

April 25, 2024

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Remediation Report and Closure Request Canyon Largo Unit NP 188 Rio Arriba County, New Mexico Hilcorp Energy Company NMOCD Incident Number: nAPP2403157821

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Remediation Report and Closure Request* associated with a release of oil discovered at the Canyon Largo Unit NP 188 natural gas production well (Site). The Site is located on land managed by the United States Bureau of Land Management (BLM) in Unit N, Section 33, Township 25 North, Range 6 West in Rio Arriba County, New Mexico (Figure 1).

SITE BACKGROUND

Hilcorp operations discovered a release of oil at the Site on January 31, 2024. The release was due to the tank drain valve freezing and then failing (i.e. equipment failure). The volume of the release was determined to be 28.34 barrels (bbls) based on the operator tank gauging data. All released fluids stayed within the secondary containment berm surrounding the aboveground storage tank and impacted an area measuring approximately 30 feet by 12 feet. Upon discovery, the well was shut-in to stop production to the tank, the broken drain valve was replaced, and the operator retained a hydro-vac company to remove any recoverable fluids and impacted soil at the ground surface. In total, 50 bbls of fluid and soil was recovered on February 1, 2024 from the Site using the hydro-vac equipment. Hilcorp notified the New Mexico Oil Conservation Division (NMOCD) via email and submitted a Notification of Release on January 31, 2024. The initial Form C-141 was submitted on February 14, 2024. NMOCD assigned the release incident number nAPP2403157821.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

As part of the Site investigation, local geology/hydrogeology and nearby sensitive receptors were assessed in accordance with Title 19, Chapter 15, Part 29, Sections 11 and 12 (19.15.29.11 and 12) of the New Mexico Administrative Code (NMAC).

The Site is located in Tertiary (Eocene) age San Jose Formation and is underlain by the Nacimiento Geologic Formation. In the report titled "*Hydrogeology and Water Resources of San Juan Basin, New Mexico*" (Stone, et. al., 1983), the San Jose Formation is composed of interbedded sandstones and mudstones and varies in thickness from less than 200 feet to about 2,700 feet. The hydrogeologic

Hilcorp Energy Company Remediation Report and Closure Request Canyon Largo Unit NP 188

properties of the San Jose Formation are largely untested. Where sufficient yield is present, the primary use of water from this Formation is for domestic and/or livestock supply.

The closest significant watercourse is a dry wash located in Rockhouse Canyon, approximately 310 feet west-northwest of the Site. There are no known springs or fresh-water wells located within 500 feet of the Site. The nearest groundwater well with depth to groundwater information (SJ-00681) is located approximately 11,250 feet north of the Site. Depth to water information from this well indicates groundwater is approximately 80 feet below ground surface (bgs) at the location of the water well. Well SJ-00681 (well summary is attached as Appendix A) is situated at an elevation of approximately 6,320 feet above mean sea level (AMSL) and approximately 100 lower in elevation than the Site, therefore depth to water at the Site is assumed to be greater than 100 feet bgs. The Site is greater than 200 feet from any lakebed, sinkhole, or playa lake, and greater than 300 feet from any wetland. Surface land use surrounding the Site consists primarily of oil and gas development and livestock grazing. The Site is not within a 100-year floodplain, overlying a subsurface mine, or located within an area underlain by unstable geology (area designated as low potential karst by the BLM). Schools, hospitals, institutions, churches, and/or other occupied permanent residence or structures are not located within 300 feet of the Site. Sensitive receptors near the Site are depicted on Figure 1.

SITE CLOSURE CRITERIA

Based on the information presented above and in accordance with the *Table I, Closure Criteria for Soils Impacted by a Release* (19.15.29.12 NMAC), the following Closure Criteria for constituents of concern (COCs) should be applied to the Site:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH) as a combination of gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO): 2,500 mg/kg
- GRO+DRO: 1,000 mg/kg
- Chloride: 20,000 mg/kg

EXCAVATION SOIL SAMPLING ACTIVITIES

On March 20, 2024, Ensolum personnel conducted excavation oversight and sampling activities at the Site. Notification to NMOCD was provided prior to conducting remediation and sampling work, with correspondence attached in Appendix B. To direct activities during excavation, Ensolum personnel field screened soil for volatile organic compounds (VOCs) using a calibrated photoionization detector (PID). Once field screening indicated impacted soil had been removed, five-point composite soil samples were collected from the floor (FS01 through FS05) and sidewalls (SW01 through SW03) of the excavation at a frequency of one sample per 200 square feet. The excavation was advanced up to a depth of 6 feet bgs and measured approximately 20 feet wide by 30 feet long. Confirmation sample locations are presented on Figure 2.

The five-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. The soil samples were collected into laboratory provided jars and transported under proper chain of custody procedures to Eurofins Environment Testing (Eurofins) in Albuquerque, New Mexico for laboratory analysis of TPH following Environmental Protection Agency (EPA) Method 8015M/D, BTEX following EPA Method 8021B, and chloride following EPA Method 300.0. Analytical results from the excavation indicated concentrations of all COCs were compliant with NMOCD Table I Closure Criteria and the

Hilcorp Energy Company Remediation Report and Closure Request Canyon Largo Unit NP 188

reclamation requirement (where applicable) in all confirmation samples with the exception of floor sample FS02@4'.

Because of this exceedance, Hilcorp removed additional soil in the vicinity of area FS02 on April 15, 2024. Again, notification was provided to the NMOCD at least two business days prior to conducting remediation and sampling work (Appendix B). Based on field screening, additional soil was removed to depths up to 8 feet bgs, predominantly in the center of area FS02. Once field screening indicated impacted soil was removed, a five-point composite sample FS2@8' was collected in the same method described above from depths between 4 feet bgs (depth at the sidewalls) and 8 feet bgs (depth in the center of area FS02). This sample was also submitted to Eurofins and analyzed for TPH, BTEX, and chloride following the methods described above. Analytical results from this sample indicated all COCs were compliant with NMOCD Table I Closure Criteria.

In total, approximately 378 cubic yards of impacted soil was removed and transported to the Envirotech, Inc. landfarm located in San Juan County, New Mexico. Soil sample results are summarized in Table 1, with complete laboratory analytical reports attached as Appendix C. Photographs taken by Ensolum during the excavation work are included in Appendix D.

CLOSURE REQUEST

Site excavation and sampling activities were conducted at the Site to address the release discovered on January 31, 2024. Laboratory analytical results for the excavation confirmation soil samples, collected from the final excavation extent, indicated all COC concentrations were compliant with the Site Closure Criteria and no further remediation is required. Excavation of impacted soil has mitigated impacts at this Site and these remedial actions have been protective of human health, the environment, and groundwater. As such, Hilcorp respectfully requests closure for Incident Number nAPP2403157821.

REFERENCES

Stone, W.; Lyford, F.; Frenzel, P.; Mizell, N.; and Padgett, E. (1983). *Hydrogeology and Water Resources of San Juan Basin, New Mexico.* Socorro: New Mexico Bureau of Mines and Mineral Resources.

We appreciate the opportunity to provide this document to the NMOCD. If you should have any questions or comments regarding this document, please contact the undersigned.

Sincerely, Ensolum, LLC

Stuart Hyde Senior Managing Geologist (970) 903-1607 shyde@ensolum.com

Daniel R. Moir Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Hilcorp Energy Company Remediation Report and Closure Request Canyon Largo Unit NP 188

Attachments:

Figure 1:	Site Receptor Map
Figure 2:	Excavation Soil Sample Locations
Table 1:	Soil Sample Analytical Results
Appendix A:	NMOSE Point of Diversion Summary
Appendix B:	Agency Correspondence
Appendix C:	Laboratory Analytical Reports

Appendix C: Appendix D: Project Photographs Page 4

E N S O L U M

FIGURES

Released to Imaging: 5/15/2024 3:13:39 PM

Received by OCD: 4/26/2024 2:51:04 PM

Page 6 of 69

TABLES

E N S O L U M

						TABI	_E 1						
					SOIL S	AMPLE ANAL	YTICAL RESU	ILTS					
						Canyon Largo	Unit NP 188						
						Hilcorp Energ	y Company						
					Ri	o Arriba Coun	y, New Mexico						
Sample Identification	Date	Depth (feet bgs)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Closure	Criteria for Soils Release	Impacted by a	10	NE	NE	NE	50	NE	NE	NE	1,000	2,500	20,000
						Excavation Fl	oor Samples						
FS01 @ 4'	3/20/2024	4	<0.0020	<0.0020	<0.0020	<0.0040	< 0.0040	<50	<50	<50	<50	<50	200
FS02 @ 4' (1)	3/20/2024	4	0.026	0.68	0.15	7.3	8.156	140	880	<50	1,020	1,020	300
FS2 @ 8'	4/15/2024	4-8	<0.021	< 0.041	<0.041	<0.082	<0.082	<4.1	<9.2	<46	<9.2	<46	100
FS03 @ 6'	3/20/2024	6	0.0034	0.0095	<0.0020	0.041	0.0539	<50	<50	<50	<50	<50	230
FS04 @ 6'	3/20/2024	6	<0.0020	0.0025	<0.0020	0.013	0.0155	<50	<50	<50	<50	<50	130
FS05 @ 6'	3/20/2024	6	<0.0020	<0.0020	<0.0020	< 0.0040	< 0.0040	<50	<50	<50	<50	<50	610
						Excavation Side	ewall Samples						
SW01	3/20/2024	0-6	<0.0020	<0.0020	<0.0020	0.0051	0.0051	<50	<50	<50	<50	<50	81
SW02	3/20/2024	0-6	<0.0020	<0.0020	<0.0020	0.0078	0.0078	<50	<50	<50	<50	<50	75
SW03	3/20/2024	0-6	<0.0020	<0.0020	<0.0020	<0.0040	<0.0040	<50	<50	<50	<50	<50	410

Notes:

(1): Additional soil from area FS02 was removed and resampled on 4/15/2024 bgs: Below Ground Surface

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

mg/kg: Milligrams per kilogram

NE: Not Established

NMOCD: New Mexico Oil Conservation Division

': feet

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

MRO: Motor Oil Range Organics

TPH: Total Petroleum Hydrocarbon

< : indicates result less than the stated laboratory reporting limit (RL)

Concentrations in **bold** exceed the New Mexico Oil Conservation Division Table I Closure Criteria for Soils Impacted by a Release

APPENDIX A

NMOSE Point of Diversion Summary

Released to Imaging: 5/15/2024 3:13:39 PM

		[,] Mexico Offic nt of Dive		-	
		(quarters are 1=NW 2=NE (quarters are smallest to 1	<i>,</i>	(NAD83 UTM in meters)	
Well Tag	POD Number	Q64 Q16 Q4 Sec	Tws Rng	X Y	
	SJ 00681	4 1 4 21	25N 06W	278527 4029227* 🜍)
Driller Licer Driller Nam		Driller Company:			
Drill Start D		Drill Finish Date:	05/04/1977	7 Plug Date:	
Log File Dat	te:	PCW Rcv Date:		Source:	
Pump Type:	WINDMI	Pipe Discharge Size:		Estimated Yield:	
Casing Size:		Depth Well:		Depth Water:	80 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

2/8/24 11:38 AM

POINT OF DIVERSION SUMMARY

.

APPENDIX B

Agency Correspondence

From:	OCDOnline@state.nm.us
То:	Stuart Hyde
Subject:	The Oil Conservation Division (OCD) has accepted the application, Application ID: 322938
Date:	Wednesday, March 13, 2024 10:57:38 AM

EXTERNAL EMAIL]

To whom it may concern (c/o Stuart Hyde for HILCORP ENERGY COMPANY),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2403157821.

The sampling event is expected to take place:

When: 03/19/2024 @ 09:00 Where: N-33-25N-06W 990 FSL 1650 FWL (36.3523979,-107.4758072)

Additional Information: Stuart Hyde 970-903-1607

Additional Instructions: Canyon Largo Unit NP 188 (API: 30-039-20498) in Rio Arriba County (36.3523979,-107.475807)

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

From:	Velez, Nelson, EMNRD
То:	<u>Stuart Hyde</u>
Cc:	Devin Hencmann; Wes Weichert
Subject:	Re: [EXTERNAL] NAPP2403157821 - Hilcorp Canyon Largo Unit NP #188 Sampling Notification Question
Date:	Friday, April 19, 2024 10:54:33 AM
Attachments:	image001.png
	image002.png
	image003.png
	image004.png
	Outlook-Of2twrvt.png

****EXTERNAL EMAIL****

Stuart,

Your request to substitute the date collected is approved.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Stuart Hyde <shyde@ensolum.com>
Sent: Friday, April 19, 2024 9:46 AM
To: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Cc: Devin Hencmann <dhencmann@ensolum.com>; Wes Weichert <wweichert@ensolum.com>
Subject: [EXTERNAL] NAPP2403157821 - Hilcorp Canyon Largo Unit NP #188 Sampling Notification Question

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments. Nelson,

As discussed on the phone, Ensolum submitted a sampling notification for the Canyon Largo Unit NP #188 site to commence sampling on March 19, 2024 (see attached). Leading up to that date,

adverse weather and poor road conditions caused a last minute delay in the final excavation and confirmation soil samples were actually collected on March 20, 2024. As such, we are requesting approval to use data from samples collected on March 20, 2024 for the upcoming report and closure request that we are currently preparing.

Please reach out with any questions regarding the site. Thanks and talk to you soon.

Stuart Hyde, PG (Licensed in WA/TX) Senior Managing Geologist 970-903-1607 Ensolum, LLC

"If you want to go fast, go alone. If you want to go far, go together." – African Proverb

From:	OCDOnline@state.nm.us
То:	Stuart Hyde
Subject:	The Oil Conservation Division (OCD) has accepted the application, Application ID: 332837
Date:	Friday, April 12, 2024 8:50:40 AM

****EXTERNAL EMAIL****

To whom it may concern (c/o Stuart Hyde for HILCORP ENERGY COMPANY),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2403157821.

The sampling event is expected to take place:

When: 04/15/2024 @ 09:00 Where: N-33-25N-06W 990 FSL 1650 FWL (36.3523979,-107.4758072)

Additional Information: Contact PM Stuart Hyde; 970-903-1607, excavation confirmation sampling

Additional Instructions: Canyon Largo Unit NP 188 (API: 30-039-20498) in Rio Arriba County (36.3523979,-107.475807)

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

APPENDIX C

Laboratory Analytical Reports

Released to Imaging: 5/15/2024 3:13:39 PM

Received by OCD: 4/26/2024 2:51:04 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Samantha Grabert Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499 Generated 3/26/2024 10:13:00 AM

JOB DESCRIPTION

Hilcorp Energy/Ensolum

JOB NUMBER

885-1538-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

See page two for job notes and contact information

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 3/26/2024 10:13:00 AM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

Laboratory Job ID: 885-1538-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Chain of Custody	23
Receipt Checklists	25

Definitions/Glossary

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Job ID: 885-1538-1

Qualifiers		3
GC VOA		
Qualifier S1+	Qualifier Description Surrogate recovery exceeds control limits, high biased.	4
		5
GC Semi VO Qualifier		C
S1+	Qualifier Description Surrogate recovery exceeds control limits, high biased.	6
		0
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	8
%R	Percent Recovery	
CFL	Contains Free Liquid	Q
CFU	Colony Forming Unit	Ŭ
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Case Narrative

Job ID: 885-1538-1

Job ID: 885-1538-1

Eurofins Albuquerque

Job Narrative 885-1538-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/21/2024 6:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.8°C.

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: FS02@4' (885-1538-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The method blank for preparation batch 880-76266 and analytical batch 880-76263 contained Benzene above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: FS02@4' (885-1538-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-76284 and analytical batch 880-76378 was outside the upper control limits.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-76340 and analytical batch 880-76386 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Client Sample ID: FS01@4' Date Collected: 03/20/24 12:26 Date Received: 03/21/24 06:45

Job ID: 885-1538-1

Lab Sample ID: 885-1538-1

Matrix: Solid

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 16:28	1
Toluene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 16:28	1
Ethylbenzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 16:28	1
Xylenes, Total	ND		0.0040	mg/Kg		03/22/24 09:04	03/22/24 16:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	70		70 - 130			03/22/24 09:04	03/22/24 16:28	1
1,4-Difluorobenzene (Surr)	95		70 - 130			03/22/24 09:04	03/22/24 16:28	1
Method: SW846 8015B NM - D	Diesel Range	e Organics	; (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics /GRO)-C6-C10	ND		50	mg/Kg		03/22/24 10:57	03/24/24 00:14	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/22/24 10:57	03/24/24 00:14	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/22/24 10:57	03/24/24 00:14	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130			03/22/24 10:57	03/24/24 00:14	1
p-Terphenyl	92		70 - 130			03/22/24 10:57	03/24/24 00:14	1
Method: EPA 300.0 - Anions,			Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	200		5.0	mg/Kg			03/23/24 07:26	1
lient Sample ID: FS02@4	4'					Lab Samp	le ID: 885-1	538-2
ate Collected: 03/20/24 12:30							Matrix	: Solid
Date Received: 03/21/24 06:45 Method: SW846 8021B - Volat			• •					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.026		0.0020	mg/Kg		03/22/24 09:04	03/22/24 16:49	1
Toluene	0.68		0.050	mg/Kg		03/25/24 10:58	03/25/24 14:05	25
Ethylbenzene	0.15		0.0020	mg/Kg		03/22/24 09:04	03/22/24 16:49	1
Xylenes, Total	7.3		0.10	mg/Kg		03/25/24 10:58	03/25/24 14:05	25
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	245	S1+	70 - 130			03/22/24 09:04	03/22/24 16:49	1
1,4-Difluorobenzene (Surr)	105		70 - 130			03/22/24 09:04	03/22/24 16:49	1

Method: SW846 8015B NM - D	-	-			_			
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	140		50	mg/Kg		03/22/24 10:57	03/24/24 00:35	1
Diesel Range Organics (Over C10-C28)	880		50	mg/Kg		03/22/24 10:57	03/24/24 00:35	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/22/24 10:57	03/24/24 00:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	117		70 - 130			03/22/24 10:57	03/24/24 00:35	1
o-Terphenyl	96		70 - 130			03/22/24 10:57	03/24/24 00:35	1

Eurofins Albuquerque

Released to Imaging: 5/15/2024 3:13:39 PM

Page 24 of 69

	Chem	•				Job ID: 885	1538
blum						JUD ID. 000-	-1556-
4'					Lab Samp		538-2 c: Solic
on Chroma	tography -	Soluble					
		RL	Unit	D	Prepared	Analyzed	Dil Fa
300		5.0	mg/Kg			03/23/24 07:48	
2'					Lah Samn		538-
, 							c: Soli
-		ds (GC)					
	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
0.0034		0.0020	mg/Kg				
0.0095		0.0020					
			· · · · · · · · · · · · · · · · · · ·				
0.041		0.0040	mg/Kg		03/22/24 09:04	03/22/24 17:09	
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
80	·	70 - 130			· ·	03/22/24 17:09	
108		70 - 130			03/22/24 09:04	03/22/24 17:09	
liesel Range	• Organics	(DRO) (GC)					
	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
ND		50	mg/Kg		03/22/24 10:57	03/24/24 01:17	
		50	ma/Ka		03/22/24 10:57	03/24/24 01.17	
ND		00	ing/itg		00/22/24 10:01	00/24/24 01:11	
ND		50	mg/Kg		03/22/24 10:57	03/24/24 01:17	
%Recoverv	Qualifier	Limits			Prepared	Analvzed	Dil Fa
104	·	70 - 130			<u> </u>		
87		70 - 130			03/22/24 10:57	03/24/24 01:17	
on Chroma	tography -	Soluble					
		RL	Unit	D	Prepared	Analyzed	Dil Fa
230		5.0	mg/Kg			03/23/24 07:56	
3'					Lah Samn	Ie ID: 885-1	538-
							c: Solie
• •		· · ·	Unit	п	Proparad	Analyzad	Dil Fa
	Quanner						Dira
ND		0.0020					
0.013		0.0040	mg/Kg				
							D '' E
%Recovery	Qualifier	l imite			Pronarod	Analyzod	
%Recovery	Qualifier	<u>Limits</u> 70 - 130			Prepared 03/22/24 09:04	Analyzed 03/22/24 17:30	Dil Fa
	Result 300 6' cile Organic Result 0.0034 0.0095 ND 0.041 %Recovery 80 108 Diesel Range Result ND ND ND ND ND ND %Recovery 104 87 Ion Chroma Result 230 6' cile Organic Result ND 0.0025 ND	4' Ion Chromatography - Result Qualifier 300 6' Cile Organic Compound Result Qualifier 0.0034 0.0095 ND 0.041 %Recovery Qualifier 80 108 Diesel Range Organics Result Qualifier ND ND ND ND ND ND ND ND ND ND	4' Ion Chromatography - Soluble Result Qualifier RL 300 5.0 6' Cle Organic Compounds (GC) Result Qualifier RL 0.0034 0.0020 0.0095 0.0020 ND 0.0020 0.041 0.0040 %Recovery Qualifier Limits 80 70 - 130 108 70 - 130 Diesel Range Organics (DRO) (GC) Result Qualifier RL ND 50 ND 50 ND 50 ND 50 %Recovery Qualifier Limits 104 70 - 130 ND 50 %Recovery Qualifier RL 104 70 - 130 ND 50 ND 50 %Recovery Qualifier RL 230 5.0 6' Cle Organic Compounds (GC) Result Qualifier RL 230 5.0 6' Cle Organic Compounds (GC) Result Qualifier RL ND 0.0020 0.0025 0.0020 ND 0.0020	4' Ion Chromatography - Soluble Result Qualifier RL 5.0 Unit mg/Kg 300 5.0 mg/Kg 6' Unit Unit Mg/Kg 6' Unit Unit Unit 0.0034 0.0020 mg/Kg 0.0095 0.0020 mg/Kg 0.0041 0.0040 mg/Kg %Recovery Qualifier Limits 80 70-130 Unit ND 50 mg/Kg ND 50 mg/Kg ND 50 mg/Kg ND 50 mg/Kg %Recovery Qualifier Limits 104 70-130 Mg/Kg %Recovery Qualifier Limits 104 70-130 Mg/Kg 87 70-130 Mg/Kg 87 70-130 Mg/Kg 88 70-130 Mg/Kg 89 50 mg/Kg 80 50 mg/Kg 80 50 mg/Kg 80 50 mg/	4' Ion Chromatography - Soluble Result Qualifier RL Unit D 300 5.0 mg/Kg D 6' Unit D D Idle Organic Compounds (GC) Result Qualifier RL Unit D 0.0034 0.0020 mg/Kg D 0.0035 0.0020 mg/Kg D 0.0041 0.0040 mg/Kg D %Recovery Qualifier Limits TO - 130 D ND 50 mg/Kg D ND 50 mg/Kg D ND 50 mg/Kg D %Recovery Qualifier Limits TO - 130 ND 50 mg/Kg D ND 50 mg/Kg D S7 70 - 130 R D To - 130 B0 50 mg/Kg D S D S7 70 - 130 S D S D S S<	4' Lab Samp Ion Chromatography - Soluble Result Qualifier RL Unit D Prepared 300 5.0 mg/Kg D Prepared 6' Lab Samp ille Organic Compounds (GC) mg/Kg D Prepared 0.0034 0.0020 mg/Kg 03/22/24 09:04 ND 0.0020 mg/Kg 03/22/24 09:04 ND 0.0020 mg/Kg 03/22/24 09:04 0.041 0.0040 mg/Kg 03/22/24 09:04 %Recovery Qualifier Limits Prepared 80 70 - 130 03/22/24 09:04 0/iesel Range Organics (DRO) (GC) Prepared 03/22/24 10:57 ND 50 mg/Kg 03/22/24 10:57 %Recovery Qualifier Limits Prepared 104 70 - 130 03/22/24 10:57 03/22/24 10:57 %Recovery Qualifier	A' Lab Sample ID: 885-1 Matrix Ion Chromatography - Soluble Result Qualifier RL 5.0 Unit mg/Kg D Prepared 03/23/24 07:48 Analyzed 03/23/24 07:48 6' Lab Sample ID: 885-1 Matrix Unit mg/Kg D Prepared 03/22/24 09:04 Analyzed 03/22/24 07:48 6' Unit 0.0095 Result Qualifier RL 0.0020 Unit mg/Kg D Prepared 03/22/24 09:04 Analyzed 03/22/24 17:09 0.0041 0.0040 mg/Kg 03/22/24 09:04 03/22/24 17:09 0.041 0.0040 mg/Kg 03/22/24 09:04 03/22/24 17:09 %Recovery Qualifier Limits 70 - 130 Prepared 03/22/24 09:04 Analyzed 03/22/24 17:09 ND 50 mg/Kg 03/22/24 10:57 03/24/24 01:17 ND

Wethou. 344040 0013D 14141 - Di	eser Range Organics (
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND	50	mg/Kg	0	3/22/24 10:57	03/24/24 01:38	1
(GRO)-C6-C10							

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Client Sample ID: FS04@6' Date Collected: 03/20/24 12:37 Date Received: 03/21/24 06:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	ND		50	mg/Kg		03/22/24 10:57	03/24/24 01:38	1
C10-C28)								
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/22/24 10:57	03/24/24 01:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130			03/22/24 10:57	03/24/24 01:38	1
o-Terphenyl	91		70 - 130			03/22/24 10:57	03/24/24 01:38	1
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
							00/00/04 44 40	
Chloride	130		5.0	mg/Kg			03/23/24 11:46	1
Chloride Client Sample ID: FS05@			5.0	mg/Kg		Lab Samp	le ID: 885-1	538-5
			5.0	mg/Kg		Lab Samp	le ID: 885-1	538-5 : Solid
Client Sample ID: FS05@			5.0	mg/Kg		Lab Samp	le ID: 885-1	
Client Sample ID: FS05@ Date Collected: 03/20/24 12:41	6' tile Organic			mg/Kg		Lab Samp	le ID: 885-1	
Client Sample ID: FS05@ Date Collected: 03/20/24 12:41 Date Received: 03/21/24 06:45	6' tile Organic	Compound Qualifier		mg/Kg	D	Lab Samp	le ID: 885-1	
Client Sample ID: FS05@ Date Collected: 03/20/24 12:41 Date Received: 03/21/24 06:45 Method: SW846 8021B - Volar Analyte	6' tile Organic		ds (GC)		<u>D</u>		le ID: 885-1 Matrix	:: Solid
Client Sample ID: FS05@ Date Collected: 03/20/24 12:41 Date Received: 03/21/24 06:45 Method: SW846 8021B - Vola	6' tile Organic Result		ds (GC) RL	Unit	D	Prepared	le ID: 885-1 Matrix Analyzed 03/22/24 17:50	:: Solid
Client Sample ID: FS05@ Date Collected: 03/20/24 12:41 Date Received: 03/21/24 06:45 Method: SW846 8021B - Vola Analyte Benzene	6' tile Organic Result ND		ds (GC) 	Unit mg/Kg	<u>D</u>	Prepared 03/22/24 09:04	le ID: 885-1 Matrix Analyzed 03/22/24 17:50 03/22/24 17:50	:: Solid
Client Sample ID: FS05@ Date Collected: 03/20/24 12:41 Date Received: 03/21/24 06:45 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene	6' tile Organic Result ND ND		ds (GC) 	Unit mg/Kg mg/Kg	D	Prepared 03/22/24 09:04 03/22/24 09:04 03/22/24 09:04	le ID: 885-1 Matrix Analyzed 03/22/24 17:50 03/22/24 17:50	:: Solid
Client Sample ID: FS05@ Date Collected: 03/20/24 12:41 Date Received: 03/21/24 06:45 Method: SW846 8021B - Vola Analyte Benzene Toluene Ethylbenzene Xylenes, Total	6' tile Organic Result ND ND ND	Qualifier	ds (GC) <u>RL</u> 0.0020 0.0020 0.0020	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 03/22/24 09:04 03/22/24 09:04 03/22/24 09:04	le ID: 885-1 Matrix <u>Analyzed</u> 03/22/24 17:50 03/22/24 17:50 03/22/24 17:50	:: Solid
Client Sample ID: FS05@ Date Collected: 03/20/24 12:41 Date Received: 03/21/24 06:45 Method: SW846 8021B - Vola Analyte Benzene Toluene	6' tile Organic Result ND ND ND ND	Qualifier	ds (GC) <u>RL</u> 0.0020 0.0020 0.0020 0.0040	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 03/22/24 09:04 03/22/24 09:04 03/22/24 09:04 03/22/24 09:04	Analyzed 03/22/24 17:50 03/22/24 17:50 03/22/24 17:50 03/22/24 17:50	Dil Fac

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg	_	03/22/24 10:57	03/24/24 01:59	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/22/24 10:57	03/24/24 01:59	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/22/24 10:57	03/24/24 01:59	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130			03/22/24 10:57	03/24/24 01:59	1
o-Terphenyl	91		70 - 130			03/22/24 10:57	03/24/24 01:59	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte **Result Qualifier** Unit RL D Prepared Analyzed Dil Fac 25 03/23/24 12:09 Chloride 610 mg/Kg 5

Client Sample ID: SW01 Date Collected: 03/20/24 12:15

Date Received: 03/21/24 06:45

Method: SW846 8021B -	Volatile Organic Compound	ds (GC)					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.0020	mg/Kg		03/22/24 09:04	03/22/24 18:11	1
Toluene	ND	0.0020	mg/Kg		03/22/24 09:04	03/22/24 18:11	1
Ethylbenzene	ND	0.0020	mg/Kg		03/22/24 09:04	03/22/24 18:11	1
Xylenes, Total	0.0051	0.0040	mg/Kg		03/22/24 09:04	03/22/24 18:11	1

Eurofins Albuquerque

Lab Sample ID: 885-1538-6

Page 25 of 69

Job ID: 885-1538-1

Lab Sample ID: 885-1538-4

Matrix: Solid

Matrix: Solid

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Client Sample ID: SW01 Date Collected: 03/20/24 12:15

Date Received: 03/21/24 06:45

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74	<u> </u>	70 - 130			03/22/24 09:04	03/22/24 18:11	1
1,4-Difluorobenzene (Surr)	93		70 - 130			03/22/24 09:04	03/22/24 18:11	1
	Diesel Range	Organics						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		50	mg/Kg		03/22/24 10:57	03/24/24 02:20	1
(GRO)-C6-C10						00,22,20.07	00/2 //2 / 02/20	
Diesel Range Organics (Over	ND		50	mg/Kg		03/22/24 10:57	03/24/24 02:20	1
C10-C28) Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/22/24 10:57	03/24/24 02:20	1
							00/2 //2 / 02/20	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130			03/22/24 10:57	03/24/24 02:20	1
o-Terphenyl	97		70 - 130			03/22/24 10:57	03/24/24 02:20	1
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	81		5.0	mg/Kg			03/23/24 12:16	1
Client Sample ID: SW02						Lab Samp	le ID: 885-1	538-7
Date Collected: 03/20/24 12:20								: Solid
Date Received: 03/20/24 12:20							Watin	. 5010
_ Method: SW846 8021B - Vola	tilo Organio	Compound						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 18:31	1
Toluene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 18:31	1
Ethylbenzene	ND		0.0020	mg/Kg		03/22/24 09:04		1
Xylenes, Total	0.0078		0.0040	mg/Kg		03/22/24 09:04		1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	78	Quanter	70 - 130			03/22/24 09:04	03/22/24 18:31	1
1,4-Difluorobenzene (Surr)	106		70 - 130 70 - 130				03/22/24 18:31	1
Method: SW846 8015B NM - I				Unit		Drenered	Anolymod	
Analyte		Qualifier	RL		_ D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/22/24 10:57	03/24/24 02:41	1
Diesel Range Organics (Over	ND		50	mg/Kg		03/22/24 10:57	03/24/24 02:41	1
C10-C28)								
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/22/24 10:57	03/24/24 02:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130			03/22/24 10:57	03/24/24 02:41	1
o-Terphenyl	95		70 - 130			03/22/24 10:57	03/24/24 02:41	1
_ Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	75		5.0	mg/Kg			03/23/24 12:23	1
onionuo	75		0.0				55, L0, L7 12.20	

Page 26 of 69

Job ID: 885-1538-1

Matrix: Solid

5

Lab Sample ID: 885-1538-6

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Client Sample ID: SW03 Date Collected: 03/20/24 12:23 Date Received: 03/21/24 06:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 18:52	1
Toluene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 18:52	1
Ethylbenzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 18:52	1
Xylenes, Total	ND		0.0040	mg/Kg		03/22/24 09:04	03/22/24 18:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130			03/22/24 09:04	03/22/24 18:52	1
Method: SW846 8015B NM - E		-			_		03/22/24 18:52	1
Method: SW846 8015B NM - E	Diesel Range	-				03/22/24 09:04		1
Method: SW846 8015B NM - E Analyte	Diesel Range	Organics Qualifier		Unit mg/Kg	D	03/22/24 09:04 Prepared 03/22/24 17:00	03/22/24 18:52 Analyzed 03/24/24 17:12	1 Dil Fac
Method: SW846 8015B NM - E Analyte Gasoline Range Organics	Diesel Range Result	-	(DRO) (GC) RL		D	Prepared	Analyzed	1 Dil Fac
Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Diesel Range Result	-	(DRO) (GC) RL		<u>D</u>	Prepared 03/22/24 17:00	Analyzed	1 Dil Fac 1
Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Diesel Range Result ND	-	(DRO) (GC) <u>RL</u> 50	mg/Kg	<u>D</u>	Prepared 03/22/24 17:00 03/22/24 17:00	Analyzed 03/24/24 17:12	Dil Fac 1 1
Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Diesel Range Result ND ND	Qualifier	6 (DRO) (GC) RL 50 50	mg/Kg mg/Kg	D	Prepared 03/22/24 17:00 03/22/24 17:00	Analyzed 03/24/24 17:12 03/24/24 17:12	Dil Fac 1 1 1 Dil Fac
1,4-Difluorobenzene (Surr) Method: SW846 8015B NM - E Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Diesel Range Result ND ND ND	Qualifier	(DRO) (GC) RL 50 50 50	mg/Kg mg/Kg	D	Prepared 03/22/24 17:00 03/22/24 17:00 03/22/24 17:00	Analyzed 03/24/24 17:12 03/24/24 17:12 03/24/24 17:12 Analyzed	1 1 1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	410		25	mg/Kg			03/23/24 12:31	5	

	10	005	4 - 0 0	

Page 27 of 69

5

Matrix: Solid

Lab Sample ID: 885-1538-8

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-76266/5-A Matrix: Solid Analysis Batch: 76263

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 11:39	1
Toluene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 11:39	1
Ethylbenzene	ND		0.0020	mg/Kg		03/22/24 09:04	03/22/24 11:39	1
Xylenes, Total	ND		0.0040	mg/Kg		03/22/24 09:04	03/22/24 11:39	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	71		70 - 130			03/22/24 09:04	03/22/24 11:39	1

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	71	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Lab Sample ID: LCS 880-76266/1-A Matrix: Solid Analysis Batch: 76263

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.0917		mg/Kg		92	70 - 130	
Toluene	0.100	0.0974		mg/Kg		97	70 - 130	
Ethylbenzene	0.100	0.109		mg/Kg		109	70 - 130	
m-Xylene & p-Xylene	0.200	0.224		mg/Kg		112	70 - 130	
o-Xylene	0.100	0.109		mg/Kg		109	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	111		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 880-76266/2-A Matrix: Solid Analysis Batch: 76263

Prep Batch: 76266 LCSD LCSD RPD %Rec Spike Analyte Added **Result Qualifier** Unit %Rec Limits RPD Limit D Benzene 0.100 0.0899 90 70 - 130 2 35 mg/Kg Toluene 0.100 0.0918 mg/Kg 92 70 - 130 6 35 Ethylbenzene 0.100 0.101 mg/Kg 101 70 - 130 7 35 m-Xylene & p-Xylene 0.200 0.206 mg/Kg 103 70 - 130 9 35 o-Xylene 0.100 0.100 mg/Kg 100 70 - 130 8 35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	113		70 - 130

Lab Sample ID: MB 880-76470/5-A Matrix: Solid Analysis Batch: 76416

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac D Benzene 0.0020 mg/Kg 03/25/24 10:58 03/25/24 11:34 ND 1 Toluene ND 0.0020 mg/Kg 03/25/24 10:58 03/25/24 11:34 1 Ethylbenzene ND 0.0020 mg/Kg 03/25/24 10:58 03/25/24 11:34 1 Xylenes, Total ND 0.0040 mg/Kg 03/25/24 10:58 03/25/24 11:34 1

Eurofins Albuquerque

Prep Type: Total/NA

Prep Batch: 76470

Page 28 of 69

Job ID: 885-1538-1

Prep Type: Total/NA

Prep Batch: 76266

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

03/22/24 09:04 03/22/24 11:39

Prep Batch: 76266

Prep Type: Total/NA

Client Sample ID: Method Blank

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	MB MB				
Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74	70 - 130	03/25/24 10:58	03/25/24 11:34	1
1,4-Difluorobenzene (Surr)	98	70 - 130	03/25/24 10:58	03/25/24 11:34	1

Lab Sample ID: LCS 880-76470/1-A Matrix: Solid

Analysis Batch: 76416							Prep E	Satch: 76470
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.104		mg/Kg		104	70 - 130	
Toluene	0.100	0.0871		mg/Kg		87	70 - 130	
Ethylbenzene	0.100	0.0812		mg/Kg		81	70 - 130	
m-Xylene & p-Xylene	0.200	0.159		mg/Kg		80	70 - 130	
o-Xylene	0.100	0.0784		mg/Kg		78	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	85		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-76470/2-A Matrix: Solid

Analysis Batch: 76416									Prep E	Batch: 7	
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.0980		mg/Kg		98	70 - 130	6	35
Toluene			0.100	0.0872		mg/Kg		87	70 - 130	0	35
Ethylbenzene			0.100	0.0821		mg/Kg		82	70 - 130	1	35
m-Xylene & p-Xylene			0.200	0.163		mg/Kg		81	70 - 130	2	35
o-Xylene			0.100	0.0806		mg/Kg		81	70 - 130	3	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	94	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-76284 Matrix: Solid Analysis Batch: 76378							le ID: Method Prep Type: To Prep Batch:	otal/NA
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/22/24 10:57	03/23/24 19:37	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/22/24 10:57	03/23/24 19:37	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/22/24 10:57	03/23/24 19:37	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	152	S1+	70 - 130			03/22/24 10:57	03/23/24 19:37	1
o-Terphenyl	142	S1+	70 - 130			03/22/24 10:57	03/23/24 19:37	1

Page 29 of 69

Job ID: 885-1538-1

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

5

6

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-76 Matrix: Solid	284/2-A							Clien	it Sai	-	Lab Control Prep Type: T	
Analysis Batch: 76378											Prep Batch	
				Spike		LCS	LCS				%Rec	
Analyte				Added		Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics				1000		1060		mg/Kg		106	70 - 130	
(GRO)-C6-C10												
Diesel Range Organics (Over C10-C28)				1000		937		mg/Kg		94	70 - 130	
	LCS	LCS	;									
Surrogate	%Recovery	Qua	lifier	Limits								
1-Chlorooctane	116			70 - 130								
o-Terphenyl	118			70 - 130								
Lab Sample ID: LCSD 880-7	76284/3-4							liont Sa	mnlo	ID: Lab	Control Sam	nlo Dui
Matrix: Solid	0204/0-4								inpic		Prep Type: T	
Analysis Batch: 76378											Prep Batch	
Analysis Batch. 70370				Spike			LCSD				%Rec	RPI
Analyte				Added		-	Qualifier	Unit	D	%Rec	Limits RP	
Gasoline Range Organics				1000		1090	Quaimer	mg/Kg				3 2
(GRO)-C6-C10				1000		1090		mg/rxg		109	70-130	5 Z
Diesel Range Organics (Over C10-C28)				1000		992		mg/Kg		99	70 - 130	6 2
,	LCSD	105	ס									
Surrogate	%Recovery			Limits								
1-Chlorooctane	87			70 - 130								
o-Terphenyl	89			70 - 130								
Lab Sample ID: MB 880-763 Matrix: Solid Analysis Batch: 76386	340/1-A								Clie		ole ID: Metho Prep Type: T Prep Batch	'otal/N/
	_	MB						_	_	<u>.</u>		
Analyte	Re		Qualifier		RL		Unit	D		repared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10		ND			50		mg/K	g	03/2	2/24 17:00	03/24/24 08:32	
Diesel Range Organics (Over C10-C28)		ND			50		mg/K	g	03/2	2/24 17:00	03/24/24 08:32	
Oll Range Organics (Over C28-C36))	ND			50		mg/K	g	03/2	2/24 17:00	03/24/24 08:32	
		ΜВ	МВ									
Surrogate	%Reco	very	Qualifier	Limit	ts				Р	repared	Analyzed	Dil Fa
1-Chlorooctane		195	S1+	70 - 1	30				03/2	2/24 17:00	03/24/24 08:32	
o-Terphenyl		184	S1+	70 - 1	30				03/2	2/24 17:00	03/24/24 08:32	
Lab Sample ID: LCS 880-76 Matrix: Solid Analysis Batch: 76386	340/2-A			Spike		LCS	LCS	Clien	ıt Saı		Lab Control Prep Type: T Prep Batch %Rec	'otal/N/
Analyte				Added		-	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10				1000		1090		mg/Kg		109	70 - 130	
Diesel Range Organics (Over				1000		890		mg/Kg		89	70 - 130	

5 6 7

Job ID: 885-1538-1

Eurofins Albuquerque

C10-C28)

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

ab Sample ID: LCS 880-	-76340/2-A					Clie	nt Sa	mple ID	: Lab Cont		
Matrix: Solid									Prep Typ		
Analysis Batch: 76386									Prep Ba	atch:	76340
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	115		70 - 130								
o-Terphenyl	113		70 - 130								
Lab Sample ID: LCSD 88	0-76340/3-A					Client Sa	mple	ID: Lat	o Control S	ampl	e Dup
Matrix: Solid									Prep Typ		
Analysis Batch: 76386									Prep Ba		
·····, ····			Spike	LCS	D LCSD				%Rec		RPD
Analyte			Added	Resu	It Qualifie	r Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	109	00	mg/Kg		109	70 - 130	1	20
(GRO)-C6-C10			4000	~				07	70 400	~	00
Diesel Range Organics (Over C10-C28)			1000	96	C	mg/Kg		97	70 - 130	8	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	94		70 - 130								
o-Terphenyl	94		70 - 130								
lethod: 300.0 - Anion	s, Ion Chr	omatogra	phy								
							0				
Lab Sample ID: MB 880-7	6285/1-A						Clie	ent San	nple ID: Me		
Matrix: Solid									Prep Ty	pe: 50	oluble
Analysis Batch: 76344		МВ МВ									
Analyte	Pr	sult Qualifier		RL	Un	i+ г) Р	repared	Analyze	hd	Dil Fac
Chloride	K			5.0 <u>KL</u>			, <u>г</u>	repareu	$-\frac{\text{Allaryze}}{03/23/24.0}$		1 DII Fac
				3.0	mg	/itg			03/23/24 0	1.04	I
Lab Sample ID: LCS 880-	-76285/2-A					Clier	nt Sa	mple ID	: Lab Cont	trol Sa	ample
Matrix: Solid									Prep Ty	pe: So	oluble
Analysis Batch: 76344											
			Spike		S LCS				%Rec		
Analyte			Added	Resu	It Qualifie	r Unit	D	%Rec	Limits		
			250	26		ma/Ka		107	90 - 110		

Chloride			250	267		mg/Kg		107	90 - 110		
Lab Sample ID: LCSD 880-76 Matrix: Solid Analysis Batch: 76344	6285/3-A				C	Client Sa	mple	ID: Lat	Control Prep T		
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	265		mg/Kg		106	90 - 110	1	20
Lab Sample ID: 885-1538-1 M Matrix: Solid Analysis Batch: 76344	I S							Clien	t Sample Prep Ty		_
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	habbA	Result	Qualifier	Unit	п	%Rec	l imite		

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	200		250	461		mg/Kg		104	90 - 110	

Job ID: 885-1538-1

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

Method: 300.0 - Anions, Ion Chromatography (Continued)

Job ID: 885-1538-1

Lab Sample ID: 885-1538- Matrix: Solid	1 MSD							Clien	t Sample Prep Ty		
Analysis Batch: 76344										, pc. 0	orabic
· ····· , ··· · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	200		250	463		mg/Kg		105	90 - 110	0	20
Lab Sample ID: MB 880-70	6286/1-A						Clie	ent Sam	nple ID: M	ethod	Blank
Matrix: Solid									Prep T	ype: S	oluble
Analysis Batch: 76351											
		MB MB									
Analyte	Re	Qualifier		RL	Unit		D P	repared	Analy		Dil Fac
Chloride		ND		5.0	mg/K	g			03/23/24	11:24	1
Lab Sample ID: LCS 880-7	76286/2-A					Clie	ent Sar	nple ID	: Lab Cor	ntrol S	ample
Matrix: Solid									Prep T	ype: S	oluble
Analysis Batch: 76351											
			Spike	LCS	LCS				%Rec		
			Added	Rosult	Qualifier	Unit	D	%Rec	Limits		
Analyte			Added	Result							
Analyte Chloride			250	266		mg/Kg		106	90 - 110		
Chloride	-76286/3-A						ample		o Control		
Chloride Lab Sample ID: LCSD 880 Matrix: Solid	-76286/3-A						ample				
Chloride	-76286/3-A		250	266			ample		o Control		
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351	- 76286/3-A			266 LCSD	C		ample		o Control Prep Ty		oluble
Chloride Lab Sample ID: LCSD 880 Matrix: Solid	- 76286/3-A		250 Spike	266 LCSD	LCSD	lient S		ID: Lat	Control Prep Ty %Rec	ype: S	oluble RPD Limit
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride			250 Spike Added	266 LCSD Result	LCSD	Unit		ID: Lat <u>%Rec</u> 106	Control Prep T %Rec Limits 90 - 110	ype: S 	RPD Limit 20
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538-			250 Spike Added	266 LCSD Result	LCSD	Unit		ID: Lat <u>%Rec</u> 106	Control Prep Ty %Rec Limits 90 - 110	ype: S RPD 0 ID: FS	oluble RPD Limit 20 04@6'
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid			250 Spike Added	266 LCSD Result	LCSD	Unit		ID: Lat <u>%Rec</u> 106	Control Prep T %Rec Limits 90 - 110	ype: S RPD 0 ID: FS	oluble RPD Limit 20 04@6'
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538-	 4 MS		250 Spike Added 250	266 LCSD Result 265	LCSD Qualifier	Unit		ID: Lat <u>%Rec</u> 106	Control Prep Ty %Rec Limits 90 - 110	ype: S RPD 0 ID: FS	oluble RPD Limit 20 04@6'
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid Analysis Batch: 76351	4 MS Sample	Sample Qualifier	250 Spike Added	266 LCSD Result 265 MS	LCSD Qualifier	Unit		ID: Lat <u>%Rec</u> 106	%Rec Limits 90 - 110 t Sample Prep Ty	ype: S RPD 0 ID: FS	oluble RPD Limit 20 04@6'
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid	4 MS Sample	Sample Qualifier	250 Spike Added 250 Spike	266 LCSD Result 265 MS	LCSD Qualifier MS	Unit mg/Kg	D	ID: Lat	Control Prep T %Rec Limits 90 - 110 t Sample Prep T %Rec	ype: S RPD 0 ID: FS	oluble RPD Limit 20 04@6'
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid Analysis Batch: 76351 Analyte Chloride	4 MS Sample <u>Result</u> 130	•	250 Spike Added 250 Spike Added	266 LCSD Result 265 MS Result	LCSD Qualifier MS	Unit Unit	D	ID: Lat %Rec 106 Client %Rec 100	Control Prep T %Rec Limits 90 - 110 t Sample Prep T %Rec Limits 90 - 110	ype: S <u>RPD</u> 0 ID: FS ype: S	Oluble RPD Limit 20 04@6' oluble
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538-	4 MS Sample <u>Result</u> 130	•	250 Spike Added 250 Spike Added	266 LCSD Result 265 MS Result	LCSD Qualifier MS	Unit Unit	D	ID: Lat %Rec 106 Client %Rec 100	Control Prep T %Rec Limits 90 - 110 t Sample Prep T %Rec Limits 90 - 110 t Sample	ype: S <u>RPD</u> 0 ID: FS ype: S ID: FS	oluble RPD <u>Limit</u> 20 04@6' oluble 04@6'
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid	4 MS Sample <u>Result</u> 130	•	250 Spike Added 250 Spike Added	266 LCSD Result 265 MS Result	LCSD Qualifier MS	Unit Unit	D	ID: Lat %Rec 106 Client %Rec 100	Control Prep T %Rec Limits 90 - 110 t Sample Prep T %Rec Limits 90 - 110	ype: S <u>RPD</u> 0 ID: FS ype: S ID: FS	oluble RPD <u>Limit</u> 20 04@6' oluble 04@6'
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538-	4 MS Sample Result 130 4 MSD	•	250 Spike Added 250 Spike Added	266 LCSD Result 265 MS Result	LCSD Qualifier MS Qualifier	Unit Unit	D	ID: Lat %Rec 106 Client %Rec 100	Control Prep T %Rec Limits 90 - 110 t Sample Prep T %Rec Limits 90 - 110 t Sample	ype: S <u>RPD</u> 0 ID: FS ype: S ID: FS	oluble RPD <u>Limit</u> 20 04@6' oluble 04@6'
Chloride Lab Sample ID: LCSD 880 Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid Analysis Batch: 76351 Analyte Chloride Lab Sample ID: 885-1538- Matrix: Solid	4 MS Sample Result 130 4 MSD Sample	Qualifier	250 Spike Added 250 Spike Added 249	266 LCSD Result 265 MS Result 381	LCSD Qualifier MS Qualifier	Unit Unit	D	ID: Lat %Rec 106 Client %Rec 100	Control Prep Ty %Rec Limits 90 - 110 t Sample Prep Ty %Rec Limits 90 - 110 t Sample Prep Ty	ype: S <u>RPD</u> 0 ID: FS ype: S ID: FS	oluble RPD Limit 20 04@6' oluble 04@6' oluble

QC Association Summary

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

GC VOA

Analysis Batch: 76263

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1538-1	FS01@4'	Total/NA	Solid	8021B	76266
885-1538-2	FS02@4'	Total/NA	Solid	8021B	76266
885-1538-3	FS03@6'	Total/NA	Solid	8021B	76266
885-1538-4	FS04@6'	Total/NA	Solid	8021B	76266
885-1538-5	FS05@6'	Total/NA	Solid	8021B	76266
885-1538-6	SW01	Total/NA	Solid	8021B	76266
885-1538-7	SW02	Total/NA	Solid	8021B	76266
885-1538-8	SW03	Total/NA	Solid	8021B	76266
MB 880-76266/5-A	Method Blank	Total/NA	Solid	8021B	76266
LCS 880-76266/1-A	Lab Control Sample	Total/NA	Solid	8021B	76266
LCSD 880-76266/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	76266

Prep Batch: 76266

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
885-1538-1	FS01@4'	Total/NA	Solid	5035		
885-1538-2	FS02@4'	Total/NA	Solid	5035		
885-1538-3	FS03@6'	Total/NA	Solid	5035		
885-1538-4	FS04@6'	Total/NA	Solid	5035		
885-1538-5	FS05@6'	Total/NA	Solid	5035		
885-1538-6	SW01	Total/NA	Solid	5035		
885-1538-7	SW02	Total/NA	Solid	5035		
885-1538-8	SW03	Total/NA	Solid	5035		
MB 880-76266/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-76266/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-76266/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		

Analysis Batch: 76416

Lab Sample ID 885-1538-2	Client Sample ID FS02@4'	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 76470
MB 880-76470/5-	A Method Blank	Total/NA	Solid	8021B	76470
LCS 880-76470/2	I-A Lab Control Sample	Total/NA	Solid	8021B	76470
LCSD 880-76470	/2-A Lab Control Sample Dup	Total/NA	Solid	8021B	76470

Prep Batch: 76470

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
885-1538-2	FS02@4'	Total/NA	Solid	5035	
MB 880-76470/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-76470/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-76470/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

GC Semi VOA

Prep Batch: 76284

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
885-1538-1	FS01@4'	Total/NA	Solid	8015NM Prep	·
885-1538-2	FS02@4'	Total/NA	Solid	8015NM Prep	
885-1538-3	FS03@6'	Total/NA	Solid	8015NM Prep	
885-1538-4	FS04@6'	Total/NA	Solid	8015NM Prep	
885-1538-5	FS05@6'	Total/NA	Solid	8015NM Prep	
885-1538-6	SW01	Total/NA	Solid	8015NM Prep	
885-1538-7	SW02	Total/NA	Solid	8015NM Prep	

Eurofins Albuquerque

Page 33 of 69

Job ID: 885-1538-1

QC Association Summary

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

GC Semi VOA (Continued)

Prep Batch: 76284 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-76284/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-76284/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-76284/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Prep Batch: 76340

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1538-8	SW03	Total/NA	Solid	8015NM Prep	
MB 880-76340/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-76340/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-76340/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 76378

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1538-1	FS01@4'	Total/NA	Solid	8015B NM	76284
885-1538-2	FS02@4'	Total/NA	Solid	8015B NM	76284
885-1538-3	FS03@6'	Total/NA	Solid	8015B NM	76284
885-1538-4	FS04@6'	Total/NA	Solid	8015B NM	76284
885-1538-5	FS05@6'	Total/NA	Solid	8015B NM	76284
885-1538-6	SW01	Total/NA	Solid	8015B NM	76284
885-1538-7	SW02	Total/NA	Solid	8015B NM	76284
MB 880-76284/1-A	Method Blank	Total/NA	Solid	8015B NM	76284
LCS 880-76284/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	76284
LCSD 880-76284/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	76284

Analysis Batch: 76386

Lab Sample ID 885-1538-8	Client Sample ID SW03	Prep Type Total/NA	Matrix Solid	Method 8015B NM	Prep Batch 76340
MB 880-76340/1-A	Method Blank	Total/NA	Solid	8015B NM	76340
LCS 880-76340/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	76340
LCSD 880-76340/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	76340

HPLC/IC

Leach Batch: 76285

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1538-1	FS01@4'	Soluble	Solid	DI Leach	
885-1538-2	FS02@4'	Soluble	Solid	DI Leach	
885-1538-3	FS03@6'	Soluble	Solid	DI Leach	
MB 880-76285/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-76285/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-76285/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
885-1538-1 MS	FS01@4'	Soluble	Solid	DI Leach	
885-1538-1 MSD	FS01@4'	Soluble	Solid	DI Leach	

Leach Batch: 76286

Lab Sample ID 885-1538-4	Client Sample ID FS04@6'	Prep Type Soluble	Matrix	Method Prep Batch
885-1538-5	FS05@6'	Soluble	Solid	DI Leach
885-1538-6	SW01	Soluble	Solid	DI Leach
885-1538-7	SW02	Soluble	Solid	DI Leach
885-1538-8	SW03	Soluble	Solid	DI Leach

Job ID: 885-1538-1

QC Association Summary

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum

HPLC/IC (Continued)

Leach Batch: 76286 (Continued)

Lab Sample ID MB 880-76286/1-A	Client Sample ID Method Blank	Prep Type Soluble	Matrix	Method DI Leach	Prep Batch
LCS 880-76286/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-76286/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
885-1538-4 MS	FS04@6'	Soluble	Solid	DI Leach	
885-1538-4 MSD	FS04@6'	Soluble	Solid	DI Leach	

Analysis Batch: 76344

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1538-1	FS01@4'	Soluble	Solid	300.0	76285
885-1538-2	FS02@4'	Soluble	Solid	300.0	76285
885-1538-3	FS03@6'	Soluble	Solid	300.0	76285
MB 880-76285/1-A	Method Blank	Soluble	Solid	300.0	76285
LCS 880-76285/2-A	Lab Control Sample	Soluble	Solid	300.0	76285
LCSD 880-76285/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	76285
885-1538-1 MS	FS01@4'	Soluble	Solid	300.0	76285
885-1538-1 MSD	FS01@4'	Soluble	Solid	300.0	76285

Analysis Batch: 76351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1538-4	FS04@6'	Soluble	Solid	300.0	76286
885-1538-5	FS05@6'	Soluble	Solid	300.0	76286
885-1538-6	SW01	Soluble	Solid	300.0	76286
885-1538-7	SW02	Soluble	Solid	300.0	76286
885-1538-8	SW03	Soluble	Solid	300.0	76286
MB 880-76286/1-A	Method Blank	Soluble	Solid	300.0	76286
LCS 880-76286/2-A	Lab Control Sample	Soluble	Solid	300.0	76286
LCSD 880-76286/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	76286
885-1538-4 MS	FS04@6'	Soluble	Solid	300.0	76286
885-1538-4 MSD	FS04@6'	Soluble	Solid	300.0	76286

Job ID: 885-1538-1

Project/Site: Hilcorp Energy/Ensolum

Client Sample ID: FS01@4' Date Collected: 03/20/24 12:26

Date Received: 03/21/24 06:45

Client: Hilcorp Energy

Page 36 of 69

Job ID: 885-1538-1

Lab Sample ID: 885-1538-1 Matrix: Solid

Lab Sample ID: 885-1538-2

Lab Sample ID: 885-1538-3

Lab Sample ID: 885-1538-4

Matrix: Solid

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76266	MNR	EET MID	03/22/24 09:04
Total/NA	Analysis	8021B		1	76263	MNR	EET MID	03/22/24 16:28
Total/NA	Prep	8015NM Prep			76284	EL	EET MID	03/22/24 10:57
Total/NA	Analysis	8015B NM		1	76378	SM	EET MID	03/24/24 00:14
Soluble	Leach	DI Leach			76285	SA	EET MID	03/22/24 11:25
Soluble	Analysis	300.0		1	76344	SMC	EET MID	03/23/24 07:26

Client Sample ID: FS02@4' Date Collected: 03/20/24 12:30 Date Received: 03/21/24 06:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76470	MNR	EET MID	03/25/24 10:58
Total/NA	Analysis	8021B		25	76416	MNR	EET MID	03/25/24 14:05
Total/NA	Prep	5035			76266	MNR	EET MID	03/22/24 09:04
Total/NA	Analysis	8021B		1	76263	MNR	EET MID	03/22/24 16:49
Total/NA	Prep	8015NM Prep			76284	EL	EET MID	03/22/24 10:57
Total/NA	Analysis	8015B NM		1	76378	SM	EET MID	03/24/24 00:35
Soluble	Leach	DI Leach			76285	SA	EET MID	03/22/24 11:25
Soluble	Analysis	300.0		1	76344	SMC	EET MID	03/23/24 07:48

Client Sample ID: FS03@6' Date Collected: 03/20/24 13:10 Date Received: 03/21/24 06:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76266	MNR	EET MID	03/22/24 09:04
Total/NA	Analysis	8021B		1	76263	MNR	EET MID	03/22/24 17:09
Total/NA	Prep	8015NM Prep			76284	EL	EET MID	03/22/24 10:57
Total/NA	Analysis	8015B NM		1	76378	SM	EET MID	03/24/24 01:17
Soluble	Leach	DI Leach			76285	SA	EET MID	03/22/24 11:25
Soluble	Analysis	300.0		1	76344	SMC	EET MID	03/23/24 07:56

Client Sample ID: FS04@6' Date Collected: 03/20/24 12:37 Date Received: 03/21/24 06:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76266	MNR	EET MID	03/22/24 09:04
Total/NA	Analysis	8021B		1	76263	MNR	EET MID	03/22/24 17:30
Total/NA	Prep	8015NM Prep			76284	EL	EET MID	03/22/24 10:57
Total/NA	Analysis	8015B NM		1	76378	SM	EET MID	03/24/24 01:38
Soluble	Leach	DI Leach			76286	SA	EET MID	03/22/24 11:26
Soluble	Analysis	300.0		1	76351	SMC	EET MID	03/23/24 11:46
Project/Site: Hilcorp Energy/Ensolum Client Sample ID: FS05@6'

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Leach

Batch

5035

8021B

8015NM Prep

8015B NM

DI Leach

300.0

Method

Date Collected: 03/20/24 12:41

Date Received: 03/21/24 06:45

Client: Hilcorp Energy

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Dilution

Factor

1

1

5

Run

Batch

Number Analyst

76266 MNR

76263 MNR

76284 EL

76378 SM

76286 SA

76351 SMC

Lab

EET MID

EET MID

EET MID

EET MID

EET MID

EET MID

Page 37 of 69

Job ID: 885-1538-1

Lab Sample ID: 885-1538-5

Prepared

or Analyzed

03/22/24 09:04

03/22/24 17:50

03/22/24 10:57

03/24/24 01:59

03/22/24 11:26

03/23/24 12:09

Lab Sample ID: 885-1538-6

Lab Sample ID: 885-1538-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: SW01 Date Collected: 03/20/24 12:15 Date Received: 03/21/24 06:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76266	MNR	EET MID	03/22/24 09:04
Total/NA	Analysis	8021B		1	76263	MNR	EET MID	03/22/24 18:11
Total/NA	Prep	8015NM Prep			76284	EL	EET MID	03/22/24 10:57
Total/NA	Analysis	8015B NM		1	76378	SM	EET MID	03/24/24 02:20
Soluble	Leach	DI Leach			76286	SA	EET MID	03/22/24 11:26
Soluble	Analysis	300.0		1	76351	SMC	EET MID	03/23/24 12:16

Client Sample ID: SW02 Date Collected: 03/20/24 12:20 Date Received: 03/21/24 06:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76266	MNR	EET MID	03/22/24 09:04
Total/NA	Analysis	8021B		1	76263	MNR	EET MID	03/22/24 18:31
Total/NA	Prep	8015NM Prep			76284	EL	EET MID	03/22/24 10:57
Total/NA	Analysis	8015B NM		1	76378	SM	EET MID	03/24/24 02:41
Soluble	Leach	DI Leach			76286	SA	EET MID	03/22/24 11:26
Soluble	Analysis	300.0		1	76351	SMC	EET MID	03/23/24 12:23

Client Sample ID: SW03 Date Collected: 03/20/24 12:23 Date Received: 03/21/24 06:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76266	MNR	EET MID	03/22/24 09:04
Total/NA	Analysis	8021B		1	76263	MNR	EET MID	03/22/24 18:52
Total/NA	Prep	8015NM Prep			76340	EL	EET MID	03/22/24 17:00
Total/NA	Analysis	8015B NM		1	76386	SM	EET MID	03/24/24 17:12
Soluble	Leach	DI Leach			76286	SA	EET MID	03/22/24 11:26
Soluble	Analysis	300.0		5	76351	SMC	EET MID	03/23/24 12:31

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Albuquerque

Lab Sample ID: 885-1538-8 Matrix: Solid

Accreditation/Certification Summary

Page 38 of 69

Client: Hilcorp Energy	Accreuitation/C	ertification Summary	Job ID: 885-1538-1	
Project/Site: Hilcorp Ener	rgy/Ensolum			
Laboratory: Eurofin	IS Midland held by this laboratory are listed. Not all ac	creditations/certifications are applicable t	o this report.	
Authority	Program	Identification Number	Expiration Date	
Texas	NELAP	T104704400-23-26	06-30-24	5
				6
				8
				Ş

Eurofins Albuquerque

.

Method Summary

Client: Hilcorp Energy Project/Site: Hilcorp Energy/Ensolum Job ID: 885-1538-1

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Ref	erences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 = '	'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", 1	hird Edition, November 1986 And Its Update	es.
Laboratory R			
	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)70		

Page 39 of 69

Eurofins Albuquerque

Chain-of-Custody Record Client: Hilcorp AHm ! Samunta AHm ! Samunta Mailing Address: Phone #: email or Fax#: Samunth. Grubert @ hilcorp. QA/QC Package: X Standard D Level 4 (Full Validation)	Turn-Around S- X Standard Project Name	day Rust	5 NP 188				A lawki	N www ns N	AL /.hal IE ~	lenv Alb	S IS vironi ouqu	5 L ment erqu	AE tal.co e, NI		R . 10. ⁸⁸	25-1538 d	coc
Phone #:									A	naly	/sis	Req	uest				
email or Fax#: Samunth. Grubert @hilwg.	Project Manaç	ger:		1)	0					SO4			nt)				
QA/QC Package:	Wes	1. (1. 1. 1.		<u>3</u> 02	MR	B's		ŝ					bse	i			
		-		s) (0	РС		NSC		2			ItA				
Accreditation: Az Compliance	Sampler: G	rey P	Ni	MTBE / TMB's (8021)	PH: 015D(GRO / DRO / MRO)	8081 Pesticides/8082 PCB's	F .	8270SIMS		NO ₂ , PO ₄ ,			Coliform (Present/Absent)				
NELAC Other	- Martin Martin and Constanting Co	12 Yes	No morty	5	SO	ss/8	504	p	s	ي. ع		Ŕ	Ľ.				
X EDD (Type) 7D F	# of Coolers:	١		1BE)(Gl	cid€	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals	ĝ	2	8270 (Semi-VOA)	E				
	Cooler Temp(ncluding CF): 0.	<u>9-0.1= 0.8 (°C)</u>	Σ	15L	esti	Aeth	<u>y</u> 8	8 N	Ъ.	8260 (VOA)	Sem	olife				
	Container	Preservative	HEAL No.	бтеў/	XXX	31 P	С В	HS I	Å	ц.	0 (/	0	al				
Date Time Matrix Sample Name		Туре			(\mathbb{P})	808	ĒD	PA	R	6	826	827	Total (
Date Time Matrix Sample Name	1,402	Cool	ł	1						1							\square
2 1230 FS02 Qu			2							Π							
of 1230 FS03 @ 4 No FS03 @ 6			3														
237 FSO4@6			4														\square
1241 F305 @ 10'			5		Τ			T		Π							\square
1215 5001			b		Τ												
1220 5002			7		Τ					Π							
V 1223 V 5003	V	V	8														
Date: Time. Relinquished by: 20/24 1512 Date Time. Relinquished by: Date Time. Relinquished by: 20/24 140 Chira Date Date	Received by	Via: Vat Via: Caurier	Date Time <u>3/20/24</u> 1512 Date Time 6:45 <u>3/21/24</u>	Ren L	nark	s: 60	pul	ese 201 211	0 0 Ner	en en	nso sol	1.	n. 1 n	ns	>		
If necessary, samples submitted to Hall Environmental may be sub	contracted to other ac	credited laboratori		s possi	bility					<u> </u>						eport.	<u></u>

Page 40 of 69

Eurofins Albuquerque 4901 Hawkins NE

69

Page 41 of

Chain of Custody Record

Environment Testing

Albuquerque NM 87109 Phone 505-345-3975 Fax 505-345-4107

	Sampler			Lab	DNA.	_																	
Client Information (Sub Contract Lab)	Cumpier				Рм dwe	ll Jo	hn						Can	rier Tra	cking N	No(s)			COC 885-				
Client Contact: Shipping/Receiving	Phone [.]			E-M					- 6		_			e of Or					Page.				
Company	1			jon						us con		•••••••	Ne	w Me	xico				Page	1 of 1			
Eurofins Environment Testing South Centr	Due Date Request							regon		**********									- F	1538-1			
1211 W Florida Ave,	3/27/2024	ed								Ana	alvs	is Re	que	sted					1	ervation (
City Midland	TAT Requested (d	ays) [.]							1	T	T		T	T		T	1		A HO B Na		1	M Hexane N None	
State Zip	-																			n Acetate tric Acid	1	O AsNaO2 P Na2O4S	
TX 79701 Phone.	PO #.			····															E Na	aHSO4 eOH	1	Q Na2SO3 R Na2S2O	
432-704-5440(Tel)	10#				(H	•										G Ar	nchlor		S H2SO4 T TSP Dod	ecahvdrate
Email	WO #:				or No	(0		8015MOD_NM/8015NM_S_Prep Full TPH	300_ORGFM_28D/DI_LEACH Chloride										I Ice	scorbic Aci Water		U Acetone V MCAA	,
Project Name Canyon Largo NP 188	Project #:				Yes	Perform MS/MSD (Yes or No)	ы	Prep	CHO									ners		ATC		W pH 4-5 Y Trizma	
Site.	88500011 SSOW#				- eid	Yes	c BTEX	S_MI	Ð,									contai			:	Z other (sp	ecify)
					Sam	ası	8021B/5035A_M_Calc	1015N	١ <u>ס</u>									of cc					
			Sample	Matrix	bred	WSW	5A_A	NMN	M_2									ther					
		Comula	Туре	(₩=water S=solid,	Well.	E	3/503	do N	RG									Total Number					
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	(C=comp, G=grab)	O≈waste/oil, BT=Tissue, A≃Ai	Field	Perfe	8021	80151	200									otal		Snocis	d Ine	tructions	Alata
	M	\times		tion Code:	X	X							1					Ŕ	/	Specia		u uctions)	Note.
FS01@4' (885-1538-1)	3/20/24	12 26 Mountain		Solid			х	x	x									1					
FS02@4' (885-1538-2)	3/20/24	12 30 Mountain		Solid	T		x	x	x		\uparrow	+	+-	\mathbf{T}				1					
FS03@6' (885-1538-3)	3/20/24	13 10 Mountain		Solid	\uparrow		x	x	x				+	+						<u></u>			
FS04@6' (885-1538-4)	3/20/24	12 37 Mountain		Solid	\top	\vdash	x	x	x			\neg	+-		┝──┦	-							
FS05@6' (885-1538-5)	3/20/24	12 41 Mountain		Solid	T		x	x	x	-	\uparrow												
SW01 (885-1538-6)	3/20/24	12 15 Mountain		Solid			x	x	x				+					-					
SW02 (885-1538-7)	3/20/24	12 20 Mountain		Solid			x	x	x		╈					\neg							
SW03 (885-1538-8)	3/20/24	12 23 Mountain		Solid	Π		x	x	x		+	-	+-					-		<u>-</u>			
										_	+		+-			$\neg \uparrow$			-			<u> </u>	
Note, Since laboratory accreditations are subject to change, Eurofins Environmen laboratory does not currently maintain accreditation in the State of Origin listed ab	Testing South Centr	al LLC places	the ownership	of method, an	alyte	& acc	redita	tion co	mplia	Ince up	on ou	r subco	ntract la	aborate	II	This se	ampie s	shipmer	nt is forw	arded und	ler cha	in-of-custod	
laboratory does not currently maintain accreditation in the State of Origin listed ab accreditation status should be brought to Eurofins Environment Testing South Cer	ove for analysis/tests ntral, LLC attention in	/matrix being a mediately If a	nalyzed the s ill requested a	amples must b ccreditations a	e ship re cur	ped b	oack t o date	o the E e retur	Eurofir m the	ns Envir signed	ronme Chain	nt Test of Cus	ing Sou stody at	uth Cer testing	to said	LC lab	oratory	or othe to Euro	er instruction	ions will b	pe prov Testing	ided Any cl	hanges to ral LLC
Possible Hazard Identification						_		_												nger tha			
Unconfirmed Deliverable Requested I, II III IV Other (specify)							R	əturn	то С	Client			Disp		3y Lai				hive F			Months	
	Primary Deliver	able Rank 2	2			Spe	cial	nstru	ictior	ns/QC	Req	uirem	ents										
Empty Kit Relinquished by		Date			Tir	ne		11	Λ,	<u>ำ</u>				Meth	od of S	Shipme	ent:						
Relinquished by	Date/Time 312112	NY /1	4:15	Company			Recei	ed	N	A	Λ	Λ	0 d	-		Date		al	24	. 10	23	Company	
Relinquished by	Date/Time	<u> </u>		Company		~	Recei	ed by	/ 8 /*	4	- 1					Date/	1	<u> </u>	~7			Company	
Relinquished by	Date/Time			Company		\rightarrow	Recei	ved by	r				·			Date/1	Time					Company	
Custody Seals Intact. Custody Seal No	1					_	Coole	r Tem	peratu	⊔re(s) °(C and	Other	Remark	(S:		1	1	C					
										, .					-1	» ل	<u>41</u>	\bigcirc					
																	1					Ver: 06/08	/2021

Released to Imaging: 5/15/2024 3:13:39 PM

.

3/26/2024

12

Job Number: 885-1538-1

List Source: Eurofins Albuquerque

Login Sample Receipt Checklist

Client: Hilcorp Energy

<6mm (1/4").

Login Number: 1538 List Number: 1 Creator: Casarrubias, Tracy

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

12

Job Number: 885-1538-1

List Source: Eurofins Midland

List Creation: 03/22/24 10:45 AM

Login Sample Receipt Checklist

Client: Hilcorp Energy

Login Number: 1538 List Number: 2 Creator: Kramer, Jessica

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 4/26/2024 2:51:04 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Samantha Grabert Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499 Generated 4/18/2024 4:44:16 PM

JOB DESCRIPTION

Canyon Largo Unit NP 188

JOB NUMBER

885-2890-1

RED F antha Gr lilcorp Er PO BOX Mexico 8 8/2024 4:44

Page 44 of 69

5 6

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

See page two for job notes and contact information

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by

(505)345-3975

Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com

Generated 4/18/2024 4:44:16 PM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	1
Case Narrative	5
Client Sample Results	3
QC Sample Results	7
QC Association Summary	11
Lab Chronicle	13
Certification Summary	14
Chain of Custody	15
Receipt Checklists	16

Definitions/Glossary

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 885-2890-1

3

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

RER

RL RPD

TEF

TEQ TNTC Job ID: 885-2890-1

method.

Case Narrative

Job Narrative

885-2890-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the

Client: Hilcorp Energy Project: Canyon Largo Unit NP 188

quality control (QC) is further explained in narrative comments.

unless attributed to a dilution or otherwise noted in the narrative.

Job ID: 885-2890-1

Eurofins Albuquerque

1 2 3 4 5 6 7 8 9 10

Receipt

The sample was received on 4/16/2024 7:25 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.0°C.

Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015D_DRO: Surrogate recovery for the following sample is outside the upper control limit: (CCV 885-3344/6). Samples without analyte detections are still being reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

Client Sample Results

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188

Client Sample ID: FS2@8' Date Collected: 04/15/24 10:30 Date Received: 04/16/24 07:25

Method: SW846 8015D - Gasc	line Range	Organics ((GRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		4.1	mg/Kg		04/16/24 10:06	04/16/24 14:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
A Due weefly and have a set (Or we)	404		45 044				0.444.040.4.4.4.0.4	
4-Bromofluorobenzene (Surr)	101		15 - 244			04/16/24 10:06	04/16/24 14:04	1
A-Bromonuorobenzene (Surr)		Compound				04/16/24 10:06	04/16/24 14:04	1
	ile Organic	Compound Qualifier		Unit	D	04/16/24 10:06 Prepared	04/16/24 14:04 Analyzed	1 Dil Fac
Method: SW846 8021B - Volat	ile Organic		ds (GC)	<mark>Unit</mark> mg/Kg	<u>D</u>			7 <u>Dil Fac</u> 1
Method: SW846 8021B - Volat Analyte	ile Organic Result		ds (GC) RL		<u>D</u>	Prepared 04/16/24 10:06	Analyzed	7 <u>Dil Fac</u> 1 1
Method: SW846 8021B - Volat Analyte Benzene	ile Organic Result		ds (GC) 	mg/Kg	<u>D</u>	Prepared 04/16/24 10:06	Analyzed 04/16/24 14:04 04/16/24 14:04	7 <u>Dil Fac</u> 1 1 1

Xylenes, Total	ND	0.082	mg/Kg	04/16/24 10:06	04/16/24 14:04	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81	39 - 146		04/16/24 10:06	04/16/24 14:04	1
_ Method: SW846 8015D - Diese	I Range Organics (DI	RO) (GC)				
Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Disast Damas Oscarias (040,000)				04/46/04 40:20	04/40/04 40:44	

Di-n-octyl phthalate (Surr)	108		62 - 134			04/16/24 12:14	1	
Surrogate	%Recoverv	Qualifier	Limits		Prepared	Analvzed	Dil Fac	
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg	04/16/24 10:32	04/16/24 12:14	1	
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg	04/16/24 10:32	04/16/24 12:14	1	

Method: EPA 300.0 - Anions, Io	on Chromatography	/					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	100	60	mg/Kg		04/16/24 12:04	04/16/24 15:01	20

Job ID: 885-2890-1

Lab Sample ID: 885-2890-1

Matrix: Solid

QC Sample Results

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188 Page 50 of 69

Dil Fac

Dil Fac

1

1

Job ID: 885-2890-1

Prep Type: Total/NA

Analyzed

Analyzed

Client Sample ID: FS2@8'

Client Sample ID: FS2@8'

Prep Batch: 3334

Method: 8015D - Gasoline Range Organics (GRO) (GC) Lab Sample ID: MB 885-3334/1-A **Client Sample ID: Method Blank** Matrix: Solid **Analysis Batch: 3374** MB MB **Result Qualifier** RL Unit D Analyte Prepared 04/16/24 10:06 04/16/24 13:40 Gasoline Range Organics [C6 - C10] ND 5.0 mg/Kg MB MB Surrogate %Recovery Qualifier Limits Prepared 4-Bromofluorobenzene (Surr) 101 15 - 244 04/16/24 10:06 04/16/24 13:40 Lab Sample ID: LCS 885-3334/2-A Client Sample ID: Lab Control Sample

				0.101			- Lub Control Cu	
Matrix: Solid							Prep Type: Tota	I/NA
Analysis Batch: 3374							Prep Batch:	3334
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics [C6 -	25.0	26.0		mg/Kg		104	70 - 130	
C10]								

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	211		15 - 244

Lab Sample ID: 885-2890-1 MS Matrix: Solid

Matrix: Solid									Prep Ty	pe: Total/NA
Analysis Batch: 3374									Prep	Batch: 3334
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics [C6 -	ND		20.5	20.9		mg/Kg		102	70 - 130	
C10]										

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	211		15 - 244

Lab Sample ID: 885-2890-1 MSD Matrix: Solid

Matrix: Solid Analysis Batch: 3374									Prep Ty Prep	pe: Tot Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics [C6 - C10]	ND		20.5	21.0		mg/Kg		102	70 - 130	1	20

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	213		15 - 244

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-3334/1- Matrix: Solid Analysis Batch: 3375 Analyte Benzene Ethylbenzene	МВ	МВ					le ID: Method Prep Type: To Prep Batcl	otal/NA
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		04/16/24 10:06	04/16/24 13:40	1
Ethylbenzene	ND		0.050	mg/Kg		04/16/24 10:06	04/16/24 13:40	1
Toluene	ND		0.050	mg/Kg		04/16/24 10:06	04/16/24 13:40	1

Eurofins Albuquerque

Released to Imaging: 5/15/2024 3:13:39 PM

Analyte

Xylenes, Total

Surrogate

Analyte

Benzene

Ethylbenzene

Xylenes, Total

Surrogate

Analyte

Benzene

Ethylbenzene

Xylenes, Total

Surrogate

m,p-Xylene o-Xylene

Toluene

m,p-Xylene

o-Xylene

Toluene

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188

Page 51 of 69 QC Sample Results Job ID: 885-2890-1 Method: 8021B - Volatile Organic Compounds (GC) (Continued) Lab Sample ID: MB 885-3334/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Prep Batch: 3334 Analysis Batch: 3375 MB MB Result Qualifier RL Unit D Prepared Analyzed Dil Fac mg/Kg ND 0 10 04/16/24 10:06 04/16/24 13:40 6 1 MВ MB %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 82 39 - 146 04/16/24 10:06 04/16/24 13:40 1 **Client Sample ID: Lab Control Sample** Lab Sample ID: LCS 885-3334/3-A Matrix: Solid Prep Type: Total/NA Analysis Batch: 3375 Prep Batch: 3334 Spike LCS LCS %Rec Added **Result Qualifier** Unit D %Rec Limits 1.00 0.807 81 70 - 130 mg/Kg 1.00 0.824 mg/Kg 82 70 - 130 2.00 1.67 mg/Kg 84 70 - 130 1.00 0.811 mg/Kg 81 70 - 130 1.00 0.807 81 70 - 130 mg/Kg 3.00 2.48 mg/Kg 83 70 - 130 LCS LCS %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 82 39 - 146 Lab Sample ID: 885-2890-1 MS Client Sample ID: FS2@8' Matrix: Solid **Prep Type: Total/NA** Prep Batch: 3334 **Analysis Batch: 3375** Spike Sample Sample MS MS %Rec Result Qualifier Added **Result Qualifier** Unit %Rec Limits D ND 0.822 0.654 80 70 - 130 mg/Kg 0.669 ND 0.822 mg/Kg 81 70 - 130 ND 1.64 1.36 mg/Kg 83 70 - 130 ND 0.822 0.659 mg/Kg 80 70 - 130 ND 0.822 0.664 mg/Kg 81 70 - 130 ND 2.47 2.02 mg/Kg 82 70 - 130 MS MS %Recovery Qualifier Limits 39 - 146 4-Bromofluorobenzene (Surr) 87 Lab Sample ID: 885-2890-1 MSD Client Sample ID: FS2@8' Matrix: Solid Prep Type: Total/NA Analysis Batch: 3375 Prep Batch: 3334

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.822	0.650		mg/Kg		79	70 - 130	1	20
Ethylbenzene	ND		0.822	0.667		mg/Kg		81	70 - 130	0	20
m,p-Xylene	ND		1.64	1.36		mg/Kg		83	70 - 130	0	20
o-Xylene	ND		0.822	0.666		mg/Kg		81	70 - 130	1	20
Toluene	ND		0.822	0.655		mg/Kg		80	70 - 130	1	20
Xylenes, Total	ND		2.47	2.03		mg/Kg		82	70 - 130	1	20

Eurofins Albuquerque

Released to Imaging: 5/15/2024 3:13:39 PM

QC Sample Results

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 885-2890-1								•,				Client	t Sample I	D: F	S2@8'
Matrix: Solid													Prep Type	e: To	tal/NA
Analysis Batch: 3375													Prep B	atch	: 3334
	MSD	MSD													
Surrogate	%Recovery	Quali	fier	Limits											
4-Bromofluorobenzene (Surr)	86			39 - 146	-										
 Method: 8015D - Diesel	Range O)rgar	nics (E) (ORO)	GC)										
_ Lab Sample ID: MB 885-33	37/1_A										Clio	nt Samr	ole ID: Met	hod	Blank
Matrix: Solid	5771-A										Cile		Prep Type		
Analysis Batch: 3344													Prep B		
		MB I	ИВ												
Analyte	Re	esult (Qualifier		RL		U	nit		D	Pr	repared	Analyzed	ł	Dil Fac
Diesel Range Organics [C10-C28]		ND			10		m	ig/Kg]	_	04/1	6/24 10:32	04/16/24 11	:53	1
Motor Oil Range Organics [C28-C40	0]	ND			50			ig/Kg			04/1	6/24 10:32	04/16/24 11	:53	1
		мв і	ИВ												
Surrogate	%Reco		vıd Qualifier	Lim	ite						D	repared	Analyze	~	Dil Fac
Di-n-octyl phthalate (Surr)	////	91	guanner		134								04/16/24 11		DII Fac 1
		57		02 -	104						0 11 1	0/24 10:02	01/10/2111	.00	,
Lab Sample ID: LCS 885-33	337/2-A								Clie	ent	Sar	nple ID:	Lab Contr	ol S	ample
Matrix: Solid													Prep Type		
Analysis Batch: 3344													Prep B	atch	: 3337
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qualifi	ier	Unit		D	%Rec	Limits		
Diesel Range Organics [C10-C28]				50.0		47.1			mg/Kg			94	60 - 135		
	LCS	LCS													
Surrogate	%Recovery		fier	Limits											
Di-n-octyl phthalate (Surr)	90			62 - 134	-										
<u> </u>														_	
Lab Sample ID: 885-2890-1	MS												t Sample I		
Matrix: Solid													Prep Type		
Analysis Batch: 3344	. .	-		• •									Prep B	atch	: 3337
A	Sample	•		Spike		-	MS		11		-	0/ D	%Rec		
Analyte	Result	Quali	tier	Added			Qualifi	er	Unit		_ <u>D</u>	%Rec	Limits		
Diesel Range Organics [C10-C28]	ND			45.0		45.3			mg/Kg			101	44 - 136		
	MS	MS													
Surrogate	%Recovery		fier	Limits											
Di-n-octyl phthalate (Surr)	100			62 - 134	-										
- - 	MOD											011-0-0		.	
Lab Sample ID: 885-2890-1	NISD												t Sample I		
Matrix: Solid Analysis Batch: 3344													Prep Type		
Analysis Daltil. 3344	Sample	Same		Spike		Men	MSD						Prep B %Rec	aten	RPD
Analyte	Result			Added			Qualifi	ier	Unit		D	%Rec	Limits	RPD	Limit
Diesel Range Organics	ND	quui		45.9		52.4	Guunn		mg/Kg				44 - 136	14	32
[C10-C28]				10.0		52.4								1-1	υz
	MSD	MSD													
Surrogate	%Recovery	Quali	fier	Limits	-										
				00 404											

Job ID: 885-2890-1

Released to Imaging: 5/15/2024 3:13:39 PM

113

Di-n-octyl phthalate (Surr)

62 - 134

QC Sample Results

Page 53 of 69

Client: Hilcorp Energy											Job ID: 885	-2890-1
Project/Site: Canyon Largo Unit NP 18	8											
/lethod: 300.0 - Anions, Ion C	hrom	atoaran	by									
letiou. 300.0 - Amons, ion of		atograp	, i i y									
Lab Sample ID: MB 885-3343/1-A									С	lient Samp	ole ID: Metho	d Blank
Matrix: Solid											Prep Type: T	otal/N/
Analysis Batch: 3405											Prep Batc	h: 3343
	MB	MB										
Analyte	Result	Qualifier		RL		Un	it		D _	Prepared	Analyzed	Dil Fa
Chloride	ND			1.5		mg	/Kg		04	4/16/24 12:04	04/16/24 14:16	
Lab Sample ID: LCS 885-3343/2-A								Clie	ant S	amnle ID:	Lab Control	Sample
Matrix: Solid								One	sint C		Prep Type: T	
Analysis Batch: 3405											Prep Batc	
			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qualifie	er Ur	nit		D %Rec	Limits	
Chloride			15.0		13.7		m	g/Kg		91	90 - 110	
Lab Sample ID: MB 885-3405/20									^	liont Samr	ole ID: Metho	d Blank
Matrix: Solid									Ŭ	nem Samp	Prep Type: T	
Analysis Batch: 3405											пер турс. т	otaint
	МВ	МВ										
Analyte	Result	Qualifier		RL		Un	it		D	Prepared	Analyzed	Dil Fa
Chloride	ND			0.50		mg	/Kg				04/16/24 18:34	
												<u> </u>
Lab Sample ID: MRL 885-3405/19								Cile	ent S	sample ID:	Lab Control	
Matrix: Solid											Prep Type: T	otal/NA
Analysis Batch: 3405			Spike		MDI	MRL					%Rec	
Analyte			Added			Qualifie	r IIr	nit		D %Rec	Limits	
			0.500		0.525	Quanne		iiit.			50 - 150	

QC Association Summary

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188

GC VOA

Prep Batch: 3334

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2890-1	FS2@8'	Total/NA	Solid	5035	
MB 885-3334/1-A	Method Blank	Total/NA	Solid	5035	
LCS 885-3334/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCS 885-3334/3-A	Lab Control Sample	Total/NA	Solid	5035	
885-2890-1 MS	FS2@8'	Total/NA	Solid	5035	
885-2890-1 MS	FS2@8'	Total/NA	Solid	5035	
885-2890-1 MSD	FS2@8'	Total/NA	Solid	5035	
885-2890-1 MSD	FS2@8'	Total/NA	Solid	5035	

Analysis Batch: 3374

Lab Sample ID 885-2890-1	Client Sample ID FS2@8'	Prep Type Total/NA	Matrix Solid	Method 8015D	Prep Batch
MB 885-3334/1-A	Method Blank	Total/NA	Solid	8015D	3334
LCS 885-3334/2-A	Lab Control Sample	Total/NA	Solid	8015D	3334
885-2890-1 MS	FS2@8'	Total/NA	Solid	8015D	3334
885-2890-1 MSD	FS2@8'	Total/NA	Solid	8015D	3334

Analysis Batch: 3375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2890-1	FS2@8'	Total/NA	Solid	8021B	3334
MB 885-3334/1-A	Method Blank	Total/NA	Solid	8021B	3334
LCS 885-3334/3-A	Lab Control Sample	Total/NA	Solid	8021B	3334
885-2890-1 MS	FS2@8'	Total/NA	Solid	8021B	3334
885-2890-1 MSD	FS2@8'	Total/NA	Solid	8021B	3334

GC Semi VOA

Prep Batch: 3337

Lab Sample ID 885-2890-1	Client Sample ID FS2@8'	Prep Type Total/NA	Matrix Solid	Method SHAKE	Prep Batch
MB 885-3337/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-3337/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
885-2890-1 MS	FS2@8'	Total/NA	Solid	SHAKE	
885-2890-1 MSD	FS2@8'	Total/NA	Solid	SHAKE	

Analysis Batch: 3344

Lab Sample ID 885-2890-1	Client Sample ID FS2@8'	Prep Type Total/NA	Matrix Solid	Method 8015D	Prep Batch 3337
MB 885-3337/1-A	Method Blank	Total/NA	Solid	8015D	3337
LCS 885-3337/2-A	Lab Control Sample	Total/NA	Solid	8015D	3337
885-2890-1 MS	FS2@8'	Total/NA	Solid	8015D	3337
885-2890-1 MSD	FS2@8'	Total/NA	Solid	8015D	3337

HPLC/IC

Prep Batch: 3343

Lab Sample ID 885-2890-1	Client Sample ID FS2@8'	Prep Type Total/NA	Solid	Method 300_Prep	Prep Batch
MB 885-3343/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-3343/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	

Job ID: 885-2890-1

QC Association Summary

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188

HPLC/IC

Analysis Batch: 3405

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
885-2890-1	FS2@8'	Total/NA	Solid	300.0	3343	
MB 885-3343/1-A	Method Blank	Total/NA	Solid	300.0	3343	D
MB 885-3405/20	Method Blank	Total/NA	Solid	300.0		
LCS 885-3343/2-A	Lab Control Sample	Total/NA	Solid	300.0	3343	6
MRL 885-3405/19	Lab Control Sample	Total/NA	Solid	300.0	_	
						7
						8
						9
						0
						1

Eurofins Albuquerque

Job ID: 885-2890-1

Page 56 of 69

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188

Client Sample ID: FS2@8' Date Collected: 04/15/24 10:30 Date Received: 04/16/24 07:25

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			3334	JP	EET ALB	04/16/24 10:06
Total/NA	Analysis	8015D		1	3374	JP	EET ALB	04/16/24 14:04
Total/NA	Prep	5035			3334	JP	EET ALB	04/16/24 10:06
Total/NA	Analysis	8021B		1	3375	JP	EET ALB	04/16/24 14:04
Total/NA	Prep	SHAKE			3337	JU	EET ALB	04/16/24 10:32
Total/NA	Analysis	8015D		1	3344	JU	EET ALB	04/16/24 12:14
Total/NA	Prep	300_Prep			3343	KB	EET ALB	04/16/24 12:04
Total/NA	Analysis	300.0		20	3405	SS	EET ALB	04/16/24 15:01

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Job ID: 885-2890-1

Lab Sample ID: 885-2890-1 Matrix: Solid

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy Project/Site: Canyon Largo Unit NP 188

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progr	am	Identification Number	Expiration Date
New Mexico	State		NM9425, NM0901	02-26-25
0,	s are included in this repo does not offer certificatior	,	not certified by the governing author	ity. This list may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
300.0	300_Prep	Solid	Chloride	
8015D	5035	Solid	Gasoline Range Organic	s [C6 - C10]
8015D	SHAKE	Solid	Diesel Range Organics [C10-C28]
8015D	SHAKE	Solid	Motor Oil Range Organic	s [C28-C40]
8021B	5035	Solid	Benzene	
8021B	5035	Solid	Ethylbenzene	
8021B	5035	Solid	Toluene	
8021B	5035	Solid	Xylenes, Total	
Dregon	NELA	D	NM100001	02-26-25

Page 57 of 69

Job ID: 885-2890-1

Eurofins Albuquerque

	nt: Hill FA: S Ing Add	(<u>01</u> p ama	<u>Ener</u>	ustody Record 17 Company Grabert	Turn-Around Standard Project Name Canyon L Project #:		<u>Sampa</u> NP 188	<u></u>				A v awkir	NA /ww.h	allen - All	SIS /ironi buqu Fax	5 L ment erqu 505-	AE tal.co e, NI -345-	M 8710 4107	2 A	TAI		Received by OCD: 4/26/20
	ne #: il or Fa:	×#: ۲	amantha	.Grabert@hilcolp.com	Proiect Mana	aer:)]	୍ୱ				Anal	ysis	Req	l l		1			124 2:
QA/C	QC Pack	age:		□ Level 4 (Full Validation)	S. Hy				-MEBE / TMB's (8021)	/ DRO / MRO)	PCB's		SMISC	CI, F. Br, NO, MO2, PO4, SO			Coliform (Present/Absent)					51:04 PM
	editatio ELAC		□ Az Co □ Other	ompliance	On Ice:	Al Thor Bres	n Son INO		TMB	RO / DR	s/8082	504.1)	or 827			(AC	(Presei					M
	DD (Ty	′pe)_			# of Coolers: Cooler Temp		<u>2.970-1=1.0</u>	09 ((°C)	\sim	TPH:8015D(GRO	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or 8270SIMS RCRA 8 Metals	Br, NO	VOA)	8270 (Semi-VOA)	Coliform					
- Date	Tim	ne	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No	b.	втех	TPH:80	8081 F	EDB (I	PAHs PCRA	C)	8260 (VOA)	8270 (Total C					
Page 4-1	S 10	30	Soil	FS2@8'	1×40Z	Cool	-1		Х	Д				X								
15 of 16											_	_								$\left \right $		_
¹⁶											_	-								┼─┤	-+-	-
												-+								╉╾╂		-
											+	-+							-	++	+	-
				· · · · · · · · · · · · · · · · · · ·							-		-	+						+	+	-
																				+ +		_
						<u> </u>											·			┝─┼		-
Date: V - Date: 4/18	Time S 12 Time	20	Relinquist		Received by:	Via: V AS Via	Date Tim	20 1e		narks	 »: ρι <	sh:	ie c Ide	$\mathcal{O}^{\mathcal{O}}$	ens Ray	oic ons	L Vm Solv	, cor	n rom	⊥⊥		Page
4/18/2024		DD essary,	samples su	M W W W W W W W W W W W W W W W W W W W	contracted to other a	CWrle a	41624 " es This serves as no	ليرجد محياهم		bility ,											(**	<u>e 58 of</u>
																						1 09

10

Client: Hilcorp Energy

Login Number: 2890 List Number: 1 Creator: Proctor, Nancy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

11

List Source: Eurofins Albuquerque

APPENDIX D

Project Photographs

Released to Imaging: 5/15/2024 3:13:39 PM

Hilcorp Energy Company

Photograph 1 View of excavation extent taken on March 20, 2024, looking northwest. Photograph 2 View of the final excavation extent taken on April 15, 2024, looking west.

Released to Imaging: 5/15/2024 3:13:39 PM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 326569

QUESTIONS	
Operator:	OGRID:
Houston, TX 77002	372171
	Action Number:
	326569
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2403157821
Incident Name	NAPP2403157821 CANYON LARGO UNIT NP 188 @ 30-039-20498
Incident Type	Oil Release
Incident Status	Remediation Closure Report Received
Incident Well	[30-039-20498] CANYON LARGO UNIT NP #188

Location of Release Source

Please answer all the questions in this group.	
Site Name	Canyon Largo Unit NP 188
Date Release Discovered	01/31/2024
Surface Owner	Federal

Incident Details

Please answer all the questions in this group

rease answer an the questions in this group.	
Incident Type	Oil Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Cause: Equipment Failure | Dump Valve | Crude Oil | Released: 28 BBL | Recovered: 0 BBL | Crude Oil Released (bbls) Details Lost: 28 BBL Produced Water Released (bbls) Details Not answered. Is the concentration of chloride in the produced water >10,000 mg/l No Condensate Released (bbls) Details Not answered. Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered. Are there additional details for the questions above (i.e. any answer containing Not answered. Other, Specify, Unknown, and/or Fire, or any negative lost amounts)

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Page 63 of 69

Action 326569

QUESTIONS (continued) Operator: OGRID: HILCORP ENERGY COMPANY 372171 1111 Travis Street Action Number: Houston, TX 77002 326569 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence reme	N/A diation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of
	leted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of
to report and/or file certain release notifications and perform corrective actions for reli the OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required eases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface or does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist Email: shyde@ensolum.com

Date: 04/26/2024

HILCORP ENERGY COMPANY

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

Operator:

QUESTIONS Site Characterization

A wetland

storage site

Remediation Plan

Chloride

BTEX

Benzene

GRO+DRO

A subsurface mine

A 100-year floodplain

elease discovery date

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1111 Travis Street

Houston, TX 77002

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

OGRID:

Action Number:

Action Type:

372171

326569

[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS, Page 3

Action 326569

Page 64 of 69

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the What is the shallowest depth to groundwater beneath the area affected by the Between 100 and 500 (ft.) release in feet below ground surface (ft bgs) What method was used to determine the depth to ground water NM OSE iWaters Database Search Did this release impact groundwater or surface water No What is the minimum distance, between the closest lateral extents of the release and the following surface areas: A continuously flowing watercourse or any other significant watercourse Between 300 and 500 (ft.) Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark) Between 1/2 and 1 (mi.) An occupied permanent residence, school, hospital, institution, or church Greater than 5 (mi.) A spring or a private domestic fresh water well used by less than five households Between 1 and 5 (mi.) for domestic or stock watering purposes Any other fresh water well or spring Between 1 and 5 (mi.) Incorporated municipal boundaries or a defined municipal fresh water well field Greater than 5 (mi.) Between 300 and 500 (ft.) Greater than 5 (mi.) An (non-karst) unstable area Greater than 5 (mi.) Categorize the risk of this well / site being in a karst geology None Between 300 and 500 (ft.) Did the release impact areas not on an exploration, development, production, or No Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) (EPA 300.0 or SM4500 CI B) 610 (EPA SW-846 Method 8015M) TPH (GRO+DRO+MRO) 1020 (EPA SW-846 Method 8015M) 1020 (EPA SW-846 Method 8021B or 8260B) 8.2 (EPA SW-846 Method 8021B or 8260B) 0.1 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation On what estimated date will the remediation commence 03/20/2024 On what date will (or did) the final sampling or liner inspection occur 04/15/2024 On what date will (or was) the remediation complete(d) 04/15/2024 What is the estimated surface area (in square feet) that will be reclaimed 0 What is the estimated volume (in cubic yards) that will be reclaimed 0

378 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

600

What is the estimated surface area (in square feet) that will be remediated

What is the estimated volume (in cubic yards) that will be remediated

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 326569

QUESTI	ONS (continued)
Operator: HILCORP ENERGY COMPANY	OGRID: 372171
1111 Travis Street	
Houston, TX 77002	Action Number: 326569
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	ENVIROTECH LANDFARM #2 [fEEM0112336756]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	snowledge and understand that pursuant to OCD rules and regulations all operators are required uses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist Email: shyde@ensolum.com Date: 04/26/2024
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in according significantly deviate from the remediation plan proposed, then it should consult with the division to d	ordance with the physical realities encountered during remediation. If the responsible party has any need to etermine if another remediation plan submission is required

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Action 326569

Page 66 of 69

QUESTIONS (continued)	
Operator: HILCORP ENERGY COMPANY	OGRID: 372171
1111 Travis Street Houston, TX 77002	Action Number: 326569
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 326569

Page 67 of 69

QUESTIONS (continued)

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	326569
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	332837
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	04/15/2024
What was the (estimated) number of samples that were to be gathered	2
What was the sampling surface area in square feet	400

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	600	
What was the total volume (cubic yards) remediated	378	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	0	
What was the total volume (in cubic yards) reclaimed	0	
Summarize any additional remediation activities not included by answers (above)	NA	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal state, or		

vater, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or
ocal laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed
rior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

I hereby agree and sign off to the above statement	Name: Stuart Hyde
	Title: Senior Geologist
	Email: shyde@ensolum.com
	Date: 04/26/2024

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 326569

Page 68 of 69

QUESTIONS (continued) Operator: OGRID: HILCORP ENERGY COMPANY 372171 1111 Travis Street Action Number: Houston, TX 77002 326569 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure) QUESTIONS

No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 69 of 69

CONDITIONS

Action 326569

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	326569
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By		Condition Date
nvelez	None	5/15/2024