | 104        | 400           | 10.9  |           |
| TPH 8015M                            | mg/    | kg              | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/31/2024 | ND           | 216  | 108        | 200           | 0.704 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/31/2024 | ND           | 207  | 103        | 200           | 1.60  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/31/2024 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 111 %  | 6 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 127 9  | 6 49.1-14       |            |              |      |            |               |       |           |

#### **Cardinal Laboratories**

\*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager



MAVERICK (32.817358-103.754432)

**ENSOLUM** AIMEE COLE **3122 NATIONAL PARKS HWY** CARLSBAD NM, 88220 Fax To: Received: 01/31/2024 Sampling Date: 01/31/2024 Reported: 02/05/2024 Sampling Type: Soil Project Name: BAISH B BATTERY Sampling Condition: Cool & Intact Project Number: Sample Received By: Shalyn Rodriguez 03D2057054

#### Sample ID: FS 22 1' (H240438-07)

Project Location:

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |       |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|-------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 01/31/2024 | ND           | 2.26 | 113        | 2.00          | 9.03  |           |
| Toluene*                             | <0.050 | 0.050           | 01/31/2024 | ND           | 2.41 | 120        | 2.00          | 15.0  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 01/31/2024 | ND           | 2.58 | 129        | 2.00          | 16.8  |           |
| Total Xylenes*                       | <0.150 | 0.150           | 01/31/2024 | ND           | 7.79 | 130        | 6.00          | 16.9  |           |
| Total BTEX                           | <0.300 | 0.300           | 01/31/2024 | ND           |      |            |               |       |           |
| Surrogate: 4-Bromofluorobenzene (PID | 111 9  | % 71.5-13       | 4          |              |      |            |               |       |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: CT     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| Chloride                             | 272    | 16.0            | 02/01/2024 | ND           | 416  | 104        | 400           | 10.9  |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |       |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD   | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 01/31/2024 | ND           | 216  | 108        | 200           | 0.704 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 01/31/2024 | ND           | 207  | 103        | 200           | 1.60  |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 01/31/2024 | ND           |      |            |               |       |           |
| Surrogate: 1-Chlorooctane            | 99.0   | % 48.2-13       | 4          |              |      |            |               |       |           |
| Surrogate: 1-Chlorooctadecane        | 111 9  | % 49.1-14       | 8          |              |      |            |               |       |           |

#### Cardinal Laboratories

\*=Accredited Analyte

mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| QR-04 | The RPD for the BS/BSD was outside of historical limits.                                                                                                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| QR-03 | The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values. |
| QM-07 | The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.                                                        |
| BS-3  | Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.                                                     |
| BS1   | Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.                                                                                 |
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                                                                                    |
| RPD   | Relative Percent Difference                                                                                                                                                             |
| **    | Samples not received at proper temperature of 6°C or below.                                                                                                                             |
| ***   | Insufficient time to reach temperature.                                                                                                                                                 |
| -     | Chloride by SM4500CI-B does not require samples be received at or below 6°C                                                                                                             |
|       | Samples reported on an as received basis (wet) unless otherwise noted on report                                                                                                         |

**Cardinal Laboratories** 

#### \*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager



172 of 203

Page

Received by OCD: 4/17/2024 12:35:00 PM

## CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

|                                | : Ensolum, LLC                                                                                                                                                     | in for of one            |                            |                       |                         |                                       |                       | 199                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 80 0. TV          |                                                    | 6.               | and and the |               |        |        | U MOI    | 0.0 |     |     | Manager                        | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|-----------------------|-------------------------|---------------------------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------|------------------|-------------|---------------|--------|--------|----------|-----|-----|-----|--------------------------------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Manage                 | 11: Amere Coh                                                                                                                                                      | 2                        |                            |                       |                         |                                       |                       | P.O.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R. R. R.          |                                                    | T                | T           | T             | T      | ANA    | LYS      | SR  | EQU | EST | 1                              | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Address: 3                     | 122 Nution                                                                                                                                                         | 1 Parks                  | Hin                        | 4                     |                         | · · · · · · · · · · · · · · · · · · · |                       | Con                   | pany:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                                                    |                  |             |               | 1      |        |          |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| City: Carl                     | Island                                                                                                                                                             | State: NM                |                            |                       | 827                     | 6                                     |                       | Attn                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | triung in artista |                                                    | 1                |             | 1             | 1      |        | 1        |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Phone #: 720                   | 2-384.7365                                                                                                                                                         | Fax #:                   |                            |                       | 10-0                    |                                       |                       | Add                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                    | 1                |             |               |        |        | 1        |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project #: 03                  | EZOSTOSU                                                                                                                                                           | Project Own              | -                          | 4.                    |                         | -1                                    |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                    | -                |             |               | 1      | 1      |          |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Name:                  | Bash BB                                                                                                                                                            | attac.                   |                            |                       | v 0,                    | 1                                     | -                     | City:                 | and the second se |                   |                                                    |                  |             |               | 1      |        | 1        |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Location               | : 32.8173                                                                                                                                                          | CH -103                  | 751                        |                       | 22                      |                                       | -                     | State                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zip:              |                                                    |                  |             |               |        |        | 1        |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sampler Name:                  | Romai +                                                                                                                                                            | lances                   | /31                        | 17.                   | 36                      |                                       |                       | Phon                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                    |                  |             |               |        |        |          |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FOR LAB USE ONLY               | 10000                                                                                                                                                              | 1 des                    | 11                         | T                     | P                       | ATRI                                  | and the second second | Fax                   | RESERV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAL               | PLING                                              |                  |             |               |        |        |          |     | 1   |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 7 1                          |                                                                                                                                                                    |                          | ď                          |                       | 11                      | 1                                     | TI                    | F                     | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                                                    |                  |             |               |        |        |          |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Lab I.D.                       | Sample I.D.                                                                                                                                                        | Depth<br>(feet)          | (G)RAB OR (C)OMP.          | # CONTAINERS          | UVASTEWATER             |                                       |                       | ės.                   | -TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                                    | BTTEX            | -           | Ηd            |        |        |          |     |     | -   |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| H240438                        |                                                                                                                                                                    |                          |                            | # CONT                | WASTE                   | SOR                                   | SLUDGI                | OTHER :<br>ACID/BASE: | ICE / COOL<br>OTHER :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATE              | TIME                                               | 8                | 2           | F             |        |        |          |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | FSISA                                                                                                                                                              | 4.25                     | C                          | i                     |                         | ×                                     |                       |                       | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/31/20           | 1115                                               | ×                | ×           | ×             |        |        |          |     |     |     | -+                             |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                              | 5511                                                                                                                                                               | 0.5                      | G                          | 11                    | ++                      | 1                                     |                       |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                 | 1155                                               | 1                | 1           | 1             |        |        |          |     |     |     |                                |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3                              | FSIK                                                                                                                                                               | 0.5                      | C                          | 11                    |                         | 1                                     |                       |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 0848                                               |                  |             |               |        |        |          |     |     |     |                                | - | $\neg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4                              | FS19                                                                                                                                                               | 0.5                      | 11                         | 11-                   | ++                      | 1                                     |                       | _                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 0915                                               |                  |             |               |        |        |          |     |     |     |                                |   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                              | FSZO                                                                                                                                                               |                          | H                          | #                     | +                       | 11_                                   | $\square$             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 1135                                               |                  |             |               |        |        |          |     |     |     |                                | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 9                            | FSZZ                                                                                                                                                               |                          | J                          | 4                     | ++                      | <b>,</b>                              | $\square$             | +                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   | 1035                                               |                  |             |               |        |        |          | -   |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                | 1366                                                                                                                                                               | 1                        | $\vdash$                   | -                     | ++                      |                                       |                       | +                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                 | 1056                                               | Y                | ¥           | V             |        |        |          |     |     |     |                                | 1 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                |                                                                                                                                                                    |                          |                            | +                     | ++                      | -                                     |                       | -                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                    |                  |             |               |        |        |          |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                |                                                                                                                                                                    |                          | ⊨‡                         | +                     | ++                      | +                                     | +                     | +                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                                                    |                  | _           | -             | -      | -      | -        | _   |     |     |                                |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ervice. In no event shall Gard | Damages, Cardinal's liability and clie<br>those for negligance and any other o<br>fixed be fiable for incidental or consec<br>att of or related to the performance | and a lange of the state | without fir<br>Indiaal, re | nilation,<br>gardiets | bucinessi<br>s of wheth | to wrong                              | j and ter             | selved by             | Cardinal will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hin 30 days alto  | completion of the                                  | opplicable       |             |               |        |        |          |     |     |     |                                |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RI                             | r                                                                                                                                                                  | 1-31-24<br>Time: 321     | Reci                       | eived<br>V            | OC                      | lv                                    | i                     | 201                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   | Verbal Res<br>All Results (                        | ult:  <br>are em | ailed.      | Please        | provid | e Emai | il addre |     |     |     |                                |   | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| lelinguished/By:               |                                                                                                                                                                    | Date:<br>Time:           | Rece                       | ived                  | I By:                   | 4                                     | -6                    | T                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F                 | REMARKS:                                           |                  | 20          | eng           | olu    | m.     | 60       | 5   |     |     |                                |   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Delivered By: (Circ            | le One)                                                                                                                                                            | orved Tomp. °C           | 0                          | 1                     | Sampk                   | Cor                                   | illion                | T .                   | LICONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0%              | 104                                                |                  |             |               |        |        |          | -   |     |     |                                |   | Contraction of the local division of the loc |
| Sampler - UPS - Bu             | s - Other: Cor                                                                                                                                                     | rected Temp. C           | -8.                        |                       |                         | Intac                                 | t<br>fes              |                       | CHECKE<br>(Initia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Isj               | Turnaspund<br>#14<br>Thermometer<br>Correction Fee | 0                | 3           | tanda<br>lush | rd L   |        | ool in   | act | Obs |     | tition<br>'emp. °C<br>'emp. °C |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com



February 14, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

**RE: BAISH B BATTERY** 

Enclosed are the results of analyses for samples received by the laboratory on 02/09/24 11:36.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/09/2024                        | Sampling Date:      | 02/08/2024      |
|-------------------|-----------------------------------|---------------------|-----------------|
| Reported:         | 02/14/2024                        | Sampling Type:      | Soil            |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact   |
| Project Number:   | 03E2057054                        | Sample Received By: | Dionica Hinojos |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                 |

#### Sample ID: BH01 2' (H240631-01)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |        |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 02/09/2024 | ND           | 1.96 | 98.2       | 2.00          | 0.981  |           |
| Toluene*                             | <0.050 | 0.050           | 02/09/2024 | ND           | 2.06 | 103        | 2.00          | 0.333  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 02/09/2024 | ND           | 2.04 | 102        | 2.00          | 0.0314 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 02/09/2024 | ND           | 6.17 | 103        | 6.00          | 0.251  |           |
| Total BTEX                           | <0.300 | 0.300           | 02/09/2024 | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 114 9  | % 71.5-13       | 4          |              |      |            |               |        |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | 144    | 16.0            | 02/09/2024 | ND           | 416  | 104        | 400           | 0.00   |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 02/09/2024 | ND           | 188  | 93.9       | 200           | 0.0389 |           |
| DRO >C10-C28*                        | 46.0   | 10.0            | 02/09/2024 | ND           | 194  | 96.9       | 200           | 2.40   |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 02/09/2024 | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 80.8   | % 48.2-13       | 4          |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | 77.9   | % 49.1-14       | 8          |              |      |            |               |        |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/09/2024                        | Sampling Date:      | 02/08/2024      |
|-------------------|-----------------------------------|---------------------|-----------------|
| Reported:         | 02/14/2024                        | Sampling Type:      | Soil            |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact   |
| Project Number:   | 03E2057054                        | Sample Received By: | Dionica Hinojos |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                 |

#### Sample ID: BH01 3' (H240631-02)

| BTEX 8021B                           | mg,    | /kg             | Analyze    | d By: JH     |      |            |               |        |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 02/09/2024 | ND           | 1.96 | 98.2       | 2.00          | 0.981  |           |
| Toluene*                             | <0.050 | 0.050           | 02/09/2024 | ND           | 2.06 | 103        | 2.00          | 0.333  |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 02/09/2024 | ND           | 2.04 | 102        | 2.00          | 0.0314 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 02/09/2024 | ND           | 6.17 | 103        | 6.00          | 0.251  |           |
| Total BTEX                           | <0.300 | 0.300           | 02/09/2024 | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 115 9  | % 71.5-13       | 4          |              |      |            |               |        |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | 224    | 16.0            | 02/09/2024 | ND           | 416  | 104        | 400           | 0.00   |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |        |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 02/09/2024 | ND           | 188  | 93.9       | 200           | 0.0389 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 02/09/2024 | ND           | 194  | 96.9       | 200           | 2.40   |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 02/09/2024 | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 74.9   | % 48.2-13       | 4          |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | 69.6   | % 49.1-14       | 8          |              |      |            |               |        |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/09/2024                        | Sampling Date:      | 02/08/2024      |
|-------------------|-----------------------------------|---------------------|-----------------|
| Reported:         | 02/14/2024                        | Sampling Type:      | Soil            |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact   |
| Project Number:   | 03E2057054                        | Sample Received By: | Dionica Hinojos |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                 |

#### Sample ID: BH02 2' (H240631-03)

| BTEX 8021B                           | mg,                            | /kg             | Analyze    | d By: JH     |      |            |               |        |           |
|--------------------------------------|--------------------------------|-----------------|------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result                         | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Benzene*                             | <0.050                         | 0.050           | 02/09/2024 | ND           | 1.96 | 98.2       | 2.00          | 0.981  |           |
| Toluene*                             | <0.050                         | 0.050           | 02/09/2024 | ND           | 2.06 | 103        | 2.00          | 0.333  |           |
| Ethylbenzene*                        | <0.050                         | 0.050           | 02/09/2024 | ND           | 2.04 | 102        | 2.00          | 0.0314 |           |
| Total Xylenes*                       | <0.150                         | 0.150           | 02/09/2024 | ND           | 6.17 | 103        | 6.00          | 0.251  |           |
| Total BTEX                           | <0.300                         | 0.300           | 02/09/2024 | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 115                            | % 71.5-13       | 4          |              |      |            |               |        |           |
| Chloride, SM4500CI-B                 | mg                             | /kg             | Analyze    | d By: AC     |      |            |               |        |           |
| Analyte                              | Analyte Result Reporting Limit |                 | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | <b>48.0</b> 16.0               |                 | 02/09/2024 | ND           | 416  | 104        | 400           | 0.00   |           |
| TPH 8015M                            | mg                             | /kg             | Analyze    | d By: MS     |      |            |               |        |           |
| Analyte                              | Result                         | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0                          | 10.0            | 02/09/2024 | ND           | 188  | 93.9       | 200           | 0.0389 |           |
| DRO >C10-C28*                        | <10.0                          | 10.0            | 02/09/2024 | ND           | 194  | 96.9       | 200           | 2.40   |           |
| EXT DRO >C28-C36                     | <10.0                          | 10.0            | 02/09/2024 | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 82.8                           | % 48.2-13       | 4          |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | 76.5                           | % 49.1-14       | 8          |              |      |            |               |        |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/09/2024                        | Sampling Date:      | 02/08/2024      |
|-------------------|-----------------------------------|---------------------|-----------------|
| Reported:         | 02/14/2024                        | Sampling Type:      | Soil            |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact   |
| Project Number:   | 03E2057054                        | Sample Received By: | Dionica Hinojos |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                 |

#### Sample ID: BH02 4' (H240631-04)

| BTEX 8021B                           | mg,                    | /kg             | Analyze    | d By: JH     |      |            |               |        |           |
|--------------------------------------|------------------------|-----------------|------------|--------------|------|------------|---------------|--------|-----------|
| Analyte                              | Result                 | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Benzene*                             | <0.050                 | 0.050           | 02/09/2024 | ND           | 1.96 | 98.2       | 2.00          | 0.981  |           |
| Toluene*                             | <0.050                 | 0.050           | 02/09/2024 | ND           | 2.06 | 103        | 2.00          | 0.333  |           |
| Ethylbenzene*                        | <0.050                 | 0.050           | 02/09/2024 | ND           | 2.04 | 102        | 2.00          | 0.0314 |           |
| Total Xylenes*                       | <0.150                 | 0.150           | 02/09/2024 | ND           | 6.17 | 103        | 6.00          | 0.251  |           |
| Total BTEX                           | <0.300                 | 0.300           | 02/09/2024 | ND           |      |            |               |        |           |
| Surrogate: 4-Bromofluorobenzene (PID | 114 9                  | % 71.5-13       | 4          |              |      |            |               |        |           |
| Chloride, SM4500Cl-B                 | mg,                    | /kg             | Analyze    | d By: AC     |      |            |               |        |           |
| Analyte                              | Result Reporting Limit |                 | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| Chloride                             | hloride 80.0 16.       |                 | 02/09/2024 | ND           | 416  | 104        | 400           | 0.00   |           |
| TPH 8015M                            | mg/                    | /kg             | Analyze    | d By: MS     |      |            |               |        |           |
| Analyte                              | Result                 | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD    | Qualifier |
| GRO C6-C10*                          | <10.0                  | 10.0            | 02/09/2024 | ND           | 188  | 93.9       | 200           | 0.0389 |           |
| DRO >C10-C28*                        | <10.0                  | 10.0            | 02/09/2024 | ND           | 194  | 96.9       | 200           | 2.40   |           |
| EXT DRO >C28-C36                     | <10.0                  | 10.0            | 02/09/2024 | ND           |      |            |               |        |           |
| Surrogate: 1-Chlorooctane            | 71.7                   | % 48.2-13       | 4          |              |      |            |               |        |           |
| Surrogate: 1-Chlorooctadecane        | 65.1                   | % 49.1-14       | 8          |              |      |            |               |        |           |

#### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| ND  | Analyte NOT DETECTED at or above the reporting limit                        |
|-----|-----------------------------------------------------------------------------|
| RPD | Relative Percent Difference                                                 |
| **  | Samples not received at proper temperature of 6°C or below.                 |
| *** | Insufficient time to reach temperature.                                     |
| -   | Chloride by SM4500CI-B does not require samples be received at or below 6°C |

Samples reported on an as received basis (wet) unless otherwise noted on report

#### Cardinal Laboratories

#### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



# CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240

(575) 393-2326 FAX (575) 393-2476 Company Name: Ensolum LLC

| Project Manager: Aimee Cole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                           |                                                         |                               |                     |                      | BILL TO ANALYSIS REQUEST |                     |               |         |          |               |         |                                |                                         |                       |       |          |           |           |       |         |      |                   |        |               |                |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------|---------------------|----------------------|--------------------------|---------------------|---------------|---------|----------|---------------|---------|--------------------------------|-----------------------------------------|-----------------------|-------|----------|-----------|-----------|-------|---------|------|-------------------|--------|---------------|----------------|---|
| Address: 3/22 National Parks Huy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           |                                                         |                               |                     |                      |                          | P.                  | 0.1           | 俳:      |          |               |         |                                | T                                       | T                     | 1     |          | T         | T         | T     | 110     | au   | 1                 | -      | 1             |                |   |
| City: Curlsback State: 1/10 Zin: 200220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           |                                                         |                               |                     |                      | Company:                 |                     |               |         |          |               |         |                                | 1                                       |                       |       |          |           |           |       |         |      |                   |        |               |                |   |
| Cory: Cor/Isbad State: Nm Zip: State: Display: State: Distate: Distate |                                                                                                                                                           |                                                         |                               |                     | At                   | ton:                     |                     |               |         |          |               |         |                                |                                         |                       |       |          |           |           |       |         |      |                   |        |               |                |   |
| Toject # AZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1307-1367                                                                                                                                                 | Fax #:                                                  |                               |                     | ~~~~~                |                          |                     |               | Ad      | idre     | SS:           |         |                                |                                         |                       |       |          |           |           |       |         |      |                   |        |               |                |   |
| roject Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2057054                                                                                                                                                   | Project Ow                                              | ner:                          |                     |                      |                          |                     |               | Cit     | y:       |               |         |                                |                                         |                       |       |          |           |           |       |         |      |                   |        | 1             | 1              |   |
| rojost I anntia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Baish B Batt                                                                                                                                              | cry                                                     |                               |                     |                      |                          |                     |               | Sta     | ite:     |               |         | Zip:                           |                                         |                       |       |          |           |           |       |         |      |                   |        |               |                | 1 |
| ampler Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n: 32,817358,                                                                                                                                             | -103, 759432                                            | 2                             |                     |                      |                          |                     |               | Ph      | one      | 款;            |         |                                |                                         |                       |       |          |           |           |       |         |      |                   |        |               |                |   |
| OR LAB USE ONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Chad Hamilto                                                                                                                                              | 00                                                      |                               |                     | 1                    |                          |                     |               | Fai     | c #:     |               |         |                                |                                         | -                     |       |          |           |           |       |         |      |                   |        |               |                |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                           |                                                         | a                             |                     | <b> </b>             | MA                       | TRI                 | 1             |         | PRE      | SEF           | RV.     | SAN                            | APLING                                  |                       |       |          |           |           |       |         |      |                   |        |               | 1              | 1 |
| 3401818                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                           |                                                         | (G)RAB OR (C)OMP.             | s                   | x                    | ~                        |                     |               |         |          | X             |         |                                |                                         |                       |       |          |           |           | i     |         | 1    |                   |        |               |                | [ |
| Lab I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample I.D.                                                                                                                                               | Depth                                                   | R (C                          | NER                 | NAT                  | TER                      |                     |               |         |          |               |         |                                |                                         |                       |       |          |           |           |       |         | 1    |                   |        |               |                | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                         | (feet)                                                  | BO                            | ITAI                | INDI                 | EW                       |                     | щ             | ::      | ASE      | ō.            |         |                                | 1                                       |                       |       |          |           |           |       |         |      |                   |        |               |                | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                         | 3)RA                          | # CONTAINERS        | ROL                  | WASTEWATER<br>SOIL       |                     | an            | OTHER : |          | ICE / COC     |         |                                |                                         |                       | STEV  |          | HL        |           |       |         |      |                   |        |               |                |   |
| /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BHOI                                                                                                                                                      | 2                                                       | <u> </u>                      | *                   | 0                    | 3 00                     | OF                  | SL            | 5       | 8 I      |               | 5       | DATE                           | TIME                                    | 2                     | Ċ     | 2 \      | -         |           |       |         |      |                   |        |               |                |   |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BHOI                                                                                                                                                      | 3                                                       |                               |                     |                      | X                        |                     |               | _       | +        |               |         | 12/8/24                        |                                         | X                     | Х     | X        | $\square$ | T         |       |         | +    | +                 | -      |               |                |   |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BH02                                                                                                                                                      | 2                                                       |                               |                     | -+                   |                          |                     | -+            |         | +        |               |         |                                | 0822                                    | X                     | X     | X        |           |           |       |         | 1    | +                 | -+     |               |                |   |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1702                                                                                                                                                     | 4                                                       | +                             |                     | -                    | X                        | $\neg$              | -+            |         | +        | +             |         | 2/4/24                         |                                         | X                     | X     | X        |           |           |       |         | 1    | 1                 | -+     | -             |                | L |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                         |                               |                     | -                    |                          | -+                  | $\rightarrow$ |         | +        |               | 1       | 2/4/24                         | 0837                                    | X                     | X     | X        |           |           |       |         |      | T                 | -+     | -             |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                         | 11                            |                     |                      | ++                       | +                   | +             |         | +        | +             | -       |                                |                                         |                       |       | ļ        |           | $\square$ |       |         |      | T                 | 1      | -             |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                         |                               | 1                   |                      | ++                       | +                   | +             | ╋       | +-       | +             | -       |                                |                                         |                       |       |          | $\perp$   | -         |       |         |      |                   |        |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                         |                               |                     | 1                    | $\uparrow \uparrow$      |                     | +             | -       | +        |               | +       |                                |                                         |                       |       | ļ        |           |           | -+    |         |      |                   |        |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           |                                                         |                               | T                   |                      | 11                       | 1                   | 1             |         | +        | +             |         |                                |                                         |                       |       |          | 1         |           | -     |         |      |                   |        |               |                |   |
| ENGTE: Liability and C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dimograph Construction in A data                                                                                                                          |                                                         | LT                            | T                   | T                    | TT                       | 1                   | +             | 1       | 1        | +             | -       |                                | leiliptice company of                   |                       |       |          | 1         | 1         | =     |         |      |                   |        |               |                |   |
| s. All claims including t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Damages, Cardinal's liability and cl<br>hose for negligence and any other<br>hal be fiable for incidental or const<br>ut of or related to the performance | ient's exclusive remedy for a cause whatsoever shall be | any claim a<br>deemed w       | tising v<br>aived L | whether<br>Inless r  | based in made in wa      | contra              | ct or to      | ort sha | ll be li | inited        | to the  | amount paid                    | by the client for                       | the                   |       |          | L         |           |       |         |      | T                 | T      |               | T              |   |
| s or successors arising a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nose for negligence and any other<br>nal be fiable for incidental or const<br>but of or related to the performance                                        | e of services hereunder by C                            | y without lie<br>Cardinal, re | nitation            | a, busin<br>as af wh | ess intern<br>wher sur   | iptions<br>th claim | , loss o      | ofuse,  | or los   | s of ph       | olits i | 30 days after incurred by clic | completion of th<br>ent, its subsidiari | io applicable<br>ies, |       |          |           |           |       |         |      |                   |        |               |                |   |
| ingenoriou ay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                           | Date:<br>019/24                                         | Rece                          | eive                | d By                 |                          |                     | 1000          | 50000   | GIT EST  | y or uni      | e abo   | ve stated reas                 | ons or otherwis<br>Verbal Res           | e.<br>sult: 1         | 7 Yes | Г        | I No      | IAr       | AN DL | ione (  | -    | The second second |        | Annual second |                |   |
| Time: 3/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                           |                                                         |                               | All Results a       |                      |                          |                     |               |         |          | ailed.        | Plea    | se pro                         | vide                                    | Email                 | addr  |          |           |           |       |         |      |                   |        |               |                |   |
| nguished By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                           | Date:                                                   | Rece                          | ivec                | i By                 | X                        |                     |               |         |          |               |         |                                |                                         |                       |       |          |           |           |       |         |      |                   |        |               |                |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           | Time:                                                   |                               |                     |                      |                          |                     |               |         |          |               |         |                                | REMARKS                                 |                       |       |          |           |           |       |         |      |                   |        |               |                |   |
| vered By: (Circl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e One) On                                                                                                                                                 | sorved Tomp. °G                                         | 110/                          |                     | 8                    | -1                       |                     |               |         |          | -             |         |                                |                                         |                       |       |          |           |           |       |         |      |                   |        |               |                |   |
| pler - UPS - Bus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           | -                                                       | .1                            | 1                   | Coo                  | ple Co<br>I Inta         | 100                 |               |         |          | CKP<br>Initia |         |                                | urnaround                               | Time:                 |       | itan     | dard      | F         | Ba    | icteria | (onl | v) Sa             | mple   | Condi         | Har            |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | whiles.                                                                                                                                                   | 2º amoi bottoga                                         | #141                          | 1                   | 171.                 | Yes                      |                     |               | 1       | 1        | ******        | 4138    | 6                              |                                         |                       | 2     | 23 seals |           | 57        |       | ol In   | 4    | 21 440            | DIGHTS | CHARM         | tion<br>mp. °C |   |

cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Received by OCD: 4/17/2024 12:35:00 PM



February 06, 2024

AIMEE COLE ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD, NM 88220

**RE: BAISH B BATTERY** 

Enclosed are the results of analyses for samples received by the laboratory on 02/01/24 13:24.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (\*). For a complete list of accredited analytes and matrices visit the TCEQ website at <a href="https://www.tceq.texas.gov/field/ga/lab\_accred\_certif.html">www.tceq.texas.gov/field/ga/lab\_accred\_certif.html</a>.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

| Method EPA 552.2 | Haloacetic Acids (HAA-5)     |
|------------------|------------------------------|
| Method EPA 524.2 | Total Trihalomethanes (TTHM) |
| Method EPA 524.4 | Regulated VOCs (V1, V2, V3)  |

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager


ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/01/2024                        | Sampling Date:      | 02/01/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/06/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

### Sample ID: SS 12 0.5' (H240490-01)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 02/01/2024 | ND           | 1.96 | 98.1       | 2.00          | 12.2 |           |
| Toluene*                             | <0.050 | 0.050           | 02/01/2024 | ND           | 2.06 | 103        | 2.00          | 12.4 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 02/01/2024 | ND           | 2.01 | 101        | 2.00          | 12.3 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 02/01/2024 | ND           | 6.19 | 103        | 6.00          | 12.3 |           |
| Total BTEX                           | <0.300 | 0.300           | 02/01/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 111 9  | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | <16.0  | 16.0            | 02/02/2024 | ND           | 448  | 112        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 02/01/2024 | ND           | 211  | 105        | 200           | 5.65 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 02/01/2024 | ND           | 212  | 106        | 200           | 6.81 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 02/01/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 86.9   | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 83.5   | % 49.1-14       | 8          |              |      |            |               |      |           |

### Cardinal Laboratories

### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/01/2024                        | Sampling Date:      | 02/01/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/06/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

### Sample ID: SW 05 0-3' (H240490-02)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.20 | 110        | 2.00          | 8.70 |           |
| Toluene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.18 | 109        | 2.00          | 8.50 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 02/02/2024 | ND           | 2.17 | 109        | 2.00          | 8.48 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 02/02/2024 | ND           | 6.36 | 106        | 6.00          | 8.78 |           |
| Total BTEX                           | <0.300 | 0.300           | 02/02/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.5   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | <16.0  | 16.0            | 02/02/2024 | ND           | 448  | 112        | 400           | 0.00 |           |
| TPH 8015M                            | mg,    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 02/01/2024 | ND           | 211  | 105        | 200           | 5.65 |           |
| DRO >C10-C28*                        | <10.0  | 10.0            | 02/01/2024 | ND           | 212  | 106        | 200           | 6.81 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 02/01/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 81.2   | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 78.8   | % 49.1-14       | 8          |              |      |            |               |      |           |

### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/01/2024                        | Sampling Date:      | 02/01/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/06/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

### Sample ID: SW 11 0-1' (H240490-03)

| BTEX 8021B                           | mg/    | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.20 | 110        | 2.00          | 8.70 |           |
| Toluene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.18 | 109        | 2.00          | 8.50 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 02/02/2024 | ND           | 2.17 | 109        | 2.00          | 8.48 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 02/02/2024 | ND           | 6.36 | 106        | 6.00          | 8.78 |           |
| Total BTEX                           | <0.300 | 0.300           | 02/02/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 98.2   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 336    | 16.0            | 02/02/2024 | ND           | 448  | 112        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 02/01/2024 | ND           | 211  | 105        | 200           | 5.65 |           |
| DRO >C10-C28*                        | 14.2   | 10.0            | 02/01/2024 | ND           | 212  | 106        | 200           | 6.81 |           |
| EXT DRO >C28-C36                     | <10.0  | 10.0            | 02/01/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 104 9  | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 103 9  | % 49.1-14       | 8          |              |      |            |               |      |           |

### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/01/2024                        | Sampling Date:      | 02/01/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/06/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

### Sample ID: FS 23 1.5' (H240490-04)

| BTEX 8021B                           | mg/    | ′kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.20 | 110        | 2.00          | 8.70 |           |
| Toluene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.18 | 109        | 2.00          | 8.50 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 02/02/2024 | ND           | 2.17 | 109        | 2.00          | 8.48 | GC-NC     |
| Total Xylenes*                       | <0.150 | 0.150           | 02/02/2024 | ND           | 6.36 | 106        | 6.00          | 8.78 |           |
| Total BTEX                           | <0.300 | 0.300           | 02/02/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 106 9  | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | ′kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 544    | 16.0            | 02/02/2024 | ND           | 448  | 112        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | ′kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | 11.6   | 10.0            | 02/01/2024 | ND           | 211  | 105        | 200           | 5.65 |           |
| DRO >C10-C28*                        | 582    | 10.0            | 02/01/2024 | ND           | 212  | 106        | 200           | 6.81 |           |
| EXT DRO >C28-C36                     | 87.4   | 10.0            | 02/01/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 105 9  | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 104 9  | % 49.1-14       | 8          |              |      |            |               |      |           |

### Cardinal Laboratories

### \*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/01/2024                        | Sampling Date:      | 02/01/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/06/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

### Sample ID: FS 24 1' (H240490-05)

| BTEX 8021B                           | mg     | /kg             | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.20 | 110        | 2.00          | 8.70 |           |
| Toluene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.18 | 109        | 2.00          | 8.50 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 02/02/2024 | ND           | 2.17 | 109        | 2.00          | 8.48 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 02/02/2024 | ND           | 6.36 | 106        | 6.00          | 8.78 |           |
| Total BTEX                           | <0.300 | 0.300           | 02/02/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 97.0   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg,    | /kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 304    | 16.0            | 02/02/2024 | ND           | 448  | 112        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | /kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 02/01/2024 | ND           | 211  | 105        | 200           | 5.65 |           |
| DRO >C10-C28*                        | 63.7   | 10.0            | 02/01/2024 | ND           | 212  | 106        | 200           | 6.81 |           |
| EXT DRO >C28-C36                     | 14.3   | 10.0            | 02/01/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 99.7   | % 48.2-13       | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 98.6   | % 49.1-14       | 8          |              |      |            |               |      |           |

### Cardinal Laboratories

\*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



ENSOLUM AIMEE COLE 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220 Fax To:

| Received:         | 02/01/2024                        | Sampling Date:      | 02/01/2024       |
|-------------------|-----------------------------------|---------------------|------------------|
| Reported:         | 02/06/2024                        | Sampling Type:      | Soil             |
| Project Name:     | BAISH B BATTERY                   | Sampling Condition: | Cool & Intact    |
| Project Number:   | 03E2057054                        | Sample Received By: | Shalyn Rodriguez |
| Project Location: | MAVERICK ( 32.817358-103.754432 ) |                     |                  |

### Sample ID: FS 25 1.5' (H240490-06)

| BTEX 8021B                           | mg/    | kg              | Analyze    | d By: JH     |      |            |               |      |           |
|--------------------------------------|--------|-----------------|------------|--------------|------|------------|---------------|------|-----------|
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Benzene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.20 | 110        | 2.00          | 8.70 |           |
| Toluene*                             | <0.050 | 0.050           | 02/02/2024 | ND           | 2.18 | 109        | 2.00          | 8.50 |           |
| Ethylbenzene*                        | <0.050 | 0.050           | 02/02/2024 | ND           | 2.17 | 109        | 2.00          | 8.48 |           |
| Total Xylenes*                       | <0.150 | 0.150           | 02/02/2024 | ND           | 6.36 | 106        | 6.00          | 8.78 |           |
| Total BTEX                           | <0.300 | 0.300           | 02/02/2024 | ND           |      |            |               |      |           |
| Surrogate: 4-Bromofluorobenzene (PID | 96.7   | % 71.5-13       | 4          |              |      |            |               |      |           |
| Chloride, SM4500Cl-B                 | mg/    | 'kg             | Analyze    | d By: AC     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| Chloride                             | 672    | 16.0            | 02/02/2024 | ND           | 448  | 112        | 400           | 0.00 |           |
| TPH 8015M                            | mg/    | 'kg             | Analyze    | d By: MS     |      |            |               |      |           |
| Analyte                              | Result | Reporting Limit | Analyzed   | Method Blank | BS   | % Recovery | True Value QC | RPD  | Qualifier |
| GRO C6-C10*                          | <10.0  | 10.0            | 02/02/2024 | ND           | 192  | 96.2       | 200           | 1.11 |           |
| DRO >C10-C28*                        | 255    | 10.0            | 02/02/2024 | ND           | 176  | 88.1       | 200           | 3.93 |           |
| EXT DRO >C28-C36                     | 70.9   | 10.0            | 02/02/2024 | ND           |      |            |               |      |           |
| Surrogate: 1-Chlorooctane            | 108 9  | 48.2-13         | 4          |              |      |            |               |      |           |
| Surrogate: 1-Chlorooctadecane        | 113 9  | % 49.1-14       | 8          |              |      |            |               |      |           |

### Cardinal Laboratories

\*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager



## **Notes and Definitions**

| QR-03 | The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values. |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GC-NC | 8260 confirmation analysis was performed; initial GC results were not supported by GC/MS analysis and are reported as ND.                                                               |
| ND    | Analyte NOT DETECTED at or above the reporting limit                                                                                                                                    |
| RPD   | Relative Percent Difference                                                                                                                                                             |
| **    | Samples not received at proper temperature of 6°C or below.                                                                                                                             |
| ***   | Insufficient time to reach temperature.                                                                                                                                                 |
| -     | Chloride by SM4500Cl-B does not require samples be received at or below 6°C                                                                                                             |

Samples reported on an as received basis (wet) unless otherwise noted on report

### Cardinal Laboratories

### \*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager



# CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 86240 (575) 393-2326 FAX (575) 393-2476

| Project Manag              | e: Ensolum, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                          |                              |                       | 12                             | S. A.L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 111.177                | 0                   | 16           | -     |                     |      | -      |          |            |          |                     | -      |    |                        |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|------------------------------|-----------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------|--------------|-------|---------------------|------|--------|----------|------------|----------|---------------------|--------|----|------------------------|
|                            | 1.1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |                          |                              |                       | P.O                            | しま                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | R.L                    |                     | 1            | T     |                     | T    | AA     | ALY      | SIS        | REQ      | VEST                |        |    |                        |
| Address:                   | 3/22 Nam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hing              |                          |                              |                       | Cor                            | BOSISSA!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |                     | -            |       |                     |      |        | 1        |            |          | T                   |        | T  |                        |
| illy: Q                    | alsbad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | State: MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zip:              | 88                       | 220                          |                       | Company:<br>Altin:<br>Address: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                     |              |       |                     |      |        |          |            |          | 1                   |        |    |                        |
| hone #:                    | 220 384 73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SFar #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                          |                              |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | -                   |              |       |                     |      |        |          |            |          |                     | 1      | 1  |                        |
| Toject 8: 0.               | 3E 2057054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project Own                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er:               | Uni                      | erich                        |                       | City                           | and the second sec |                        |                     | -            |       |                     |      |        |          |            |          |                     |        | 1  | 1                      |
| roject Name:               | · Baish B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                          | 7,00                         |                       | Stat                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                     | -            |       |                     |      |        |          |            |          |                     | 1      |    |                        |
| roject Location            | 11: 32,817                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 358 -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7               | 544                      | 122                          |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zip:                   |                     |              |       | and the set         |      |        |          |            |          | ŀ                   |        | 1  |                        |
| ampler Name:               | Bann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Huncs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                          | 136                          | 1                     |                                | ne ik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                     |              |       |                     |      |        |          |            |          |                     | 1.4    |    |                        |
| OR LAB USE ONLY            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TT                | 1                        | MATE                         | and the second second | Fair                           | RESERV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a gan                  | PLING               | distant.     |       | 1                   |      |        | 1        |            |          |                     |        |    |                        |
| 240490                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WHODIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WP.               |                          | TT                           | TI                    | T                              | TT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        | 1                   |              |       |                     |      |        | 1        |            | 1        |                     |        |    |                        |
| .ab I.D.                   | Commin 1 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (G)RAB OR (C)OMP. | GROUNDWATER              | ¥                            |                       |                                | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | deno-central |       | 1                   |      |        | 1        |            |          |                     |        |    | -                      |
| CILP College               | Sample I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | OR                | DWA                      | TAN                          |                       | 11                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                     | Ha           | ١.    | IT                  |      |        |          |            |          | 1                   |        |    |                        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (G)RAB OR (C)C    | NNC                      | SOIL SOIL                    | SLUDGE                | OTHER :<br>ACID/BASE           | ICE / COOL<br>OTHER :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                     | A            | -     | F                   |      | 1      |          |            | 1        |                     |        |    |                        |
|                            | CUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | GRO                      | NOS NO                       | SLU                   | ACIE                           | ICE / CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATE                   | TIME                | F            | 0     | $\overline{\omega}$ |      |        |          |            |          |                     |        |    |                        |
| 2                          | 5512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G 1               |                          | x                            | TT                    | T                              | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/1/24                 |                     | x            |       | -                   | ┝    |        |          | <u> </u>   | <u> </u> |                     |        |    | l                      |
| 3                          | 5605<br>5611                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6-3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CI                |                          | 11                           |                       | T                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (                      | 1117                | -            | ×     | ×                   |      |        |          |            |          |                     |        |    | ſ                      |
| - Ŭ                        | FSZ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-1'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HH                |                          | 11                           |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 1115                |              | -+-   | $\vdash$            |      |        |          |            |          | -                   |        |    | L                      |
| 6                          | FSZY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H-H-              |                          | 41                           |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 6049                |              | +     |                     |      |        |          |            |          |                     | _      |    | L                      |
| 6                          | F525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11                |                          | H-                           |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | 0852                | 11           | 1     |                     | -    |        |          |            |          | $\vdash$            |        |    | 4                      |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Y I               |                          |                              | $\square$             |                                | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                      | 0855                | V            | V     | V                   |      |        |          |            |          |                     |        |    | -                      |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                          | ++-                          |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                     |              |       |                     |      |        |          |            |          |                     | -+     |    | -                      |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and the state of t |                   |                          |                              |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                     |              |       |                     |      |        |          |            |          | -                   |        | -+ | -                      |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | -                        |                              |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                     | _            |       |                     |      |        |          |            |          | =                   |        | -+ | -                      |
| All claims including th    | anages, Cordinate liability and clim<br>tobe for negligence and any other o<br>cd be fishife for insidential or concept<br>at of or related to the performance of<br>the for related to the performance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nte exclusive remady for any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | claim arisin      | whether                  | brand in con                 | tector to             | t sheeti                       | to limited to a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to bigging and         | hellin alle 14      |              |       |                     |      |        |          |            |          | -                   | -      | -  | -                      |
| er successaris arbitrer at | oce for negligence and any other c<br>ci be liable for incidental or concer<br>at of or related to the performance o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wohiel damagae, including u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Strout fimital    | i unless n<br>on, busine | ude la valla<br>cointerrupti | and test              | fute, or                       | Cordinal with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in 30 days after a     | completion of the o | pplicable    |       |                     |      |        |          |            |          |                     |        |    | -                      |
| quished By:                | at of manyo to moldenial or concer<br>at of or related to the performance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Receiv            | oci By:                  | dilar such d                 | aim in land           | ed upor                        | corport the al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NAME OF COLOR OF COLOR | ODD OF OBTERVESS    |              |       |                     |      |        |          |            |          | 1                   |        |    |                        |
| -KN                        | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Timo: 1324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                          | dp                           | in                    |                                | ,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                      | Verbal Results an   | ic: []       | iled. | Please              | to I | Add' P | hone #   | 1          |          |                     |        |    | 100                    |
| quished By:                | Have the second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Receive           | - Cl                     | 110                          | y                     | ul                             | Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | a                   | 1.00         | 100   | a e                 | 250  | 1      | . (0     | M          |          |                     |        |    |                        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tima:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000101           | wa way:                  |                              |                       |                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        | REMARKS:            |              |       |                     |      | un n   |          |            |          | 2                   |        |    | _                      |
| ered By: (Circle           | One)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                          |                              |                       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                     |              |       |                     |      |        |          |            |          |                     |        |    | 1                      |
| for - UPS - Bus            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | orved Tomp. "C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ei                | Cool                     | le Conc<br>Intaci            |                       | C                              | HECKED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8Y: 1                  | umpround T          | ime:         | 5     | tanda               | rd E |        | nainale  | lough 1    |          |                     |        |    |                        |
| FORMFOOD RT.               | 1-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | seted Tomp. °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                 | A                        |                              | 85                    |                                | Timitime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25.42                  | urnaround T<br>H140 | 11110        | R     | ush                 | Ĺ    | J G0   | Mol Inde | 122        | Olenn    | e Condi<br>Irved Te |        |    | No. of Lot, House, No. |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | † Cardinal can                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | pot no-           |                          | della                        | 000 [                 |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C                      | percenten Fact      | 0.5          | C     | -                   | -    |        | No       | 1Yes<br>Mo | Corre    | adad To             | mp. °C |    | and the second         |

Received by OCD: 4/17/2024 12:35:00 PM

1000



# APPENDIX E

# NMOCD Correspondence

Released to Imaging: 5/14/2024 11:22:06 AM

| From:        | <u>Aimee Cole</u>                                                                            |
|--------------|----------------------------------------------------------------------------------------------|
| To:          | <u>Aimee Cole</u>                                                                            |
| Subject:     | Maverick Permian, LLC - Extension Request - Baish B Battery (Incident Number NAPP2235372941) |
| Date:        | Friday, February 16, 2024 12:28:02 PM                                                        |
| Attachments: | image.png                                                                                    |
|              | image.png                                                                                    |
|              | image.png                                                                                    |
|              | image.png                                                                                    |
|              | Outlook-o5rxltz4.png                                                                         |
|              | image001.png                                                                                 |
|              | image002.png                                                                                 |
|              | image003.png                                                                                 |
|              | image004.png                                                                                 |



Aimee Cole Senior Managing Scientist 720-384-7365 Ensolum, LLC

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Sent: Friday, February 16, 2024 12:27 PM
To: Aimee Cole <acole@ensolum.com>
Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>
Subject: Re: [EXTERNAL] Maverick Permian, LLC - Extension Request - Baish B Battery (Incident Number NAPP2235372941)

## [ \*\*EXTERNAL EMAIL\*\*]

Good afternoon Aimee,

Your 60-day time extension request is approved. Remediation Due date has been updated to April 15, 2024.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards,

Nelson Velez • Environmental Specialist - Adv

Environmental Bureau | EMNRD - Oil Conservation Division

1000 Rio Brazos Road | Aztec, NM 87410

(505) 469-6146 | nelson.velez@emnrd.nm.gov

http://www.emnrd.state.nm.us/OCD/



From: Wells, Shelly, EMNRD <<u>Shelly.Wells@emnrd.nm.gov</u>>
Sent: Wednesday, February 14, 2024 3:49 PM
To: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>
Cc: Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>
Subject: FW: [EXTERNAL] Maverick Permian, LLC - Extension Request - Baish B Battery (Incident
Number NAPP2235372941)

From: Aimee Cole <a cole@ensolum.com</pre>

Sent: Wednesday, February 14, 2024 3:46 PM

To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>

**Subject:** [EXTERNAL] Maverick Permian, LLC - Extension Request - Baish B Battery (Incident Number NAPP2235372941)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To Whom It May Concern,

Maverick Permian, LLC (Maverick) is requesting an extension of the current February 15, 2024, deadline for submitting a report required in 9.15.29.12.B.(1) NMAC detailing remedial actions at the Baish B Battery (Incident Number NAPP2235372941). Excavation activities commenced on January 26, 2024, and were completed on February 9, 2024. Maverick is requesting an extension of the current deadline in order to install a soil boring to confirm depth to groundwater greater than 55 feet at the Site and confirm the applied Closure Criteria. In order to schedule a drilling contractor, complete the soil boring, and prepare a report Maverick requests a 60-day extension until April 15, 2024.

Thank you,



|   | Senior Managing Scientist |
|---|---------------------------|
| ? | 720-384-7365              |
|   | Ensolum, LLC              |
|   |                           |

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Sent: Wednesday, February 21, 2024 12:01 PM
To: Aimee Cole <acole@ensolum.com>
Subject: Re: [EXTERNAL] FW: The Oil Conservation Division (OCD) has approved the application, Application ID: 250693

## **\*\*EXTERNAL EMAIL\*\***

Good afternoon Aimee,

Thank you for the correspondence. Your bore hole location is approved.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances.

Regards,

**Nelson Velez** • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | <u>nelson.velez@emnrd.nm.gov</u> <u>http://www.emnrd.state.nm.us/OCD/</u>



From: Aimee Cole <acole@ensolum.com>
Sent: Wednesday, February 21, 2024 11:50 AM
To: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>
Subject: [EXTERNAL] FW: The Oil Conservation Division (OCD) has approved the application, Application
ID: 250693

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hi Nelson,

Per condition #2 below, Maverick is providing the proposed location of the soil boring for depth to water determination at Baish B Battery (Incident Number: NAPP2235372941).

Maverick proposes to advance the soil boring to a depth of 55 feet at the Baish B Battery (on the same pad as the release location). See below aerial image.

Let me know if you have any questions or require any additional information.





Aimee Cole Senior Managing Scientist 720-384-7365 Ensolum, LLC From: OCDOnline@state.nm.us <OCDOnline@state.nm.us> Sent: Friday, November 17, 2023 6:57 AM

To: Aimee Cole <<u>acole@ensolum.com</u>>

Subject: The Oil Conservation Division (OCD) has approved the application, Application ID: 250693

## [ \*\*EXTERNAL EMAIL\*\*]

To whom it may concern (c/o Aimee Cole for Maverick Permian LLC), The OCD has approved the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nAPP2235372941, with the following conditions:

Remediation plan is approved with the following conditions; 1. In order to achieve a more accurate estimation for depth to water, Maverick Permian must drill an exploratory boring as close to the point of release to determine if water is greater than 50 feet or choose to utilize the most stringent closure criteria.
 Maverick must receive OCD pre-approval of the boring location prior to its advancement. Email correspondence is acceptable.
 Maverick has 90-days (February 15, 2024) to submit its appropriate or final closure report.

The signed C-141 can be found in the OCD Online: Imaging under the incident ID (n#).

If you have any questions regarding this application, please contact me.

Thank you, Nelson Velez Environmental Specialist – Advanced 505–469–6146 <u>Nelson.Velez@emnrd.nm.gov</u> **New Mexico Energy, Minerals and Natural Resources Department** 1220 South St. Francis Drive

Santa Fe, NM 87505

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 334454

| QUESTIONS                    |                                                             |  |  |  |
|------------------------------|-------------------------------------------------------------|--|--|--|
| Operator:                    | OGRID:                                                      |  |  |  |
| Maverick Permian LLC         | 331199                                                      |  |  |  |
| 1000 Main Street, Suite 2900 | Action Number:                                              |  |  |  |
| Houston, TX 77002            | 334454                                                      |  |  |  |
|                              | Action Type:                                                |  |  |  |
|                              | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |  |  |  |

### QUESTIONS

| Prerequisites    |                                     |  |  |  |
|------------------|-------------------------------------|--|--|--|
| Incident ID (n#) | nAPP2235372941                      |  |  |  |
| Incident Name    | NAPP2235372941 BAISH B BATTERY @ 0  |  |  |  |
| Incident Type    | Oil Release                         |  |  |  |
| Incident Status  | Remediation Closure Report Received |  |  |  |

#### Location of Release Source

| lease answer all the questions in this group. |                 |  |  |  |  |  |
|-----------------------------------------------|-----------------|--|--|--|--|--|
| Site Name                                     | BAISH B BATTERY |  |  |  |  |  |
| Date Release Discovered                       | 11/30/2022      |  |  |  |  |  |
| Surface Owner                                 | Federal         |  |  |  |  |  |

### Incident Details

| Please answer all the questions in this group.                                                          |             |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Incident Type                                                                                           | Oil Release |  |  |  |
| Did this release result in a fire or is the result of a fire                                            | No          |  |  |  |
| Did this release result in any injuries                                                                 | No          |  |  |  |
| Has this release reached or does it have a reasonable probability of reaching a<br>watercourse          | No          |  |  |  |
| Has this release endangered or does it have a reasonable probability of<br>endangering public health    | No          |  |  |  |
| Has this release substantially damaged or will it substantially damage property or the environment      | No          |  |  |  |
| Is this release of a volume that is or may with reasonable probability be<br>detrimental to fresh water | No          |  |  |  |

### Nature and Volume of Release

| Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. |                                                                                                                     |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Crude Oil Released (bbls) Details                                                                                                                                                    | Cause: Overflow - Tank, Pit, Etc.   Production Tank   Crude Oil   Released: 7 BBL   Recovered: 0 BBL   Lost: 7 BBL. |  |  |  |  |  |
| Produced Water Released (bbls) Details                                                                                                                                               | Not answered.                                                                                                       |  |  |  |  |  |
| Is the concentration of chloride in the produced water >10,000 mg/l                                                                                                                  | Not answered.                                                                                                       |  |  |  |  |  |
| Condensate Released (bbls) Details                                                                                                                                                   | Not answered.                                                                                                       |  |  |  |  |  |
| Natural Gas Vented (Mcf) Details                                                                                                                                                     | Not answered.                                                                                                       |  |  |  |  |  |
| Natural Gas Flared (Mcf) Details                                                                                                                                                     | Not answered.                                                                                                       |  |  |  |  |  |
| Other Released Details                                                                                                                                                               | Not answered.                                                                                                       |  |  |  |  |  |
| Are there additional details for the questions above (i.e. any answer containing<br>Other, Specify, Unknown, and/or Fire, or any negative lost amounts)                              | Not answered.                                                                                                       |  |  |  |  |  |

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico** Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 334454

**QUESTIONS** (continued) Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number: Houston, TX 77002 334454 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

|   | Nature and Volume of Release (continued)                                                                                                                |                                                                                   |  |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|--|
|   | Is this a gas only submission (i.e. only significant Mcf values reported)                                                                               | No, according to supplied volumes this does not appear to be a "gas only" report. |  |  |  |  |  |  |
| ĺ | Was this a major release as defined by Subsection A of 19.15.29.7 NMAC                                                                                  | No                                                                                |  |  |  |  |  |  |
|   | Reasons why this would be considered a submission for a notification of a major release                                                                 | Unavailable.                                                                      |  |  |  |  |  |  |
| l | With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form. |                                                                                   |  |  |  |  |  |  |

| Initial | Response |
|---------|----------|
|---------|----------|

| The responsible party must undertake the following actions immediately unless they could create a s                                                                                          | afety hazard that would result in injury.                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| The source of the release has been stopped                                                                                                                                                   | True                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| The impacted area has been secured to protect human health and the<br>environment                                                                                                            | True                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices                                                                           | True                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| All free liquids and recoverable materials have been removed and managed<br>appropriately                                                                                                    | True                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| If all the actions described above have not been undertaken, explain why                                                                                                                     | Not answered.                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                                                                                                                                                                                              | ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of<br>ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of<br>valuation in the follow-up C-141 submission.                                                                                                                |  |  |  |  |  |
| to report and/or file certain release notifications and perform corrective actions for releat<br>the OCD does not relieve the operator of liability should their operations have failed to a | knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or |  |  |  |  |  |
| I hereby agree and sign off to the above statement                                                                                                                                           | Name: Aimee Cole<br>Email: acole@ensolum.com<br>Date: 04/17/2024                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

#### District III

Operator

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

> Maverick Permian LLC 1000 Main Street, Suite 2900 Houston, TX 77002

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 198 of 203

QUESTIONS, Page 3

Action 334454

| QUESTIONS (co | ntinued) |
|---------------|----------|
|               | OGRID:   |
|               | 331199   |

| OGRID.                                                      | Í. |
|-------------------------------------------------------------|----|
| 331199                                                      | l  |
| Action Number:                                              | l  |
| 334454                                                      |    |
| Action Type:                                                | Ĺ  |
| [C-141] Remediation Closure Request C-141 (C-141-v-Closure) | Ĺ  |

### QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)   | Between 51 and 75 (ft.)         |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| What method was used to determine the depth to ground water                                                                  | Direct Measurement              |
| Did this release impact groundwater or surface water                                                                         | No                              |
| What is the minimum distance, between the closest lateral extents of the release ar                                          | id the following surface areas: |
| A continuously flowing watercourse or any other significant watercourse                                                      | Between 1000 (ft.) and ½ (mi.)  |
| Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)                                            | Between 1 and 5 (mi.)           |
| An occupied permanent residence, school, hospital, institution, or church                                                    | Between 1 and 5 (mi.)           |
| A spring or a private domestic fresh water well used by less than five households<br>for domestic or stock watering purposes | Between 1 and 5 (mi.)           |
| Any other fresh water well or spring                                                                                         | Between 1 and 5 (mi.)           |
| Incorporated municipal boundaries or a defined municipal fresh water well field                                              | Between 1 and 5 (mi.)           |
| A wetland                                                                                                                    | Between ½ and 1 (mi.)           |
| A subsurface mine                                                                                                            | Greater than 5 (mi.)            |
| An (non-karst) unstable area                                                                                                 | Greater than 5 (mi.)            |
| Categorize the risk of this well / site being in a karst geology                                                             | Low                             |
| A 100-year floodplain                                                                                                        | Between 1 and 5 (mi.)           |
| Did the release impact areas not on an exploration, development, production, or storage site                                 | Yes                             |

#### Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 752 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 681 GRO+DRO (EPA SW-846 Method 8015M) 594 BTEX (EPA SW-846 Method 8021B or 8260B) 0.5 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 02/27/2023 On what date will (or did) the final sampling or liner inspection occur 02/01/2024 On what date will (or was) the remediation complete(d) 02/01/2024 What is the estimated surface area (in square feet) that will be reclaimed 4300 What is the estimated volume (in cubic yards) that will be reclaimed 500 What is the estimated surface area (in square feet) that will be remediated 5000 What is the estimated volume (in cubic yards) that will be remediated 700 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

# State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 334454

| QUESTIONS (continued)        |                                                             |
|------------------------------|-------------------------------------------------------------|
| Operator:                    | OGRID:                                                      |
| Maverick Permian LLC         | 331199                                                      |
| 1000 Main Street, Suite 2900 | Action Number:                                              |
| Houston, TX 77002            | 334454                                                      |
|                              | Action Type:                                                |
|                              | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

### QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply.) (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.) Yes Which OCD approved facility will be used for off-site disposal R360 Artesia LLC LANDFARM [fEEM0112340644] OR which OCD approved well (API) will be used for off-site disposal Not answered. OR is the off-site disposal site, to be used, out-of-state Not answered. OR is the off-site disposal site, to be used, an NMED facility Not answered. (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) No (In Situ) Soil Vapor Extraction No (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) No (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) No (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) No Ground Water Abatement pursuant to 19.15.30 NMAC No OTHER (Non-listed remedial process) No Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Name: Aimee Cole I hereby agree and sign off to the above statement Email: acole@ensolum.com

Date: 04/17/2024 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 200 of 203

Action 334454

| QUESTIONS (continued)                             |                                                                             |
|---------------------------------------------------|-----------------------------------------------------------------------------|
| Operator:<br>Maverick Permian LLC                 | OGRID:<br>331199                                                            |
| 1000 Main Street, Suite 2900<br>Houston, TX 77002 | Action Number:<br>334454                                                    |
|                                                   | Action Type:<br>[C-141] Remediation Closure Request C-141 (C-141-v-Closure) |
| QUESTIONS                                         |                                                                             |

### Deferral Requests Only

| Only answer the questions in this group if seeking a deferral upon approval this submission. Each of | the following items must be confirmed as part of any request for deferral of remediation. |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Requesting a deferral of the remediation closure due date with the approval of this submission       | No                                                                                        |

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico** Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

.

QUESTIONS, Page 6

Action 334454

| QUESTIONS (continued)        |                                                             |  |
|------------------------------|-------------------------------------------------------------|--|
| Operator:                    | OGRID:                                                      |  |
| Maverick Permian LLC         | 331199                                                      |  |
| 1000 Main Street, Suite 2900 | Action Number:                                              |  |
| Houston, TX 77002            | 334454                                                      |  |
|                              | Action Type:                                                |  |
|                              | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |  |

QUESTIONS

| Sampling Event Information                                                                      |            |
|-------------------------------------------------------------------------------------------------|------------|
| Last sampling notification (C-141N) recorded                                                    | 312411     |
| Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC | 02/09/2024 |
| What was the (estimated) number of samples that were to be gathered                             | 2          |
| What was the sampling surface area in square feet                                               | 400        |

**Remediation Closure Request** 

| Only answer the questions in this group if seeking remediation closure for this release because all re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | emediation steps have been completed.                                |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| Requesting a remediation closure approval with this submission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                                                                  |  |
| Have the lateral and vertical extents of contamination been fully delineated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes                                                                  |  |
| Was this release entirely contained within a lined containment area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No                                                                   |  |
| All areas reasonably needed for production or subsequent drilling operations have<br>been stabilized, returned to the sites existing grade, and have a soil cover that<br>prevents ponding of water, minimizing dust and erosion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                                  |  |
| What was the total surface area (in square feet) remediated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5000                                                                 |  |
| What was the total volume (cubic yards) remediated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 700                                                                  |  |
| All areas not reasonably needed for production or subsequent drilling operations<br>have been reclaimed to contain a minimum of four feet of non-waste contain<br>earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg<br>TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes                                                                  |  |
| What was the total surface area (in square feet) reclaimed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4300                                                                 |  |
| What was the total volume (in cubic yards) reclaimed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500                                                                  |  |
| Summarize any additional remediation activities not included by answers (above)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remediation was completed in accordance with the approved Work Plan. |  |
| The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a<br>comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of<br>final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |  |
| I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete. |                                                                      |  |

| I hereby agree and sign off to the above statement | Name: Aimee Cole<br>Email: acole@ensolum.com |
|----------------------------------------------------|----------------------------------------------|
|                                                    | Date: 04/17/2024                             |

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 334454

Page 202 of 203

| QUESTIONS (continued)                             |                                                                             |
|---------------------------------------------------|-----------------------------------------------------------------------------|
| Operator:<br>Maverick Permian LLC                 | OGRID:<br>331199                                                            |
| 1000 Main Street, Suite 2900<br>Houston, TX 77002 | Action Number:<br>334454                                                    |
|                                                   | Action Type:<br>[C-141] Remediation Closure Request C-141 (C-141-v-Closure) |
| QUESTIONS                                         | -                                                                           |
| Reclamation Report                                |                                                                             |

Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission

No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 334454

Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number: Houston, TX 77002 334454 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

### CONDITIONS

| Created<br>By | Condition                                                                                                                                                                                                                                                              | Condition<br>Date |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| nvelez        | Remediation closure report approved, release resolved. Soil impacts exceeding the reclamation standards have been left in place and are required to meet 19.15.29.13D (1) NMAC once the site is no longer reasonably needed for production or subsequent drilling ops. | 5/14/2024         |