

Remediation Summary and Site Closure Request

February 28, 2024

Rocket Federal Com #5H

Prepared For:

ConocoPhillips, LLC. 600 W Illinois Avenue Midland, TX 79701

Prepared By:

TRC Environmental Corporation 505 E. Huntland Dr. STE 250 Austin, TX 78752

Misti Bryant

Prepared by: Misti Bryant Assistant Project Manager

brad & Ster

Reviewed and Approved by: Jared E. Stoffel, PG Project Manager

•

TABLE OF CONTENTS

1.0	INTRODUCTION AND BACKGROUND INFORMATION	.2
2.0	SITE CHARACTERIZATION	.2
3.0	NMOCD APPROVED WORK PLAN	.2
4.0	SUMMARY OF SOIL REMEDIATION ACTIVITIES	.3
5.0	SITE CLOSURE REQUEST	.6
6.0	LIMITATION	.6
7.0	DISTRIBUTION	.7

TABLES

Table 1: Re-Delineation Sample Analytical ResultsTable 2: Confirmation Sample Analytical Results

FIGURES

- Figure 1: Site Location Map
- Figure 2: Wellhead Protection Area Map
- Figure 3: Karst Potential Map
- Figure 4: Wetlands and FEMA Floodplain Map
- Figure 5: Approved Workplan Delineation Figure From Tetra Tech
- Figure 6: Excavation and Sample Location Map

APPENDICES

- Appendix A NMOCD Approved Workplan Appendix Removed
- Appendix B Release Notification and Corrective Action (Form C-141)
- Appendix C Photographic Documentation
- Appendix D Groundwater Database Results and DTW Confirmation Boring Log
- Appendix E Laboratory Analytical Reports

1.0 Introduction and Background Information

TRC Environmental Corporation (TRC), on behalf of ConocoPhillips, LLC (COP), has prepared this *Remediation Summary and Site Closure Request* for the Release Site known as the Rocket Federal Com #5H (Release Site). The legal description of the Site is Unit Letter "B", Section 10, Township 26 South, Range 29 East, in Eddy County, New Mexico. The GPS coordinates for the Site are N 32.06408° W-103.96908°. **Figures 1 and 2** depict the Site location.

On July 10, 2019, COP discovered the leak due to a damaged flowline, which resulted in a release of approximately 320 barrels (bbls) of produced water to the ground surface. Approximately 32,793 square feet of soils were impacted. The release was reported to the New Mexico Oil Conservation Division (NMOCD) on a C-141 form. A copy of the submitted Form C-141 for the Release is provided in Appendix A.

2.0 Site Characterization

A site investigation documented by Tetra Tech in a Revised Work Plan dated October 6, 2020, indicated depth to groundwater beneath the Release Site is greater than 50 feet below ground surface (bgs). Additionally, a boring at 32.063589, -103.972770 was drilled on August 3, 2020 by Tetra Tech in association with the JR Horz Federal #2 Release Site (NAB1904554978) to confirm depth to water in the area. The boring was drilled to a depth of approximately 55 feet bgs, left open for 72 hours, and gauged dry. The boring confirmed depth to groundwater at the Site was greater than 55 feet bgs, as the boring was located approximately 1,000 feet southwest of the Site. The groundwater data and boring log are provided as **Appendix D**.

Based on the NMOCD Site Classification criteria, soil analytical data collected during the investigation of the Release Site were compared to Closure Criteria for depth to groundwater 51 to 100 feet bgs. The Rocket Federal Com #005 is located in the 'medium karst' area as outlined in Bureau of Land Management (BLM) publicly available Karst Potential Map. The Karst Potential Map is provided as **Figure 3**. The most stringent NMOCD guidelines were applied to the Site due the adjacent watercourse as shown on **Figure 4**:

- Total Petroleum Hydrocarbons (TPH): 100 mg/kg
- Benzene: 10 mg/kg
- Total Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX): 50 mg/kg
- Chlorides: 600 mg/kg

3.0 NMOCD Approved Work Plan

On October 6, 2020, a revised workplan was submitted to the New Mexico Oil Conservation Division (NMOCD) by Tetra Tech, on behalf of COP. Depth to groundwater at the Site is estimated to be greater than fifty (50) feet but less than one hundred (100) ft bgs based on the

adjacent groundwater determination borehole. Figure 5 documents the sample locations on which the workplan was based.

In the approved workplan, the remediation activities were to occur following the removal of the chloride impacted soils. Based on laboratory results, COP proposes to excavate the areas to below NMOCD Closure Criteria in the areas representative of Trench-1 through Trench-4.

- Excavation of impacted soil will range from a depth of 1 ft bgs to 4 ft bgs.
- Excavation activities will proceed until the final excavation extent confirms compliance with Site Closure Criteria.
- Impacted soil will be disposed of at a licensed disposal facility.
- Following removal of impacted soil, five-point composite confirmation samples will be collected from the sidewalls and floor of the excavation every 400-500 square feet.
- Install a 20-mil polyvinyl liner in the areas excavated to 4 ft bgs or immediately above the underlying dense rock refusal layer, whichever occurs first.
- Collected samples will be submitted to the laboratory for TPH analysis by Method SW 846 8015 modified, BTEX by Method SW 846 8021B, and chloride by EPA Method 300.0.
- Once excavation activities are concluded and removed, the excavation will be backfilled with material purchased locally and recontoured to match pre-existing site conditions.

The NMOCD approved the workplan with no additional stipulations. The approved workplan is provided as **Appendix A**. The Release Notification and Corrective Action (Form C-141) is provided as **Appendix B**.

4.0 Secondary Site Investigation and Pipeline Site Assessment Activity and Results (July 2022)

A secondary site investigation was conducted by TRC on July 14, 2022 at the request of COP due to the amount of time elapsed since the original Tetra Tech delineation. Vertical delineation was established at depths between 3 and 11 feet bgs utilizing trenching investigation data collected by TRC, with the exception of TT-9 and TT-10. The re-delineation data is presented in **Table 1**. The area represented by TT-9 and TT-10 was delineated fully at depth with a drill rig at 15 feet bgs during workplan development, and the onsite equipment utilized for the secondary site investigation was unable to reach these depths. The TT-9 and TT-10 data simply confirmed previously documented elevated chloride concentrations in the upper 11 feet of the area represented by Borehole-5 in the workplan. TRC modified the existing workplan within the approved framework at the request of COP. The modified plan includes:

- Excavation of the area represented by sample location TT-3 to a depth of 3.0 feet bgs and backfill with clean material to surface grade.
- Excavation of the areas represented by sample locations TT-4, TT-8, TT-9 and TT-10 to 4.0 feet bgs or until the dense rock refusal layer is encountered.

- Collect five-point composite bottom hole and sidewall samples every 400 square feet to represent the Release Area (a variance, requested per 19.15.29.14. A NMAC, approved by NMOCD by their approval of the workplan).
- Analyze the bottom hole and sidewall samples for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and Chloride by EPA method 300.0.
- Install a 20-mil polyvinyl liner in the areas excavated to 4.0 feet bgs.
- Remove affected soils and haul material to a disposal facility.
- Backfill excavated areas with clean "like" material to grade.

Additionally, prior to enactment of the soil remediation a hazard inventory of all the onsite pipelines was made. Each of the pipelines identified during the NM811 onecall and subsequent GPR survey were positively located and identified based on hydrovac potholes. The pipelines are each shown on Figures **5 and 6**.

Kinder Morgan Fiberglass Water Pipeline

One (1) twelve (12) inch fiberglass water pipeline runs parallel to the northern edge of the Release site. The top of the line is located at approximately 2 feet bgs.

Energy Transfer High Pressure Pipeline

One (1) high pressure steel 30" pipeline runs parallel to the Kinder Morgan water line through the Release site, approximately 30 feet south of the Kinder Morgan line. The top of the line is located at approximately 2 feet bgs, and the line runs in a trench cut into the underlying hard rock layer.

Surface Poly Lines

A network of interconnected twelve (12) inch surface poly lines owned by ConocoPhillips run atop the spill area.

Unidentified Fiberglass Line

During Site characterization activities, an approximately 18-inch fiberglass line was identified. The line was not identified utilizing the NM811 or ground penetrating radar information, and had been identified during remediation of an adjacent Site. The line was located approximately three (3) feet bgs.

Pipeline Communication and Recommendations

Due to the large number of parallel high pressure and hard to locate (fiberglass) lines, ConocoPhillips discussed clearance distances with each of the Stakeholders. Kinder Morgan requested that excavation should not occur within 3 feet of their pipeline after potholing for

positive location. Energy Transfer operations indicated excavation should not occur within 4 feet of their pipeline after potholing for positive location.

As previously discussed in reference to the approved workplan, installation of an engineered liner at the base of the excavation as a mitigation control at four feet bgs was requested due to feasibility and safety concerns – a hard and dense rock layer has been documented at approximately four (4) feet bgs. Due to the number and nature of pipelines crossing the Release area, hammering into this dense rock layer would be hazardous to onsite personnel and to the infrastructure itself.

5.0 Soil Remediation Activities

Soil remediation activities commenced on June 1, 2023 at the Site. An onsite geologist field screened for chloride concentrations to guide the excavation activities, both laterally and vertically. The excavation was advanced to the maximum extent practicable around the onsite pipeline infrastructure. At four (4) feet bgs, a very hard rock layer was encountered as described in the NMOCD approved workplan. The excavation depths ranged from approximately three (3) to four (4) ft bgs. Excavations did not exceed a depth of 4 feet bgs. A 20-mil polyvinyl liner was placed at the base of the 4-foot excavation to inhibit rainwater percolation through the areas with elevated chloride concentrations as documented by the confirmation soil samples. **Figure 6** depicts the excavation footprint and the associated soil sample locations. All soil was temporarily staged on polyvinyl sheeting adjacent to the excavation until it was transported to the R360 Red Bluff disposal facility in Orla, TX.

Confirmation soil samples were collected from the sidewalls and floor of the excavation on a one five-point composite soil sample every 400 square feet to verify all affected soils were removed during excavation activities. This frequency was approved by the NMOCD in the approval of the workplan. Each soil sample was submitted to Xenco Eurofins in Midland, TX for TPH analysis by Method 8015M, BTEX analysis by EPA 8021B, and chloride analysis by Method 300.0.

Each confirmation soil sample collected exhibited TPH and BTEX concentrations below NMOCD guidelines. Sidewall confirmation samples were each below NMOCD guidelines for chlorides except for SW-10 and SW-10A. The sidewall represented by these soil samples were laterally advanced to sidewall sample location SW-10B, which was below NMOCD guidelines. The floor confirmation samples were each below NMOCD guidelines for chlorides with the exception of FL-04 @ 4', FL-05 @ 4', FL-07 @ 4', FL-09 @ 4', FL-10 @ 4', FL-12 @ 4', FL-13 @ 4', FL-14 @ 4', FL-15 @ 4', FL-16 @ 4', FL-18 @ 4', FL-19 @ 4', and FL-20 @ 4'. The 20-mil polyvinyl liner was placed on top of these sample locations. The analytical results are summarized in **Table 2**. Photographic documentation of the remediation activities is provided as **Appendix C**. Laboratory analytical packets are provided as **Appendix E**.

After review of all the analytical results, the excavation was backfilled to grade with COP approved backfill material. The site was contoured and compacted to meet COP requirements. All excavated soils, approximately 1,920 cubic yards, were transported offsite to the R360 Red Bluff Facility in Orla, TX.

6.0 Site Closure Request

Remediation activities were conducted in accordance with the NMOCD approved workplan and NMOCD regulatory guidelines. Laboratory analytical results from excavation confirmation soil samples indicated chloride concentrations were below the NMOCD regulatory guidelines in the submitted 3 ft floor and sidewall sample locations. On the 4 ft excavation areas where chloride results were above NMOCD regulatory guidelines, a 20-mil liner was installed. Approximately 1,920 cubic yards of affected soil was transported to the R360 Red Bluff Facility in Orla, TX, and the Site was returned to grade with locally sourced non-impacted backfill material. Based on laboratory analytical results and field activities conducted to date, TRC recommends COP provide copies of this Remediation Summary and Site Closure Request to the NMOCD and request closure status to the Rocket Federal Com #5 Release Site.

7.0 Limitation

TRC has prepared this Remediation Summary and Site Closure Request to the best of its ability. No other warranty, expressed or implied, is made or intended.

TRC has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. TRC has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. TRC has prepared this report, in a professional manner, using the degree of skill and care exercised by similar environmental consultants. TRC also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of ConocoPhillips, LLC. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of TRC and/or ConocoPhillips, LLC.

8.0 Distribution

- Copy 1: Mike Bratcher New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210
- Copy 2: Ike Tavarez COG Operating, LLC 600 W. Illinois Avenue Midland, Texas 79701
- Copy 3: TRC Environmental Corporation 10 Desta Dr STE 130E

TABLES

.

•

Table 1.											
Rocket Federal Com #5H											
Re-Delineatior	n Soil Sampl	es									
		Chloride									
Sample Name	Date	(mg/kg)									
		(87) (87)									
NMOCD Guideli		600									
Trench Chloride Re-I	Delineation S	amples									
TT-1 @ 0-1'	07/15/22	41.4									
TT-1 @ 2'	07/15/22	28.2									
TT-1 @ 3'	07/15/22	78.2									
TT-1 @ 4'	07/15/22	127									
TT-1 @ 5'	07/15/22	89.1									
TT-2 @ 0-1'	07/14/22	155									
TT-2 @ 2'	07/14/22	64.3									
TT-2 @ 3'	07/14/22	22.5									
TT-2 @ 4'	07/14/22	83.9									
TT-2 @ 5'	07/14/22	118									
TT-3 @ 0-1'	07/15/22	3650									
TT-3 @ 2'	07/15/22	1970									
TT-3 @ 3'	07/15/22	181									
TT-3 @ 4'	07/15/22	110									
TT-3 @ 5'	07/15/22	175									
TT-4 @ 0-1'	07/14/22	5160									
TT-4 @ 2'	07/14/22	4750									
TT-4 @ 3'	07/14/22	1120									
TT-4 @ 4'	07/14/22	93.7									
TT-4 @ 5'	07/14/22	86.1									
TT-4 @ 6'	07/14/22	232									
TT-5 @ 0-1'	07/15/22	42.4									
TT-5 @ 2'	07/15/22	13.2									
TT-5 @ 3'	07/15/22	7.45									
TT-5 @ 4'	07/15/22	13.0									
TT-5 @ 5'	07/15/22	19.7									
TT-6 @ 0-1'	07/14/22	<4.98									
TT-6 @ 2'	07/14/22	9.86									
TT-6 @3'	07/14/22	<4.95									
TT-6 @4'	07/14/22	6.83									
TT-6 @ 5'	07/14/22	<4.99									
TT-6 @ 6'	07/14/22	5.06									
TT-6 @ 7'	07/14/22	14.5									
TT-6 @ 8'	07/14/22	13.7									
TT-6 @ 9'	07/14/22	10.6									
TT-6 @ 10'	07/14/22	229									

•

Table	e 1.											
Rocket Federal Com #5H												
Re-Delineation	Soil Sampl	es										
Sample Name	Date	Chloride (mg/kg)										
NMOCD Guidelir	nes	600										
TT-7 @ 0-1'	07/15/22	24.5										
TT-7 @ 2'	07/15/22	75.8										
TT-7 @ 3'	07/15/22	382										
TT-7 @4'	07/15/22	416										
TT-7 @ 5'	07/15/22	290										
TT-8 @ 0-1'	07/14/22	2140										
TT-8 @ 2'	07/14/22	2490										
TT-8 @ 3'	07/14/22	3860										
TT-8 @4'	07/14/22	5940										
TT-8 @ 5'	07/14/22	3290										
TT-8 @6'	07/14/22	2290										
TT-8 @ 7'	07/14/22	1680										
TT-8 @ 8'	07/14/22	824										
TT-8 @9'	07/14/22	600										
TT-8 @ 10'	07/14/22	286										
TT-8 @ 11'	07/14/22	371										
TT-9 @ 0-1'	07/15/22	892										
TT-9 @ 2'	07/15/22	651										
TT-9 @ 3'	07/15/22	912										
TT-9 @4'	07/15/22	1480										
TT-9 @ 5'	07/15/22	1850										
TT-9 @6'	07/15/22	1210										
TT-9 @ 7'	07/15/22	2110										
TT-9 @ 8'	07/15/22	1730										
TT-9 @ 9'	07/15/22	3210										
TT-9 @ 10'	07/15/22	3360										
TT-9 @ 11'	07/15/22	1660										
TT-10 @ 0-1'	07/14/22	642										
TT-10 @ 2'	07/14/22	1340										
TT-10 @ 3'	07/14/22	1050										
TT-10 @ 4'	07/14/22	1050										
TT-10 @ 5'	07/14/22	602										
TT-10 @ 6'	07/14/22	628										
TT-10 @ 7'	07/14/22	1210										
TT-10 @ 8'	07/14/22	1460										
TT-10 @ 9'	07/14/22	4860										
TT-10 @ 10'	07/14/22	4450										
TT-10 @ 11'	07/15/22	2270										

.

Table 1.											
Rocket Federal Com #5H											
Re-Delineation Soil Samples											
Sample Name	Date	Chloride (mg/kg)									
NMOCD Guidelin	nes	600									
TT-11 @ 0-1'	07/15/22	7.93									
TT-11 @ 2'	07/15/22	49.6									
TT-11 @ 3'	07/15/22	152									
TT-11 @ 4'	07/15/22	627									
TT-11 @ 5'	07/15/22	116									
Call Converte Fultible COC											

Soil Sample Exhibits COC Concentrations above NMOCD Guidelines

	Table 2. Confirmation Sample Analytical Results													
Sample Name	Date	Soil Status	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	Gasoline Range Organics (GRO) C6-C10 (mg/kg)	Diesel Range Organics (DRO) C11-C28 (mg/kg)	Oil Range Organics (ORO) (C29-C36) (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)		
NMOCI	D Guidelines		5	-	-	-	50	-	-	-	100	600		
	Floor Confirmation Samples													
FL-01 @ 3'	06/01/23	In Situ	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	<49.9	<49.9	<49.9	<49.9	419		
FL-02 @ 3'	06/01/23	In Situ	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<49.9	<49.9	<49.9	<49.9	152		
FL-03 @ 3'	06/01/23	In Situ	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	<50.0	<50.0	<50.0	<50.0	261		
FL-04 @ 4'	06/01/23	In Situ -Lined	<0.00200	<0.00200	<0.00200	< 0.00401	<0.00401	<50.0	<50.0	<50.0	<50.0	1000		
FL-05 @ 4'	06/01/23	In Situ -Lined	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	1110		
FL-06 @ 4'	06/01/23	In Situ -Lined	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	<49.8	<49.8	<49.8	<49.8	591		
FL-07 @ 4'	06/01/23	In Situ -Lined	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<49.9	<49.9	<49.9	<49.9	1040		
FL-8 @ 4'	06/07/23	In Situ -Lined	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	381		
FL-9 @ 4'	06/07/23	In Situ -Lined	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	<49.9	<49.9	<49.9	<49.9	779		
FL-10 @ 4'	06/07/23	In Situ -Lined	<0.00200	<0.00200	<0.00200	< 0.00401	<0.00401	<50.0	<50.0	<50.0	<50.0	1620		
FL-11 @ 4'	06/07/23	In Situ -Lined	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<50.0	<50.0	<50.0	<50.0	110		
FL-12 @ 4'	06/07/23	In Situ -Lined	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<50.0	<50.0	<50.0	<50.0	777		
FL-13 @ 4'	06/07/23	In Situ -Lined	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	<49.8	<49.8	<49.8	<49.8	764		
FL-14 @ 4'	06/07/23	In Situ -Lined	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	<49.9	<49.9	<49.9	<49.9	646		
FL-15 @ 4'	06/07/23	In Situ -Lined	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<49.9	<49.9	<49.9	<49.9	1220		
FL-16 @ 4'	06/08/23	In Situ -Lined	<0.00202	0.00204	<0.00202	<0.00404	<0.00404	<49.8	<49.8	<49.8	<49.8	707		
FL-17 @ 4'	06/08/23	In Situ -Lined	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	<50.0	<50.0	<50.0	<50.0	330		
FL-18 @ 4'	06/08/23	In Situ -Lined	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	<49.9	<49.9	<49.9	<49.9	1730		
FL-19 @ 4'	06/08/23	In Situ -Lined	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	<49.8	<49.8	<49.8	<49.8	2040		
FL-20 @ 4'	06/08/23	In Situ -Lined	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	<50.0	<50.0	<50.0	<50.0	1710		
FL-21 @ 4'	06/08/23	In Situ -Lined	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	<49.9	<49.9	<49.9	<49.9	139		
						Confirmation								
SW-01	06/01/23	In Situ	<0.00198	<0.00198	<0.00198	<0.00396	< 0.00396	<49.9	<49.9	<49.9	<49.9	523		
SW-02	06/01/23	In Situ	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	<49.9	<49.9	<49.9	<49.9	175		
SW-03	06/01/23	In Situ	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	<49.8	<49.8	<49.8	<49.8	245		
SW-04	06/01/23	In Situ	< 0.00201	< 0.00201	<0.00201	< 0.00402	< 0.00402	<50.0	<50.0	<50.0	<50.0	218		
SW-05	06/01/23	In Situ	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	<50.0	<50.0	<50.0	<50.0	212		
SW-06	06/01/23	In Situ	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	<49.8	<49.8	<49.8	<49.8	209		
SW-07	06/01/23	In Situ	<0.000990	<0.00495	<0.000990	<0.00198	<0.00198	<49.8	<49.8	<49.8	<49.8	53.6		
SW-08	06/01/23	In Situ	< 0.00101	< 0.00503	<0.00101	< 0.00201	< 0.00201	<49.9	<49.9	<49.9	<49.9	395		
SW-09	06/01/23	In Situ	< 0.00101	< 0.00504	< 0.00101	<0.00202	< 0.00202	<50.0	<50.0	<50.0	<50.0	282		
SW-10	06/01/23	Excavated	< 0.000996	< 0.00498	<0.000996	< 0.00199	< 0.00199	<50.0	<50.0	<50.0	<50.0	844		
SW-10A	06/07/23	Excavated	<0.00198	< 0.00198	<0.00198	< 0.00396	< 0.00396	<50.0	<50.0	<50.0	<50.0	684		
SW-10B	6/13/2023	In Situ	<0.00200	< 0.00200	< 0.00200	< 0.00401	< 0.00401	<50.0	<50.0	<50.0	<50.0	94.0		
SW-11	06/07/23	In Situ	<0.00202	<0.00202	<0.00202	< 0.00403	< 0.00403	<49.8	<49.8	<49.8	<49.8	106		
SW-12	06/07/23	In Situ	< 0.00198	< 0.00198	< 0.00198	<0.00397	< 0.00397	<49.9	<49.9	<49.9	<49.9	284		
SW-13	06/08/23	In Situ	< 0.00199	< 0.00199	< 0.00199	<0.00398	< 0.00398	<49.9	<49.9	<49.9	<49.9	67.0		
SW-13	06/09/23	In Situ	<0.00199	< 0.00199	< 0.00199	< 0.00398	< 0.00398	<49.8	<49.8	<49.8	<49.8	70.4		
SW-15	06/07/23	In Situ	<0.00200	<0.00200	<0.00200	< 0.00399	< 0.00399	<50.0	<50.0	<50.0	<50.0	84.5		
SW-15 SW-16	06/07/23	In Situ	<0.00198	<0.00198	< 0.00198	< 0.00396	< 0.00396	<50.0	<50.0	<50.0	<50.0	106		
SW-10	06/08/23	In Situ	<0.00190	0.00214	<0.00190	<0.00390	<0.00350	<49.8	<49.8	<49.8	<49.8	68.5		
SW-18	06/08/23	In Situ	<0.00201	< 0.00201	<0.00201	< 0.00402	< 0.00402	<49.8	<49.8	<49.8	<49.8	80.9		
511 10	00,00,20	Situ	.0.00201	.0.00201	.0.00201	10100-102	-0.00-102			. 13.0	1010			

Table 2. Confirmation Sample Analytical Results

Soil Sample Exhibits COC Concentrations above NMOCD Guidelines

Soil Status Options - Sidewalls and Floors:

In Situ - COCs all below NMOCD guidelines

Excavated - COCs above NMOCD guidelines

Soil Status Options - Overburden:

Re-used for backfill material - COCs all below NMOCD guidelines

Transported to Disposal - COCs above NMOCD guidelines

•

FIGURES

Rocket Federal Com #5H (Incident ID # 1922033443) Remediation Summary and Site Closure Request

.

Released to Imaging: 5/15/2024 2:25:32 PM

Received by OCD: 3/8/2024 8:36:31 AM

Released to Imaging: 5/15/2024 2:25:32 PM

Released to Imaging: 5/15/2024 2:25:32 PM

Received by OCD: 3/8/2024 8:36:31 AM

Released to Imaging: 5/15/2024 2:25:32 PM

Appendix A: NMOCD Approved Workplan – Analytical Appendix Removed

Rocket Federal Com #5H (Incident ID # 1922033443) Remediation Summary and Site Closure Request

SITE INFORMATION

	Report Type	e: Revised	d Work P	lan Incide	ent ID # 1	922033	443					
General Site Info	ormation:											
Site:		Rocket Fede	Rocket Federal Com #5H									
Company:		COG Operating LLC										
Section, Townsh	nip and Range	Unit B	Sec. 10	T 26S	R 29E							
Lease Number:												
County:			Eddy County									
GPS:		32.06408			-103.9690	8						
Surface Owner:		Federal										
Directions:		turn northeast					horn Rd for 4.3 miles, se road.					
Release Data:												
Date Released:		7/10/2019										
Type Release:		Produced Water										
Source of Contan	nination:	Flowline										
Fluid Released:	-	320 bbls										
Fluids Recovered		300 bbls										
Official Commun	nication:		-									
Name:	Ike Tavarez				Clair Gonza	ales						
Company:	COG Operating, LL	.C			Tetra Tech							
Address:	One Concho Cente	er			901 West V	Vall Street						
	600 W. Illinois Ave				Suite 100							
City:	Midland Texas, 797	701										
Phone number:	(432) 686-3023				Midland, Te (432) 687-8							
Fax:	(432) 684-7137											
Email:	itavarez@concho	.com			Clair.Gonz	ales@tetra	tech.com					

Site Characterization								
Depth to Groundwater:	>55'							
Karst Potential:	Medium							
Surface Water:	145' from USGS Blue Dotted Line							

Recommended Remedial Action Levels (RRALs)													
Benzene	Benzene Total BTEX TPH (GRO+DRO+MRO) Chlorides												
10 mg/kg	50 mg/kg	100 mg/kg	600 mg/kg										

October 6, 2020

Mr. Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Revised Work Plan for the COG Operating, LLC, Rocket Fed Com #5H, Unit B, Section 10, Township 26 South, Range 29 East, Eddy County, New Mexico. Incident ID # 1922033443

Mr. Bratcher:

Tetra Tech, Inc. (Tetra Tech) was contacted by COG Operating, LLC (COG), to assess a release that occurred at the Rocket Fed Com #5H, Unit B, Section 10, Township 26 South, Range 29 East, Eddy County, New Mexico (Site). The spill site coordinates are 32.06408°, -103.96908°. The site location is shown on Figures 1 and 2.

The NMOCD denied the work plan, dated April 7, 2020. The OCD requested samples for horizontal extents and denied the liner due to lack of groundwater in the area.

Background

According to the State of New Mexico C-141 Initial Report, the leak was discovered on July 10, 2019, and released approximately 320 barrels of produced water due to a damaged flowline. A vacuum truck was dispatched to remove all freestanding fluids, recovering approximately 300 barrels of produced water. The release occurred along Pipeline Rd impacting areas measuring 643' x 51'. The initial C-141 form is included in Appendix A.

Site Characterization

A site characterization was performed for the site, and no lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. However, the site is located in a medium karst potential area. Additionally, the release occurred within 300' of a watercourse, as defined as a blue dotted line on the USGS quadrangle map. No water wells were listed within Section 10 on the New Mexico Office of the State Engineer's (NMOSE) database, the Geology and Groundwater Resources of Eddy County (Report 3), or the USGS National Water Information Database. The nearest well is listed in Section 16 on the USGS Water Information Database, approximately 1.20 miles southeast of the site, and has a reported depth to groundwater of 120' below surface. The groundwater data is shown in Appendix B.

Tetra Tech

4000 North Big Spring, Suite 401, Midland, TX 79705 Tel 432.682.4559 Fax 432.682.3946 www.tetratech.com

Depth to Water Determination

On August 3, 2020, Scarborough Drilling, Inc was onsite to a drill a groundwater determination borehole to 55' below ground surface and within a ½ mile radius of the location. The borehole was left open for 72 hours and checked borehole for the presence of groundwater. No water was detected at 55' below surface. The borehole corrdinates are 32.063589 -103.972770. The driller log is shown in Appendix B.

Regulatory

A risk-based evaluation was performed for the site in accordance with the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. A site characterization was performed for the site and no watercourses, lakebeds, sinkholes, playa lakes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, springs, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains are located within the specified distances. Additionally, the site is located in a low karst potential area. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 100 mg/kg (GRO + DRO + MRO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 600 mg/kg.

Soil Assessment and Analytical Results

Initial Assessment

On August 26, 2019, Tetra Tech personnel were onsite to evaluate and sample the release area. A total of five auger holes (AH-1 through AH-5) were installed in the release footprint to total depths of 0-1' below surface. Deeper samples could not be collected due to a dense formation in the area. Additionally, five horizontal delineation samples were collected (East 1 Horizonal, West 1 Horizontal, South 1 Horizontal, South 2 Horizontal, and South 3 Horizontal). Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, none of the samples collected showed benzene, total BTEX, or TPH concentrations above the laboratory reporting limits. Additionally, all of the horizontal delineation samples showed chloride concentrations below the RRAL, with concentrations ranging from 15.4 mg/kg to 69.5 mg/kg. However, the areas of AH-1 through AH-5 showed elevated chloride concentrations in the shallow soils, with concentrations of 10,300 mg/kg, 14,800 mg/kg, 7,600 mg/kg, 12,400 mg/kg, and 5,380 mg/kg at 0-1' below surface, respectively.

Boreholes

Based on the laboratory data, Tetra Tech personnel returned to the site on October 17, 2019, to vertically define the chloride concentrations in the areas of AH-1 through AH-5. A total of five boreholes (Borehole #1 through Borehole #5) were installed in the areas of AH-1 through AH-5 to total depths ranging from 9'-10' and 19'-20' below surface using a truck mounted air rotary drilling rig. Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, none of the samples analyzed for benzene, total BTEX, or TPH showed concentrations above the laboratory reporting limits.

The area of Borehole #1 did not show any significant chloride concentrations to the soils, with chloride concentrations ranging from <10.01 mg/kg (2'-3') to 111 mg/kg (6'-7'). The area of Borehole #2 showed elevated chlorides in the shallow soils, with a chloride high of 6,650 mg/kg at 2'-3', which then declined with depth to 36.3 mg/kg at 4'-5' and showed a bottom hole concentration of 74.0 mg/kg at 9'-10' below surface. The areas of Borehole #3 and Borehole #5 showed minimal chloride concentrations in the shallow soils. However, the chloride concentrations spiked to chloride highs of 1,720 mg/kg and 6,400 mg/kg at 6'-7', respectively. The chloride concentrations in these areas then declined with depth to below the RRAL at 9'-10' below surface. The area of Borehole #4 showed elevated chloride concentrations in the shallow soils that decreased to 363 mg/kg at 4'-5' before increasing to 7,340 mg/kg at 6'-7' below surface. The chloride concentrations then steadily declined with depth and showed a bottom hole concentration of 619 mg/kg at 19'-20' below surface.

On June 20, 2020, Tetra Tech personnel were onsite to collect horizontal samples near the lease road. A total of three (3) horizontal delineation samples were collected (North 1 Horizontal, North 2 Horizontal, and North 3 Horizontal) to total depths of 0-1' below surface. Soil samples were collected and submitted to the laboratory for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix C. The results of the sampling are summarized in Table 1. The sample locations are shown on Figure 3.

Referring to Table 1, none of the samples collected showed benzene, total BTEX, or TPH concentrations above the laboratory reporting limits. Additionally, all of the horizontal delineation samples showed chloride concentrations below the RRAL, with concentrations <4.95 mg/kg, 5.48 mg/kg, and <4.99 mg/kg.

Work Plan

Based on the laboratory results, COG proposes to remove the chloride impacted soils, as shown on Figure 4 and highlighted (green) on Table 1. Due to access issues and safely concerns, the proposed excavation will be performed to remove the impacted soil to the maximum extent practicable. The areas of borehole #1 will be excavated to approximately 1.0' below surface and borehole #2 will be excavated to approximately 3.0' below surface. The

area of boreholes #3, #4, and #5 will be excavated to a depth of 4.0' below surface and capped with a 20-mil liner to prevent further vertical migration of the deeper impacts.

Prior to the remediation, the areas of boreholes #3 and #5 did show chloride spikes at 6.0-7.0' below surface of 1,720 mg/kg and 6,400 m/kg, respectively. These areas will be resampled and evaluated to confirm the chloride spikes. In addition, the areas of boreholes #3 and #5 did not show a chloride impact to the soils from surface to approximately 3.0' below surface. The excavated material (0-3') will be segregated into approximately 50 cubic yard stockpiles and then sampled for evaluation. Based on the results, the material will be place back into the excavated areas. If the stockpiles are above the RRALs, the material will then be hauled to disposal.

Once completed, the excavated areas will then be backfilled with clean material to surface grade. All the excavated material will be transported offsite for proper disposal. COG estimates approximately 4,663 cubic yards will be excavated and will be implemented within ninety (90) days of the work plan being approved.

Sampling Plan

Five-point composite bottom and sidewall confirmation samples will be collected every 400-500 square feet to ensure proper removal of the impacted areas. The proposed excavation depths may not be reached due to wall cave-ins, pipelines, or safety concerns for onsite personnel. Also, impacted soil around oil and gas equipment, structures or lines may not be viable or practicable to be removed due to safety concerns for onsite personnel. As such, COG will excavate the impacted soils to the maximum extent possible.

Conclusion

Upon completion, a final report detailing the remediation activities will be submitted to the NMOCD. If you have any questions or comments concerning the assessment or the proposed remediation activities for this site, please call at (432) 682-4559.

Respectfully submitted, TETRA TECH

Mike Carmona Geologist

Figures

Released to Imaging: 5/15/2024 2:25:32 PM

Released to Imaging: 5/15/2024 2:25:32 PM

Received by OCD: 3/8/2024 8:36:31 AM

Page 30 of 197

Released to Imaging: 5/15/2024 2:25:32 PM

MD-01901

CLUMAND12C

Released to Imaging: 5/15/2024 2:25:32 PM

Path: I

Docum

10/8/2020

•

Tables

Released to Imaging: 5/15/2024 2:25:32 PM

Table 1 COG Rocket Fed Com #5H Eddy County, New Mexico

	Sample	Sample	BEB	Soil S	Status			TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	Sample Depth (ft)	In-Situ	Removed	GRO	DRO	GRO + DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
AH-1	8/26/2019	0-1	-	Х		<50.1	<50.1	<50.1	<50.1	<50.1	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	10,300
	10/17/2019	0-1	-	Х		<50.2	<50.2	<50.2	<50.2	<50.2	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	26.5
	"	2-3	-	Х		-	-	-	-	-	-	-	-	-	-	<10.1
Borehole #1	"	4-5	-	Х		-	-	-	-	-	-	-	-	-	-	22.0
	"	6-7	-	Х		-	-	-	-	-	-	-	-	-	-	111
	"	9-10	-	Х		-	-	-	-	-	-	-	-	-	-	24.5
AH-2	8/26/2019	0-1	-	Х		<50.1	<50.1	<50.1	<50.1	<50.1	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	14,80
	10/17/2019	0-1	-	Х		<50.0	<50.0	<50.0	<50.0	<50.0	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	2,150
	"	2-3	-	Х		-	-	-	-	-	-	-	-	-	-	6,650
Borehole #2	"	4-5	-	Х		-	-	-	-	-	-	-	-	-	-	36.3
	"	6-7	-	Х		-	-	-	-	-	-	-	-	-	-	297
	"	9-10	-	Х		-	-	-	-	-	-	-	-	-	-	74.0
AH-3	8/26/2019	0-1	-	Х		<50.0	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	7,60
	10/17/2019	0-1	-	Х		<49.9	<49.9	<49.9	<49.9	<49.9	<0.00101	<0.00101	<0.00101	<0.00101	<0.00101	32.2
	"	2-3	-	Х		-	-	-	-	-	-	-	-	-	-	64.5
Doroholo #2	"	4-5	-	Х		-	-	-	-	-	-	-	-	-	-	414
Borehole #3	"	6-7	-	Х		-	-	-	-	-	-	-	-	-	-	1,72
	"	9-10	-	Х		-	-	-	-	-	-	-	-	-	-	161
	"	14-15	-	Х		-	-	-	-	-	-	-	-	-	-	128
AH-4	8/26/2019	0-1	-	Х		<50.1	<50.1	<50.1	<50.1	<50.1	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	12,40
	10/17/2019	0-1	-	Х		<49.8	<49.8	<49.8	<49.8	<49.8	<0.000998	<0.000998	<0.000998	<0.000998	<0.000998	1,02
	"	2-3	-	Х		-	-	-	-	-	-	-	-	-	-	1,92
	"	4-5	-	Х		-	-	-	-	-	-	-	-	-	-	363
Borehole #4	"	6-7	-	Х		-	-	-	-	-	-	-	-	-	-	7,34
	"	9-10	-	Х		-	-	-	-	-	-	-	-	-	-	1,32
	"	14-15	-	Х		-	-	-	-	-	-	-	-	-	-	752
	"	19-20	-	Х		-	-	-	-	-	-	-	-	-	-	619
AH-5	8/26/2019	0-1	-	Х		<50.2	<50.2	<50.2	<50.2	<50.2	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	5,38
Borehole #5	10/17/2019	0-1	-	Х		<50.3	<50.3	<50.3	<50.3	<50.3	<0.00100	<0.00100	<0.00100	<0.00100	<0.00100	102
	"	2-3	-	Х		-	-	-	-	I	-	-	-	-		146
	"	4-5	-	Х		-	-	-	-	-	-	-	-	-	-	3,78
	"	6-7	-	Х		-	-	-	-	-	-	-	-	-	-	6,40
	"	9-10	-	Х		-	-	-	-	-	-	-	-	-	-	202
	"	14-15	-	Х		-	-	-	-	-	-	-	-	-	-	209

•

Table 1 COG Rocket Fed Com #5H Eddy County, New Mexico

	Sample	Sample	BEB	Soil S	Soil Status			TPH (mg/kg)			Benzene Toluene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Donth (ft)	Sample Depth (ft)	In-Situ	Removed	GRO	DRO	GRO + DRO	ORO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
East 1 Horizontal	8/26/2019	0-1	-	Х		<50.1	<50.1	<50.1	<50.1	<50.1	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	32.4
West 1 Horizontal	8/26/2019	0-1	-	Х		<50.0	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	69.5
South 1 Horizontal	8/26/2019	0-1	-	Х		<50.1	<50.1	<50.1	<50.1	<50.1	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	15.4
South 2 Horizontal	8/26/2019	0-1	-	Х		<50.2	<50.2	<50.2	<50.2	<50.2	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	31.0
South 3 Horizontal	8/26/2019	0-1	-	Х		<50.0	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	16.5
North 1 Horizontal	7/20/2020	0-1	-	Х		<49.9	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00199	<0.00199	<4.95
North 2 Horizontal	7/20/2020	0-1	-	Х		<50.0	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00200	<0.00200	5.48
North 3 Horizontal	7/20/2020	0-1	-	Х		<49.8	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00198	<0.00198	<4.99
(-)	Not Ana	alvzed														

(-)

Not Analyzed Liner

Prposed Excavation

•

•

Photos

Released to Imaging: 5/15/2024 2:25:32 PM
ſ

TETRA TECH

COG Operating LLC Rocket Fed Com #5H Eddy County, New Mexico

View West – Area of AH-1

View East – Area of AH-2

T

TETRA TECH

COG Operating LLC Rocket Fed Com #5H Eddy County, New Mexico

View East – Area of AH-3

View South – Area of AH-4

COG Operating LLC Rocket Fed Com #5H Eddy County, New Mexico

View West – Area of AH-5

Appendix B: Release Notification and Corrective Action (Form C-141)

.

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

32.06408

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Page 41 of 197

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	COG Operating, LLC	OGRID	229137
Contact Name	Jennifer Knowlton	Contact Telephone	(575) 748-1570
Contact email	JKnowlton@concho.com	Incident # (assigned by OCD)	
Contact mailing address	600 West Illinois Avenue, Midlar	nd, Texas 79701	

Location of Release Source

Latitude

-103.96908

Longitude ______ (NAD 83 in decimal degrees to 5 decimal places)

Site Name		Rocket Feder	al Com #005H	Sit	е Туре	Flowline
Date Release	Discovered	July 10, 2019		AF	$\mathbf{PI}\#$ (if applicable))
Unit Letter	Section	Township	Range		County	
В	10	26S	29E		Eddy	

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Materia	al(s) Released (Select all that apply and attach calculations or specific	justification for the volumes provided below)
Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls) 320	Volume Recovered (bbls) 300
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)

Cause of Release

The release was caused by a ruptured flowline due to damage. The flowline is being repaired. The release was in the pasture. A vacuum truck was dispatched to remove all freestanding fluids. Concho will evaluate the site to determine if we may commence remediation immediately or delineate any possible impact from the release and we will present a remediation work plan to the NMOCD for approval prior to any significant remediation activities. Page 2

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? The volume released was greater than 25 barrels.
■ Yes □ No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?
Immediate notice was given by DeAnn Grant via e-mail July 10, 2019 at 4:57 pm to Mike Bratcher and Jim Amos.	

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: DeAnn Grant	Title: HSE Administrative Assistant
Signature:	Date: 7/11/2019
email: agrant@concho.com	Telephone: (432) 253-4513
OCD Only	
Received by:	Date:

Received by OCD: 3/8/2024 8:36:31 AM

Oil Conservation Division

	Page 44 of 197
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>55'</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗹 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗹 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗹 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗹 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗹 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗹 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🖌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗹 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 3/8/2024	8:36:31 AM State of New Mexico			Page 45 of 197
			Incident ID	
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
regulations all operators are re public health or the environme failed to adequately investigat	R	fications and perform co DCD does not relieve the eat to groundwater, surfa	prrective actions for rele coperator of liability sho ce water, human health iance with any other feo visor	eases which may endanger ould their operations have or the environment. In
OCD Only				
Received by:		Date:		

Received by OCD: 3/8/2024 8:36:31 AM Form C-141 State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

V
V
V
V

Page 5

Detailed description of proposed remediation technique

Scaled sitemap with GPS coordinates showing delineation points

Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be con	ifirmed as part of any request for deferral of remediation.					
Contamination must be in areas immediately under or around pr deconstruction.	roduction equipment where remediation could cause a major facility					
Extents of contamination must be fully delineated.						
Contamination does not cause an imminent risk to human health	n, the environment, or groundwater.					
	e and remediate contamination that pose a threat to groundwater, acceptance of a C-141 report does not relieve the operator of					
Printed Name: Ike Tavarez	Title: Sr HSE Supervisor					
Signature:	Date: 10/07/2020					
email: itavarez@concho.com	Telephone: 432 701-8630					
	·					
OCD Only						
Received by:	Date:					
Approved Approved with Attached Conditions of	Approval Denied Deferral Approved					
Signature:	Date:					

Appendix C: Photographic Documentation

.

Appendix D: Water Well Search

Rocket Federal Com #5H (Incident ID # 1922033443) Remediation Summary and Site Closure Request

.

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters)

No records found.

<u>UTMNAD83 Radius Search (in meters):</u>

Easting (X): 597312.46

Northing (Y): 3548006

Radius: 2000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/22/23 11:14 AM

WATER COLUMN/ AVERAGE DEPTH TO WATER

Received by OCD: 3/8/2024 8:36:31 AM

LOG OF BORING GDB

.

212C-MD-01739 TETRA TECH Project Name: JR Horz Federal #2						н				LOG OF BORING GDB	Page 1 of 1	
									ı			
Boreho l e	LocationGPS	Coordina	ate: 3	2.0635	589, -1	103.97	2770			Surface Elevation: 2989 ft		
Borehole Number:GDB Boreh							E	Boreh Diam€	ole Date Started: 8/3/2020 Date Finished:	8/3/2020		
DEPTH (ft) OPERATION TYPE	SAMPLE CHLORIDE FIELD SCREENING (ppm)	VOC FIELD SCREENING (ppm)	SAMPLE RECOVERY (%)	MOISTURE CONTENT (%)	DRY DENSITY (pcf)	LIQUID LIMIT	PLASTICITY INDEX	MINUS NO. 200 (%)	GRAPHIC LOG	WATER LEVEL OBSERVATIONS While Drilling	Y_ft REMARK	
	δ ExStik	PID	8				PI			-SM- CALICHE: White, stiff, dry, moderately cemented -SM- SAND: Light brown, medium dense to dense, dry, fine to medium grained, with occasional Caliche layers -SM- SAND: Brown, medium dense, dry, fine to medium grained, with occasional Caliche layers -SM- SAND: Brown, medium dense, dry, fine to 		
Sampler Types:	Split Spoon Shelby Bulk Sample Grab Sample			Ð	r T		Muc Rota	itinuou ht Aug sh	us Jer	Hand Auger Notes: Air Rotary Surface elevation is an estimated value from Goog data. Direct Push Core Barrel	le Earth	
_ogger: R HORZ FEI	Lee Scarboro	ugh	237	ᠮ᠆ᡷᡎ	S FIN	Drillin	g Equ	uipme OWELI	ent: Ai L3`20'	Rotary Driller: Scarborough Drilling 5 TT TEMPLATE DECEMBER WELL.GDT '`	Revised 5-16-1	

Appendix E: Laboratory Analytical Data

Rocket Federal Com #5H (Incident ID # 1922033443) Remediation Summary and Site Closure Request

.

Received by OCD: 3/8/2024 8:36:31 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Jared Stoffel TRC Solutions, Inc. 10 Desta Drive Suite #130E Midland, Texas 79705 Generated 6/5/2023 5:13:29 PM

JOB DESCRIPTION

Rocket Fed Com #5H

JOB NUMBER

890-4769-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/5/2023 5:13:29 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 58 of 197

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	6
Client Sample Results	7
Surrogate Summary	18
QC Sample Results	20
QC Association Summary	27
Lab Chronicle	31
Certification Summary	35
Method Summary	36
Sample Summary	37
Chain of Custody	38
Receipt Checklists	40

Definitions/Glossary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H Job ID:

Page 59 of 197									
890-4769-1									

Qualifiers

DL

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	5
*1	LCS/LCSD RPD exceeds control limits.	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VC		Ģ
Qualifier	Qualifier Description	C
S1+	Surrogate recovery exceeds control limits, high biased.	6
U	Indicates the analyte was analyzed for but not detected.	3
HPLC/IC		
Qualifier	Qualifier Description	
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not	
	applicable.	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		1:
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	

DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Eurofins Carlsbad

Detection Limit (DoD/DOE)

Job ID: 890-4769-1

Definitions/Glossary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Received by OCD: 3/8/2024 8:36:31 AM

	Continued)
Glossaly (Continued)
Abbreviation	These commonly used abbreviations may or may not be present in this report.

TNTC Too Numerous To Count

Eurofins Carlsbad

Job ID: 890-4769-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4769-1

Receipt

The samples were received on 6/1/2023 4:32 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SW-01 (890-4769-1), SW-02 (890-4769-2), SW-03 (890-4769-3), SW-04 (890-4769-4), SW-05 (890-4769-5), SW-06 (890-4769-6), FL-01@3' (890-4769-7), FL-02 @3' (890-4769-8), FL-03 @3' (890-4769-9), FL-04 @4' (890-4769-10), FL-05 @4' (890-4769-11), FL-06 @4' (890-4769-12) and FL-07 @4' (890-4769-13).

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-54717 recovered above the upper control limit for Benzene, Toluene and Ethylbenzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-54717/2).

Method 8021B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 880-54723 and analytical batch 880-54717 recovered outside control limits for the following analytes: Benzene, Toluene, Ethylbenzene and o-Xylene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-54723 and analytical batch 880-54717 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (MB 880-54723/5-A), (890-4769-A-11-E MS) and (890-4769-A-11-F MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-54720 and analytical batch 880-54713 was outside the upper control limits.

Method 8015MOD_NM: The method blank for preparation batch 880-54721 and analytical batch 880-54716 contained Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL); therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-54670 and analytical batch 880-54733 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample ID: SW-01 Date Collected: 06/01/23 10:00 Date Received: 06/01/23 16:32

Method: SW846 8021B - Volatile Organic Compounds (GC)

Job ID: 890-4769-1
Lab Sample ID: 890-4769-1 Matrix: Solid

Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198		0.00198		mg/Kg		06/05/23 09:21	06/05/23 11:23	1
Foluene	<0.00198	U	0.00198		mg/Kg		06/05/23 09:21	06/05/23 11:23	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		06/05/23 09:21	06/05/23 11:23	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		06/05/23 09:21	06/05/23 11:23	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		06/05/23 09:21	06/05/23 11:23	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		06/05/23 09:21	06/05/23 11:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				06/05/23 09:21	06/05/23 11:23	1
1,4-Difluorobenzene (Surr)	91		70 - 130				06/05/23 09:21	06/05/23 11:23	1
Method: TAL SOP Total BTEX									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			06/05/23 16:57	1
Method: SW846 8015 NM - Die		-							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/05/23 16:26	1
Method: SW846 8015B NM - D									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		06/05/23 09:14	06/05/23 11:00	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		06/05/23 09:14	06/05/23 11:00	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 09:14	06/05/23 11:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				06/05/23 09:14	06/05/23 11:00	1
o-Terphenyl	84		70 - 130				06/05/23 09:14	06/05/23 11:00	1
Method: EPA 300.0 - Anions, Io	on Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	523	F1	5.01		mg/Kg			06/05/23 11:39	1
								L. ID. 000 4	760.0
lient Sample ID: SW-02							Lap Samp	le ID: 890-4	109-2
ate Collected: 06/01/23 10:05							Lab Samp		: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed Benzene <0.00198 U 0.00198 mg/Kg 06/05/23 09:21 06/05/23 11:43 1 Toluene <0.00198 U 0.00198 mg/Kg 06/05/23 09:21 06/05/23 11:43 1 Ethylbenzene <0.00198 U 0.00198 mg/Kg 06/05/23 09:21 06/05/23 11:43 1 m-Xylene & p-Xylene <0.00397 U 0.00397 mg/Kg 06/05/23 09:21 06/05/23 11:43 1 o-Xylene <0.00198 U 0.00198 mg/Kg 06/05/23 09:21 06/05/23 11:43 1 Xylenes, Total <0.00397 U 0.00397 mg/Kg 06/05/23 09:21 06/05/23 11:43 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 96 70 - 130 06/05/23 09:21 06/05/23 11:43 1 1,4-Difluorobenzene (Surr) 86 70 - 130 06/05/23 09:21 06/05/23 11:43 1

Eurofins Carlsbad

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Client Sample ID: SW-02 Date Collected: 06/01/23 10:05

Date Received: 06/01/23 16:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			06/05/23 16:57	
Method: SW846 8015 NM - Die	esel Range	Organics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg		- <u> </u>	06/05/23 16:26	
Method: SW846 8015B NM - D	iesel Range	• Organics	(DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		06/05/23 09:14	06/05/23 12:07	
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/05/23 09:14	06/05/23 12:07	
C10-C28) Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 09:14	06/05/23 12:07	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	112		70 - 130				06/05/23 09:14	06/05/23 12:07	
o-Terphenyl	87		70 - 130				06/05/23 09:14	06/05/23 12:07	
Method: EPA 300.0 - Anions, I	on Chroma	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	175		5.02		mg/Kg			06/05/23 11:55	
lient Sample ID: SW-03							Lab Samp	le ID: 890-4	769-
nem Jample ID. 3W-03									
								Matrix	: Solie
ate Collected: 06/01/23 10:10								Matrix	: Soli
ate Collected: 06/01/23 10:10 ate Received: 06/01/23 16:32	ile Organic	Compound	ds (GC)					Matrix	: Solie
ate Collected: 06/01/23 10:10 ate Received: 06/01/23 16:32 Method: SW846 8021B - Volat	-	Compound Qualifier	ds (GC) RL	MDL	Unit	D	Prepared		C: Solic
ate Collected: 06/01/23 10:10 ate Received: 06/01/23 16:32 Method: SW846 8021B - Volat Analyte	-	Qualifier		MDL		D	Prepared 06/05/23 09:21	Matrix Analyzed 06/05/23 12:04	
ate Collected: 06/01/23 10:10 ate Received: 06/01/23 16:32 Method: SW846 8021B - Volat Analyte Benzene	Result	Qualifier U		MDL	mg/Kg	<u>D</u>	<u> </u>	Analyzed	Dil Fa
ate Collected: 06/01/23 10:10 ate Received: 06/01/23 16:32 Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene	Result <0.00202	Qualifier U U	RL 0.00202	MDL		<u>D</u>	06/05/23 09:21	Analyzed 06/05/23 12:04	Dil Fa

o-Xylene	<0.00202	U	0.00202	mg/Kg	06/05/23 09:21	06/05/23 12:04	
Xylenes, Total	<0.00403	U	0.00403	mg/Kg	06/05/23 09:21	06/05/23 12:04	
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	
4-Bromofluorobenzene (Surr)	99		70 - 130		06/05/23 09:21	06/05/23 12:04	
1,4-Difluorobenzene (Surr)	84		70 - 130		06/05/23 09:21	06/05/23 12:04	

Method: TAL SOP Total BTEX	(- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			06/05/23 16:57	1
Method: SW846 8015 NM - Di	esel Range	Organics (I	DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			06/05/23 16:26	1
Method: SW846 8015B NM - I	Diesel Range	• Organics	(DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/05/23 09:14	06/05/23 12:29	1
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		06/05/23 09:14	06/05/23 12:29	1

Eurofins Carlsbad

5

Job ID: 890-4769-1

Lab Sample ID: 890-4769-2

Matrix: Solid

1 1

Dil Fac 1 1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Client Sample ID: SW-03 Date Collected: 06/01/23 10:10 Date Received: 06/01/23 16:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/05/23 09:14	06/05/23 12:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	123		70 - 130				06/05/23 09:14	06/05/23 12:29	
p-Terphenyl	95		70 - 130				06/05/23 09:14	06/05/23 12:29	
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	245		4.99		mg/Kg			06/05/23 12:00	
lient Sample ID: SW-04							Lab Samp	le ID: 890-4	769-4
ate Collected: 06/01/23 10:20								Matrix	: Solie
ate Received: 06/01/23 16:32									
Method: SW846 8021B - Volat	-		ds (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		06/05/23 09:21	06/05/23 12:24	
Toluene	<0.00201	U	0.00201		mg/Kg		06/05/23 09:21	06/05/23 12:24	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/05/23 09:21	06/05/23 12:24	
m-Xylene & p-Xylene	< 0.00402	U	0.00402		mg/Kg		06/05/23 09:21	06/05/23 12:24	
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/05/23 09:21	06/05/23 12:24	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/05/23 09:21	06/05/23 12:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	106		70 - 130				06/05/23 09:21	06/05/23 12:24	
1,4-Difluorobenzene (Surr)	80		70 - 130				06/05/23 09:21	06/05/23 12:24	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	tion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/05/23 16:57	
Method: SW846 8015 NM - Di	esel Range	Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			06/05/23 16:26	
Method: SW846 8015B NM - E)iesel Range	• Organics	; (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.0	11	50.0		ma/Ka		06/05/23 09.14	06/05/23 12:51	-

Result	Quaimer	NL.		Unit	U	Flepaleu	Allalyzeu	DIFAC
<50.0	U	50.0		mg/Kg		06/05/23 09:14	06/05/23 12:51	1
<50.0	U	50.0		mg/Kg		06/05/23 09:14	06/05/23 12:51	1
<50.0	U	50.0		mg/Kg		06/05/23 09:14	06/05/23 12:51	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
113		70 - 130				06/05/23 09:14	06/05/23 12:51	1
89		70 - 130				06/05/23 09:14	06/05/23 12:51	1
on Chroma	tography -	- Soluble						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
218		4.95		mg/Kg			06/05/23 12:05	1
	<50.0 <50.0 <50.0 %Recovery 113 89 Ion Chromat Result	89 Ion Chromatography Result Qualifier	<50.0	<50.0	<50.0	<50.0 U 50.0 mg/Kg <50.0	<50.0 U 50.0 mg/Kg 06/05/23 09:14 <50.0	<50.0

Job ID: 890-4769-1

Page 64 of 197

Lab Sample ID: 890-4769-3 Matrix: Solid

Eurofins Carlsbad

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Client Sample ID: SW-05 Date Collected: 06/01/23 10:25 Date Received: 06/01/23 16:32

Job ID: 890-4769-1

Lab Sample ID: 890-4769-5 Matrix: Solid

5

Method: SW846 8021B - Volat Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 12:45	
oluene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 12:45	
thylbenzene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 12:45	
n-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		06/05/23 09:21	06/05/23 12:45	• • • • •
-Xylene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 12:45	
ylenes, Total	<0.00399	U	0.00399		mg/Kg		06/05/23 09:21	06/05/23 12:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	102		70 - 130				06/05/23 09:21	06/05/23 12:45	
,4-Difluorobenzene (Surr)	83		70 - 130				06/05/23 09:21	06/05/23 12:45	
Nethod: TAL SOP Total BTEX	- Total BTE	X Calculat	tion						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal BTEX	<0.00399	U	0.00399		mg/Kg			06/05/23 16:57	
Nethod: SW846 8015 NM - Die	-		DRO) (GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	<50.0	U	50.0		mg/Kg			06/05/23 16:26	
lethod: SW846 8015B NM - D		-	(DRO) (GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
asoline Range Organics GRO)-C6-C10	<50.0	U	50.0		mg/Kg		06/05/23 09:14	06/05/23 13:13	
liesel Range Organics (Over 10-C28)	<50.0	U	50.0		mg/Kg		06/05/23 09:14	06/05/23 13:13	
II Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/05/23 09:14	06/05/23 13:13	
urrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	122		70 - 130				06/05/23 09:14	06/05/23 13:13	
-Terphenyl	95		70 - 130				06/05/23 09:14	06/05/23 13:13	
Method: EPA 300.0 - Anions, I	on Chroma	tography -	Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	212		4.98		mg/Kg			06/05/23 12:11	
lient Sample ID: SW-06							Lab Samp	le ID: 890-4	769-
ate Collected: 06/01/23 10:30 ate Received: 06/01/23 16:32								Matrix	: Soli
/lethod: SW846 8021B - Volat	ile Organic	Compound	ds (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
			0.00200		mg/Kg		06/05/23 09:21	06/05/23 13:05	
Benzene	<0.00200								
	<0.00200								
oluene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 13:05	
Benzene Toluene Ethylbenzene n-Xylene & p-Xylene		U U						06/05/23 13:05 06/05/23 13:05	

o-Xylene	<0.00200	U	0.00200	mg/Kg	06/05/23 09:21	06/05/23 13:05	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg	06/05/23 09:21	06/05/23 13:05	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analvzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130		06/05/23 09:21	06/05/23 13:05	1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Client Sample ID: SW-06

Date Collected: 06/01/23 10:30 Date Received: 06/01/23 16:32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			06/05/23 16:57	
Method: SW846 8015 NM -	Diesel Range	Organics (DRO) (GC)						
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			06/05/23 16:26	
Method: SW846 8015B NM	- Diesel Range	Organics							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/05/23 09:14	06/05/23 13:35	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		06/05/23 09:14	06/05/23 13:35	
C10-C28)									
Oll Range Organics (Over C28-C36) <49.8	U	49.8		mg/Kg		06/05/23 09:14	06/05/23 13:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	114		70 - 130				06/05/23 09:14	06/05/23 13:35	
o-Terphenyl	88		70 - 130				06/05/23 09:14	06/05/23 13:35	
Method: EPA 300.0 - Anion	s, Ion Chroma	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	209		4.95		mg/Kg			06/05/23 12:27	
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3	00						Lab Samp		
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3	00 32	Compoun	ds (GC)						
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo	latile Organic Result	Qualifier		MDL	Unit	D	Prepared	Matrix	c: Solid
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte	00 32 latile Organic Result <0.00198	Qualifier	RL 0.00198	MDL	mg/Kg	<u>D</u>	Prepared 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26	c: Solic
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene	00 32 atile Organic Result <0.00198 <0.00198	Qualifier U U	RL 0.00198 0.00198	MDL	mg/Kg mg/Kg	D	Prepared 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26	C: Solic
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene	00 32 latile Organic Result <0.00198	Qualifier U U	RL 0.00198	MDL	mg/Kg	<u>D</u>	Prepared 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26	C: Solid
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	00 32 atile Organic Result <0.00198 <0.00198	Qualifier U U U	RL 0.00198 0.00198	MDL	mg/Kg mg/Kg	D	Prepared 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26	c: Solic
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	00 32 latile Organic Result <0.00198 <0.00198 <0.00198	Qualifier U U U U	RL 0.00198 0.00198 0.00198	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26	C: Solic
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Iatile Organic Result <0.00198	Qualifier U U U U U U	RL 0.00198 0.00198 0.00198 0.00198 0.00396	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26	C Solic
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	00 32 latile Organic Result <0.00198 <0.00198 <0.00396 <0.00198	Qualifier U U U U U U	RL 0.00198 0.00198 0.00198 0.00198 0.00396 0.00198	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26	C: Solic
Client Sample ID: FL-01 Pate Collected: 06/01/23 11:0 Pate Received: 06/01/23 16:3 Pate Received: 06/01/23 11:0 Pate Received: 06/01	00 32 latile Organic Result <0.00198 <0.00198 <0.00396 <0.00396 <0.00396	Qualifier U U U U U U U	RL 0.00198 0.00198 0.00198 0.00198 0.00396 0.00396 0.00396	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26	Dil Fa
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	00 32 latile Organic Result <0.00198 <0.00198 <0.00396 <0.00396 <0.00396 <0.00396 <0.00396	Qualifier U U U U U U U	RL 0.00198 0.00198 0.00198 0.00198 0.00396 0.00396 0.00396 Limits	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 Analyzed	Dil Fa
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	00 32 latile Organic Result <0.00198 <0.00198 <0.00396 <0.00396 <0.00396 <0.00396 <0.00396 <0.00396	Qualifier U U U U U U Qualifier	RL 0.00198 0.00198 0.00198 0.00396 0.00396 0.00396 D.00396 D.00396 70 - 130 70 - 130	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 Analyzed 06/05/23 13:26	Dil Fa
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BT Analyte	D0 32 latile Organic Result <0.00198 <0.00198 <0.00396 <0.00396 %Recovery 99 73 EX - Total BTE	Qualifier U U U U U U Qualifier	RL 0.00198 0.00198 0.00198 0.00396 0.00396 0.00396 D.00396 D.00396 70 - 130 70 - 130		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 Analyzed 06/05/23 13:26	Dil Fa
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BT Analyte	D0 32 latile Organic Result <0.00198 <0.00198 <0.00396 <0.00396 %Recovery 99 73 EX - Total BTE	Qualifier U U U U U Qualifier Qualifier	RL 0.00198 0.00198 0.00198 0.00396 0.00396 0.00396 0.00396		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 Prepared 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26	Dil Fa
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BT Analyte Total BTEX	D0 32 latile Organic Result <0.00198 <0.00198 <0.00396 <0.00396 %Recovery 99 73 EX - Total BTE Result <0.00396	Qualifier U U U U U U U Qualifier V Qualifier U	RL 0.00198 0.00198 0.00198 0.00396 0.00396 0.00396 0.00396 Limits 70 - 130 70 - 130 cion RL 0.00396		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit		Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 Prepared 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26	Dil Fa
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM -	O0 32 Jatile Organic Result <0.00198	Qualifier U U U U U U U Qualifier V Qualifier U	RL 0.00198 0.00198 0.00198 0.00396 0.00396 0.00396 0.00396 Limits 70 - 130 70 - 130 cion RL 0.00396	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit		Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 Prepared 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26	C: Solic
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	O0 32 Jatile Organic Result <0.00198	Qualifier U U U U Qualifier V Calculat Qualifier U Organics (Qualifier	RL 0.00198 0.00198 0.00198 0.00396 0.00396 0.00396 Limits 70 - 130 70 - 130 70 - 0.00396 Linon RL 0.00396	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg	<u>D</u>	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 Analyzed 06/05/23 13:26	Dil Fa
ate Collected: 06/01/23 11:0 ate Received: 06/01/23 16:3 ample Depth: 3 Method: SW846 8021B - Vo Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BT Analyte Total BTEX Method: SW846 8015 NM - Analyte	00 32 Iatile Organic Result <0.00198	Qualifier U U U U U U U Qualifier U Organics (Qualifier U	RL 0.00198 0.00198 0.00396 0.00396 0.00396 Limits 70 - 130 70 - 130 70 - 0.00396 Broom (GC) RL 49.9	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg Unit Unit	<u>D</u>	Prepared 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21 06/05/23 09:21	Matrix Analyzed 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 06/05/23 13:26 Analyzed 06/05/23 16:57 Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/05/23 09:14	06/05/23 13:57	1
(GRO)-C6-C10									

5

Job ID: 890-4769-1

Page 66 of 197

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Result Qualifier

<49.9 U

<49.9 U

%Recovery Qualifier

119

92

419

Result Qualifier

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Date Collected: 06/01/23 11:00

Date Received: 06/01/23 16:32

Oll Range Organics (Over C28-C36)

Diesel Range Organics (Over

Sample Depth: 3

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

RL

49.9

49 9

RL

4.97

Limits

70 - 130

70 - 130

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

D

D

Prepared

Prepared

Prepared

06/05/23 09:14 06/05/23 13:57

06/05/23 09:14 06/05/23 13:57

06/05/23 09:14 06/05/23 13:57

06/05/23 09:14 06/05/23 13:57

Dil Fac

Dil Fac

Matrix: Solid

1

Job ID: 890-4769-1

Lab Sample ID: 890-4769-7 Matrix: Solid

Analyzed

Analyzed

Analyzed

06/05/23 12:32

Lab Sample ID: 890-4769-8

5

1 1 Dil Fac

Client Sample ID: FL-02 @3' Date Collected: 06/01/23 11:10 Date Received: 06/01/23 16:32 Sample Depth: 3

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed <0.00201 U Benzene 06/05/23 09:21 06/05/23 13:46 0.00201 mg/Kg Toluene <0.00201 U 0.00201 06/05/23 09:21 06/05/23 13:46 mg/Kg Ethylbenzene <0.00201 U 0.00201 mg/Kg 06/05/23 09:21 06/05/23 13:46 m-Xylene & p-Xylene <0.00402 U 0.00402 mg/Kg 06/05/23 09:21 06/05/23 13:46 o-Xylene <0.00201 U 0.00201 mg/Kg 06/05/23 09:21 06/05/23 13:46 1 Xylenes, Total <0.00402 U 0.00402 mg/Kg 06/05/23 09:21 06/05/23 13:46 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 97 70 - 130 06/05/23 09:21 06/05/23 13:46 1 1,4-Difluorobenzene (Surr) 82 70 - 130 06/05/23 09:21 06/05/23 13:46 1

Method: TAL SOP Total BTEX	Total BTE	X Calcula	ation						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/05/23 16:57	1
_									

wethod: 500846 8015 NW - Die	sei Range (Jrganics (DRU) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/05/23 16:57	1

Method: SW846 8015B NM - D	iesel Range	Organics	6 (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		06/05/23 09:17	06/05/23 12:07	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		06/05/23 09:17	06/05/23 12:07	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/05/23 09:17	06/05/23 12:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	118		70 - 130				06/05/23 09:17	06/05/23 12:07	1
o-Terphenyl	122		70 - 130				06/05/23 09:17	06/05/23 12:07	1

Eurofins Carlsbad

Page 68 of 197

		Clien	t Sample R	lesul	ts				
Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5	iΗ							Job ID: 890-	4769-1
Client Sample ID: FL-02 @ Date Collected: 06/01/23 11:10 Date Received: 06/01/23 16:32 Sample Depth: 3	Q3'						Lab Samp	le ID: 890-4 Matrix	769-8 :: Solid
Method: EPA 300.0 - Anions, I Analyte		tography Qualifier	- <mark>Soluble</mark> RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	152		5.04		mg/Kg			06/05/23 12:37	1
Client Sample ID: FL-03 @ Date Collected: 06/01/23 11:20 Date Received: 06/01/23 16:32 Sample Depth: 3	93 '						Lab Samp	le ID: 890-4 Matrix	7 69-9 :: Solid
Method: SW846 8021B - Volat	-				11-14	_	Durant	A	D'I 5
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202		0.00202		mg/Kg		06/05/23 09:21	06/05/23 14:07 06/05/23 14:07	1
Toluene Ethylbenzene	< 0.00202		0.00202 0.00202		mg/Kg		06/05/23 09:21	06/05/23 14:07 06/05/23 14:07	-
m-Xylene & p-Xylene	<0.00202 <0.00404		0.00202		mg/Kg		06/05/23 09:21 06/05/23 09:21		1
o-Xylene	<0.00404		0.00404		mg/Kg mg/Kg		06/05/23 09:21	06/05/23 14:07	1
Xylenes, Total	<0.00202		0.00202		mg/Kg		06/05/23 09:21		1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				06/05/23 09:21	06/05/23 14:07	1
1,4-Difluorobenzene (Surr)	79		70 - 130				06/05/23 09:21	06/05/23 14:07	1
Method: TAL SOP Total BTEX	- Total BTE	X Calcula	tion						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX Method: SW846 8015 NM - Die	<0.00404		0.00404		mg/Kg			06/05/23 16:57	1
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<50.0	U	50.0		mg/Kg			06/05/23 16:57	1
	-00.0								
		Organic							
Method: SW846 8015B NM - D	Diesel Range	o Organic Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015B NM - D Analyte Gasoline Range Organics	Diesel Range	Qualifier	s (DRO) (GC)	MDL	Unit mg/Kg	<u>D</u>		Analyzed 06/05/23 12:29	Dil Fac
Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Diesel Range Result	Qualifier U	s (DRO) (GC) 	MDL		<u>D</u>	06/05/23 09:17		
Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Diesel Range Result <50.0	Qualifier U U	s (DRO) (GC) 	MDL	mg/Kg	<u> </u>	06/05/23 09:17 06/05/23 09:17	06/05/23 12:29	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Diesel Range Result <50.0 <50.0	Qualifier U U U	s (DRO) (GC) RL 50.0 50.0	MDL	mg/Kg mg/Kg	<u>D</u>	06/05/23 09:17 06/05/23 09:17	06/05/23 12:29 06/05/23 12:29	1 1
Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Diesel Range Result <50.0 <50.0 <50.0	Qualifier U U U	s (DRO) (GC) RL 50.0 50.0 50.0	MDL	mg/Kg mg/Kg	<u>D</u>	06/05/23 09:17 06/05/23 09:17 06/05/23 09:17 Prepared	06/05/23 12:29 06/05/23 12:29 06/05/23 12:29	1 1 1
Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Diesel Range Result <50.0 <50.0 <50.0 %Recovery	Qualifier U U U	s (DRO) (GC) RL 50.0 50.0 50.0 Limits	MDL	mg/Kg mg/Kg	<u>D</u>	06/05/23 09:17 06/05/23 09:17 06/05/23 09:17 Prepared 06/05/23 09:17	06/05/23 12:29 06/05/23 12:29 06/05/23 12:29 Analyzed	1 1 1 <i>Dil Fac</i>
Method: SW846 8015B NM - D Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Diesel Range Result <50.0 <50.0 <50.0 %Recovery 111 110 lon Chromat	Qualifier U U Q Qualifier	s (DRO) (GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	06/05/23 09:17 06/05/23 09:17 06/05/23 09:17 Prepared 06/05/23 09:17	06/05/23 12:29 06/05/23 12:29 06/05/23 12:29 06/05/23 12:29 <u>Analyzed</u> 06/05/23 12:29	1 1 1 <i>Dil Fac</i> 1

Eurofins Carlsbad

.

Job ID: 890-4769-1

Lab Sample ID: 890-4769-10

Matrix: Solid

5

Client Sample ID: FL-04 @4' Date Collected: 06/01/23 11:30 Date Received: 06/01/23 16:32 Sample Depth: 4

Analyta	ile Organic				11:-:+	-	D	A	D:1 -
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200		mg/Kg		06/05/23 09:21	06/05/23 14:27	
Toluene	< 0.00200		0.00200		mg/Kg		06/05/23 09:21	06/05/23 14:27	
Ethylbenzene	<0.00200		0.00200		mg/Kg		06/05/23 09:21	06/05/23 14:27	
m-Xylene & p-Xylene	<0.00401		0.00401		mg/Kg		06/05/23 09:21	06/05/23 14:27	
o-Xylene	<0.00200		0.00200		mg/Kg		06/05/23 09:21	06/05/23 14:27	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/05/23 09:21	06/05/23 14:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		70 - 130				06/05/23 09:21	06/05/23 14:27	
1,4-Difluorobenzene (Surr)	79		70 - 130				06/05/23 09:21	06/05/23 14:27	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	,	mg/Kg			06/05/23 16:57	
Method: SW846 8015 NM - Die	esel Range (Organics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0		50.0		mg/Kg			06/05/23 16:57	
					0 0				
Method: SW846 8015B NM - D		-					-		_
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		06/05/23 09:17	06/05/23 12:51	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		06/05/23 09:17	06/05/23 12:51	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/05/23 09:17	06/05/23 12:51	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	117		70 - 130				06/05/23 09:17	06/05/23 12:51	
o-Terphenyl	121		70 - 130				06/05/23 09:17	06/05/23 12:51	
-	lon Chrome	tography -	Solubla						
Method: EPA 300.0 - Anions, I	ion Giroma	logiupii -	JUIUDIE				_		
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
				MDL	Unit mg/Kg	D	Prepared	Analyzed 06/05/23 12:48	Dil Fa
Analyte Chloride	Result 1000		RL	MDL				06/05/23 12:48	·,
Analyte Chloride Client Sample ID: FL-05 @	Result 1000		RL	MDL				06/05/23 12:48 e ID: 890-47	7 69-1 1
Client Sample ID: FL-05 @ Date Collected: 06/01/23 11:40	Result 1000		RL	MDL				06/05/23 12:48 e ID: 890-47	7 69-1 1
Analyte Chloride Client Sample ID: FL-05 @ Date Collected: 06/01/23 11:40 Date Received: 06/01/23 16:32	Result 1000		RL	MDL				06/05/23 12:48 e ID: 890-47	·,
Analyte Chloride Client Sample ID: FL-05 @ Date Collected: 06/01/23 11:40	Result 1000		RL	MDL				06/05/23 12:48 e ID: 890-47	7 69-1 1
Analyte Chloride Client Sample ID: FL-05 @ Date Collected: 06/01/23 11:40 Date Received: 06/01/23 16:32	Result 1000	Qualifier	RL 4.99	MDL				06/05/23 12:48 e ID: 890-47	7 69-1 1
Analyte Chloride Client Sample ID: FL-05 @ vate Collected: 06/01/23 11:40 vate Received: 06/01/23 16:32 sample Depth: 4 Method: SW846 8021B - Volat	Result 1000 04'	Qualifier	RL 4.99	MDL	mg/Kg			06/05/23 12:48 e ID: 890-47	7 69-1 1
Analyte Chloride Client Sample ID: FL-05 @ Date Collected: 06/01/23 11:40 Date Received: 06/01/23 16:32 Sample Depth: 4 Method: SW846 8021B - Volat	Result 1000 04'	Qualifier Compound Qualifier	RL 4.99		mg/Kg	L	ab Sample	06/05/23 12:48 e ID: 890-47 Matrix	7 69-1 1 c: Solic
Analyte Chloride Client Sample ID: FL-05 @ Date Collected: 06/01/23 11:40 Date Received: 06/01/23 16:32 Sample Depth: 4 Method: SW846 8021B - Volat Analyte Benzene	Result 1000 04' ile Organic Result	Qualifier Compound Qualifier U *+ F1	RL 4.99		mg/Kg	L	-ab Sample Prepared 06/05/23 09:33	06/05/23 12:48 e ID: 890-47 Matrix	7 69-1 ′ k: Solid
Analyte Chloride Client Sample ID: FL-05 @ pate Collected: 06/01/23 11:40 pate Received: 06/01/23 16:32 sample Depth: 4 Method: SW846 8021B - Volat Analyte Benzene Toluene	Result 1000 ••••••••••••••••••••••••••••••••••••	Qualifier Compound Qualifier U *+ F1 U *+ F1	RL 4.99 ds (GC) RL 0.00199		Unit mg/Kg	L	-ab Sample Prepared 06/05/23 09:33 06/05/23 09:33	06/05/23 12:48 e ID: 890-47 Matrix <u>Analyzed</u> 06/05/23 12:01	769-11 x: Solid Dil Fa
Analyte Chloride Client Sample ID: FL-05 @ Date Collected: 06/01/23 11:40 Date Received: 06/01/23 16:32 Cample Depth: 4 Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene	Result 1000 4' Sile Organic Result <0.00199	Qualifier Compound Qualifier U *+ F1 U *+ F1 U *+ F1	RL 4.99 ds (GC) RL 0.00199 0.00199		Unit mg/Kg mg/Kg mg/Kg	L	Prepared 06/05/23 09:33 06/05/23 09:33 06/05/23 09:33	Analyzed 06/05/23 12:48 06/05/23 12:48 06/05/23 12:01	769-11 (: Solid
Analyte Chloride Client Sample ID: FL-05 @ Date Collected: 06/01/23 11:40 Date Received: 06/01/23 16:32 Sample Depth: 4 Method: SW846 8021B - Volat Analyte	Result 1000 04' cile Organic Result <0.00199	Qualifier Compound Qualifier U *+ F1 U *+ F1 U *+ F1	RL 4.99 ds (GC) RL 0.00199 0.00199 0.00199		Unit mg/Kg mg/Kg mg/Kg	L	Prepared 06/05/23 09:33 06/05/23 09:33 06/05/23 09:33 06/05/23 09:33	Analyzed 06/05/23 12:48 06/05/23 12:01 06/05/23 12:01 06/05/23 12:01	7 69-1 ′ k: Solid

Eurofins Carlsbad

Analyzed

Surrogate

4-Bromofluorobenzene (Surr)

Limits

70 - 130

%Recovery Qualifier

124

Dil Fac

1

Limits

70 - 130

RL

RL

49.9

RL

49.9

49.9

49.9

Limits 70 - 130

70 - 130

0.00398

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Dil Fac

Dil Fac

Dil Fac

1

1

1

Job ID: 890-4769-1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Client Sample ID: FL-05 @4' Date Collected: 06/01/23 11:40 Date Received: 06/01/23 16:32

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

Result Qualifier

<49.9 U

<49.9 U

<49.9 U

<49.9 U

%Recovery Qualifier

107

107

90

<0.00398 U

Sample Depth: 4

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Surrogate

Analyte

Analyte

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane

(GRO)-C6-C10

Total TPH

Total BTEX

Lab Sample ID: 890-4769-11 Matrix: Solid

Analyzed

Analyzed

06/05/23 17:02

Analyzed

06/05/23 16:57

06/05/23 09:33 06/05/23 12:01

	1		

Prepared	Analyzed	Dil Fac	
06/05/23 09:1	7 06/05/23 13:13	1	
06/05/23 09:1	7 06/05/23 13:13	1	
06/05/23 09:1	7 06/05/23 13:13	1	1
Propared	Analyzod	Dil Eso	

Lab Sample ID: 890-4769-12

Matrix: Solid

Prepared	Analyzed	Dil Fac	
06/05/23 09:17	06/05/23 13:13	1	
06/05/23 09:17	06/05/23 13:13	1	

Prepared

Prepared

Prepared

D

D

D

Method: EPA 300.0 - Anions, Ic	on Chromat	tography - S	oluble					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1110		5.00	mg/ł	(g		06/05/23 12:54	1

Client Sample ID: FL-06 @4' Date Collected: 06/01/23 11:50 Date Received: 06/01/23 16:32 Sample Depth: 4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U *+	0.00198		mg/Kg		06/05/23 09:33	06/05/23 12:26	1
Toluene	<0.00198	U *+	0.00198		mg/Kg		06/05/23 09:33	06/05/23 12:26	1
Ethylbenzene	<0.00198	U *+	0.00198		mg/Kg		06/05/23 09:33	06/05/23 12:26	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		06/05/23 09:33	06/05/23 12:26	1
o-Xylene	<0.00198	U *- *1	0.00198		mg/Kg		06/05/23 09:33	06/05/23 12:26	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		06/05/23 09:33	06/05/23 12:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				06/05/23 09:33	06/05/23 12:26	1
1,4-Difluorobenzene (Surr)	98		70 - 130				06/05/23 09:33	06/05/23 12:26	1
Method: TAL SOP Total BT	EX - Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396		mg/Kg			06/05/23 17:02	1
- Method: SW846 8015 NM -	Diesel Range	Organics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<49.8	U	49.8		mg/Kg			06/05/23 16:57	

Eurofins Carlsbad

Released to Imaging: 5/15/2024 2:25:32 PM

Client Sample ID: FL-06 @4' Date Collected: 06/01/23 11:50 Date Received: 06/01/23 16:32

Samp	ole D	epth:	4
			-

Analyte	Diesel Range Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.8		49.8		mg/Kg		06/05/23 09:17		
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		06/05/23 09:17	06/05/23 13:35	
DII Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/05/23 09:17	06/05/23 13:35	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	106		70 - 130				06/05/23 09:17	06/05/23 13:35	
p-Terphenyl	106		70 - 130				06/05/23 09:17	06/05/23 13:35	
Method: EPA 300.0 - Anions,			Soluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	591		4.99		mg/Kg			06/05/23 13:10	
Client Sample ID: FL-07 (ate Collected: 06/01/23 12:00 ate Received: 06/01/23 16:32 ample Depth: 4	<u>y</u> 4							e ID: 890-47 Matrix	
Method: SW846 8021B - Volat Analyte		Compoun Qualifier	ds (GC) _{RL}	мпі	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201		0.00201		mg/Kg		06/05/23 09:33	06/05/23 12:53	
Toluene	< 0.00201		0.00201				06/05/23 09:33	06/05/23 12:53	
					mg/Kg				
Ethylbenzene	< 0.00201		0.00201		mg/Kg		06/05/23 09:33	06/05/23 12:53	
m-Xylene & p-Xylene	<0.00402		0.00402		mg/Kg		06/05/23 09:33	06/05/23 12:53	
p-Xylene	<0.00201		0.00201		mg/Kg		06/05/23 09:33	06/05/23 12:53	
Kylenes, Total	<0.00402	U	0.00402		mg/Kg		06/05/23 09:33	06/05/23 12:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	114		70 - 130				06/05/23 09:33	06/05/23 12:53	
1,4-Difluorobenzene (Surr)	88		70 - 130				06/05/23 09:33	06/05/23 12:53	
				MDI	Unit	П	Prepared	Analyzed	Dil Fa
Analyte	Result	Qualifier	RL	MDL	Unit ma/Ka	<u>D</u>	Prepared	Analyzed	
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	Result <0.00402 esel Range Result	Qualifier U Organics (Qualifier	RL 0.00402 DRO) (GC) RL		mg/Kg Unit	D	Prepared Prepared	06/05/23 17:02	Dil Fa Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Die	Result <0.00402	Qualifier U Organics (Qualifier	RL 0.00402		mg/Kg			06/05/23 17:02	
Analyte Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - E	Result <0.00402 esel Range Result <49.9 Diesel Range	Qualifier U Organics (Qualifier U Organics	RL 0.00402 DRO) (GC) RL 49.9 (DRO) (GC)	MDL	mg/Kg Unit mg/Kg	D	Prepared	06/05/23 17:02 Analyzed 06/05/23 16:57	Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - E Analyte	Result <0.00402 esel Range Result <49.9 Diesel Range Result	Qualifier U Organics (Qualifier U Organics Qualifier	RL 0.00402 DRO) (GC) RL 49.9 6 (DRO) (GC) RL	MDL	mg/Kg Unit mg/Kg Unit		Prepared	06/05/23 17:02 Analyzed 06/05/23 16:57 Analyzed	Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Dia Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics GRO)-C6-C10	Result <0.00402 esel Range Result <49.9 Diesel Range Result <49.9	Qualifier U Organics (Qualifier U Organics Qualifier U	RL 0.00402 DRO) (GC) RL 49.9 6 (DRO) (GC) RL 49.9	MDL	mg/Kg Unit mg/Kg Unit mg/Kg	D	Prepared Prepared 06/05/23 09:17	06/05/23 17:02 Analyzed 06/05/23 16:57 Analyzed 06/05/23 13:57	Dil Fa Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Dia Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Result <0.00402 esel Range Result <49.9 Diesel Range Result	Qualifier U Organics (Qualifier U Organics Qualifier U	RL 0.00402 DRO) (GC) RL 49.9 6 (DRO) (GC) RL	MDL	mg/Kg Unit mg/Kg Unit	D	Prepared Prepared 06/05/23 09:17	06/05/23 17:02 Analyzed 06/05/23 16:57 Analyzed	Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Dia Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <0.00402 esel Range Result <49.9 Diesel Range Result <49.9	Qualifier U Organics (Qualifier U Organics Qualifier U U	RL 0.00402 DRO) (GC) RL 49.9 6 (DRO) (GC) RL 49.9	MDL	mg/Kg Unit mg/Kg Unit mg/Kg	D	Prepared Prepared 06/05/23 09:17 06/05/23 09:17	06/05/23 17:02 Analyzed 06/05/23 16:57 Analyzed 06/05/23 13:57	Dil Fa Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <0.00402	Qualifier U Organics (Qualifier U Organics Qualifier U U U	RL 0.00402 DRO) (GC) RL 49.9 6 (DRO) (GC) RL 49.9 49.9	MDL	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	D	Prepared Prepared 06/05/23 09:17 06/05/23 09:17	06/05/23 17:02 Analyzed 06/05/23 16:57 Analyzed 06/05/23 13:57 06/05/23 13:57	Dil Fa Dil Fa
Analyte Total BTEX Method: SW846 8015 NM - Di Analyte	Result <0.00402	Qualifier U Organics (Qualifier U Organics Qualifier U U U	RL 0.00402 DRO) (GC) RL 49.9 (DRO) (GC) RL 49.9 49.9 49.9 49.9 49.9	MDL	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg	D	Prepared 06/05/23 09:17 06/05/23 09:17 06/05/23 09:17 Prepared	06/05/23 17:02 Analyzed 06/05/23 16:57 Analyzed 06/05/23 13:57 06/05/23 13:57	Dil Fa Dil Fa

Job ID: 890-4769-1

Lab Sample ID: 890-4769-12 Matrix: Solid

5

Eurofins Carlsbad

		Client S	Sample F	Resul	ts					1
Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H								Job ID: 890-	-4769-1	2
Client Sample ID: FL-07 @4' Date Collected: 06/01/23 12:00						Li	ab Sampl	e ID: 890-47 Matrix	7 69-13 c: Solid	
Date Received: 06/01/23 16:32 Sample Depth: 4										
Method: EPA 300.0 - Anions, Ion C		t <mark>ography - S</mark> Qualifier	Soluble RL	МП	Unit	D	Prepared	Analyzod	Dil Fac	5
Analyte Chloride	1040		4.95		mg/Kg		Prepareu	Analyzed 06/05/23 13:15	1 Dil Fac	
										8
										9
										1

Eurofins Carlsbad
DFBZ1

(70-130)

91

108

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Lab Sample ID

890-4769-1 MS

890-4769-1

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Client Sample ID

SW-01

SW-01

890-4769-1 MSD	SW-01	106	106	
890-4769-2	SW-02	96	86	
890-4769-3	SW-03	99	84	
890-4769-4	SW-04	106	80	
890-4769-5	SW-05	102	83	
890-4769-6	SW-06	101	86	
890-4769-7	FL-01@3'	99	73	
890-4769-8	FL-02 @3'	97	82	
890-4769-9	FL-03 @3'	98	79	
890-4769-10	FL-04 @4'	102	79	
890-4769-11	FL-05 @4'	124	90	
890-4769-11 MS	FL-05 @4'	132 S1+	104	
890-4769-11 MSD	FL-05 @4'	138 S1+	101	
890-4769-12	FL-06 @4'	124	98	
890-4769-13	FL-07 @4'	114	88	
LCS 880-54722/1-A	Lab Control Sample	102	111	
LCS 880-54723/1-A	Lab Control Sample	114	104	
LCSD 880-54722/2-A	Lab Control Sample Dup	112	111	

119

73

69 S1-

100

101

89

BFB1

(70-130)

101

121

Surrogate Legend

LCSD 880-54723/2-A

MB 880-54722/5-A

MB 880-54723/5-A

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Lab Control Sample Dup

Method Blank

Method Blank

			Pe
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-29062-A-21-C MS	Matrix Spike	111	101
880-29062-A-21-D MSD	Matrix Spike Duplicate	123	118
890-4769-1	SW-01	109	84
890-4769-1 MS	SW-01	113	81
890-4769-1 MSD	SW-01	111	79
890-4769-2	SW-02	112	87
890-4769-3	SW-03	123	95
890-4769-4	SW-04	113	89
890-4769-5	SW-05	122	95
890-4769-6	SW-06	114	88
890-4769-7	FL-01@3'	119	92
890-4769-8	FL-02 @3'	118	122
890-4769-9	FL-03 @3'	111	110
890-4769-10	FL-04 @4'	117	121
890-4769-11	FL-05 @4'	107	107
890-4769-12	FL-06 @4'	106	106

Eurofins Carlsbad

Prep Type: Total/NA

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

Job ID: 890-4769-1

Prep Type: Total/NA

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

			Perc	ent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		E
390-4769-13	FL-07 @4'	107	107		
_CS 880-54720/2-A	Lab Control Sample	109	84		(
_CS 880-54721/2-A	Lab Control Sample	101	101		
_CSD 880-54720/3-A	Lab Control Sample Dup	99	75		
CSD 880-54721/3-A	Lab Control Sample Dup	103	103		
MB 880-54720/1-A	Method Blank	136 S1+	108		
/IB 880-54721/1-A	Method Blank	115	121		ł
Surrogate Legend					
1CO = 1-Chlorooctane					
OTPH = o-Terphenyl					

Eurofins Carlsbad

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-54722/5-A **Matrix: Solid** Analysis Batch: 54718

·····, ····,									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 11:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 11:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 11:01	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/05/23 09:21	06/05/23 11:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:21	06/05/23 11:01	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/05/23 09:21	06/05/23 11:01	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130				06/05/23 09:21	06/05/23 11:01	1
1,4-Difluorobenzene (Surr)	101		70 - 130				06/05/23 09:21	06/05/23 11:01	1

Lab Sample ID: LCS 880-54722/1-A Matrix: Solid **Analysis Batch: 54718**

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1291		mg/Kg		129	70 - 130	
Toluene	0.100	0.1075		mg/Kg		108	70 - 130	
Ethylbenzene	0.100	0.09845		mg/Kg		98	70 - 130	
m-Xylene & p-Xylene	0.200	0.2096		mg/Kg		105	70 - 130	
o-Xylene	0.100	0.1044		mg/Kg		104	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	111		70 - 130

Lab Sample ID: LCSD 880-54722/2-A Matrix: Solid

Analysis Batch: 54718

Analysis Batch: 54718						Prep E	Batch: {	
	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1251	mg/Kg		125	70 - 130	3	35
Toluene	0.100	0.1062	mg/Kg		106	70 - 130	1	35
Ethylbenzene	0.100	0.1018	mg/Kg		102	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.2179	mg/Kg		109	70 - 130	4	35
o-Xylene	0.100	0.1064	mg/Kg		106	70 - 130	2	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	111		70 - 130

Lab Sample ID: 890-4769-1 MS Matrix: Solid

Analy	/sis	Batcl	h:	547	718

Analysis Batch: 54718									Prep Batch: 547	722
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U	0.101	0.1201		mg/Kg		119	70 - 130	
Toluene	<0.00198	U	0.101	0.1048		mg/Kg		104	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 54722

Client Sample ID: Method Blank

Prep Batch: 54722

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Lab Control Sample

Client Sample ID: SW-01

Prep Type: Total/NA

MS MS

0.1072

0.2269

0.1091

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

D %Rec

106

112

108

Spike

Added

0.101

0.202

0.101

Limits

70 - 130

70 - 130

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Lab Sample ID: 890-4769-1 MS

Analysis Batch: 54718

4-Bromofluorobenzene (Surr)

Lab Sample ID: 890-4769-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Ethylbenzene

m-Xylene & p-Xylene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

MS MS

%Recovery Qualifier

121

108

<0.00198 U

<0.00396 U

<0.00198 U

Result Qualifier

Client Sample ID: SW-01

%Rec

Limits

70 - 130

70 - 130

70 - 130

Prep Type: Total/NA

Prep Batch: 54722

Client Sample ID: SW-01
Prep Type: Total/NA
Prep Batch: 54722

С

Client Sample ID: Method Blank

06/05/23 09:33 06/05/23 11:35

06/05/23 09:33 06/05/23 11:35

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 54723

Analysis Batch: 54718									Prep E	Batch: {	54722
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00198	U	0.0994	0.1216		mg/Kg		122	70 - 130	1	35
Toluene	<0.00198	U	0.0994	0.1052		mg/Kg		106	70 - 130	0	35
Ethylbenzene	<0.00198	U	0.0994	0.09985		mg/Kg		100	70 - 130	7	35
m-Xylene & p-Xylene	<0.00396	U	0.199	0.2111		mg/Kg		106	70 - 130	7	35
o-Xylene	<0.00198	U	0.0994	0.1022		mg/Kg		103	70 - 130	6	35
	MSD	MSD									
Surrogate	%Recoverv	Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: MB 880-54723/5-A Matrix: Solid Analysis Batch: 54717

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:33	06/05/23 11:35	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:33	06/05/23 11:35	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:33	06/05/23 11:35	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/05/23 09:33	06/05/23 11:35	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/05/23 09:33	06/05/23 11:35	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/05/23 09:33	06/05/23 11:35	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130
1,4-Difluorobenzene (Surr)	89		70 - 130

--- ---

Lab Sample ID: LCS 880-54723/1-A Matrix: Solid Analysis Batch: 54717

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1383	*+	mg/Kg		138	70 - 130	
Toluene	0.100	0.1216		mg/Kg		122	70 - 130	
Ethylbenzene	0.100	0.1204		mg/Kg		120	70 - 130	
m-Xylene & p-Xylene	0.200	0.2357		mg/Kg		118	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 54723

Released to Imaging: 5/15/2024 2:25:32 PM

1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Released to Imaging: 5/15/2024 2:25:32 PM

o-Xylene

<0.00199 U *- *1 F1

Job	ID:	890-	4769-1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

				/ (,						
Lab Sample ID: LCS 880 Matrix: Solid	-54723/1-A					Clier	nt Sar	nple ID	: Lab Cor Prep Ty	pe: Tot	al/N
Analysis Batch: 54717										Batch:	5472
			Spike		LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.1144		mg/Kg		114	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	104		70 - 130								
Lab Sample ID: LCSD 88	20-54723/2-0					liont Sa	mplo	ID: Lak	o Control	Sample	
Matrix: Solid	0-3412312-A						mpie	ID. Lat	Prep Ty		
Analysis Batch: 54717										Batch:	
Analysis Batch. 54717			Spike		LCSD				%Rec	Jaton.	RF
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Benzene			0.100	0.1489		mg/Kg		149	70 - 130	7	
Toluene			0.100	0.1349		mg/Kg		145	70 - 130 70 - 130	, 10	
Ethylbenzene			0.100	0.1349		mg/Kg		132	70 - 130 70 - 130	9	
m-Xylene & p-Xylene			0.100	0.1324	т 	mg/Kg		132	70 - 130 70 - 130	9	
o-Xylene			0.200	0.2565	*_ *1			129	70 - 130 70 - 130	9 160	
U-AAICHE			0.100	0.01276	- 1	mg/Kg		13	10-130	100	
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	119 100		70 - 130 70 - 130								
Matrix: Solid Analysis Batch: 54717										Batch:	
		Sample	Spike		MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00199		0.100	0.1458		mg/Kg		146	70 - 130		
Toluene	<0.00199		0.100	0.1332	F1	mg/Kg		133	70 - 130		
Ethylbenzene	<0.00199		0.100	0.1262		mg/Kg		126	70 - 130		
m-Xylene & p-Xylene	<0.00398	U F1	0.200	0.2448		mg/Kg		122	70 - 130		
o-Xylene	<0.00199	U *- *1 F1	0.100	0.1173		mg/Kg		117	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130								
1,4-Difluorobenzene (Surr)	104		70 - 130								
Lab Sample ID: 890-4769	9-11 MSD							Client	Sample II	D: FL-0	5 @
Matrix: Solid									Prep Ty		
Analysis Batch: 54717										Batch:	
Analysis Batom off IT	Sample	Sample	Spike	MSD	MSD				%Rec		RF
Analyte		Qualifier	Added	-	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Benzene	<0.00199		0.101	0.1653	-	mg/Kg		164	70 - 130	12	
Toluene	< 0.00199		0.101	0.1495		mg/Kg		148	70 - 130	11	:
Ethylbenzene	< 0.00199		0.101	0.1495		mg/Kg		140	70 - 130 70 - 130	16	
m-Xylene & p-Xylene	< 0.00398		0.202	0.2920		mg/Kg		147	70 - 130	18	
	~0.00390	011	0.202	0.2920	1.1	mg/rty		145	10-100	10	•

Eurofins Carlsbad

19

6/5/2023

35

0.1422 F1

mg/Kg

141

70 - 130

0.101

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-4769-1 Matrix: Solid	I MSD											ample ID: Prep Typ	e: To	tal/NA
Analysis Batch: 54717												Prep Ba	atch:	54723
	MSD	MSE												
Surrogate	%Recovery			Limits										
4-Bromofluorobenzene (Surr)	138			70 - 130										
1,4-Difluorobenzene (Surr)	101	•		70 - 130										
Method: 8015B NM - Die		10 (Iraania											
_		je (Jiganit	,5 (DRO) (60)									
Lab Sample ID: MB 880-547 Matrix: Solid	20/1-A								(Clie		ole ID: Me Prep Typ		
Analysis Batch: 54713												Prep Ba		
Analysis Datch. 54715		ΜВ	MB									перы	aton.	54720
Analyte			Qualifier	RL		мпі	Unit		D	Dr	epared	Analyze	d	Dil Fac
-		50.0				NDL					<u> </u>	06/05/23 0		
Gasoline Range Organics (GRO)-C6-C10	<:	50.0	0	50.0			mg/Kg	1	(J0/U3	0/23 06:00	00/05/23 0	0.21	
Diesel Range Organics (Over	<"	50.0	П	50.0			mg/Kg	1	(16/05	5/23 08:00	06/05/23 0	8.21	1
C10-C28)		.0.0	0	00.0			ing/itg)		50/00	/20 00.00	00/00/20 0	0.21	
Oll Range Organics (Over C28-C36)	<	50.0	U	50.0			mg/Kg	1	(06/05	5/23 08:00	06/05/23 0	8:21	1
							0.0	•						
		MВ	MB											
Surrogate	%Recov	/ery	Qualifier	Limits						Pr	epared	Analyze	ed	Dil Fac
1-Chlorooctane		136	S1+	70 - 130					ī	06/05	5/23 08:00	06/05/23 0	8:21	1
o-Terphenyl		108		70 - 130					(06/05	5/23 08:00	06/05/23 0	8:21	1
Matrix: Solid Analysis Batch: 54713				Spike	LCS	LCS	;					Prep Typ Prep Ba %Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	845.6			mg/Kg			85	70 - 130		
(GRO)-C6-C10														
Diesel Range Organics (Over				1000	885.3			mg/Kg			89	70 - 130		
C10-C28)														
	LCS	LCS	;											
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	109			70 - 130										
o-Terphenyl	84			70 - 130										
Lab Sample ID: LCSD 880-	54720/3-A						С	lient S	am	ole I	D: Lab	Control S	amp	le Dup
Matrix: Solid												Prep Typ		
Analysis Batch: 54713												Prep Ba		
				Spike	LCSD	LCS	D					%Rec		RPD
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10				1000	955.3			mg/Kg			96	70 - 130	12	20
Diesel Range Organics (Over				1000	951.7			mg/Kg			95	70 - 130	7	20
C10-C28)					551.7						00	100	,	20
	LCSD	LCS	D											
Surrogate	%Recovery	Qua	lifier	Limits										
1.011	00			70 - 130										
1-Chlorooctane	99			10-130										

Job ID: 890-4769-1

Released to Imaging: 5/15/2024 2:25:32 PM

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

o-Terphenyl

o-Terphenyl

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

81

121

Lab Sample ID: 890-4769- Matrix: Solid Analysis Batch: 54713	1 MS							Cli	Prep Ty	le ID: SW-01 pe: Total/NA Batch: 54720
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	1000	1080		mg/Kg		108	70 - 130	
Diesel Range Organics (Over C10-C28)	<49.9	U	1000	957.5		mg/Kg		96	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctane	113		70 - 130							

70 - 130

Lab Sample ID: 890-4769 Matrix: Solid Analysis Batch: 54713		Prep T Prep						ple ID: SW-01 Type: Total/NA Batch: 54720			
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	998	1122		mg/Kg		112	70 - 130	4	20
Diesel Range Organics (Over C10-C28)	<49.9	U	998	925.7		mg/Kg		93	70 - 130	3	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Sunoguto	<i>/////////////////////////////////////</i>	Quanner	Emito
1-Chlorooctane	111		70 - 130
o-Terphenyl	79		70 - 130
_			

Lab Sample ID: MB 880-54721/1-A Matrix: Solid Analysis Batch: 54716

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		06/05/23 08:00	06/05/23 08:21	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		06/05/23 08:00	06/05/23 08:21	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/05/23 08:00	06/05/23 08:21	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130				06/05/23 08:00	06/05/23 08:21	1

70 - 130

Lab Sample ID: LCS 880-54721/2-A
Matrix: Solid
Analysis Batch: 5/716

Allalysis Dalch. 047 10							Frep	Daluii. 54721
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1206		mg/Kg		121	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	917.6		mg/Kg		92	70 - 130	
C10-C28)								

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 54721

Client Sample ID: Lab Control Sample Prep Type: Total/NA

06/05/23 08:00 06/05/23 08:21

Prep Batch: 54721

Page 79 of 197

5

7

Job ID: 890-4769-1

Eurofins Carlsbad

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880	-54721/2-A					Clier	it Sa	mple ID	: Lab Con	trol Sa	ample
Matrix: Solid	-3472172-A					Oller			Prep Ty		
Analysis Batch: 54716									Prep B		
····· ·											
		LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	101		70 - 130								
o-Terphenyl	101		70 - 130								
Lab Sample ID: LCSD 88	0-54721/3-A				c	lient Sa	mple	ID: Lab	Control	Sample	e Dup
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 54716									Prep B		
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1211		mg/Kg		121	70 - 130	0	20
(GRO)-C6-C10						00					
Diesel Range Organics (Over			1000	910.3		mg/Kg		91	70 - 130	1	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane		Quanner	70 - 130								
o-Terphenyl	103		70 - 130								
0-Terpricityr	100		10 - 100								
Lab Sample ID: 880-2906	2-A-21-C MS	1					CI	lient Sa	mple ID: I		
Matrix: Solid									Prep Ty		
Analysis Batch: 54716									Prep B	atch:	54721
	•	Sample	Spike		MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U	998	1039		mg/Kg		100	70 - 130		
(GRO)-C6-C10	- 40.0		000	4054		···· ·· // ···		405	70 400		
Diesel Range Organics (Over C10-C28)	<49.9	0	998	1051		mg/Kg		105	70 - 130		
0.00020)	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane		guanner	70 - 130								
o-Terphenyl	101		70 - 130 70 - 130								
0-Terphenyi	101		70-730								
Lab Sample ID: 880-2906	2-A-21-D MS	D				Client S	amn	le ID [.] M	latrix Spil	e Dun	licate
Matrix: Solid		0				Union C	, amp		Prep Ty		
Analysis Batch: 54716									Prep B		
Analysis Batch. 04710	Sample	Sample	Spike	мер	MSD				%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9		999	1183		mg/Kg		114	70 - 130	13	20
	~49.9	0	555	1103		myrry		114	10-150	15	20
(GRO)-C6-C10			999	1214		mg/Kg		122	70 - 130	14	20
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	U								• •	_5
Diesel Range Organics (Over	<49.9	U	333								
			333								
Diesel Range Organics (Over C10-C28)	MSD	MSD									
Diesel Range Organics (Over C10-C28) <i>Surrogate</i>	MSD %Recovery	MSD	Limits								
Diesel Range Organics (Over C10-C28)	MSD	MSD									

Job ID: 890-4769-1

Eurofins Carlsbad

Client: TRC Solutions, Inc.

Job ID: 890-4769-1

Client Sample ID: Method Blank

Eurofins Carlsbad

Project/Site: Rocket Fed Com #5H
Method: 300.0 - Anions, Ion Chromatography
Lab Sample ID: MB 880-54670/1-A

Matrix: Solid											Prep Ty		
Analysis Batch: 54733													
-		MB MB											
Analyte		esult Qua	alifier	RL	-	MDL L	Jnit		D F	Prepared	Analyz	ed	Dil Fac
Chloride	<	5.00 U		5.00)	n	ng/Kg)			06/05/23	11:23	
Lab Sample ID: LCS 880-54	4670/2-A							Clie	ent Sa	mple IC): Lab Con	trol S	ample
Matrix: Solid											Prep Ty		
Analysis Batch: 54733													
-			Spi	(e	LCS	LCS					%Rec		
Analyte			Add	ed	Result	Qualit	fier	Unit	D	%Rec	Limits		
Chloride			2	50	246.1			mg/Kg		98	90 - 110		
Lab Sample ID: LCSD 880-	54670/3-A						С	lient S	ample	D: La	b Control S	Samp	le Dur
Matrix: Solid									•		Prep Ty		
Analysis Batch: 54733													
			Spi	(e	LCSD	LCSD)				%Rec		RPI
Analyte			Add	əd	Result	Qualif	fier	Unit	D	%Rec	Limits	RPD	Limi
Chloride			2	50	246.9			mg/Kg		99	90 - 110	0	20
Lab Sample ID: 890-4769-1	MS									Cli	ent Sampl		SW-04
Matrix: Solid											Prep Ty		
Analysis Batch: 54733											riep ij	pe. 0	
	Sample	Sample	Spi	(e	MS	MS					%Rec		
Analyte	•	Qualifie	•		Result	-	fier	Unit	D	%Rec	Limits		
Chloride	523	-		51	730.7			mg/Kg		83	90 - 110		·
Lab Sample ID: 890-4769-1	MED									CI	ent Sampl		
Matrix: Solid	NISD										Prep Ty		
Analysis Batch: 54733											Frep is	pe. 3	
Analysis Datch. 54755	Sample	Sample	Spi	(0	мер	MSD					%Rec		RPD
Analyte	•	Qualifie	•		Result	-	fior	Unit	D	%Rec	Limits	RPD	
Chloride	523			51	732.2			mg/Kg		84	90 - 110	0	
												_	
Lab Sample ID: 890-4769-1	1 MS									Client	Sample ID		
Matrix: Solid											Prep Ty	vpe: S	oluble
Analysis Batch: 54733	<u> </u>	<u> </u>									~ -		
6	•	Sample	Spi		-	MS	6	11		0/ D = =	%Rec		
Analyte Chloride		Qualifie					rier	Unit ma/Ka	<u>D</u>		Limits 90 - 110		
	1110		2	50	1332	4		mg/Kg		90	90-110		
Lab Sample ID: 890-4769-1	1 MSD									Client	Sample ID): FL-(05 @4
Matrix: Solid											· Prep Ty		
Analysis Batch: 54733													
-	Sample	Sample	Spi	ke	MSD	MSD					%Rec		RPD
Analyte	Result	Qualifie	Add	bd	Result		fier	Unit	D	%Rec	Limits	RPD	Limi
Chloride	1110		2	50	1330	4		mg/Kg		90	90 - 110	0	20

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

GC VOA

Analysis Batch: 54717

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-11	FL-05 @4'	Total/NA	Solid	8021B	54723
890-4769-12	FL-06 @4'	Total/NA	Solid	8021B	54723
890-4769-13	FL-07 @4'	Total/NA	Solid	8021B	54723
MB 880-54723/5-A	Method Blank	Total/NA	Solid	8021B	54723
LCS 880-54723/1-A	Lab Control Sample	Total/NA	Solid	8021B	54723
LCSD 880-54723/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	54723
890-4769-11 MS	FL-05 @4'	Total/NA	Solid	8021B	54723
890-4769-11 MSD	FL-05 @4'	Total/NA	Solid	8021B	54723

Analysis Batch: 54718

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-1	SW-01	Total/NA	Solid	8021B	54722
890-4769-2	SW-02	Total/NA	Solid	8021B	54722
890-4769-3	SW-03	Total/NA	Solid	8021B	54722
890-4769-4	SW-04	Total/NA	Solid	8021B	54722
890-4769-5	SW-05	Total/NA	Solid	8021B	54722
890-4769-6	SW-06	Total/NA	Solid	8021B	54722
890-4769-7	FL-01@3'	Total/NA	Solid	8021B	54722
890-4769-8	FL-02 @3'	Total/NA	Solid	8021B	54722
890-4769-9	FL-03 @3'	Total/NA	Solid	8021B	54722
890-4769-10	FL-04 @4'	Total/NA	Solid	8021B	54722
MB 880-54722/5-A	Method Blank	Total/NA	Solid	8021B	54722
LCS 880-54722/1-A	Lab Control Sample	Total/NA	Solid	8021B	54722
LCSD 880-54722/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	54722
890-4769-1 MS	SW-01	Total/NA	Solid	8021B	54722
890-4769-1 MSD	SW-01	Total/NA	Solid	8021B	54722

Prep Batch: 54722

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-1	SW-01	Total/NA	Solid	5035	
890-4769-2	SW-02	Total/NA	Solid	5035	
890-4769-3	SW-03	Total/NA	Solid	5035	
890-4769-4	SW-04	Total/NA	Solid	5035	
890-4769-5	SW-05	Total/NA	Solid	5035	
890-4769-6	SW-06	Total/NA	Solid	5035	
890-4769-7	FL-01@3'	Total/NA	Solid	5035	
890-4769-8	FL-02 @3'	Total/NA	Solid	5035	
890-4769-9	FL-03 @3'	Total/NA	Solid	5035	
890-4769-10	FL-04 @4'	Total/NA	Solid	5035	
MB 880-54722/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-54722/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-54722/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4769-1 MS	SW-01	Total/NA	Solid	5035	
890-4769-1 MSD	SW-01	Total/NA	Solid	5035	

Prep Batch: 54723

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4769-11	FL-05 @4'	Total/NA	Solid	5035	
890-4769-12	FL-06 @4'	Total/NA	Solid	5035	
890-4769-13	FL-07 @4'	Total/NA	Solid	5035	
MB 880-54723/5-A	Method Blank	Total/NA	Solid	5035	

Eurofins Carlsbad

Page 82 of 197

Job ID: 890-4769-1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

GC VOA (Continued)

Prep Batch: 54723 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-54723/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-54723/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-4769-11 MS	FL-05 @4'	Total/NA	Solid	5035	
890-4769-11 MSD	FL-05 @4'	Total/NA	Solid	5035	
Analysis Batch: 5482	21				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-1	SW-01	Total/NA	Solid	Total BTEX	
890-4769-2	SW-02	Total/NA	Solid	Total BTEX	
890-4769-3	SW-03	Total/NA	Solid	Total BTEX	
890-4769-4	SW-04	Total/NA	Solid	Total BTEX	
890-4769-5	SW-05	Total/NA	Solid	Total BTEX	
890-4769-6	SW-06	Total/NA	Solid	Total BTEX	
890-4769-7	FL-01@3'	Total/NA	Solid	Total BTEX	
890-4769-8	FL-02 @3'	Total/NA	Solid	Total BTEX	
890-4769-9	FL-03 @3'	Total/NA	Solid	Total BTEX	
890-4769-10	FL-04 @4'	Total/NA	Solid	Total BTEX	
890-4769-11	FL-05 @4'	Total/NA	Solid	Total BTEX	
890-4769-12	FL-06 @4'	Total/NA	Solid	Total BTEX	

Total/NA

Solid

Total BTEX

GC Semi VOA

890-4769-13

Analysis Batch: 54713

FL-07 @4'

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-1	SW-01	Total/NA	Solid	8015B NM	54720
890-4769-2	SW-02	Total/NA	Solid	8015B NM	54720
890-4769-3	SW-03	Total/NA	Solid	8015B NM	54720
890-4769-4	SW-04	Total/NA	Solid	8015B NM	54720
890-4769-5	SW-05	Total/NA	Solid	8015B NM	54720
890-4769-6	SW-06	Total/NA	Solid	8015B NM	54720
890-4769-7	FL-01@3'	Total/NA	Solid	8015B NM	54720
MB 880-54720/1-A	Method Blank	Total/NA	Solid	8015B NM	54720
LCS 880-54720/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	54720
LCSD 880-54720/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	54720
890-4769-1 MS	SW-01	Total/NA	Solid	8015B NM	54720
890-4769-1 MSD	SW-01	Total/NA	Solid	8015B NM	54720

Analysis Batch: 54716

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-8	FL-02 @3'	Total/NA	Solid	8015B NM	54721
890-4769-9	FL-03 @3'	Total/NA	Solid	8015B NM	54721
890-4769-10	FL-04 @4'	Total/NA	Solid	8015B NM	54721
890-4769-11	FL-05 @4'	Total/NA	Solid	8015B NM	54721
890-4769-12	FL-06 @4'	Total/NA	Solid	8015B NM	54721
890-4769-13	FL-07 @4'	Total/NA	Solid	8015B NM	54721
MB 880-54721/1-A	Method Blank	Total/NA	Solid	8015B NM	54721
LCS 880-54721/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	54721
LCSD 880-54721/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	54721
880-29062-A-21-C MS	Matrix Spike	Total/NA	Solid	8015B NM	54721
880-29062-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	54721

Eurofins Carlsbad

Job ID: 890-4769-1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

GC Semi VOA

Prep Batch: 54720

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-1	SW-01	Total/NA	Solid	8015NM Prep	
890-4769-2	SW-02	Total/NA	Solid	8015NM Prep	
890-4769-3	SW-03	Total/NA	Solid	8015NM Prep	
890-4769-4	SW-04	Total/NA	Solid	8015NM Prep	
890-4769-5	SW-05	Total/NA	Solid	8015NM Prep	
890-4769-6	SW-06	Total/NA	Solid	8015NM Prep	
890-4769-7	FL-01@3'	Total/NA	Solid	8015NM Prep	
MB 880-54720/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-54720/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-54720/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-4769-1 MS	SW-01	Total/NA	Solid	8015NM Prep	
890-4769-1 MSD	SW-01	Total/NA	Solid	8015NM Prep	

Prep Batch: 54721

030-4703-7	1 2-01@3	Iotal/INA	Solid	ou binnin iep		
MB 880-54720/1-A	Method Blank	Total/NA	Solid	8015NM Prep		8
LCS 880-54720/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-54720/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		9
890-4769-1 MS	SW-01	Total/NA	Solid	8015NM Prep		
890-4769-1 MSD	SW-01	Total/NA	Solid	8015NM Prep		10
Prep Batch: 54721						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-4769-8	FL-02 @3'	Total/NA	Solid	8015NM Prep		12
890-4769-9	FL-03 @3'	Total/NA	Solid	8015NM Prep		
890-4769-10	FL-04 @4'	Total/NA	Solid	8015NM Prep		40
890-4769-11	FL-05 @4'	Total/NA	Solid	8015NM Prep		13
890-4769-12	FL-06 @4'	Total/NA	Solid	8015NM Prep		
890-4769-13	FL-07 @4'	Total/NA	Solid	8015NM Prep		14
MB 880-54721/1-A	Method Blank	Total/NA	Solid	8015NM Prep		
LCS 880-54721/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-54721/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
880-29062-A-21-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep		
880-29062-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		

Analysis Batch: 54803

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4769-1	SW-01	Total/NA	Solid	8015 NM	
890-4769-2	SW-02	Total/NA	Solid	8015 NM	
890-4769-3	SW-03	Total/NA	Solid	8015 NM	
890-4769-4	SW-04	Total/NA	Solid	8015 NM	
890-4769-5	SW-05	Total/NA	Solid	8015 NM	
890-4769-6	SW-06	Total/NA	Solid	8015 NM	
890-4769-7	FL-01@3'	Total/NA	Solid	8015 NM	
890-4769-8	FL-02 @3'	Total/NA	Solid	8015 NM	
890-4769-9	FL-03 @3'	Total/NA	Solid	8015 NM	
890-4769-10	FL-04 @4'	Total/NA	Solid	8015 NM	
890-4769-11	FL-05 @4'	Total/NA	Solid	8015 NM	
890-4769-12	FL-06 @4'	Total/NA	Solid	8015 NM	
890-4769-13	FL-07 @4'	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 54670

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-1	SW-01	Soluble	Solid	DI Leach	
890-4769-2	SW-02	Soluble	Solid	DI Leach	
890-4769-3	SW-03	Soluble	Solid	DI Leach	
890-4769-4	SW-04	Soluble	Solid	DI Leach	

Job ID: 890-4769-1

Page 84 of 197

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

HPLC/IC (Continued)

Leach Batch: 54670 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4769-5	SW-05	Soluble	Solid	DI Leach	
890-4769-6	SW-06	Soluble	Solid	DI Leach	2
890-4769-7	FL-01@3'	Soluble	Solid	DI Leach	
890-4769-8	FL-02 @3'	Soluble	Solid	DI Leach	
890-4769-9	FL-03 @3'	Soluble	Solid	DI Leach	
890-4769-10	FL-04 @4'	Soluble	Solid	DI Leach	
890-4769-11	FL-05 @4'	Soluble	Solid	DI Leach	_
890-4769-12	FL-06 @4'	Soluble	Solid	DI Leach	3
890-4769-13	FL-07 @4'	Soluble	Solid	DI Leach	
MB 880-54670/1-A	Method Blank	Soluble	Solid	DI Leach	9
LCS 880-54670/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-54670/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4769-1 MS	SW-01	Soluble	Solid	DI Leach	
890-4769-1 MSD	SW-01	Soluble	Solid	DI Leach	
890-4769-11 MS	FL-05 @4'	Soluble	Solid	DI Leach	
890-4769-11 MSD	FL-05 @4'	Soluble	Solid	DI Leach	
Analysis Batch: 547	33				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4769-1	SW-01	Soluble	Solid	300.0	54670

Eas Gampions		1.00.1900	in a ci i A	mounou	i iop Baton
890-4769-1	SW-01	Soluble	Solid	300.0	54670
890-4769-2	SW-02	Soluble	Solid	300.0	54670
890-4769-3	SW-03	Soluble	Solid	300.0	54670
890-4769-4	SW-04	Soluble	Solid	300.0	54670
890-4769-5	SW-05	Soluble	Solid	300.0	54670
890-4769-6	SW-06	Soluble	Solid	300.0	54670
890-4769-7	FL-01@3'	Soluble	Solid	300.0	54670
890-4769-8	FL-02 @3'	Soluble	Solid	300.0	54670
890-4769-9	FL-03 @3'	Soluble	Solid	300.0	54670
890-4769-10	FL-04 @4'	Soluble	Solid	300.0	54670
890-4769-11	FL-05 @4'	Soluble	Solid	300.0	54670
890-4769-12	FL-06 @4'	Soluble	Solid	300.0	54670
890-4769-13	FL-07 @4'	Soluble	Solid	300.0	54670
MB 880-54670/1-A	Method Blank	Soluble	Solid	300.0	54670
LCS 880-54670/2-A	Lab Control Sample	Soluble	Solid	300.0	54670
LCSD 880-54670/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	54670
890-4769-1 MS	SW-01	Soluble	Solid	300.0	54670
890-4769-1 MSD	SW-01	Soluble	Solid	300.0	54670
890-4769-11 MS	FL-05 @4'	Soluble	Solid	300.0	54670
890-4769-11 MSD	FL-05 @4'	Soluble	Solid	300.0	54670

6/5/2023

Page 85 of 197

Job ID: 890-4769-1

Lab Sample ID: 890-4769-1 Matrix: Solid

Lab Sample ID: 890-4769-2

Lab Sample ID: 890-4769-3

Lab Sample ID: 890-4769-4

Matrix: Solid

Matrix: Solid

Client Sample ID: SW-01 Date Collected: 06/01/23 10:00 Date Received: 06/01/23 16:32

Client: TRC Solutions, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 11:23	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	54720	06/05/23 09:14	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/05/23 11:00	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 11:39	СН	EET MID

Client Sample ID: SW-02 Date Collected: 06/01/23 10:05 Date Received: 06/01/23 16:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 11:43	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54720	06/05/23 09:14	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/05/23 12:07	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 11:55	СН	EET MID

Client Sample ID: SW-03 Date Collected: 06/01/23 10:10 Date Received: 06/01/23 16:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 12:04	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	54720	06/05/23 09:14	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/05/23 12:29	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 12:00	СН	EET MID

Client Sample ID: SW-04 Date Collected: 06/01/23 10:20 Date Received: 06/01/23 16:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 12:24	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID

Eurofins Carlsbad

Matrix: Solid

5

9

Released to Imaging: 5/15/2024 2:25:32 PM

Job ID: 890-4769-1

Lab Sample ID: 890-4769-4 Matrix: Solid

Lab Sample ID: 890-4769-5

Date Collected: 06/01/23 10:20 Date Received: 06/01/23 16:32

Client Sample ID: SW-04

Client: TRC Solutions, Inc.

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54720	06/05/23 09:14	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/05/23 12:51	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 12:05	СН	EET MID

Client Sample ID: SW-05 Date Collected: 06/01/23 10:25 Date Received: 06/01/23 16:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 12:45	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54720	06/05/23 09:14	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/05/23 13:13	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 12:11	CH	EET MID

Client Sample ID: SW-06

Date Collected: 06/01/23 10:30 Date Received: 06/01/23 16:32

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 13:05	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	54720	06/05/23 09:14	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/05/23 13:35	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 12:27	CH	EET MID

Client Sample ID: FL-01@3' Date Collected: 06/01/23 11:00 Date Received: 06/01/23 16:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 13:26	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54720	06/05/23 09:14	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54713	06/05/23 13:57	SM	EET MID

Eurofins Carlsbad

Lab Sample ID: 890-4769-6

Matrix: Solid

Matrix: Solid

06/05/23 12:27 CH EET MID

Matrix: Solid

Client Sample ID: FL-01@3'

Job ID: 890-4769-1

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-4769-7 Matrix: Solid

Lab Sample ID: 890-4769-8

Lab Sample ID: 890-4769-9

Date Collected: 06/01/23 11:00 Date Received: 06/01/23 16:32

Client: TRC Solutions, Inc.

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 12:32	СН	EET MID

Client Sample ID: FL-02 @3' Date Collected: 06/01/23 11:10 Date Received: 06/01/23 16:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 13:46	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:57	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	54721	06/05/23 09:17	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54716	06/05/23 12:07	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 12:37	СН	EET MID

Client Sample ID: FL-03 @3' Date Collected: 06/01/23 11:20 Date Received: 06/01/23 16:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	54722	06/05/23 09:21	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54718	06/05/23 14:07	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 16:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:57	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54721	06/05/23 09:17	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54716	06/05/23 12:29	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 12:43	CH	EET MID

Client Sample ID: FL-04 @4' Date Collected: 06/01/23 11:30 Date Received: 06/01/23 16:32

Lab Sample ID: 890-4769-10 Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA 5035 54722 06/05/23 09:21 EL Prep 4.99 g 5 mL EET MID Total/NA 8021B Analysis 1 5 mL 5 mL 54718 06/05/23 14:27 AJ EET MID Total/NA Analysis Total BTEX 54821 06/05/23 16:57 AJ EET MID 1 Total/NA 8015 NM 54803 Analysis 1 06/05/23 16:57 SM EET MID Total/NA 8015NM Prep 10.01 q 10 mL 54721 06/05/23 09:17 AJ EET MID Prep EET MID Total/NA Analysis 8015B NM 1 1 uL 1 uL 54716 06/05/23 12:51 SM Soluble Leach DI Leach 5.01 g 50 mL 54670 06/02/23 16:40 KS EET MID Soluble Analysis 300.0 1 54733 06/05/23 12:48 CH EET MID

Eurofins Carlsbad

Client: TRC Solutions, Inc.

Job ID: 890-4769-1

Lab Sample ID: 890-4769-11 Matrix: Solid

Client Sample ID: FL-05 @4' Date Collected: 06/01/23 11:40 Date Received: 06/01/23 16:32

Client Sample ID: FL-06 @4'

Date Collected: 06/01/23 11:50

Date Received: 06/01/23 16:32

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	54723	06/05/23 09:33	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54717	06/05/23 12:01	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 17:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:57	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54721	06/05/23 09:17	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54716	06/05/23 13:13	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 12:54	СН	EET MID

Lab Sample ID: 890-4769-12 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	54723	06/05/23 09:33	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54717	06/05/23 12:26	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 17:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:57	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	54721	06/05/23 09:17	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54716	06/05/23 13:35	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 13:10	СН	EET MID

Client Sample ID: FL-07 @4' Date Collected: 06/01/23 12:00 Date Received: 06/01/23 16:32

Lab Sample ID: 890-4769-13 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	54723	06/05/23 09:33	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	54717	06/05/23 12:53	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			54821	06/05/23 17:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			54803	06/05/23 16:57	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	54721	06/05/23 09:17	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54716	06/05/23 13:57	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	54670	06/02/23 16:40	KS	EET MID
Soluble	Analysis	300.0		1			54733	06/05/23 13:15	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H Job ID: 890-4769-1

	ofins Midland		each accreditation/certification below.	
liess otherwise noted, al				
Authority	Pr	ogram	Identification Number	Expiration Date
Texas	N	ELAP	T104704400-22-25	06-30-23
the agency does not o	offer certification.			This list may include analytes for which
	•	ort, but the laboratory is n	ot certified by the governing authority Analyte	This list may include analytes for whic
the agency does not o	offer certification.			This list may include analytes for whic

Page 90 of 197

10

Eurofins Carlsbad

Method Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

Job ID: 890-4769-1

Method	Method Description	Protocol	Laboratory	
3021B	Volatile Organic Compounds (GC)	SW846	EET MID	
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
3015NM Prep	Microextraction	SW846	EET MID	
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Page 92 of 197

Client: TRC Solutions, Inc. Project/Site: Rocket Fed Com #5H

890-4769-1 890-4769-2 890-4769-3 890-4769-4 890-4769-5 890-4769-6 890-4769-7 890-4769-8 890-4769-9	SW-01 SW-02 SW-03 SW-04 SW-05 SW-06 FL-01@3' FL-02 @3'	Solid Solid Solid Solid Solid Solid Solid	06/01/23 10:10 06/01/23 10:20	06/01/23 16:32 06/01/23 16:32 06/01/23 16:32 06/01/23 16:32 06/01/23 16:32	
890-4769-3 890-4769-4 890-4769-5 890-4769-6 890-4769-7 890-4769-8	SW-03 SW-04 SW-05 SW-06 FL-01@3'	Solid Solid Solid Solid	06/01/23 10:10 06/01/23 10:20 06/01/23 10:25	06/01/23 16:32 06/01/23 16:32 06/01/23 16:32	
890-4769-4 890-4769-5 890-4769-6 890-4769-7 890-4769-8	SW-04 SW-05 SW-06 FL-01@3'	Solid Solid Solid	06/01/23 10:20 06/01/23 10:25	06/01/23 16:32 06/01/23 16:32	
890-4769-5 890-4769-6 890-4769-7 890-4769-8	SW-05 SW-06 FL-01@3'	Solid Solid	06/01/23 10:25	06/01/23 16:32	
890-4769-6 890-4769-7 890-4769-8	SW-06 FL-01@3'	Solid			
890-4769-7 890-4769-8	FL-01@3'		06/01/23 10:30	00/04/00 40 00	
890-4769-8	0	Solid		06/01/23 16:32	
	EL_02 @3'		06/01/23 11:00	06/01/23 16:32	3
890-4769-9		Solid		06/01/23 16:32	
	FL-03 @3'	Solid	06/01/23 11:20	06/01/23 16:32	3
890-4769-10	FL-04 @4'	Solid	06/01/23 11:30	06/01/23 16:32	4
890-4769-11	FL-05 @4'	Solid	06/01/23 11:40	06/01/23 16:32	4
890-4769-12	FL-06 @4'	Solid	06/01/23 11:50	06/01/23 16:32	4
890-4769-13	FL-07 @4'	Solid	06/01/23 12:00	06/01/23 16:32	4

💸 eurofins		Environment Testing	nent Test	ing	Midle	Cha uston, TX (281)	Chain of Custody TX (281) 240-4200, Dallas, TX (214) 90 (433) 704-5440 San Appropio TX (210)	Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Mirdland TX (433) 704-5440 San Antonio TX (210) 509-3334		Work Order No:		
	_	Xenco			EL P Hob	'aso, TX (915) 5 bbs, NM (575) 3	85-3443, Lubbo 192-7550, Carlsb	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199		www.xenco.com	om Page	of Y
Project Manager:	LARED	Stofel	r		Bill to: (if different)	ent)	SA-F			Work Order	B	
Company Name:	TRC				Company Name:	ne:			Program:	UST/PST PRP I	PRP Brownfields F	RRC Superfund
Address:	MIDEAND	Ι,	21		Address:				State of Project:	đ:	ì	
City, State ZIP:					City, State ZIP:			/	Reporting:	Reporting: Level II 🗌 Level III 🗌	PST/UST TRRP	
Phone:	432.23	8, 3003	vi	Email:	JARO	544	End lke	TAUGARE /RUSSI	Deliverables:		ADaPT 🔲 Ot	Other:
Project Name:	Racker	150	Con #5	SH Turn Around	Around			ANALYSIS REQU	ETT N		Preser	Preservative Codes
Project Number:				Routine	YRush Zg	Pres. Code					None: NO	DI Water: H ₂ O
Project Location:				Due Date:							Cool: Cool	MeOH: Me
Sampler's Name:	Russer	SEBMINE		TAT starts the c	TAT starts the day received by the lab. if received by 4:30pm		300 02 15				HCL: HC	HNO 3: HN
PO #:	4		0	Wat los	D Ma		B				H, PO ,: HP	
Samples Received Intact:	1	No	\supset V	ID:	10	iram	-				NaHSO 4: NABIS	\BIS
Cooler Custody Seals:	Yes No	A/A	Correction Factor:	ctor:	20.0	Pi	e	890-4769 Ch	ain of Custody		Na 2 2 2 3; NaSO 3	so 3
Sample Custody Seals:	Yes N	NO N/A	Temperature Reading:	Reading:	- r-		on FX		_	7	Zn Acetate+NaOH: Zn	Zn Acetate+NaOH: Zn NaOH±Accorbic Acid: SAPC
Total Containers:			Conected Temperature.	ilperature.	8.8	++-	40					
Sample Identification	ication	Matrix	Sampled	Sampled	Depth Comp	p Cont	(E				Sampl	Sample Comments
500-01		S	6.1.23	000	- 6.2	> /	2 9					
1		-	-	1005	-	-						
CI.1- 04		-		e2 01	1		2	2				
· ·		_		1025	(1	\ \ \					
SW-06				02 al	1		\ \ \					
FL+0103	S			1100	5 (b-P	-	11					
1-0205	24		-	0111								
H04 @	() () () () () () () () () () () () () (~	4	1130	4	~	2					
Total 200.7 / 6010	200.8	200.8 / 6020:		BRCRA 13PPM	M Texas 11	Al Sb As Ba Be	Ba Be B (A 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo N Tribushi beand a secret share ba Ba Cd Cr Co Cu Bh Mn Mo Ni Se Ag TI U		K Se Ag SiO ₂ Na Sr Ho: 1631/3451	Ag SiO ₂ Na Sr TI Sn U V Z	Zn 71
CITCLE INTELLIOUUS/ ATTAINED ATTAINED TO CATANYACA	ment and relinquis	hment of samples	s constitutes a va	lid purchase orde	r from client comp sibility for any loss	any to Eurofins X es or expenses in	enco, its affiliates i curred by the cliei	LITCLE INFERTIOU(3) GETURE INFECTION (3) COLOURING SCORE a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions (Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions (Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of samples constitutes a valid purchase order from client from client fiscations (Notice: Signature of Samples) (Notice: Signature of Samples) (Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of samples constitutes a valid purchase order from client fiscations (Notice: Samples) (No	ns and conditions yond the control			
Relinguished by:	(Signature)		Received by	Received by: (Signature))	D	Date/Time	Relinguished by: (Signature) Received by: (Signature) Date/Time Relinguished by: (Signature) Ri	ure)	Received by: (Signature)	ure)	Date/Time
2 3	\mathbb{S}	0	lee Q	S		6.1.2	23/63	4 ~~				
5								6			Revised	Revised Date: 08/25/2020 Rev. 2020 2

6/5/2023

Page 93 of 197

5
8
9
13
11

|--|

Page 94 of 197

Phone:

5	
õ	
Ś	
0rde	
P	
R	
H I	
1	

Annager: JARED STOREL		EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 Ifferent) Name:	www.xenco.com Page Z of Z Work Order Comments Work Order Comments Work Order Comments Superfund Program: UST/PST PRP Brownfields RRC Superfund State of Project: Superfund Superfund Superfund State of Project:
Address: 10 North Dr. # 130 E	Address: City, State ZIP:		State of Project: Reporting: Level III PST/UST TRRP Level IV
432,738.3003		/ the Think 2/ Fusser	Celiverables: EDD ADaPT Other:
Rectary Feb	Turn Around	ANALYSIS REQUES	EST Preservative Codes
# SH Rout	Rush ZY Pres.		None: NO DI Water: H ₂ O
			Cool: Cool MeOH: Me
er's Name: Kuggice Simony	TAT starts the day received by the lab, if received by 4:30pm	30	HCL:HC HNO 3: HN H ₂ SO 4:H ₂ NaOH: Na
SAMPLE RECEIPT Temp Blank: Yes No work:	Yes No	30 2	H₃PO ₊; HP
act: Yes No			Natso 4: Madu
Sample Custody Seals: Yes No N/A Temperature Reading:		0R11	Zn Acetate+NaOH: Zn
Corrected Temp		H TE TP H	NaUH+ASCOFDIC ACID: SAFC
Sample Identification Matrix Sampled Sampled	Depth Comp Cont		Sample Comments
R-0504 5 61 2 1140	4 Cours 1		
Fr-06 641 1 1150	4		
FL-07041 & V 1200	~		
Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP	PM Texas 11 AI Sb As SPLP 6010 : 8RCRA Sb A	A 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K TCLP/SPLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U	Mn Mo Ni K Se Ag SiO ₂ Na Sr Tl Sn U V Zn e Ag Tl U Hg: 1631/245.1/7470/7471
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of service.	rder from client company to Eurof consibility for any losses or expens	is Xenco, its affiliates and subcontractors. It assigns standard term is incurred by the client if such losses are due to circumstances bey	s and conditions and the control
оf Eurohns Kanco. А милими толаде от хаз хор мило е арритеск от какана и какана и какана и какана и какана и ка По Eurohns Kanco. А милими толаде от хаз хор мило е арритеската и какана и какана и какана и какана и какана и к			

Relinquished by: (Signature)

Received by (Signature)

lor

P.1. 03 Date/Time

163 23 4

Relinquished by: (Signature)

Received by: (Signature)

Date/Time

Revised Date: 08/25/2020 Rev. 2020.2

14

Login Sample Receipt Checklist

Client: TRC Solutions, Inc.

Login Number: 4769 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4769-1 SDG Number:

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: TRC Solutions, Inc.

Login Number: 4769 List Number: 2 Creator: Rodriguez, Leticia

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 890-4769-1 SDG Number:

List Source: Eurofins Midland

List Creation: 06/05/23 09:16 AM

Received by OCD: 3/8/2024 8:36:31 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Jared Stoffel TRC Solutions, Inc. 10 Desta Drive Suite #130E Midland, Texas 79705 Generated 6/7/2023 10:13:31 AM

JOB DESCRIPTION

Rocket Fed 5H

JOB NUMBER

880-29073-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/7/2023 10:13:31 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 99 of 197

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

Definitions/Glossary

Client: TRC Solutions Inc.

.lob ID: 880-29073-1

Client: TRC Solu Project/Site: Roo		
Qualifiers		3
GC/MS VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	8
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac		13
DL DA DE IN	Detection Limit (DoD/DOE)	10
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ MCL	Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level"	
MDA	EPA recommended "Maximum Contaminant Level" Minimum Detectable Activity (Radiochemistry)	
MDA	Minimum Detectable Activity (Radiocnemistry) Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 880-29073-1

Job ID: 880-29073-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-29073-1

Receipt

The samples were received on 6/5/2023 10:38 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SW-07 (880-29073-1), SW-08 (880-29073-2), SW-09 (880-29073-3) and SW-10 (880-29073-4).

GC/MS VOA

Method 8260D: The following samples were diluted due to the nature of the sample matrix: (890-4774-A-3-A) and (890-4774-A-3-A MS). Elevated reporting limits (RLs) are provided. Sample was prepped with methanol from a bulk jar.

Method 8260D: The matrix spike (MS) recoveries for preparation batch 860-106236 and analytical batch 860-106343 were outside control limits. Sample matrix interference is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8260D: Sample is a bulk jar.SW-07 (880-29073-1), SW-08 (880-29073-2), SW-09 (880-29073-3) and SW-10 (880-29073-4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed 5H

Client Sample ID: SW-07 Date Collected: 06/01/23 14:44

Date Received: 06/05/23 10:38

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.000990	U	0.000990	mg/Kg		06/06/23 16:55	06/06/23 17:51	
Toluene	<0.00495	U	0.00495	mg/Kg		06/06/23 16:55	06/06/23 17:51	
Ethylbenzene	<0.000990	U	0.000990	mg/Kg		06/06/23 16:55	06/06/23 17:51	
n,p-Xylenes	<0.00198	U	0.00198	mg/Kg		06/06/23 16:55	06/06/23 17:51	
o-Xylene	<0.000990	U	0.000990	mg/Kg		06/06/23 16:55	06/06/23 17:51	
Kylenes, Total	<0.00198	U	0.00198	mg/Kg		06/06/23 16:55	06/06/23 17:51	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		56 - 150			06/06/23 16:55	06/06/23 17:51	
1-Bromofluorobenzene (Surr)	108		68 - 152			06/06/23 16:55	06/06/23 17:51	
Dibromofluoromethane (Surr)	101		53 - 142			06/06/23 16:55	06/06/23 17:51	
Toluene-d8 (Surr)	103		70 - 130			06/06/23 16:55	06/06/23 17:51	
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal BTEX	<0.00198	U	0.00198	mg/Kg			06/07/23 11:05	
Method: SW846 8015 NM - Diese								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8	mg/Kg			06/06/23 13:35	
Method: SW846 8015B NM - Dies	• •	• • •	• •		_	- ·		
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.8	U	49.8	mg/Kg		06/06/23 09:42	06/06/23 11:00	
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/06/23 09:42	06/06/23 11:00	
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/06/23 09:42	06/06/23 11:00	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
I-Chlorooctane	99		70 - 130			06/06/23 09:42	06/06/23 11:00	
p-Terphenyl	100		70 - 130			06/06/23 09:42	06/06/23 11:00	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	53.6		5.04	mg/Kg			06/06/23 08:26	
lient Sample ID: SW-08						Lab Sam	ple ID: 880-2	9073-
ate Collected: 06/01/23 14:55							Matri	ix: Soli
ate Received: 06/05/23 10:38								
Method: SW846 8260D - Volatile	Organic Comp	ounds by G	C/MS					
	• •	-	RL	1114	_	Descented	Analyzad	D 11 E
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00101	U	0.00101	mg/Kg		06/06/23 16:55	06/06/23 18:15	1
Toluene	<0.00503	U	0.00503	mg/Kg		06/06/23 16:55	06/06/23 18:15	1
Ethylbenzene	<0.00101	U	0.00101	mg/Kg		06/06/23 16:55	06/06/23 18:15	1
m,p-Xylenes	<0.00201	U	0.00201	mg/Kg		06/06/23 16:55	06/06/23 18:15	1
o-Xylene	<0.00101	U	0.00101	mg/Kg		06/06/23 16:55	06/06/23 18:15	1
Xylenes, Total	<0.00201	U	0.00201	mg/Kg		06/06/23 16:55	06/06/23 18:15	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		56 - 150			06/06/23 16:55	06/06/23 18:15	1

Eurofins Midland

Page 102 of 197

Job ID: 880-29073-1

Lab Sample ID: 880-29073-1

Matrix: Solid

5

Released to Imaging: 5/15/2024 2:25:32 PM

Client Sample Results

Limits

68 - 152

53 - 142

70 - 130

Page 103 of 197

Job ID: 880-29073-1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed 5H

Client Sample ID: SW-08 Date Collected: 06/01/23 14:55

Date Received: 06/05/23 10:38

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Surrogate

Toluene-d8 (Surr)

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)

%Recovery Qualifier

105

99

101

Lab Sample	ID:	880-29073	3-2
		Matrix: So	blid

Analyzed

Prepared

06/06/23 16:55

06/06/23 16:55

06/06/23 16:55

5 Dil Fac 06/06/23 18:15 1 06/06/23 18:15 1 06/06/23 18:15 1

otal BTEX	<0.00201					Prepared	Analyzed	Dil Fac
	0.00201	U	0.00201	mg/Kg			06/07/23 11:05	1
lethod: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)					
nalyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<49.9	U	49.9	mg/Kg			06/06/23 13:35	1
lethod: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
nalyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
asoline Range Organics	<49.9	U	49.9	mg/Kg		06/06/23 09:42	06/06/23 12:05	1
GRO)-C6-C10								
iesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/06/23 09:42	06/06/23 12:05	1
10-C28)								
Il Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/06/23 09:42	06/06/23 12:05	1
urrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Chlorooctane	104		70 - 130			06/06/23 09:42	06/06/23 12:05	1
Terphenyl	105		70 - 130			06/06/23 09:42	06/06/23 12:05	1
lethod: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
nalyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
hloride	395		5.02	mg/Kg			06/06/23 08:31	1
ient Sample ID: SW-09						Lab Sam	ple ID: 880-2	0072 2

Date Received: 06/05/23 10:38

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00101	U	0.00101	mg/Kg		06/06/23 16:55	06/06/23 18:40	1
Toluene	<0.00504	U	0.00504	mg/Kg		06/06/23 16:55	06/06/23 18:40	1
Ethylbenzene	<0.00101	U	0.00101	mg/Kg		06/06/23 16:55	06/06/23 18:40	1
m,p-Xylenes	<0.00202	U	0.00202	mg/Kg		06/06/23 16:55	06/06/23 18:40	1
o-Xylene	<0.00101	U	0.00101	mg/Kg		06/06/23 16:55	06/06/23 18:40	1
Xylenes, Total	<0.00202	U	0.00202	mg/Kg		06/06/23 16:55	06/06/23 18:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		56 - 150			06/06/23 16:55	06/06/23 18:40	1
4-Bromofluorobenzene (Surr)	102		68 - 152			06/06/23 16:55	06/06/23 18:40	1
Dibromofluoromethane (Surr)	102		53 - 142			06/06/23 16:55	06/06/23 18:40	1
Toluene-d8 (Surr)	100		70 - 130			06/06/23 16:55	06/06/23 18:40	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
		o		Unit	D	Drevered	A maly mad	Dil Fac
Analyte	Result	Qualifier	RL	Unit	U	Prepared	Analyzed	DIFac

5

Lab Sample ID: 880-29073-3 Matrix: Solid

Date Collected: 06/01/23 15:15 Date Received: 06/05/23 10:38

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed 5H **Client Sample ID: SW-09**

Total TPH Method: SW846 8015B NM - Diesel R Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chn Analyte Chloride Client Sample ID: SW-10 Date Collected: 06/01/23 15:20 Date Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene Toluene	Result <50.0 <50.0 <50.0 %Recovery 102 102 romatograp	unics (DRO) Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared 06/06/23 09:42 06/06/23 09:42 06/06/23 09:42 Prepared	06/06/23 13:35 Analyzed 06/06/23 12:26 06/06/23 12:26	1 Dil Fac 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chu Analyte Chloride Client Sample ID: SW-10 Date Collected: 06/01/23 15:20 Date Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	Result <50.0 <50.0 <50.0 %Recovery 102 102 romatograp Result	Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 70.130 70.130	mg/Kg	<u>D</u>	06/06/23 09:42 06/06/23 09:42 06/06/23 09:42	06/06/23 12:26 06/06/23 12:26	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Client Sample ID: SW-10 Date Collected: 06/01/23 15:20 Date Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	Result <50.0	Qualifier U U Qualifier	RL 50.0 50.0 50.0 50.0 70.130 70.130	mg/Kg	<u>D</u>	06/06/23 09:42 06/06/23 09:42 06/06/23 09:42	06/06/23 12:26 06/06/23 12:26	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Client Sample ID: SW-10 Date Collected: 06/01/23 15:20 Date Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	<50.0 <50.0 %Recovery 102 102 romatograp Result	U U Qualifier Dhy - Solubl	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	mg/Kg		06/06/23 09:42 06/06/23 09:42 06/06/23 09:42	06/06/23 12:26 06/06/23 12:26	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Stient Sample ID: SW-10 ate Collected: 06/01/23 15:20 ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	<50.0 %Recovery 102 102 romatograp Result	U Qualifier Dhy - Solubl	50.0 <u>Limits</u> 70 - 130 70 - 130	mg/Kg		06/06/23 09:42		
C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Chlor	<50.0 %Recovery 102 102 romatograp Result	U Qualifier Dhy - Solubl	50.0 <u>Limits</u> 70 - 130 70 - 130			06/06/23 09:42		
Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Elient Sample ID: SW-10 ate Collected: 06/01/23 15:20 ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	%Recovery 102 102 romatograp Result	Qualifier	Limits 70 - 130 70 - 130	mg/Kg			06/06/23 12:26	
Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride	%Recovery 102 102 romatograp Result	Qualifier	Limits 70 - 130 70 - 130	mg/Kg			06/06/23 12:26	
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Chr Analyte Chlorid Chloride Chloride Chloride Chlor	102 102 romatograp Result	ohy - Solubl	70 - 130 70 - 130			Prepared		
o-Terphenyl Method: EPA 300.0 - Anions, Ion Chr Analyte Chlorid	102 I <mark>romatograp</mark> Result	-	70 - 130			•	Analyzed	Dil Fa
Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Chloride Chloride Client Sample ID: SW-10 ate Collected: 06/01/23 15:20 ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	romatograp Result	-				06/06/23 09:42	06/06/23 12:26	
Analyte Chloride lient Sample ID: SW-10 ate Collected: 06/01/23 15:20 ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	Result	-	٥			06/06/23 09:42	06/06/23 12:26	
Analyte Chloride Client Sample ID: SW-10 ate Collected: 06/01/23 15:20 ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	Result	-	.					
lient Sample ID: SW-10 ate Collected: 06/01/23 15:20 ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene	282		RL	Unit	D	Prepared	Analyzed	Dil Fa
ate Collected: 06/01/23 15:20 ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene			5.02	mg/Kg			06/06/23 08:37	
ate Collected: 06/01/23 15:20 ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene						Lah Sam	ple ID: 880-2	9073-4
ate Received: 06/05/23 10:38 Method: SW846 8260D - Volatile Org Analyte Benzene						Lab Gam	-	x: Solid
Method: SW846 8260D - Volatile Org Analyte Benzene							Wath	x. 50m
Analyte								
Benzene		OUNDER DU CONTRACTORIO CONTRACTORICO CONTRACTICO CONTRACTORICO CONTRACTICO	C/MS RL	Unit	D	Prepared	Analyzed	Dil Fa
	<0.000996		0.000996	mg/Kg		06/06/23 16:55	06/06/23 19:04	
	< 0.00498		0.00498	mg/Kg		06/06/23 16:55	06/06/23 19:04	
Ethylbenzene	<0.000996		0.000996	mg/Kg		06/06/23 16:55	06/06/23 19:04	
m,p-Xylenes	< 0.00199		0.00199	mg/Kg		06/06/23 16:55	06/06/23 19:04	
o-Xylene	<0.000996		0.000996	mg/Kg		06/06/23 16:55	06/06/23 19:04	
Xylenes, Total	< 0.00199		0.00199	mg/Kg		06/06/23 16:55	06/06/23 19:04	
, , , , , , , , , , , , , , , , , , ,	0.00100	C C	0.00100			00,00,20 10.00	00,00,20 1010 1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	99		56 - 150			06/06/23 16:55	06/06/23 19:04	
4-Bromofluorobenzene (Surr)	99		68 - 152			06/06/23 16:55	06/06/23 19:04	
Dibromofluoromethane (Surr)	98		53 - 142			06/06/23 16:55	06/06/23 19:04	
Toluene-d8 (Surr)	100		70 - 130			06/06/23 16:55	06/06/23 19:04	
Method: TAL SOP Total BTEX - Total	BTEX Cal	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00199	U	0.00199	mg/Kg			06/07/23 11:05	
Method: SW846 8015 NM - Diesel Ra	ango Organ		SC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			06/06/23 13:35	
Method: SW846 8015B NM - Diesel F	Pango Orga		(60)					
Analyte		Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0		50.0	mg/Kg		06/06/23 09:42	06/06/23 12:48	
(GRO)-C6-C10				5.5				
Diesel Range Organics (Over		U	50.0	mg/Kg		06/06/23 09:42	00/00/00	1
C10-C28) Oll Range Organics (Over C28-C36)	<50.0						06/06/23 12:48	

Eurofins Midland

Job ID: 880-29073-1

Client: TRC Solutions, Inc.

Chloride

Client Sample Results

Job ID: 880-29073-1

06/06/23 08:42

Project/Site: Rocket Fed 5H **Client Sample ID: SW-10** Lab Sample ID: 880-29073-4 Date Collected: 06/01/23 15:20 Matrix: Solid Date Received: 06/05/23 10:38 Surrogate Limits %Recovery Qualifier Prepared Analyzed Dil Fac 1-Chlorooctane 103 70 - 130 06/06/23 09:42 06/06/23 12:48 o-Terphenyl 105 70 - 130 06/06/23 09:42 06/06/23 12:48 1 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac

5.00

mg/Kg

844

Eurofins Midland

Method: 8260D - Volatile Organic Compounds by GC/MS Matrix: Solid

				Percent Su	rrogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(56-150)	(68-152)	(53-142)	(70-130)
880-29073-1	SW-07	101	108	101	103
880-29073-2	SW-08	104	105	99	101
880-29073-3	SW-09	103	102	102	100
880-29073-4	SW-10	99	99	98	100
890-4774-A-3-A MS	Matrix Spike	103	116	107	103
LCS 860-106343/11	Lab Control Sample	102	108	109	102
LCSD 860-106343/12	Lab Control Sample Dup	103	107	109	102
MB 860-106343/15	Method Blank	95	104	101	100

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-29073-1	SW-07	99	100
880-29073-1 MS	SW-07	111	105
880-29073-1 MSD	SW-07	113	104
880-29073-2	SW-08	104	105
880-29073-3	SW-09	102	102
880-29073-4	SW-10	103	105
LCS 880-54840/2-A	Lab Control Sample	105	99
LCSD 880-54840/3-A	Lab Control Sample Dup	103	97
MB 880-54840/1-A	Method Blank	115	118

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

5

Client: TRC Solutions, Inc. Project/Site: Rocket Fed 5H

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: 890-4774-A- Matrix: Solid Analysis Batch: 106343	3-A MS							Client	Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 106236
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.294	F1	2.48	1.992	F1	mg/Kg		69	71 - 119
Toluene	0.561	F1	2.48	2.295	F1	mg/Kg		70	74 - 122
Ethylbenzene	0.225	F1	2.48	2.156	F1	mg/Kg		78	80 - 123
m,p-Xylenes	0.413		2.48	2.382		mg/Kg		80	78 - 127
o-Xylene	0.155		2.48	2.130		mg/Kg		80	79 - 125
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						
1,2-Dichloroethane-d4 (Surr)	103		56 - 150						
4-Bromofluorobenzene (Surr)	116		68 - 152						
Dibromofluoromethane (Surr)	107		53 - 142						
Toluene-d8 (Surr)	103		70 _ 130						
Lab Sample ID: MB 860-106	343/15							Client S	ample ID: Method Blank

Lab Sample ID: MB 860-106343/15 Matrix: Solid Analysis Batch: 106343

	MD							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00100	U	0.00100	mg/Kg			06/06/23 11:48	1
Toluene	<0.00500	U	0.00500	mg/Kg			06/06/23 11:48	1
Ethylbenzene	<0.00100	U	0.00100	mg/Kg			06/06/23 11:48	1
m,p-Xylenes	<0.00200	U	0.00200	mg/Kg			06/06/23 11:48	1
o-Xylene	<0.00100	U	0.00100	mg/Kg			06/06/23 11:48	1
Xylenes, Total	<0.00200	U	0.00200	mg/Kg			06/06/23 11:48	1
	MB	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		56 - 150		-		06/06/23 11:48	1
4-Bromofluorobenzene (Surr)	104		68 - 152				06/06/23 11:48	1
Dibromofluoromethane (Surr)	101		53 - 142				06/06/23 11:48	1
Toluene-d8 (Surr)	100		70 - 130				06/06/23 11:48	1

109

102

Lab Sample ID: LCS 860-106343/11 Matrix: Solid

Analysis Batch: 106343

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene			0.0500	0.05247		mg/Kg		105	66 - 142	
Toluene			0.0500	0.05155		mg/Kg		103	74 - 130	
Ethylbenzene			0.0500	0.05766		mg/Kg		115	80 - 130	
m,p-Xylenes			0.0500	0.05772		mg/Kg		115	78 - 130	
o-Xylene			0.0500	0.05813		mg/Kg		116	79 - 130	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	102		56 - 150							
4-Bromofluorobenzene (Surr)	108		68 - 152							

5

7 8

Job ID: 880-29073-1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

53 - 142

70 - 130

Prep Type: Total/NA

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCSD 860-106 Matrix: Solid						01	5.11	Juli		ab Control S Prep Typ		
Analysis Batch: 106343										Fieb ist	Je. 10	
			Spike	LCSD	LCSD					%Rec		RPI
Analyte			Added	Result	Qualifier	r Unit		D	%Rec	Limits	RPD	Lim
Benzene			0.0500	0.05431		mg/Kg			109	66 - 142	3	2
Toluene			0.0500	0.05021		mg/Kg			100	74 - 130	3	2
Ethylbenzene			0.0500	0.05537		mg/Kg			111	80 - 130	4	2
m,p-Xylenes			0.0500	0.05621		mg/Kg			112	78 - 130	3	2
o-Xylene			0.0500	0.05611		mg/Kg			112	79 - 130	4	2
	LCSD LC	SD										
Surrogate	%Recovery Qu	alifier	Limits									
1,2-Dichloroethane-d4 (Surr)	103		56 - 150									
4-Bromofluorobenzene (Surr)	107		68 - 152									
Dibromofluoromethane (Surr)	109		53 - 142									
Toluene-d8 (Surr)	102		70 - 130									
lethod: 8015B NM - Diese	I Range Orga	nics (DF	(GC)									
Lab Sample ID: MB 880-54840/	/1- A								Client Sa	ample ID: Me	thod	Blan
Matrix: Solid										Prep Typ	e: To	tal/N
Analysis Batch: 54827										Prep B	atch:	5484
	M	в мв										
Analyte	Resu	It Qualifier	RI	·	Un	it	D	P	repared	Analyzed		Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.	0 U	50.0)	mg	ı/Kg		06/0	6/23 08:00	06/06/23 08:	28	
Diesel Range Organics (Over C10-C28)	<50.	0 U	50.0)	mg	ı/Kg		06/0	6/23 08:00	06/06/23 08:	28	
Oll Range Organics (Over C28-C36)	<50.	0 U	50.0)	mg	J/Kg		06/0	6/23 08:00	06/06/23 08:	28	
	М	B MB										
Surrogate	%Recover	y Qualifier	Limits					P	repared	Analyzed		Dil Fa
1-Chlorooctane	11	5	70 - 130	-				06/0	6/23 08:00	06/06/23 08:	28	
o-Terphenyl	11	8	70 - 130					06/0	6/23 08:00	06/06/23 08:	28	
Lab Sample ID: LCS 880-54840)/2-A						с	lient	Sample	ID: Lab Con	trol S	ampl
Matrix: Solid										Prep Typ		
Analysis Batch: 54827										Prep B		
			Spike	LCS	LCS					%Rec		
Analyte			Added	Result	Qualifie	r Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10			1000	940.0		mg/Kg			94	70 - 130		
Diesel Range Organics (Over C10-C28)			1000	820.3		mg/Kg			82	70 - 130		
	LCS LC	s										
Surrogate	%Recovery Qu	alifier	Limits									
1-Chlorooctane	105		70 - 130									
QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-54	1840/3-A					Clier	nt Sam	ple ID:	Lab Contro		
Matrix: Solid										уре: То	
Analysis Batch: 54827									Prep	Batch:	54840
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	890.5		mg/Kg		89	70 - 130	5	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	788.6		mg/Kg		79	70 - 130	4	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	103		70 - 130								
o-Terphenyl	97		70 - 130								
	07		102100								
Lab Sample ID: 880-29073-1	MS								Client Sam	ple ID: \$	SW-07
Matrix: Solid										ype: To	
Analysis Batch: 54827										Batch:	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.8	U	999	955.4		mg/Kg		96	70 - 130		
(GRO)-C6-C10						5. 5					
Diesel Range Organics (Over	<49.8	U	999	856.4		mg/Kg		84	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	111		70 - 130								
o-Terphenyl	105		70 - 130								
Lab Sample ID: 880-29073-1	MSD								Client Sam	ple ID: \$	SW-07
Matrix: Solid									Prep 1	ype: To	tal/NA
Analysis Batch: 54827									Prep	Batch:	54840
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.8	U	997	967.3		mg/Kg		97	70 - 130	1	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.8	U	997	854.8		mg/Kg		84	70 - 130	0	20
C10-C28)											
	MSD	MSD									
	%Recovery	Qualifier	Limits								
Surrogate	//////////////////////////////////////										
Surrogate 1-Chlorooctane			70 - 130								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-54671/1-A Matrix: Solid Analysis Batch: 54785						Client Sa	ample ID: Metho Prep Type:	
	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			06/05/23 18:20	1

Eurofins Midland

Job ID: 880-29073-1

QC Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed 5H

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS	880-54671/2-A						Client	Sample	D: Lab Co	ontrol Sa	ample
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 5478	85										
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	249.6		mg/Kg		100	90 - 110		
Lab Sample ID: LCS	D 880-54671/3-A					Clier	nt Sam	ple ID:	Lab Contro	ol Sample	e Du
Matrix: Solid									Prep	Type: So	olubl
Analysis Batch: 5478	85										
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Chloride			250	250.3		mg/Kg		100	90 - 110	0	2
Lab Sample ID: 890-	4773-A-1-B MS							Client	Sample ID	: Matrix	Spik
Matrix: Solid									Prep	Type: So	olubl
Analysis Batch: 5478	85										
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	389		250	624.9		mg/Kg		95	90 _ 110		
Lab Sample ID: 890-	4773-A-1-C MSD					Cli	ient Sa	ample IC): Matrix Sp	oike Dup	olicat
Matrix: Solid									Prep	Type: So	olubl
Analysis Batch: 5478	85										
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Chloride	389		250	624.9		mg/Kg		95	90 - 110	0	2

QC Association Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed 5H Job ID: 880-29073-1

5

GC/MS VOA

Prep Batch: 106236

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
390-4774-A-3-A MS	Matrix Spike	Total/NA	Solid	5035	
nalysis Batch: 10634	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-29073-1	SW-07	Total/NA	Solid	8260D	106420
380-29073-2	SW-08	Total/NA	Solid	8260D	106420
380-29073-3	SW-09	Total/NA	Solid	8260D	106420
380-29073-4	SW-10	Total/NA	Solid	8260D	106420
MB 860-106343/15	Method Blank	Total/NA	Solid	8260D	
LCS 860-106343/11	Lab Control Sample	Total/NA	Solid	8260D	
_CSD 860-106343/12	Lab Control Sample Dup	Total/NA	Solid	8260D	
390-4774-A-3-A MS	Matrix Spike	Total/NA	Solid	8260D	106236

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29073-1	SW-07	Total/NA	Solid	5035	
880-29073-2	SW-08	Total/NA	Solid	5035	
880-29073-3	SW-09	Total/NA	Solid	5035	
880-29073-4	SW-10	Total/NA	Solid	5035	

Analysis Batch: 106596

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29073-1	SW-07	Total/NA	Solid	Total BTEX	
880-29073-2	SW-08	Total/NA	Solid	Total BTEX	
880-29073-3	SW-09	Total/NA	Solid	Total BTEX	
880-29073-4	SW-10	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 54827

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29073-1	SW-07	Total/NA	Solid	8015B NM	54840
880-29073-2	SW-08	Total/NA	Solid	8015B NM	54840
880-29073-3	SW-09	Total/NA	Solid	8015B NM	54840
880-29073-4	SW-10	Total/NA	Solid	8015B NM	54840
MB 880-54840/1-A	Method Blank	Total/NA	Solid	8015B NM	54840
LCS 880-54840/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	54840
LCSD 880-54840/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	54840
880-29073-1 MS	SW-07	Total/NA	Solid	8015B NM	54840
880-29073-1 MSD	SW-07	Total/NA	Solid	8015B NM	54840

Prep Batch: 54840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29073-1	SW-07	Total/NA	Solid	8015NM Prep	
880-29073-2	SW-08	Total/NA	Solid	8015NM Prep	
880-29073-3	SW-09	Total/NA	Solid	8015NM Prep	
880-29073-4	SW-10	Total/NA	Solid	8015NM Prep	
MB 880-54840/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-54840/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-54840/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-29073-1 MS	SW-07	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 111 of 197

QC Association Summary

GC Semi VOA (Continued)

Prep Batch: 54840 (Continued)

Lab Sample ID 880-29073-1 MSD	Client Sample ID SW-07	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
Analysis Batch: 548	87				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29073-1	SW-07	Total/NA	Solid	8015 NM	
880-29073-2	SW-08	Total/NA	Solid	8015 NM	
880-29073-3	SW-09	Total/NA	Solid	8015 NM	
880-29073-4	SW-10	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 54671

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29073-1	SW-07	Soluble	Solid	DI Leach	
880-29073-2	SW-08	Soluble	Solid	DI Leach	
880-29073-3	SW-09	Soluble	Solid	DI Leach	
880-29073-4	SW-10	Soluble	Solid	DI Leach	
MB 880-54671/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-54671/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-54671/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4773-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-4773-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 54785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29073-1	SW-07	Soluble	Solid	300.0	54671
880-29073-2	SW-08	Soluble	Solid	300.0	54671
880-29073-3	SW-09	Soluble	Solid	300.0	54671
880-29073-4	SW-10	Soluble	Solid	300.0	54671
MB 880-54671/1-A	Method Blank	Soluble	Solid	300.0	54671
LCS 880-54671/2-A	Lab Control Sample	Soluble	Solid	300.0	54671
LCSD 880-54671/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	54671
890-4773-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	54671
890-4773-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	54671

5

8

Job ID: 880-29073-1

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed 5H

Client Sample ID: SW-07

Date Collected: 06/01/23 14:44

Date Received: 06/05/23 10:38

Client Sample ID: SW-08

Date Collected: 06/01/23 14:55

Date Received: 06/05/23 10:38

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Prep Type

Total/NA

Total/NA

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Batch

Туре

Prep

Analysis

Prep

Batch

Method

5035

8260D

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

Batch

8015 NM

Initial

Amount

5.05 g

5 mL

10.04 g

1 uL

4.96 g

Initial

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Final

Batch

Number

106420

106343

106596

54887

54840

54827

54671

54785

Batch

Number

106420

106343

Dil

1

1

1

1

1

Dil

Factor

Run

Job ID: 880-29073-1

Lab Sample ID: 880-29073-1

Analyst

MTMG

MTMG

KLV

SM

AM

SM

ĸs

СН

Prepared

or Analyzed

06/06/23 16:55

06/06/23 17:51

06/07/23 11:05

06/06/23 13:35

06/06/23 09:42

06/06/23 11:00

06/05/23 11:00

06/06/23 08:26

Prepared

or Analyzed

06/06/23 16:55

06/06/23 18:15

Matrix: Solid

Lab

EET HOU

EET HOU

EET HOU

EET MID

EET MID

EET MID

FFT MID

EET MID

Lab

EET HOU

EET HOU

Matrix: Solid

Lab Sample ID: 880-29073-2 Matrix: Solid

Analyst

MTMG

Lab Sample ID: 880-29073-3

Lab Sample ID: 880-29073-4

KLV

rix: Solia

11 12 13

Method	Run	Factor	Amount	Amount
5035			4.97 g	5 mL
8260D		1	5 mL	5 mL
Total BTEX		1		

Total/NA	Analysis	Total BTEX	1			106596	06/07/23 11:05	MTMG	EET HOU
Total/NA	Analysis	8015 NM	1			54887	06/06/23 13:35	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM	1	10.02 g 1 uL	10 mL 1 uL	54840 54827	06/06/23 09:42 06/06/23 12:05	AM SM	EET MID EET MID
Soluble Soluble	Leach Analysis	DI Leach 300.0	1	4.98 g	50 mL	54671 54785	06/05/23 11:00 06/06/23 08:31	KS CH	EET MID EET MID

Client Sample ID: SW-09

Date Collected: 06/01/23 15:15

Date Received: 06/05/23 10:38

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	106420	06/06/23 16:55	MTMG	EET HOU
Total/NA	Analysis	8260D		1	5 mL	5 mL	106343	06/06/23 18:40	KLV	EET HOU
Total/NA	Analysis	Total BTEX		1			106596	06/07/23 11:05	MTMG	EET HOU
Total/NA	Analysis	8015 NM		1			54887	06/06/23 13:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54840	06/06/23 09:42	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54827	06/06/23 12:26	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	54671	06/05/23 11:00	KS	EET MID
Soluble	Analysis	300.0		1			54785	06/06/23 08:37	СН	EET MID

Client Sample ID: SW-10 Date Collected: 06/01/23 15:20 Date Received: 06/05/23 10:38

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	106420	06/06/23 16:55	MTMG	EET HOU
Total/NA	Analysis	8260D		1	5 mL	5 mL	106343	06/06/23 19:04	KLV	EET HOU
Total/NA	Analysis	Total BTEX		1			106596	06/07/23 11:05	MTMG	EET HOU

Eurofins Midland

Matrix: Solid

Released to Imaging: 5/15/2024 2:25:32 PM

Matrix: Solid

Job ID: 880-29073-1

Lab Sample ID: 880-29073-4

Client: TRC Solutions, Inc. Project/Site: Rocket Fed 5H

Client Sample ID: SW-10 Date Collected: 06/01/23 15:20 Date Received: 06/05/23 10:38

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			54887	06/06/23 13:35	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	54840	06/06/23 09:42	AM	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	54827	06/06/23 12:48	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	54671	06/05/23 11:00	KS	EET MID
Soluble	Analysis	300.0		1			54785	06/06/23 08:42	СН	EET MID

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200 EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 5/15/2024 2:25:32 PM

Accreditation/Certification Summary

Client: TRC Solutions, Inc.

Job ID: 880-29073-1

Project/Site: Rocket Fe	ed 5H				
Laboratory: Eurof		y were covered under each acc	creditation/certification below.		3
Authority		Program	Identification Number	Expiration Date	4
Texas		NELAP	T104704400-22-25	06-30-23	5
The following analytes the agency does not of		rt, but the laboratory is not certi	fied by the governing authority. This list ma	ay include analytes for which	5
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Laboratory: Eurof	ins Houston				
-		y were covered under each acc	creditation/certification below.		8
Authority		Program	Identification Number	Expiration Date	Q
Texas		NELAP	T104704215-23-50	06-30-23	
The following analytes the agency does not of		rt, but the laboratory is not certi	fied by the governing authority. This list ma	ay include analytes for which	10
Analysis Method	Prep Method	Matrix	Analyte		
Total BTEX		Solid	Total BTEX		
_					
					13

Method Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed 5H Job ID: 880-29073-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET HOU
Total BTEX	Total BTEX Calculation	TAL SOP	EET HOU
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET HOU
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = AS	STM International		
EPA = US	Environmental Protection Agency		
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	tion, November 1986 And Its Updates.	
TAL SOP =	TestAmerica Laboratories, Standard Operating Procedure		

Laboratory References:

EET HOU = Eurofins Houston, 4145 Greenbriar Dr, Stafford, TX 77477, TEL (281)240-4200

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

11 12 13

Eurofins Midland

Page 116 of 197

Sample Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed 5H Job ID: 880-29073-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-29073-1	SW-07	Solid	06/01/23 14:44	06/05/23 10:38
880-29073-2	SW-08	Solid	06/01/23 14:55	06/05/23 10:38
880-29073-3	SW-09	Solid	06/01/23 15:15	06/05/23 10:38
880-29073-4	SW-10	Solid	06/01/23 15:20	06/05/23 10:38

n of Custody	Comments Comments ownfields RRC Superfund PST/UST TRRP Level IV	Preservative Codes None NO Di Water H2O Cool Cool Cool Cool H2L HNO H2SO4 H2 H3PO4 HP Marso NaOH Marso NaOH Na<55.03 NaSO Sample Comments Sample Comments	TI Sn U V Zn /7470 /7471	Date/Time Bate/Time
W(B80-29073 Chain of Custody	Work Order Comments Work Order Comments Program UST/PST Program UST/PST State of Project: Reporting Reporting Level III Deliverables FDD	Co No Co No Na Co No Na Na Na Na Na Na Na Na Na Na	Vi K Se Ag SiO ₂ Na Sr Hg 1631/2451	Received by (Signature)
tody 1X (214) 902-0300 0, TX (210) 509-3334 1X (806) 794-1296 NM (575) 888-3199		ANALYSIS REQUEST	exas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K 010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions for any losses or expenses incurred by the client if subcontractors. It assigns standard terms and conditions	Relinquished by (Signature) 2 6
Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440 San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443 Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550 Carlsbad NM (575) 988-3199		Baramerers Bare	11 AI Sb As Ba Be B Cd 8RCRA Sb As Ba Be Cd C mpany to Eurofins Xenco, its affillates and foxes or expenses incurred by the client if submitted to Eurofins Xenco. but not anal	Date/Time
nment Testing	Fèc Bill tor (if different) Company Name Company Name Address. Address. Fmail Its/Lin	Turn Around Turn Around Turn Around Due Date Date Tamperature Reading Sempled Sampled Sampled Sampled Date Tamperature Date Date <th< td=""><td>BRCRA 13PPM Texas 11 nalyzed TCLP / SPLP 6010 8R mples constitutes a valid purchase order from client comparamples and shall not assume any responsibility for any losse led to each project and a charge of \$5\$ for each sumble subm</td><td>Received by (Signature)</td></th<>	BRCRA 13PPM Texas 11 nalyzed TCLP / SPLP 6010 8R mples constitutes a valid purchase order from client comparamples and shall not assume any responsibility for any losse led to each project and a charge of \$5\$ for each sumble subm	Received by (Signature)
Control Control Kenco	Project Manager X9 \$0 505 50 Company Name 772 C Address 10 NAPLAN C City, State ZIP NAPLAN 233, 2022	Project Name Peckrif Project Number Project Number Project Location Sampler's Name Sampler's Name Cersify PO # Tagga Blank. Samples Received Intact: Ces No Cooler Custody Seals. Yes No Sample Custody Seals. Yes No Total Containers. Sample Identification Subject Custody Seals. Yes No	Total 200.7 / 6010 200.8 / 6020 8RCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Circle Method(s) and Metal(s) to be analyzed TCLP/SPLP 6010 8RCRA Sb As Ba Be B Cd Cr Co Cu Pb Mn Mo Ni K 8 and mo Ni K Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors, it assigns standard terms and conditions of serves. Eurofins Xenco, will be able only for the cost apples and shall not assume any responsibility (or any losses or expenses incurred by the client file set or clientes revolutions of 55 for each sample submitted for each project and a charge of 55 for each sample submit be submitted row will be applied to each project and a charge of 55 for each sample submitted for each project and a charge of 55 for each sample submitted for each project and a charge of 55 for each sample submitted.	Balimquished by (Signature)

Login Sample Receipt Checklist

Client: TRC Solutions, Inc.

Login Number: 29073 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 880-29073-1

List Source: Eurofins Midland

Job Number: 880-29073-1

List Source: Eurofins Houston

List Creation: 06/06/23 03:18 PM

Login Sample Receipt Checklist

Client: TRC Solutions, Inc.

Login Number: 29073 List Number: 2 **Creator: Pena, Jesiel**

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Jared Stoffel TRC Solutions, Inc. 10 Desta Drive Suite #130E Midland, Texas 79705 Generated 6/12/2023 3:15:08 PM

JOB DESCRIPTION

Rocket Fed #5H SDG NUMBER 495436

JOB NUMBER

890-4791-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/12/2023 3:15:08 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

SDG: 495436

Page 123 of 197

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

	Definitions/Glassony	
Client: TRC So	Definitions/Glossary Job ID: 890-4791-1	1
Project/Site: Ro		
Qualifiers		- 3
GC VOA		
Qualifier	Qualifier Description	
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
*1	LCS/LCSD RPD exceeds control limits.	5
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	_
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	3
HPLC/IC		
Qualifier	Qualifier Description	- 19
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	1
Glossary		- 1
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	1
%R	Percent Recovery	
CFL	Contains Free Liquid	1
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML MPN	Minimum Level (Dioxin)	
MPN MQL	Most Probable Number Method Quantitation Limit	
NIQL		

NC Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown)

ND NEG Negative / Absent

POS Positive / Present

PQL Practical Quantitation Limit PRES Presumptive

QC Quality Control

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Carlsbad

Page 125 of 197

Job ID: 890-4791-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-4791-1

Receipt

The samples were received on 6/7/2023 4:45 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 6.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SW-10A (890-4791-1), SW-11 (890-4791-2), SW-12 (890-4791-3), SW-15 (890-4791-4) and SW-16 (890-4791-5).

GC VOA

Method 8021B: The CCV was biased low for some analytes. However, since the internal standard recoveries were acceptable the data was qualified and reported.(CCV 880-55090/33) and (CCV 880-55090/64)

Method 8021B: The LCS was biased low for m-p xylenes, however since the LCSD was acceptable the data was qualified and reported. (LCS 880-55142/1-A)

Method 8021B: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-55142 and analytical batch 880-55090 recovered outside control limits for the following analytes: Toluene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-55142 and analytical batch 880-55090 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: SW-10A (890-4791-1), SW-12 (890-4791-3), SW-15 (890-4791-4), SW-16 (890-4791-5), (LCS 880-55021/2-A), (LCSD 880-55021/3-A) and (MB 880-55021/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-55044 and analytical batch 880-55137 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

Client Sample ID: SW-10A Date Collected: 06/07/23 10:00

Date Received: 06/07/23 16:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		06/09/23 12:15	06/10/23 15:03	1
Toluene	<0.00198	U *1	0.00198	mg/Kg		06/09/23 12:15	06/10/23 15:03	1
Ethylbenzene	<0.00198	U *1	0.00198	mg/Kg		06/09/23 12:15	06/10/23 15:03	1
m-Xylene & p-Xylene	<0.00396	U *- *1	0.00396	mg/Kg		06/09/23 12:15	06/10/23 15:03	1
o-Xylene	<0.00198	U *1	0.00198	mg/Kg		06/09/23 12:15	06/10/23 15:03	1
Xylenes, Total	<0.00396	U *- *1	0.00396	mg/Kg		06/09/23 12:15	06/10/23 15:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			06/09/23 12:15	06/10/23 15:03	1
1,4-Difluorobenzene (Surr)	94		70 - 130			06/09/23 12:15	06/10/23 15:03	1
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			06/12/23 13:03	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Result <50.0		RL 50.0	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 06/09/23 21:28	Dil Fac
Total TPH Method: SW846 8015B NM - Dies	<pre><50.0</pre>	U Inics (DRO)	50.0 (GC)	mg/Kg			06/09/23 21:28	1
Total TPH Method: SW846 8015B NM - Dies Analyte	<50.0 el Range Orga Result	U Inics (DRO) Qualifier	50.0 (GC) RL	mg/Kg Unit	D	Prepared	06/09/23 21:28 Analyzed	
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<pre><50.0</pre>	U Inics (DRO) Qualifier	50.0 (GC)	mg/Kg			06/09/23 21:28	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0 el Range Orga Result	U Inics (DRO) Qualifier U	50.0 (GC) RL	mg/Kg Unit		Prepared	06/09/23 21:28 Analyzed	1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Orga Result <50.0	U nnics (DRO) Qualifier U U	50.0 (GC) <u>RL</u> 50.0	mg/Kg Unit mg/Kg		Prepared 06/08/23 09:44	06/09/23 21:28 Analyzed 06/09/23 12:23	1 Dil Fac 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.0 el Range Orga Result <50.0 <50.0	U Qualifier U U U Qualifier	50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44	06/09/23 21:28 Analyzed 06/09/23 12:23 06/09/23 12:23	1 Dil Fac 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	el Range Orga Result <50.0 <50.0 <50.0	U Qualifier U U U Qualifier	50.0 (GC) RL 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44	06/09/23 21:28 Analyzed 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23	1 1 1 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	<50.0 el Range Orga Result <50.0 <50.0 <50.0 <50.0 %Recovery	U Qualifier U U U Qualifier	50.0 (GC) RL 50.0 50.0 50.0 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared	06/09/23 21:28 Analyzed 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 el Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 <146 118	U Qualifier U U U Qualifier S1+	50.0 (GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared 06/08/23 09:44	O6/09/23 21:28 Analyzed 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23	1 Dil Fac 1 1 1 1 Dil Fac 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	<50.0 el Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery 146 118 Chromatograp	U Qualifier U U U Qualifier S1+	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 6 RL	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared 06/08/23 09:44	O6/09/23 21:28 Analyzed 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23	1 Dil Fac 1 1 1 1 Dil Fac 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	<50.0 el Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery 146 118 Chromatograp	U unics (DRO) Qualifier U U U Qualifier S1+ Dhy - Solubl Qualifier	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130 8	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared 06/08/23 09:44 06/08/23 09:44	06/09/23 21:28 Analyzed 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 Analyzed 06/09/23 12:23 06/09/23 12:23	1 Dil Fac 1 1 1 1 <i>Dil Fac</i> 1 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	<50.0 el Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery 146 118 Chromatograp Result	U unics (DRO) Qualifier U U U Qualifier S1+ Dhy - Solubl Qualifier	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 6 RL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared 06/08/23 09:44 06/08/23 09:44 Prepared	06/09/23 21:28 Analyzed 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 Analyzed Analyzed	1 Dil Fac 1 1 1 <i>Dil Fac</i> 1 <i>Dil Fac</i> 1 1
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	<50.0 el Range Orga Result <50.0 <50.0 <50.0 <50.0 <50.0 %Recovery 146 118 Chromatograp Result	U unics (DRO) Qualifier U U U Qualifier S1+ Dhy - Solubl Qualifier	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 6 RL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared 06/08/23 09:44 06/08/23 09:44 Prepared	06/09/23 21:28 Analyzed 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23 06/09/23 12:23	1 Dil Fac 1 1 1 1 Dil Fac 1 1 Dil Fac 1

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202	mg/Kg		06/09/23 12:15	06/10/23 15:24	1
Toluene	<0.00202	U *1	0.00202	mg/Kg		06/09/23 12:15	06/10/23 15:24	1
Ethylbenzene	<0.00202	U *1	0.00202	mg/Kg		06/09/23 12:15	06/10/23 15:24	1
m-Xylene & p-Xylene	<0.00403	U *- *1	0.00403	mg/Kg		06/09/23 12:15	06/10/23 15:24	1
o-Xylene	<0.00202	U *1	0.00202	mg/Kg		06/09/23 12:15	06/10/23 15:24	1
Xylenes, Total	<0.00403	U *- *1	0.00403	mg/Kg		06/09/23 12:15	06/10/23 15:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			06/09/23 12:15	06/10/23 15:24	1
1,4-Difluorobenzene (Surr)	91		70 - 130			06/09/23 12:15	06/10/23 15:24	1

Eurofins Carlsbad

Page 126 of 197

Job ID: 890-4791-1 SDG: 495436

Lab Sample ID: 890-4791-1

Matrix: Solid

5

Client Sample Results

Job ID: 890-4791-1 SDG: 495436

Matrix: Solid

Matrix: Solid

1

1

1

1

1

1

5

Lab Sample ID: 890-4791-2

Client Sample ID: SW-11 Date Collected: 06/07/23 10:10

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

Date Received: 06/07/23 16:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403	mg/Kg			06/12/23 13:03	1
Method: SW846 8015 NM - Diese	I Range Organi	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			06/09/23 21:28	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/08/23 09:44	06/09/23 12:45	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/08/23 09:44	06/09/23 12:45	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/08/23 09:44	06/09/23 12:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	127		70 - 130			06/08/23 09:44	06/09/23 12:45	1
o-Terphenyl	96		70 - 130			06/08/23 09:44	06/09/23 12:45	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	106		4.99	mg/Kg			06/09/23 12:02	1

Date Collected: 06/07/23 12:30

Date Received: 06/07/23 16:45

Method: SW846 8021B - Volatile Organic Compounds (GC) Result Qualifier Analyte RL Unit D Prepared Analyzed Dil Fac Benzene <0.00198 U 0.00198 06/09/23 12:15 06/10/23 17:15 mg/Kg Toluene <0.00198 U*1 0.00198 06/09/23 12:15 06/10/23 17:15 mg/Kg Ethylbenzene <0.00198 U*1 0.00198 06/09/23 12:15 06/10/23 17:15 mg/Kg <0.00397 U*-*1 06/09/23 12:15 m-Xylene & p-Xylene 0.00397 mg/Kg 06/10/23 17:15 o-Xylene <0.00198 U*1 0.00198 mg/Kg 06/09/23 12:15 06/10/23 17:15 Xylenes, Total <0.00397 U*-*1 0.00397 06/09/23 12:15 06/10/23 17:15 mg/Kg 1 %Recovery Qualifier Limits Dil Fac Prepared Surrogate Analyzed 70 - 130 4-Bromofluorobenzene (Surr) 82 06/09/23 12:15 06/10/23 17:15 1 1,4-Difluorobenzene (Surr) 89 70 - 130 06/09/23 12:15 06/10/23 17:15 the du TAL COD Tatal DTEV Total DTEX Coloulation

Method: TAL SOP Total BTEX -	· Total BIEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397	mg/Kg			06/12/23 13:03	1
- Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (G	iC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			06/09/23 21:28	1
_ Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO) ((GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		06/08/23 09:44	06/09/23 13:07	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/08/23 09:44	06/09/23 13:07	1
C10-C28)								

Eurofins Carlsbad

Job ID: 890-4791-1

Lab Sample ID: 890-4791-3

Lab Sample ID: 890-4791-4

SDG: 495436

Matrix: Solid

Matrix: Solid

5

12 13

Client Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Client Sample ID: SW-12

Date Collected: 06/07/23 12:30 Date Received: 06/07/23 16:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/08/23 09:44	06/09/23 13:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	134	S1+	70 - 130			06/08/23 09:44	06/09/23 13:07	1
o-Terphenyl	104		70 - 130			06/08/23 09:44	06/09/23 13:07	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride			4.99	mg/Kg			06/09/23 12:08	1

Client Sample ID: SW-15

Date Collected: 06/07/23 03:30

Date Received: 06/07/23 16:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/09/23 12:15	06/10/23 17:36	1
Toluene	<0.00200	U *1	0.00200	mg/Kg		06/09/23 12:15	06/10/23 17:36	1
Ethylbenzene	<0.00200	U *1	0.00200	mg/Kg		06/09/23 12:15	06/10/23 17:36	1
m-Xylene & p-Xylene	<0.00399	U *- *1	0.00399	mg/Kg		06/09/23 12:15	06/10/23 17:36	1
o-Xylene	<0.00200	U *1	0.00200	mg/Kg		06/09/23 12:15	06/10/23 17:36	1
Xylenes, Total	<0.00399	U *- *1	0.00399	mg/Kg		06/09/23 12:15	06/10/23 17:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			06/09/23 12:15	06/10/23 17:36	1
1,4-Difluorobenzene (Surr)	92		70 - 130			06/09/23 12:15	06/10/23 17:36	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			06/12/23 13:03	1

Method: SW846 8015 NM - Diesel I	Range Organic	:s (DRO) (GC	;)					
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0 L	U	50.0	mg/Kg			06/09/23 21:28	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		06/08/23 09:44	06/09/23 13:28	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		06/08/23 09:44	06/09/23 13:28	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/08/23 09:44	06/09/23 13:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	135	S1+	70 - 130			06/08/23 09:44	06/09/23 13:28	1
o-Terphenyl	105		70 - 130			06/08/23 09:44	06/09/23 13:28	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	84.5		5.02	mg/Kg			06/09/23 12:13	1

Released to Imaging: 5/15/2024 2:25:32 PM

Job ID: 890-4791-1 SDG: 495436

Matrix: Solid

5

Lab Sample ID: 890-4791-5

Client Sample ID: SW-16 Date Collected: 06/07/23 13:40

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

Date Received: 06/07/23 16:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		06/09/23 12:15	06/10/23 17:56	1
Toluene	<0.00198	U *1	0.00198	mg/Kg		06/09/23 12:15	06/10/23 17:56	1
Ethylbenzene	<0.00198	U *1	0.00198	mg/Kg		06/09/23 12:15	06/10/23 17:56	1
m-Xylene & p-Xylene	<0.00396	U *- *1	0.00396	mg/Kg		06/09/23 12:15	06/10/23 17:56	1
o-Xylene	<0.00198	U *1	0.00198	mg/Kg		06/09/23 12:15	06/10/23 17:56	1
Xylenes, Total	<0.00396	U *- *1	0.00396	mg/Kg		06/09/23 12:15	06/10/23 17:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130			06/09/23 12:15	06/10/23 17:56	1
1,4-Difluorobenzene (Surr)	92		70 - 130			06/09/23 12:15	06/10/23 17:56	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396	mg/Kg			06/12/23 13:03	1
		<mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH		Qualifier		Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total TPH	Result <50.0	Qualifier U	RL 50.0		<u>D</u>	Prepared		
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <50.0	Qualifier U	RL 50.0		<u>D</u> 	Prepared		
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	Result <50.0	Qualifier U nics (DRO) Qualifier	RL 50.0	mg/Kg		<u>.</u>	06/09/23 21:28	1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	(GC)	mg/Kg Unit		Prepared	06/09/23 21:28 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <50.0 sel Range Orga Result <50.0	Qualifier U nics (DRO) Qualifier U U	RL 50.0 (GC) RL 50.0	mg/Kg Unit mg/Kg		Prepared 06/08/23 09:44	06/09/23 21:28 Analyzed 06/09/23 13:51	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <50.0	Qualifier U nics (DRO) Qualifier U U U	RL 50.0 (GC) RL 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44	06/09/23 21:28 Analyzed 06/09/23 13:51 06/09/23 13:51	1 <u>Dil Fac</u> 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <50.0	Qualifier U nics (DRO) Qualifier U U U	RL 50.0 (GC) RL 50.0 50.0 50.0 50.0	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44	06/09/23 21:28 Analyzed 06/09/23 13:51 06/09/23 13:51 06/09/23 13:51	1 Dil Fac 1 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.0	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 Limits	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared	06/09/23 21:28 Analyzed 06/09/23 13:51 06/09/23 13:51 06/09/23 13:51 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Analyte	Result <50.0	Qualifier U nics (DRO) Qualifier U U U Qualifier S1+	RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared 06/08/23 09:44	Analyzed 06/09/23 21:28 Analyzed 06/09/23 13:51 06/09/23 13:51 06/09/23 13:51 Analyzed 06/09/23 13:51	1 Dil Fac 1 1 1 1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <50.0	Qualifier U nics (DRO) Qualifier U U U Qualifier S1+	RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 50.0 50.0 70.130 70.130 70.130	mg/Kg Unit mg/Kg mg/Kg		Prepared 06/08/23 09:44 06/08/23 09:44 06/08/23 09:44 Prepared 06/08/23 09:44	Analyzed 06/09/23 21:28 Analyzed 06/09/23 13:51 06/09/23 13:51 06/09/23 13:51 Analyzed 06/09/23 13:51	1 Dil Fac 1 1 1 1 Dil Fac 1

Released to Imaging: 5/15/2024 2:25:32 PM

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-29010-A-5-B MS	Matrix Spike	109	101		
880-29010-A-5-C MSD	Matrix Spike Duplicate	105	102		6
890-4791-1	SW-10A	91	94		
890-4791-2	SW-11	95	91		
890-4791-3	SW-12	82	89		
890-4791-4	SW-15	95	92		8
890-4791-5	SW-16	87	92		
LCS 880-55142/1-A	Lab Control Sample	99	102		0
LCSD 880-55142/2-A	Lab Control Sample Dup	107	91		J
MB 880-55142/5-A	Method Blank	89	110		
MB 880-55143/5-A	Method Blank	92	108		
Surrogate Legend					
BFB = 4-Bromofluorober	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-29221-A-21-C MS	Matrix Spike	164 S1+	119
880-29221-A-21-D MSD	Matrix Spike Duplicate	157 S1+	114
890-4791-1	SW-10A	146 S1+	118
890-4791-2	SW-11	127	96
890-4791-3	SW-12	134 S1+	104
890-4791-4	SW-15	135 S1+	105
890-4791-5	SW-16	136 S1+	106
LCS 880-55021/2-A	Lab Control Sample	149 S1+	117
LCSD 880-55021/3-A	Lab Control Sample Dup	131 S1+	100
MB 880-55021/1-A	Method Blank	179 S1+	143 S1+

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-4791-1 SDG: 495436

QC Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB	880-55142/5-A

Matrix: Solid Analysis Batch: 55090

-	МВ	МВ					-	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/Kg		06/09/23 12:15	06/10/23 11:02	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/09/23 12:15	06/10/23 11:02	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/09/23 12:15	06/10/23 11:02	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		06/09/23 12:15	06/10/23 11:02	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/09/23 12:15	06/10/23 11:02	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		06/09/23 12:15	06/10/23 11:02	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			06/09/23 12:15	06/10/23 11:02	1
1,4-Difluorobenzene (Surr)	110		70 - 130			06/09/23 12:15	06/10/23 11:02	1

Lab Sample ID: LCS 880-55142/1-A Matrix: Solid

Analysis Batch: 55090

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.09311		mg/Kg		93	70 - 130
Toluene	0.100	0.08637		mg/Kg		86	70 - 130
Ethylbenzene	0.100	0.07327		mg/Kg		73	70 - 130
m-Xylene & p-Xylene	0.200	0.1329	*-	mg/Kg		66	70 - 130
o-Xylene	0.100	0.07204		mg/Kg		72	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 880-55142/2-A

Matrix: Solid

Analysis Ba	tch: 55090							Prep	Batch:	55142
		Spike	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene		0.100	0.1184		mg/Kg		118	70 - 130	24	35
Toluene		0.100	0.1302	*1	mg/Kg		130	70 - 130	40	35
Ethylbenzene		0.100	0.1119	*1	mg/Kg		112	70 - 130	42	35
m-Xylene & p-λ	ylene	0.200	0.2148	*1	mg/Kg		107	70 - 130	47	35
o-Xylene		0.100	0.1043	*1	mg/Kg		104	70 - 130	37	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	91		70 - 130

Lab Sample ID: 880-29010-A-5-B MS

Matrix: Solid Analysia Rataby 55000

Analysis Batch: 55090									Prep	Batch: 55142
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U	0.0994	0.09418		mg/Kg		95	70 - 130	
Toluene	<0.00198	U *1	0.0994	0.08482		mg/Kg		85	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 55142

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Released to	Imaging:	5/15/2024	2:25:32	PM

QC Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

(GRO)-C6-C10

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-29010-A	A-5-B MS							Client S	Sample ID: M	atrix Spi	ke
Matrix: Solid									Prep Typ		
Analysis Batch: 55090										atch: 551	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00198	U *1 F1	0.0994	0.08154		mg/Kg		82	70 - 130		_
m-Xylene & p-Xylene	<0.00396	U *- *1 F1	0.199	0.1366	F1	mg/Kg		68	70 - 130		
o-Xylene	0.00558	*1 F1	0.0994	0.08231		mg/Kg		77	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	109		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
Lab Sample ID: 880-29010-A	A-5-C MSD					с	lient S	ample ID:	Matrix Spike	e Duplica	ite
Matrix: Solid								- i - i - i - i - i - i - i - i - i - i	Prep Typ		
Analysis Batch: 55090									Prep Ba	atch: 551	42
	Sample	Sample	Spike	MSD	MSD				%Rec	R	PD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD Li	mit
Benzene	< 0.00198	U	0.0996	0.09768		mg/Kg		98	70 - 130	4	35
Toluene	<0.00198	U *1	0.0996	0.08104		mg/Kg		81	70 - 130	5	35
Ethylbenzene	<0.00198	U *1 F1	0.0996	0.06698	F1	mg/Kg		67	70 - 130	20	35
m-Xylene & p-Xylene	<0.00396	U *- *1 F1	0.199	0.1094	F1	mg/Kg		54	70 - 130	22	35
o-Xylene	0.00558	*1 F1	0.0996	0.07416	F1	mg/Kg		69	70 - 130	10	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	105		70 - 130								
1,4-Difluorobenzene (Surr)	102		70 - 130								
Lab Sample ID: MB 880-551	43/5-A							Client Sa	ample ID: Me	thod Bla	nk
Matrix: Solid									Prep Typ	e: Total/I	A
Analysis Batch: 55090									Prep Ba	atch: 551	43
		MB MB									
Analyte	Re	esult Qualifie	er RL	·	Unit		D F	Prepared	Analyzed	Dil F	ac
Benzene	<0.00	0200 U	0.00200		mg/K	g	06/0	09/23 12:24	06/09/23 23:2	26	1
Toluene	<0.00	0200 U	0.00200)	mg/K	g	06/0	09/23 12:24	06/09/23 23:2	26	1
Ethylbenzene	<0.00	0200 U	0.00200)	mg/K	g	06/0	09/23 12:24	06/09/23 23:2	26	1
m-Xylene & p-Xylene	.0.00	0400 U	0.00400		mg/K		00/0	09/23 12:24	06/09/23 23:2		1

o-Xylene Xylenes, Total	<0.00200 <0.00400		0.00200 0.00400	mg/Kg mg/Kg	06/09/23 12:24 06/09/23 12:24	06/09/23 23:26 06/09/23 23:26	1 1
	МВ	MB					
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	<u>%Recovery</u> 92	Qualifier	Limits 70 - 130		Prepared 06/09/23 12:24	Analyzed 06/09/23 23:26	Dil Fac
		Qualifier			<u> </u>		Dil Fac 1 1

Lab Sample ID: MB 880-55021/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 55082 Prep Batch: 55021 MB MB Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 mg/Kg 06/08/23 09:44 06/09/23 08:19 1

Page 132 of 197

Job ID: 890-4791-1 SDG: 495436

Eurofins Carlsbad

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Job ID: 890-4791-1 SDG: 495436

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-55021	1/1-4							C	liont Sa	ample ID:	Method	Blank
Matrix: Solid								Ŭ			Type: To	
Analysis Batch: 55082											Batch:	
Analysis Batch. 55062		МВ МВ								Fleb	Datch.	55021
Analyto		ult Qualifie	er RL		Unit		D	Brou	pared	Analyz	od	Dil Fac
Analyte		$\frac{1}{0.0}$ $\frac{1}{0}$	50.0			~		-	23 09:44	Analyz 06/09/23		1 DII Fac
Diesel Range Organics (Over C10-C28)	<21	0.0 0	50.0		mg/K	g		00/00/2	23 09.44	06/09/23	06.19	
OII Range Organics (Over C28-C36)	<50	0.0 U	50.0		mg/K	a		06/08/2	23 09:44	06/09/23	08.10	1
		0.0 0	00.0		ilig/it	9		00,00,1	20 00.11	00/00/20	00.10	
	I	MB MB										
Surrogate	%Recove	ery Qualifie	er Limits					Pre	pared	Analyz	ed	Dil Fac
1-Chlorooctane	1	179 S1+	70 - 130					06/08/2	23 09:44	06/09/23	08:19	-
p-Terphenyl	1	143 S1+	70 - 130					06/08/2	23 09:44	06/09/23	08:19	
Lab Sample ID: LCS 880-5502	21/2-A						СІ	ient S	ample	ID: Lab Co	ontrol S	ample
Matrix: Solid									ampio		Type: To	
Analysis Batch: 55082											Batch:	
Analysis Datch. 55002			Spike	LCS	LCS					%Rec	Daten.	5502
Analyta			Added		Qualifier	Unit		D	% Bee	Limits		
Analyte					Quaimer			<u> </u>	%Rec			
Gasoline Range Organics			1000	1081		mg/Kg			108	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over			1000	1049		mg/Kg			105	70 - 130		
C10-C28)			1000	1049		iiig/Kg			105	70 - 130		
510-020)												
	LCS L	.cs										
• •	%Recovery 0	Qualifier	Limits									
Surrogate	/anecovery c											
-	149 S	S1+	70 - 130									
I-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550	149 S 117	51+	70 - 130 70 - 130			Cli	ent S	Samp	le ID: L	ab Contro	-	
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid	149 S 117	51+				Cli	ent (Samp	le ID: L	Prep 1	ol Samp Type: To Batch:	otal/N/
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid	149 S 117	51+		LCSD	LCSD	Cli	ent S	Samp	le ID: L	Prep 1	Type: To	otal/N/ 5502
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082	149 S 117	51+	70 - 130		LCSD Qualifier	Cli	ent (-	<u>le ID: L</u>	Prep 1 Prep	Type: To	otal/NA 55021 RPI
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics	149 S 117	51+	70 ₋ 130 Spike				ent S	-		Prep 1 Prep %Rec	Type: To Batch:	otal/N/ 55021 RPI Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10	149 S 117	51+	70 - 130 Spike Added 1000	Result 1045		- <mark>Unit</mark> mg/Kg	ent S	-	<mark>%Rec</mark>	Prep 1 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 3	5502 RPI Limi
I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	149 S 117	51+	70 - 130 Spike Added	Result		Unit	ent s	-	%Rec	Prep 1 Prep %Rec Limits	RPD	5502 RPI Limi
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	149 S 117	51+	70 - 130 Spike Added 1000	Result 1045		- <mark>Unit</mark> mg/Kg	ent (-	<mark>%Rec</mark>	Prep 1 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 3	5502 RPI Limi
I-Chlorooctane D-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	149 S 117		70 - 130 Spike Added 1000	Result 1045		- <mark>Unit</mark> mg/Kg	ent s	-	<mark>%Rec</mark>	Prep 1 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 3	5502 RPI Limi
I-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	149 5 117 021/3-A		70 - 130 Spike Added 1000	Result 1045		- <mark>Unit</mark> mg/Kg	ent \$	-	<mark>%Rec</mark>	Prep 1 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 3	5502 RPI Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	149 5 117 021/3-A	.CSD Qualifier	70 - 130 Spike Added 1000	Result 1045		- <mark>Unit</mark> mg/Kg	ent \$	-	<mark>%Rec</mark>	Prep 1 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 3	5502 RPI Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	149 5 117 021/3-A 	.CSD Qualifier	70 - 130 Spike Added 1000 1000 Limits	Result 1045		- <mark>Unit</mark> mg/Kg	ient \$	-	<mark>%Rec</mark>	Prep 1 Prep %Rec Limits 70 - 130	Type: To Batch: RPD 3	5502 RPI Limi
Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880 20221 A	149 5 117 021/3-A 	.CSD Qualifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1045		- <mark>Unit</mark> mg/Kg	ient \$	<u>D</u> _	%Rec 104 101	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: RPD 3 4	5502 RPI Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29221-A-2	149 5 117 021/3-A 	.CSD Qualifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1045		- <mark>Unit</mark> mg/Kg	ient (<u>D</u> _	%Rec 104 101	Prep 1 %Rec Limits 70 - 130 70 - 130	Type: To Batch:	stal/NA 5502 RPI Lim 2 2
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29221-A-2 Matrix: Solid	149 5 117 021/3-A 	.CSD Qualifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130	Result 1045		- <mark>Unit</mark> mg/Kg	ent \$	<u>D</u> _	%Rec 104 101	Prep 1 %Rec Limits 70 - 130 70 - 130 Sample ID Prep 1	Type: To Batch:	stal/NA 5502 RPI Limi 2 2 2 2 3 3
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-29221-A-2 Matrix: Solid	149 5 117 021/3-A <i>LCSD L</i> %Recovery 0 131 5 100 21-C MS	-CSD Qualifier S1+	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130 70 - 130	Result 1045 1006	Qualifier	- <mark>Unit</mark> mg/Kg	ent \$	<u>D</u> _	%Rec 104 101	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 1 Prep 1	Type: To Batch:	stal/NA 5502 RPI Limi 20 20 20 Spike
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29221-A-2 Matrix: Solid Analysis Batch: 55082	149 5 117 021/3-A <i>LCSD L</i> %Recovery 0 131 5 100 21-C MS Sample S	CSD Qualifier 51+ Sample	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130 70 - 130 Spike	Result 1045 1006 MS	Qualifier	- <mark>Unit</mark> mg/Kg mg/Kg	ent \$	<u>D</u>	%Rec 104 101	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 1 Prep 1 Prep %Rec	Type: To Batch:	stal/NA 55021 RPI Limi 20 20 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29221-A-2 Matrix: Solid Analysis Batch: 55082	149 5 117 117 021/3-A - %Recovery 0 131 5 100 21-C MS Sample S Result 0	CSD Qualifier 51+ Sample Qualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 1000 500	Result 1045 1006 MS Result	Qualifier	Unit mg/Kg mg/Kg	ent \$	<u>D</u>	%Rec	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 9 9 9 9 8 9 7 9 9 7 9 9 9 9 9 9 9	Type: To Batch:	stal/NA 5502 RPI Limi 20 20 20 Spike
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29221-A-2 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics	149 5 117 021/3-A <i>LCSD L</i> %Recovery 0 131 5 100 21-C MS Sample S	CSD Qualifier 51+ Sample Qualifier	70 - 130 Spike Added 1000 1000 Limits 70 - 130 70 - 130 70 - 130 Spike	Result 1045 1006 MS	Qualifier	- <mark>Unit</mark> mg/Kg mg/Kg		<u>D</u>	%Rec 104 101	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID Prep 1 Prep 1 Prep %Rec	Type: To Batch:	stal/NA 5502 RPI Limi 2 2 2 2 3 3
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-29221-A-2 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10	Id9 S 149 S 117 117 021/3-A - %Recovery G 131 S 100 21-C MS Sample S Result C <50.0	-CSD Qualifier 51+ Sample Qualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 70 - 130 70 - 130 999	Result 1045 1006 MS Result 1220	Qualifier	Unit mg/Kg mg/Kg		<u>D</u>	%Rec 104 101 Client \$ %Rec 120	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130 70 - 130 %Rec Limits %Rec Limits 70 - 130	Type: To Batch:	stal/NA 5502 RPI Lim 2 2 2 Spike
1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	149 5 117 117 021/3-A - %Recovery 0 131 5 100 21-C MS Sample S Result 0	-CSD Qualifier 51+ Sample Qualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 1000 500	Result 1045 1006 MS Result	Qualifier	Unit mg/Kg mg/Kg		<u>D</u>	%Rec	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 8 8 8 9 9 9 9 8 9 7 9 9 7 9 9 9 9 9 9 9	Type: To Batch:	stal/NA 5502 RPI Limi 2 2 2 2 3 3
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-29221-A-2 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Id9 S 149 S 117 I17 021/3-A I %Recovery G 131 S 100 I 21-C MS Sample Result G <50.0	CSD Qualifier S1+ Sample Qualifier J	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 70 - 130 70 - 130 999	Result 1045 1006 MS Result 1220	Qualifier	Unit mg/Kg mg/Kg	ent \$	<u>D</u>	%Rec 104 101 Client \$ %Rec 120	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130 70 - 130 %Rec Limits %Rec Limits 70 - 130	Type: To Batch:	stal/NA 5502 RPI Limi 2 2 2 2 3 3
I-Chlorooctane p-Terpheny/ Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terpheny/ Lab Sample ID: 880-29221-A-2 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Id9 S 149 S 117 II7 021/3-A II7 WRecovery G 131 S 100 II17 21-C MS Result <50.0	CSD Qualifier 31+ Sample Qualifier J	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 1000 500 70 - 130 70 - 130 70 - 130 999 999 999	Result 1045 1006 MS Result 1220	Qualifier	Unit mg/Kg mg/Kg	ent (<u>D</u>	%Rec 104 101 Client \$ %Rec 120	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130 70 - 130 %Rec Limits %Rec Limits 70 - 130	Type: To Batch:	stal/NA 55021 RPI Limi 20 20 20 20
1-Chlorooctane p-Terphenyl Lab Sample ID: LCSD 880-550 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-29221-A-2 Matrix: Solid Analysis Batch: 55082 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Id9 S 149 S 117 I17 021/3-A I %Recovery G 131 S 100 I 21-C MS Sample Result G <50.0	LCSD Qualifier 31+ Sample Qualifier J J MS Qualifier	70 - 130 Spike Added 1000 1000 1000 1000 1000 1000 50 - 130 70 - 130 70 - 130 70 - 130 999	Result 1045 1006 MS Result 1220	Qualifier	Unit mg/Kg mg/Kg	ent \$	<u>D</u>	%Rec 104 101 Client \$ %Rec 120	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130 70 - 130 %Rec Limits %Rec Limits 70 - 130	Type: To Batch:	stal/NA 55021 RPE Limi 20 20 20 20

Eurofins Carlsbad

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Madulas O altal	-21-D MSD						Jient	. 5a	inple ib): Matrix Sp		
Matrix: Solid											Type: To	
Analysis Batch: 55082											Batch:	
	Sample	-	Spike		MSD			_	~-	%Rec		RPI
Analyte		Qualifier	Added		Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	999	1157		mg/Kg			114	70 - 130	5	2
Diesel Range Organics (Over C10-C28)	<50.0	U	999	924.6		mg/Kg			88	70 - 130	5	2
	MSD											
Surrogate	%Recovery		Limits									
1-Chlorooctane		S1+	70 - 130									
o-Terphenyl	114	ography	70 - 130									
ethod: 300.0 - Anions,		ograpny										
Lab Sample ID: MB 880-5504 Matrix: Solid	44/1-A							•	Client S	ample ID: Prep	Method Type: Se	
Analysis Batch: 55137											1000	
Analuta		MB MB		ы	1 lm !*		D	D -	on or c d	A	rod.	
Analyte Chloride		esult Qualifier 5.00 U		RL	Unit mg/K	~	D	Pr	epared	Analyz 		Dil Fa
					_	-						
							0		• • • • • • •			I
Lab Sample ID: LCS 880-550)44/2-A						Cli	ent	Sample	ID: Lab Co		
	044/2-A						Cli	ent	Sample		ontrol Sa Type: S	
Matrix: Solid	044/2-A						Cli	ent	Sample			
Matrix: Solid)44/2-A		Spike	LCS	LCS		Cli	ent	Sample			
Matrix: Solid Analysis Batch: 55137	044/2-A		Spike Added		LCS Qualifier	Unit		D	%Rec	Prep		
Matrix: Solid Analysis Batch: 55137 ^{Analyte}	044/2-A 		-			Unit mg/Kg			-	Prep %Rec		
Matrix: Solid Analysis Batch: 55137 Analyte Chloride			Added	Result		mg/Kg		<u>D</u> .	%Rec 99	Prep %Rec Limits 90 - 110	Type: S	olub
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5			Added	Result		mg/Kg		<u>D</u> .	%Rec 99	Prep %Rec Limits 90 - 110	Type: So	olubi
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid			Added	Result		mg/Kg		<u>D</u> .	%Rec 99	Prep %Rec Limits 90 - 110	Type: S	olubi
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid			Added 250	Result 247.8	Qualifier	mg/Kg		<u>D</u> .	%Rec 99	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So	e Du olubl
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137			Added 250 Spike	Result 247.8 LCSD	Qualifier	mg/Kg Cli		<u>D</u> am	%Rec 99	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So 	e Du olubi olubi RP
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137			Added 250	Result 247.8 LCSD	Qualifier	mg/Kg Cli		<u>D</u> .	%Rec 99	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So	e Du olub olub RP Lim
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride	5044/3-A		Added 250 Spike Added	Result 247.8 LCSD Result	Qualifier	mg/Kg Cli		<u>D</u> am	%Rec 99 ple ID: I	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So DI Sampl Type: So 	e Du olubi olubi RP Lim
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride	5044/3-A		Added 250 Spike Added	Result 247.8 LCSD Result	Qualifier	mg/Kg Cli		<u>D</u> am	%Rec 99 ple ID: I I %Rec 99	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So ol Sampl Type: So <u>RPD</u> 0	e Du olubi RP Lim 2
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I	5044/3-A		Added 250 Spike Added	Result 247.8 LCSD Result	Qualifier	mg/Kg Cli		<u>D</u> am	%Rec 99 ple ID: I I %Rec 99	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u>RPD</u> 0	e Du olubi RP Lim 2 W-10
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid	5044/3-A		Added 250 Spike Added	Result 247.8 LCSD Result	Qualifier	mg/Kg Cli		<u>D</u> am	%Rec 99 ple ID: I I %Rec 99	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u></u>	e Du olubi RP Lim 2 W-10
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid	5044/3-A MS Sample		Added 250 Spike Added	Result 247.8 LCSD Result 247.9	Qualifier	mg/Kg Cli		<u>D</u> am	%Rec 99 ple ID: I I %Rec 99	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110	Type: So ol Sampl Type: So <u></u>	e Du olubi RP Lim 2 W-10.
Matrix: Solid Analysis Batch: 55137 Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid Analysis Batch: 55137	5044/3-A MS Sample	Sample Qualifier	Added 250 Spike Added 250	Result 247.8 LCSD Result 247.9 MS	Qualifier LCSD Qualifier	mg/Kg Cli		<u>D</u> am	%Rec 99 ple ID: I I %Rec 99	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 lient Samp Prep	Type: So ol Sampl Type: So <u></u>	e Du olubi RP Lim 2 W-10/
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid Analysis Batch: 55137 Analyte	5044/3-A MS Sample	Qualifier	Added 250 Spike Added 250 Spike	Result 247.8 LCSD Result 247.9 MS	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Cli Unit mg/Kg		D am	%Rec 99 ple ID: I 1 %Rec 99 99 C	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 lient Samp Prep %Rec	Type: So ol Sampl Type: So <u></u>	e Du olub olub RP Lim 2 W-10
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid Analysis Batch: 55137 Analyte Chloride	5044/3-A MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 247.8 LCSD Result 247.9 MS Result	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Cli Unit mg/Kg Unit		D am	%Rec 99 ple ID: I %Rec 99 C %Rec 86	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 lient Samp Prep %Rec Limits 90 - 110	Type: So DI Sampl Type: So RPD 0 Ile ID: SV Type: So	olubi e Du olubi RP Lim 2 W-10. olubi
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-5 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid Analysis Batch: 55137 Analyte Chloride	5044/3-A MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 247.8 LCSD Result 247.9 MS Result	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Cli Unit mg/Kg Unit		D am	%Rec 99 ple ID: I %Rec 99 C %Rec 86	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 lient Samp Prep %Rec Limits 90 - 110	Type: Si ol Sampl Type: Si <u>RPD</u> 0 le ID: Si Type: Si le ID: Si	e Du olubi RP Lim 2 W-10. olubi
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-58 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid	5044/3-A MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 247.8 LCSD Result 247.9 MS Result	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Cli Unit mg/Kg Unit		D am	%Rec 99 ple ID: I %Rec 99 C %Rec 86	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 lient Samp Prep %Rec Limits 90 - 110	Type: So DI Sampl Type: So RPD 0 Ile ID: SV Type: So	e Du olubi RP Lim 2 W-10/ olubi
Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-58 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid	5044/3-A MS 	Qualifier F1	Added 250 Spike Added 250 Spike Added 252	Result 247.8 LCSD Result 247.9 MS Result 899.9	Qualifier LCSD Qualifier MS Qualifier F1	mg/Kg Cli Unit mg/Kg Unit		D am	%Rec 99 ple ID: I %Rec 99 C %Rec 86	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 lient Samp Prep %Rec Limits 90 - 110	Type: Si ol Sampl Type: Si <u>RPD</u> 0 le ID: Si Type: Si le ID: Si	e Du olubi RP Lim 2 W-10/ olubi
Lab Sample ID: LCS 880-550 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: LCSD 880-59 Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid Analysis Batch: 55137 Analyte Chloride Lab Sample ID: 890-4791-1 I Matrix: Solid Analyte Chloride	5044/3-A 5044/3-A MS <u>Sample</u> <u>Result</u> 684 MSD Sample	Qualifier F1	Added 250 Spike Added 250 Spike Added	Result 247.8 LCSD Result 247.9 MS Result 899.9	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Cli Unit mg/Kg Unit		D am	%Rec 99 ple ID: I %Rec 99 C %Rec 86	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 lient Samp Prep %Rec Limits 90 - 110	Type: Si ol Sampl Type: Si <u>RPD</u> 0 le ID: Si Type: Si le ID: Si	e Duj olubi RPI Lim 2 N-10/ olubi

QC Association Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

5 6

Job ID: 890-4791-1 SDG: 495436

GC VOA

Analysis Batch: 55090

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4791-1	SW-10A	Total/NA	Solid	8021B	55142
890-4791-2	SW-11	Total/NA	Solid	8021B	55142
890-4791-3	SW-12	Total/NA	Solid	8021B	55142
890-4791-4	SW-15	Total/NA	Solid	8021B	55142
890-4791-5	SW-16	Total/NA	Solid	8021B	55142
MB 880-55142/5-A	Method Blank	Total/NA	Solid	8021B	55142
MB 880-55143/5-A	Method Blank	Total/NA	Solid	8021B	55143
LCS 880-55142/1-A	Lab Control Sample	Total/NA	Solid	8021B	55142
LCSD 880-55142/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	55142
880-29010-A-5-B MS	Matrix Spike	Total/NA	Solid	8021B	55142
880-29010-A-5-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	55142

Prep Batch: 55142

MB 880-55143/5-A	Method Blank	Iotal/INA	Solid	8021B	55143	
LCS 880-55142/1-A	Lab Control Sample	Total/NA	Solid	8021B	55142	8
LCSD 880-55142/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	55142	
880-29010-A-5-B MS	Matrix Spike	Total/NA	Solid	8021B	55142	9
880-29010-A-5-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	55142	
Prep Batch: 55142						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	11
890-4791-1	SW-10A	Total/NA	Solid	5035		
890-4791-2	SW-11	Total/NA	Solid	5035		12
890-4791-3	SW-12	Total/NA	Solid	5035		
890-4791-4	SW-15	Total/NA	Solid	5035		4.2
890-4791-5	SW-16	Total/NA	Solid	5035		13
MB 880-55142/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-55142/1-A	Lab Control Sample	Total/NA	Solid	5035		14
LCSD 880-55142/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-29010-A-5-B MS	Matrix Spike	Total/NA	Solid	5035		
880-29010-A-5-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		

Prep Batch: 55143

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-55143/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 55268

Lab Sample ID	Client Sample ID	Prep Type Total/NA	Matrix	Method Total BTEX	Prep Batch
890-4791-1 890-4791-2	SW-10A SW-11	Total/NA Total/NA	Solid	Total BTEX	
890-4791-2	SW-11 SW-12	Total/NA	Solid	Total BTEX	
890-4791-4	SW-15	Total/NA	Solid	Total BTEX	
890-4791-5	SW-16	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 55021

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4791-1	SW-10A	Total/NA	Solid	8015NM Prep	
890-4791-2	SW-11	Total/NA	Solid	8015NM Prep	
890-4791-3	SW-12	Total/NA	Solid	8015NM Prep	
890-4791-4	SW-15	Total/NA	Solid	8015NM Prep	
890-4791-5	SW-16	Total/NA	Solid	8015NM Prep	
MB 880-55021/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-55021/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-55021/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-29221-A-21-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-29221-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

QC Association Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Job ID: 890-4791-1 SDG: 495436

GC Semi VOA

Analysis Batch: 55082

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-4791-1	SW-10A	Total/NA	Solid	8015B NM	55021
890-4791-2	SW-11	Total/NA	Solid	8015B NM	55021
890-4791-3	SW-12	Total/NA	Solid	8015B NM	55021
890-4791-4	SW-15	Total/NA	Solid	8015B NM	55021
890-4791-5	SW-16	Total/NA	Solid	8015B NM	55021
MB 880-55021/1-A	Method Blank	Total/NA	Solid	8015B NM	55021
LCS 880-55021/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	55021
LCSD 880-55021/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	55021
880-29221-A-21-C MS	Matrix Spike	Total/NA	Solid	8015B NM	55021
880-29221-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	55021

Analysis Batch: 55202

LCS 880-55021/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	55021
LCSD 880-55021/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	55021
880-29221-A-21-C MS	Matrix Spike	Total/NA	Solid	8015B NM	55021
880-29221-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	55021
Analysis Batch: 55202	2				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4791-1	SW-10A	Total/NA	Solid	8015 NM	
890-4791-2	SW-11	Total/NA	Solid	8015 NM	
890-4791-3	SW-12	Total/NA	Solid	8015 NM	
890-4791-4	SW-15	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 55044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
890-4791-1	SW-10A	Soluble	Solid	DI Leach	
890-4791-2	SW-11	Soluble	Solid	DI Leach	
890-4791-3	SW-12	Soluble	Solid	DI Leach	
890-4791-4	SW-15	Soluble	Solid	DI Leach	
890-4791-5	SW-16	Soluble	Solid	DI Leach	
MB 880-55044/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-55044/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-55044/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-4791-1 MS	SW-10A	Soluble	Solid	DI Leach	
890-4791-1 MSD	SW-10A	Soluble	Solid	DI Leach	

Analysis Batch: 55137

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-4791-1	SW-10A	Soluble	Solid	300.0	55044
890-4791-2	SW-11	Soluble	Solid	300.0	55044
890-4791-3	SW-12	Soluble	Solid	300.0	55044
890-4791-4	SW-15	Soluble	Solid	300.0	55044
890-4791-5	SW-16	Soluble	Solid	300.0	55044
MB 880-55044/1-A	Method Blank	Soluble	Solid	300.0	55044
LCS 880-55044/2-A	Lab Control Sample	Soluble	Solid	300.0	55044
LCSD 880-55044/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	55044
890-4791-1 MS	SW-10A	Soluble	Solid	300.0	55044
890-4791-1 MSD	SW-10A	Soluble	Solid	300.0	55044

9

Job ID: 890-4791-1 SDG: 495436

Lab Sample ID: 890-4791-1 Matrix: Solid

Lab Sample ID: 890-4791-2

Lab Sample ID: 890-4791-3

Lab Sample ID: 890-4791-4

Matrix: Solid

Matrix: Solid

Date Collected: 06/07/23 10:00 Date Received: 06/07/23 16:45

Client Sample ID: SW-10A

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	55142	06/09/23 12:15	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55090	06/10/23 15:03	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55268	06/12/23 13:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55202	06/09/23 21:28	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55021	06/08/23 09:44	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55082	06/09/23 12:23	AJ	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	55044	06/08/23 14:16	KS	EET MID
Soluble	Analysis	300.0		1			55137	06/09/23 11:47	СН	EET MID

Client Sample ID: SW-11

Date Collected: 06/07/23 10:10 Date Received: 06/07/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	55142	06/09/23 12:15	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55090	06/10/23 15:24	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55268	06/12/23 13:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55202	06/09/23 21:28	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	55021	06/08/23 09:44	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55082	06/09/23 12:45	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	55044	06/08/23 14:16	KS	EET MID
Soluble	Analysis	300.0		1			55137	06/09/23 12:02	CH	EET MID

Client Sample ID: SW-12

Date Collected: 06/07/23 12:30

Date	Received:	06/07/23	16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	55142	06/09/23 12:15	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55090	06/10/23 17:15	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55268	06/12/23 13:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55202	06/09/23 21:28	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	55021	06/08/23 09:44	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55082	06/09/23 13:07	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	55044	06/08/23 14:16	KS	EET MID
Soluble	Analysis	300.0		1			55137	06/09/23 12:08	СН	EET MID

Client Sample ID: SW-15 Date Collected: 06/07/23 03:30 Date Received: 06/07/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	55142	06/09/23 12:15	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55090	06/10/23 17:36	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55268	06/12/23 13:03	AJ	EET MID

Eurofins Carlsbad

Released to Imaging: 5/15/2024 2:25:32 PM

Matrix: Solid

9

Job ID: 890-4791-1 SDG: 495436

Lab Sample ID: 890-4791-4 Matrix: Solid

Lab Sample ID: 890-4791-5

Matrix: Solid

Client Sample ID: SW-15 Date Collected: 06/07/23 03:30 Date Received: 06/07/23 16:45

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			55202	06/09/23 21:28	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55021	06/08/23 09:44	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55082	06/09/23 13:28	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	55044	06/08/23 14:16	KS	EET MID
Soluble	Analysis	300.0		1			55137	06/09/23 12:13	СН	EET MID

Client Sample ID: SW-16 Date Collected: 06/07/23 13:40 Date Received: 06/07/23 16:45

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	55142	06/09/23 12:15	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55090	06/10/23 17:56	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55268	06/12/23 13:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55202	06/09/23 21:28	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55021	06/08/23 09:44	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55082	06/09/23 13:51	AJ	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	55044	06/08/23 14:16	KS	EET MID
Soluble	Analysis	300.0		1			55137	06/09/23 12:18	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: TRC Solutions, Project/Site: Rocket Fe				Job ID: 890-4791 SDG: 49543	
Laboratory: Eurofi Unless otherwise noted, all a		y were covered under each accr	reditation/certification below.		3
Authority		Program	Identification Number	Expiration Date	4
Texas		NELAP	T104704400-22-25	06-30-23	5
The following analytes the agency does not of		t, but the laboratory is not certifi	ed by the governing authority. This list ma	ay include analytes for which	
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					13

Eurofins Carlsbad

.

Method Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H Job ID: 890-4791-1 SDG: 495436

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editic	n, November 1986 And Its Updates.	
TAL SOP =	TestAmerica Laboratories, Standard Operating Procedure		
Laboratory Re	ferences:		
EET MID =	Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Carlsbad

Released to Imaging: 5/15/2024 2:25:32 PM

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-4791-1		Solid	06/07/23 10:00	06/07/23 16:45
890-4791-2	SW-11	Solid	06/07/23 10:10	06/07/23 16:45
890-4791-3	SW-12	Solid	06/07/23 12:30	06/07/23 16:45
890-4791-4	SW-15	Solid	06/07/23 03:30	06/07/23 16:45
890-4791-5	SW-16	Solid	06/07/23 13:40	06/07/23 16:45

🐺 eurotins		Environment Testing	Houston, TX Midland, TX (4	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	X (214) 902-0300 5. TX (210) 509-3334	Work Order No:	r No:	
	Xenco		EL Paso, TX (Hobbs, NM (EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	NM (575) 988-3199	www.xenco.com	o.com Page	of
Project Manager:	+ moo Stofic	×	Bill to: (if different)			Work O	m	
- ('		Company Name:			Program: UST/PST PRP	Brownfields	RRC Superfund
Address:	0 0+55A OR	# 1308	Address:			State of Project:		
e ZIP:	4	76205	City, State ZIP:			Reporting: Level II Level III PST/UST		TRRP 🔲 Level IV 🗍
	28.3	003 Email:	James / Iki	5 Massic		Deliverables: EDD	ADaPT D Other:	er:
Name:	act Tep :	HSW Turn	Turn Around		ANALYSIS REQUE	JEST	Preserva	Preservative Codes
ber:	945486	17 Routine	Rush 24 Code				None: NO	DI Water: H ₂ O
Project Location:		Due Date:					Cool: Cool	MeOH: Me
Sampler's Name:	Kussin Serino		TAT starts the day received by the lab, if received by 4:30pm	21			I [HCL: HC H ₂ S0 ₄ : H ₂	HNO 3: HN NaOH: Na
SAMPLE RECEIPT	Jenop Blank:	(Yes) No Wet Ice:	Ve No eters	30 30			H ₃ PO ₄ : HP	
Samples Received Intact:	les No	Thermometer ID: (V	Param	00			NaHSO 4: NABIS	S S
Sample Custody Seals:	Yes No N/A	Temperature Reading:	2	210	090-4/91 Ch	nain of Custody	Zn Acetate+NaOH: Zn	aOH: Zn
Total Containers:		Corrected Temperature:	10.0	2) 2) 24			NaOH+Ascorbic Acid: SAPC	vic Acid: SAPC
Sample Identification	ation Matrix	Date Time Sampled Sampled	Depth Grab/ # of Comp Cont	1		_	Sample	Sample Comments
SW-10	A S	6.7.23 1000	- (at 1	1 2 0				
5-11	~	1010						
1 . 32		1330	()	ンハン				
500 - 10	*	V 1340	(*	111				
Total 200.7 / 6010 Circle Method(s) and	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	8RCR	PM Texas 11 AI Sb PLP 6010 : 8RCRA St) As Ba Be B Cd Sb As Ba Be Cd C	A 13PPM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg TCLP/SPLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se	Pb Mg Mn Mo Ni K Se Ag SiO ₂ Mo Ni Se Ag TI U Hg: 1631 /	Ag SiO ₂ Na Sr Tl Sn U V Z Hg: 1631/245.1/7470/7471	Zn 71
Notice: Signature of this docume of service. Eurofins Xenco will be of Eurofins Xenco. A minimum ch	nt and relinquishment of sample: I lable only for the cost of sample narge of \$85.00 will be applied to	s constitutes a valid purchase ord is and shall not assume any respo each project and a charge of \$5	ler from client company to Euro onsibility for any losses or exper for each sample submitted to I	ofins Xenco, its affiliates and s nses incurred by the client if s Eurofins Xenco, but not analy	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	and conditions nd the control previously negotlated.		
Relipquished by: (Signature)	gnature)	Received by: (Signature)	e)	Date/Time	Relinquished by: (Signature)	e) Received by: (Signature)		Date/Time
200	Cho 20	N. Life	4	7.23 11045				
5				6			Revised D	Revised Date: 08/25/2020 Rsv 2020 2

6/12/2023

Page 142 of 197

14

Job Number: 890-4791-1 SDG Number: 495436

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: TRC Solutions, Inc.

Login Number: 4791 List Number: 1

Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-4791-1 SDG Number: 495436

List Source: Eurofins Midland

List Creation: 06/09/23 10:21 AM

Login Sample Receipt Checklist

Client: TRC Solutions, Inc.

Login Number: 4791 List Number: 2 Creator: Rodriguez, Leticia

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

n Number: 4791

Eurofins Carlsbad Released to Imaging: 5/15/2024 2:25:32 PM
Received by OCD: 3/8/2024 8:36:31 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Jared Stoffel TRC Solutions, Inc. 10 Desta Drive Suite #130E Midland, Texas 79705 Generated 6/13/2023 11:53:29 AM

JOB DESCRIPTION

Rocket Fed #5H

JOB NUMBER

880-29346-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/13/2023 11:53:29 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 147 of 197

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	21
QC Sample Results	23
QC Association Summary	29
Lab Chronicle	34
Certification Summary	40
Method Summary	41
Sample Summary	42
Chain of Custody	43
Receipt Checklists	45

Definitions/Glossary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H Job ID: 880-29346-1

Page 148 of 197

Project/Site:	Rocket Fed #5H	
Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
*+	LCS and/or LCSD is outside acceptance limits, high biased.	_
F1	MS and/or MSD recovery exceeds control limits.	5
F2	MS/MSD RPD exceeds control limits	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	8
S1+	Surrogate recovery exceeds control limits, high biased.	U
U	Indicates the analyte was analyzed for but not detected.	9
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	19
CFL	Contains Free Liquid	13
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	

CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-29346-1

Receipt

The samples were received on 6/9/2023 3:22 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.1°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: FL-8 @ 4 (880-29346-1), FL-9 @ 4 (880-29346-2), FL-10 @ 4 (880-29346-3), FL-11 @ 4 (880-29346-4), FL-12 @ 4 (880-29346-5), FL-13 @ 4 (880-29346-6), FL-14 @ 4 (880-29346-7), FL-15 @ 4 (880-29346-8), SW-13 (880-29346-9), SW-17 (880-29346-10), SW-18 (880-29346-11), FL-16 @ 4 (880-29346-12), FL-17 @ 4 (880-29346-13), FL-18 @ 4 (880-29346-14), FL-19 @ 4 (880-29346-15), FL-20 @ 4 (880-29346-16), FL-21 @ 4 (880-29346-17) and SW-14 (880-29346-18).

GC VOA

Method 8021B: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for preparation batch 880-55176 and analytical batch 880-55243 recovered outside control limits for the following analytes: Benzene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-55176 and analytical batch 880-55243 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8021B: CCV was biased low for o-xylene and m,p xylenes. Another CCV was analyzed and acceptable for the compounds within the 12 hour window; therefore, the associated data was qualified and reported.(CCV 880-55243/33)

Method 8021B: Surrogate recovery for the following samples were outside control limits: (MB 880-55176/5-A) and (880-29346-A-1-E MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-55185/2-A), (LCSD 880-55185/3-A) and (MB 880-55185/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

RL

0.00199

0.00199

0.00199

0.00398

0.00199

0.00398

Limits

70 - 130

70 - 130

RL

0.00398

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

D

D

Prepared

06/09/23 16:35

06/09/23 16:35

06/09/23 16:35

06/09/23 16:35

06/09/23 16:35

06/09/23 16:35

Prepared

06/09/23 16:35

06/09/23 16:35

Prepared

Job ID: 880-29346-1

Client: TRC Solutions, Inc.
Project/Site: Rocket Fed #5H

Client Sample ID: FL-8 @ 4

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

<0.00199 U*+

<0.00398 U F1 F2

<0.00199 U F1 F2

<0.00398 U F1 F2

89

89

<0.00398 U

Result Qualifier

Qualifier

<0.00199 U

<0.00199 U

%Recovery

Date Collected: 06/07/23 14:25 Date Received: 06/09/23 15:22

Sample Depth: 4

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analyzed

06/12/23 12:48

06/12/23 12:48

06/12/23 12:48

06/12/23 12:48

06/12/23 12:48

06/12/23 12:48

Analyzed

06/12/23 12:48

06/12/23 12:48

Analyzed

06/13/23 11:41

Matrix: Solid

346-1 Solid	3
	4
	5
Dil Fac	
1	6
1	
1	7
1	
1	0
1	0
Dil Fac	9
1 1	10
Dil Fac	11
1	12
Dil Fac	13

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9	mg/Kg			06/12/23 14:08	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 20:39	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 20:39	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 20:39	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	93		70 - 130			06/09/23 17:18	06/11/23 20:39	
o-Terphenyl	105		70 - 130			06/09/23 17:18	06/11/23 20:39	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubi	le					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	381		5.01	mg/Kg			06/10/23 01:24	
Client Sample ID: FL-9 @ 4						Lab Sam	ple ID: 880-2	9346-2
Date Collected: 06/07/23 14:30							•	x: Solid
Date Received: 06/09/23 15:22								
ample Depth: 4								

wethou: 50046 6021B - Volat	ne Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U *+	0.00198	mg/Kg		06/09/23 16:35	06/12/23 13:08	1
Toluene	<0.00198	U	0.00198	mg/Kg		06/09/23 16:35	06/12/23 13:08	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		06/09/23 16:35	06/12/23 13:08	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		06/09/23 16:35	06/12/23 13:08	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		06/09/23 16:35	06/12/23 13:08	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		06/09/23 16:35	06/12/23 13:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130			06/09/23 16:35	06/12/23 13:08	1

5

Client Sample Results

Job ID: 880-29346-1

Client: TRC Solutions, Inc.	
Project/Site: Rocket Fed #5H	

Client Sample ID: FL-9 @ 4

Lab Sample ID: 880-29346-2 Matrix: Solid

Date Collected: 06/07/23 14:30

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)	(Continued)					
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	82		70 - 130			06/09/23 16:35	06/12/23 13:08	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			06/13/23 11:41	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			06/12/23 14:08	1
Method: SW846 8015B NM - Dies Analyte	Result	Qualifier		Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics			49.9	mg/Kg		06/09/23 17:18	06/11/23 21:43	1
(GRO)-C6-C10								
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 21:43	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 21:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130			06/09/23 17:18	06/11/23 21:43	1
o-Terphenyl	107		70 - 130			06/09/23 17:18	06/11/23 21:43	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quaimer		•			/	Diriao

Client Sample ID: FL-10 @ 4

Date Collected: 06/07/23 14:35 Date Received: 06/09/23 15:22 Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U *+	0.00200	mg/Kg		06/09/23 16:35	06/12/23 13:29	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 13:29	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 13:29	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/09/23 16:35	06/12/23 13:29	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 13:29	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/09/23 16:35	06/12/23 13:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130			06/09/23 16:35	06/12/23 13:29	1
1,4-Difluorobenzene (Surr)	85		70 - 130			06/09/23 16:35	06/12/23 13:29	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			06/13/23 11:41	1
Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (GC)					
Analyte	Result		RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			06/12/23 14:08	1

Eurofins Midland

Matrix: Solid

Client: TRC Solutions, Inc.

Sample Depth: 4

(GRO)-C6-C10

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

1-Chlorooctane

Project/Site: Rocket Fed #5H

RL

50.0

50.0

50.0

RL

Limits

70 - 130

70 - 130

Dil Fac

1

1

1

1

1

Dil Fac

Dil Fac

Job ID: 880-29346-1

Unit

mg/Kg

mg/Kg

mg/Kg

Unit

D

D

Prepared

06/09/23 17:18

06/09/23 17:18

06/09/23 17:18

Prepared

06/09/23 17:18

06/09/23 17:18

Prepared

Client Sample ID: FL-10 @ 4
Date Collected: 06/07/23 14:35
Date Received: 06/09/23 15:22

. .

Lab Sample ID: 880-29346-3 Matrix: Solid

Analyzed

06/11/23 22:04

06/11/23 22:04

06/11/23 22:04

Analyzed

06/11/23 22:04

06/11/23 22:04

Analyzed

5

, many to			=	•	-		/	
Chloride	1620		25.0	mg/Kg			06/10/23 01:45	5
Client Sample ID: FL-11 @ 4						Lab Sam	ple ID: 880-2	9346-4
Date Collected: 06/07/23 14:40							Matri	x: Solid
Date Received: 06/09/23 15:22								
Sample Depth: 4								
_ Method: SW846 8021B - Volatile C)rganic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *+	0.00201	mg/Kg		06/09/23 16:35	06/12/23 13:49	1
Toluene	<0.00201	U	0.00201	mg/Kg		06/09/23 16:35	06/12/23 13:49	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/09/23 16:35	06/12/23 13:49	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/09/23 16:35	06/12/23 13:49	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/09/23 16:35	06/12/23 13:49	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/09/23 16:35	06/12/23 13:49	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 90	Qualifier	Limits			Prepared	Analyzed 06/12/23 13:49	Dil Fac

Method: TAL SOP Total BTEX - Total I	STEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			06/13/23 11:41	1

Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			06/12/23 14:08	1
 Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/11/23 22:25	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/11/23 22:25	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/11/23 22:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130			06/09/23 17:18	06/11/23 22:25	1
o-Terphenyl	105		70 - 130			06/09/23 17:18	06/11/23 22:25	1

Eurofins Midland

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

<50.0 U

<50.0 U

<50.0 U

%Recovery Qualifier

96

107

Result Qualifier

Released to Imaging: 5/15/2024 2:25:32 PM

		Client	Sample Re	sults				
Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H							Job ID: 880-	29346-1
Client Sample ID: FL-11 @ 4 Date Collected: 06/07/23 14:40 Date Received: 06/09/23 15:22 Sample Depth: 4						Lab Sam	ple ID: 880-2 Matri	9346-4 x: Solic
Method: EPA 300.0 - Anions, Ion Cl					_			
Analyte		Qualifier		Unit	D	Prepared	Analyzed	Dil Fac
_Chloride	110		4.95	mg/Kg			00/10/23 01:51	
Client Sample ID: FL-12 @ 4						Lab Sam	ple ID: 880-2	9346-5
Date Collected: 06/07/23 14:45 Date Received: 06/09/23 15:22 Sample Depth: 4							Matri	x: Solic
 Method: SW846 8021B - Volatile Or	ganic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200		0.00200	mg/Kg		06/09/23 16:35	06/12/23 14:10	
Toluene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 14:10	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 14:10	
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/09/23 16:35	06/12/23 14:10	
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 14:10	
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/09/23 16:35	06/12/23 14:10	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		70 - 130			06/09/23 16:35	06/12/23 14:10	
1,4-Difluorobenzene (Surr)	75		70 - 130			06/09/23 16:35	06/12/23 14:10	
- Method: TAL SOP Total BTEX - Tota	al BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			06/13/23 11:41	
– Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) (G	iC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			06/12/23 14:08	
- Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/11/23 22:47	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/11/23 22:47	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/11/23 22:47	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	94		70 - 130			06/09/23 17:18	06/11/23 22:47	
o-Terphenyl	106		70 - 130			06/09/23 17:18	06/11/23 22:47	
– Method: EPA 300.0 - Anions, Ion Cł	nromatogram	ohy - Soluble	•					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
							· · · · · , - · · ·	

Eurofins Midland

RL

0.00202

0.00202

0.00202

0.00404

0.00202

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

06/09/23 16:35

06/09/23 16:35

06/09/23 16:35

06/09/23 16:35

06/09/23 16:35

Dil Fac

1

1

1

1

1

Job ID: 880-29346-1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Client Sample ID: FL-13 @ 4

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

<0.00202 U*+

<0.00202 U

<0.00202 U

<0.00404 U

<0.00202 U

Date Collected: 06/07/23 14:50 Date Received: 06/09/23 15:22

Sample Depth: 4

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Analyzed

06/12/23 14:30

06/12/23 14:30

06/12/23 14:30

06/12/23 14:30

06/12/23 14:30

5

Xylenes, Total				iiig/itg				
Ayleries, iotai	<0.00404	U	0.00404	mg/Kg		06/09/23 16:35	06/12/23 14:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			06/09/23 16:35	06/12/23 14:30	1
1,4-Difluorobenzene (Surr)	89		70 - 130			06/09/23 16:35	06/12/23 14:30	1
- Method: TAL SOP Total BTEX - To	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404	mg/Kg			06/13/23 11:41	1
- Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			06/12/23 14:08	1
– Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/11/23 23:08	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/11/23 23:08	1
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/11/23 23:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130			06/09/23 17:18	06/11/23 23:08	1
o-Terphenyl	109		70 - 130			06/09/23 17:18	06/11/23 23:08	1
	Chromatograp	hy - Solubl	e					
Method: EPA 300.0 - Anions, Ion (Unit	Б	Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anions, Ion (Analyte	Result	Qualifier	RL	Unit	D			DIIFac
	Result 764	Qualifier		mg/Kg			06/10/23 02:12	1
Analyte Chloride	764	Qualifier				Lab Sam		1
Analyte	764	Qualifier				Lab Sam	06/10/23 02:12	1
Analyte Chloride Client Sample ID: FL-14 @ 4	764	Qualifier				Lab Sam	06/10/23 02:12	¹ 9346-7
Analyte Chloride Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22	764	Qualifier				Lab Sam	06/10/23 02:12	¹ 9346-7
Analyte Chloride Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22 Sample Depth: 4	764		5.02			Lab Sam	06/10/23 02:12	¹ 9346-7
Analyte Chloride Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22 Sample Depth: 4 Method: SW846 8021B - Volatile C	764	ounds (GC)	5.02	mg/Kg			06/10/23 02:12 ple ID: 880-2 Matri	1 9346-7 x: Solid
Analyte Chloride Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22 Sample Depth: 4	764	<mark>ounds (GC)</mark> Qualifier	5.02	mg/Kg	D	Prepared	06/10/23 02:12 ple ID: 880-2 Matri Analyzed	¹ 9346-7
Analyte Chloride Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22 Sample Depth: 4 Method: SW846 8021B - Volatile C Analyte Benzene	764 Drganic Comp Result <0.00202	ounds (GC) Qualifier U *+	5.02	mg/Kg		Prepared 06/09/23 16:35	06/10/23 02:12 ple ID: 880-2 Matri <u>Analyzed</u> 06/12/23 14:51	1 9346-7 x: Solid Dil Fac
Analyte Chloride Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22 Sample Depth: 4 Method: SW846 8021B - Volatile C Analyte Benzene Toluene	764 Drganic Comp Result <0.00202 <0.00202	ounds (GC) Qualifier U *+ U	5.02 	Unit mg/Kg mg/Kg mg/Kg		Prepared 06/09/23 16:35 06/09/23 16:35	06/10/23 02:12 ple ID: 880-2 Matri Analyzed 06/12/23 14:51 06/12/23 14:51	1 9346-7 x: Solid
Analyte Chloride Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22 Sample Depth: 4 Method: SW846 8021B - Volatile C Analyte Benzene	764 Drganic Comp Result <0.00202	ounds (GC) Qualifier U *+ U U	5.02	mg/Kg		Prepared 06/09/23 16:35	06/10/23 02:12 ple ID: 880-2 Matri <u>Analyzed</u> 06/12/23 14:51	1 9346-7 x: Solid Dil Fac

Xylenes, Total	<0.00403	U	0.00403	mg/Kg	06/09/23 16:35	06/12/23 14:51	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130		06/09/23 16:35	06/12/23 14:51	1

Analyzed

06/12/23 14:51

Analyzed

06/13/23 11:41

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Date Received: 06/09/23 15:22

Sample Depth: 4

Total BTEX

Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55

mg/Kg

Lab Sample ID: 880-29346-7 Matrix: Solid	
	5

Dil Fac

Dil Fac

1

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)) (Continued)			
Surrogate	%Recovery	Qualifier	Limits			Prepared
1,4-Difluorobenzene (Surr)	89		70 - 130			06/09/23 16:35
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation				
Analyte	Result	Qualifier	RL	Unit	D	Prepared

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

<0.00403 U

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			06/12/23 14:08	1

0.00403

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 23:30	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 23:30	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 23:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130			06/09/23 17:18	06/11/23 23:30	1
o-Terphenyl	103		70 - 130			06/09/23 17:18	06/11/23 23:30	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	646	50.5	mg/Kg			06/10/23 02:17	10

Client Sample ID: FL-15 @ 4

Date Collected: 06/07/23 15:00 Date Received: 06/09/23 15:22 Sample Depth: 4

Lab Sample ID: 880-29346-8

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U *+	0.00199	mg/Kg		06/09/23 16:35	06/12/23 15:12	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/09/23 16:35	06/12/23 15:12	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/09/23 16:35	06/12/23 15:12	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/09/23 16:35	06/12/23 15:12	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/09/23 16:35	06/12/23 15:12	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/09/23 16:35	06/12/23 15:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			06/09/23 16:35	06/12/23 15:12	1
1,4-Difluorobenzene (Surr)	89		70 - 130			06/09/23 16:35	06/12/23 15:12	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/13/23 11:41	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Midland

Lab Sample ID: 880-29346-9

Matrix: Solid

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Client Sample ID: FL-15 @ 4

Date Collected: 06/07/23 15:00 Date Received: 06/09/23 15:22

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 23:51	1
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 23:51	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/11/23 23:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	93		70 - 130			06/09/23 17:18	06/11/23 23:51	1
o-Terphenyl	105		70 - 130			06/09/23 17:18	06/11/23 23:51	1

Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1220		25.0	mg/Kg			06/10/23 02:23	5

Client Sample ID: SW-13

Date Collected: 06/08/23 15:45

Date Received: 06/09/23 15:22

Method: SW846 8021B - Volati	lle Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U *+	0.00199	mg/Kg		06/09/23 16:35	06/12/23 15:32	1
Toluene	<0.00199	U	0.00199	mg/Kg		06/09/23 16:35	06/12/23 15:32	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		06/09/23 16:35	06/12/23 15:32	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		06/09/23 16:35	06/12/23 15:32	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		06/09/23 16:35	06/12/23 15:32	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		06/09/23 16:35	06/12/23 15:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130			06/09/23 16:35	06/12/23 15:32	1
1,4-Difluorobenzene (Surr)	86		70 - 130			06/09/23 16:35	06/12/23 15:32	1

Method: TAL SOP Total BTEX - Tota	al BTEX Calc	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/13/23 11:41	1
_								

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			06/12/23 14:08	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

	••••••••••••••••••••••••••••••••••••••		()					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 00:12	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 00:12	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 00:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130			06/09/23 17:18	06/12/23 00:12	1
o-Terphenyl	110		70 - 130			06/09/23 17:18	06/12/23 00:12	1

Eurofins Midland

Lab Sample ID: 880-29346-8 Matrix: Solid 5

Client Sample Results

Job ID: 880-29346-1

Lab Sample ID: 880-29346-9

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Client Sample ID: SW-13	
Date Collected: 06/08/23 15:45	5
Date Received: 06/09/23 15:22	2

Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	le					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	67.0		4.96	mg/Kg			06/10/23 02:28	
lient Sample ID: SW-17						Lab Samp	le ID: 880-29	346-10
ate Collected: 06/08/23 16:00							Matri	ix: Solid
ate Received: 06/09/23 15:22								
Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)					
Analyte		Qualifier	, RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U *+	0.00201	mg/Kg		06/09/23 16:35	06/12/23 15:53	
Toluene	0.00214		0.00201	mg/Kg		06/09/23 16:35	06/12/23 15:53	
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/09/23 16:35	06/12/23 15:53	
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/09/23 16:35	06/12/23 15:53	
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/09/23 16:35	06/12/23 15:53	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/09/23 16:35	06/12/23 15:53	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	95		70 - 130			06/09/23 16:35	06/12/23 15:53	
1,4-Difluorobenzene (Surr)	87		70 - 130			06/09/23 16:35	06/12/23 15:53	
Method: TAL SOP Total BTEX - To	atal BTEX Cale	sulation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	-	0.00402	mg/Kg			06/13/23 11:41	
Method: SW846 8015 NM - Diesel Analyte		<mark>ics (DRO) (</mark> Qualifier	GC) RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8		49.8	mg/Kg			06/12/23 14:08	
		0	40.0	ilig/itg			00/12/20 14:00	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 00:32	
(GRO)-C6-C10	.10.0		40.0	114		00/00/00 17 10	00/40/00 00 00	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 00:32	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 00:32	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	95		70 - 130			06/09/23 17:18	06/12/23 00:32	
o-Terphenyl	106		70 - 130			06/09/23 17:18	06/12/23 00:32	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	le					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	68.5		4.99	mg/Kg			06/10/23 02:33	
lient Sample ID: SW-18						Lab Samp	le ID: 880-29	346-1
ate Collected: 06/08/23 16:05								ix: Solid
ate Received: 06/09/23 15:22								
ample Depth: 4								

Method: Sw646 8021B - Volatile Org	janic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U *+	0.00201	mg/Kg		06/09/23 16:35	06/12/23 17:35	1
Toluene	<0.00201	U	0.00201	mg/Kg		06/09/23 16:35	06/12/23 17:35	1

Matrix: Solid

5

Job ID: 880-29346-1

Lab Sample ID: 880-29346-11

Client: TRC Solutions, Inc.
Project/Site: Rocket Fed #5H

Client Sample ID: SW-18

Date Collected: 06/08/23 16:05 Date Received: 06/09/23 15:22

Sample Depth: 4

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/09/23 16:35	06/12/23 17:35	
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/09/23 16:35	06/12/23 17:35	
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/09/23 16:35	06/12/23 17:35	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/09/23 16:35	06/12/23 17:35	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		70 - 130			06/09/23 16:35	06/12/23 17:35	
1,4-Difluorobenzene (Surr)	86		70 - 130			06/09/23 16:35	06/12/23 17:35	
Method: TAL SOP Total BTEX -	Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402	mg/Kg			06/13/23 11:41	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8	mg/Kg			06/12/23 14:08	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 01:13	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 01:13	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 01:13	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	95		70 - 130			06/09/23 17:18	06/12/23 01:13	
o-Terphenyl	107		70 - 130			06/09/23 17:18	06/12/23 01:13	
Method: EPA 300.0 - Anions, lor	n Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	80.9		4.98	mg/Kg			06/10/23 02:39	
lient Sample ID: FL-16 @	4					Lab Samp	le ID: 880-29	346-1 :
ate Collected: 06/08/23 11:00 ate Received: 06/09/23 15:22 ample Depth: 4							Matri	x: Soli
	Ormania Comm							
Method: SW846 8021B - Volatile Analyte	• •	OUNDS (GC) Qualifier) RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202		0.00202	mg/Kg		06/09/23 16:35	06/12/23 17:56	

Analyte	Result	Quaimer		Unit	U	Flepaleu	Analyzeu	DirFac
Benzene	<0.00202	U *+	0.00202	mg/Kg		06/09/23 16:35	06/12/23 17:56	1
Toluene	0.00204		0.00202	mg/Kg		06/09/23 16:35	06/12/23 17:56	1
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		06/09/23 16:35	06/12/23 17:56	1
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		06/09/23 16:35	06/12/23 17:56	1
o-Xylene	<0.00202	U	0.00202	mg/Kg		06/09/23 16:35	06/12/23 17:56	1
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		06/09/23 16:35	06/12/23 17:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130			06/09/23 16:35	06/12/23 17:56	1
1,4-Difluorobenzene (Surr)	83		70 - 130			06/09/23 16:35	06/12/23 17:56	1

Client: TRC Solutions, Inc.

Client Sample Results

Job ID: 880-29346-1

ample Depth: 4 Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00404	U	0.00404	mg/Kg			06/13/23 11:41	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal TPH	<49.8	U	49.8	mg/Kg			06/12/23 14:08	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 01:33	
GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 01:33	
C10-C28) DII Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 01:33	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzad	Dil Fa
1-Chlorooctane		Quaimer	70 - 130			06/09/23 17:18	Analyzed 06/12/23 01:33	DIIFa
p-Terphenyl	90 109		70 - 130			06/09/23 17:18	06/12/23 01:33	
						00/03/23 11.10	00/12/20 01:00	
Method: EPA 300.0 - Anions, Ion Analyte		Ohy - Solubl Qualifier	e RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	707		5.00	mg/Kg			06/10/23 02:55	
lient Sample ID: FL-17 @4	1					Lah Samn	le ID: 880-29	346-14
ate Collected: 06/08/23 11:05	•							x: Soli
							Watri	x. 501
to Bosoivad: 06/00/22 15:22								
ample Depth: 4 Method: SW846 8021B - Volatile				Ilnit	Р	Propared	Analyzod	
ample Depth: 4 Method: SW846 8021B - Volatile Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	
ate Received: 06/09/23 15:22 ample Depth: 4 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.00199			Unit mg/Kg mg/Kg	<u>D</u>	Prepared 06/12/23 08:57 06/12/23 08:57	Analyzed 06/12/23 14:32 06/12/23 14:32	Dil Fa

Toluene	<0.00199	U	0.00199	mg/Kg	06/12/23 08:57	06/12/23 14:32	1			
Ethylbenzene	<0.00199	U	0.00199	mg/Kg	06/12/23 08:57	06/12/23 14:32	1			
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg	06/12/23 08:57	06/12/23 14:32	1			
o-Xylene	<0.00199	U	0.00199	mg/Kg	06/12/23 08:57	06/12/23 14:32	1			
Xylenes, Total	<0.00398	U	0.00398	mg/Kg	06/12/23 08:57	06/12/23 14:32	1			
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	78		70 - 130		06/12/23 08:57	06/12/23 14:32	1			
1,4-Difluorobenzene (Surr)	96		70 - 130		06/12/23 08:57	06/12/23 14:32	1			
Method: TAL SOP Total BTEX - Total BTEX Calculation										
Method: TAL SOP Total BTEX - To	otal BTEX Calc	culation								
Method: TAL SOP Total BTEX - To Analyte		Qualifier	RL	Unit D	Prepared	Analyzed	Dil Fac			

Method: SW846 8015 NM - Diesel Ran	el Range Organics (DRO) (GC)		C)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			06/12/23 14:08	1
Method: SW846 8015B NM - Diesel Ra	nge Orga	nics (DRO) (GC)					

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/12/23 01:53	1
(GRO)-C6-C10								

Eurofins Midland

RL

50.0

50.0

RL

4.95

Limits

70 - 130

70 - 130

Dil Fac

Dil Fac

Dil Fac

Matrix: Solid

1

1

1

1

Job ID: 880-29346-1

Client: TRC Solutions, Inc.
Project/Site: Rocket Fed #5H

Client Sample ID: FL-17 @ 4

Date Collected: 06/08/23 11:05 Date Received: 06/09/23 15:22

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Sample Depth: 4

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

Lab Sample ID: 880-29346-13 Matrix: Solid

Analyzed

06/12/23 01:53

06/12/23 01:53

Analyzed

06/12/23 01:53

06/12/23 01:53

Analyzed

06/10/23 03:00

Analyzed

Dil Fac

Lab Sample ID: 880-29346-14

9 10 11

Unit

mg/Kg

mg/Kg

Unit

Unit

D

Prepared

mg/Kg

D

D

Prepared

06/09/23 17:18

06/09/23 17:18

Prepared

06/09/23 17:18

06/09/23 17:18

Prepared

Client Sample ID: FL-18 @ 4 Date Collected: 06/08/23 11:10

Date Received: 06/09/23 15:22

Sample Depth: 4

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		06/12/23 08:57	06/12/23 14:53	1
Toluene	<0.00198	U	0.00198	mg/Kg		06/12/23 08:57	06/12/23 14:53	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		06/12/23 08:57	06/12/23 14:53	1
m-Xylene & p-Xylene	<0.00396	U	0.00396	mg/Kg		06/12/23 08:57	06/12/23 14:53	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		06/12/23 08:57	06/12/23 14:53	1
Xylenes, Total	<0.00396	U	0.00396	mg/Kg		06/12/23 08:57	06/12/23 14:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130			06/12/23 08:57	06/12/23 14:53	1
1,4-Difluorobenzene (Surr)	95		70 - 130			06/12/23 08:57	06/12/23 14:53	1

Method: TAL SOP Total BTEX - Total BTEX Calculation								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			06/13/23 11:33	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

<50.0 U

<50.0 U

%Recovery Qualifier

93

105

330

Result Qualifier

Total TPH	<49.9 U	49.9	mg/Kg	06/12/23 14:08	1
Method: SW846 8015B NM - Diesel	Range Organics (DRO)	(GC)			

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 02:13	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 02:13	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 02:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130			06/09/23 17:18	06/12/23 02:13	1
o-Terphenyl	108		70 - 130			06/09/23 17:18	06/12/23 02:13	1

		Clier	it Sample Re	sults				
Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H							Job ID: 880-	29346-´
Client Sample ID: FL-18 @4	4					Lab Samp	le ID: 880-29	346-14
Date Collected: 06/08/23 11:10						-	Matri	x: Solid
Date Received: 06/09/23 15:22								
Sample Depth: 4								
_ Method: EPA 300.0 - Anions, Ion	Chromatogram	hy - Solub	le					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1730		24.9	mg/Kg			06/10/23 03:16	
Client Sample ID: FL-19 @4	4					Lab Samp	le ID: 880-29	346-1
Date Collected: 06/08/23 11:15								x: Solid
Date Received: 06/09/23 15:22								
Sample Depth: 4								
_ Method: SW846 8021B - Volatile	Organia Comp	ounde (CC	\ \					
Analyte		Qualifier	, RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201		0.00201	mg/Kg		06/12/23 08:57	06/12/23 15:13	
Toluene	< 0.00201		0.00201	mg/Kg		06/12/23 08:57	06/12/23 15:13	
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		06/12/23 08:57	06/12/23 15:13	
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		06/12/23 08:57	06/12/23 15:13	
o-Xylene	<0.00201	U	0.00201	mg/Kg		06/12/23 08:57	06/12/23 15:13	
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		06/12/23 08:57	06/12/23 15:13	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	84		70 - 130			06/12/23 08:57	06/12/23 15:13	
1,4-Difluorobenzene (Surr)	100		70 - 130			06/12/23 08:57	06/12/23 15:13	
Method: TAL SOP Total BTEX - 1	Total BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402	mg/Kg			06/13/23 11:33	
_ Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8	mg/Kg			06/12/23 14:08	
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 02:33	
(GRO)-C6-C10 Diesel Range Organics (Over	<49.8		49.8	mg/Kg		06/09/23 17:18	06/12/23 02:33	
C10-C28)	~45.0	0	49.0	ilig/itg		00/09/23 17:10	00/12/23 02:33	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 02:33	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	95		70 - 130			06/09/23 17:18	06/12/23 02:33	
o-Terphenyl	108		70 - 130			06/09/23 17:18	06/12/23 02:33	
- Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride			24.8	mg/Kg			06/10/23 03:21	

Client: TRC Solutions, Inc.
Project/Site: Rocket Fed #5H

Client Sample ID: FL-20 @ 4

Date Collected: 06/08/23 11:20 Date Received: 06/09/23 15:22

Sample Depth: 4

Lab Sample ID: 880-29346-16

Matrix: Solid

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200	mg/Kg		06/12/23 08:57	06/12/23 15:34	
Toluene	<0.00200	U	0.00200	mg/Kg		06/12/23 08:57	06/12/23 15:34	
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/12/23 08:57	06/12/23 15:34	
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		06/12/23 08:57	06/12/23 15:34	
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/12/23 08:57	06/12/23 15:34	
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		06/12/23 08:57	06/12/23 15:34	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	94		70 - 130			06/12/23 08:57	06/12/23 15:34	
1,4-Difluorobenzene (Surr)	98		70 - 130			06/12/23 08:57	06/12/23 15:34	
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			06/13/23 11:33	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (0	GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			06/12/23 14:08	
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/12/23 02:53	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/12/23 02:53	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		06/09/23 17:18	06/12/23 02:53	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	93		70 - 130			06/09/23 17:18	06/12/23 02:53	
o-Terphenyl	106		70 - 130			06/09/23 17:18	06/12/23 02:53	
Method: EPA 300.0 - Anions, Ion (Chromatograp	ohy - Solubl	9					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1710		24.8	mg/Kg			06/10/23 03:27	1
Client Sample ID: FL-21 @ 4						Lab Samp	le ID: 880-29	346-17
Date Collected: 06/08/23 11:25							Matri	x: Solie
Date Received: 06/09/23 15:22								
Sample Depth: 4								
Method: SW846 8021B - Volatile C	• •							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00198		0.00198	mg/Kg		06/12/23 08:57	06/12/23 15:54	
Toluene	< 0.00198		0.00198	mg/Kg		06/12/23 08:57	06/12/23 15:54	
Ethylbenzene	< 0.00198		0.00198	mg/Kg		06/12/23 08:57	06/12/23 15:54	
m-Xylene & p-Xylene	< 0.00396		0.00396	mg/Kg		06/12/23 08:57	06/12/23 15:54	
o-Xylene	<0.00198		0.00198	mg/Kg		06/12/23 08:57	06/12/23 15:54	
Xylenes, Total	< 0.00396	U	0.00396	mg/Kg		06/12/23 08:57	06/12/23 15:54	

Xylenes, Total <0.00396 U 0.00396 06/12/23 08:57 06/12/23 15:54 mg/Kg Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 4-Bromofluorobenzene (Surr) 87 70 - 130 06/12/23 08:57 06/12/23 15:54

Eurofins Midland

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1710	24.8	mg/Kg			06/10/23 03:27	5

Clie Date Date

Method: SW846 8021B - Volatile Organi	c Compounds (GC)
Analyte	Result Qualifier

1

Analyzed

06/12/23 15:54

06/12/23 14:08

Lab Sample ID: 880-29346-18

Matrix: Solid

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Client Sample ID: FL-21 @ 4 Date Collected: 06/08/23 11:25

<49.9 U

Date Received:	06/09/23 15:22
Sample Depth:	4

Total TPH

Method: SW846 8021B - Vola	tile Organic Comp	ounds (GC)	(Continued)	
Surrogate	%Recovery	Qualifier	Limits	Prepared
1,4-Difluorobenzene (Surr)	107		70 - 130	06/12/23 08:57

mg/Kg

Method: TAL SOP Total BTEX - To	tal BTEX Calculation						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396 U	0.00396	mg/Kg			06/13/23 11:33	1
Method: SW846 8015 NM - Diesel		· · ·					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

49.9

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 03:13	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 03:13	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		06/09/23 17:18	06/12/23 03:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130			06/09/23 17:18	06/12/23 03:13	1
o-Terphenyl	115		70 - 130			06/09/23 17:18	06/12/23 03:13	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	139	4.95	mg/Kg			06/10/23 03:32	1

Client Sample ID: SW-14

Date Collected: 06/09/23 10:00 Date Received: 06/09/23 15:22

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier Dil Fac RL Unit D Prepared Analyzed Benzene <0.00199 U 0.00199 mg/Kg 06/12/23 08:57 06/12/23 16:32 1 Toluene <0.00199 U 0.00199 mg/Kg 06/12/23 08:57 06/12/23 16:32 1 Ethylbenzene <0.00199 U 0.00199 06/12/23 08:57 06/12/23 16:32 mg/Kg 1 m-Xylene & p-Xylene <0.00398 U 0.00398 06/12/23 08:57 06/12/23 16:32 mg/Kg 1 o-Xylene <0.00199 U 0.00199 06/12/23 08:57 06/12/23 16:32 mg/Kg 1 Xylenes, Total <0.00398 U 0.00398 mg/Kg 06/12/23 08:57 06/12/23 16:32 1 Surrogate %Recovery Qualifier Limits Analyzed Dil Fac Prepared 4-Bromofluorobenzene (Surr) 92 70 - 130 06/12/23 08:57 06/12/23 16:32 1,4-Difluorobenzene (Surr) 100 70 - 130 06/12/23 08:57 06/12/23 16:32 1

Method: TAL SOP Total BTEX - Total BTEX Calculation										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Total BTEX	<0.00398	U	0.00398	mg/Kg			06/13/23 11:33	1		
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)							

	method. Swoto of 15 mm - Dieser Kange Organics (DKO) (GC)								
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<49.8	U	49.8	mg/Kg			06/12/23 14:08	1

Eurofins Midland

Lab Sample ID: 880-29346-17 Matrix: Solid Dil Fac

Client Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Client Sample ID: SW-14 Date Collected: 06/09/23 10:00

Date Received: 06/09/23 15:22

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 03:33	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 03:33	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		06/09/23 17:18	06/12/23 03:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130			06/09/23 17:18	06/12/23 03:33	1
o-Terphenyl	109		70 - 130			06/09/23 17:18	06/12/23 03:33	1
_ Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Page 164 of 197

Job ID: 880-29346-1

Lab Sample ID: 880-29346-18 Matrix: Solid

Watrix: Solid

5

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-29346-1	FL-8 @ 4	89	89	
880-29346-1 MS	FL-8 @ 4	105	107	
880-29346-1 MSD	FL-8 @ 4	48 S1-	105	
880-29346-2	FL-9 @ 4	95	82	
880-29346-3	FL-10 @ 4	89	85	
880-29346-4	FL-11 @ 4	90	84	
880-29346-5	FL-12 @ 4	92	75	
880-29346-6	FL-13 @ 4	91	89	
880-29346-7	FL-14 @ 4	92	89	
880-29346-8	FL-15 @ 4	91	89	
880-29346-9	SW-13	88	86	
880-29346-10	SW-17	95	87	
880-29346-11	SW-18	93	86	
880-29346-12	FL-16 @4	92	83	
380-29346-13	FL-17 @4	78	96	
880-29346-13 MS	FL-17 @4	96	102	
880-29346-13 MSD	FL-17 @4	88	107	
380-29346-14	FL-18 @4	82	95	
380-29346-15	FL-19 @4	84	100	
880-29346-16	FL-20 @4	94	98	
380-29346-17	FL-21 @4	87	107	
880-29346-18	SW-14	92	100	
LCS 880-55176/1-A	Lab Control Sample	87	114	
LCS 880-55246/1-A	Lab Control Sample	95	101	
LCSD 880-55176/2-A	Lab Control Sample Dup	107	104	
LCSD 880-55246/2-A	Lab Control Sample Dup	92	110	
MB 880-55176/5-A	Method Blank	69 S1-	98	
MB 880-55246/5-A	Method Blank	82	115	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits
		1CO1	OTPH1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
-29346-1	FL-8 @ 4	93	105	
29346-1 MS	FL-8 @ 4	98	97	
-29346-1 MSD	FL-8 @ 4	95	96	
-29346-2	FL-9 @ 4	95	107	
-29346-3	FL-10 @ 4	96	107	
29346-4	FL-11 @ 4	94	105	
29346-5	FL-12 @ 4	94	106	
29346-6	FL-13 @ 4	96	109	
29346-7	FL-14 @ 4	93	103	
29346-8	FL-15 @ 4	93	105	
-29346-9	SW-13	96	110	

Eurofins Midland

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

			-		
				Percent Surrogate Recovery (Acceptance Limits)	4
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-29346-10	SW-17	95	106		
880-29346-11	SW-18	95	107		6
880-29346-12	FL-16 @ 4	96	109		0
880-29346-13	FL-17 @ 4	93	105		
880-29346-14	FL-18 @ 4	96	108		
880-29346-15	FL-19 @ 4	95	108		
880-29346-16	FL-20 @ 4	93	106		8
880-29346-17	FL-21 @4	102	115		
880-29346-18	SW-14	98	109		9
LCS 880-55185/2-A	Lab Control Sample	24 S1-	20 S1-		
LCSD 880-55185/3-A	Lab Control Sample Dup	23 S1-	19 S1-		
MB 880-55185/1-A	Method Blank	125	141 S1+		
Surrogate Legend					

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

Released to Imaging: 5/15/2024 2:25:32 PM

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-55176/5-A Matrix: Solid Analysis Batch: 55243						Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
	MB							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 12:26	1
Toluene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 12:26	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 12:26	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		06/09/23 16:35	06/12/23 12:26	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		06/09/23 16:35	06/12/23 12:26	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		06/09/23 16:35	06/12/23 12:26	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130			06/09/23 16:35	06/12/23 12:26	1
1,4-Difluorobenzene (Surr)	98		70 - 130			06/09/23 16:35	06/12/23 12:26	1
Lab Sample ID: LCS 880-55176/1-A Matrix: Solid					C	lient Sample I	D: Lab Control Prep Type: 1	

Analysis Batch: 55243

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1446	*+	mg/Kg		145	70 - 130	
Toluene	0.100	0.1111		mg/Kg		111	70 - 130	
Ethylbenzene	0.100	0.1029		mg/Kg		103	70 - 130	
m-Xylene & p-Xylene	0.200	0.2023		mg/Kg		101	70 - 130	
o-Xylene	0.100	0.09782		mg/Kg		98	70 - 130	

	LCS		
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	87		70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: LCSD 880-55176/2-A

Matrix: Solid

						Prep	Batch:	55176
Spike	LCSD	LCSD				%Rec		RPD
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.100	0.1033		mg/Kg		103	70 - 130	33	35
0.100	0.09007		mg/Kg		90	70 - 130	21	35
0.100	0.09515		mg/Kg		95	70 - 130	8	35
0.200	0.1922		mg/Kg		96	70 - 130	5	35
0.100	0.09316		mg/Kg		93	70 - 130	5	35
	Added 0.100 0.100 0.100 0.200	Added Result 0.100 0.1033 0.100 0.09007 0.100 0.09515 0.200 0.1922	Added Result Qualifier 0.100 0.1033	Added Result Qualifier Unit 0.100 0.1033 mg/Kg 0.100 0.09007 mg/Kg 0.100 0.09515 mg/Kg 0.200 0.1922 mg/Kg	Added Result Qualifier Unit D 0.100 0.1033 mg/Kg 0.100 0.09007 mg/Kg 0.100 0.09515 mg/Kg 0.200 0.1922 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.1033 mg/Kg 103 0.100 0.09007 mg/Kg 90 0.100 0.09515 mg/Kg 95 0.200 0.1922 mg/Kg 96	Spike LCSD LCSD %Rec Added Result Qualifier Unit D %Rec Limits 0.100 0.1033 mg/Kg 103 70 - 130 0.100 0.09007 mg/Kg 90 70 - 130 0.100 0.09515 mg/Kg 95 70 - 130 0.200 0.1922 mg/Kg 96 70 - 130	Added Result Qualifier Unit D %Rec Limits RPD 0.100 0.1033 mg/Kg 103 70 - 130 33 0.100 0.09007 mg/Kg 90 70 - 130 21 0.100 0.09515 mg/Kg 95 70 - 130 8 0.200 0.1922 mg/Kg 96 70 - 130 5

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 880-29346-1 MS Matrix: Solid

Analysia Bataby 55242

Analysis Batch: 55243									Prep	Batch: 55176
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U *+	0.101	0.1098		mg/Kg		109	70 - 130	
Toluene	<0.00199	U	0.101	0.09496		mg/Kg		93	70 - 130	

Eurofins Midland

Client Sample ID: FL-8 @ 4

Prep Type: Total/NA

Prep Batch: 55176

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Released to Imaging: 5/15/2024 2:25:32 PM

QC Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-29346-1 Matrix: Solid	MS							Clier	nt Sample ID: F Prep Type	Total/NA
Analysis Batch: 55243									Prep Bat	ch: 55176
	Sample Sa		Spike	MS					%Rec	
Analyte	Result Qu	alifier	Added		Qualifier	Unit	D		Limits	
Ethylbenzene	<0.00199 U		0.101	0.09774		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	<0.00398 U	F1 F2	0.202	0.1984		mg/Kg		98	70 - 130	
o-Xylene	<0.00199 U	F1 F2	0.101	0.09565		mg/Kg		94	70 - 130	
	MS MS	6								
Surrogate		alifier	Limits							
4-Bromofluorobenzene (Surr)	105		70 - 130							
1,4-Difluorobenzene (Surr)	107		70 - 130							
Lab Sample ID: 880-29346-1	MSD							Clier	nt Sample ID: F	، @ L-8
Matrix: Solid									Prep Type	: Total/N/
Analysis Batch: 55243									Prep Bat	
-	Sample Sa	mple	Spike	MSD	MSD				%Rec	RPD
Analyte	Result Qu	alifier	Added	Result	Qualifier	Unit	D	%Rec	Limits R	PD Limi
Benzene	<0.00199 U	*+	0.100	0.1137		mg/Kg		113	70 - 130	3 3
Toluene	<0.00199 U		0.100	0.08354		mg/Kg		83	70 - 130	13 3
Ethylbenzene	<0.00199 U		0.100	0.07220		mg/Kg		72	70 - 130	30 3
m-Xylene & p-Xylene	<0.00398 U	F1 F2	0.200	0.1270	F1 F2	mg/Kg		63	70 - 130	44 3
o-Xylene	<0.00199 U		0.100	0.05697		mg/Kg		56	70 - 130	51 3
	MSD MS	SD								
Surrogate	%Recovery Qu	alifier	Limits							
4-Bromofluorobenzene (Surr)	48 S1	-	70 - 130							
1,4-Difluorobenzene (Surr)	105		70 - 130							
Lab Sample ID: MB 880-5524	46/5-A							Client Sa	ample ID: Meth	od Blank
Matrix: Solid									Prep Type	: Total/NA
Analysis Batch: 55244									Prep Bat	ch: 55246
	м	в мв								
Analyte	Resu	It Qualifier	r RL		Unit		D	Prepared	Analyzed	Dil Fa
Benzene	<0.0020	0 U	0.00200		mg/Kg	g	06	/12/23 08:57	06/12/23 14:03	
Toluene	<0.0020	0 U	0.00200		mg/Kg	9	06	/12/23 08:57	06/12/23 14:03	
Ethylbenzene	<0.0020	0 U	0.00200		mg/Kg	g	06	/12/23 08:57	06/12/23 14:03	
m-Xylene & p-Xylene	<0.0040	0 U	0.00400		mg/Kg		06	/12/23 08:57	06/12/23 14:03	
p-Xylene	<0.0020		0.00200		mg/Kg			/12/23 08:57	06/12/23 14:03	
Xylenes, Total	<0.0040		0.00400		mg/Kg			/12/23 08:57	06/12/23 14:03	
	м	B MB								
Surrogate	%Recover		r Limits					Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		2	70 - 130				06	/12/23 08:57	06/12/23 14:03	
1,4-Difluorobenzene (Surr)	11	5	70 - 130				06	/12/23 08:57	06/12/23 14:03	
Lab Sample ID: LCS 880-552	246/1-A						Clier	nt Sample	ID: Lab Contro	ol Sample
Matrix: Solid									Prep Type	
Analysis Batch: 55244									Prep Bat	
			Spike	201	LCS				%Rec	011. 00240
Analvte			Added		Qualifier	Unit	п	%Rec	Limits	

Eurofins Midland

Job ID: 880-29346-1

Lab Sample ID: LCS 880-55246/1-A

QC Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Matrix: Solid

Job ID: 880-29346-1

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Analysis Detals, 55044											
Analysis Batch: 55244			0 11	1.00	1.00					Batch:	JJZ40
Anglista			Spike		LCS	11			%Rec		
Analyte			Added	0.09275	Qualifier	Unit	D	93	Limits		
o-Xylene			0.100	0.09275		mg/Kg		93	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
Lab Sample ID: LCSD 880-5	5246/2-A					Clie	nt Sam	nole ID: I	Lab Contro	ol Sample	e Dup
Matrix: Solid										Type: Tot	
Analysis Batch: 55244										Batch:	
· · · · · , · · · · · · · · · · · · · · · · · · ·			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.1256		mg/Kg		126	70 - 130	0	35
Toluene			0.100	0.1224		mg/Kg		122	70 - 130	5	35
Ethylbenzene			0.100	0.1010		mg/Kg		101	70 - 130	4	35
m-Xylene & p-Xylene			0.200	0.1915		mg/Kg		96	70 - 130	3	35
o-Xylene			0.200	0.09162		mg/Kg		90 92	70 - 130 70 - 130	1	35
0-Xylene			0.100	0.03102		ilig/itg		52	70 - 150		00
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	92		70 - 130								
			/								
Lab Sample ID: 880-29346-1	110 13 MS		70 - 130					Clier	nt Sample I Prep 1	ID: FL-17 Гуре: Tot	_
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244	13 MS							Clier	Prep 1 Prep		al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244	I3 MS Sample	•	Spike		MS				Prep 1 Prep %Rec	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte	I3 MS Sample Result	Qualifier	Spike Added	Result	MS Qualifier	Unit	D	%Rec	Prep 1 Prep %Rec Limits	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene	I3 MS Sample Result <0.00199	Qualifier	Spike Added 0.101	Result 0.1057		mg/Kg	D	%Rec 105	Prep 1 Prep %Rec Limits 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene	I3 MS Sample Result <0.00199 <0.00199	Qualifier U U	Spike Added 0.101 0.101	Result 0.1057 0.1073		mg/Kg mg/Kg	<u>D</u>	%Rec 105 106	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene	13 MS Sample <u>Result</u> <0.00199	Qualifier U U	Spike Added 0.101 0.101 0.101	Result 0.1057		mg/Kg	D	%Rec 105	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	I3 MS Sample Result <0.00199 <0.00199	Qualifier U U U	Spike Added 0.101 0.101 0.101 0.202	Result 0.1057 0.1073 0.09018 0.1765		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 105 106	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene	3 MS Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U U U	Spike Added 0.101 0.101 0.101	Result 0.1057 0.1073 0.09018		mg/Kg mg/Kg mg/Kg	D	%Rec 105 106 89	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	I3 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.202 0.101	Result 0.1057 0.1073 0.09018 0.1765		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 105 106 89 88	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	I3 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U U U U	Spike Added 0.101 0.101 0.101 0.202 0.101 Limits	Result 0.1057 0.1073 0.09018 0.1765		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 106 89 88	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	I3 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 96	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1057 0.1073 0.09018 0.1765		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 106 89 88	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	I3 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.202 0.101 Limits	Result 0.1057 0.1073 0.09018 0.1765		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 106 89 88	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1	I3 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 96 102	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1057 0.1073 0.09018 0.1765		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 105 106 89 88 83	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ID: FL-17	7 @ 4
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1 Matrix: Solid	I3 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 96 102	Qualifier U U U U U U MS	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 Limits 70 - 130	Result 0.1057 0.1073 0.09018 0.1765		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 106 89 88 83	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 170	ID: FL-17	7 @ 4 al/NA
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1	13 MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 96 102 13 MSD	Qualifier U U U U U MS Qualifier	Spike Added 0.101 0.101 0.101 0.202 0.101 D.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101	Result 0.1057 0.1073 0.09018 0.1765 0.08374	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 105 106 89 88 83	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	ID: FL-17	7 @ 4 tal/NA 55246
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244	Sample Result <0.00199	Qualifier U U U U U MS Qualifier	Spike Added 0.101 0.101 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 Description 70 - 130 70 - 130 70 - 130 Spike	Result 0.1057 0.1073 0.09018 0.1765 0.08374	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 105 106 89 88 83 83	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 190 70 - 1	ID: FL-17 Jype: Tot Batch: 4 Jype: Tot Batch: 4	7 @ 4 tal/NA 55246 RPD
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244	Sample Result <0.00199	Qualifier U U U U U MS Qualifier Sample Qualifier	Spike Added 0.101 0.101 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 Limits 70 - 130 70 - 130 Spike Added	Result 0.1057 0.1073 0.09018 0.1765 0.08374	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 105 106 89 88 83 83 Clier	Prep 1 Prep %Rec Limits 70 - 130 70 - 190 %Rec Limits	ID: FL-17 Fype: Tot Batch: 4 Second Second Batch: 4 RPD	7 @ 4 tal/NA 55246 RPD Limit
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene	Sample Result <0.00199	Qualifier U U U U U MS Qualifier U	Spike Added 0.101 0.101 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 0.202 0.101 Limits 70 - 130 70 - 130 Spike Added 0.100	Result 0.1057 0.1073 0.09018 0.1765 0.08374	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg		%Rec 105 106 89 88 83 83 Clien %Rec 102	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130	ID: FL-17 Fype: Tot Batch: 4 D: FL-17 Fype: Tot Batch: 4 <u>RPD</u> 3	7 @ 4 tal/NA 55246 7 @ 4 tal/NA 55246 RPD Limit 35
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene	I3 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> %Recovery 96 102 I3 MSD Sample Result <0.00199 <0.00199 <0.00199 <0.00199 	Qualifier U U U U U U MS Qualifier U U U	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 <i>Limits</i> 70 - 130 70 - 130 Spike Added 0.100	Result 0.1057 0.1073 0.09018 0.1765 0.08374	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 105 106 89 88 83 83 Clier %Rec 102 110	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130	ID: FL-17 Type: Tot Batch: 4 Type: Tot Batch: 4 <u>RPD</u> 3 2	7 @ 4 55246 7 @ 4 tal/NA 55246 RPD Limit 35 35
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene	I3 MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199 <0.00199 <i>MS</i> <i>%Recovery</i> 96 102 I3 MSD Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 	Qualifier U U U U U U U MS Qualifier U U U U	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 0.202 0.101 D.202 0.101 D.202 0.101 Limits 70 - 130 70 - 130 Spike Added 0.100 0.100 0.100	Result 0.1057 0.1073 0.09018 0.1765 0.08374	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 105 106 89 88 83 83 Clier %Rec 102 110 84	Prep 1 Prep 3 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep 1 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	ID: FL-17 Type: Tot Batch: 4 D: FL-17 Type: Tot Batch: 4 Batch: 4 3 2 7	7 @ 4 55246 25246 2010 2010 2010 2010 2010 2010 2010 201
Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-29346-1 Matrix: Solid Analysis Batch: 55244 Analyte Benzene Toluene	I3 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> %Recovery 96 102 I3 MSD Sample Result <0.00199 <0.00199 <0.00199 <0.00199 	Qualifier U U U U U U U U MS Qualifier U U U U U	Spike Added 0.101 0.101 0.101 0.101 0.202 0.101 <i>Limits</i> 70 - 130 70 - 130 Spike Added 0.100	Result 0.1057 0.1073 0.09018 0.1765 0.08374	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 105 106 89 88 83 83 Clier %Rec 102 110	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130	ID: FL-17 Type: Tot Batch: 4 Type: Tot Batch: 4 <u>RPD</u> 3 2	7 @ 4 tal/NA 55246 8 PD Limit 35 35

Client: TRC Solutions, Inc.

Job ID: 880-29346-1

Aethod: 8021B - Volatile O	rganic Cor	npc									
Lab Sample ID: 880-29346-13 M	ISD								Client	t Sample ID: FL	17 @4
Matrix: Solid										Prep Type:	Total/N/
Analysis Batch: 55244										Prep Batc	h: 55246
	MSD	MSE)								
Surrogate	%Recovery	Qua	lifier	Limits							
4-Bromofluorobenzene (Surr)	88			70 - 130							
1,4-Difluorobenzene (Surr)	107			70 - 130							
lethod: 8015B NM - Diese	Range Or	gar	nics (DR	O) (GC)							
Lab Sample ID: MB 880-55185/	1-A								Client Sa	mple ID: Metho	od Blank
Matrix: Solid										Prep Type:	
Analysis Batch: 55229										Prep Batc	
-		ΜВ	мв								
Analyte	Re	esult	Qualifier	RL	_	Unit		DF	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<	50.0	U	50.0	_	mg/Kg		06/0	09/23 17:18	06/11/23 19:35	
(GRO)-C6-C10				50.0				00%	00/00 47 40	00/44/00 40 05	
Diesel Range Organics (Over C10-C28)	<	50.0	U	50.0		mg/Kg		06/0	09/23 17:18	06/11/23 19:35	
Oll Range Organics (Over C28-C36)	<	\$0.0	U	50.0		mg/Kg		06/0	09/23 17:18	06/11/23 19:35	
		мв	МВ								
Surrogate	%Peco		wo Qualifier	Limits					Prepared	Analyzed	Dil Fa
1-Chlorooctane		125	Quanter	70 - 130					09/23 17:18	06/11/23 19:35	Dirtu
o-Terphenyl			S1+	70 - 130					09/23 17:18	06/11/23 19:35	
Matrix: Solid Analysis Batch: 55229				Spike	LCS	LCS				Prep Type: Prep Batc	
Analyte				•						%Rec	
				Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics				•			Unit mg/Kg	D	%Rec		
Gasoline Range Organics (GRO)-C6-C10				Added	Result			<u> </u>		Limits	
· · · · · · · · · · · · · · · · · · ·				Added	Result 911.5		mg/Kg	<u> </u>	91	Limits	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	LCS	LCS		Added	Result 911.5		mg/Kg	<u> </u>	91	Limits	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery	Qua		Added 1000 1000 <i>Limits</i>	Result 911.5		mg/Kg	<u>D</u>	91	Limits	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 24	Qua S1-		Added 1000 1000 <i>Limits</i> 70 - 130	Result 911.5		mg/Kg	<u>D</u>	91	Limits	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery 24	Qua		Added 1000 1000 <i>Limits</i>	Result 911.5		mg/Kg	<u> </u>	91	Limits	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	%Recovery 24 20	Qua S1-		Added 1000 1000 <i>Limits</i> 70 - 130	Result 911.5		mg/Kg mg/Kg		91 96	Limits	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 24 20	Qua S1-		Added 1000 1000 <i>Limits</i> 70 - 130	Result 911.5		mg/Kg mg/Kg		91 96	Limits 70 - 130 70 - 130	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5518	%Recovery 24 20	Qua S1-		Added 1000 1000 <i>Limits</i> 70 - 130	Result 911.5		mg/Kg mg/Kg		91 96	Limits 70 - 130 70 - 130 ab Control San	nple Dup Total/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5518 Matrix: Solid	%Recovery 24 20	Qua S1-		Added 1000 1000 <i>Limits</i> 70 - 130	Result 911.5 957.4		mg/Kg mg/Kg		91 96	Limits 70 - 130 70 - 130 ab Control San Prep Type:	nple Dup Total/NA
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5518 Matrix: Solid Analysis Batch: 55229 Analyte	%Recovery 24 20	Qua S1-		Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 911.5 957.4 LCSD Result	Qualifier	mg/Kg mg/Kg Clic		91 96 nple ID: La	Limits 70 - 130 70 - 130 ab Control San Prep Type: Prep Batc %Rec Limits RP	nple Dup Total/NA h: 5518 RPC D Limi
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5518 Matrix: Solid Analysis Batch: 55229 Analyte Gasoline Range Organics	%Recovery 24 20	Qua S1-		Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike	Result 911.5 957.4	Qualifier	mg/Kg mg/Kg Clie	ent San	91 96 nple ID: L	Limits 70 - 130 70 - 130 ab Control San Prep Type: Prep Batc %Rec Limits RP	nple Dup Total/NA h: 55188 RPD
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5518 Matrix: Solid Analysis Batch: 55229 Analyte	%Recovery 24 20	Qua S1-		Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 911.5 957.4 LCSD Result	Qualifier	mg/Kg mg/Kg Clic	ent San	91 96 nple ID: La	Limits 70 - 130 70 - 130 70 - 130 ab Control San Prep Type: Prep Batc %Rec Limits 70 - 130	nple Dup Total/NA h: 5518 RPC D Limi
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5518 Matrix: Solid Analysis Batch: 55229 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 24 20	Qua S1- S1-	lifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 1000	Result 911.5 957.4 LCSD Result 882.9	Qualifier	mg/Kg mg/Kg Clie Unit mg/Kg	ent San	91 96 nple ID: La <u>%Rec</u> 88	Limits 70 - 130 70 - 130 70 - 130 ab Control San Prep Type: Prep Batc %Rec Limits 70 - 130	nple Dup Total/NA h: 55188 RPC D 3 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5518 Matrix: Solid Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 24 20 35/3-A	Qua S1- S1-	lifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 1000	Result 911.5 957.4 LCSD Result 882.9	Qualifier	mg/Kg mg/Kg Clie Unit mg/Kg	ent San	91 96 nple ID: La <u>%Rec</u> 88	Limits 70 - 130 70 - 130 70 - 130 ab Control San Prep Type: Prep Batc %Rec Limits 70 - 130	nple Dup Total/NA h: 55188 RPC D 3 20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCSD 880-5518 Matrix: Solid Analysis Batch: 55229 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 24 20 35/3-A <i>LCSD</i> %Recovery	Qua S1- S1-	lifier	Added 1000 1000 1000 1000 1000 70 - 130 70 - 130 70 - 130 1000 1000 1000	Result 911.5 957.4 LCSD Result 882.9	Qualifier	mg/Kg mg/Kg Clie Unit mg/Kg	ent San	91 96 nple ID: La <u>%Rec</u> 88	Limits 70 - 130 70 - 130 70 - 130 ab Control San Prep Type: Prep Batc %Rec Limits 70 - 130	nple Du Total/N h: 5518 RP <u>D</u> 3 2

Lab Sample ID: 880-29346-1 MS

QC Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Matrix: Solid

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-29346-1
Client Sample ID: FL-8 @ 4 Prep Type: Total/NA Prep Batch: 55185

									i iop i	iype. 10	
Analysis Batch: 55229									Prep	Batch:	5518
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U	999	961.3		mg/Kg		95	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	999	907.7		mg/Kg		91	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	98		70 - 130								
o-Terphenyl	97		70 - 130								
-											
Lab Sample ID: 880-29346-1	I MSD							Clie	nt Sample	ID: FL-8	8@4
Matrix: Solid									Prep 1	Туре: То	otal/NA
Analysis Batch: 55229									Prep	Batch:	55185
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U	998	943.6		mg/Kg		93	70 - 130	2	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	998	875.3		mg/Kg		88	70 - 130	4	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	95		70 - 130								
o-Terphenyl	96		70 - 130								
·											
lethod: 300.0 - Anions,	Ion Chromat	ography									
Lab Sample ID: MB 880-551	71/1_0							Client	ample ID:	Mothod	Blank
Matrix: Solid	1.11.178							onent c		Type: S	
Analysis Batch: 55212									iteh	Type. 0	
Anarysis Daton. 55212		МВ МВ									
Analyte		esult Qualifier		RL	Unit		D F	Prepared	Analyz	ad	Dil Fac
Analyte	K	esuit Quaimer			Unit			repared	Analyz	ieu _	лгас

Chloride	<5.00	U	5	5.00	mg/K	g			06/10/23 01:08	1
Lab Sample ID: LCS 880-55171/2-A Matrix: Solid							Client	t Sample	e ID: Lab Control Prep Type:	
Analysis Batch: 55212			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride			250	259.6		mg/Kg		104	90 - 110	
Lab Sample ID: LCSD 880-55171/3-A Matrix: Solid						Cli	ent San	nple ID: I	Lab Control Sam Prep Type:	

Analysis Batch: 55212									
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	263.5		mg/Kg		105	90 - 110	1	20

5 6

QC Sample Results

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Method: 300.0 - Anions, Ion Chromatography (Continued)

_ Lab Sample ID: 880-29346-1 MS Matrix: Solid								Cli	ent Sample Prep	ID: FL-8 Type: S	
Analysis Batch: 55212											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	381		251	626.0		mg/Kg		98	90 - 110		
 Lab Sample ID: 880-29346-1 MSD								Cli	ent Sample	ID: FL-8	8@4
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 55212											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	381		251	625.4		mg/Kg		98	90 - 110	0	20
 Lab Sample ID: 880-29346-11 MS									Client Sam	ple ID: S	SW-18
Matrix: Solid										Type: S	
Analysis Batch: 55212										.,,	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	80.9		249	337.7		mg/Kg		103	90 - 110		
 Lab Sample ID: 880-29346-11 MSD)								Client Sam	ple ID: S	SW-18
Matrix: Solid									Prep	Type: Se	oluble
Analysis Batch: 55212											
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	80.9		249	333.6		mg/Kg		101	90 - 110	1	20

5

Job ID: 880-29346-1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

5

GC VOA Prep Batch: 55176

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-29346-1	FL-8 @ 4	Total/NA	Solid	5035	
880-29346-2	FL-9 @ 4	Total/NA	Solid	5035	
880-29346-3	FL-10 @ 4	Total/NA	Solid	5035	
880-29346-4	FL-11 @ 4	Total/NA	Solid	5035	
880-29346-5	FL-12 @ 4	Total/NA	Solid	5035	
880-29346-6	FL-13 @ 4	Total/NA	Solid	5035	
880-29346-7	FL-14 @ 4	Total/NA	Solid	5035	
380-29346-8	FL-15 @ 4	Total/NA	Solid	5035	
880-29346-9	SW-13	Total/NA	Solid	5035	
380-29346-10	SW-17	Total/NA	Solid	5035	
880-29346-11	SW-18	Total/NA	Solid	5035	
880-29346-12	FL-16 @ 4	Total/NA	Solid	5035	
MB 880-55176/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-55176/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-55176/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
380-29346-1 MS	FL-8 @ 4	Total/NA	Solid	5035	
880-29346-1 MSD	FL-8 @ 4	Total/NA	Solid	5035	

Analysis Batch: 55243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29346-1	FL-8 @ 4	Total/NA	Solid	8021B	55176
880-29346-2	FL-9 @ 4	Total/NA	Solid	8021B	55176
880-29346-3	FL-10 @ 4	Total/NA	Solid	8021B	55176
880-29346-4	FL-11 @ 4	Total/NA	Solid	8021B	55176
880-29346-5	FL-12 @ 4	Total/NA	Solid	8021B	55176
880-29346-6	FL-13 @ 4	Total/NA	Solid	8021B	55176
880-29346-7	FL-14 @ 4	Total/NA	Solid	8021B	55176
880-29346-8	FL-15 @ 4	Total/NA	Solid	8021B	55176
880-29346-9	SW-13	Total/NA	Solid	8021B	55176
880-29346-10	SW-17	Total/NA	Solid	8021B	55176
880-29346-11	SW-18	Total/NA	Solid	8021B	55176
880-29346-12	FL-16 @ 4	Total/NA	Solid	8021B	55176
MB 880-55176/5-A	Method Blank	Total/NA	Solid	8021B	55176
LCS 880-55176/1-A	Lab Control Sample	Total/NA	Solid	8021B	55176
LCSD 880-55176/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	55176
880-29346-1 MS	FL-8 @ 4	Total/NA	Solid	8021B	55176
880-29346-1 MSD	FL-8 @ 4	Total/NA	Solid	8021B	55176

Analysis Batch: 55244

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29346-13	FL-17 @ 4	Total/NA	Solid	8021B	55246
880-29346-14	FL-18 @ 4	Total/NA	Solid	8021B	55246
880-29346-15	FL-19 @ 4	Total/NA	Solid	8021B	55246
880-29346-16	FL-20 @4	Total/NA	Solid	8021B	55246
880-29346-17	FL-21 @ 4	Total/NA	Solid	8021B	55246
880-29346-18	SW-14	Total/NA	Solid	8021B	55246
MB 880-55246/5-A	Method Blank	Total/NA	Solid	8021B	55246
LCS 880-55246/1-A	Lab Control Sample	Total/NA	Solid	8021B	55246
LCSD 880-55246/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	55246
880-29346-13 MS	FL-17 @4	Total/NA	Solid	8021B	55246
880-29346-13 MSD	FL-17 @4	Total/NA	Solid	8021B	55246

Client Sample ID

FL-17 @4

FL-18 @4

FL-19 @4

FL-20 @4

FL-21 @4

Method Blank

FL-17 @4

FL-17 @4

Lab Control Sample

Lab Control Sample Dup

SW-14

QC Association Summary

Prep Type Total/NA

Matrix

Solid

Method

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

5035

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

GC VOA

Prep Batch: 55246

880-29346-13

880-29346-14

880-29346-15

880-29346-16

880-29346-17

880-29346-18

MB 880-55246/5-A

LCS 880-55246/1-A

LCSD 880-55246/2-A

Page 174 of 197

Prep Batch

Job ID: 880-29346-1

9 10 11

3

880-29346-13 MS 880-29346-13 MSD

Analysis Batch: 55387

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29346-1	FL-8 @ 4	Total/NA	Solid	Total BTEX	
880-29346-2	FL-9 @ 4	Total/NA	Solid	Total BTEX	
880-29346-3	FL-10 @ 4	Total/NA	Solid	Total BTEX	
880-29346-4	FL-11 @ 4	Total/NA	Solid	Total BTEX	
880-29346-5	FL-12 @ 4	Total/NA	Solid	Total BTEX	
880-29346-6	FL-13 @ 4	Total/NA	Solid	Total BTEX	
880-29346-7	FL-14 @ 4	Total/NA	Solid	Total BTEX	
880-29346-8	FL-15 @ 4	Total/NA	Solid	Total BTEX	
880-29346-9	SW-13	Total/NA	Solid	Total BTEX	
880-29346-10	SW-17	Total/NA	Solid	Total BTEX	
880-29346-11	SW-18	Total/NA	Solid	Total BTEX	
880-29346-12	FL-16 @ 4	Total/NA	Solid	Total BTEX	
880-29346-13	FL-17 @ 4	Total/NA	Solid	Total BTEX	
880-29346-14	FL-18 @ 4	Total/NA	Solid	Total BTEX	
880-29346-15	FL-19 @ 4	Total/NA	Solid	Total BTEX	
880-29346-16	FL-20 @4	Total/NA	Solid	Total BTEX	
880-29346-17	FL-21 @ 4	Total/NA	Solid	Total BTEX	
880-29346-18	SW-14	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 55185

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29346-1	FL-8 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-2	FL-9 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-3	FL-10 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-4	FL-11 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-5	FL-12 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-6	FL-13 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-7	FL-14 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-8	FL-15 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-9	SW-13	Total/NA	Solid	8015NM Prep	
880-29346-10	SW-17	Total/NA	Solid	8015NM Prep	
880-29346-11	SW-18	Total/NA	Solid	8015NM Prep	
880-29346-12	FL-16 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-13	FL-17 @4	Total/NA	Solid	8015NM Prep	
880-29346-14	FL-18 @ 4	Total/NA	Solid	8015NM Prep	

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

GC Semi VOA (Continued)

Prep Batch: 55185 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29346-15	FL-19 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-16	FL-20 @4	Total/NA	Solid	8015NM Prep	
880-29346-17	FL-21 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-18	SW-14	Total/NA	Solid	8015NM Prep	
MB 880-55185/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-55185/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-55185/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-29346-1 MS	FL-8 @ 4	Total/NA	Solid	8015NM Prep	
880-29346-1 MSD	FL-8 @ 4	Total/NA	Solid	8015NM Prep	

Analysis Batch: 55229

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29346-1	FL-8 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-2	FL-9 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-3	FL-10 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-4	FL-11 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-5	FL-12 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-6	FL-13 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-7	FL-14 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-8	FL-15 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-9	SW-13	Total/NA	Solid	8015B NM	55185
880-29346-10	SW-17	Total/NA	Solid	8015B NM	55185
880-29346-11	SW-18	Total/NA	Solid	8015B NM	55185
880-29346-12	FL-16 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-13	FL-17 @4	Total/NA	Solid	8015B NM	55185
880-29346-14	FL-18 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-15	FL-19 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-16	FL-20 @4	Total/NA	Solid	8015B NM	55185
880-29346-17	FL-21 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-18	SW-14	Total/NA	Solid	8015B NM	55185
MB 880-55185/1-A	Method Blank	Total/NA	Solid	8015B NM	55185
LCS 880-55185/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	55185
LCSD 880-55185/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	55185
880-29346-1 MS	FL-8 @ 4	Total/NA	Solid	8015B NM	55185
880-29346-1 MSD	FL-8 @ 4	Total/NA	Solid	8015B NM	55185

Analysis Batch: 55329

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29346-1	FL-8 @ 4	Total/NA	Solid	8015 NM	
880-29346-2	FL-9 @ 4	Total/NA	Solid	8015 NM	
880-29346-3	FL-10 @ 4	Total/NA	Solid	8015 NM	
880-29346-4	FL-11 @ 4	Total/NA	Solid	8015 NM	
880-29346-5	FL-12 @ 4	Total/NA	Solid	8015 NM	
880-29346-6	FL-13 @ 4	Total/NA	Solid	8015 NM	
880-29346-7	FL-14 @ 4	Total/NA	Solid	8015 NM	
880-29346-8	FL-15 @ 4	Total/NA	Solid	8015 NM	
880-29346-9	SW-13	Total/NA	Solid	8015 NM	
880-29346-10	SW-17	Total/NA	Solid	8015 NM	
880-29346-11	SW-18	Total/NA	Solid	8015 NM	
880-29346-12	FL-16 @ 4	Total/NA	Solid	8015 NM	
880-29346-13	FL-17 @4	Total/NA	Solid	8015 NM	

Eurofins Midland

Page 175 of 197

Job ID: 880-29346-1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

GC Semi VOA (Continued)

Analysis Batch: 55329 (Continued)

Lab Sample ID 880-29346-14	Client Sample ID FL-18 @ 4	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
880-29346-15	FL-19 @4	Total/NA	Solid	8015 NM	
880-29346-16	FL-20 @4	Total/NA	Solid	8015 NM	
880-29346-17	FL-21 @ 4	Total/NA	Solid	8015 NM	
880-29346-18	SW-14	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 55171

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29346-1	FL-8 @ 4	Soluble	Solid	DI Leach	
880-29346-2	FL-9 @ 4	Soluble	Solid	DI Leach	
880-29346-3	FL-10 @ 4	Soluble	Solid	DI Leach	
880-29346-4	FL-11 @ 4	Soluble	Solid	DI Leach	
880-29346-5	FL-12 @ 4	Soluble	Solid	DI Leach	
880-29346-6	FL-13 @ 4	Soluble	Solid	DI Leach	
880-29346-7	FL-14 @ 4	Soluble	Solid	DI Leach	
880-29346-8	FL-15 @ 4	Soluble	Solid	DI Leach	
880-29346-9	SW-13	Soluble	Solid	DI Leach	
880-29346-10	SW-17	Soluble	Solid	DI Leach	
880-29346-11	SW-18	Soluble	Solid	DI Leach	
880-29346-12	FL-16 @ 4	Soluble	Solid	DI Leach	
880-29346-13	FL-17 @ 4	Soluble	Solid	DI Leach	
880-29346-14	FL-18 @ 4	Soluble	Solid	DI Leach	
880-29346-15	FL-19 @ 4	Soluble	Solid	DI Leach	
880-29346-16	FL-20 @ 4	Soluble	Solid	DI Leach	
880-29346-17	FL-21 @ 4	Soluble	Solid	DI Leach	
880-29346-18	SW-14	Soluble	Solid	DI Leach	
MB 880-55171/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-55171/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-55171/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-29346-1 MS	FL-8 @ 4	Soluble	Solid	DI Leach	
880-29346-1 MSD	FL-8 @ 4	Soluble	Solid	DI Leach	
880-29346-11 MS	SW-18	Soluble	Solid	DI Leach	
880-29346-11 MSD	SW-18	Soluble	Solid	DI Leach	

Analysis Batch: 55212

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-29346-1	FL-8 @ 4	Soluble	Solid	300.0	55171
880-29346-2	FL-9 @ 4	Soluble	Solid	300.0	55171
880-29346-3	FL-10 @ 4	Soluble	Solid	300.0	55171
880-29346-4	FL-11 @ 4	Soluble	Solid	300.0	55171
880-29346-5	FL-12 @ 4	Soluble	Solid	300.0	55171
880-29346-6	FL-13 @ 4	Soluble	Solid	300.0	55171
880-29346-7	FL-14 @ 4	Soluble	Solid	300.0	55171
880-29346-8	FL-15 @ 4	Soluble	Solid	300.0	55171
880-29346-9	SW-13	Soluble	Solid	300.0	55171
880-29346-10	SW-17	Soluble	Solid	300.0	55171
880-29346-11	SW-18	Soluble	Solid	300.0	55171
880-29346-12	FL-16 @4	Soluble	Solid	300.0	55171
880-29346-13	FL-17 @4	Soluble	Solid	300.0	55171

Page 176 of 197

Job ID: 880-29346-1

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

HPLC/IC (Continued)

Analysis Batch: 55212 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-29346-14	FL-18 @ 4	Soluble	Solid	300.0	55171
880-29346-15	FL-19 @ 4	Soluble	Solid	300.0	55171
880-29346-16	FL-20 @ 4	Soluble	Solid	300.0	55171
880-29346-17	FL-21 @ 4	Soluble	Solid	300.0	55171
880-29346-18	SW-14	Soluble	Solid	300.0	55171
MB 880-55171/1-A	Method Blank	Soluble	Solid	300.0	55171
LCS 880-55171/2-A	Lab Control Sample	Soluble	Solid	300.0	55171
LCSD 880-55171/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	55171
880-29346-1 MS	FL-8 @ 4	Soluble	Solid	300.0	55171
880-29346-1 MSD	FL-8 @ 4	Soluble	Solid	300.0	55171
880-29346-11 MS	SW-18	Soluble	Solid	300.0	55171
880-29346-11 MSD	SW-18	Soluble	Solid	300.0	55171

Lab Sample ID: 880-29346-1

Matrix: Solid

5

9

Client Sample ID: FL-8 @ 4 Date Collected: 06/07/23 14:25

Project/Site: Rocket Fed #5H

Client: TRC Solutions, Inc.

Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 12:48	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/11/23 20:39	AJ	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 01:24	СН	EET MID

Lab Sample ID: 880-29346-2

Lab Sample ID: 880-29346-3

Lab Sample ID: 880-29346-4

Matrix: Solid

Matrix: Solid

Date Collected: 06/07/23 14:30 Date Received: 06/09/23 15:22

Client Sample ID: FL-9 @ 4

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 13:08	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/11/23 21:43	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 01:40	СН	EET MID

Client Sample ID: FL-10 @ 4 Date Collected: 06/07/23 14:35 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 13:29	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/11/23 22:04	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			55212	06/10/23 01:45	СН	EET MID

Client Sample ID: FL-11 @ 4 Date Collected: 06/07/23 14:40 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 13:49	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID

Eurofins Midland

Matrix: Solid

Page 178 of 197

Released to Imaging: 5/15/2024 2:25:32 PM

Client Sample ID: FL-11 @ 4

Job ID: 880-29346-1

Lab Sample ID: 880-29346-4

Lab Sample ID: 880-29346-5

Matrix: Solid

Matrix: Solid

Date Collected: 06/07/23 14:40 Date Received: 06/09/23 15:22

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/11/23 22:25	AJ	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 01:51	СН	EET MID

Client Sample ID: FL-12 @ 4 Date Collected: 06/07/23 14:45 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 14:10	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/11/23 22:47	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 01:56	СН	EET MID

Client Sample ID: FL-13 @ 4

Date Collected: 06/07/23 14:50 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 14:30	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/11/23 23:08	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 02:12	СН	EET MID

Client Sample ID: FL-14 @ 4 Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 14:51	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/11/23 23:30	AJ	EET MID

Eurofins Midland

Matrix: Solid

Lab Sample ID: 880-29346-6

Lab Sample ID: 880-29346-7

Matrix: Solid

Lab Sample ID: 880-29346-7

Matrix: Solid

Date Collected: 06/07/23 14:55 Date Received: 06/09/23 15:22

Client Sample ID: FL-14 @ 4

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		10			55212	06/10/23 02:17	СН	EET MID

Client Sample ID: FL-15 @ 4 Date Collected: 06/07/23 15:00 Date Received: 06/09/23 15:22

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 15:12	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/11/23 23:51	AJ	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			55212	06/10/23 02:23	СН	EET MID

Client Sample ID: SW-13 Date Collected: 06/08/23 15:45

Date Received: 06/09/23 15:22

Ргер Туре	Batch Type	Batch	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
		Method								
Total/NA	Prep	5035			5.02 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 15:32	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 00:12	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 02:28	CH	EET MID

Client Sample ID: SW-17 Date Collected: 06/08/23 16:00 Date Received: 06/09/23 15:22

Lab Sample ID: 880-29346-10

Lab Sample ID: 880-29346-9

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 15:53	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 00:32	AJ	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 02:33	CH	EET MID

Eurofins Midland

9

Lab Sample ID: 880-29346-8 Matrix: Solid
Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H **Client Sample ID: SW-18**

Date Collected: 06/08/23 16:05

Date Received: 06/09/23 15:22

Batch

Batch

Job ID: 880-29346-1

Lab Sample ID: 880-29346-11

Prepared

Matrix: Solid

9

Lab Sample ID: 880-29346-12 Matrix: Solid

Lab Sample ID: 880-29346-14

Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Prep	5035			4.95 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 17:56	AJ	EET MID
Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Prep	8015NM Prep			10.05 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 01:33	AJ	EET MID

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	55246	06/12/23 08:57	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55244	06/12/23 14:32	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:33	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 01:53	AJ	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 03:00	СН	EET MID

Client Sample ID: FL-18 @ 4 Date Collected: 06/08/23 11:10 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	55246	06/12/23 08:57	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55244	06/12/23 14:53	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:33	AJ	EET MID

Eurofins Midland

Matrix: Solid

Initial Final Batch

Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	55176	06/09/23 16:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55243	06/12/23 17:35	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 01:13	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 02:39	CH	EET MID

Dil

Client Sample ID: FL-16 @ 4 Date Collected: 06/08/23 11:00

Date Received: 06/09/23 15:22

Prep Type

Total/NA

Total/NA

	u. 00/09/23 15.2	2							
	d: 06/08/23 11:0 d: 06/09/23 15:2	-							Matrix: Solid
Client Sam	ple ID: FL-17	@ 4					Lab Sampl	e ID: 8	80-29346-13
Soluble	Analysis	300.0	1			55212	06/10/23 02:55	СН	EET MID
Soluble	Leach	DI Leach		5 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Total/NA	Analysis	8015B NM	1	1 uL	1 uL	55229	06/12/23 01:33	AJ	EET MID
Total/NA	Prep	8015NM Prep		10.05 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015 NM	1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Analysis	Total BTEX	1			55387	06/13/23 11:41	AJ	EET MID

Job ID: 880-29346-1

Lab Sample ID: 880-29346-14

Lab Sample ID: 880-29346-15

Matrix: Solid

Matrix: Solid

Date Collected: 06/08/23 11:10 Date Received: 06/09/23 15:22

Client Sample ID: FL-18 @ 4

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 02:13	AJ	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			55212	06/10/23 03:16	СН	EET MID

Client Sample ID: FL-19 @ 4 Date Collected: 06/08/23 11:15 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	55246	06/12/23 08:57	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55244	06/12/23 15:13	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:33	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 02:33	AJ	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			55212	06/10/23 03:21	СН	EET MID

Client Sample ID: FL-20 @ 4

Date Collected: 06/08/23 11:20 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	55246	06/12/23 08:57	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55244	06/12/23 15:34	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:33	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 02:53	AJ	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		5			55212	06/10/23 03:27	СН	EET MID

Client Sample ID: FL-21 @ 4 Date Collected: 06/08/23 11:25 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	55246	06/12/23 08:57	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55244	06/12/23 15:54	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:33	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 03:13	AJ	EET MID

Eurofins Midland

Lab Sample ID: 880-29346-16

Lab Sample ID: 880-29346-17

Matrix: Solid

Matrix: Solid

Job ID: 880-29346-1

Client Sample ID: FL-21 @ 4 Date Collected: 06/08/23 11:25 Date Received: 06/09/23 15:22

Client: TRC Solutions, Inc.

Project/Site: Rocket Fed #5H

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 03:32	CH	EET MID

Client Sample ID: SW-14 Date Collected: 06/09/23 10:00 Date Received: 06/09/23 15:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	55246	06/12/23 08:57	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	55244	06/12/23 16:32	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			55387	06/13/23 11:33	AJ	EET MID
Total/NA	Analysis	8015 NM		1			55329	06/12/23 14:08	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	55185	06/09/23 17:18	AJ	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	55229	06/12/23 03:33	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	55171	06/09/23 16:15	KS	EET MID
Soluble	Analysis	300.0		1			55212	06/10/23 03:37	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 880-29346-17 Matrix: Solid

Lab Sample ID: 880-29346-18

Matrix: Solid

Eurofins Midland

Accreditation/Certification Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date
Texas	NE	ELAP	T104704400-22-25	06-30-23
The following analytes the agency does not c		t the laboratory is not certif	ied by the governing authority. This list m	ay include analytes for whi
• •		t the laboratory is not certif Matrix	ied by the governing authority. I his list m Analyte	ay include analytes for whi
the agency does not o	ffer certification.	-		ay include analytes for whi

Eurofins Midland

Page 184 of 197

10

Job ID: 880-29346-1

Method Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H Job ID: 880-29

Page 185 of 197

040.4	1
346-1	
	5
	8
	9
	11
	13

Eurofins Midland

Method	Method Description	Protocol	Laborator
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	erences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 = 1	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E	dition, November 1986 And Its Updates.	
TAL SOP :	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Sample Summary

Client: TRC Solutions, Inc. Project/Site: Rocket Fed #5H

Page	186	of .	197

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-29346-1	FL-8 @ 4	Solid	06/07/23 14:25	06/09/23 15:22	4
880-29346-2	FL-9 @ 4	Solid	06/07/23 14:30	06/09/23 15:22	4
880-29346-3	FL-10 @ 4	Solid	06/07/23 14:35	06/09/23 15:22	4
880-29346-4	FL-11 @ 4	Solid	06/07/23 14:40	06/09/23 15:22	4
880-29346-5	FL-12 @ 4	Solid	06/07/23 14:45	06/09/23 15:22	4
880-29346-6	FL-13 @ 4	Solid	06/07/23 14:50	06/09/23 15:22	4
880-29346-7	FL-14 @ 4	Solid	06/07/23 14:55	06/09/23 15:22	4
880-29346-8	FL-15 @ 4	Solid	06/07/23 15:00	06/09/23 15:22	4
880-29346-9	SW-13	Solid	06/08/23 15:45	06/09/23 15:22	
880-29346-10	SW-17	Solid	06/08/23 16:00	06/09/23 15:22	
880-29346-11	SW-18	Solid	06/08/23 16:05	06/09/23 15:22	4
380-29346-12	FL-16 @4	Solid	06/08/23 11:00	06/09/23 15:22	4
880-29346-13	FL-17 @4	Solid	06/08/23 11:05	06/09/23 15:22	4
380-29346-14	FL-18 @4	Solid	06/08/23 11:10	06/09/23 15:22	4
380-29346-15	FL-19 @4	Solid	06/08/23 11:15	06/09/23 15:22	4
880-29346-16	FL-20 @4	Solid	06/08/23 11:20	06/09/23 15:22	4
880-29346-17	FL-21 @4	Solid	06/08/23 11:25	06/09/23 15:22	4
880-29346-18	SW-14	Solid	06/09/23 10:00	06/09/23 15:22	

HA	com Page of C er Comments Brownfields RRC Superfund	PST/UST TRRP Level N	Preservative Codes		H₃PO₄ HP NaHSO ₄ NABIS Na₂S₂O₃ NaSO ₃ Zn Acetate+NaOH Zn NaOHLAccoder Acid SADC	Sample Comments			istody	r U V Zn 0 / 7471		Date/Time	Revised Date: 08/25/2020 Rev 2020.2
	WWW.xenco	el II 🗌 Level III 🗍 AC		H ₂ S0 4 H	л _э тс Nats Na ₂ S A ₂ S				880-29346 Chain of Custody	Ni K Se Ag SiO ₂ Na Sr TI Sn U V Zn U Hg 1631/2451/7470/7471 ms	ol gotiated.	Received by [.] (Signature)	
dy 144 902-0300 6 (210) 509-3334 (575) 988-3199	Program:	Reporting Reporting Deliverables.	ANALYSIS REQUEST							Total 200.7 / 6010 200.8 / 6020: 8RCRA 13PPM Texas 11 AI Sb As Ba B Cd Ca Cr Co Cu Fe PM Mo Ni K Circle Method(s) and Metal(s) to be analyzed TCLP / SPLP 6010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni K Ag Tl U Note: Statute of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, Its affiliates and subcontractors. It assigns standard terms and conditions	or served: entrolies varied will be listed only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied/on each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotitated.	Relinquished by (Signature)	
Chain of Custody Houston, TX (281) 240-4200, Dallas TX (214) 902-0300 Midland TX (432) 704-5440 San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443 Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550 Carlsbad, NM (575) 988-3199		NKE / Russen	Pres.	5199 519 509 509 510 509	3 (1. Х <u>2</u> Э018 алу әшелед	# of C A H	 7221 7221 727 7)7		 22)) 22)) 22))	Al Sb As Ba Be B Cd Ca RA Sb As Ba Be Cd Cr (rto Eurofins Xenco, its affiliates and subc	or expenses incurred by the client if such tted to Eurofins Xenco, but not analyzed.	Date/Time	~ ~ ~ ~
	Bill to (if different) Company Name Address	City State ZIP Email JAnen	Turn Around	Due Date: TAT starts the day received by the lab if received by 4:30pm Wet Ice Mees No	r ding erature	Time Depth Sampled 2		25/1 25/1 25/1		8RCRA 13PPM Texas 11 AI S TCLP/SPLP 6010 8RCRA a valid purchase order from client company to Eu	: assume any responsibility for any losses o and a charge of \$5 for each sample submit	Received by (Signature)	5
S Environment Testing Xenco	JARED STOFFEL TTAC M. #130	1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×1×	Rector For #Sit 495-496	Russeu Seriny Temp Blank Yes (No		Matrix			6.623	200.8 / 6020: 8 etal(s) to be analyzed d relinquishment of samples constitutes a	e only for the cost of samples and shall not of \$85.00 will be applied to each project a		
🔹 eurofins	Project Manager	te ZIP-	Project Name 26	Project Location Sampler's Name [.] الكريج PO # SAMPLE RECEIPT	Samples Received Intact: Cooler Custody Seals: Sample Custody Seals. Total Containers.	Sample Identification	9 0 0 0 0	FL-12 64 FL-12 64 FL-13 64	H-15 eg 5w-13 5w-17	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed Notice: Signature of this document and relinquishment of samples const	of Eurofins Xenco. A minimum charge	Relinquished by (Signature)	

.

4 N34	rageor				Other	Preservative Codes	None NO DI Water H ₂ O		HCL.HC HNO ₃ HN H SA H NJOH NJ		NAHSO , NABIS	Na , S , O , NaSO ,	Zn Acetate+NaOH Zn	NaOH+Ascorbic Acid SAPC	Sample Comments						Loc: 880	29346	Network and the second s		TI Sn U V Zn /7470 /7471		Date/Time		Revised Date: 08/25/2020 Rev. 2020.2
Work Order No: _	WWW.Xenco.com Page Work Order Comments		State of Project:	el II 🗌 Level III 🗍																					n Mo Ni K Se Ag SiO ₂ Na Sr ⁻ g Tl U Hg 1631/2451/	conditions re control ously negotiated.	Received by (Signature)		
Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440 San Antonio, TX (210) 509-3334 EL Paso TX (915) 585-3443 Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392 7550, Carlsbad, NM (575) 988-3199			St 7	Re	D	ANALYSIS REQUEST		5	1 1 1 9	00	8		(H))]2	d. 2	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2			>	<u>></u>		>	>	<u>></u>		Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V Zn 5010 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U Hg 1631/2451/7470 /7471	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and sub-contractors. It assigns standard terms and conditions of service. Eurofins Xenco, will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco. An innimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	te/Time A Relinquished by (Signature)		
Cha Houston, TX (281 Mildiand, TX (432) 74 EL Paso TX (915) Hobbs, NM (575)	Bill to (if different)	Company Name	Address.	City State ZIP		n Around	Rush ZY Pres.		the lab, if received by 4.30pm	Yes No	L. L	69			Depth Grab/ # of Comp Cont				4 1 1				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		A 13PPM Texas 11 AI Sb As TCLP/SPLP6010 8RCRA Sb /	order from client company to Eurofins X sponsibility for any losses or expenses ir \$5 for each sample submitted to Eurofi	Jre)		*
NS Environment Testing Xenco	ARED STEREL	nc	10 Diry Dr. # 1306	Mouro TX 2925	437.739, 3003 Email	N T A	495496 DRoutine	Due Date		Temp Blank. Yes No Wet Ice	Yes No Thermometer ID-	Yes No N/A Correction Factor	Yes No N/A Temperature Reading	Corrected Temperature	on Matrix Date Time Sampled Sampled	1	1 / 1/00	L-J7ey / 1100	11/0	1/1/	1120	1 1 125	V 69,23 /200		Total 200.7 / 6010 200.8 / 6020 [.] 8RCRA 13PPM Circle Method(s) and Metal(s) to be analyzed TCLP / SPL	and relinquishment of samples constitutes a valid purchase or able only for the cost of samples and shall not assume any resp rge of \$85.00 will be applied to each project and a charge of \$	nature) Regerved by (Signature)		
🔹 eurofins	Project Manager	Company Name		City State ZIP	Phone \mathcal{A}	Project Name 20		Project Location Sampler's Name		SAMPLE RECEIPT	Samples Received Intact:	Cooler Custody Seals.	Sample Custody Seals,	Total Containers.	Sample Identification	SW-18	FL-1664	A-B-F	FL-1864	H-1904	FL-2004	FL-2104	オーマ		Total 200.7 / 6010 Circle Method(s) and N	Notice: Signature of this document and relinquishment of samples of service. Eurofins Xenco will be liable only for the cost of sample. <u>of Eurofins Xenco</u> . A minimum charge of \$85.00 will be <u>applied to</u> .	Relinguished by (Signature)	5	

Page 44 of 45

Released to Imaging: 5/15/2024 2:25:32 PM

5

14

Job Number: 880-29346-1

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: TRC Solutions, Inc.

Login Number: 29346 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

N/A

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 319442

QUESTIONS							
Operator:	OGRID:						
COG OPERATING LLC	229137						
600 W Illinois Ave	Action Number:						
Midland, TX 79701	319442						
	Action Type:						
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)						

QUESTIONS Droroguioitoo

Frerequisites	
Incident ID (n#)	nAB1922033443
Incident Name	NAB1922033443 ROCKET FEDERAL COM #5H @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received
Incident Facility	[fAB1922032614] ROCKET FEDERAL COM #5H

Location of Release Source

Please answer all the questions in this group.						
Site Name	ROCKET FEDERAL COM #5H					
Date Release Discovered	07/10/2019					
Surface Owner	Federal					

Incident Details

Please answer all the questions in this group.							
Incident Type	Produced Water Release						
Did this release result in a fire or is the result of a fire	No						
Did this release result in any injuries	No						
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο						
Has this release endangered or does it have a reasonable probability of endangering public health	Νο						
Has this release substantially damaged or will it substantially damage property or the environment	No						
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No						

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Crude Oil Released (bbls) Details Not answered. Cause: Equipment Failure | Flow Line - Production | Produced Water | Released: 320 BBL | Produced Water Released (bbls) Details Recovered: 300 BBL | Lost: 20 BBL Is the concentration of chloride in the produced water >10,000 mg/l Yes Condensate Released (bbls) Details Not answered. Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered. Are there additional details for the questions above (i.e. any answer containing Not answered. Other, Specify, Unknown, and/or Fire, or any negative lost amounts)

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 319442

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	319442
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

	Nature and Volume of Release (continued)	
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
ſ	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
	Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	. gas only) are to be submitted on the C-129 form.

Initial	Res	ponse

The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	Тгие
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Jared Stoffel Title: Scientist Email: jstoffel@trccompanies.com Date: 03/01/2024

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 319442

Page 192 of 197

QUESTIONS (c	ontinued)
--------------	-----------

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	319442
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)
What method was used to determine the depth to ground water	Attached Document
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between ½ and 1 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1000 (ft.) and ½ (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Medium
A 100-year floodplain	Between 1000 (ft.) and ½ (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 2040 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 0 GRO+DRO (EPA SW-846 Method 8015M) 0 BTEX (EPA SW-846 Method 8021B or 8260B) 0 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 06/01/2023 On what date will (or did) the final sampling or liner inspection occur 06/13/2023 On what date will (or was) the remediation complete(d) 06/30/2023 What is the estimated surface area (in square feet) that will be reclaimed 0 What is the estimated volume (in cubic yards) that will be reclaimed 0 What is the estimated surface area (in square feet) that will be remediated 8000 What is the estimated volume (in cubic yards) that will be remediated 1920 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 319442

QUESTIONS (continued)		
Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	319442	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		

(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	Not answered.
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Yes
In which state is the disposal taking place	Texas
What is the name of the out-of-state facility	R360 Red Bluff
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement	Name: Jared Stoffel Title: Scientist Email: jstoffel@trccompanies.com Date: 03/08/2024
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to	

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 194 of 197

QUESTIONS, Page 5

Action 319442

QUESTIONS (continued)		
Operator: COG OPERATING LLC	OGRID: 229137	
600 W Illinois Ave Midland, TX 79701	Action Number: 319442	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Deformal Requests Only		

Only answer the questions in this group if seeking a deferral upon approval this submission. Each o	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 195 of 197

Action 319442

QUESTIONS (continued)			
Operator:	OGRID:		
COG OPERATING LLC 600 W Illinois Ave	229137		
	Action Number:		
Midland, TX 79701	319442		
	Action Type:		
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)		

QUESTIONS

Sampling Event Information		
Last sampling notification (C-141N) recorded	319455	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/12/2024	
What was the (estimated) number of samples that were to be gathered	39	
What was the sampling surface area in square feet	8000	

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all re	emediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	34800
What was the total volume (cubic yards) remediated	1920
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	34800
What was the total volume (in cubic yards) reclaimed	1920
Summarize any additional remediation activities not included by answers (above)	Liner installed as previously approved in workplan against dense rock layer. Soil affected above most stringent NMOCD standards (reclamation standards) removed in the upper 4 feet.
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of
to report and/or file certain release notifications and perform corrective actions for releas the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 repor	knowledge and understand that pursuant to OCD rules and regulations all operators are required ises which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.
	Name: Jared Stoffel

I hereby agree and sign off to the above statement	Name: Jared Stoffel
	Title: Scientist
	Email: jstoffel@trccompanies.com
	Date: 03/01/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Page 196 of 197

Action 319442

QUESTIONS (continued)		
Operator: COG OPERATING LLC 600 W Illinois Ave Midland, TX 79701	OGRID: 229137	
	Action Number: 319442	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Reclamation Report		

Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission

No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 319442

Operator: OGRID: COG OPERATING LLC 229137 600 W Illinois Ave Action Number: Midland, TX 79701 319442 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

CONDITIONS

Created By		Condition Date
scwells	Remediation closure approved.	5/15/2024
scwells	Operator failed to provide proper Sampling Notification pursuant to 19.15.29.12.D.(1).(a) NMAC. Failure to provide proper sampling notice is a compliance issue and OCD may pursue compliance actions pursuant to 19.15.5 NMAC. Operator shall ensure future compliance with 19.15.29.12.D.(1).(a) NMAC	5/15/2024