ENSOLUM

April 19, 2024

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Closure Request Big Eddy Unit DI 29 Battery Incident Number NAPP2331049960 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum) on behalf of XTO Energy, Inc. (XTO), has prepared this *Closure Request* to document site assessment, excavation, and soil sampling activities at the Big Eddy Unit DI 29 Battery (Site). The purpose of the Site assessment and soil sampling activities was to assess for the presence or absence of impacts to soil following a release of condensate. Based on field observations, field screening activities, and soil sample laboratory analytical results, XTO is submitting this *Closure Request*, describing Site assessment, delineation, and excavation activities that have occurred and requesting no further remediation for Incident Number NAPP2331049960. Reclamation and revegetation activities will be completed during pad abandonment.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit D, Section 21, Township 20 South, Range 32 East, in Lea County, New Mexico (32.56470°, -103.77843°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM).

On October 23, 2023, a diaphragm pump failed causing condensate fluids to release out of the lowpressure flare. Approximately 0.06 barrels (bbls) of condensate fluids released out of the flare and ignited on the surface of the well pad. The fire extinguished by itself, and no injuries were reported. No released fluids were recovered. XTO immediately reported the release to the New Mexico Oil Conservation Division (NMOCD) via email and submitted a Release Notification Form C-141 (Form C-141) on November 6, 2023. The release was assigned Incident Number NAPP2331049960.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are discussed below.

Depth to groundwater at the Site is estimated to be less than 50 feet below ground surface (bgs) based on a soil boring drilled for determination of regional groundwater depth. On October 26, 2021, a soil boring permitted by New Mexico Office of the State Engineer (OSE) as CP-1891 was advanced approximately 0.12 miles north of the Site. The boring was drilled to a total depth of 55 feet bgs. A field geologist logged and described soils continuously. Groundwater was encountered at a depth of 33 feet bgs. Following drilling activities, the borehole was properly abandoned utilizing Type I/II neat cement from 55 feet bgs to surface. The Well Record and Log is included in Appendix A. All wells used to evaluate depth to groundwater are presented on Figure 1.

The closest continuously flowing or significant watercourse to the Site is a freshwater emergent wetland, located approximately 525 feet northwest of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Potential Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH): 100 mg/kg
- Chloride: 600 mg/kg

SITE ASSESSMENT ACTIVITIES AND ANALYTICAL RESULTS

On January 10, 2024, Site assessment activities were conducted by Ensolum to evaluate the release extent based on information provided on the Form-C141 and visual observations. Seven delineation soil samples (SS01 through SS07) were collected from a depth of 0.5 feet bgs. Delineation soil samples SS01 through SS03 were collected within the release extent and SS04 through SS07 were collected outside of the release extent to define the edge of the release. The delineation soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach[®] chloride QuanTab[®] test strips. The release extent and delineation soil sample locations were mapped utilizing a handheld Global Positioning System (GPS) unit and are depicted on Figure 2. Photographic documentation was collected and a photographic log is included in Appendix B.

The delineation soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following constituents of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-gasoline range organics (GRO), TPH-diesel range organics (DRO), and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0. Soil samples delivered to the laboratory the same day they were collected may not have equilibrated to the 6 degrees Celsius required for shipment and long-term storage but are considered to have been received in acceptable condition by the laboratory.

Laboratory analytical results from delineation soil sample SS02 indicate TPH concentrations exceeded the Closure Criteria. Soil samples SS01, SS03, and soil samples collected outside of the release extent (SS05 through SS07) exhibited COC concentrations in compliance with the Closure Criteria and successfully defined the lateral extent of the release. Based on laboratory analytical results from SS02, additional delineation and excavation of impacted soil appeared warranted.

DELINEATION AND EXCAVATION SOIL SAMPLING ACTIVITIES

On January 19, 2024, Ensolum personnel were at the Site to oversee delineation and excavation activities. Three potholes (PH01 through PH03) were advanced via backhoe within the release extent to assess the vertical extent of the release. The potholes were completed in the vicinity of delineation soil samples SS01 through SS03, respectively, and advanced to a total depth of 2 feet bgs. Delineation soil samples were collected from each pothole at 2 feet bgs. Soil from the potholes were field screened, handled, and submitted for the same COCs as described above. Field screening results and observations for the potholes were logged on lithologic soil sampling logs, which are included in Appendix C. The potholes and delineation soil sample locations are depicted on Figure 3.

Upon completion of delineation activities, impacted soil was excavated from the release area as indicated by laboratory analytical results from soil sample SS02. Excavation activities were performed using a backhoe and transport vehicle and the entirety of the excavation occurred on pad. To direct excavation activities, soil was screened as described above. The excavation was completed to a depth of 1-foot bgs. Photographic documentation of the excavation activities is included in Appendix B.

Following removal of the impacted soil, 5-point composite soil samples were collected at least every 200 square feet from the release extent area and the sidewall and floor of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Composite soil sample FS01 was collected from the floor of the excavation at a depth of 1-foot bgs. Composite soil sample SW01 was collected from the sidewall of the excavation from depths ranging from the ground surface to 1-foot bgs. Composite soil samples FS02 through FS08 were collected from the release extent area, on the surface of the pad at approximately 0.25 feet bgs. Since confirmation soil samples FS02 through FS08 were collected area, sidewall soil samples were unnecessary. The soil samples were collected, handled, and analyzed following the same procedures as described above. The excavation extent, release extent/confirmation soil sampling area, and confirmation soil sample locations are presented on Figure 3.

The release extent/confirmation soil sampling area measured approximately 1,330 square feet and the excavation area measured approximately 170 square feet (combined 1,500 square feet). A total of approximately 10 cubic yards of impacted soil was removed during the excavation activities. The impacted soil was transported and properly disposed of at the R360 Landfill Disposal Facility in Hobbs, New Mexico.

LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for all confirmation soil samples collected indicated all COC concentrations were compliant with the Site Closure Criteria. Delineation soil sample SS02, collected at 0.5 feet bgs, was the only soil sample with concentrations exceeding Closure Criteria, but the soil represented by that sample was removed during excavation activities. Laboratory analytical results are summarized in Table 1 and complete laboratory analytical reports are included in Appendix D.

CLOSURE REQUEST

Site assessment, delineation, and excavation activities were conducted at the Site to address the October 23, 2023, release of condensate. Laboratory analytical results for confirmation soil samples collected from the release extent/confirmation soil sampling area and excavation extent indicated that all COC concentrations were compliant with the Site Closure Criteria. Based on laboratory analytical

XTO Energy, Inc Closure Request Big Eddy Unit DI 29 Battery

results, no further remediation is required. The excavation is scheduled to be backfilled the week of April 22, 2024, with material purchased locally and the area recontoured to match pre-existing Site conditions.

Excavation of impacted soil has mitigated impacts at this Site. Based on laboratory analytical results compliant with Closure Criteria, no further remediation appears to be needed at this time. As such, XTO respectfully requests closure for the remediation of Incident Number NAPP2331049960.

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Sincerely, Ensolum, LLC

J. Dulil

Benjamin J. Belill Senior Geologist

Ashley L. ager

Ashley L. Ager, M.S., P.G. Principal

cc: Amy Ruth, XTO Amanda Garcia, XTO BLM

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Confirmation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Lithologic / Soil Sampling Logs
- Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation

FIGURES

Received by OCD: 4/22/2024 2:04:25 PM

Received by OCD: 4/22/2024 2:04:25 PM

Eddy County, New Mexico

Received by OCD: 4/22/2024 2:04:25 PM

TABLES

.

🖻 ENSOLUM

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Big Eddy Unit DI 29 Battery XTO Energy, Inc Lea County, New Mexico													
Sample I.D.	Sample Date	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)				
NMOCD Table I C	losure Criteria (I	NMAC 19.15.29)	10	50	NE	NE	NE	NE	100	600				
Delineation Soil Samples														
SS01	01/10/2024	0.5	<0.00201	<0.00402	<50.2	85.5	<50.2	85.5	85.5	217				
PH01	01/19/2024	2	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	222				
SS02	01/10/2024	0.5	< 0.00202	0.00758	<50.4	118	<50.4	118	118	35.5				
PH02	01/19/2024	2	<0.00199	<0.00398	<50.5	<50.5	<50.5	<50.5	<50.5	190				
SS03	01/10/2024	0.5	<0.00200	<0.00399	<50.5	85.3	<50.5	85.3	85.3	83.0				
PH03	01/19/2024	2	<0.00200	<0.00401	<50.1	<50.1	<50.1	<50.1	<50.1	142				
SS04	01/10/2024	0.5	<0.00198	< 0.00396	<49.9	<49.9	<49.9	<49.9	<49.9	84.0				
SS05	01/10/2024	0.5	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	<50.0	18.2				
SS06	01/10/2024	0.5	<0.00201	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	19.8				
SS07	01/10/2024	0.5	<0.00200	<0.00401	<49.7	<49.7	<49.7	<49.7	<49.7	17.4				
				Confi	rmation Soil Sa	mples								
FS01	01/19/2024	1	<0.00202	<0.00404	<49.8	<49.8	<49.8	<49.8	<49.8	126				
FS02	01/19/2024	0.25	<0.00199	<0.00398	<49.6	<49.6	<49.6	<49.6	<49.6	33.8				
FS03	01/19/2024	0.25	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	<49.9	30.1				
FS04	01/19/2024	0.25	<0.00200	<0.00399	<50.4	<50.4	<50.4	<50.4	<50.4	156				
FS05	01/19/2024	0.25	<0.00201	<0.00402	<50.5	<50.5	<50.5	<50.5	<50.5	164				
FS06	01/19/2024	0.25	<0.00200	<0.00401	<50.0	<50.0	<50.0	<50.0	<50.0	61.8				
FS07	01/19/2024	0.25	<0.00199	<0.00398	<50.2	<50.2	<50.2	<50.2	<50.2	71.5				
FS08	01/19/2024	0.25	<0.00199	<0.00398	<50.4	<50.4	<50.4	<50.4	<50.4	98.5				
SW01	01/19/2024	0-1	<0.00201	<0.00402	<49.8	<49.8	<49.8	<49.8	<49.8	117				

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon NMAC: New Mexico Administrative Code

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation requirement where applicable.

Grey text indicates soil sample removed during excavation activities

APPENDIX A

Referenced Well Records

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NO. (POD1 (BH	-01)			WELL TAG ID No n/a			OSE FILE NO(3 CP-1891					
ſ	WELL OWNER XTO Energy							PHONE (OPTIC	ONAL)				
ľ	WELL OWNER 6401 Holida							CITY STATE Midland TX 79707					
F	WELL LOCATION (FROM GPS	LAI	DE	BGREES 32	MINUTES 33	SECONDS 59.48	N	ACCURACY REQUIRED: ONE TENTH OF A SECOND ADATUM REQUIRED: WGS 84					
F	DESCRIPTION	LON N RELATIN	G WELL LOCATION TO T20S R32E, NMF	STREET ADDR	TREET ADDRESS AND COMMON LANDMARKS – PLSS (IERE AVAILABLE			
Ī	LICENSE NO. 1249		NAME OF LICENSED	DRILLER	ackie D. Atkin	s			NAME OF WELL DR Atkins Eng	ILLING COMPANY gineering Associat	es, Inc.		
ł	DRILLING STA 10/26/2		DRILLING ENDED 10/26/2021		MPLETED WELL (ary well mater		ORE HO	LE DEPTH (FT) 55	DEPTH WATER FIR	ST ENCOUNTERED ±33	(FT)		
	COMPLETED	WELL IS:	ARTESIAN	DRY HOLE F SHALLOW (UNCONFINED)					VEL IN COMPLETE 33.20	ETED WELL (FT)			
F	DRILLING FLU		AIR ROTARY	MUD HAMMER		VES - SPECIF		R - SPECIFY:	Holly	ow Stem Auger			
	DEPTH (feet bgl) BORE HOLE				CASING MATERIAL AND/OR			ASING	CASING	CASING WAI	1		
ľ	FROM TO		DIAM (inches)		GRADE (include each casing string, and note sections of screen)		CONNECTION TYPE (add coupling diameter)		INSIDE DIAM. (inches)	THICKNESS (inches)			
	0	55 ±8.5		Boring- HSA				-	-	-			
								_					
DEPTH (feet bgl) BORE HOLE FROM TO				1	LIST ANNULAR SEAL MATERIAL A GRAVEL PACK SIZE-RANGE BY INTE				AMOUNT (cubic feet)		THOD OF CEMENT		
									OSE DIT NO	U 29 2021 pm	4:02		
ł													

FILE NO. CP-R	91	POD NO.	TRN NO.	709444	
LOCATION	205.32	E.14.333	WELL TAG ID NO.	-	PAGE 1 OF 2

	DEPTH (f	eet bgl)		COLOR AN	D TYPE OF MATERIAL	ENCOUN	TERED -	w	ATER	ESTIMATED YIELD FOR
	FROM	то	THICKNESS (feet)		ER-BEARING CAVITIES pplemental sheets to fully			BEA	RING? S / NO)	WATER- BEARING ZONES (gpm)
	0	4	4	С	aliche, Mod. Consolidated,	Tan, Dry		Y	√ N	
	4	8	4	Sand, fine	e-very grained, poorly grad	ed, Brown	ı, moist	Y	√ N	
	8	16	8	Sand, fine-very gra	ined, poorly graded, with g	ravel Pink	ish Brown, moist	Y	√ N	, î
	16	20	4	Sand, fine-very graine	d, poorly graded, with clay	ey gravel,	Light Brown, mo	oist Y	√ N	
	20	26	6	Clayey Sand, very f	fine grained, poorly graded	caliche g	ravel, Tan , moist	Y	√ N	
T	26	36	10	Clayey Sand, med-fin	ne grained, poorly graded,	caliche gra	wel, Brown , moi	st √Y	N	
4. HYDROGEOLOGIC LOG OF WELL	36	49	13	Sandstone, mod con	nsolidated, with increasing	clay Redd	ish Brown, Moist	√ Y	N	
OF	49	55	6	Claystone	, low plasticity, cohesive, I	ark Brow	n, moist	√ Y	N	
00								Y	N	
ICT								Y	N	
DO								Y	N	
EOI								Y	N	
ROG								Y	N	
IXD			-					Y	N	
4. H								Y	N	
		1						Y	N	
								Y	N	
								Y	N	
								Y	N	
			-					Y	N	
								Y	N	
	METHOD U	SED TO E	STIMATE VIEL	OF WATER-BEARIN	G STRATA.		1,	OTAL EST		
			AIR LIFT		THER - SPECIFY:			WELL YIEL		0.00
SUPERVISION	WELL TES	STAR	FORMATION: Tr	ME, AND A TABLE SI		ND DRA	WDOWN OVER	THE TEST	ING PERIC	DD.
TEST; RIG SUPERVI	DDDITT					181031 0	EWELL CONST		OTHER	
5. TH	Shane Eldric		KILL KIG SUPE	KVISUK(S) THAT PRO	VIDED ONSITE SUPERV	ISION O	F WELL CONST	RUCTION	OTHER TH	IAN LICENSEE
SIGNATURE	CORRECT F	ECORD O	OF THE ABOVE I	DESCRIBED HOLE AN	BEST OF HIS OR HER KI ND THAT HE OR SHE W IPLETION OF WELL DRI	LL FILE				
6. SIGN	Jack A	tkins		Ja	ckie D. Atkins	_		11/	16/2021	
		SIGNAT	TURE OF DRILLI	ER / PRINT SIGNEE	NAME				DATE	
FO	R OSE INTERI	NAL USE					WR-20 WELL	RECORD	LOG	rsion 06/30/2017
	E NO.				POD NO.		TRN NO.	LUCORD C	100(10	
1.1.1	CATION						TAG ID NO.			PAGE 2 OF 2

APPENDIX B

Photographic Log

APPENDIX C

Lithologic Soil Sampling Logs

•

								Sample Name: DH01	Data: 1/10/2024
								Sample Name: PH01 Site Name: Big Eddy Unit DI 29 Ba	Date: 1/19/2024
			N	5	0		Μ	Incident Number: Napp23310499	
a second				-				Job Number: 03C1558310	
			OGI		SAMPLING	5106		Logged By: Connor Whitman	Method: Trackhoe
Coord		2.564513		-				Hole Diameter: ~2'	Total Depth: 2' bgs
Comm	ents: Fie	ld screen	ing co	onducted v				PID for chloride and vapor, respe	ctively. Chloride test
perfor	med with	n 1:4 allui	tion f	actor of so	li to distilled	water. +405	T	on factor included for Chloride cal	culations.
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	scriptions
N N	201 <168	0.5 0.5	Y N	SS01	0.5		CCHE	CALICHE, white/tan, well controls in the second sec	onsolidated, trace t brown staining.
Ν	201	0.0	Ν	PH01	2	2			

•

							Sample Name: PH02	Date: 1/19/2024
			C				Site Name: Big Eddy Unit DI 29 B	
	E	N	5 (J	LU	M	Incident Number: Napp2331049	
				_			Job Number: 03C1558310	
		ngir /	SOIL SA		6106		Logged By: Connor Whitman	Method: Trackhoe
Coordinates: 32					0100		Hole Diameter: ~2'	Total Depth: 2' bgs
				НАСН С	hloride Test	Strins and	PID for chloride and vapor, respe	
		-					on factor included for Chloride ca	
Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	nple	ample Depth ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions
N <168 N <168	0.2 0.5	Y S N	SS02	0.5		CCHE	CALICHE, white/tan, well c hydrocarbon odor and ligh 1'-2' -No stain or odor.	onsolidated, trace t brown staining.
N <168	0.3	NF	PH02	2	2			
			I		Total de	oth @ 2	feet bgs.	

•

							Sample Name: PH03	Date: 1/19/2024
				•			Site Name: Big Eddy Unit DI 29 B	
		N	5	ΟΙ		Μ	Incident Number: Napp2331049	
				_			Job Number: 03C1558310	,
		0610		SAMPLING			Logged By: Connor Whitman	Method: Trackhoe
Coordinates: 3							Hole Diameter: ~2'	Total Depth: 2' bgs
				ith HACH Cl	nloride Test	Strips and	PID for chloride and vapor, respe	·
		-					on factor included for Chloride ca	-
Moisture Content Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	escriptions
N <168 N <168	0.1 0.3	Y N	SS03	0.5 - -	0 - - 1 - 1	CCHE	CALICHE, white/tan, well c hydrocarbon odor and ligh 1'-2' -No stain or odor.	onsolidated, trace t brown staining.
N <168	0.0	Ν	PH03	2	2			
					Total De	pth @ 2	feet bgs.	

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 4/22/2024 2:04:25 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/15/2024 5:53:58 PM

JOB DESCRIPTION

BIG EDDY UNIT D1 29 BATTERY 03C1558310

JOB NUMBER

890-5944-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 1/15/2024 5:53:58 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-5944-1

SDG: 03C1558310

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	22

ceived by OCD	D: 4/22/2024 2:04:25 PM	Page 24 of 1	128
	Definitions/Glossary		1
Client: Ensolum Project/Site: Bl	n IG EDDY UNIT D1 29 BATTERY	Job ID: 890-5944-1 SDG: 03C1558310	2
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		5
GC Semi VOA			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			8
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		9
Glossary			4
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		4
DER	Duplicate Error Ratio (normalized absolute difference)		1
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Presumptive

Quality Control

Negative / Absent Positive / Present

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

LOQ

MCL

MDA MDC

MDL ML

MPN

MQL

NC

ND NEG

POS PQL

PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

Case Narrative

Client: Ensolum Project: BIG EDDY UNIT D1 29 BATTERY

Job ID: 890-5944-1

Eurofins Carlsbad

Page 25 of 128

Job Narrative 890-5944-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/10/2024 2:53 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.4°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS 01 (890-5944-1), SS 02 (890-5944-2) and SS 03 (890-5944-3).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: SS 01 (890-5944-1), SS 02 (890-5944-2) and SS 03 (890-5944-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The method blank for preparation batch 880-70783 and analytical batch 880-70807 contained o-Xylene above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, reextraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-70792 and analytical batch 880-70811 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (880-37809-A-21-D), (880-37809-A-21-E MS) and (880-37809-A-21-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-70792 and analytical batch 880-70811 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Unit

D

Prepared

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Client Sample ID: SS 01

Date Collected: 01/10/24 10:40 Date Received: 01/10/24 14:53

Sample Depth: 0.5'

Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)	
Analyte	Result	Qualifier	RL
Denzene	<0.00201		0.00001

Benzene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/14/24 02:04	1
Toluene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/14/24 02:04	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/14/24 02:04	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/12/24 15:10	01/14/24 02:04	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/12/24 15:10	01/14/24 02:04	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/12/24 15:10	01/14/24 02:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	187	S1+	70 - 130			01/12/24 15:10	01/14/24 02:04	1
1,4-Difluorobenzene (Surr)	113		70 - 130			01/12/24 15:10	01/14/24 02:04	1
Method: TAL SOP Total BTEX - To	tal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
							04/44/04 00 04	1
Total BTEX	<0.00402	U	0.00402	mg/Kg			01/14/24 02:04	1
				mg/Kg			01/14/24 02:04	'
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)		D	Propagad		Dil Eso
Method: SW846 8015 NM - Diesel Analyte	Range Organ Result		GC) RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)		D	Prepared		Dil Fac
Method: SW846 8015 NM - Diesel Analyte	Range Organ Result 85.5	<mark>ics (DRO) (</mark> Qualifier	GC)	Unit	<u>D</u>	Prepared	Analyzed	1
Method: SW846 8015 NM - Diesel Analyte Total TPH	Range Organ Result 85.5 I Range Orga	<mark>ics (DRO) (</mark> Qualifier	GC)	Unit	<u>D</u> 	Prepared Prepared	Analyzed	Dil Fac 1 Dil Fac
Method: SW846 8015 NM - Diesel Analyte Total TPH Method: SW846 8015B NM - Diese	Range Organ Result 85.5 I Range Orga	ics (DRO) (Qualifier nnics (DRO) Qualifier	GC) <u>RL</u> 50.2 (GC)	Unit mg/Kg		<u>.</u>	Analyzed 01/14/24 14:14	1
Method: SW846 8015 NM - Diesel Analyte Total TPH Method: SW846 8015B NM - Diese Analyte	Range Organ Result 85.5 I Range Orga Result	ics (DRO) (Qualifier nnics (DRO) Qualifier	GC) RL 50.2 (GC) RL	Unit mg/Kg Unit		Prepared	Analyzed 01/14/24 14:14 Analyzed	1
Method: SW846 8015 NM - Diesel Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Range Organ Result 85.5 I Range Orga Result	ics (DRO) (Qualifier nnics (DRO) Qualifier	GC) RL 50.2 (GC) RL	Unit mg/Kg Unit		Prepared	Analyzed 01/14/24 14:14 Analyzed	1
Method: SW846 8015 NM - Diesel Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	Range Organ Result 85.5 I Range Orga Result <50.2	ics (DRO) (Qualifier nnics (DRO) Qualifier	GC) RL 50.2 (GC) RL 50.2	Unit mg/Kg Unit mg/Kg		Prepared 01/12/24 17:11	Analyzed 01/14/24 14:14 Analyzed 01/14/24 14:14	1
Method: SW846 8015 NM - Diesel Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Range Organ Result 85.5 I Range Orga Result <50.2	ics (DRO) (Qualifier mics (DRO) Qualifier U	GC) RL 50.2 (GC) RL 50.2	Unit mg/Kg Unit mg/Kg		Prepared 01/12/24 17:11	Analyzed 01/14/24 14:14 Analyzed 01/14/24 14:14	1
Method: SW846 8015 NM - Diesel Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Range Organ Result 85.5 I Range Orga Result <50.2 85.5	ics (DRO) (Qualifier mics (DRO) Qualifier U	GC) RL 50.2 (GC) RL 50.2 50.2	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 01/12/24 17:11 01/12/24 17:11	Analyzed 01/14/24 14:14 Analyzed 01/14/24 14:14 01/14/24 14:14	1
Method: SW846 8015 NM - Diesel Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Range Organ Result 85.5 I Range Orga Result <50.2	ics (DRO) (Qualifier mics (DRO) Qualifier U	GC) RL 50.2 (GC) RL 50.2 50.2 50.2 50.2	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 01/12/24 17:11 01/12/24 17:11 01/12/24 17:11	Analyzed 01/14/24 14:14 Analyzed 01/14/24 14:14 01/14/24 14:14 01/14/24 14:14	1 Dil Fac 1 1

Method: EPA 300.0 - Anions, Ion C	hromatography -	Soluble					
Analyte	Result Quali	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	217	5.04	mg/Kg			01/13/24 05:26	1

Client Sample ID: SS 02 Date Collected: 01/10/24 10:45 Date Received: 01/10/24 14:53 Sample Depth: 0.5'

Method: SW846 8021B - Volati	lethod: SW846 8021B - Volatile Organic Compounds (GC)										
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	<0.00202	U	0.00202	mg/Kg		01/12/24 15:10	01/14/24 02:24	1			
Toluene	<0.00202	U	0.00202	mg/Kg		01/12/24 15:10	01/14/24 02:24	1			
Ethylbenzene	0.00297		0.00202	mg/Kg		01/12/24 15:10	01/14/24 02:24	1			
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		01/12/24 15:10	01/14/24 02:24	1			
o-Xylene	0.00461		0.00202	mg/Kg		01/12/24 15:10	01/14/24 02:24	1			
Xylenes, Total	0.00461		0.00404	mg/Kg		01/12/24 15:10	01/14/24 02:24	1			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	310	S1+	70 - 130			01/12/24 15:10	01/14/24 02:24	1			

Eurofins Carlsbad

Lab Sample ID: 890-5944-2

Page 26 of 128

Job ID: 890-5944-1 SDG: 03C1558310

Lab Sample ID: 890-5944-1

Analyzed

Matrix: Solid

Dil Fac

Matrix: Solid

Client Sample Results

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY Job ID: 890-5944-1 SDG: 03C1558310

Matrix: Solid

5

Lab Sample ID: 890-5944-2

Client Sample ID: SS 02

Date Collected: 01/10/24 10:45 Date Received: 01/10/24 14:53

Sample Depth: 0.5'

Method: SW846 8021B - Volatilo Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	84		70 - 130			01/12/24 15:10	01/14/24 02:24	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00758		0.00404	mg/Kg			01/14/24 02:24	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (0	GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	118		50.4	mg/Kg			01/14/24 14:36	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4	mg/Kg		01/12/24 17:11	01/14/24 14:36	1
Diesel Range Organics (Over	118		50.4	mg/Kg		01/12/24 17:11	01/14/24 14:36	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		01/12/24 17:11	01/14/24 14:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	123		70 - 130			01/12/24 17:11	01/14/24 14:36	1
o-Terphenyl	97		70 - 130			01/12/24 17:11	01/14/24 14:36	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	35.5		4.99	mg/Kg			01/13/24 05:31	1

Client Sample ID: SS 03

Date Collected: 01/10/24 10:50 Date Received: 01/10/24 14:53 Sample Depth: 0.5'

Total TPH

Lab Sample ID: 890-5944-3

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/14/24 02:45	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/14/24 02:45	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/14/24 02:45	1
m-Xylene & p-Xylene	<0.00399	U	0.00399	mg/Kg		01/12/24 15:10	01/14/24 02:45	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/14/24 02:45	1
Xylenes, Total	<0.00399	U	0.00399	mg/Kg		01/12/24 15:10	01/14/24 02:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130			01/12/24 15:10	01/14/24 02:45	1
1,4-Difluorobenzene (Surr)	134	S1+	70 - 130			01/12/24 15:10	01/14/24 02:45	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			01/14/24 02:45	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

01/14/24 14:57

Released to Imaging: 5/15/2024 10:58:53 AM

50.5

mg/Kg

85.3

1

Project/Site: BIG EDDY UNIT D1 29 BATTERY

Job ID: 890-5944-1 SDG: 03C1558310

Matrix: Solid

5

Lab Sample ID: 890-5944-3

Client Sample ID: SS 03

Date Collected: 01/10/24 10:50 Date Received: 01/10/24 14:53

Sample Depth: 0.5'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5	mg/Kg		01/12/24 17:11	01/14/24 14:57	1
Diesel Range Organics (Over C10-C28)	85.3		50.5	mg/Kg		01/12/24 17:11	01/14/24 14:57	1
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		01/12/24 17:11	01/14/24 14:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	125		70 - 130			01/12/24 17:11	01/14/24 14:57	1
o-Terphenyl	101		70 - 130			01/12/24 17:11	01/14/24 14:57	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
-								

Released to Imaging: 5/15/2024 10:58:53 AM

Surrogate Summary

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
mple ID	Client Sample ID	(70-130)	(70-130)	
20-A-1-C MS	Matrix Spike	105	99	
20-A-1-D MSD	Matrix Spike Duplicate	116	120	
944-1	SS 01	187 S1+	113	
14-2	SS 02	310 S1+	84	
1-3	SS 03	123	134 S1+	
D-70783/1-A	Lab Control Sample	77	117	
30-70783/2-A	Lab Control Sample Dup	101	108	
0-70783/5-A	Method Blank	107	122	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-37809-A-21-E MS	Matrix Spike	158 S1+	117
880-37809-A-21-F MSD	Matrix Spike Duplicate	158 S1+	118
890-5944-1	SS 01	129	102
890-5944-2	SS 02	123	97
890-5944-3	SS 03	125	101
LCS 880-70792/2-A	Lab Control Sample	88	90
LCSD 880-70792/3-A	Lab Control Sample Dup	99	104
MB 880-70792/1-A	Method Blank	170 S1+	172 S1+

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl Prep Type: Total/NA

5 6 7

Prep Type: Total/NA

Page 29 of 128

Lab Sample ID: MB 880-70783/5-A

QC Sample Results

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid							Prep Type: 1	Total/NA
Analysis Batch: 70807							Prep Batch	n: 70783
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/12/24 15:10	01/13/24 19:19	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			01/12/24 15:10	01/13/24 19:19	1
1,4-Difluorobenzene (Surr)	122		70 - 130			01/12/24 15:10	01/13/24 19:19	1

Lab Sample ID: LCS 880-70783/1-A Matrix: Solid

Analysis Batch: 70807

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1072		mg/Kg		107	70 - 130	
Toluene	0.100	0.09783		mg/Kg		98	70 - 130	
Ethylbenzene	0.100	0.08429		mg/Kg		84	70 - 130	
m-Xylene & p-Xylene	0.200	0.1853		mg/Kg		93	70 - 130	
o-Xylene	0.100	0.09331		mg/Kg		93	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	77		70 - 130
1,4-Difluorobenzene (Surr)	117		70 - 130

Lab Sample ID: LCSD 880-70783/2-A

Matrix: Solid

Analysis Batch: 70807							Prep	Batch:	70783
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1251		mg/Kg		125	70 - 130	15	35
Toluene	0.100	0.1007		mg/Kg		101	70 - 130	3	35
Ethylbenzene	0.100	0.1034		mg/Kg		103	70 - 130	20	35
m-Xylene & p-Xylene	0.200	0.2147		mg/Kg		107	70 - 130	15	35
o-Xylene	0.100	0.1078		mg/Kg		108	70 - 130	14	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Lab Sample ID: 880-37820-A-1-C MS

Matrix: Solid

Analysis Batch: 70807									Pre	o Batch: 70783
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U	0.100	0.1111		mg/Kg		111	70 - 130	
Toluene	<0.00198	U	0.100	0.09664		mg/Kg		96	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

13

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 70783

Job ID: 890-5944-1

SDG: 03C1558310

Released to 1	Imaging:	5/15/2024	10:58:53	AM

QC Sample Results

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY Job ID: 890-5944-1 SDG: 03C1558310

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-37820-A	-1-C MS							Client	Sample ID		
Matrix: Solid									Prep 1	Type: Tot	tal/NA
Analysis Batch: 70807									Prep	Batch:	70783
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00198	U	0.100	0.09823		mg/Kg		98	70 - 130		
n-Xylene & p-Xylene	<0.00396	U	0.201	0.2071		mg/Kg		103	70 - 130		
o-Xylene	<0.00198	U	0.100	0.1071		mg/Kg		107	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	105		70 - 130								
1,4-Difluorobenzene (Surr)	99		70 - 130								
Lab Sample ID: 880-37820-A	-1-D MSD					Cli	ent S	ample IC): Matrix Sp	oike Dup	olicato
Matrix: Solid										Type: Tot	
Analysis Batch: 70807										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene	<0.00198	U	0.101	0.1149		mg/Kg		114	70 - 130	3	3
Toluene	<0.00198	U	0.101	0.07986		mg/Kg		79	70 - 130	19	3
Ethylbenzene	<0.00198	U	0.101	0.07243		mg/Kg		72	70 - 130	30	3
n-Xylene & p-Xylene	<0.00396	U	0.202	0.2054		mg/Kg		102	70 - 130	1	35
o-Xylene	<0.00198	U	0.101	0.1065		mg/Kg		106	70 - 130	1	3
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	116		70 - 130								
1,4-Difluorobenzene (Surr)	120		70 - 130								
ethod: 8015B NM - Dies	sel Range O	rganics (E	ORO) (GC)								
	92/1-4							Client S	ample ID:	Method	Blank
ah Sample ID: MB 880-7079								Should	ampic iD.	mourou	Siaili
Lab Sample ID: MB 880-7079 Matrix: Solid									Pron 1	Type: Tot	tal/N/

	MB	мв						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 09:00	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 09:00	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 09:00	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Callegate	,,	quanner		
1-Chlorooctane	170	S1+	70 - 130	
o-Terphenyl	172	S1+	70 - 130	
_				

Lab Sample ID: LCS 880-70792/2-A Matrix: Solid

Analysis Batch: 70811							Prep	Batch: 70792
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1087		mg/Kg		109	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	929.5		mg/Kg		93	70 - 130	
C10-C28)								

Prep Type: Total/NA

01/12/24 17:11 01/14/24 09:00

01/12/24 17:11 01/14/24 09:00

Client Sample ID: Lab Control Sample

1

1

QC Sample Results

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-703 Matrix: Solid	792/2-A						Client	Sample	ID: Lab Co Bron 1	ontrol Sa Type: Tot	
Analysis Batch: 70811										Batch:	
Analysis Batch. 70011									Fieb	Batch.	1019
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	88		70 - 130								
o-Terphenyl	90		70 - 130								
Lab Sample ID: LCSD 880-7	0792/3-A					Clier	nt Sam	nple ID: I	Lab Contro	ol Sample	e Du
Matrix: Solid										· Type: Tot	
Analysis Batch: 70811										Batch:	
			Spike	LCSD	LCSD				%Rec		RF
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Gasoline Range Organics			1000	1046		mg/Kg		105	70 - 130	4	
(GRO)-C6-C10									10 - 100		
Diesel Range Organics (Over			1000	904.7		mg/Kg		90	70 - 130	3	
C10-C28)											
	1000	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	99		70 - 130								
o-Terphenyl	104		70 - 130								
Matrix: Solid	A-21-E MS							onem		Type: To Batch:	al/N
Matrix: Solid Analysis Batch: 70811	Sample	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	Prep 1	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 ^{Analyte}	Sample	Qualifier	-				D		Prep 1 Prep %Rec	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics	Sample Result	Qualifier	Added	Result	Qualifier	<mark>Unit</mark> mg/Kg	D	%Rec	Prep 1 Prep %Rec Limits	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics GRO)-C6-C10	Sample Result	Qualifier U F1	Added	Result	Qualifier F1		<u>D</u>	%Rec	Prep 1 Prep %Rec Limits	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <49.9	Qualifier U F1	Added	Result 1410	Qualifier F1	mg/Kg	D	%Rec 136	Prep 7 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample 	Qualifier U F1	Added	Result 1410	Qualifier F1	mg/Kg	D	%Rec 136	Prep 7 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample 	Qualifier U F1 U F1 MS	Added	Result 1410	Qualifier F1	mg/Kg	D	%Rec 136	Prep 7 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	Sample Result <49.9 <49.9 MS %Recovery	Qualifier U F1 U F1 MS	Added	Result 1410	Qualifier F1	mg/Kg	<u>D</u>	%Rec 136	Prep 7 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	Sample Result <49.9 <49.9 MS %Recovery	Qualifier U F1 U F1 MS Qualifier	Added 1010 1010 <i>Limits</i>	Result 1410	Qualifier F1	mg/Kg	<u>D</u>	%Rec 136	Prep 7 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane p-Terphenyl	Sample Result <49.9 <49.9 MS <u>%Recovery</u> 158 117	Qualifier U F1 U F1 MS Qualifier	Added 1010 1010 <u>Limits</u> 70 - 130	Result 1410	Qualifier F1	mg/Kg		%Rec 136 139	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot Batch:	al/N 707
Matrix: Solid Analysis Batch: 70811 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-37809-A	Sample Result <49.9 <49.9 MS <u>%Recovery</u> 158 117	Qualifier U F1 U F1 MS Qualifier	Added 1010 1010 <u>Limits</u> 70 - 130	Result 1410	Qualifier F1	mg/Kg		%Rec 136 139	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: Tof Batch:	al/N 7079
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid	Sample Result <49.9 <49.9 MS <u>%Recovery</u> 158 117	Qualifier U F1 U F1 MS Qualifier	Added 1010 1010 <u>Limits</u> 70 - 130	Result 1410	Qualifier F1	mg/Kg		%Rec 136 139	Prep 7 Prep % %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot Batch: Dike Dup Type: Tot	al/N 7079
Matrix: Solid Analysis Batch: 70811 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid	Sample Result <49.9 <49.9 MS %Recovery 158 117 A-21-F MSD	Qualifier U F1 U F1 MS Qualifier S1+	Added 1010 1010 <u>Limits</u> 70 - 130 70 - 130	Result 1410 1452	Qualifier F1 F1	mg/Kg		%Rec 136 139	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 7 Prep 7	Type: Tof Batch:	lica al/N 7079
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811	Sample Result <49.9 <49.9 MS %Recovery 158 117 A-21-F MSD Sample	Qualifier U F1 U F1 MS Qualifier S1+	Added 1010 1010 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 1410 1452 MSD	Qualifier F1 F1	mg/Kg mg/Kg Cli	ent Sa	<u>%Rec</u> 136 139	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 9 70 - 190 70 - 190	Dike Dup Batch:	lica al/N 707 1 ica al/N 707 1 Ri
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte	Sample Result <49.9 <49.9 MS %Recovery 158 117 A-21-F MSD Sample Result	Qualifier U F1 MS Qualifier S1+ Sample Qualifier	Added 1010 1010 <u>Limits</u> 70 - 130 70 - 130 70 - 130 Spike Added	Result 1410 1452 MSD Result	Qualifier F1 F1 MSD Qualifier	mg/Kg mg/Kg Cli		%Rec 136 139 ample ID	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 %Rec Limits	Dike Dup Batch: Dike Dup Type: Tot Batch: 	lica al/N 707 1 2 2 3 2 1 7 07 5 8 1 1 2 1 7 07 5 8 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics	Sample Result <49.9 <49.9 MS %Recovery 158 117 A-21-F MSD Sample	Qualifier U F1 MS Qualifier S1+ Sample Qualifier	Added 1010 1010 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 1410 1452 MSD	Qualifier F1 F1 MSD Qualifier	mg/Kg mg/Kg Cli	ent Sa	<u>%Rec</u> 136 139	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 9 70 - 190 70 - 190	Dike Dup Batch:	lica al/N 707 1 ica al/N 707 1 RP Lin
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10	Sample Result <49.9 <49.9 MS %Recovery 158 117 A-21-F MSD Sample Result <49.9	Qualifier U F1 MS Qualifier S1+ Sample Qualifier U F1	Added 1010 1010 Limits 70 - 130 70 - 130 70 - 130 Spike Added 1010	Result 1410 1452 MSD Result 1373	Qualifier F1 F1 Qualifier F1	mg/Kg mg/Kg Cli mg/Kg	ent Sa	%Rec 136 139 ample ID %Rec 132	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep 2 %Rec Limits 70 - 130	Dike Dup Dike Dup Type: Tot Batch: RPD 3	lica al/N 7079 al/N 7079 RI Lir
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <49.9 <49.9 MS %Recovery 158 117 A-21-F MSD Sample Result	Qualifier U F1 MS Qualifier S1+ Sample Qualifier U F1	Added 1010 1010 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 1410 1452 MSD Result	Qualifier F1 F1 Qualifier F1	mg/Kg mg/Kg Cli	ent Sa	%Rec 136 139 ample ID	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 %Rec Limits	Dike Dup Batch: Dike Dup Type: Tot Batch: 	lica al/N 7079 al/N 7079 RP Lin
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <49.9 <49.9 <i>MS</i> <i>%Recovery</i> 158 117 A-21-F MSD Sample Result <49.9 <49.9	Qualifier U F1 MS Qualifier S1+ Sample Qualifier U F1	Added 1010 1010 Limits 70 - 130 70 - 130 70 - 130 Spike Added 1010	Result 1410 1452 MSD Result 1373	Qualifier F1 F1 Qualifier F1	mg/Kg mg/Kg Cli mg/Kg	ent Sa	%Rec 136 139 ample ID %Rec 132	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep 2 %Rec Limits 70 - 130	Dike Dup Dike Dup Type: Tot Batch: RPD 3	lica al/N 7079 al/N 7079 RF Lin
Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	Sample Result <49.9 <49.9 <i>MS</i> <i>%Recovery</i> 158 117 A-21-F MSD Sample Result <49.9 <49.9	Qualifier U F1 U F1 MS Qualifier S1+ Sample Qualifier U F1 U F1 U F1 MSD	Added 1010 1010 Limits 70 - 130 70 - 130 70 - 130 Spike Added 1010	Result 1410 1452 MSD Result 1373	Qualifier F1 F1 Qualifier F1	mg/Kg mg/Kg Cli mg/Kg	ent Sa	%Rec 136 139 ample ID %Rec 132	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep 2 %Rec Limits 70 - 130	Dike Dup Dike Dup Type: Tot Batch: RPD 3	licat al/N
Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample Result <49.9 <49.9 <i>MS</i> <i>%Recovery</i> 158 117 A-21-F MSD Sample Result <49.9 <49.9 <49.9 <i>MSD</i> <i>%Recovery</i>	Qualifier U F1 U F1 MS Qualifier S1+ Sample Qualifier U F1 U F1 U F1 MSD	Added 1010 1010 1010 Limits 70 - 130 70 - 130 70 - 130 1010 1010 1010	Result 1410 1452 MSD Result 1373	Qualifier F1 F1 Qualifier F1	mg/Kg mg/Kg Cli mg/Kg	ent Sa	%Rec 136 139 ample ID %Rec 132	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 Prep 1 Prep 2 %Rec Limits 70 - 130	Dike Dup Dike Dup Type: Tot Batch: RPD 3	lica al/N 7079 al/N 7079 RF Lin

Released to Imaging: 5/15/2024 10:58:53 AM

Client: Ensolum

QC Sample Results

Job ID: 890-5944-1 SDG: 03C1558310

Project/Site: BIG EDDY UNIT D1 29 BATTERY

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-70717/1-A											Client S	Sample ID:		
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 70796														
		MB												
Analyte			Qualifier		RL		Unit		D	Pr	repared	Analyz		Dil Fac
Chloride	<	\$.00	U		5.00		mg/ł	ζg				01/13/24	04:04	1
Lab Sample ID: LCS 880-70717/2-A									Cli	ent	Sample	e ID: Lab C	ontrol S	ample
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 70796														
				Spike		LCS	LCS					%Rec		
Analyte				Added			Qualifier	Unit		D	%Rec	Limits		
Chloride				250	2	251.9		mg/Kg			101	90 _ 110		
Lab Sample ID: LCSD 880-70717/3-	-A							CI	ient S	am	ple ID:	Lab Contro	ol Sampl	e Dur
Matrix: Solid												Prep	Type: S	oluble
Analysis Batch: 70796														
				Spike	L	CSD	LCSD					%Rec		RPD
Analyte				Added	Re	esult	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride				250	2	255.1		mg/Kg			102	90 - 110	1	20
Lab Sample ID: 890-5944-2 MS												Client Sar	nple ID:	SS 02
													nple ID: Type: S	
Matrix: Solid														
Matrix: Solid	Sample	Samj	ple	Spike		MS	MS							
Matrix: Solid Analysis Batch: 70796	Sample Result			Spike Added	Re		MS Qualifier	Unit		D	%Rec	Prep		
Matrix: Solid Analysis Batch: 70796 Analyte				•				_ <mark>Unit</mark> mg/Kg		<u>D</u>	%Rec 104	Prep %Rec		
Matrix: Solid Analysis Batch: 70796 Analyte Chloride	Result			Added		esult				D		Prep %Rec Limits 90 - 110	Type: S	oluble
Matrix: Solid Analysis Batch: 70796 Analyte Chloride Lab Sample ID: 890-5944-2 MSD	Result			Added		esult				<u>D</u>		Prep %Rec Limits 90 - 110 Client Sar	Type: S	oluble SS 02
Matrix: Solid Analysis Batch: 70796 Analyte Chloride Lab Sample ID: 890-5944-2 MSD Matrix: Solid	Result			Added		esult				<u>D</u>		Prep %Rec Limits 90 - 110 Client Sar	Type: S	SS 02
Matrix: Solid Analysis Batch: 70796 Analyte Chloride Lab Sample ID: 890-5944-2 MSD Matrix: Solid	Result	Qual	ifier	Added	2	esult 296.2				D		Prep %Rec Limits 90 - 110 Client Sar	Type: S	SS 02
Lab Sample ID: 890-5944-2 MS Matrix: Solid Analysis Batch: 70796 Analyte Chloride Lab Sample ID: 890-5944-2 MSD Matrix: Solid Analysis Batch: 70796 Analyte	Result 35.5	Qual	ifier	Added 250	2	esult 296.2 MSD	Qualifier			D .		Prep %Rec Limits 90 - 110 Client Sar Prep	Type: S	oluble SS 02

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

5

Job ID: 890-5944-1 SDG: 03C1558310

GC VOA

Prep Batch: 70783

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5944-1	SS 01	Total/NA	Solid	5035	
890-5944-2	SS 02	Total/NA	Solid	5035	
890-5944-3	SS 03	Total/NA	Solid	5035	
MB 880-70783/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-70783/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-70783/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-37820-A-1-C MS	Matrix Spike	Total/NA	Solid	5035	
880-37820-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 70807

880-37820-A-1-C MS	Matrix Spike	Total/NA	Solid	5035		
880-37820-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		8
Analysis Batch: 70807						9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-5944-1	SS 01	Total/NA	Solid	8021B	70783	
890-5944-2	SS 02	Total/NA	Solid	8021B	70783	
890-5944-3	SS 03	Total/NA	Solid	8021B	70783	
MB 880-70783/5-A	Method Blank	Total/NA	Solid	8021B	70783	
LCS 880-70783/1-A	Lab Control Sample	Total/NA	Solid	8021B	70783	
LCSD 880-70783/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	70783	
880-37820-A-1-C MS	Matrix Spike	Total/NA	Solid	8021B	70783	40
880-37820-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	70783	13
Analysis Batch: 70958						
Γ,						

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5944-1	SS 01	Total/NA	Solid	Total BTEX	
890-5944-2	SS 02	Total/NA	Solid	Total BTEX	
890-5944-3	SS 03	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 70792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5944-1	SS 01	Total/NA	Solid	8015NM Prep	
890-5944-2	SS 02	Total/NA	Solid	8015NM Prep	
890-5944-3	SS 03	Total/NA	Solid	8015NM Prep	
MB 880-70792/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-70792/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-70792/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-37809-A-21-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-37809-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 70811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5944-1	SS 01	Total/NA	Solid	8015B NM	70792
890-5944-2	SS 02	Total/NA	Solid	8015B NM	70792
890-5944-3	SS 03	Total/NA	Solid	8015B NM	70792
MB 880-70792/1-A	Method Blank	Total/NA	Solid	8015B NM	70792
LCS 880-70792/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	70792
LCSD 880-70792/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	70792
880-37809-A-21-E MS	Matrix Spike	Total/NA	Solid	8015B NM	70792
880-37809-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	70792

QC Association Summary

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

GC Semi VOA

Analysis Batch: 70915

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5944-1	SS 01	Total/NA	Solid	8015 NM	
890-5944-2	SS 02	Total/NA	Solid	8015 NM	
890-5944-3	SS 03	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 70717

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
890-5944-1	SS 01	Soluble	Solid	DI Leach		
890-5944-2	SS 02	Soluble	Solid	DI Leach		0
890-5944-3	SS 03	Soluble	Solid	DI Leach		3
MB 880-70717/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-70717/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-70717/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		
890-5944-2 MS	SS 02	Soluble	Solid	DI Leach		
890-5944-2 MSD	SS 02	Soluble	Solid	DI Leach		
Analysis Batch: 7079	6					
	•					4.0
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	13
890-5944-1	SS 01	Soluble	Solid	300.0	70717	

Analysis Batch: 70796

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5944-1	SS 01	Soluble	Solid	300.0	70717
890-5944-2	SS 02	Soluble	Solid	300.0	70717
890-5944-3	SS 03	Soluble	Solid	300.0	70717
MB 880-70717/1-A	Method Blank	Soluble	Solid	300.0	70717
LCS 880-70717/2-A	Lab Control Sample	Soluble	Solid	300.0	70717
LCSD 880-70717/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	70717
890-5944-2 MS	SS 02	Soluble	Solid	300.0	70717
890-5944-2 MSD	SS 02	Soluble	Solid	300.0	70717

1/15/2024

Page 35 of 128

5

Job ID: 890-5944-1 SDG: 03C1558310 Client Sample ID: SS 01 Date Collected: 01/10/24 10:40

Date Received: 01/10/24 14:53

Project/Site: BIG EDDY UNIT D1 29 BATTERY

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

4.97 g

5 mL

9.97 g

1 uL

4.96 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

70783

70807

70958

70915

70792

70811

70717

70796

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 890-5944-1 SDG: 03C1558310

Lab Sample ID: 890-5944-1

Analyst

EL

MNR

SM

SM

ткс

SM

СН

СН

Lab Sample ID: 890-5944-3

Matrix: Solid

Prepared

or Analyzed

01/12/24 15:10

01/14/24 02:04

01/14/24 02:04

01/14/24 14:14

01/12/24 17:11

01/14/24 14:14

01/12/24 08:10

01/13/24 05:26

Matrix: Solid

Lab

EET MID

4 5 6 7 8 9

Lab Sample ID: 890-5944-2

Matrix: Solid

Client Sample ID: SS 02 Date Collected: 01/10/24 10:45

Date Received: 01/10/24 14:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	70783	01/12/24 15:10	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70807	01/14/24 02:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70958	01/14/24 02:24	SM	EET MID
Total/NA	Analysis	8015 NM		1			70915	01/14/24 14:36	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	70792	01/12/24 17:11	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70811	01/14/24 14:36	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	70717	01/12/24 08:10	СН	EET MID
Soluble	Analysis	300.0		1			70796	01/13/24 05:31	СН	EET MID

Client Sample ID: SS 03 Date Collected: 01/10/24 10:50 Date Received: 01/10/24 14:53

Batch	Batch	Batch		Dil Initial Final Batch	Prepared	Prepared				
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	70783	01/12/24 15:10	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	70807	01/14/24 02:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			70958	01/14/24 02:45	SM	EET MID
Total/NA	Analysis	8015 NM		1			70915	01/14/24 14:57	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	70792	01/12/24 17:11	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70811	01/14/24 14:57	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	70717	01/12/24 08:10	СН	EET MID
Soluble	Analysis	300.0		1			70796	01/13/24 05:46	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440
Accreditation/Certification Summary

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	m	Identification Number	Expiration Date		
exas	NELAP		T104704400-23-26	06-30-24		
The following analy	as are included in this report, but	the laboratory is not cortif	ied by the governing authority. This lis	t may include analytes		
for which the agence	y does not offer certification.	-	, , , , , ,			
for which the agence Analysis Method		Matrix	Analyte			
for which the agence	y does not offer certification.	-	, , , , , ,			

10

Job ID: 890-5944-1 SDG: 03C1558310

Eurofins Carlsbad

Project/Site: BIG EDDY UNIT D1 29 BATTERY

Client: Ensolum

Job ID: 890-5944-1 SDG: 03C1558310

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Refe	rences:			
ASTM = A	STM International			- 1
EPA = US	Environmental Protection Agency			
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition	, November 1986 And Its Updates.		- 1
TAL SOP =	 TestAmerica Laboratories, Standard Operating Procedure 			
Laboratory Re	eferences:			
EET MID =	Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440			- 5
				- 2
				- 2

Eurofins Carlsbad

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY Job ID: 890-5944-1 SDG: 03C1558310

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5944-1	SS 01	Solid	01/10/24 10:40	01/10/24 14:53	0.5'
890-5944-2	SS 02	Solid	01/10/24 10:45	01/10/24 14:53	0.5'
890-5944-3	SS 03	Solid	01/10/24 10:50	01/10/24 14:53	0.5'

🔅 euro	ofins	Enviror Xenco	nment Te	sting		Midland, EL Paso	on, TX (TX (43 , TX (9	(281) 24 2) 704-5 15) 585-	0-4200, 6440, Sa 3443, Li	Dallas, n Anton ubbock,	nio, TX (2 TX (806)	y 902-0300 10) 509-333 794-1296 5) 988-3199						Order	No:	Page	of	
	8	8			Bili to: (if o	1:65		Garrett Green					Work Order Comments									
Project Manager:		n Beli						-					<u> </u>		Program	· 115T				ields 🗍 R		erfund
Company Name:		solum,		a	Company	Name:		7			Ene	ine S		-	State of I			r nr 📋	DIOWIN		anc 🖸 Sup	enunu
Address:	1		1 Park		Address:			1						-			- - -	Level III			RRP Lev	
City, State ZIP:			38 ML		City, State							1 88:	110	-	Deliveral	-			ADaPT [her:	
Phone:	989	.854.0	1827	Email:		þk	<u>peli</u>	110	ense	sim	1.00	h			Deliveral	oles:	EDDL		ADAPT		ier:	
Project Name:	Rig FOD	UNITD	129 BAT	ERY Turn	Around							AN	ALYSIS	REQU	EST					Presen	vative Codes	6
Project Number:	F	55831		Routine	Rush		Pres. Code								1 1	1	1	1	N	one: NO	DI Wat	ter: H ₂ O
	1	7,-103.		Due Date:															Co	ol: Cool	MeOH:	Me
Project Location: Sampler's Name:		lith Ro		TAT starts the	day receive	d by														L: HC	HNO 3:	
PO #:	incree	in the most	ber 15	the lab, if rec															н	S0 4: H 2	NaOH: I	
SAMPLE RECEIPT		ma Blank:	Yes No	Wet Ice:	Yes M	No	ters	-	-			890-5	944 Ch	ain of	Custody				н	PO 4: HP		
Samples Received Inta		No No	Thermomet		TAIM	-	Parameters											-	N	HSO 4: NA	BIS	
Cooler Custody Seals:		No (N/A)	Correction F		-0		Par			5							T	1	Na	25 203: Na	SO 3	
Sample Custody Seals		NO NA	Temperatur		70.1					T									Zr	Acetate+I	NaOH: Zn	
Total Containers:			1	emperature:	70,1	4		× 山	1 -	1									Na	OH+Ascor	bic Acid: SAPO	c
Sample Ident	ification	Matrix	Date Sampled	Time Sampled	Depth		# of Cont	H	HAT	Chio		-	_	-	++			-		Sample	e Comments	s
SSOI		S	1/10/24	1040	0.5	G	1	×	X	X									1	neider	十 社;	_
SSO		1	1	1045	1	T	1	1	1	1								T			3104991	60
<u>SS0</u>			++	1050			V		L									T				
030	2						-			1 >	me			1				1	0	ost Ce	nicr	
			-															1			DING	
								-	-									1				
	/												1	1			-	1	m	niberto	Censulu	m. Lon
					+		-			-				-	+ +			+				
															++							
/																					_	
Total 200.7 / 60*	10 200	.8 / 6020:	8	RCRA 13PF																		
Circle Method(s)	and Metal(s) to be an	alyzed	TCLP / S	PLP 6010	: 8RC	RA S	b As	Ba Be	e Cd	Cr Co	Cu Pb I	Vn Mc	Ni S	Se Ag TI l	J	Hg:	1631/2	245.1/7	470 / 747	<u>'1</u>	
Notice: Signature of this doo of service. Eurofins Xenco v of Eurofins Xenco. A minim	cument and reling	ulshment of sam	ples constitutes a	assume any respo	onsibility for an	ny losses of	r expen	ses incur	red by th	e client i	f such loss	es are due to	circumsta	inces be	yond the contro	24						
				,					-		1	inquishe					reived	by: (Sigr	nature)		Date/Time	
Relinquished by	r: (Signature)	a	Received	by: (Signatur		1/20	1		/Time		2	inquisite	u by. (5	ignatt		net	crived					
FIRM	S	10	mu	0	iju	1 E	-		1		4			-								
											6											
5										_	L			_						Revised	Date: 08/25/2020 Re	ev. 2020.2

13

Page 40 of 128

Released to Imaging: 5/15/2024 10:58:53 AM

Chain of Custody Record

13

Environment Testing

Carlsbad, NM 88220 Phone. 575-988-3199 Fax. 575-988-3199

1089 N Canal St.

	Complex																			
Client Information (Sub Contract Lab)	Sampler			Lab F Krai	ΡΜ mer, .	Jessi	ca						Carrie	r Track	ing No	(s):			COC No: 890-2229 1	
Client Contact: Shipping/Receiving	Phone:			E-Ma Jess		Krame	er@e	t.euro	ofinsu	IS.CO	m			of Origi Mexic					Page Page 1 of 1	
Company Eurofins Environment Testing South Centr					Accr	editatio		quired											Job #:	
Address	Due Date Request	ed			INEL	LAP -	· Texa	15											890-5944-1 Preservation Cor	
1211 W Florida Ave,	1/16/2024								Α	nal	ysis	Req	ues	ted					A HCL	M - Hexane
City Midland	TAT Requested (d	ays).				0											Τ		B - NaOH C Zn Acetate	N - None O - AsNaO2
State Zip: TX 79701							E												D - Nitric Acid E NaHSO4	P - Na2O4S Q Na2SO3 R - Na2S2O3
Phone: 432-704-5440(Tel)	PO #:					1 End													F - MeOH G Amchlor	S - H2SO4 T - TSP Dodecahydrate
Email	WO #:				(Yes or No	(o)		hlorid	X									2.	H Ascorbic Acid I Ice J - DI Water	U Acetone V - MCAA
Project Name BIG EDDY UNIT D1 29 BATTERY	Project # 89000093				(Yes	O N		ACH O	D) BTI									iners	K EDTA L-EDA	W pH 4-5 Y - Trizma
Site	SSOW#:				mple	Perform MS/MSD (Yes or		300_ORGFM_28D/DI_LEACH Chioride	8021B/6036FP_Calc (MOD) BTEX									conta	Other [.]	Z - other (specify)
				Matrix	ed Sa	SWIS			P.Ca	SC								er of		······
			Sample Type	(W=water S=solid,	Filter		8016MOD Calc	RGFW	6036	Total_BTEX_								Number		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	(C=Comp,	O=waste/oli,	pield	erto	M910		21B/	tal_								Total I		
	- Sample Date	Time	Distant Propagation and Comparison of the	BT=Tissue, A=Air) ation Code:			5 B	5 R	× ×	Ť	31.5	1900 - 19						Ň	Special II	nstructions/Note:
SS 01 (890-5944-1)	1/10/24	10 40		Solid	fŤ	<u> </u>	x x	x x	X	X	<u> </u>	<u> </u>	<u>istern</u> all	in the second			and terrain	\uparrow	Constant State of Sta	
SS 02 (890-5944-2)	1/10/24	Mountain 10 45		Solid	╉╋		x x			x	+					+		1		
SS 03 (890-5944-3)	1/10/24	Mountain 10 50 Mountain		Solid	fϯ	;	x x	-+		x								1		
		Wiouritain			$\uparrow \uparrow$	-											-			
					††				+							_				
					\dagger				+	1										
					\dagger				+	+	1									
					H				-	+							+			
		1			╂╂		-	+	+	+	+			-				in the second se		
Note: Since laboratory accreditations are subject to change Eurofins Environ	ment Testing South Cent	ral. LLC places	the ownership	of method ana	aivte &	accre	ditatio	n como	liance				act lab		L_		nie eb	inment	lis forwarded under (
laboratory does not currently maintain accreditation in the State of Origin liste accreditation status should be brought to Eurofins Environment Testing Soutt																				
Possible Hazard Identification																			ed longer than	
Unconfirmed								ırn To			Ε			sal By					hive For	Months
Deliverable Requested I, II, III IV, Other (specify)	Primary Deliver	able Rank. 2	2		5	Speci	ial Ins	structio	ons/C	2C R	equire	emen	nts.							
Empty Kit Relinquished by		Date			Tim	e.	1	1						Metho	d of Sh	ipmen	t:			
Relinquished by:	Date/Time:			Company		Re	eceive	N	R	A	m	0	l		,19	ate/Tin	12	U	1261	Company
Relinquished by	Date/Time [.]	······································		Company		R	eceived	d by	<u>`0</u> /`	2	<u> </u>	-			D	ate/Tin	he	-+-	<u> </u>	Company
Relinquished by	Date/Time			Company		Re	eceive	d by	1							ate/Tin	ne			Company
Custody Seals Intact: Custody Seal No				I		C	ooler T	emper	ature(s	s) °C =	ind Oth	er Rei	marks							
Δ Yes Δ No						ľ		Subor		-, 08		011101	martð.							

.

1/15/2024

14

Job Number: 890-5944-1 SDG Number: 03C1558310

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5944 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Job Number: 890-5944-1 SDG Number: 03C1558310

List Source: Eurofins Midland

List Creation: 01/12/24 12:32 PM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5944 List Number: 2 Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 4/22/2024 2:04:25 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/18/2024 10:44:21 AM

JOB DESCRIPTION

BIG EDDY UNIT D1 29 BATTERY 03C1558310

JOB NUMBER

890-5945-1

Page 44 of 128

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 1/18/2024 10:44:21 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-5945-1

SDG: 03C1558310

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	24

cerrea by o c		i uge +/ oj i	
	Definitions/Glossary		
Client: Ensolu Project/Site: I	um BIG EDDY UNIT D1 29 BATTERY	Job ID: 890-5945-1 SDG: 03C1558310	2
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
*+	LCS and/or LCSD is outside acceptance limits, high biased.		
S1-	Surrogate recovery exceeds control limits, low biased.		5
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VO			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		8
HPLC/IC			
Qualifier	Qualifier Description		9
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Eurofins Carlsbad

Case Narrative

Client: Ensolum Project: BIG EDDY UNIT D1 29 BATTERY

Job ID: 890-5945-1

Eurofins Carlsbad

Job Narrative 890-5945-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/10/2024 2:53 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS 04 (890-5945-1), SS 05 (890-5945-2), SS 06 (890-5945-3) and SS 07 (890-5945-4).

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-71001 and analytical batch 880-71037 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: Surrogate recovery for the following sample was outside control limits: SS 07 (890-5945-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-70792 and analytical batch 880-70811 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SS 07 (890-5945-4), (880-37809-A-21-D), (880-37809-A-21-E MS) and (880-37809-A-21-F MSD). Evidence of matrix interference is present; therefore, reextraction and/or re-analysis was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-70792 and analytical batch 880-70811 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Client Sample ID: SS 04

Date Collected: 01/10/24 10:55 Date Received: 01/10/24 14:53

Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198	mg/Kg		01/16/24 13:33	01/17/24 14:42	1
Toluene	<0.00198	U	0.00198	mg/Kg		01/16/24 13:33	01/17/24 14:42	1
Ethylbenzene	<0.00198	U	0.00198	mg/Kg		01/16/24 13:33	01/17/24 14:42	1
m-Xylene & p-Xylene	<0.00396	U *+	0.00396	mg/Kg		01/16/24 13:33	01/17/24 14:42	1
o-Xylene	<0.00198	U	0.00198	mg/Kg		01/16/24 13:33	01/17/24 14:42	1
Xylenes, Total	<0.00396	U *+	0.00396	mg/Kg		01/16/24 13:33	01/17/24 14:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130			01/16/24 13:33	01/17/24 14:42	1
1,4-Difluorobenzene (Surr)	85		70 - 130			01/16/24 13:33	01/17/24 14:42	1
Total BTEX : Method: SW846 8015 NM - Diese	<0.00396 I Range Organ		0.00396 GC)	mg/Kg			01/17/24 14:42	1
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			01/14/24 15:19	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9	mg/Kg		01/12/24 17:11	01/14/24 15:19	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9	mg/Kg		01/12/24 17:11	01/14/24 15:19	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		01/12/24 17:11	01/14/24 15:19	1

Oll Range Organics (Over C28-C36)	<49.9 U	49.9	mg/Kg	01/12/24 17:11	01/14/24 15:19	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	114	70 - 130		01/12/24 17:11	01/14/24 15:19	1
o-Terphenyl	94	70 - 130		01/12/24 17:11	01/14/24 15:19	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	84.0	5.04	mg/Kg			01/13/24 05:51	1		

Client Sample ID: SS 05 Date Collected: 01/10/24 11:00 Date Received: 01/10/24 14:53 Sample Depth: 0.5'

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/16/24 13:33	01/17/24 11:58	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/16/24 13:33	01/17/24 11:58	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/16/24 13:33	01/17/24 11:58	1
m-Xylene & p-Xylene	<0.00398	U *+	0.00398	mg/Kg		01/16/24 13:33	01/17/24 11:58	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/16/24 13:33	01/17/24 11:58	1
Xylenes, Total	<0.00398	U *+	0.00398	mg/Kg		01/16/24 13:33	01/17/24 11:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130			01/16/24 13:33	01/17/24 11:58	1

Eurofins Carlsbad

Lab Sample ID: 890-5945-2

Matrix: Solid

Page 49 of 128

Job ID: 890-5945-1 SDG: 03C1558310

Lab Sample ID: 890-5945-1

Matrix: Solid

Client Sample Results

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Client Sample ID: SS 05

Date Collected: 01/10/24 11:00

Date Received: 01/10/24 14:53 Sample Depth: 0.5'

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	84		70 - 130			01/16/24 13:33	01/17/24 11:58	1
Method: TAL SOP Total BTEX	- Total BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398	U	0.00398	mg/Kg			01/17/24 11:58	1
Analyte		Quanner		onit		Treparea	Analyzeu	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			01/14/24 15:40	1
Total TPH - Method: SW846 8015B NM - D				mg/Kg			01/14/24 15:40	1
-	iesel Range Orga			mg/Kg Unit	D	Prepared	01/14/24 15:40 Analyzed	Dil Fac
_ Method: SW846 8015B NM - D	iesel Range Orga	nics (DRO) Qualifier	(GC)		D	Prepared 01/12/24 17:11		1
Method: SW846 8015B NM - D Analyte	iesel Range Orga Result	nics (DRO) Qualifier	(GC) RL	Unit	D		Analyzed	1

C10-C28)						
OII Range Organics (Over C28-C36)	<50.0 U	50.0	mg/Kg	01/12/24 17:11	01/14/24 15:40	1
Currente	% Decessions Outslifter	l insite		Duanavad	Amelymod	Dil Faa
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 1-Chlorooctane	Qualifier			Prepared 01/12/24 17:11	Analyzed 01/14/24 15:40	Dil Fac

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18.2	4.98	mg/Kg			01/13/24 06:07	1

Client Sample ID: SS 06

Date Collected: 01/10/24 11:15 Date Received: 01/10/24 14:53 Sample Depth: 0.5'

Lab Sample ID: 890-5945-3 Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		01/16/24 13:33	01/17/24 12:19	1
Toluene	<0.00201	U	0.00201	mg/Kg		01/16/24 13:33	01/17/24 12:19	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/16/24 13:33	01/17/24 12:19	1
m-Xylene & p-Xylene	<0.00402	U *+	0.00402	mg/Kg		01/16/24 13:33	01/17/24 12:19	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/16/24 13:33	01/17/24 12:19	1
Xylenes, Total	<0.00402	U *+	0.00402	mg/Kg		01/16/24 13:33	01/17/24 12:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130			01/16/24 13:33	01/17/24 12:19	1
1,4-Difluorobenzene (Surr)	80		70 - 130			01/16/24 13:33	01/17/24 12:19	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			01/17/24 12:19	1
Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

Page 50 of 128

Matrix: Solid

5

Job ID: 890-5945-1 SDG: 03C1558310

Lab Sample ID: 890-5945-2

Client Sample ID: SS 06

Date Collected: 01/10/24 11:15 Date Received: 01/10/24 14:53

Sample Depth: 0.5'

_ Method: SW846 8015B NM - Dies	el Rango Orga	nice (DRO)	(60)				
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 16:02
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 16:02
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 16:02
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed
1-Chlorooctane	120		70 - 130			01/12/24 17:11	01/14/24 16:02
o-Terphenyl	96		70 - 130			01/12/24 17:11	01/14/24 16:02

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19.8	4.95	mg/Kg			01/13/24 06:12	1

Client Sample ID: SS 07

Date Collected: 01/10/24 11:10

Date Received: 01/10/24 14:53 Sample Depth: 0.5'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/16/24 13:33	01/17/24 12:39	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/16/24 13:33	01/17/24 12:39	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/16/24 13:33	01/17/24 12:39	1
m-Xylene & p-Xylene	<0.00401	U *+	0.00401	mg/Kg		01/16/24 13:33	01/17/24 12:39	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/16/24 13:33	01/17/24 12:39	1
Xylenes, Total	<0.00401	U *+	0.00401	mg/Kg		01/16/24 13:33	01/17/24 12:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130			01/16/24 13:33	01/17/24 12:39	1
1,4-Difluorobenzene (Surr)	65	S1-	70 - 130			01/16/24 13:33	01/17/24 12:39	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			01/17/24 12:39	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.7	U	49.7	mg/Kg			01/14/24 16:45	1
1	_								

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7	mg/Kg		01/12/24 17:11	01/14/24 16:45	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.7	U	49.7	mg/Kg		01/12/24 17:11	01/14/24 16:45	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		01/12/24 17:11	01/14/24 16:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	137	S1+	70 - 130			01/12/24 17:11	01/14/24 16:45	1
o-Terphenyl	105		70 - 130			01/12/24 17:11	01/14/24 16:45	1

Job ID: 890-5945-1

SDG: 03C1558310

Matrix: Solid

Dil Fac

1

1 1

Dil Fac

Matrix: Solid

Lab Sample ID: 890-5945-4

Page 51 of 128

5

		Client	Sample Res	sults					1
Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 E	BATTERY						Job ID: 890 SDG: 03C1		2
Client Sample ID: SS 07 Date Collected: 01/10/24 11:10						Lab Sa	mple ID: 890- Matri	5945-4 x: Solid	
Date Received: 01/10/24 14:53 Sample Depth: 0.5'									4
Method: EPA 300.0 - Anions, Ion C Analyte		hy - Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	17.4		4.97	mg/Kg			01/13/24 06:17	1	
									8
									9
									13

Eurofins Carlsbad

Surrogate Summary

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Ac
		BFB1	DFBZ1	
ab Sample ID	Client Sample ID	(70-130)	(70-130)	
90-5945-1	SS 04	81	85	
90-5945-1 MS	SS 04	118	117	
90-5945-1 MSD	SS 04	113	105	
90-5945-2	SS 05	79	84	
90-5945-3	SS 06	88	80	
390-5945-4	SS 07	83	65 S1-	
CS 880-71001/1-A	Lab Control Sample	110	113	
.CSD 880-71001/2-A	Lab Control Sample Dup	115	94	
MB 880-71001/5-A	Method Blank	71	89	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-37809-A-21-E MS	Matrix Spike	158 S1+	117	
880-37809-A-21-F MSD	Matrix Spike Duplicate	158 S1+	118	
890-5945-1	SS 04	114	94	
890-5945-2	SS 05	123	100	
890-5945-3	SS 06	120	96	
890-5945-4	SS 07	137 S1+	105	
LCS 880-70792/2-A	Lab Control Sample	88	90	
LCSD 880-70792/3-A	Lab Control Sample Dup	99	104	
MB 880-70792/1-A	Method Blank	170 S1+	172 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 53 of 128

5 6

Job ID: 890-5945-1 SDG: 03C1558310

Prep Type: Total/NA

Lab Sample ID: MB 880-71001/5-A

QC Sample Results

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid							Prep Type: 1	otal/NA
Analysis Batch: 71037							Prep Batch	: 71001
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/16/24 13:33	01/17/24 11:16	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/16/24 13:33	01/17/24 11:16	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/16/24 13:33	01/17/24 11:16	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/16/24 13:33	01/17/24 11:16	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/16/24 13:33	01/17/24 11:16	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/16/24 13:33	01/17/24 11:16	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71		70 - 130			01/16/24 13:33	01/17/24 11:16	1
1,4-Difluorobenzene (Surr)	89		70 - 130			01/16/24 13:33	01/17/24 11:16	1

Lab Sample ID: LCS 880-71001/1-A Matrix: Solid

Analysis Batch: 71037

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1294		mg/Kg		129	70 - 130	
Toluene	0.100	0.1127		mg/Kg		113	70 - 130	
Ethylbenzene	0.100	0.1239		mg/Kg		124	70 - 130	
m-Xylene & p-Xylene	0.200	0.2698	*+	mg/Kg		135	70 - 130	
o-Xylene	0.100	0.1268		mg/Kg		127	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	113		70 - 130

Lab Sample ID: LCSD 880-71001/2-A

Matrix: Solid Local Destail

Analysis Batch: 71037							Prep	Batch:	71001
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1281		mg/Kg		128	70 - 130	1	35
Toluene	0.100	0.1178		mg/Kg		118	70 - 130	4	35
Ethylbenzene	0.100	0.1260		mg/Kg		126	70 - 130	2	35
m-Xylene & p-Xylene	0.200	0.2731	*+	mg/Kg		137	70 - 130	1	35
o-Xylene	0.100	0.1285		mg/Kg		129	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 890-5945-1 MS Matrix: Solid

Analysis Batch: 71037

Analysis Batch: 71037									Prep	Batch: 71001
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198		0.100	0.1220		mg/Kg		114	70 - 130	
Toluene	<0.00198		0.100	0.1055		mg/Kg		73	70 - 130	

Eurofins Carlsbad

Client Sample ID: SS 04

Prep Type: Total/NA

5 6

7

Job ID: 890-5945-1 SDG: 03C1558310

Client Sample ID: Method Blank

				Client	Sample	Prep Ty	ntrol Sample pe: Total/NA Batch: 71001
е	LCS	LCS				%Rec	
d	Result	Qualifier	Unit	D	%Rec	Limits	
0	0.1294		mg/Kg		129	70 - 130	
0	0.1127		mg/Kg		113	70 - 130	
0	0.1239		mg/Kg		124	70 - 130	
0	0.2698	*+	mg/Kg		135	70 - 130	
0	0.1268		mg/Kg		127	70 - 130	
0							
0							
			Clien	it Sam	ple ID: I	Prep Ty	Sample Dup pe: Total/NA Batch: 71001
~	1.050	1.050				% Poc	

Lab Sample ID: 890-5945-1 MS

Analysis Batch: 71037

4-Bromofluorobenzene (Surr)

Lab Sample ID: 890-5945-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

QC Sample Results

MS MS

0.1207

0.2560

0.1198

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.100

0.201

0.100

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Sample Sample

MS MS

118

117

Qualifier

Qualifier

Result

< 0.00198

< 0.00396

<0.00198

%Recovery

Job ID: 890-5945-1 SDG: 03C1558310

Client Sample ID: SS 04

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

104

99

89

D

Prep Type: Total/NA

Prep Batch: 71001

6

Client Sample ID: SS 04 NA 01

	3
	9

Matrix: Solid									Prep 1	ype: To	tal/NA
Analysis Batch: 71037									Prep	Batch:	71001
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00198	U	0.101	0.1143		mg/Kg		113	70 - 130	7	35
Toluene	<0.00198	U	0.101	0.1019		mg/Kg		101	70 - 130	3	35
Ethylbenzene	<0.00198	U	0.101	0.1098		mg/Kg		109	70 - 130	9	35
m-Xylene & p-Xylene	<0.00396	U *+	0.202	0.2321		mg/Kg		115	70 - 130	10	35
o-Xylene	<0.00198	U	0.101	0.1097		mg/Kg		109	70 - 130	9	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	113		70 - 130								
1,4-Difluorobenzene (Surr)	105		70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-70792/1- Matrix: Solid Analysis Batch: 70811	A					Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 09:00	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 09:00	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/12/24 17:11	01/14/24 09:00	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	170	S1+	70 - 130			01/12/24 17:11	01/14/24 09:00	1
o-Terphenyl	172	S1+	70 - 130			01/12/24 17:11	01/14/24 09:00	1
 Lab Sample ID: LCS 880-70792/2	2-A				c	lient Sample I	D: Lab Control	Sample

Matrix: Solid Analysis Batch: 70811

Analysis Batch: 70811							Prep	Batch: 70792
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1087		mg/Kg		109	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	929.5		mg/Kg		93	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

Released to Imaging: 5/15/2024 10:58:53 AM

QC Sample Results

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-707 Matrix: Solid	792/2-A						Client	Sample	ID: Lab Co Prep T	ontrol Sa Type: Tot	
Analysis Batch: 70811										Batch:	
-											
		LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	88		70 - 130								
o-Terphenyl	90		70 - 130								
Lab Sample ID: LCSD 880-7	0792/3-A					Clier	nt Sam	nple ID:	Lab Contro	ol Sample	e Du
Matrix: Solid										Type: Tot	
Analysis Batch: 70811										Batch:	
			Spike	LCSD	LCSD				%Rec		RF
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lin
Gasoline Range Organics (GRO)-C6-C10			1000	1046		mg/Kg		105	70 - 130	4	2
Diesel Range Organics (Over			1000	904.7		mg/Kg		90	70 - 130	3	2
C10-C28)			1000	904.7		ilig/Kg		90	70 - 130	3	
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	99		70 - 130								
o-Terphenyl	104		70 - 130								
Analyte		Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec Limits		
Gasoline Range Organics	<49.9	U F1	1010	1410	F1	mg/Kg		136	70 - 130		
GRO)-C6-C10						ilig/itg		130	70 - 150		
Diesel Range Organics (Over	<49.9	U F1	1010	1452	F1	mg/Kg		139	70 - 130		
Diesel Range Organics (Over	<49.9	U F1 <i>MS</i>	1010	1452	F1						
Diesel Range Organics (Over C10-C28)	<49.9	MS Qualifier	Limits	1452	F1						
Diesel Range Organics (Over C10-C28) Surrogate	<49.9 MS	MS		1452	F1						
Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	<49.9 MS %Recovery	MS Qualifier	Limits	1452	F1						
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl	<49.9 MS 	MS Qualifier	Limits 70 - 130	1452	F1	mg/Kg	ient Sa	139	70 - 130	bike Dup	lica
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-37809-A	<49.9 MS 	MS Qualifier	Limits 70 - 130	1452	F1	mg/Kg	ient Sa	139	70 - 130 D: Matrix Sp		
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid	<49.9 MS 	MS Qualifier	Limits 70 - 130	1452	F1	mg/Kg	ient Sa	139	70 - 130 D: Matrix Sp Prep T	Type: Tot	tal/N
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane 5-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid	<49.9 MS <u>%Recovery</u> 158 117 A-21-F MSD	MS Qualifier	Limits 70 - 130		F1	mg/Kg	ient Sa	139	70 - 130 D: Matrix Sp Prep T		tal/N 7079
Diesel Range Organics (Over 210-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811	<49.9 MS %Recovery 158 117 A-21-F MSD Sample	MS Qualifier S1+	Limits 70 - 130 70 - 130	MSD		mg/Kg	ient Sa	139	70 - 130 D: Matrix Sp Prep T Prep	Type: Tot	tal/N 7079 RF
Diesel Range Organics (Over 210-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics	<49.9 MS %Recovery 158 117 A-21-F MSD Sample	MS Qualifier S1+ Sample Qualifier	Limits 70 - 130 70 - 130 Spike	MSD	MSD Qualifier	mg/Kg CI		139 ample IE	70 - 130 D: Matrix Sp Prep T Prep %Rec	Type: Tot Batch:	t <mark>al/N</mark> 7079 RF Lin
Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics GRO)-C6-C10	<49.9 MS %Recovery 158 117 A-21-F MSD Sample Result <49.9	MS Qualifier S1+ Sample Qualifier U F1	Limits 70 - 130 70 - 130 Spike Added 1010	MSD Result 1373	MSD Qualifier F1	mg/Kg Cl <u>Unit</u> mg/Kg		139 ample IE <u>%Rec</u> 132	70 - 130 D: Matrix Sp Prep T Prep %Rec Limits 70 - 130	RPD 3	tal/N 7079 RF Lin
Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	<49.9 MS %Recovery 158 117 A-21-F MSD Sample Result	MS Qualifier S1+ Sample Qualifier U F1	Limits 70 - 130 70 - 130 Spike Added	MSD Result	MSD Qualifier F1	mg/Kg Cl		139 ample IC %Rec	70 - 130 D: Matrix Sp Prep T Prep %Rec Limits	Batch:	tal/N 7079 RF Lin
Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 MS %Recovery 158 117 A-21-F MSD Sample Result <49.9 <49.9 <49.9 MSD	MS Qualifier S1+ Sample Qualifier U F1 U F1 MSD	Limits 70 - 130 70 - 130 Spike Added 1010	MSD Result 1373	MSD Qualifier F1	mg/Kg Cl <u>Unit</u> mg/Kg		139 ample IE <u>%Rec</u> 132	70 - 130 D: Matrix Sp Prep T Prep %Rec Limits 70 - 130	RPD 3	tal/N 7079 RF Lin
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	<49.9 MS %Recovery 158 117 A-21-F MSD Sample Result <49.9 <49.9 <49.9 <49.9 <49.9	MS Qualifier S1+ Sample Qualifier U F1 U F1 U F1 MSD Qualifier	Limits 70 - 130 70 - 130 Spike Added 1010 1010	MSD Result 1373	MSD Qualifier F1	mg/Kg Cl <u>Unit</u> mg/Kg		139 ample IE <u>%Rec</u> 132	70 - 130 D: Matrix Sp Prep T Prep %Rec Limits 70 - 130	RPD 3	al/N
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-37809-A Matrix: Solid Analysis Batch: 70811 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 MS %Recovery 158 117 A-21-F MSD Sample Result <49.9 <49.9 <49.9 <49.9 <49.9	MS Qualifier S1+ Sample Qualifier U F1 U F1 MSD	Limits 70 - 130 70 - 130 Spike Added 1010	MSD Result 1373	MSD Qualifier F1	mg/Kg Cl <u>Unit</u> mg/Kg		139 ample IE <u>%Rec</u> 132	70 - 130 D: Matrix Sp Prep T Prep %Rec Limits 70 - 130	RPD 3	tal/N 7079 RP Lim

Client: Ensolum

QC Sample Results

Job ID: 890-5945-1 SDG: 03C1558310

Project/Site: BIG EDDY UNIT D1 29 BATTERY

Lab Sample ID: MB 880-70717/1-A									Cli	ient S	ample ID: I	Nethod	Blank
Matrix: Solid												Type: S	
Analysis Batch: 70796													
-		MB MB											
Analyte	R	esult Qualifier		RL		Unit		D	Prepa	ared	Analyz	ed	Dil Fac
Chloride		<5.00 U		5.00		mg/Kg					01/13/24 (04:04	1
- Lab Sample ID: LCS 880-70717/2-A								Clie	nt Sa	ample	ID: Lab Co	ontrol S	ample
Matrix: Solid										- C.		Type: S	
Analysis Batch: 70796													
			Spike		LCS	LCS					%Rec		
Analyte			Added	R	esult	Qualifier	Unit	[D %	Rec	Limits		
Chloride			250	2	251.9		mg/Kg			101	90 - 110		
Lab Sample ID: LCSD 880-70717/3-	A						Cli	ent Sa	ample	e ID: L	.ab Contro	I Sampl	e Dup
Matrix: Solid											Prep	Type: S	oluble
Analysis Batch: 70796													
			Spike	L	CSD	LCSD					%Rec		RPD
Analyte			Added	R	esult	Qualifier	Unit	[D %	Rec	Limits	RPD	Limit
Chloride			250	2	255.1		mg/Kg			102	90 - 110	1	20
Lab Sample ID: 890-5944-A-2-B MS	5								c	lient	Sample ID:	Matrix	Spike
Matrix: Solid											Prep	Type: S	oluble
Analysis Batch: 70796													
	Sample	Sample	Spike		MS	MS					%Rec		
Analyte	Result	Qualifier	Added	R	esult	Qualifier	Unit	[D %	Rec	Limits		
Chloride	35.5		250		296.2		mg/Kg			104	90 - 110		
Lab Sample ID: 890-5944-A-2-C MS	D							Client	Sam	ple ID	: Matrix Sp	ike Dup	olicate
Matrix: Solid											Prep	Type: S	oluble
Analysis Batch: 70796													
	Sample	Sample	Spike		MSD	MSD					%Rec		RPD
	Sample												
Analyte		Qualifier	Added	R	esult	Qualifier	Unit		D_%	Rec	Limits	RPD	Limit

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

5

Job ID: 890-5945-1 SDG: 03C1558310

GC VOA

Prep Batch: 71001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5945-1	SS 04	Total/NA	Solid	5035	
890-5945-2	SS 05	Total/NA	Solid	5035	
890-5945-3	SS 06	Total/NA	Solid	5035	
890-5945-4	SS 07	Total/NA	Solid	5035	
MB 880-71001/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-71001/1-A	Lab Control Sample	Total/NA	Solid	5035	
_CSD 880-71001/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
390-5945-1 MS	SS 04	Total/NA	Solid	5035	
390-5945-1 MSD	SS 04	Total/NA	Solid	5035	

Analysis Batch: 71037

LCSD 880-71001/2-A	Lab Control Sample Dup	Total/INA	Solid	5035		
890-5945-1 MS	SS 04	Total/NA	Solid	5035		8
890-5945-1 MSD	SS 04	Total/NA	Solid	5035		
Analysis Batch: 71037						9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	10
890-5945-1	SS 04	Total/NA	Solid	8021B	71001	
890-5945-2	SS 05	Total/NA	Solid	8021B	71001	44
890-5945-3	SS 06	Total/NA	Solid	8021B	71001	
890-5945-4	SS 07	Total/NA	Solid	8021B	71001	12
MB 880-71001/5-A	Method Blank	Total/NA	Solid	8021B	71001	
LCS 880-71001/1-A	Lab Control Sample	Total/NA	Solid	8021B	71001	40
LCSD 880-71001/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71001	13
890-5945-1 MS	SS 04	Total/NA	Solid	8021B	71001	
890-5945-1 MSD	SS 04	Total/NA	Solid	8021B	71001	14

Analysis Batch: 71100

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5945-1	SS 04	Total/NA	Solid	Total BTEX	
890-5945-2	SS 05	Total/NA	Solid	Total BTEX	
890-5945-3	SS 06	Total/NA	Solid	Total BTEX	
890-5945-4	SS 07	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 70792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5945-1	SS 04	Total/NA	Solid	8015NM Prep	
890-5945-2	SS 05	Total/NA	Solid	8015NM Prep	
890-5945-3	SS 06	Total/NA	Solid	8015NM Prep	
890-5945-4	SS 07	Total/NA	Solid	8015NM Prep	
MB 880-70792/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-70792/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-70792/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-37809-A-21-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-37809-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 70811

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5945-1	SS 04	Total/NA	Solid	8015B NM	70792
890-5945-2	SS 05	Total/NA	Solid	8015B NM	70792
890-5945-3	SS 06	Total/NA	Solid	8015B NM	70792
890-5945-4	SS 07	Total/NA	Solid	8015B NM	70792
MB 880-70792/1-A	Method Blank	Total/NA	Solid	8015B NM	70792
LCS 880-70792/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	70792

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

GC Semi VOA (Continued)

Analysis Batch: 70811 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCSD 880-70792/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	70792
880-37809-A-21-E MS	Matrix Spike	Total/NA	Solid	8015B NM	70792
880-37809-A-21-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	70792
Analysis Batch: 70916					

Analysis Batch: 70916

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5945-1	SS 04	Total/NA	Solid	8015 NM	
890-5945-2	SS 05	Total/NA	Solid	8015 NM	
890-5945-3	SS 06	Total/NA	Solid	8015 NM	
890-5945-4	SS 07	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 70717

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5945-1	SS 04	Soluble	Solid	DI Leach	
890-5945-2	SS 05	Soluble	Solid	DI Leach	
890-5945-3	SS 06	Soluble	Solid	DI Leach	
890-5945-4	SS 07	Soluble	Solid	DI Leach	
MB 880-70717/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-70717/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-70717/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5944-A-2-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-5944-A-2-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 70796

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5945-1	SS 04	Soluble	Solid	300.0	70717
890-5945-2	SS 05	Soluble	Solid	300.0	70717
890-5945-3	SS 06	Soluble	Solid	300.0	70717
890-5945-4	SS 07	Soluble	Solid	300.0	70717
MB 880-70717/1-A	Method Blank	Soluble	Solid	300.0	70717
LCS 880-70717/2-A	Lab Control Sample	Soluble	Solid	300.0	70717
LCSD 880-70717/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	70717
890-5944-A-2-B MS	Matrix Spike	Soluble	Solid	300.0	70717
890-5944-A-2-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	70717

5

8

Project/Site: BIG EDDY UNIT D1 29 BATTERY

Job ID: 890-5945-1 SDG: 03C1558310

Lab Sample ID: 890-5945-1

Date Collected: 01/10/24 10:55 Date Received: 01/10/24 14:53

Client Sample ID: SS 04

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	71001	01/16/24 13:33	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71037	01/17/24 14:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71100	01/17/24 14:42	SM	EET MID
Total/NA	Analysis	8015 NM		1			70916	01/14/24 15:19	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	70792	01/12/24 17:11	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70811	01/14/24 15:19	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	70717	01/12/24 08:10	СН	EET MID
Soluble	Analysis	300.0		1			70796	01/13/24 05:51	СН	EET MID

Client Sample ID: SS 05

Date Collected: 01/10/24 11:00

Date Received: 01/10/24 14:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71001	01/16/24 13:33	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71037	01/17/24 11:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71100	01/17/24 11:58	SM	EET MID
Total/NA	Analysis	8015 NM		1			70916	01/14/24 15:40	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	70792	01/12/24 17:11	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70811	01/14/24 15:40	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	70717	01/12/24 08:10	СН	EET MID
Soluble	Analysis	300.0		1			70796	01/13/24 06:07	СН	EET MID

Client Sample ID: SS 06 Date Collected: 01/10/24 11:15

Date Received: 01/10/24 14:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	71001	01/16/24 13:33	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71037	01/17/24 12:19	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71100	01/17/24 12:19	SM	EET MID
Total/NA	Analysis	8015 NM		1			70916	01/14/24 16:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	70792	01/12/24 17:11	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70811	01/14/24 16:02	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	70717	01/12/24 08:10	СН	EET MID
Soluble	Analysis	300.0		1			70796	01/13/24 06:12	CH	EET MID

Client Sample ID: SS 07 Date Collected: 01/10/24 11:10 Date Received: 01/10/24 14:53

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	71001	01/16/24 13:33	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71037	01/17/24 12:39	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71100	01/17/24 12:39	SM	EET MID

Eurofins Carlsbad

Page 60 of 128

Matrix: Solid

5 9

Lab Sample ID: 890-5945-2 Matrix: Solid

Lab Sample ID: 890-5945-3

Lab Sample ID: 890-5945-4

Matrix: Solid

1/18/2024

Matrix: Solid

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Client Sample ID: SS 07 Date Collected: 01/10/24 11:10

Date Received: 01/10/24 14:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			70916	01/14/24 16:45	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	70792	01/12/24 17:11	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	70811	01/14/24 16:45	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	70717	01/12/24 08:10	СН	EET MID
Soluble	Analysis	300.0		1			70796	01/13/24 06:17	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-5945-1

Page 61 of 128

SDG: 03C1558310

Lab Sample ID: 890-5945-4

Matrix: Solid

Eurofins Carlsbad

Accreditation/Certification Summary

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date						
exas	NELAP T104704400-23-26 06-30-24		NELAP T104704400-23-26 06-30-24							
• ,		t the laboratory is not certif	ied by the governing authority. This lis	t may include analytes						
• ,	owing analytes are included in this report, but t the agency does not offer certification . s Method Prep Method	t the laboratory is not certif	ed by the governing authority. This lis	t may include analytes						
for which the agency of	loes not offer certification.	-		t may include analytes						

1/18/2024

Job ID: 890-5945-1 SDG: 03C1558310

Project/Site: BIG EDDY UNIT D1 29 BATTERY

Client: Ensolum

Job ID: 890-5945-1 SDG: 03C1558310

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	rrences: .STM International Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editic	n Nevember 1006 And He Undetee	
	= TestAmerica Laboratories, Standard Operating Procedure	on, november 1960 And its opdates.	
Laboratory Re			
EET MID =	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Eurofins Carlsbad

Released to Imaging: 5/15/2024 10:58:53 AM

Client: Ensolum Project/Site: BIG EDDY UNIT D1 29 BATTERY Job ID: 890-5945-1 SDG: 03C1558310

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
90-5945-1	SS 04	Solid	01/10/24 10:55	01/10/24 14:53	0.5'	
90-5945-2	SS 05	Solid	01/10/24 11:00	01/10/24 14:53	0.5'	
90-5945-3	SS 06	Solid	01/10/24 11:15	01/10/24 14:53	0.5'	Ę
890-5945-4	SS 07	Solid	01/10/24 11:10	01/10/24 14:53	0.5'	
						8
						1
						-
						1

euro 🤃	IIIII	Enviror Xenco	nment Te	sting		Midland, EL Paso	TX (432 , TX (91	2) 704-5 5) 585-	5440, Sa 3443, Li	ubboo	onio, TX (: ck, TX (800	4) 902-0300 210) 509-33 5) 794-1296 75) 988-319						Order No		e	of	
		Bin B	-2:11		Bill to: (if o	different)			G	200	ett (Green					N	ork Orde	Comment	s		
roject Manager:	r							XTO Energy			_	Program: UST/PST PRP Brownfields RRC Superfund					Ind					
ompany Name:		nselum		14	Company	Name:		3104 E Greene St			-	iState of Project:										
ddress:			Parks		Address:	710								_	Reporting: Level II Level III PST/UST TRRP Level IV							
ity, State ZIP:			JM 882		City, State ZIP: Email: bbcliff							JM q	NUNA	-	Deliver		EDD		DaPT	Other:		
hone:	989.854.0852 Email: bbclis BIG EDDY UNIT DI 29 BATTERNIM Around				enn	60.01	<u>n:01</u>	um.	.wm													
oject Name:	BIG FOD	TINN VI	DI 29 8	ATTERNIT	Around				_		-	A			CT .			_	Pro	eservati	ve Codes	
roject Number:		58310		Routine	Rush		Pres. Code												None: N	0	DI Water:	H₂O
oject Location:	32.564		17843	Due Date:															Cool: Co	lool	MeOH: Me	
ampler's Name:		th Rob		TAT starts the	e day received by														HCL: HC		HNO 3: HN	
0 #:				the lab, if red	eived by 4:30	0pm	\$					800	5945 C	hain o	of Custoo	1 0100 0101 17			H2S0 4: H	H 2	NaOH: Na	
AMPLE RECEIPT	Jer	np Blank:	Ye No	Wet Ice:	Yes N	No	Parameters					090	-3343 0	i lairi O		,			H ₃ PO 4:	НР		
mples Received Inta		es No	Thermomet	er ID:	TAIM	00) me		2				1	ł					NaHSO	4: NABIS		
ooler Custody Seals:	Yes	NO N/A	Correction I	actor:	10.2	2	Pa		1es										Na 25 20	3: NaSO	3	
mple Custody Seals:	Yes	No N/A	Temperatu	e Reading:	-0,	6			Ĩ				1		1 1				Zn Aceta	ate+NaC)H: Zn	
otal Containers:			Corrected T	emperature:	10.1	4		EX	0	1									NaOH+A	Ascorbic	Acid: SAPC	
Sample Identii	fication	Matrix	Date Sampled	Time Sampled	Depth	Grab/ Comp	# of Cont	10	Chierid	F	-			-					Sa	mple Co	omments	
SSOA		S	Maiza	1055	0.5	C	1	X	V		<								loce	dent	世:	
SSO		1	110/-1	1100	1	1	1	1	1	1											049960	
SSO			++	1115					1										10.425			
		- 1	I	1110			V				H			-					Cost	· CFN	ITER:	
SSO				1110		-	-				7mc			1						ENDI		
				-				-		-	1111			1								
	/																		moo	erts(Pensolum	1. con
/											-			_			_					_
/									-	-	-						_					
Total 200.7 / 601 Circle Method(s) a		8 / 6020:		RCRA 13P															Sr TI Sn U 5.1 / 7470 /			
otice: Signature of this docu		-						-					_									
service: Signature of this docu service: Eurofins Xenco wi Eurofins Xenco. A minimu	I he liable only fo	r the cost of sam	noles and shall no	assume any resp	onsibility for an	ny losses of	r expens	incum	red by th	ne clien	it if such los	ses are due t	o circumstan	nces beyo	and the cont	rol						
Retinquished by:	(Signature)		Received	by: (Signatu	'e)			Date	/Time		Re	linquishe	d by: (Sig	gnatur	re)	Re	ceived b	v: (Signat	ure)	Da	ite/Time	
PANAT	Ror	-1	YII	18	111	7/70	1	IL	133	3	2	-										
11UUA	CY_	ex-	sur	-0	1110	10	/	17	~		4											
											6											
								_			1									Revised Date:	08/25/2020 Rev. 202	20.2

13

Released to Imaging: 5/15/2024 10:58:53 AM

.

Chain of Custody Record

13

Carlsbad, NM 88220 Phone: 575-988-3199 Fax 575-988-3199

Page 66 of 128

Client Information (Sub Contract Lab)	Sampler				ner, J	essic	a					C	Carrier	Trac	king N	lo(s)				COC No: 390-2229 1	
Client Contact: Shipping/Receiving	Phone:			E-Ma Jess		rame	r@et.	eurof	์เกรนร	s.cor	n		State o New I							Page Page 1 of 1	
Company Eurofins Environment Testing South Centr					Accre	a Kramer@et.eurofinsus.com New Mexico ccreditations Required (See note): IELAP - Texas									Job #:						
Address. Due Date Requested						NELAY - IEXAS									890-5945-1 Preservation Codes						
1211 W Florida Ave, ,	1/16/2024	1/16/2024				Analysis Requ								uested						A - HCL	M - Hexane
City [.] Midland	TAT Requested (d	ays):																	E	B - NaOH C - Zn Acetate	N - None O - AsNaO2
State Zip: TX, 79701						H													1	D - Nitric Acid E - NaHSO4	P - Na2O4S Q - Na2SO3
Phone: 432-704-5440(Tel)	PO #:					Full													E F	F MeOH G - Amchlor	R Na2S2O3 S - H2SO4
Email	WO #:				(Q)	S Prep (MOD) Full TPH		oride										2.23	H	H Ascorbic Acid	T TSP Dodecahydrate U - Acetone
Project Name:	Project #:				No.	der (1 S	876.											J DI Water K EDTA	V MCAA W - pH 4-5
BIG EDDY UNIT D1 29 BATTERY	89000093				ž e	5 U		EACI	0				ĺ							L - EDA	Y Trizma Z other (specify)
Site	SSOW# [.]				Field Filtered Sample (Ye Bertown MS/MS/D/Yee or	B015MOD_NM/8015NM		300_ORGFM_28D/DI_LEACH Chloride	8021B/6036FP_Cale (MOD) BTEX											Other [.]	
		Ι	Sample	Matrix	- per	NM/80	Calo	M_28I	ЕР_0	Total_BTEX_GCV											
			Туре	(₩≖water S≠solid,	FIKe	8	8016MOD_Calc	RGF	16036										Number		
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=Comp,	O=waste/oll, BT=Tissue, A=Air	Piel	015N	016M	8	0218	턯									lotal	.	
		\sim	a decision on the second state of the	ation Code:		<u> </u>	~~~	3	8	-	1.1	anned le			- Ye	<i>~</i>				Special in	structions/Note:
SS 04 (890-5945-1)	1/10/24	10 55 Mountain		Solid	Π	X	X	X	X	X		<u>in an an</u>	A	-			lan da la		$\frac{1}{1}$		
SS 05 (890-5945-2)	1/10/24	11 00 Mountain		Solid		x	x	x	x	x					+				1		
SS 06 (890-5945-3)	1/10/24	11 15 Mountain		Solid		x	x	x	x	x					-			Sec.78	1		· · · · · · · · · · · · · · · · · · ·
SS 07 (890-5945-4)	1/10/24	11 10 Mountain		Solid		X	x	x	x	x									1		
					\square					[\top									
									1												
								1				T						ľ			
					П													Strudyformer -	00		
					Π			1											* -		
Note Since laboratory accreditations are subject to change Eurofins Environ	nment Testing South Cent	ral, LLC places	the ownership	o of method ana	aiyte & a	accred	litation	compli	ance i	upon	our sub	contra	ict labo	orator	ies. T	his s	ample :	shipm	ent is	s forwarded under c	hain-of-custody If the
laboratory does not currently maintain accreditation in the State of Origin liste accreditation status should be brought to Eurofins Environment Testing Sout																					
Possible Hazard Identification					s	amp	le Dis	posa	I(A	fee	may b	e as	sess	sed i	f san	nple			ine	d longer than 1	month)
Unconfirmed						Return To Client Disposal By Lab Archive For Months Special Instructions/QC Requirements															
Deliverable Requested I II, III IV Other (specify)	Primary Deliver		2		s	pecia	al Instr	ructio	ns/Q	CR	equire	ment	ts								
Empty Kit Relinquished by		Date			Time			\prod	A	e			Ν	Vietho	d of S	hipm	ent:				
Relinquished by	Date/Time:			Company		Re	ceived	59 Y	Ũ	IÆ	IN	10	2	7		Date/	The:	2/2	\mathcal{H}	+ 1201	Company
Relinquished by	Date/Time:			Company		Re	Ceived I	by [.]			<u></u>		<u> </u>		1	Date/	Time.	1		<u>, 1</u>	Company
Relinquished by	Date/Time:			Company		Re	ceiveel	by [.]								Date/	Time.				Company
Custody Seals Intact: Custody Seal No						Co	oler Ter	mpera	ture(s))°Ca	nd Othe	r Rem	narks.		L						<u> </u>

.

Job Number: 890-5945-1 SDG Number: 03C1558310

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5945 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Job Number: 890-5945-1 SDG Number: 03C1558310

List Source: Eurofins Midland

List Creation: 01/12/24 12:32 PM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5945 List Number: 2 Creator: Kramer, Jessica

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 4/22/2024 2:04:25 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/30/2024 10:23:58 AM

JOB DESCRIPTION

Big Eddy Unit DI 29 Battery 03C1558310

JOB NUMBER

890-5996-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 1/30/2024 10:23:58 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-5996-1 SDG: 03C1558310

Page 71 of 128

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
-	23

Qualifiers

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	4
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA Qualifier	Qualifier Description	6
*1	LCS/LCSD RPD exceeds control limits.	V
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		8
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	9
U	Indicates the analyte was analyzed for but not detected.	
Glossary		<u> </u>
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
<u>¤</u>	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	

- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Job ID: 890-5996-1

SDG: 03C1558310
Case Narrative

Job ID: 890-5996-1

Client: Ensolum Project: Big Eddy Unit DI 29 Battery

Job ID: 890-5996-1

Eurofins Carlsbad

Job Narrative 890-5996-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/19/2024 1:56 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: PH03 (890-5996-1), PH02 (890-5996-2), PH01 (890-5996-3), SW01 (890-5996-4) and FS01 (890-5996-5).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: PH01 (890-5996-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-71764 recovered under the lower control limit for Benzene and o-Xylene. The samples associated with this CCV were ran within 12 hours of passing CCV; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-71570 and analytical batch 880-71727 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: PH02 (890-5996-2), PH01 (890-5996-3) and SW01 (890-5996-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The method blank for preparation batch 880-71570 and analytical batch 880-71727 contained Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-71570 and analytical batch 880-71727 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-71373 and analytical batch 880-71576 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-5996-1 SDG: 03C1558310

Lab Sample ID: 890-5996-1

Client Sample ID: PH03

Date Collected: 01/19/24 09:25 Date Received: 01/19/24 13:56

Sample D

Client: Ensolum

Depth: 2'		

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/26/24 11:23	01/29/24 05:31	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/26/24 11:23	01/29/24 05:31	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/26/24 11:23	01/29/24 05:31	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg		01/26/24 11:23	01/29/24 05:31	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/26/24 11:23	01/29/24 05:31	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		01/26/24 11:23	01/29/24 05:31	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		70 - 130			01/26/24 11:23	01/29/24 05:31	1
1,4-Difluorobenzene (Surr)	88		70 - 130			01/26/24 11:23	01/29/24 05:31	1
Analyte Total BTEX	Result <0.00401	Qualifier U	RL 0.00401	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 01/29/24 05:31	Dil Fac 1
_ Method: SW846 8015 NM - Diese	<0.00401	U ics (DRO) (0.00401	mg/Kg		<u>`</u>	01/29/24 05:31	1
Total BTEX Method: SW846 8015 NM - Diese Analyte	<0.00401 I Range Organ Result	U ics (DRO) (Qualifier	0.00401 GC) RL	mg/Kg Unit	D	Prepared Prepared	01/29/24 05:31 Analyzed	
Total BTEX Method: SW846 8015 NM - Diese Analyte	<0.00401	U ics (DRO) (Qualifier	0.00401	mg/Kg		<u>`</u>	01/29/24 05:31	1
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	<0.00401 el Range Organ Result <50.1	U ics (DRO) (Qualifier U	0.00401 GC) RL 50.1	mg/Kg Unit		<u>`</u>	01/29/24 05:31 Analyzed	1
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	<0.00401 el Range Organ Result <50.1 sel Range Orga	U ics (DRO) (Qualifier U	0.00401 GC) RL 50.1	mg/Kg Unit		<u>`</u>	01/29/24 05:31 Analyzed	1
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<0.00401 el Range Organ Result <50.1 sel Range Orga	U ics (DRO) (Qualifier U nnics (DRO) Qualifier	0.00401 GC) RL 50.1 (GC)	mg/Kg Unit mg/Kg	D	Prepared	01/29/24 05:31 Analyzed 01/27/24 17:36	1 Dil Fac 1
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	<pre><0.00401 el Range Organ Result </pre> <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	U ics (DRO) (Qualifier U mics (DRO) Qualifier U *1	0.00401 GC) RL 50.1 (GC) RL 50.1	Unit mg/Kg mg/Kg Unit mg/Kg	D	Prepared Prepared 01/25/24 09:22	01/29/24 05:31 Analyzed 01/27/24 17:36 Analyzed 01/27/24 17:36	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<0.00401 el Range Organ Result <50.1 sel Range Orga Result	U ics (DRO) (Qualifier U mics (DRO) Qualifier U *1	0.00401 GC) RL 50.1 (GC) RL	mg/Kg Unit mg/Kg Unit	D	Prepared	01/29/24 05:31 Analyzed 01/27/24 17:36 Analyzed	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<0.00401 el Range Organ Result <50.1 Sel Range Orga Result <50.1 <50.1	U ics (DRO) (Qualifier U mics (DRO) Qualifier U *1 U	0.00401 GC) RL 50.1 (GC) RL 50.1 50.1	Unit mg/Kg mg/Kg Unit mg/Kg mg/Kg	D	Prepared Prepared 01/25/24 09:22 01/25/24 09:22	01/29/24 05:31 Analyzed 01/27/24 17:36 Analyzed 01/27/24 17:36 01/27/24 17:36	Dil Fac
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<pre><0.00401 el Range Organ Result </pre> <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	U ics (DRO) (Qualifier U mics (DRO) Qualifier U *1 U	0.00401 GC) RL 50.1 (GC) RL 50.1	Unit mg/Kg mg/Kg Unit mg/Kg	D	Prepared Prepared 01/25/24 09:22	01/29/24 05:31 Analyzed 01/27/24 17:36 Analyzed 01/27/24 17:36	Dil Fac
Total BTEX	<0.00401 el Range Organ Result <50.1 Sel Range Orga Result <50.1 <50.1	U ics (DRO) (Qualifier U mics (DRO) Qualifier U *1 U U	0.00401 GC) RL 50.1 (GC) RL 50.1 50.1	Unit mg/Kg mg/Kg Unit mg/Kg mg/Kg	D	Prepared Prepared 01/25/24 09:22 01/25/24 09:22	01/29/24 05:31 Analyzed 01/27/24 17:36 Analyzed 01/27/24 17:36 01/27/24 17:36	Dil Fac

ſ	_ Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	e					
	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	142	F1	4.98	mg/Kg			01/26/24 14:15	1

Client Sample ID: PH02 Date Collected: 01/19/24 09:35

Date Received: 01/19/24 13:56

Sample Depth: 2'

o-Terphenyl

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/26/24 11:23	01/29/24 05:51	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/26/24 11:23	01/29/24 05:51	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/26/24 11:23	01/29/24 05:51	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/26/24 11:23	01/29/24 05:51	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/26/24 11:23	01/29/24 05:51	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/26/24 11:23	01/29/24 05:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130			01/26/24 11:23	01/29/24 05:51	1

Eurofins Carlsbad

Matrix: Solid

5

70 - 130 01/25/24 09:22 101 70 - 130 01/25/24 09:22 01/27/24 17:36 Lab Sample ID: 890-5996-2

Released to Imaging: 5/15/2024 10:58:53 AM

1

Matrix: Solid

Client Sample Results

Job ID: 890-5996-1 SDG: 03C1558310

Lab Sample ID: 890-5996-2

Client Sample ID: PH02

Date Collected: 01/19/24 09:35 Date Received: 01/19/24 13:56

Sample Depth: 2'

Client: Ensolum

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	81		70 - 130			01/26/24 11:23	01/29/24 05:51	1
Method: TAL SOP Total BTEX - To	otal BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/29/24 05:51	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5	mg/Kg			01/27/24 17:57	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U *1	50.5	mg/Kg		01/25/24 09:22	01/27/24 17:57	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.5	U	50.5	mg/Kg		01/25/24 09:22	01/27/24 17:57	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		01/25/24 09:22	01/27/24 17:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	139	S1+	70 - 130			01/25/24 09:22	01/27/24 17:57	1
o-Terphenyl	112		70 - 130			01/25/24 09:22	01/27/24 17:57	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	190		5.00	mg/Kg			01/26/24 14:29	1

Client Sample ID: PH01

Date Collected: 01/19/24 09:45 Date Received: 01/19/24 13:56 Sample Depth: 2'

Lab Sample ID: 890-5996-3

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/26/24 11:23	01/29/24 06:12	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/26/24 11:23	01/29/24 06:12	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/26/24 11:23	01/29/24 06:12	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/26/24 11:23	01/29/24 06:12	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/26/24 11:23	01/29/24 06:12	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/26/24 11:23	01/29/24 06:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130			01/26/24 11:23	01/29/24 06:12	1
1,4-Difluorobenzene (Surr)	65	S1-	70 - 130			01/26/24 11:23	01/29/24 06:12	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00398		0.00398	mg/Kg			01/29/24 06:12	1

01/27/24 18:18

Matrix: Solid

5

Total TPH

50.0

mg/Kg

<50.0 U

Job ID: 890-5996-1 SDG: 03C1558310

Matrix: Solid

Client Sample ID: PH01

Date Collected: 01/19/24 09:45 Date Received: 01/19/24 13:56

Sample Depth: 2'

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *1	50.0	mg/Kg		01/25/24 09:22	01/27/24 18:18	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		01/25/24 09:22	01/27/24 18:18	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/25/24 09:22	01/27/24 18:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	131	S1+	70 - 130			01/25/24 09:22	01/27/24 18:18	1
o-Terphenyl	106		70 - 130			01/25/24 09:22	01/27/24 18:18	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	222	4.95	mg/Kg			01/26/24 14:34	1

Client Sample ID: SW01

Date Collected: 01/19/24 10:05

Date Received: 01/19/24 13:56

Sample Depth: 0-1'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		01/26/24 11:23	01/29/24 06:32	1
Toluene	<0.00201	U	0.00201	mg/Kg		01/26/24 11:23	01/29/24 06:32	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/26/24 11:23	01/29/24 06:32	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/26/24 11:23	01/29/24 06:32	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/26/24 11:23	01/29/24 06:32	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/26/24 11:23	01/29/24 06:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	82		70 - 130			01/26/24 11:23	01/29/24 06:32	1
1,4-Difluorobenzene (Surr)	75		70 - 130			01/26/24 11:23	01/29/24 06:32	1
- Method: TAL SOP Total BTEX	- Total BTEX Cald	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402	mg/Kg			01/29/24 06:32	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			01/27/24 18:40	1
_ Method: SW846 8015B NM - Diesel	Panga Orga	nice (DBO) (60)					
Analyte	Result	Qualifier	RL	Unit	п	Prepared	Analyzed	Dil Fac

Analyte	Result	Quanner		Onit	Fiepaieu	Analyzeu	Diriac
Gasoline Range Organics	<49.8	U *1	49.8	mg/Kg	 01/25/24 09:22	01/27/24 18:40	1
(GRO)-C6-C10							
Diesel Range Organics (Over	<49.8	U	49.8	mg/Kg	01/25/24 09:22	01/27/24 18:40	1
C10-C28)							
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg	01/25/24 09:22	01/27/24 18:40	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	144	S1+	70 - 130		01/25/24 09:22	01/27/24 18:40	1
o-Terphenyl	120		70 - 130		01/25/24 09:22	01/27/24 18:40	1

Eurofins Carlsbad

Job ID: 890

Lab Sample ID: 890-5996-3

		Clier	nt Sample Re	sults				
Client: Ensolum Project/Site: Big Eddy Unit DI 29 Ba	attery						Job ID: 890 SDG: 03C1	
Client Sample ID: SW01						Lab Sar	nple ID: 890-	5996-4
Date Collected: 01/19/24 10:05							Matri	ix: Soli
Date Received: 01/19/24 13:56								
Sample Depth: 0-1'								
_ Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	117		4.99	mg/Kg			01/26/24 14:39	
Client Sample ID: FS01						Lab Sar	nple ID: 890-	5996-{
Date Collected: 01/19/24 10:10								ix: Soli
Date Received: 01/19/24 13:56							inatio	
Sample Depth: 1'								
_ Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)					
Analyte		Qualifier	, RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202	mg/Kg		01/26/24 11:23	01/29/24 06:52	
Toluene	<0.00202	U	0.00202	mg/Kg		01/26/24 11:23	01/29/24 06:52	
Ethylbenzene	<0.00202	U	0.00202	mg/Kg		01/26/24 11:23	01/29/24 06:52	
m-Xylene & p-Xylene	<0.00404	U	0.00404	mg/Kg		01/26/24 11:23	01/29/24 06:52	
o-Xylene	<0.00202	U	0.00202	mg/Kg		01/26/24 11:23	01/29/24 06:52	
Xylenes, Total	<0.00404	U	0.00404	mg/Kg		01/26/24 11:23	01/29/24 06:52	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	77		70 - 130			01/26/24 11:23	01/29/24 06:52	
1,4-Difluorobenzene (Surr)	80		70 - 130			01/26/24 11:23	01/29/24 06:52	
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	< 0.00404	U	0.00404	mg/Kg			01/29/24 06:52	
_ Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) ((6C)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8	mg/Kg			01/27/24 19:01	
_ Method: SW846 8015B NM - Dies	sol Rango Orga	nice (DRO						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.8		49.8	mg/Kg		01/25/24 09:22	01/27/24 19:01	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		01/25/24 09:22	01/27/24 19:01	
Oll Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		01/25/24 09:22	01/27/24 19:01	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	129		70 - 130			01/25/24 09:22	01/27/24 19:01	
o-Terphenyl	104		70 - 130			01/25/24 09:22	01/27/24 19:01	
_ Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solub	le					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

Eurofins Carlsbad

01/26/24 14:44

Chloride

5.04

mg/Kg

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

-				Percent Surrogate Re
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-38523-A-1-A MS	Matrix Spike	109	106	
880-38523-A-1-B MSD	Matrix Spike Duplicate	108	99	
890-5996-1	PH03	74	88	
890-5996-2	PH02	79	81	
890-5996-3	PH01	83	65 S1-	
890-5996-4	SW01	82	75	
890-5996-5	FS01	77	80	
LCS 880-71690/1-A	Lab Control Sample	101	96	
LCSD 880-71690/2-A	Lab Control Sample Dup	107	99	
MB 880-71690/5-A	Method Blank	76	79	
Surrogate Legend				

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

Ma	itrix	: 50	lla

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-38323-A-2-C MS	Matrix Spike	129	91
880-38323-A-2-D MSD	Matrix Spike Duplicate	130	89
890-5996-1	PH03	126	101
890-5996-2	PH02	139 S1+	112
890-5996-3	PH01	131 S1+	106
890-5996-4	SW01	144 S1+	120
890-5996-5	FS01	129	104
LCS 880-71570/2-A	Lab Control Sample	86	76
LCSD 880-71570/3-A	Lab Control Sample Dup	95	90
MB 880-71570/1-A	Method Blank	167 S1+	139 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-71690/5-A Matrix: Solid Analysis Batch: 71764						Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	Total/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		01/26/24 11:23	01/28/24 23:01	1
Toluene	<0.00200	U	0.00200	mg/Kg		01/26/24 11:23	01/28/24 23:01	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		01/26/24 11:23	01/28/24 23:01	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		01/26/24 11:23	01/28/24 23:01	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		01/26/24 11:23	01/28/24 23:01	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		01/26/24 11:23	01/28/24 23:01	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76		70 - 130			01/26/24 11:23	01/28/24 23:01	1
1,4-Difluorobenzene (Surr)	79		70 - 130			01/26/24 11:23	01/28/24 23:01	1
4-Bromofluorobenzene (Surr)	76		70 - 130			01/26/24 11:23	01/28/24 23:01	Dil F

Lab Sample ID: LCS 880-71690/1-A Matrix: Solid

Analysis Batch: 71764

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09301		mg/Kg		93	70 - 130	
Toluene	0.100	0.09535		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.1044		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	0.200	0.1961		mg/Kg		98	70 - 130	
o-Xylene	0.100	0.1177		mg/Kg		118	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: LCSD 880-71690/2-A

Matrix: Solid

Analysis Batch: 71764						Prep Batch: 716				
	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	0.100	0.09511		mg/Kg		95	70 - 130	2	35	
Toluene	0.100	0.1015		mg/Kg		101	70 - 130	6	35	
Ethylbenzene	0.100	0.1094		mg/Kg		109	70 - 130	5	35	
m-Xylene & p-Xylene	0.200	0.2236		mg/Kg		112	70 - 130	13	35	
o-Xylene	0.100	0.1174		mg/Kg		117	70 - 130	0	35	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 880-38523-A-1-A MS Matrix: Solid

Analysis Batch: 71764

Analysis Batch: 71764									Pre	b Batch: 71690
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0996	0.09197		mg/Kg		92	70 - 130	
Toluene	<0.00201	U	0.0996	0.09604		mg/Kg		96	70 - 130	

ofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Method Blank

Job ID: 890-5996-1

SDG: 03C1558310

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 71690

Prep Type: Total/NA

Eurofins	Carlst

Client Sample ID: Matrix Spike

MS MS

0.1030

0.2081

0.1053

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0996

0.199

0.0996

Limits 70 - 130

70 - 130

70 - 130

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery

Lab Sample ID: 880-38523-A-1-A MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 71764

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00201

<0.00402 U

<0.00201 U

109

106

99

%Recovery

Result Qualifier

U

MS MS

Qualifier

Client Sample ID: Matrix Spike

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

103

104

105

D

Prep Type: Total/NA

Prep Batch: 71690

7

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Client Sample ID: Method Blank

01/27/24 08:06

Client Sample ID: Lab Control Sample

01/25/24 09:22

Prep Type: Total/NA

Prep Batch: 71570

Matrix: Solid Analysis Batch: 71764

Lab Sample ID: 880-38523-A-1-B MSD

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 71764									Prep	Batch:	71690	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00201	U	0.0990	0.09055		mg/Kg		91	70 - 130	2	35	
Toluene	<0.00201	U	0.0990	0.1004		mg/Kg		101	70 - 130	4	35	Ē
Ethylbenzene	<0.00201	U	0.0990	0.1148		mg/Kg		116	70 - 130	11	35	
m-Xylene & p-Xylene	<0.00402	U	0.198	0.2240		mg/Kg		113	70 - 130	7	35	ī.
o-Xylene	<0.00201	U	0.0990	0.1109		mg/Kg		112	70 - 130	5	35	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)			70 - 130									

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-71570/1-A Matrix: Solid Analysis Batch: 71727

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/25/24 09:22	01/27/24 08:06	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/25/24 09:22	01/27/24 08:06	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/25/24 09:22	01/27/24 08:06	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	167	S1+	70 - 130			01/25/24 09:22	01/27/24 08:06	1

70 - 130

o-Terphenyl	139	S1+
- Lab Sample ID: LCS 880-71570/2-A		

Matrix: Solid In Detail

Analysis Batch: 71727							Prep	Batch: 715	570
	Spike	LCS	LCS				%Rec		
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	1000	921.3		mg/Kg		92	70 - 130		
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	916.2		mg/Kg		92	70 - 130		
C10-C28)									

Eurofins Carlsbad

Prep Type: Total/NA

Page 80 of 128

Released to Imaging: 5/15/2024 10:58:53 AM

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-71	570/2-A						Client	Sample	ID: Lab Co		
Matrix: Solid									Prep T	ype: Tot	al/NA
Analysis Batch: 71727									Prep	Batch:	71570
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	86		70 - 130								
o-Terphenyl	76		70 - 130								
Lab Sample ID: LCSD 880-7	1570/3-A					Clier	nt Sam	ple ID: L	.ab Contro	I Sample	e Duj
Matrix: Solid										ype: Tot	
Analysis Batch: 71727										Batch:	
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10		·	1000	1162	*1	mg/Kg		116	70 - 130	23	2
Diesel Range Organics (Over			1000	920.9		mg/Kg		92	70 - 130	1	2
C10-C28)				02010				02	10 - 100	•	_
	1.050	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane		Quaimer	70 - 130								
o-Terphenyl	90		70 - 130 70 - 130								
Lab Sample ID: 880-38323-A	A-2-C MS							Client	Sample ID:	: Matrix	Spik
Matrix: Solid									Prep T	ype: Tot	al/N
Analysis Batch: 71727									Prep	Batch:	7157
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *1	992	895.0		mg/Kg		89	70 - 130		
Diesel Range Organics (Over	<49.9	U	992	1189		mg/Kg		117	70 - 130		
C10-C28)											
		MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	129		70 - 130								
o-Terphenyl	91		70 - 130								
Lab Sample ID: 880-38323-A						CI	iont Sa	mole ID	: Matrix Sp	niko Dun	licat
Matrix: Solid										ype: Tot	
Analysis Batch: 71727										Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec	Datem.	RPI
-		oumpio	-		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Analyte	-	Qualifier	Added								2
	-	Qualifier U *1	Added	918.0		mg/Kg		91	70 - 130	3	
Gasoline Range Organics	Result					mg/Kg		91	70 - 130	3	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	U *1				mg/Kg mg/Kg		91	70 - 130 70 - 130	3 0	2
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 <49.9	U *1 U	992	918.0							20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)		U*1 U MSD	992	918.0							20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	Result <49.9 <49.9	U*1 U MSD	992	918.0							20

Eurofins Carlsbad

QC Sample Results

Job ID: 890-5996-1 SDG: 03C1558310

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-71373/1-A										Clier		ID: Metho	
Matrix: Solid											Р	rep Type:	Soluble
Analysis Batch: 71576													
		MB	МВ										
Analyte			Qualifier		RL		Unit	-	D	Prepare		nalyzed	Dil Fac
Chloride	<	<5.00	U		5.00		mg/	Kg			01/20	6/24 14:00	1
Lab Sample ID: LCS 880-71373/2-A									Clie	nt Sam	ple ID: La	b Control	Sample
Matrix: Solid											Р	rep Type:	Soluble
Analysis Batch: 71576													
				Spike		LCS	LCS				%Rec		
Analyte				Added		Result	Qualifier	Unit	0	%Re	c Limits		
Chloride				250		240.2		mg/Kg		9	6 90 - 11	0	
Lab Sample ID: LCSD 880-71373/3	-A							CI	ient Sa	mple II	D: Lab Co	ntrol Sam	ole Dup
Matrix: Solid										•		rep Type:	
Analysis Batch: 71576													
				Spike		LCSD	LCSD				%Rec		RPD
Analyte				Added		Result	Qualifier	Unit	0	%Re	c Limits	RPD	Limit
Chloride				250		265.5		mg/Kg		10	6 90 - 11	0 10	20
Lab Sample ID: 890-5996-1 MS											Client	Sample ID): PH03
Matrix: Solid											Р	rep Type:	Soluble
Analysis Batch: 71576													
-	Sample	Samp	le	Spike		MS	MS				%Rec		
Analyte	Result	Qualif	fier	Added		Result	Qualifier	Unit	0	%Re	c Limits		
Chloride	142	F1		249		390.8		mg/Kg		10	0 90 - 11	0	
Lab Sample ID: 890-5996-1 MSD											Client	Sample IE): PH03
Matrix: Solid												rep Type:	
Analysis Batch: 71576												1. 20.25	
· · · · · · · · · · · · · · · · · · ·	Sample	Samp	le	Spike		MSD	MSD				%Rec		RPD
Analyte	Result	Qualif	fier	Added		Result	Qualifier	Unit	0	%Re	c Limits	RPD	Limit

QC Association Summary

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery Job ID: 890-5996-1

SDG: 03C1558310

GC VOA

Prep Batch: 71690

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5996-1	PH03	Total/NA	Solid	5035	
890-5996-2	PH02	Total/NA	Solid	5035	
890-5996-3	PH01	Total/NA	Solid	5035	
890-5996-4	SW01	Total/NA	Solid	5035	
890-5996-5	FS01	Total/NA	Solid	5035	
MB 880-71690/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-71690/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-71690/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-38523-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-38523-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 71764

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5996-1	PH03	Total/NA	Solid	8021B	71690
890-5996-2	PH02	Total/NA	Solid	8021B	71690
890-5996-3	PH01	Total/NA	Solid	8021B	71690
890-5996-4	SW01	Total/NA	Solid	8021B	71690
890-5996-5	FS01	Total/NA	Solid	8021B	71690
MB 880-71690/5-A	Method Blank	Total/NA	Solid	8021B	71690
LCS 880-71690/1-A	Lab Control Sample	Total/NA	Solid	8021B	71690
LCSD 880-71690/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71690
880-38523-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	71690
880-38523-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	71690

Analysis Batch: 71827

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5996-1	PH03	Total/NA	Solid	Total BTEX	
890-5996-2	PH02	Total/NA	Solid	Total BTEX	
890-5996-3	PH01	Total/NA	Solid	Total BTEX	
890-5996-4	SW01	Total/NA	Solid	Total BTEX	
890-5996-5	FS01	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 71570

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5996-1	PH03	Total/NA	Solid	8015NM Prep	
890-5996-2	PH02	Total/NA	Solid	8015NM Prep	
890-5996-3	PH01	Total/NA	Solid	8015NM Prep	
890-5996-4	SW01	Total/NA	Solid	8015NM Prep	
890-5996-5	FS01	Total/NA	Solid	8015NM Prep	
MB 880-71570/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-71570/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-71570/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-38323-A-2-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-38323-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Lab Sample ID Client Sample ID Prep Type Matrix Method Prep Batch 890-5996-1 PH03 Total/NA 8015B NM 71570 Solid 890-5996-2 PH02 Total/NA Solid 8015B NM 71570

Eurofins Carlsbad

Page 83 of 128

5

8

Released to Imaging: 5/15/2024 10:58:53 AM

QC Association Summary

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery

GC Semi VOA (Continued)

Analysis Batch: 71727 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5996-3	PH01	Total/NA	Solid	8015B NM	71570
890-5996-4	SW01	Total/NA	Solid	8015B NM	71570
890-5996-5	FS01	Total/NA	Solid	8015B NM	71570
MB 880-71570/1-A	Method Blank	Total/NA	Solid	8015B NM	71570
LCS 880-71570/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	71570
LCSD 880-71570/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	71570
880-38323-A-2-C MS	Matrix Spike	Total/NA	Solid	8015B NM	71570
880-38323-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	71570

Analysis Batch: 71921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5996-1	PH03	Total/NA	Solid	8015 NM	
890-5996-2	PH02	Total/NA	Solid	8015 NM	
890-5996-3	PH01	Total/NA	Solid	8015 NM	
890-5996-4	SW01	Total/NA	Solid	8015 NM	
890-5996-5	FS01	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 71373

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5996-1	PH03	Soluble	Solid	DI Leach	
890-5996-2	PH02	Soluble	Solid	DI Leach	
890-5996-3	PH01	Soluble	Solid	DI Leach	
890-5996-4	SW01	Soluble	Solid	DI Leach	
890-5996-5	FS01	Soluble	Solid	DI Leach	
MB 880-71373/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-71373/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-71373/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5996-1 MS	PH03	Soluble	Solid	DI Leach	
890-5996-1 MSD	PH03	Soluble	Solid	DI Leach	

Analysis Batch: 71576

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5996-1	PH03	Soluble	Solid	300.0	71373
890-5996-2	PH02	Soluble	Solid	300.0	71373
890-5996-3	PH01	Soluble	Solid	300.0	71373
890-5996-4	SW01	Soluble	Solid	300.0	71373
890-5996-5	FS01	Soluble	Solid	300.0	71373
MB 880-71373/1-A	Method Blank	Soluble	Solid	300.0	71373
LCS 880-71373/2-A	Lab Control Sample	Soluble	Solid	300.0	71373
LCSD 880-71373/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	71373
890-5996-1 MS	PH03	Soluble	Solid	300.0	71373
890-5996-1 MSD	PH03	Soluble	Solid	300.0	71373

Page 84 of 128

Job ID: 890-5996-1 SDG: 03C1558310

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: PH03

Date Collected: 01/19/24 09:25

Date Received: 01/19/24 13:56

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

4.99 g

5 mL

9.99 g

1 uL

5.02 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

71690

71764

71827

71921

71570

71727

71373

71576

71576

01/26/24 14:34

СН

Lab Sample ID: 890-5996-4

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 890-5996-1 SDG: 03C1558310

Lab Sample ID: 890-5996-1

Analyst

MNR

MNR

SM

SM

ткс

SM

SA

СН

Lab Sample ID: 890-5996-2

Lab Sample ID: 890-5996-3

Matrix: Solid

Lab

EET MID

EET MID

EET MID

EET MID

EET MID

EET MID

FFT MID

EET MID

Matrix: Solid

Matrix: Solid

Lab

EET MID

EET MID

EET MID

EET MID

EET MID EET MID

EET MID

EET MID

Matrix: Solid

Client Sample ID: PH02 Date Collected: 01/19/24 09:35

Date Received: 01/19/24 13:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71690	01/26/24 11:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71764	01/29/24 05:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71827	01/29/24 05:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			71921	01/27/24 17:57	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	71570	01/25/24 09:22	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71727	01/27/24 17:57	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	71373	01/22/24 16:59	SA	EET MID
Soluble	Analysis	300.0		1			71576	01/26/24 14:29	СН	EET MID

Client Sample ID: PH01

Date Collected: 01/19/24 09:45 Da

Date Received:	: 01/19/24 13:5	6							
	Batch	Batch		Dil	Initial	Final	Batch	Prepared	
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst
Total/NA	Prep	5035			5.03 g	5 mL	71690	01/26/24 11:23	MNR
Total/NA	Analysis	8021B		1	5 mL	5 mL	71764	01/29/24 06:12	MNR
Total/NA	Analysis	Total BTEX		1			71827	01/29/24 06:12	SM
Total/NA	Analysis	8015 NM		1			71921	01/27/24 18:18	SM
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	71570	01/25/24 09:22	TKC
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71727	01/27/24 18:18	SM
Soluble	Leach	DI Leach			5.05 g	50 mL	71373	01/22/24 16:59	SA

1

Client Sample ID: SW01 Date Collected: 01/19/24 10:05 Date Received: 01/19/24 13:56

Analysis

300.0

Soluble

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	71690	01/26/24 11:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71764	01/29/24 06:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71827	01/29/24 06:32	SM	EET MID

Eurofins Carlsbad

Prepared

or Analyzed

01/26/24 11:23

01/29/24 05:31

01/29/24 05:31

01/27/24 17:36

01/25/24 09:22

01/27/24 17:36

01/22/24 16:59

01/26/24 14:15

Released i	to Imaging:	5/15/2024	10:58:53 AM	

Job ID: 890-5996-1 SDG: 03C1558310

Lab Sample ID: 890-5996-4

Date Collected: 01/19/24 10:05 Date Received: 01/19/24 13:56

Client Sample ID: SW01

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			71921	01/27/24 18:40	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	71570	01/25/24 09:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71727	01/27/24 18:40	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	71373	01/22/24 16:59	SA	EET MID
Soluble	Analysis	300.0		1			71576	01/26/24 14:39	СН	EET MID

Client Sample ID: FS01 Date Collected: 01/19/24 10:10

Date Received: 01/19/24 13:56

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	71690	01/26/24 11:23	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71764	01/29/24 06:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71827	01/29/24 06:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			71921	01/27/24 19:01	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	71570	01/25/24 09:22	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71727	01/27/24 19:01	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	71373	01/22/24 16:59	SA	EET MID
Soluble	Analysis	300.0		1			71576	01/26/24 14:44	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-5996-5

Accreditation/Certification Summary

Page 87 of 128

Aboratory: Eurofins Midland Inters otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Expiration Date Authority Program Identification Number Expiration Date Texas NELAP 06-30-24 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte Analysis Method Prep Method Matrix Analyte Total TPH Total TPH Total BTEX Solid Total BTEX Solid Total BTEX							
Texas NELAP T104704400-23-26 06-30-24 The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 8015 NM Prep Method Solid Total TPH	-		overed under each accredi	tation/certification below.			
The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification. Analysis Method Prep Method Matrix Analyte 8015 NM Solid Total TPH	uthority	Progra	m	Identification Number	Expiration Date		
for which the agency does not offer certification. Matrix Analysis Method Analysis Method Prep Method Matrix Analyte 8015 NM Solid Total TPH	•					-	
for which the agency does not offer certification. Analysis Method Prep Method 8015 NM Prep Method Solid Analyte Total TPH	The following analytes	are included in this report, but	the laboratory is not certif	ied by the governing authority. This lis	t mav include analytes		
8015 NM Solid Total TPH	• •				() () () () () () () () () ()		
		Prep Method					
			SUIIU				

Eurofins Carlsbad

Released to Imaging: 5/15/2024 10:58:53 AM

.

Client: Ensolum

Job ID: 890-5996-1 SDG: 03C1558310

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	tion, November 1986 And Its Updates.	
TAL SOP =	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory Re			
EET MID =	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Eurofins Carlsbad

Sample Summary

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery Job ID: 890-5996-1 SDG: 03C1558310

_ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
390-5996-1	PH03	Solid	01/19/24 09:25	01/19/24 13:56	2'	
390-5996-2	PH02	Solid	01/19/24 09:35	01/19/24 13:56	2'	
390-5996-3	PH01	Solid	01/19/24 09:45	01/19/24 13:56	2'	5
390-5996-4	SW01	Solid	01/19/24 10:05	01/19/24 13:56	0-1'	J
390-5996-5	FS01	Solid	01/19/24 10:10	01/19/24 13:56	1'	
						8
						9
						12
						1:

w

Revised Date: 08/25/2020 Rev. 2020.2

Page 90 of 128

Released to

14

Job Number: 890-5996-1 SDG Number: 03C1558310

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5996 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Job Number: 890-5996-1 SDG Number: 03C1558310

List Source: Eurofins Midland

List Creation: 01/23/24 12:33 PM

Login Sample Receipt Checklist

Client: Ensolum

<6mm (1/4").

Login Number: 5996 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Eurofins Carlsbad Released to Imaging: 5/15/2024 10:58:53 AM Received by OCD: 4/22/2024 2:04:25 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/29/2024 5:08:22 PM

JOB DESCRIPTION

Big Eddy Unit DI 29 Battery 03C1558310

JOB NUMBER

890-5997-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information.

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 1/29/2024 5:08:22 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-5997-1 SDG: 03C1558310

Page 95 of 128

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	12
QC Sample Results	13
QC Association Summary	17
Lab Chronicle	20
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

DL, RA, RE, IN

DLC

EDL

LOD

LOQ

MCL

MDA

MDC

MDL

MQL NC

ND

NEG

POS

PQL PRES

QC

RL RPD

TEF

TEQ

TNTC

RER

ML MPN

	Definitions/Glossary		
Client: Ensolum		Job ID: 890-5997-1	
Project/Site: Big	Eddy Unit DI 29 Battery	SDG: 03C1558310	
Qualifiers			
GC VOA			
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
	Detection Limit (DoD/DOE)		

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE)

Method Detection Limit Minimum Level (Dioxin)

Most Probable Number Method Quantitation Limit

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Limit of Quantitation (DoD/DOE)

Case Narrative

Client: Ensolum Project: Big Eddy Unit DI 29 Battery

Job ID: 890-5997-1

Job ID: 890-5997-1

Eurofins Carlsbad

Job Narrative 890-5997-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 1/19/2024 1:46 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.2°C

Receipt Exceptions

The following samples analyzed for method were received and analyzed from an unpreserved bulk soil jar: FS02 (890-5997-1), FS03 (890-5997-2), FS04 (890-5997-3), FS05 (890-5997-4), FS06 (890-5997-5), FS07 (890-5997-6) and FS08 (890-5997-7).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71518 and 880-71629 and analytical batch 880-71762 was outside the upper control limits.

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-71373 and analytical batch 880-71576 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Carlsbad

Job ID: 890-5997-1 SDG: 03C1558310

Matrix: Solid

5

Lab Sample ID: 890-5997-1

Client Sample ID: FS02

Date Collected: 01/19/24 11:05 Date Received: 01/19/24 13:46

Sample Depth: 0.25'

Client: Ensolum

Method: SW846 8021B - Volatile					_			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 08:16	
Foluene	< 0.00199		0.00199	mg/Kg		01/25/24 17:53	01/29/24 08:16	
Ethylbenzene	<0.00199		0.00199	mg/Kg		01/25/24 17:53	01/29/24 08:16	•
n-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/25/24 17:53	01/29/24 08:16	
p-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 08:16	
(ylenes, Total	<0.00398	U	0.00398	mg/Kg		01/25/24 17:53	01/29/24 08:16	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Bromofluorobenzene (Surr)	109		70 - 130			01/25/24 17:53	01/29/24 08:16	
1,4-Difluorobenzene (Surr)	111		70 - 130			01/25/24 17:53	01/29/24 08:16	
Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/29/24 08:16	
Method: SW846 8015 NM - Diese				11		Durante	A	D!! 5-
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.6	U	49.6	mg/Kg			01/26/24 02:15	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<49.6	U	49.6	mg/Kg		01/24/24 10:23	01/26/24 02:15	
Diesel Range Organics (Over	<49.6	U.	49.6	mg/Kg		01/24/24 10:23	01/26/24 02:15	
C10-C28)		0	40.0	ilig/ilig		01/24/24 10:20	01/20/24 02:10	
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		01/24/24 10:23	01/26/24 02:15	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
I-Chlorooctane	94		70 - 130			01/24/24 10:23	01/26/24 02:15	
p-Terphenyl	107		70 - 130			01/24/24 10:23	01/26/24 02:15	
Method: EPA 300.0 - Anions, Ion	Chromotogra	hy Colub						
viethou. EPA 300.0 - Amons, ion		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte			4.97	mg/Kg			01/26/24 14:58	
Analyte Chloride	33.8		4.57					
hloride	33.8		4.37			Lah Sar	nnlo ID: 890	5007 4
•	33.8		4.37			Lab Sar	nple ID: 890-	5997-2 x: Solid

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 08:36	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 08:36	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 08:36	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/25/24 17:53	01/29/24 08:36	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 08:36	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/25/24 17:53	01/29/24 08:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	109		70 - 130			01/25/24 17:53	01/29/24 08:36	1

Eurofins Carlsbad

Released to Imaging: 5/15/2024 10:58:53 AM

Client Sample Results

Job ID: 890-5997-1 SDG: 03C1558310

Lab Sample ID: 890-5997-2

Client Sample ID: FS03

Client: Ensolum

Date Collected: 01/19/24 11:10

Date Received: 01/19/24 13:46

Sample Depth:	0.25'

Method: SW846 8021B - Velatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	100		70 - 130			01/25/24 17:53	01/29/24 08:36	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/29/24 08:36	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
	<49.9		49.9	mg/Kg			01/26/24 02:36	
Method: SW846 8015B NM - Dies	sel Range Orga			mg/Kg Unit	D	Prepared	01/26/24 02:36 Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	sel Range Orga	nics (DRO) Qualifier	(GC)		<u>D</u>	Prepared 01/24/24 10:23		Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	sel Range Orga Result	Qualifier	(GC)	<u>Unit</u>	<u>D</u>	·	Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <49.9 <49.9	nics (DRO) Qualifier U	(GC) <u>RL</u> 49.9 49.9	Unit mg/Kg mg/Kg	<u> </u>	01/24/24 10:23	Analyzed 01/26/24 02:36 01/26/24 02:36	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Orga Result <49.9	nics (DRO) Qualifier U	(GC) 	Unit mg/Kg	<u>D</u>	01/24/24 10:23	Analyzed 01/26/24 02:36	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	sel Range Orga Result <49.9 <49.9	nics (DRO) Qualifier U U U	(GC) <u>RL</u> 49.9 49.9	Unit mg/Kg mg/Kg	<u>D</u>	01/24/24 10:23	Analyzed 01/26/24 02:36 01/26/24 02:36	
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	sel Range Orga Result <49.9 <49.9 <49.9	nics (DRO) Qualifier U U U	(GC) <u>RL</u> 49.9 49.9 49.9	Unit mg/Kg mg/Kg	<u> </u>	01/24/24 10:23 01/24/24 10:23 01/24/24 10:23	Analyzed 01/26/24 02:36 01/26/24 02:36 01/26/24 02:36	Dil Fa

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	30.1	4.96	mg/Kg			01/26/24 15:03	1

Client Sample ID: FS04

Date Collected: 01/19/24 11:15 Date Received: 01/19/24 13:46 Sample Depth: 0.25'

Lab Sample ID: 890-5997-3

Matrix: Solid

00200 U 00200 U 00200 U 00399 U 00200 U 00399 U	0.00200 0.00200 0.00200 0.00399 0.00200 0.00399	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		01/25/24 17:53 01/25/24 17:53 01/25/24 17:53 01/25/24 17:53 01/25/24 17:53 01/25/24 17:53	01/29/24 10:26 01/29/24 10:26 01/29/24 10:26 01/29/24 10:26 01/29/24 10:26	1 1 1 1
00200 U 00399 U 00200 U	0.00200 0.00399 0.00200	mg/Kg mg/Kg mg/Kg		01/25/24 17:53 01/25/24 17:53 01/25/24 17:53	01/29/24 10:26 01/29/24 10:26 01/29/24 10:26	
00399 U 00200 U	0.00399 0.00200	mg/Kg mg/Kg		01/25/24 17:53 01/25/24 17:53	01/29/24 10:26 01/29/24 10:26	1 1 1
00200 U	0.00200	mg/Kg		01/25/24 17:53	01/29/24 10:26	
		00				1
00399 U	0.00399	mg/Kg		04/05/04 47 50		
				01/25/24 17:53	01/29/24 10:26	1
overy Qual	ifier Limits			Prepared	Analyzed	Dil Fac
94	70 - 130			01/25/24 17:53	01/29/24 10:26	1
104	70 - 130			01/25/24 17:53	01/29/24 10:26	1
Calculati	on					
Result Qual	fier RL	Unit	D	Prepared	Analyzed	Dil Fac
00399 U	0.00399	mg/Kg			01/29/24 10:26	1
	94 104 Calculati Result Quali	94 70 - 130 104 70 - 130 K Calculation Result Qualifier RL	94 70 - 130 104 70 - 130 Calculation RL Unit 00399 U 0.00399 mg/Kg	94 70 - 130 104 70 - 130 Calculation RL Unit D 00399 U 0.00399 mg/Kg D	94 70 - 130 01/25/24 17:53 104 70 - 130 01/25/24 17:53 104 70 - 130 01/25/24 17:53 C Calculation Unit D Prepared 00399 U 0.00399 mg/Kg	94 70 - 130 01/25/24 17:53 01/29/24 10:26 104 70 - 130 01/25/24 17:53 01/29/24 10:26 Calculation Unit D Prepared Analyzed 00399 U 0.00399 mg/Kg 01/29/24 10:26

01/26/24 02:57

Matrix: Solid

5

Total TPH

50.4

mg/Kg

<50.4 U

Job ID: 890-5997-1 SDG: 03C1558310

Matrix: Solid

Lab Sample ID: 890-5997-3

Client Sample ID: FS04

Client: Ensolum

Date Collected: 01/19/24 11:15 Date Received: 01/19/24 13:46

Sample Depth: 0.25'

Method: SW846 8015B NM - Diesel	Range Organics (DRO) (GC)	
Analyte	Result Qualifier	RL

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4	mg/Kg		01/24/24 10:23	01/26/24 02:57	1
(GRO)-C6-C10								
Diesel Range Organics (Over C10-C28)	<50.4	U	50.4	mg/Kg		01/24/24 10:23	01/26/24 02:57	1
Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		01/24/24 10:23	01/26/24 02:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	98		70 - 130			01/24/24 10:23	01/26/24 02:57	1
o-Terphenyl	112		70 - 130			01/24/24 10:23	01/26/24 02:57	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	156	4.97	mg/Kg			01/26/24 15:08	1

Client Sample ID: FS05

Date Collected: 01/19/24 11:20

Date Received: 01/19/24 13:46 Sample Depth: 0.25'

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		01/25/24 17:53	01/29/24 10:47	1
Toluene	<0.00201	U	0.00201	mg/Kg		01/25/24 17:53	01/29/24 10:47	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		01/25/24 17:53	01/29/24 10:47	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		01/25/24 17:53	01/29/24 10:47	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		01/25/24 17:53	01/29/24 10:47	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		01/25/24 17:53	01/29/24 10:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130			01/25/24 17:53	01/29/24 10:47	1
1,4-Difluorobenzene (Surr)	109		70 - 130			01/25/24 17:53	01/29/24 10:47	1

Method: TAL SOP Total BTEX -	 Total BTEX Calculation
Analyte	Result Qualifier

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402	mg/Kg			01/29/24 10:47	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

	Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<50.5	U	50.5	mg/Kg			01/26/24 03:18	1
ļ									

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5	mg/Kg		01/24/24 10:23	01/26/24 03:18	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.5	U	50.5	mg/Kg		01/24/24 10:23	01/26/24 03:18	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		01/24/24 10:23	01/26/24 03:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130			01/24/24 10:23	01/26/24 03:18	1
o-Terphenyl	114		70 - 130			01/24/24 10:23	01/26/24 03:18	1

Eurofins Carlsbad

Released to Imaging: 5/15/2024 10:58:53 AM

		Clien	t Sample Re	sults				
Client: Ensolum Project/Site: Big Eddy Unit DI 29 Ba	attery						Job ID: 890 SDG: 03C	
Client Sample ID: FS05 Date Collected: 01/19/24 11:20 Date Received: 01/19/24 13:46 Sample Depth: 0.25'						Lab Sar	nple ID: 890- Matri	5997- ix: Soli
- Method: EPA 300.0 - Anions, Ion Analyte	• •	o <mark>hy - Solubl</mark> Qualifier	e RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	164		5.05	mg/Kg			01/26/24 15:13	
Client Sample ID: FS06 Date Collected: 01/19/24 11:25 Date Received: 01/19/24 13:46 Sample Depth: 0.25'						Lab Sar	nple ID: 890- Matri	5997-4 ix: Soli
Method: SW846 8021B - Volatile		ounds (GC) Qualifier		Unit	n	Propared	Applyzod	
Analyte Benzene				Unit mg/Kg	D	Prepared 01/25/24 17:53	Analyzed 01/29/24 11:07	Dil Fa
Toluene	<0.00200		0.00200	mg/Kg		01/25/24 17:53	01/29/24 11:07	
Ethylbenzene	<0.00200		0.00200	mg/Kg		01/25/24 17:53	01/29/24 11:07	
m-Xylene & p-Xylene	<0.00200		0.00200	mg/Kg		01/25/24 17:53	01/29/24 11:07	
o-Xylene	<0.00401		0.00200	mg/Kg		01/25/24 17:53	01/29/24 11:07	
Xylenes, Total	<0.00200		0.00401	mg/Kg		01/25/24 17:53	01/29/24 11:07	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130			01/25/24 17:53	01/29/24 11:07	
1,4-Difluorobenzene (Surr)	104		70 - 130			01/25/24 17:53	01/29/24 11:07	
- Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401	mg/Kg			01/29/24 11:07	
- Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0	mg/Kg			01/26/24 03:39	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/24/24 10:23	01/26/24 03:39	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		01/24/24 10:23	01/26/24 03:39	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		01/24/24 10:23	01/26/24 03:39	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	93		70 - 130			01/24/24 10:23	01/26/24 03:39	
o-Terphenyl	108		70 - 130			01/24/24 10:23	01/26/24 03:39	
Method: EPA 300.0 - Anions, Ion								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
	- · · ·		E 00				04/00/04 45.40	

01/26/24 15:18

Eurofins Carlsbad

Chloride

5.02

mg/Kg

61.8

Job ID: 890-5997-1 SDG: 03C1558310

Matrix: Solid

5

Client Sample ID: FS07

Date Collected: 01/19/24 11:30 ad. 04/40/24 42.40 D to Rocoiv

Client: Ensolum

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 11:28	
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 11:28	
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 11:28	
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/25/24 17:53	01/29/24 11:28	
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 11:28	
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/25/24 17:53	01/29/24 11:28	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	110		70 - 130			01/25/24 17:53	01/29/24 11:28	1
1,4-Difluorobenzene (Surr)	108		70 - 130			01/25/24 17:53	01/29/24 11:28	
Method: TAL SOP Total BTEX -								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal BTEX	<0.00398	U	0.00398	mg/Kg			01/29/24 11:28	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (0	GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.2	U	50.2	mg/Kg			01/26/24 04:01	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	50.2	mg/Kg		01/24/24 10:23	01/26/24 04:01	
Diesel Range Organics (Over C10-C28)	<50.2	U	50.2	mg/Kg		01/24/24 10:23	01/26/24 04:01	
Oll Range Organics (Over C28-C36)	<50.2	U	50.2	mg/Kg		01/24/24 10:23	01/26/24 04:01	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	93		70 - 130			01/24/24 10:23	01/26/24 04:01	
o-Terphenyl	110		70 - 130			01/24/24 10:23	01/26/24 04:01	
Method: EPA 300.0 - Anions, lor	n Chromatograp	hy - Solubl	е					
,,,,,,,,,,,,	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
			5.01	mg/Kg			01/26/24 15:23	-
Analyte Chloride	71.5	F1	5.01	nig/itg			01/20/24 10.20	

Sample Depth: 0.25'

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 11:48	1
Toluene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 11:48	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 11:48	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		01/25/24 17:53	01/29/24 11:48	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		01/25/24 17:53	01/29/24 11:48	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		01/25/24 17:53	01/29/24 11:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130			01/25/24 17:53	01/29/24 11:48	1

Eurofins Carlsbad

Lab Sample ID: 890-5997-6

Released to Imaging: 5/15/2024 10:58:53 AM

Client Sample Results

Job ID: 890-5997-1 SDG: 03C1558310

Client Sample ID: FS08

Client: Ensolum

Date Collected: 01/19/24 11:35

Date Received: 01/19/24 13:46 Sample Depth: 0.25'

Method: SW846 8021B - Valatila Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	112		70 - 130			01/25/24 17:53	01/29/24 11:48	
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398	mg/Kg			01/29/24 11:48	
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.4	U	50.4	mg/Kg			01/26/24 04:22	
Analyte Gasoline Range Organics		Qualifier U		Unit mg/Kg	D	Prepared 01/24/24 10:23	Analyzed 01/26/24 04:22	Dil Fa
Method: SW846 8015B NM - Die			(GC)					
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4	mg/Kg		01/24/24 10:23	01/26/24 04:22	
Diesel Range Organics (Over	<50.4	U	50.4	mg/Kg		01/24/24 10:23	01/26/24 04:22	
C10-C28) Oll Range Organics (Over C28-C36)	<50.4	U	50.4	mg/Kg		01/24/24 10:23	01/26/24 04:22	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	90		70 - 130			01/24/24 10:23	01/26/24 04:22	
o-Terphenyl	112		70 - 130			01/24/24 10:23	01/26/24 04:22	
Method: EPA 300.0 - Anions, Io	n Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	98.5		4.99	mg/Kg			01/26/24 15:37	

Lab Sample ID: 890-5997-7

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-38218-A-2-C MS	Matrix Spike	96	91		
880-38218-A-2-D MSD	Matrix Spike Duplicate	106	97		
890-5997-1	FS02	109	111		- 5
890-5997-2	FS03	109	100		
890-5997-3	FS04	94	104		
890-5997-4	FS05	107	109		
890-5997-5	FS06	110	104		
890-5997-6	FS07	110	108		
890-5997-7	FS08	108	112		
LCS 880-71629/1-A	Lab Control Sample	96	90		
LCSD 880-71629/2-A	Lab Control Sample Dup	99	101		
MB 880-71518/5-A	Method Blank	130	132 S1+		
MB 880-71629/5-A	Method Blank	117	132 S1+		
Surrogate Legend					
BFB = 4-Bromofluorober	nzene (Surr)				
DFBZ = 1,4-Difluoroben:	zene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-38284-A-1-F MS	Matrix Spike	111	113
880-38284-A-1-G MSD	Matrix Spike Duplicate	100	103
890-5997-1	FS02	94	107
890-5997-2	FS03	98	116
890-5997-3	FS04	98	112
890-5997-4	FS05	89	114
890-5997-5	FS06	93	108
890-5997-6	FS07	93	110
890-5997-7	FS08	90	112
LCS 880-71508/2-A	Lab Control Sample	90	121
LCSD 880-71508/3-A	Lab Control Sample Dup	88	115
MB 880-71508/1-A	Method Blank	95	126

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 104 of 128

Job ID: 890-5997-1 SDG: 03C1558310

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC)

 Lab Sample ID: MB 880-71518/5-	Α							С	lient Sa	mple ID: Meth	od Blank
Matrix: Solid										Prep Type:	
Analysis Batch: 71762										Prep Bate	
· ·····, / ··· · ·····························	ME	B MB									
Analyte	Resul	t Qualifier	RL		Unit		D	Pre	pared	Analyzed	Dil Fac
Benzene	<0.00200) U	0.00200		mg/K	g	_	01/24/2	24 14:18	01/28/24 17:28	1
Toluene	<0.00200) U	0.00200		mg/K	g		01/24/2	24 14:18	01/28/24 17:28	1
Ethylbenzene	<0.00200) U	0.00200		mg/K	g		01/24/2	24 14:18	01/28/24 17:28	1
m-Xylene & p-Xylene	<0.00400) U	0.00400		mg/K	g		01/24/2	24 14:18	01/28/24 17:28	1
o-Xylene	<0.00200) U	0.00200		mg/K	g		01/24/2	24 14:18	01/28/24 17:28	1
Xylenes, Total	<0.00400) U	0.00400		mg/K	g		01/24/2	24 14:18	01/28/24 17:28	1
	MF	3 MB									
Surrogate		/ Qualifier	Limits					Pre	pared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130						24 14:18	01/28/24 17:28	1
1,4-Difluorobenzene (Surr)		2 S1+	70 - 130						24 14:18	01/28/24 17:28	1
	101		101100					0 // 2 //		0 // 20/2 / /// 20	,
Lab Sample ID: MB 880-71629/5-	Α							С	lient Sa	mple ID: Meth	od Blank
Matrix: Solid										Prep Type:	Total/NA
Analysis Batch: 71762										Prep Bate	:h: 71629
	ME										
Analyte		t Qualifier			Unit	·	<u>D</u>		pared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200		mg/K	-			24 17:53	01/29/24 05:04	1
	<0.00200		0.00200		mg/K	-			24 17:53	01/29/24 05:04	1
Ethylbenzene	<0.00200		0.00200		mg/K				24 17:53	01/29/24 05:04	1
m-Xylene & p-Xylene	<0.00400		0.00400		mg/K	-			24 17:53	01/29/24 05:04	1
o-Xylene	<0.00200		0.00200		mg/K	-			24 17:53	01/29/24 05:04	1
Xylenes, Total	<0.00400) U	0.00400		mg/K	g		01/25/2	24 17:53	01/29/24 05:04	1
		B MB									
Surrogate	%Recovery	Qualifier	Limits					Pre	pared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	11		70 - 130					01/25/	24 17:53	01/29/24 05:04	1
1,4-Difluorobenzene (Surr)	132	2 S1+	70 - 130					01/25/	24 17:53	01/29/24 05:04	1
 Lab Sample ID: LCS 880-71629/1	- A						c	Client S	ample	ID: Lab Contro	l Sample
Matrix: Solid										Prep Type:	
Analysis Batch: 71762										Prep Bate	
			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	
Benzene			0.100	0.08742		mg/Kg			87	70 - 130	
Toluene			0.100	0.08856		mg/Kg			89	70 - 130	
Ethylbenzene			0.100	0.08928		mg/Kg			89	70 - 130	
m-Xylene & p-Xylene			0.200	0.1698		mg/Kg			85	70 - 130	
o-Xylene			0.100	0.08422		mg/Kg			84	70 - 130	
	LCS LC	c									
Surrogate		s alifier	Limits								
4-Bromofluorobenzene (Surr)	96		70 - 130								
1,4-Difluorobenzene (Surr)	90		70 - 130								
_											
Lab Sample ID: LCSD 880-71629	/ 2-A					Cli	ient	t Samp	le ID: L	ab Control Sar	
Matrix: Solid										Prep Type:	
Analysis Batch: 71762			_							Prep Bate	
			Spike		LCSD			_		%Rec	RPD
Analyte			Added	Result	Qualifier	Unit			%Rec	Limits RF	D Limit

Job ID: 890-5997-1 SDG: 03C1558310

5 7

1 Eurofins Carlsbad

Benzene

0.08672

mg/Kg

87

70 - 130

0.100

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery Job ID: 890-5997-1 SDG: 03C1558310

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-7 Matrix: Solid	71629/2-A					Clie	nt Sam	nple ID: I	Lab Contro Prep T	I Sample ype: Tot	
Analysis Batch: 71762										Batch:	
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.07950		mg/Kg		79	70 - 130	11	35
Ethylbenzene			0.100	0.08451		mg/Kg		85	70 - 130	5	35
m-Xylene & p-Xylene			0.200	0.1645		mg/Kg		82	70 - 130	3	35
o-Xylene			0.100	0.08226		mg/Kg		82	70 - 130	2	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	99		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
Matrix: Solid Analysis Batch: 71762										ype: To	
Analysis Dalch. / 1/02									Prep	Batch:	71629
Analysis Balch. 11102	Sample	Sample	Spike	MS	MS				%Rec	Batch:	71629
		Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec		Batch:	71629
Analyte		Qualifier	•			_ <mark>Unit</mark> mg/Kg	D	% Rec	%Rec	Batch:	71629
Analyte Benzene	Result	Qualifier	Added	Result			<u>D</u>		%Rec Limits	Batch:	71629
Analyte Benzene Toluene Ethylbenzene	Result <0.00199	Qualifier U U	Added	Result 0.07322		mg/Kg	D_	74	%Rec Limits 70 - 130	Batch:	71629
Analyte Benzene Toluene	Result <0.00199 <0.00199	Qualifier U U U	Added	Result 0.07322 0.07487		mg/Kg mg/Kg	<u> </u>	74 75	%Rec Limits 70 - 130 70 - 130	Batch:	71629
Analyte Benzene Toluene Ethylbenzene	Result <0.00199 <0.00199 <0.00199	Qualifier U U U U	Added 0.0996 0.0996 0.0996	Result 0.07322 0.07487 0.07174		mg/Kg mg/Kg mg/Kg	<u> </u>	74 75 72	%Rec Limits 70 - 130 70 - 130 70 - 130	Batch:	71629
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00398	Qualifier U U U U U U	Added 0.0996 0.0996 0.0996 0.199	Result 0.07322 0.07487 0.07174 0.1501		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	74 75 72 75	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	71629
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U U U U U U MS	Added 0.0996 0.0996 0.0996 0.199	Result 0.07322 0.07487 0.07174 0.1501		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	74 75 72 75	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	71629
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS	Qualifier U U U U U U MS	Added 0.0996 0.0996 0.0996 0.199 0.0996	Result 0.07322 0.07487 0.07174 0.1501		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	74 75 72 75	%Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Batch:	

Lab Sample ID: 880-38218-A-2-D MSD Matrix: Solid Analysis Batch: 71762

1,4-Difluorobenzene (Surr)

Analysis Batch: 71762									Prep	Batch:	71629
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.0990	0.09573		mg/Kg		97	70 - 130	27	35
Toluene	<0.00199	U	0.0990	0.08782		mg/Kg		89	70 - 130	16	35
Ethylbenzene	<0.00199	U	0.0990	0.09267		mg/Kg		94	70 - 130	25	35
m-Xylene & p-Xylene	<0.00398	U	0.198	0.1987		mg/Kg		100	70 - 130	28	35
o-Xylene	<0.00199	U	0.0990	0.09951		mg/Kg		100	70 - 130	28	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	106		70 - 130								

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

97

Lab Sample ID: MB 880-71508/1-A Matrix: Solid Analysis Batch: 71548	MB	МВ				Client Sa	mple ID: Metho Prep Type: ī Prep Batcl	Fotal/NA
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		01/24/24 10:23	01/25/24 19:43	1

Page 106 of 128

Eurofins Carlsbad

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery

Method: 8015B NM - Diese

Project/Site: Big Eddy Unit DI 29 Ba	ittery											G: 03C15	58310	
Method: 8015B NM - Diesel F	Range Or	ganic	s (DR	O) (GC) (Co	ntinue	ed)								
Lab Sample ID: MB 880-71508/1-/ Matrix: Solid Analysis Batch: 71548	A	мв м	B							Client Sa		Method Type: To Batch:	tal/NA	4
Analyte	Re	sult Q		RL		Unit		D	Pr	epared	Analy	zed	Dil Fac	J
Diesel Range Organics (Over C10-C28)		50.0 U		50.0		mg/Kg	g			4/24 10:23	01/25/24		1	
Oll Range Organics (Over C28-C36)	<:	50.0 U		50.0		mg/K	g		01/24	4/24 10:23	01/25/24	19:43	1	7
		MB M	В											
Surrogate	%Reco	very Q	ualifier	Limits					Pi	repared	Analy	zed	Dil Fac	8
1-Chlorooctane		95		70 - 130					01/24	4/24 10:23	01/25/24	19:43	1	
o-Terphenyl		126		70 - 130					01/24	4/24 10:23	01/25/24	19:43	1	9
Lab Sample ID: LCS 880-71508/2 Matrix: Solid	-A							CI	ient	Sample	ID: Lab C Prep	ontrol S Type: To		10
Analysis Batch: 71548												Batch:		
				Spike	LCS	LCS					%Rec			
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits			
Gasoline Range Organics				1000	932.8		mg/Kg		_	93	70 - 130			
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)				1000	1030		mg/Kg			103	70 - 130			13
	LCS	LCS												
Surrogate	%Recovery	Qualifie	er	Limits										
1-Chlorooctane	90			70 - 130										
o-Terphenyl	121			70 - 130										
Lab Sample ID: LCSD 880-71508/	/3-A						Cli	ent	Sam	ple ID: L	ab Contro	ol Samp	le Dup	
Matrix: Solid											Prep	Type: To	tal/NA	
Analysis Batch: 71548											Pre	Batch:	71508	
				Spike	LCSD	LCSD					%Rec		RPD	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics (GRO)-C6-C10				1000	1006		mg/Kg		_	101	70 - 130	8	20	
Diesel Range Organics (Over C10-C28)				1000	1085		mg/Kg			108	70 - 130	5	20	

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	88		70 - 130
o-Terphenyl	115		70 - 130

Lab Sample ID: 880-38284-A-1-F MS Matrix: Solid aluaia Datahu 74540

Analysis Batch: 71548									Prep	D Batch:	/1508
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	997	996.8		mg/Kg		100	70 - 130		
Diesel Range Organics (Over C10-C28)	<50.1	U	997	1258		mg/Kg		126	70 - 130		

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	111		70 - 130
o-Terphenyl	113		70 - 130

Eurofins Carlsbad

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Job ID: 890-5997-1

Released	to	Imaging:	5/1	15/2024	10:58:53	AM
	**		~ ~			

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery

Job ID: 890-5997-1 SDG: 03C1558310

Page 108 of 128

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-38284-A-1-	-0 1030							Jampie		trix Spil		
Matrix: Solid									F	Prep Ty	-	
Analysis Batch: 71548										Prep B	Batch:	
	Sample	Sample	Spike	MSD	MSD				%R	ec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		%Re	c Lim	its	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	997	866.0		mg/Kg		8	7 70 -	130	14	20
Diesel Range Organics (Over C10-C28)	<50.1	U	997	1142		mg/Kg		11	5 70 -	. 130	10	2
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	100		70 - 130									
o-Terphenyl	103		70 - 130									
lethod: 300.0 - Anions, Ioi	n Chromat	ography										
Lab Sample ID: MB 880-71373/	1-A							Clier	t Sampl	le ID: M	ethod	Blan
Matrix: Solid									-	Prep Ty		
Analysis Batch: 71576												
		МВ МВ										
Analyte	R	esult Qualifier		RL	Unit		D	Prepare	d	Analyzed	d	Dil Fa
Chloride		5.00 U		5.00	mg/K	a		•		/26/24 14		
Lab Sample ID: LCS 880-71373 Matrix: Solid				0.00			Clie	nt Sam	ple ID: L	₋ab Con Prep Ty		
Lab Sample ID: LCS 880-71373 Matrix: Solid		5.00	Spike		LCS		Clie	nt Sam	ple ID: L %R	Prep Ty		
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576		5.00		LCS	-	Unit	Clie		%R	Prep Ty Rec		
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 ^{Analyte}			Spike	LCS	LCS	-			%R c Lim	Prep Ty Rec		
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride	3/2-A		Spike Added	LCS Result	LCS	Unit mg/Kg	[%Re 9	%R c Lim	Prep Ty Rec hits 110	ype: So	oluble
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7133 Matrix: Solid	3/2-A		Spike Added	LCS Result	LCS	Unit mg/Kg	[%Re 9	%R <u>Lim</u> 6 90 -	Prep Ty Rec hits 110	ype: So Sample	e Dup
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7137	3/2-A		Spike Added	LCS Result	LCS	Unit mg/Kg	[%Re 9	%R <u>Lim</u> 6 90 -	Prep Ty Rec 1110 -	ype: So Sample	e Dup
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7137 Matrix: Solid	3/2-A		Spike Added	LCS Result 240.2	LCS	Unit mg/Kg	[%Re 9	%R <u>Lim</u> 6 90 -	Prep Ty Rec hits 110 Control S Prep Ty	ype: So Sample	e Dup oluble
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7137 Matrix: Solid	3/2-A		Spike Added 250	LCS Result 240.2	LCS Qualifier	Unit mg/Kg	[- <mark>%Re</mark> 9 mple II	%R 6 <u>Lim</u> 90 - D: Lab C %R	Prep Ty tec hits 110 Control S Prep Ty Rec	ype: So Sample	e Dup
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7137 Matrix: Solid Analysis Batch: 71576	3/2-A		Spike Added 250 Spike	LCS Result 240.2	LCS Qualifier LCSD	Unit mg/Kg Cli	ent Sa	- <mark>%Re</mark> 9 mple II	%R 6 90 - D: Lab C %R c Lim	Prep Ty tec hits 110 Control S Prep Ty Rec	ype: So Sample ype: So	e Dup olubic RPI
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7133 Matrix: Solid Analysis Batch: 71576 Analyte Chloride	5/2-A 73/3-A		Spike Added 250 Spike Added	LCS Result 240.2 LCSD Result	LCS Qualifier LCSD	Unit mg/Kg Clin	ent Sa	%Re 9 mple II %Re	%R 6 90 - D: Lab C %R 6 90 -	Prep Ty tec hits 110 Control S Prep Ty tec hits	Sample Sample ype: So <u>RPD</u> 10	e Dup plubl plubl RPI Lim 2
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Chloride Lab Sample ID: LCSD 880-7137 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: 890-5997-6 MS	5/2-A 73/3-A		Spike Added 250 Spike Added	LCS Result 240.2 LCSD Result	LCS Qualifier LCSD	Unit mg/Kg Clin	ent Sa	%Re 9 mple II %Re	%R 6 90 - D: Lab C %R 6 90 -	Prep Ty tec its 110 Control S Prep Ty tec its 110	ype: So Sample ype: So <u>RPD</u> 10 ple ID:	e Dup oluble RPI Limi 2 FS0
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7133 Matrix: Solid Analysis Batch: 71576 Analyte	5/2-A 73/3-A		Spike Added 250 Spike Added	LCS Result 240.2 LCSD Result	LCS Qualifier LCSD	Unit mg/Kg Clin	ent Sa	%Re 9 mple II %Re	%R 6 90 - D: Lab C %R 6 90 -	Prep Ty tec inits 110 Control S Prep Ty tec inits 110 ent Sam	ype: So Sample ype: So <u>RPD</u> 10 ple ID:	e Dup oluble RPI Limi 20 FS07
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Chloride Lab Sample ID: LCSD 880-7137 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: 890-5997-6 MS Matrix: Solid	3/2-A 73/3-A		Spike Added 250 Spike Added	LCS Result 240.2 LCSD Result	LCS Qualifier LCSD Qualifier	Unit mg/Kg Clin	ent Sa	%Re 9 mple II %Re	%R 6 90 - D: Lab C %R 6 90 -	Prep Ty lec iits 110 Control S Prep Ty lec iits 110 Prep Ty ent Sam Prep Ty	ype: So Sample ype: So <u>RPD</u> 10 ple ID:	e Dup oluble RPI Limi 2 FS0
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7133 Matrix: Solid Analysis Batch: 71576 Chloride Lab Sample ID: 890-5997-6 MS Matrix: Solid Analysis Batch: 71576	5/2-A 73/3-A Sample		Spike 250 Spike Added 250	LCS Result 240.2 LCSD Result 265.5	LCS Qualifier LCSD Qualifier	Unit mg/Kg Clin	ent Sa	%Re 9 mple II %Re 10	%R <u>c</u> Lim <u>6</u> 90 - C Lab C %R <u>6</u> 90 - Clie %R	Prep Ty lec inits 110 - Control S Prep Ty lec inits 110 - Prep Ty lec Prep Ty lec	ype: So Sample ype: So <u>RPD</u> 10 ple ID:	e Dup oluble RPI Limi 20 FS07
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7133 Matrix: Solid Analysis Batch: 71576 Chloride Lab Sample ID: 890-5997-6 MS Matrix: Solid Analysis Batch: 71576 Analyte	5/2-A 73/3-A Sample	Sample	Spike Added 250 Spike Added 250 Spike	LCS Result 240.2 LCSD Result 265.5	LCS Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	ent Sa	%Re 9 mple II %Re 10	%R <u>c</u> Lim <u>6</u> 90 - C Lab C %R <u>c</u> Lim <u>6</u> 90 - C Lim <u>6</u> 90 -	Prep Ty lec inits 110 - Control S Prep Ty lec inits 110 - Prep Ty lec Prep Ty lec	ype: So Sample ype: So <u>RPD</u> 10 ple ID:	e Duj olubl RPI Lim 2 FS0
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7133 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: 890-5997-6 MS Matrix: Solid Analysis Batch: 71576 Analyte Chloride	5/2-A 73/3-A Sample <u>Result</u> 71.5	Sample	Spike Added 250 Spike Added 250 Spike Added	LCS Result 240.2 LCSD Result 265.5 MS Result	LCS Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	ent Sa	%Re 9 mple II 10	%R <u>c</u> Lim <u>6</u> 90 - C Lab C %R <u>c</u> Lim <u>5</u> 90 -	Prep Ty tec inits 110 Control S Prep Ty tec inits Prep Ty tec inits Prep Ty tec inits	ype: So Sample ype: So <u>RPD</u> 10 ple ID: ype: So	e Duj blubi RPI Lim 2 FS0 blubi
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: LCSD 880-7137 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: 890-5997-6 MS Matrix: Solid Analyte Chloride Lab Sample ID: 890-5997-6 MS	5/2-A 73/3-A Sample <u>Result</u> 71.5	Sample	Spike Added 250 Spike Added 250 Spike Added	LCS Result 240.2 LCSD Result 265.5 MS Result	LCS Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	ent Sa	%Re 9 mple II 10	%R <u>c</u> Lim <u>6</u> 90 - C Lab C %R <u>c</u> Lim <u>5</u> 90 -	Prep Ty tec inits 110 - Control S Prep Ty tec inits Prep Ty tec inits Prep Ty tec inits 110 - Prep Ty Inits Ini	Sample Sample ype: So <u>RPD</u> 10 ple ID: ype: So ple ID:	e Du blubl RP Lim 2 FS0 blubl
Lab Sample ID: LCS 880-71373 Matrix: Solid Analysis Batch: 71576 Chloride Lab Sample ID: LCSD 880-7137 Matrix: Solid Analysis Batch: 71576 Analyte Chloride Lab Sample ID: 890-5997-6 MS Matrix: Solid	5/2-A 73/3-A Sample Result 71.5 D	Sample	Spike Added 250 Spike Added 250 Spike Added	LCS Result 240.2 LCSD Result 265.5 MS Result 358.6	LCS Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Cli Unit mg/Kg	ent Sa	%Re 9 mple II 10	%R <u>c</u> Lim <u>6</u> 90 - C Lab C %R <u>c</u> Lim <u>5</u> 90 -	Prep Ty lec inits 110 Control S Prep Ty lec inits 110 Prep Ty lec inits Inits Prep Ty lec inits Inits Prep Ty lec inits Prep Ty lec inits Prep Ty Prep Ty lec inits Prep Ty Prep Ty	Sample Sample ype: So <u>RPD</u> 10 ple ID: ype: So ple ID:	e Duj blubl RPI Lim 2 FS0 blubl

Eurofins Carlsbad

7

20

125

90 - 110

Chloride

71.5 F1

251

385.6 F1

mg/Kg
QC Association Summary

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery Job ID: 890-5997-1 SDG: 03C1558310

GC VOA

Prep Batch: 71518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-71518/5-A	Method Blank	Total/NA	Solid	5035	
Prep Batch: 71629					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5997-1	FS02	Total/NA	Solid	5035	
890-5997-2	FS03	Total/NA	Solid	5035	
890-5997-3	FS04	Total/NA	Solid	5035	
890-5997-4	FS05	Total/NA	Solid	5035	
890-5997-5	FS06	Total/NA	Solid	5035	
890-5997-6	FS07	Total/NA	Solid	5035	
890-5997-7	FS08	Total/NA	Solid	5035	
MB 880-71629/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-71629/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-71629/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-38218-A-2-C MS	Matrix Spike	Total/NA	Solid	5035	
880-38218-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 71762

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5997-1	FS02	Total/NA	Solid	8021B	71629
890-5997-2	FS03	Total/NA	Solid	8021B	71629
890-5997-3	FS04	Total/NA	Solid	8021B	71629
890-5997-4	FS05	Total/NA	Solid	8021B	71629
890-5997-5	FS06	Total/NA	Solid	8021B	71629
890-5997-6	FS07	Total/NA	Solid	8021B	71629
890-5997-7	FS08	Total/NA	Solid	8021B	71629
MB 880-71518/5-A	Method Blank	Total/NA	Solid	8021B	71518
MB 880-71629/5-A	Method Blank	Total/NA	Solid	8021B	71629
LCS 880-71629/1-A	Lab Control Sample	Total/NA	Solid	8021B	71629
LCSD 880-71629/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	71629
880-38218-A-2-C MS	Matrix Spike	Total/NA	Solid	8021B	71629
880-38218-A-2-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	71629

Analysis Batch: 71822

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5997-1	FS02	Total/NA	Solid	Total BTEX	
890-5997-2	FS03	Total/NA	Solid	Total BTEX	
890-5997-3	FS04	Total/NA	Solid	Total BTEX	
890-5997-4	FS05	Total/NA	Solid	Total BTEX	
890-5997-5	FS06	Total/NA	Solid	Total BTEX	
890-5997-6	FS07	Total/NA	Solid	Total BTEX	
890-5997-7	FS08	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 71508

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5997-1	FS02	Total/NA	Solid	8015NM Prep	
890-5997-2	FS03	Total/NA	Solid	8015NM Prep	
890-5997-3	FS04	Total/NA	Solid	8015NM Prep	
890-5997-4	FS05	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery

GC Semi VOA (Continued)

Prep Batch: 71508 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5997-5	FS06	Total/NA	Solid	8015NM Prep	
890-5997-6	FS07	Total/NA	Solid	8015NM Prep	
890-5997-7	FS08	Total/NA	Solid	8015NM Prep	
MB 880-71508/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-71508/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-71508/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-38284-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-38284-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 71548

Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		8
					9
Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
FS02	Total/NA	Solid	8015B NM	71508	
FS03	Total/NA	Solid	8015B NM	71508	
FS04	Total/NA	Solid	8015B NM	71508	
FS05	Total/NA	Solid	8015B NM	71508	
FS06	Total/NA	Solid	8015B NM	71508	
FS07	Total/NA	Solid	8015B NM	71508	
FS08	Total/NA	Solid	8015B NM	71508	4.0
Method Blank	Total/NA	Solid	8015B NM	71508	13
Lab Control Sample	Total/NA	Solid	8015B NM	71508	
Lab Control Sample Dup	Total/NA	Solid	8015B NM	71508	
Matrix Spike	Total/NA	Solid	8015B NM	71508	
Matrix Spike Duplicate	Total/NA	Solid	8015B NM	71508	
	Client Sample ID FS02 FS03 FS04 FS05 FS06 FS07 FS08 Method Blank Lab Control Sample Lab Control Sample Dup Matrix Spike	Client Sample IDPrep TypeFS02Total/NAFS03Total/NAFS04Total/NAFS05Total/NAFS06Total/NAFS07Total/NAFS08Total/NAMethod BlankTotal/NALab Control SampleTotal/NALab Control Sample DupTotal/NAMatrix SpikeTotal/NA	Client Sample IDPrep TypeMatrixFS02Total/NASolidFS03Total/NASolidFS04Total/NASolidFS05Total/NASolidFS06Total/NASolidFS07Total/NASolidFS08Total/NASolidMethod BlankTotal/NASolidLab Control SampleTotal/NASolidLab Control Sample DupTotal/NASolidMatrix SpikeTotal/NASolid	Client Sample IDPrep TypeMatrixMethodFS02Total/NASolid8015B NMFS03Total/NASolid8015B NMFS04Total/NASolid8015B NMFS05Total/NASolid8015B NMFS06Total/NASolid8015B NMFS07Total/NASolid8015B NMFS08Total/NASolid8015B NMMethod BlankTotal/NASolid8015B NMLab Control SampleTotal/NASolid8015B NMLab Control Sample DupTotal/NASolid8015B NMMatrix SpikeTotal/NASolid8015B NM	Client Sample IDPrep TypeMatrixMethodPrep BatchFS02Total/NASolid8015B NM71508FS03Total/NASolid8015B NM71508FS04Total/NASolid8015B NM71508FS05Total/NASolid8015B NM71508FS06Total/NASolid8015B NM71508FS07Total/NASolid8015B NM71508FS08Total/NASolid8015B NM71508Method BlankTotal/NASolid8015B NM71508Lab Control SampleTotal/NASolid8015B NM71508Lab Control Sample DupTotal/NASolid8015B NM71508Matrix SpikeTotal/NASolid8015B NM71508

Analysis Batch: 71667

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5997-1	FS02	Total/NA	Solid	8015 NM	
890-5997-2	FS03	Total/NA	Solid	8015 NM	
890-5997-3	FS04	Total/NA	Solid	8015 NM	
890-5997-4	FS05	Total/NA	Solid	8015 NM	
890-5997-5	FS06	Total/NA	Solid	8015 NM	
890-5997-6	FS07	Total/NA	Solid	8015 NM	
890-5997-7	FS08	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 71373

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5997-1	FS02	Soluble	Solid	DI Leach	
890-5997-2	FS03	Soluble	Solid	DI Leach	
890-5997-3	FS04	Soluble	Solid	DI Leach	
890-5997-4	FS05	Soluble	Solid	DI Leach	
890-5997-5	FS06	Soluble	Solid	DI Leach	
890-5997-6	FS07	Soluble	Solid	DI Leach	
890-5997-7	FS08	Soluble	Solid	DI Leach	
MB 880-71373/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-71373/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-71373/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5997-6 MS	FS07	Soluble	Solid	DI Leach	
890-5997-6 MSD	FS07	Soluble	Solid	DI Leach	

Eurofins Carlsbad

5

QC Association Summary

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery

HPLC/IC

Analysis Batch: 71576

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5997-1	FS02	Soluble	Solid	300.0	71373
890-5997-2	FS03	Soluble	Solid	300.0	71373
890-5997-3	FS04	Soluble	Solid	300.0	71373
890-5997-4	FS05	Soluble	Solid	300.0	71373
890-5997-5	FS06	Soluble	Solid	300.0	71373
890-5997-6	FS07	Soluble	Solid	300.0	71373
890-5997-7	FS08	Soluble	Solid	300.0	71373
MB 880-71373/1-A	Method Blank	Soluble	Solid	300.0	71373
LCS 880-71373/2-A	Lab Control Sample	Soluble	Solid	300.0	71373
LCSD 880-71373/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	71373
890-5997-6 MS	FS07	Soluble	Solid	300.0	71373
890-5997-6 MSD	FS07	Soluble	Solid	300.0	71373

5

Job ID: 890-5997-1 SDG: 03C1558310

Project/Site: Big Eddy Unit DI 29 Battery

Job ID: 890-5997-1 SDG: 03C1558310

Lab Sample ID: 890-5997-1 Matrix: Solid

Lab Sample ID: 890-5997-2

Lab Sample ID: 890-5997-3

Lab Sample ID: 890-5997-4

Matrix: Solid

Matrix: Solid

Date Collected: 01/19/24 11:05 Date Received: 01/19/24 13:46

Client Sample ID: FS02

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	71629	01/25/24 17:53	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71762	01/29/24 08:16	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71822	01/29/24 08:16	SM	EET MID
Total/NA	Analysis	8015 NM		1			71667	01/26/24 02:15	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	71508	01/24/24 10:23	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71548	01/26/24 02:15	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	71373	01/22/24 16:59	SA	EET MID
Soluble	Analysis	300.0		1			71576	01/26/24 14:58	СН	EET MID

Client Sample ID: FS03

Date Collected: 01/19/24 11:10 Date Received: 01/19/24 13:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	71629	01/25/24 17:53	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71762	01/29/24 08:36	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71822	01/29/24 08:36	SM	EET MID
Total/NA	Analysis	8015 NM		1			71667	01/26/24 02:36	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	71508	01/24/24 10:23	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71548	01/26/24 02:36	AJ	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	71373	01/22/24 16:59	SA	EET MID
Soluble	Analysis	300.0		1			71576	01/26/24 15:03	СН	EET MID

Client Sample ID: FS04 Date Collected: 01/19/24 11:15

Date Received: 01/19/24 13:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	71629	01/25/24 17:53	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71762	01/29/24 10:26	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71822	01/29/24 10:26	SM	EET MID
Total/NA	Analysis	8015 NM		1			71667	01/26/24 02:57	AJ	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	71508	01/24/24 10:23	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71548	01/26/24 02:57	AJ	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	71373	01/22/24 16:59	SA	EET MID
Soluble	Analysis	300.0		1			71576	01/26/24 15:08	СН	EET MID

Client Sample ID: FS05 Date Collected: 01/19/24 11:20 Date Received: 01/19/24 13:46

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	71629	01/25/24 17:53	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71762	01/29/24 10:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71822	01/29/24 10:47	SM	EET MID

Eurofins Carlsbad

5 6

9

Released to Imaging: 5/15/2024 10:58:53 AM

Matrix: Solid

Project/Site: Big Eddy Unit DI 29 Battery

Job ID: 890-5997-1 SDG: 03C1558310

Lab Sample ID: 890-5997-4 Matrix: Solid

Lab Sample ID: 890-5997-5

Lab Sample ID: 890-5997-6

Lab Sample ID: 890-5997-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 01/19/24 11:20 Date Received: 01/19/24 13:46

Client Sample ID: FS05

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			71667	01/26/24 03:18	AJ	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	71508	01/24/24 10:23	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71548	01/26/24 03:18	AJ	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	71373	01/22/24 16:59	SA	EET MID
Soluble	Analysis	300.0		1			71576	01/26/24 15:13	СН	EET MID

Client Sample ID: FS06

Date Collected: 01/19/24 11:25 Date Received: 01/19/24 13:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	71629	01/25/24 17:53	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71762	01/29/24 11:07	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71822	01/29/24 11:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			71667	01/26/24 03:39	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	71508	01/24/24 10:23	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71548	01/26/24 03:39	AJ	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	71373	01/22/24 16:59	SA	EET MID
Soluble	Analysis	300.0		1			71576	01/26/24 15:18	СН	EET MID

Client Sample ID: FS07

Date Collected: 01/19/24 11:30 Date Received: 01/19/24 13:46

Batch Batch Dil Initial Final Batch Prepared Method Prep Type Туре Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.02 g 5 mL 71629 01/25/24 17:53 MNR EET MID Total/NA 8021B 5 mL 5 mL 71762 01/29/24 11:28 MNR EET MID Analysis 1 Total/NA Total BTEX Analysis 1 71822 01/29/24 11:28 SM EET MID Total/NA Analysis 8015 NM 71667 01/26/24 04:01 AJ EET MID 1 Total/NA Prep 8015NM Prep 9.96 g 10 mL 71508 01/24/24 10:23 TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 71548 01/26/24 04:01 AJ EET MID 1 Soluble Leach DI Leach 4.99 g 50 mL 71373 01/22/24 16:59 SA EET MID Soluble Analysis 300.0 71576 01/26/24 15:23 СН EET MID 1

Client Sample ID: FS08

Date Collected: 01/19/24 11:35 Date Received: 01/19/24 13:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	71629	01/25/24 17:53	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	71762	01/29/24 11:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			71822	01/29/24 11:48	SM	EET MID
Total/NA	Analysis	8015 NM		1			71667	01/26/24 04:22	AJ	EET MID
Total/NA	Prep	8015NM Prep			9.93 g	10 mL	71508	01/24/24 10:23	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	71548	01/26/24 04:22	AJ	EET MID

Project/Site: Big Eddy Unit DI 29 Battery

Lab Chronicle

Job ID: 890-5997-1 SDG: 03C1558310

Client Sample ID: FS08 Date Collected: 01/19/24 11:35 Date Received: 01/19/24 13:46

Client: Ensolum

1											
	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	5
Soluble	Leach	DI Leach			5.01 g	50 mL	71373	01/22/24 16:59	SA	EET MID	-
Soluble	Analysis	300.0		1			71576	01/26/24 15:37	СН	EET MID	

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 890-5997-7 Matrix: Solid

Accreditation/Certification Summary

Page 115 of 128

ject/Site: Big Eddy Uni	-				SDG: 03C1558310	
boratory: Eurofins	Midland ytes for this laboratory were c	povered under each accredi	tation/certification below			
thority xas	Progra		Identification Number T104704400-23-26	Expiration Date 06-30-24	-	
• •	are included in this report, bu oes not offer certification.	it the laboratory is not certifi	ied by the governing authority. This lis	t may include analytes		i
Analysis Method	Prep Method	Matrix	Analyte			
8015 NM	·	Solid	Total TPH			
Total BTEX		Solid	Total BTEX			

Eurofins Carlsbad

.

Method Summary

Client: Ensolum Project/Site: Big Eddy Unit DI 29 Battery Job ID: 890-5997-1 SDG: 03C1558310

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	\STM International Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	ition, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R			
EET MID :	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Job ID: 890-5997-1 SDG: 03C1558310

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-5997-1	FS02	Solid	01/19/24 11:05	01/19/24 13:46	0.25'	
890-5997-2	FS03	Solid	01/19/24 11:10	01/19/24 13:46	0.25'	
890-5997-3	FS04	Solid	01/19/24 11:15	01/19/24 13:46	0.25'	5
890-5997-4	FS05	Solid	01/19/24 11:20	01/19/24 13:46	0.25'	
890-5997-5	FS06	Solid	01/19/24 11:25	01/19/24 13:46	0.25'	
890-5997-6	FS07	Solid	01/19/24 11:30	01/19/24 13:46	0.25'	
890-5997-7	FS08	Solid	01/19/24 11:35	01/19/24 13:46	0.25'	
						8
						9
						1:
						1:

w

Revised Date: 08/25/2020 Rev. 2020.2

Page 118 of 128

14

Job Number: 890-5997-1 SDG Number: 03C1558310

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5997 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Job Number: 890-5997-1 SDG Number: 03C1558310

List Source: Eurofins Midland

List Creation: 01/23/24 12:33 PM

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5997 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 336093

QUESTIONS					
Operator:	OGRID:				
XTO ENERGY, INC	5380				
6401 Holiday Hill Road	Action Number:				
Midland, TX 79707	336093				
	Action Type:				
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)				

QUESTIONS Droroguioitoo

Incident ID (n#)	nAPP2331049960
Incident Name	NAPP2331049960 BIG EDDY UNIT DI 29 BATTERY @ 0
Incident Type	Fire
Incident Status	Remediation Closure Report Received

Location of Release Source

Please answer all the questions in this group.	
Site Name	BIG EDDY UNIT DI 29 BATTERY
Date Release Discovered	10/23/2023
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.	
Incident Type	Fire
Did this release result in a fire or is the result of a fire	Yes
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	Νο
Has this release substantially damaged or will it substantially damage property or the environment	Νο
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο

Nature and Volume of Release Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission Crude Oil Released (bbls) Details Not answered. Produced Water Released (bbls) Details Not answered. Is the concentration of chloride in the produced water >10,000 mg/l Not answered. Cause: Equipment Failure | Pump | Condensate | Released: 0 BBL | Recovered: 0 BBL | Condensate Released (bbls) Details Lost: 0 BBL Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered. Are there additional details for the questions above (i.e. any answer containing Not answered.

Other, Specify, Unknown, and/or Fire, or any negative lost amounts)

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 336093

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	336093
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	diation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of eted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for rele the OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required eases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Alan Romero Title: Regulatory Analyst Email: alan.romero1@exxonmobil.com

Date: 04/22/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 123 of 128

QUESTIONS, Page 3

Action 336093

QUESTIONS (continued)	
Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	336093
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date. affected by the at depth to groupdwater beneath the What is the aball

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)
What method was used to determine the depth to ground water	OCD Imaging Records Lookup
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 500 and 1000 (ft.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1000 (ft.) and ½ (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 500 and 1000 (ft.)
A subsurface mine	Between 1 and 5 (mi.)
An (non-karst) unstable area	Between 1 and 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions t	hat apply or are indicated. This information must be provided to	o the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation	plan approval with this submission	Yes
Attach a comprehensive report de	emonstrating the lateral and vertical extents of soil contamination	on associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertica	al extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area		No
Soil Contamination Sampling	g: (Provide the highest observable value for each, in m	nilligrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 CI B)	222
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	85.5
GRO+DRO	(EPA SW-846 Method 8015M)	85.5
BTEX	(EPA SW-846 Method 8021B or 8260B)	0
Benzene	(EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 I		0 ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 I which includes the anticipated tin	NMAC unless the site characterization report includes complete	
Per Subsection B of 19.15.29.11 which includes the anticipated tin On what estimated date wi	NMAC unless the site characterization report includes complete nelines for beginning and completing the remediation.	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 I which includes the anticipated tin On what estimated date wi On what date will (or did) t	NMAC unless the site characterization report includes complete relines for beginning and completing the remediation. ill the remediation commence	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 01/10/2024
Per Subsection B of 19.15.29.11 I which includes the anticipated tim On what estimated date wi On what date will (or did) ti On what date will (or was)	NMAC unless the site characterization report includes complete nelines for beginning and completing the remediation. ill the remediation commence he final sampling or liner inspection occur	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 01/10/2024 01/19/2024
Per Subsection B of 19.15.29.11 I which includes the anticipated tim On what estimated date wi On what date will (or did) t On what date will (or was) What is the estimated surfa	NMAC unless the site characterization report includes complete nelines for beginning and completing the remediation. ill the remediation commence he final sampling or liner inspection occur the remediation complete(d)	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 01/10/2024 01/19/2024 04/26/2024
Per Subsection B of 19.15.29.11 I which includes the anticipated tim On what estimated date wi On what date will (or did) ti On what date will (or was) What is the estimated surfa What is the estimated volu	NMAC unless the site characterization report includes complete nelines for beginning and completing the remediation. ill the remediation commence he final sampling or liner inspection occur the remediation complete(d) ace area (in square feet) that will be reclaimed	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 01/10/2024 01/19/2024 04/26/2024 170
Per Subsection B of 19.15.29.11 I which includes the anticipated tin On what estimated date wi On what date will (or did) ti On what date will (or was) What is the estimated surfa What is the estimated volu What is the estimated surfa	NMAC unless the site characterization report includes complete relines for beginning and completing the remediation. ill the remediation commence he final sampling or liner inspection occur the remediation complete(d) ace area (in square feet) that will be reclaimed me (in cubic yards) that will be reclaimed	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 01/10/2024 01/19/2024 04/26/2024 170 10

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505

local laws and/or regulations

Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 336093

QUESTIONS (continued) Operator OGRID: **XTO ENERGY INC.** 5380 6401 Holiday Hill Road Action Number Midland, TX 79707 336093 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure) QUESTIONS Remediation Plan (continued) Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply.) (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.) Yes Which OCD approved facility will be used for off-site disposal HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510] OR which OCD approved well (API) will be used for off-site disposal Not answered. OR is the off-site disposal site, to be used, out-of-state Not answered. OR is the off-site disposal site, to be used, an NMED facility Not answered (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) Not answered (In Situ) Soil Vapor Extraction Not answered (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) Not answered (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) Not answered. (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) Not answered. Ground Water Abatement pursuant to 19.15.30 NMAC Not answered. OTHER (Non-listed remedial process) Not answered. Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or

I hereby agree and sign off to the above statement	Name: Alan Romero Title: Regulatory Analyst Email: alan.romero1@exxonmobil.com Date: 04/22/2024
	dense with the physical realities encountered during remediation. If the responsible party has any need to

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 336093

QUESTIONS (continued)	
Operator: XTO ENERGY, INC	OGRID: 5380
6401 Holiday Hill Road Midland, TX 79707	Action Number: 336093
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	No	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 336093

QUESTIONS (continued)	
	OGRID.

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	336093
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	304218
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/22/2024
What was the (estimated) number of samples that were to be gathered	16
What was the sampling surface area in square feet	3200

Remediation Closure Request

Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Nas this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that brevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	170
What was the total volume (cubic yards) remediated	10
All areas not reasonably needed for production or subsequent drilling operations nave been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	170
What was the total volume (in cubic yards) reclaimed	10
Summarize any additional remediation activities not included by answers (above)	Site assessment, delineation, and excavation activities were conducted at the Site to address the October 23, 2023, release of condensate. Laboratory analytical results for confirmation soil samples collected from the release extent/confirmation soil sampling area and excavation extent indicated that all COC concentrations were compliant with the Site Closure Criteria. Based on laboratory analytical results, no further remediation is required. The excavation is scheduled to be backfilled the week of April 22, 2024, with material purchased locally and the area recontoured to match pre-existing Site conditions.
	losure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of the term of a notes of the term of a notes of the term of the term of the term of the term of term o

water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or
local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed
prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

	Name: Alan Romero
I hereby agree and sign off to the above statement	Title: Regulatory Analyst
	Email: alan.romero1@exxonmobil.com
	Date: 04/22/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 336093

Page 127 of 128

	QUESTIONS (continued)
Operator: XTO ENERGY, INC	OGRID: 5380
6401 Holiday Hill Road Midland, TX 79707	Action Number: 336093
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Reclamation Report	

Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission No

Released to Imaging: 5/15/2024 10:58:53 AM

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 336093

CONDITIONS Operator: OGRID: **XTO ENERGY, INC** 5380 6401 Holiday Hill Road Action Number: Midland, TX 79707 336093 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created	Condition	Condition
By		Date
nvelez	None	5/15/2024