

April 22, 2024

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Site Summary Report and Closure Request Kate Standage 1E San Juan County, New Mexico Hilcorp Energy Company NMOCD Incident No: nAPP2406119660

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Site Summary Report and Closure Request* associated with a condensate and produced water release at the Kate Standage 1E natural gas production well (Site). The Site is located on private land in Unit A, Section 12, Township 30 North, Range 12 West, San Juan County, New Mexico (Figure 1).

SITE BACKGROUND

On February 29, 2024, Hilcorp operations identified a release of 8.35 barrels (bbls) of condensate and 6.68 bbls of produced water at the Site. While conducting tank gauging, operations noted a reduction in gauge height on the 300-bbl aboveground storage tank, indicating a probable loss due to a hole in the tank bottom resulting from corrosion. This hole had not been detectable during routine Site inspections or weekly Audio, Visual, and Olfactory (AVO) surveys. As a precautionary measure, the tank and oil dump were removed from service and a water truck, along with a tank cleaning crew, were mobilized to remove remaining liquids. Although the spilled fluids remained contained within secondary containment, they could not be recovered. Hilcorp operations will assess and recoat the tank before it is returned to service.

Hilcorp notified the New Mexico Oil Conservation Division (NMOCD) within 24 hours of discovery and submitted an initial *Form C-141 Release Notification* on February 29, 2024. NMOCD assigned the release incident number nAPP2406119660.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

As part of the Site investigation, local geology/hydrogeology and nearby sensitive receptors were assessed in accordance with Title 19, Chapter 15, Part 29, Sections 11 and 12 (19.15.29.11 and 12) of the New Mexico Administrative Code (NMAC).

The Site is located within the Nacimiento Geologic Formation. In the report titled "*Hydrogeology and Water Resources of San Juan Basin, New Mexico*" (Stone, et. al., 1983), the Nacimiento Formation is characterized by interbedded black carbonaceous mudstones and white, coarse-grained sandstones, which ranges in thickness from 418 feet to 2,232 feet. The hydrogeologic properties of the Nacimiento Formation display variable hydrogeologic properties dependent on location. Where sufficient yield is

Site Summary Report and Closure Request Kate Standage 1E Hilcorp Energy Company

ENSOLUM

present, the primary use of water from this formation is for domestic and/or livestock supply. The Nacimiento Formation is underlain by the Ojo Alamo sandstone (Stone et. al., 1983).

The closest significant watercourse is an unnamed dry wash located 340 feet west of the Site and is defined by a bed and bank and is identified by a dashed blue line on a United States Geologic Survey (USGS) 7.5-minute quadrangle map. The Site is greater than 200 feet from any lakebed, sinkhole, or playa lake, and greater than 300 feet from any wetland (Figure 1). The nearest fresh-water well is New Mexico Office of the State Engineer (NMOSE) permitted well SJ-02140 (Appendix A), located approximately 0.27 miles northeast of the Site. The recorded depth to water on the NMOSE database is 60 feet below ground surface (bgs). The NMOSE well is approximately at the same elevation as the Site, therefore depth to groundwater at the Site is estimated to be greater than 50 feet bgs. No wellhead protection areas, springs, or domestic/stock wells are located within a 500-foot radius from the Site. The Site is not within a 100-year floodplain, overlying a subsurface mine, or located within an area underlain by unstable geology (area designated as low potential karst by the Bureau of Land Management (BLM)). Schools, hospitals, institutions, churches, and/or other occupied permanent residence or structures are not located within 300 feet of the Site.

SITE CLOSURE CRITERIA

Based on the information presented above and in accordance with the *Table I, Closure Criteria for Soils Impacted by a Release* (19.15.29.12 NMAC), the following Closure Criteria for constituents of concern (COCs) should be applied to the Site:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH) as a combination of gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO): 2,500 mg/kg
- GRO+DRO: 1,000 mg/kg
- Chloride: 10,000 mg/kg

2024 SITE ASSESSMENT ACTIVITIES

To assess potential soil impacts resulting from the release, Hilcorp and Ensolum advanced three potholes (PH01 through PH03) using a backhoe on March 26, 2024. The NMOCD was notified prior to commencing on-Site activities, with sampling notifications provided in Appendix B. All three potholes were advanced directly adjacent to the aboveground tank (Figure 2) to assess petroleum hydrocarbon and chloride concentrations at the release source. All three potholes were also advanced to a depth of 8 feet bgs, and soil was screened at 2-foot intervals. During potholing activities, Ensolum personnel observed and field screened the soil for petroleum hydrocarbon staining, odors, and chloride crusting. Soil samples were field screened for the presence of organic vapors using a calibrated photoionization detector (PID) and chloride using Hach[®] QuanTab[®] test strips.

Two soil samples were collected from each pothole: one from the depth interval indicating the greatest potential for impacts based on field screening measurements/observation and one from the terminus of each pothole. Soil samples were collected directly into laboratory-provided jars, immediately placed on ice, and submitted to Eurofins Environment Testing (Eurofins) for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-DRO, and TPH-MRO following EPA Method 8015M/D; and chloride following EPA Method 300.0. Field indications of petroleum hydrocarbons, including staining, odors, and/or elevated PID readings, were not observed in any of the potholes during the work. Photographs taken during field activities are attached as Appendix C.

Site Summary Report and Closure Request Kate Standage 1E Hilcorp Energy Company

Concentrations of total BTEX, TPH-GRO, TPH-DRO, and TPH-MRO were not detected above laboratory report limits in any of the soil samples collected during the March 2024 assessment and were all in compliance with the Closure Criteria and reclamation requirement. Chloride was detected in all samples analyzed during the delineation effort; however, all detected concentrations were below the NMOCD Table I Closure Criteria and the reclamation requirement. Soil sample analytical results are summarized in Table 1, with complete laboratory analytical reports attached as Appendix D.

CONCLUSIONS AND CLOSURE REQUEST

Based on the delineation activities and soil analytical results described above, petroleum hydrocarbon and/or chloride contaminants were not detected in any of the samples collected at the Site above the NMOCD Table I Closure Criteria or reclamation requirement. The Site appears to be absent of soil impacts and waste-containing soil. As such, Site conditions appear to be protective of human health, the environment, and groundwater and Hilcorp respectfully requests closure for Incident Number nAPP2406119660.

REFERENCES

Stone, W., Lyford, F., Frenzel, P., Mizell, N., & Padgett, E. (1983). Hydrogeology and Water Resources of San Juan Basin, New Mexico. New Mexico Bureau of Mines & Mineral Resources.

We appreciate the opportunity to provide this document to the NMOCD. If you should have any questions or comments regarding this document, please contact the undersigned.

Sincerely, Ensolum, LLC

Wer Winhut

Wes Weichert Project Geologist (816) 266-8732 wweichert@ensolum.com

Attachments:

- Figure 1: Site Receptor Map Figure 2: Delineation Soil Sample Locations
- Table 1:
 Soil Sample Analytical Results
- Appendix A: NMOSE Well Log
- Appendix B: Agency Sampling Notification
- Appendix C: Photographic Log
- Appendix D: Laboratory Analytical Reports

Stuart Hyde Senior Managing Geologist (970) 903-1607 shyde@ensolum.com

FIGURES

Received by OCD: 4/22/2024 4.47.51 PM

Page 5 of 51

San Juan County, New Mexico, United States

Released to Imaging: 5/15/2024 11:24:30 AM

Released to Imaging: 5/15/2024 11:24.30 AM

TABLES

.

🖻 ENSOLUM

					DELINEATION	TABI SOIL SAMPL Kate Stan Hilcorp Energ San Juan Count	.E ANALYTICA dage 1E ly Company	L RESULTS					
Sample ID	Date	Depth (feet)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH MRO (mg/kg)	TPH GRO+DRO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)
NMOCD Closure	Criteria for Soils Release	Impacted by a	10	NE	NE	NE	50	NE	NE	NE	1,000	2,500	10,000
PH01@2'	3/26/2024	2	<0.0020	<0.0020	<0.0020	<0.0040	<0.0040	<51	<51	<51	<51	<51	50
PH01@8'	3/26/2024	8	<0.0020	<0.0020	<0.0020	<0.0040	<0.0040	<50	<50	<50	<50	<50	37
PH02@2'	3/26/2024	2	<0.0020	<0.0020	<0.0020	<0.0040	<0.0040	<50	<50	<50	<50	<50	48
PH02@8'	3/26/2024	8	<0.0020	<0.0020	<0.0020	<0.0040	<0.0040	<50	<50	<50	<50	<50	62
PH03@2'	3/26/2024	2	<0.0020	<0.0020	<0.0020	<0.0040	<0.0040	<50	<50	<50	<50	<50	38
PH03@8'	3/26/2024	8	<0.0020	<0.0020	<0.0020	<0.0040	<0.0040	<50	<50	<50	<50	<50	46

Notes:

bgs: below ground surface BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes mg/kg: milligrams per kilogram NE: Not Established NMOCD: New Mexico Oil Conservation Division ': feet GRO: Gasoline Range Organics DRO: Diesel Range Organics MRO: Motor Oil/Lube Oil Range Organics TPH: Total Petroleum Hydrocarbon < : indicates result less than the stated laboratory reporting limit (RL)

Concentrations in **bold** and shaded exceed the New Mexico Oil Conservation Division Table I Closure Criteria for Soils Impacted by a Release

APPENDIX A

NMOSE Well Log

			ST /	TE ENGINEER	OFFICE		Revised June 1972
				WELL RECO	ORD		*
			Section	I. GENERAL IN	FORMATION	Owned	
(A) Owner of	of wellBO	BAZE G	ARCZA	<u> </u>		Owner	r's Well'N d. 9
Street o City and	r Post Office A I State <u> </u>	ddress <u>PO</u> ECN.M	BOX 13 8741	·//) '0		Owner Owner Owner Owner Owner	
Well was drille	d under Permi	No. <u></u>	T- 2140	2	and is located	SANIA FE, NE I in the:	W MEXICO
							geN.M.P.M.
					_		goii
				of the			
							Zone in
				······	_		Grant.
							WD-717
							Size of hole in.
Elevation of la	ind surface or .			at well	is 3400	_ ft. Total depth	of wellft.
Completed we	ll is 🕑 s	hallow 🗀	artesian.	I	Depth to water	upon completion	of well ft.
D	in Fost		<u>-</u>	CIPAL WATER	-BEARING ST	RATA	·····
From	in Feet	Thickness in Feet	5	Description of W	/ater-Bearing F	ormation	Estimated Yield (gallons per minute)
6.0	70	10	w	ATER BEAK	BNG SAN	0 + GRAVEL	10
· · · · · · · · · · · · · · · · · · ·	. 						
	<u> </u>				4. 4.7		
			Sectio	n 3. RECORD (OF CASING		
Diameter (inches)	Pounds per foot	Threads per in.	Depth Top	in Feet Bottom	Length (feet)	Type of Show	Perforations From To
6	SC4 40	Puc		70	20	·	60 70
····						<u>├</u>	
	<u></u>	<u>+</u>				· · · · · · · · · · · · · · · · · · ·	
	J	l	ion 4 PECO	L RD OF MUDDII			
	in Feet To	Hole Diameter	Sacl	cs Cui	bic Feet		d of Placement
					Cement		
Dep th From	 	<u> </u>					
		<u> </u>					8 MAR
		1					1 m n n n n
		<u> </u>			G RECORD	RQU	
From		<u> </u>		n 5. PLUGGING		re-	
From Plugging Contr Address	actor				[]		Get for an and a second
From Plugging Contr Address Plugging Metho	actor od				No.	Depth in F Top	Bottom of Cement
From Plugging Contr Address Plugging Metho Date Well Plug Plugging appro	od					Depth in F Top	Bottom of Cement
From Plugging Contr Address Plugging Metho Date Well Plug	od					Depth in F Top	Bottom of Cement
From Plugging Contr Address Plugging Metho Date Well Plug Plugging appro	od ged ved by:	State Eng	ineer Répress			Depth in F	Bottom of Cement
From Plugging Contr Address Plugging Metho Date Well Plug Plugging appro	od ged ved by: 	State Eng	ineer Répress	entative	I 2 3 4 GINEER ONL	Depth in F	Bottom of Cement

Danah			Section 6. LOG OF HOLE
Depth From	To	Thickness in Feet	Color and Type of Material Encountered
	60	60	SAND + CLAY
60	70	10	SAND + CLAY WATTER BEARENS SAND + GRAVEL
	┝──── <u>─</u> ──		
		 	
	ļ	+ <u>-</u>	
	Negara di Ma		
. <u> </u>		+	
	ļ		
		<u>+</u>	
		: 	Figure 1. A second s
	—— ——	†	
		<u> </u>	
	····	<u> </u>	
I			
· ·			
	<u> </u>		i ·

Section 7. REMARKS AND ADDITIONAL INFORMATION

1. n. 1984 (S γ. ز ۲

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, exc. Section 5, shall be answered as completely. incurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed. Released to Imaging: 5/15/2024 11:24:30 AM

APPENDIX B

Agency Sampling Notification

From:	OCDOnline@state.nm.us
To:	Stuart Hyde
Subject:	The Oil Conservation Division (OCD) has accepted the application, Application ID: 325356
Date:	Wednesday, March 20, 2024 5:44:08 PM

EXTERNAL EMAIL]

To whom it may concern (c/o Stuart Hyde for HILCORP ENERGY COMPANY),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2406119660.

The sampling event is expected to take place:

When: 03/25/2024 @ 12:30 Where: A-12-30N-12W 1000 FNL 725 FEL (36.831216,-108.042821)

Additional Information: Contact PM Stuart Hyde, 970-903-1607

Additional Instructions: Kate Standage 1E well pad, coordinates 36.831216, -108.042821

Sampling being conducted for initial assessment and delineation purposes.

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

From:	Velez, Nelson, EMNRD
To:	Stuart Hyde
Cc:	Mitch Killough; Wes Weichert
Subject:	Re: [EXTERNAL] FW: The Oil Conservation Division (OCD) has accepted the application, Application ID: 326280
Date:	Monday, March 25, 2024 9:19:23 AM
Attachments:	image001.png
	image002.png
	image003.png
	image004.png
	Outlook-3gbb5qp0.png

[**EXTERNAL EMAIL**]

Good morning Stuart,

Thank you for the notice. Your variance request specifically addressing 19.15.29.12D (1a) NMAC is approved.

If an OCD representative is not on-site on the date &/or time given, please sample per 19.15.29 NMAC or from an OCD pre-approved sampling plan. For whatever reason, if the sampling timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of this change may result in the closure sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Stuart Hyde <shyde@ensolum.com>
Sent: Monday, March 25, 2024 9:15 AM
To: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Cc: Mitch Killough <mkillough@hilcorp.com>; Wes Weichert <wweichert@ensolum.com>
Subject: [EXTERNAL] FW: The Oil Conservation Division (OCD) has accepted the application,

Application ID: 326280

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson,

Due to weather conditions, work originally scheduled for 3/25/2024 at the Kate Standage 1E site has been changed to begin on 3/26/2024. As such, we are requesting a variance of the 2-business day sampling notification requirement set forth in 19.15.29.12.D.(1).(a) in order to collect confirmation samples on Tuesday March 26, 2024 at 12:30 PM.

Please let us know if you have any questions. Thanks.

Stuart Hyde, PG (Licensed in WA/TX) Senior Geologist 970-903-1607 Ensolum, LLC in f

"If you want to go fast, go alone. If you want to go far, go together." - African Proverb

From: OCDOnline@state.nm.us <OCDOnline@state.nm.us>
Sent: Monday, March 25, 2024 9:08 AM
To: Stuart Hyde <shyde@ensolum.com>
Subject: The Oil Conservation Division (OCD) has accepted the application, Application ID: 326280

[**EXTERNAL EMAIL**]

To whom it may concern (c/o Stuart Hyde for HILCORP ENERGY COMPANY), The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2406119660.

The sampling event is expected to take place:

When: 03/26/2024 @ 12:30 **Where:** A-12-30N-12W 1000 FNL 725 FEL (36.831216,-108.042821)

Additional Information: Contact PM Stuart Hyde, 970-903-1607

Additional Instructions: Kate Standage 1E well pad, coordinates 36.831216, -108.042821

Due to weather conditions, work originally scheduled for 3/25/2024 has been changed to begin on 3/26/2024. As such, we are requesting a variance of the 2-business day sampling notification requirement set forth in 19.15.29.12.D.(1).(a) in order to collect confirmation samples on Tuesday March 26, 2024 at 12:30 PM.

An OCD representative may be available onsite at the date and time reported. In the absence

or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

From:	OCDOnline@state.nm.us
To:	Stuart Hyde
Subject:	The Oil Conservation Division (OCD) has accepted the application, Application ID: 326280
Date:	Monday, March 25, 2024 9:07:54 AM

EXTERNAL EMAIL]

To whom it may concern (c/o Stuart Hyde for HILCORP ENERGY COMPANY),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2406119660.

The sampling event is expected to take place:

When: 03/26/2024 @ 12:30 Where: A-12-30N-12W 1000 FNL 725 FEL (36.831216,-108.042821)

Additional Information: Contact PM Stuart Hyde, 970-903-1607

Additional Instructions: Kate Standage 1E well pad, coordinates 36.831216, -108.042821

Due to weather conditions, work originally scheduled for 3/25/2024 has been changed to begin on 3/26/2024. As such, we are requesting a variance of the 2-business day sampling notification requirement set forth in 19.15.29.12.D.(1).(a) in order to collect confirmation samples on Tuesday March 26, 2024 at 12:30 PM.

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

APPENDIX C

Photographic Log

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 4/22/2024 4:47:51 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499 Generated 4/2/2024 10:01:03 PM

JOB DESCRIPTION

Kate Standage 1E

JOB NUMBER

885-1870-1

Eurofins Albuquerque Albuquerque NM 87109

5 6

See page two for job notes and contact information.

4901 Hawkins NE

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Authorized for release by

(505)345-3975

Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com

Generated 4/2/2024 10:01:03 PM

Laboratory Job ID: 885-1870-1

Table of Contents

1
3
4
5
6
10
15
17
19
20
22

Definitions/Glossary

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Contains No Free Liquid

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE)

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Dilution Factor

Duplicate Error Ratio (normalized absolute difference)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Minimum Detectable Activity (Radiochemistry)

CNF

DER

DL

DLC

EDL

LOD

MCL

MDA

MDC

MDL

ML

MPN

MQL

NC

ND

NEG

POS

PQL PRES

QC

RER RL

RPD

TEF

TEQ

TNTC

Dil Fac

DL, RA, RE, IN

Job ID: 885-1870-1

Page 24 of 51

Project/Site:	Kate Standage 1E	
Qualifiers		3
GC VOA Qualifier	Qualifier Description	4
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	5
S1-	Surrogate recovery exceeds control limits, low biased.	
GC Semi VC	Α	
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	7
HPLC/IC		
Qualifier	Qualifier Description	8
F1	MS and/or MSD recovery exceeds control limits.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	1(
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Furofins	Albuquerqu	ie
	Albuqueiqu	

Case Narrative

Job ID: 885-1870-1

Page 25 of 51

Job ID: 885-1870-1

Eurofins Albuquerque

Job Narrative 885-1870-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/27/2024 7:00 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.1°C.

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: PH01@8' (885-1870-2), PH02@2' (885-1870-3) and (885-1870-A-1-E MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-76839 and analytical batch 880-76687 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-76837 and analytical batch 880-76762 was outside the upper control limits.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-76919 and analytical batch 880-76887 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The Chloride matrix spike (MS) recoveries for preparation batch 880-76941 and 880-76941 and analytical batch 880-76961 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

PH01@2' (885-1870-1), PH01@8' (885-1870-2), PH02@2' (885-1870-3), PH02@8' (885-1870-4), PH03@2' (885-1870-5), PH03@8' (885-1870-6) and (885-1870-A-1-I MS)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Client Sample ID: PH01@2' Date Collected: 03/26/24 11:24 Date Received: 03/27/24 07:00

loh	ID	88

Job ID: 885-1870-1

Lab Sample ID: 885-1870-1 Matrix: Solid

: Solid

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	F1	0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:01	1
Toluene	ND	F1	0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:01	
Ethylbenzene	ND	F2 F1	0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:01	
Kylenes, Total	ND	F2 F1	0.0040	mg/Kg		03/28/24 11:49	03/28/24 23:01	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	77		70 - 130			03/28/24 11:49	03/28/24 23:01	
1,4-Difluorobenzene (Surr)	81		70 - 130			03/28/24 11:49	03/28/24 23:01	
	Diesel Range	• Organics	(DRO) (GC)					
Method: SW846 8015B NM - [Organics Qualifier	(DRO) (GC) RL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015B NM - I Analyte Gasoline Range Organics		-		Unit mg/Kg	<u>D</u>	Prepared 03/28/24 12:48	Analyzed 03/29/24 04:39	Dil Fa
Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	-	RL		D		03/29/24 04:39	Dil Fa
Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result ND	-	RL 51	mg/Kg	<u>D</u>	03/28/24 12:48	03/29/24 04:39 03/29/24 04:39	Dil Fa
Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result ND ND	Qualifier	RL 51	mg/Kg mg/Kg	D	03/28/24 12:48 03/28/24 12:48	03/29/24 04:39 03/29/24 04:39	Dil Fa
Method: SW846 8015B NM - I Analyte Gasoline Range Organics (GRO)-C6-C10	Result ND ND ND	Qualifier	RL 51 51 51 51	mg/Kg mg/Kg	<u>D</u>	03/28/24 12:48 03/28/24 12:48 03/28/24 12:48	03/29/24 04:39 03/29/24 04:39 03/29/24 04:39	

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	50 F1	5.0	mg/Kg			04/01/24 14:33	1

Client Sample ID: PH01@8'

Date Collected: 03/26/24 11:30 Date Received: 03/27/24 07:00

Lab Sample ID: 885-1870-2 Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:21	1
Toluene	ND		0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:21	1
Ethylbenzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:21	1
Xylenes, Total	ND		0.0040	mg/Kg		03/28/24 11:49	03/28/24 23:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	58	S1-	70 - 130			03/28/24 11:49	03/28/24 23:21	1
1,4-Difluorobenzene (Surr)	98		70 - 130			03/28/24 11:49	03/28/24 23:21	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier Unit RL D Prepared Analyzed Dil Fac Gasoline Range Organics ND 50 mg/Kg 03/28/24 12:48 03/29/24 05:00 1 (GRO)-C6-C10 **Diesel Range Organics (Over** ND 50 mg/Kg 03/28/24 12:48 03/29/24 05:00 1 C10-C28) Oll Range Organics (Over C28-C36) ND 50 03/28/24 12:48 03/29/24 05:00 mg/Kg 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 122 70 - 130 03/28/24 12:48 03/29/24 05:00 1 104 70 - 130 03/28/24 12:48 03/29/24 05:00 o-Terphenyl 1

Eurofins Albuquerque

4/2/2024

Page 26 of 51

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Client Sample ID: PH01@8' Date Collected: 03/26/24 11:30 Date Received: 03/27/24 07:00

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Job ID: 885-1870-1

Lab Sample ID: 885-1870-2 Matrix: Solid

5

Matrix: Solid

		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	37		5.0	mg/Kg			04/01/24 14:51	
lient Sample ID: PH02@	2'					Lab Samp	le ID: 885-1	870-
Date Collected: 03/26/24 11:44								x: Soli
Date Received: 03/27/24 07:00								
Method: SW846 8021B - Volat		Compours	de (GC)					
Analyte	-	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:42	
Toluene	ND		0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:42	
Ethylbenzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/28/24 23:42	
Xylenes, Total	ND		0.0040	mg/Kg		03/28/24 11:49	03/28/24 23:42	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		-	70 - 130			03/28/24 11:49		
1,4-Difluorobenzene (Surr)	95		70 - 130			03/28/24 11:49		
 A second s								
Method: SW846 8015B NM ₋ Γ	Jiesel Range		s (DRO) (GC)					
Method: SW846 8015B NM - D Analyte		e Organics Qualifier	s (DRO) (GC) RL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte Gasoline Range Organics		Qualifier		Unit mg/Kg	<u>D</u>	Prepared 03/28/24 12:48		Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result	Qualifier	RL		<u>D</u>	03/28/24 12:48		Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result ND	Qualifier	RL 50	mg/Kg	<u>D</u>	03/28/24 12:48 03/28/24 12:48	03/29/24 05:21	Dil Fa
	Result ND ND	Qualifier	RL 50 50	mg/Kg	<u> </u>	03/28/24 12:48 03/28/24 12:48	03/29/24 05:21 03/29/24 05:21	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result ND ND ND	Qualifier Qualifier	RL 50 50 50	mg/Kg	D	03/28/24 12:48 03/28/24 12:48 03/28/24 12:48	03/29/24 05:21 03/29/24 05:21 03/29/24 05:21 Analyzed	
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result ND ND %Recovery	Qualifier Qualifier	RL 50 50 50 50 50 Limits	mg/Kg	<u> </u>	03/28/24 12:48 03/28/24 12:48 03/28/24 12:48 03/28/24 12:48 Prepared 03/28/24 12:48	03/29/24 05:21 03/29/24 05:21 03/29/24 05:21 Analyzed	Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result ND ND %Recovery 126 110	Qualifier Qualifier	RL 50 50 50 50 50 50 70 - 130 70 - 130	mg/Kg	<u>D</u>	03/28/24 12:48 03/28/24 12:48 03/28/24 12:48 03/28/24 12:48 Prepared 03/28/24 12:48	03/29/24 05:21 03/29/24 05:21 03/29/24 05:21 03/29/24 05:21 03/29/24 05:21	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result ND ND %Recovery 126 110	Qualifier Qualifier	RL 50 50 50 50 50 50 70 - 130 70 - 130	mg/Kg	D	03/28/24 12:48 03/28/24 12:48 03/28/24 12:48 03/28/24 12:48 Prepared 03/28/24 12:48	03/29/24 05:21 03/29/24 05:21 03/29/24 05:21 03/29/24 05:21 03/29/24 05:21	Dil Fa

Client Sample ID: PH02@8'

Date Collected: 03/26/24 11:50

Date Received: 03/27/24 07:00

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:03	1
Toluene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:03	1
Ethylbenzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:03	1
Xylenes, Total	ND		0.0040	mg/Kg		03/28/24 11:49	03/29/24 00:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130			03/28/24 11:49	03/29/24 00:03	1
1,4-Difluorobenzene (Surr)	102		70 - 130			03/28/24 11:49	03/29/24 00:03	1
Method: SW846 8015B NM	- Diesel Range	• Organics	(DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result Q	luaimer RL	Unit	U	Prepared	Analyzed	DIIFac
Gasoline Range Organics	ND	50	mg/Kg		03/28/24 12:48	03/29/24 05:42	1
(GRO)-C6-C10							

Eurofins Albuquerque

Lab Sample ID: 885-1870-4

Released to Imaging: 5/15/2024 11:24:30 AM

RL

50

50

RL

5.0

Limits

70 - 130

70 - 130

Unit

mg/Kg

mg/Kg

Unit

mg/Kg

D

D

Prepared

Prepared

Prepared

03/28/24 12:48 03/29/24 05:42

03/28/24 12:48 03/29/24 05:42

03/28/24 12:48 03/29/24 05:42

03/28/24 12:48 03/29/24 05:42

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Client Sample ID: PH02@8'

Date Collected: 03/26/24 11:50

Date Received: 03/27/24 07:00

Oll Range Organics (Over C28-C36)

Diesel Range Organics (Over

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

Chloride

1-Chlorooctane

Job ID: 885-1870-1

Lab Sample ID: 885-1870-4

Analyzed

Analyzed

Analyzed

04/01/24 15:16

Matrix: Solid

Page 28 of 51

Dil Fac

Dil Fac

Dil Fac

1

1

1

Lab Sample ID: 885-1870-5

Client Sample ID: PH03@ Date Collected: 03/26/24 12:14 Date Received: 03/27/24 07:00	2'					Lab Samp	le ID: 885-1 Matrix	870-5 : Solic
Method: SW846 8021B - Volat	ile Organic	Compoun	ds (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:23	
Toluene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:23	
Ethylbenzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:23	
Xylenes, Total	ND		0.0040	mg/Kg		03/28/24 11:49	03/29/24 00:23	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130			03/28/24 11:49	03/29/24 00:23	
1,4-Difluorobenzene (Surr)	101		70 - 130			03/28/24 11:49	03/29/24 00:23	ŕ
 Method: SW846 8015B NM - D	iesel Range	• Organics	s (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/29/24 12:09	03/29/24 12:22	
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 12:22	
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 12:22	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	120		70 - 130			03/29/24 12:09	03/29/24 12:22	
o-Terphenyl	101		70 - 130			03/29/24 12:09	03/29/24 12:22	
Method: EPA 300.0 - Anions, I	on Chroma	tography ·	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	38		5.0	mg/Kg			04/01/24 15:22	
Client Sample ID: PH03@	B'					Lab Samp	le ID: 885-1	870-6
Date Collected: 03/26/24 12:20 Date Received: 03/27/24 07:00								: Solic
Method: SW846 8021B - Volat Analyte	-	Compoun Qualifier	ds (GC) _{RL}	Unit	D	Prepared	Analyzed	Dil Fa

	Tolallo organio							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:44	1
Toluene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:44	1
Ethylbenzene	ND		0.0020	mg/Kg		03/28/24 11:49	03/29/24 00:44	1
Xylenes, Total	ND		0.0040	mg/Kg		03/28/24 11:49	03/29/24 00:44	1

Eurofins Albuquerque

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

ND

ND

126

108

62

Result Qualifier

%Recovery

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

Qualifier

Released to Imaging: 5/15/2024 11:24:30 AM

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Client Sample ID: PH03@8' Date Collected: 03/26/24 12:20 Date Received: 03/27/24 07:00

Released to Imaging: 5/15/2024 11:24:30 AM

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130			03/28/24 11:49	03/29/24 00:44	1
1,4-Difluorobenzene (Surr)	99		70 - 130			03/28/24 11:49	03/29/24 00:44	1
Method: SW846 8015B NM - I	Diesel Range	• Organics	6 (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/29/24 12:09	03/29/24 13:26	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 13:26	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/29/24 12:09	03/29/24 13:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	116		70 - 130			03/29/24 12:09	03/29/24 13:26	1
o-Terphenyl	100		70 - 130			03/29/24 12:09	03/29/24 13:26	1
Method: EPA 300.0 - Anions,	Ion Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	46		5.0	mg/Kg			04/01/24 15:28	1

Page 9 of 23

Job ID: 885-1870-1

Page 29 of 51

5

Lab Sample ID: 885-1870-6

Matrix: Solid

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-7	76821/5-A						C	Client Samp	ole ID: Metho	d Blank
Matrix: Solid									Prep Type: T	otal/NA
Analysis Batch: 76687									Prep Batch	: 76821
-	MB	MB								
Analyte	Result	Qualifier	RL		Unit	: I	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.0020		mg/	Kg	_ C	03/28/24 10:31	03/28/24 12:00	1
Toluene	ND		0.0020		mg/	Kg	C	03/28/24 10:31	03/28/24 12:00	1
Ethylbenzene	ND		0.0020		mg/	Kg	C	03/28/24 10:31	03/28/24 12:00	1
Xylenes, Total	ND		0.0040		mg/	Kg	C	03/28/24 10:31	03/28/24 12:00	1
	МВ	MB								
Surrogate	%Recovery	Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				ā	<u> </u>	03/28/24 12:00	1
1,4-Difluorobenzene (Surr)	97		70 - 130						03/28/24 12:00	1
Lab Sample ID: MB 880-7	76839/5-A						c	Client Same	ole ID: Metho	d Blank
Matrix: Solid									Prep Type: T	
Analysis Batch: 76687									Prep Batch	
	MB	MB							Trop Baton	
Analyte		Qualifier	RL		Unit	• •	D	Prepared	Analyzed	Dil Fac
Benzene			0.0020		mg/)3/28/24 11:49		1
Toluene	ND		0.0020		-	-)3/28/24 11:49		1
					mg/	-				-
Ethylbenzene	ND		0.0020		mg/			03/28/24 11:49		1
Xylenes, Total	ND		0.0040		mg/	Kg	C)3/28/24 11:49	03/28/24 22:39	1
		MB								
Surrogate	%Recovery	Qualifier	Limits				_	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	72		70 - 130				C	03/28/24 11:49	03/28/24 22:39	1
1,4-Difluorobenzene (Surr)	96		70 - 130				C	03/28/24 11:49	03/28/24 22:39	1
Lab Sample ID: LCS 880	-76839/1-A					Clie	nt S	Sample ID:	Lab Control	Sample
Matrix: Solid									Prep Type: T	otal/NA
Analysis Batch: 76687									Prep Batch	
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit		D %Rec	Limits	
Benzene			0.100	0.0946		mg/Kg		95	70 - 130	
Toluene			0.100	0.0899		mg/Kg		90	70 - 130	
Ethylbenzene			0.100	0.0957		mg/Kg		96	70 - 130	
m-Xylene & p-Xylene			0.200	0.194		mg/Kg		97	70 - 130	
o-Xylene			0.200	0.194		mg/Kg		97 97	70 - 130 70 - 130	
	LCS LC	s								
Surrogate	%Recovery Qu	alifier	Limits							
4-Bromofluorobenzene (Surr)	101		70 - 130							
1,4-Difluorobenzene (Surr)	98		70 - 130							
Lab Sample ID: LCSD 88	0-76839/2-A					Client Sa	ımp	ole ID: Lab	Control Sam	ole Dup
Matrix: Solid									Prep Type: T	otal/NA
Analysis Batch: 76687									Prep Batch	
			Spike	LCSD	LCSD				%Rec	RPD
Analyte			Added		Qualifier	Unit		D %Rec	Limits RP	
Benzene			0.100	0.0986		mg/Kg				4 35
Toluene			0.100	0.0981		mg/Kg		98		9 35
			0.100	0.0981				103		9 33 8 35
Ethylbenzene			0.100	0.103		mg/Kg		103	10-130	0 35

9

10

70 - 130

70 - 130

106

107

5

6

mple ID: Method Blank

Job ID: 885-1870-1

m-Xylene & p-Xylene

o-Xylene

0.213

0.107

mg/Kg

mg/Kg

0.200

0.100

35

35

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

67 S1-

100

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		70 - 130
1,4-Difluorobenzene (Surr)	98		70 - 130

Lab Sample ID: 885-1870-1 MS

Matrix: Solid Analysis Batch: 76687

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 76687									Prep Batch: 76839
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND	F1	0.0996	0.0526	F1	mg/Kg		53	70 - 130
Toluene	ND	F1	0.0996	0.0419	F1	mg/Kg		42	70 - 130
Ethylbenzene	ND	F2 F1	0.0996	0.0396	F1	mg/Kg		40	70 - 130
m-Xylene & p-Xylene	ND	F2 F1	0.199	0.0760	F1	mg/Kg		38	70 - 130
o-Xylene	ND	F2 F1	0.0996	0.0384	F1	mg/Kg		39	70 - 130
	MS	MS							
Surrogate	%Recovery	Qualifier	Limits						

70 - 130

70 - 130

Lab Sample ID: 885-1870-1	MSD
Matrix: Solid	
Analysis Details 70007	

Analysis Batch: 76687									Prep E	Batch: 7	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND	F1	0.100	0.0446	F1	mg/Kg		44	70 - 130	16	35
Toluene	ND	F1	0.100	0.0577	F1	mg/Kg		57	70 - 130	32	35
Ethylbenzene	ND	F2 F1	0.100	0.0584	F2 F1	mg/Kg		58	70 - 130	38	35
m-Xylene & p-Xylene	ND	F2 F1	0.201	0.113	F2 F1	mg/Kg		56	70 - 130	39	35
o-Xylene	ND	F2 F1	0.100	0.0569	F2 F1	mg/Kg		57	70 - 130	39	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	84		70 - 130								
1,4-Difluorobenzene (Surr)	97		70 - 130								

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-7683 Matrix: Solid Analysis Batch: 76762	7/1-А мв	МВ					le ID: Method Blank Prep Type: Total/NA Prep Batch: 76837	
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		50	mg/Kg		03/28/24 10:56	03/28/24 20:48	1
Diesel Range Organics (Over C10-C28)	ND		50	mg/Kg		03/28/24 10:56	03/28/24 20:48	1
Oll Range Organics (Over C28-C36)	ND		50	mg/Kg		03/28/24 10:56	03/28/24 20:48	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	180	S1+	70 - 130			03/28/24 10:56	03/28/24 20:48	1
o-Terphenyl	168	S1+	70 - 130			03/28/24 10:56	03/28/24 20:48	1

Job ID: 885-1870-1

Client Sample ID: PH01@2'

Client Sample ID: PH01@2'

Prep Type: Total/NA

Prep Type: Total/NA

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

							Cliei	it Sa	mple ID:	Lab Control S	
Matrix: Solid										Prep Type: To	
Analysis Batch: 76762				Cuilco	1.00	LCS				Prep Batch: %Rec	: /683/
Analyta				Spike Added		Qualifier	Unit	_	%Rec	Limits	
Analyte Gasoline Range Organics				1000	1070	Quaimer		D		70 - 130	
(GRO)-C6-C10				1000	1070		mg/Kg		107	70 - 130	
Diesel Range Organics (Over				1000	953		mg/Kg		95	70 - 130	
C10-C28)											
	109	LCS									
Surrogate	%Recovery		lifior	Limits							
1-Chlorooctane		Quan		70 - 130							
o-Terphenyl	111			70 - 130 70 - 130							
				70-700							
Lab Sample ID: LCSD 880-	76837/3-A					C	lient Sa	mple	ID: Lab	Control Samp	le Dur
Matrix: Solid								÷		Prep Type: To	
Analysis Batch: 76762										Prep Batch	
				Spike	LCSD	LCSD				%Rec	RPI
Analyte				Added	Result	Qualifier	Unit	D	%Rec	Limits RPD) Limi
Gasoline Range Organics				1000	1120		mg/Kg		112	70 - 130	5 20
(GRO)-C6-C10											
Diesel Range Organics (Over				1000	959		mg/Kg		96	70 - 130	1 20
C10-C28)											
	LCSD	LCSL	D								
Surrogate	%Recovery	Qual	lifier	Limits							
1-Chlorooctane	109			70 - 130							
o-Terphenyl	110			70 - 130							
I an Samnio III' Mik XXII-/6								011			Diani
Lab Sample ID: MB 880-769	919/1-A							Clie	ent Samp	le ID: Method	
Matrix: Solid	515/1-A							Clie	ent Samp	Prep Type: To	otal/NA
	915/1-A	MD	MD					Clie	ent Samp		otal/NA
Matrix: Solid Analysis Batch: 76887		MB		ы		Unit			-	Prep Type: To Prep Batch	otal/N/ : 76919
Matrix: Solid Analysis Batch: 76887 Analyte		sult	MB Qualifier	RL		Unit	[) P	repared	Prep Type: To Prep Batch: Analyzed	Dil Fac
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics						Unit mg/K) P	-	Prep Type: To Prep Batch: Analyzed	Dil Fac
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10		sult					g	P P 03/2	repared 29/24 09:00	Prep Type: To Prep Batch: Analyzed	otal/NA : 76919
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics		ND		50		mg/K	g	P P 03/2	repared 29/24 09:00	Prep Type: To Prep Batch: Analyzed 03/29/24 09:33	otal/NA : 76919 Dil Fa
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Re	ND		50		mg/K	g	P 03/2 03/2	repared 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: Analyzed 03/29/24 09:33	Dil Fac
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Re	ND ND ND	Qualifier	50		mg/K	g	P 03/2 03/2	repared 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: 03/29/24 09:33 03/29/24 09:33	Dil Fac
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36		ND ND ND ND MB	Qualifier MB	50 50 50		mg/K	g	 P 03/2 03/2 03/2 	repared 29/24 09:00 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33	otal/NA 76919 Dil Fa
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate		ND ND ND ND ND	Qualifier MB Qualifier	50 50 50 <i>Limits</i>		mg/K	g	 P 03/2 03/2 03/2 P 	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33	otal/NA 76919 Dil Fac
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane		ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130		mg/K	g	 P 03/2 03/2 03/2 P 03/2 	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33	Dil Fa
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate		ND ND ND ND ND	Qualifier MB Qualifier S1+	50 50 50 <i>Limits</i>		mg/K	g	 P 03/2 03/2 03/2 P 03/2 	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33	Dil Fa
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane))) <i>%Reco</i> t	ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130		mg/K	g g g	 P 03/2 03/2 03/2 03/2 03/2 03/2 	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33	Dil Fa
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane o-Terphenyl))) <i>%Reco</i> t	ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130		mg/K	g g g	 P 03/2 03/2 03/2 03/2 03/2 03/2 	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33	Dil Fa
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-76 Matrix: Solid))) <i>%Reco</i> t	ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130		mg/K	g g g	 P 03/2 03/2 03/2 03/2 03/2 03/2 	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 Lab Control S	Dil Fa
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-76))) <i>%Reco</i> t	ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130		mg/K	g g g	 P 03/2 03/2 03/2 03/2 03/2 03/2 	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00	Prep Type: To Prep Batch: <u>Analyzed</u> 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 <u>Analyzed</u> 03/29/24 09:33 03/29/24 09:33 Lab Control S Prep Type: To	Dil Fa
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-76 Matrix: Solid))) <i>%Reco</i> t	ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130 70 - 130	LCS	mg/K mg/K mg/K	g g g	 P 03/2 03/2 03/2 03/2 03/2 03/2 	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00	Analyzed 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 D3/29/24 09:33 03/29/24 09:33 D3/29/24 09:33 D3/29/24 09:33 D3/29/24 09:33 Lab Control S Prep Type: To Prep Batch:	Dil Fac
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-76 Matrix: Solid Analysis Batch: 76887))) <i>%Reco</i> t	ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130 70 - 130 5 pike	LCS	LCS	g g Clier	P 03/2 03/2 03/2 P 03/2 03/2 03/2 03/2	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 mple ID:	Prep Type: To Prep Batch: <u>Analyzed</u> 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 <u>Analyzed</u> 03/29/24 09:33 03/29/24 09:33 Uab Control S Prep Type: To Prep Batch: %Rec	Dil Fac
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-76 Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10))) <i>%Reco</i> t	ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130 70 - 130 70 - 130 50 8 50 8 50 8 50 70 130 50 50 50 50 50 50 50 50 50 50 50 50 50	LCS Result 912	LCS	g g Clier <u>Unit</u> mg/Kg	P 03/2 03/2 03/2 P 03/2 03/2 03/2 03/2	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 cmple ID: %Rec	Analyzed 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 Control S Prep Type: To Prep Batch %Rec Limits	Dil Fac
Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36 Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: LCS 880-76 Matrix: Solid Analysis Batch: 76887 Analyte Gasoline Range Organics))) <i>%Reco</i> t	ND ND ND MB Very 182	Qualifier MB Qualifier S1+	50 50 50 <u>Limits</u> 70 - 130 70 - 130 50ike Added	LCS Result	LCS	g g Clier Unit	P 03/2 03/2 03/2 P 03/2 03/2 03/2 03/2	repared 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 29/24 09:00 cmple ID: %Rec	Analyzed 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 03/29/24 09:33 Control S Prep Type: To Prep Batch %Rec Limits	Dil Fa

5 6 7

Job ID: 885-1870-1

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Method: 8015B NM - Diesel Pange Organics (DPO) (GC) (Continued)

Method: 8015B NM - D	iesel Rang	ge Organi	cs (DRC	D) (GC) ((Continu	ied)					
Lab Sample ID: LCS 880- Matrix: Solid Analysis Batch: 76887	76919/2-A					Clie	nt Sa	mple ID	: Lab Cor Prep Ty Prep E	pe: To	tal/NA
	1.05	LCS									
Surrogata	%Recovery		Limits								
Surrogate 1-Chlorooctane	105	Quaimer	70 - 130								
o-Terphenyl	105		70 - 130 70 - 130								
- Terphenyi	105		70 - 130								
Lab Sample ID: LCSD 880)-76919/3-A				C	lient Sa	mple	ID: Lat	Control	Sampl	e Dup
Matrix: Solid									Prep Ty	pe: To	tal/NA
Analysis Batch: 76887									Prep E	Batch:	76919
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	959		mg/Kg		96	70 - 130	5	20
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)			1000	923		mg/Kg		92	70 - 130	1	20
010-0207	LCSD	1000									
Surrogato	%Recovery		Limits								
Surrogate 1-Chlorooctane	104	Quaimer	70 - 130								
o-Terphenyl _	105		70 - 130								
Lab Sample ID: 885-1870	-5 MS							Client	t Sample	D: PH	03@2'
Matrix: Solid									Prep Ty		
Analysis Batch: 76887									Prep E	-	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	ND		1000	1270		mg/Kg		123	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)	ND		1000	1020		mg/Kg		99	70 - 130		
	MS	MS									
Surrogate	%Recovery		Limits								
1-Chlorooctane	99		70 - 130								
o-Terphenyl	78		70 - 130								
Lab Sample ID: 885-1870	-5 MSD							Client	t Sample	D: PH	03@2'
Matrix: Solid									Prep Ty		
Analysis Batch: 76887									Prep E	atch:	76919
	MSD	MSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane	122		70 - 130								
o-Terphenyl	93		70 - 130								
 Method: 300.0 - Anion	s. Ion Chro	omatogra	phy								
_			J								
Lab Sample ID: MB 880-7 Matrix: Solid	6941/1-A						Cli	ent San	nple ID: M Prep T		
Analysis Batch: 76961											
		MB MB									
Analyte	Re	sult Qualifier		RL 5.0	Unit		D P	repared	Analy : 		Dil Fac

Job ID: 885-1870-1

5 6

Client: Hilcorp Energy Project/Site: Kate Standage 1E Job ID: 885-1870-1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880 Matrix: Solid	-76941/2-A					Clier	nt Sar	nple ID	: Lab Coi Prep T		
Analysis Batch: 76961			Spike	1.09	LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Chloride			250	252	Quanner	mg/Kg		101	90 - 110		
Lab Sample ID: LCSD 88 Matrix: Solid	80-76941/3-A				C	Client Sa	mple	ID: Lat	o Control Prep T		
Analysis Batch: 76961			• "						~ -		
Amelia			Spike	_	LCSD	11		0/ D = =	%Rec		RPD
Analyte Chloride			Added	252	Qualifier	Unit mg/Kg	D	%Rec 101	Limits	0	Limit 20
			200	202		iiig/itg		101	00-110	0	20
Lab Sample ID: 885-1870 Matrix: Solid Analysis Batch: 76961	0-1 MS							Clien	t Sample Prep T		_
· ·····, · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	50	F1	250	332	F1	mg/Kg		113	90 - 110		
Lab Sample ID: 885-1870	0-1 MSD							Client	t Sample	ID: PHO	01@2'
Matrix: Solid									Prep T	ype: So	oluble
Analysis Batch: 76961											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	50	F1	250	320		mg/Kg		108	90 - 110	4	20

QC Association Summary

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Job ID: 885-1870-1

GC VOA

Analysis Batch: 76687

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1870-1	PH01@2'	Total/NA	Solid	8021B	76839
885-1870-2	PH01@8'	Total/NA	Solid	8021B	76839
885-1870-3	PH02@2'	Total/NA	Solid	8021B	76839
885-1870-4	PH02@8'	Total/NA	Solid	8021B	76839
885-1870-5	PH03@2'	Total/NA	Solid	8021B	76839
885-1870-6	PH03@8'	Total/NA	Solid	8021B	76839
MB 880-76821/5-A	Method Blank	Total/NA	Solid	8021B	76821
MB 880-76839/5-A	Method Blank	Total/NA	Solid	8021B	76839
LCS 880-76839/1-A	Lab Control Sample	Total/NA	Solid	8021B	76839
LCSD 880-76839/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	76839
885-1870-1 MS	PH01@2'	Total/NA	Solid	8021B	76839
885-1870-1 MSD	PH01@2'	Total/NA	Solid	8021B	76839

Prep Batch: 76821

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-76821/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 76839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1870-1	PH01@2'	Total/NA	Solid	5035	
885-1870-2	PH01@8'	Total/NA	Solid	5035	
885-1870-3	PH02@2'	Total/NA	Solid	5035	
885-1870-4	PH02@8'	Total/NA	Solid	5035	
885-1870-5	PH03@2'	Total/NA	Solid	5035	
885-1870-6	PH03@8'	Total/NA	Solid	5035	
MB 880-76839/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-76839/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-76839/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
885-1870-1 MS	PH01@2'	Total/NA	Solid	5035	
885-1870-1 MSD	PH01@2'	Total/NA	Solid	5035	

GC Semi VOA

Analysis Batch: 76762

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1870-1	PH01@2'	Total/NA	Solid	8015B NM	76837
885-1870-2	PH01@8'	Total/NA	Solid	8015B NM	76837
885-1870-3	PH02@2'	Total/NA	Solid	8015B NM	76837
885-1870-4	PH02@8'	Total/NA	Solid	8015B NM	76837
MB 880-76837/1-A	Method Blank	Total/NA	Solid	8015B NM	76837
LCS 880-76837/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	76837
LCSD 880-76837/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	76837

Prep Batch: 76837

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1870-1	PH01@2'	Total/NA	Solid	8015NM Prep	
885-1870-2	PH01@8'	Total/NA	Solid	8015NM Prep	
885-1870-3	PH02@2'	Total/NA	Solid	8015NM Prep	
885-1870-4	PH02@8'	Total/NA	Solid	8015NM Prep	
MB 880-76837/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-76837/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Albuquerque

Page 35 of 51

QC Association Summary

Client: Hilcorp Energy Project/Site: Kate Standage 1E

GC Semi VOA (Continued)

Prep Batch: 76837 (Continued)

Lab Sample ID LCSD 880-76837/3-A	Client Sample ID Lab Control Sample Dup	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
Analysis Batch: 7688	37				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1870-5	PH03@2'	Total/NA	Solid	8015B NM	76919
885-1870-6	PH03@8'	Total/NA	Solid	8015B NM	76919
MB 880-76919/1-A	Method Blank	Total/NA	Solid	8015B NM	76919
LCS 880-76919/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	76919
LCSD 880-76919/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	76919
885-1870-5 MS	PH03@2'	Total/NA	Solid	8015B NM	76919
885-1870-5 MSD	PH03@2'	Total/NA	Solid	8015B NM	76919
Prep Batch: 76919					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1870-5	PH03@2'	Total/NA	Solid	8015NM Prep	
885-1870-6	PH03@8'	Total/NA	Solid	8015NM Prep	
MB 880-76919/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-76919/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

8015NM Prep

8015NM Prep

8015NM Prep

HPLC/IC

885-1870-5 MS

885-1870-5 MSD

Leach Batch: 76941

LCSD 880-76919/3-A

Lab Control Sample Dup

PH03@2'

PH03@2'

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1870-1	PH01@2'	Soluble	Solid	DI Leach	
885-1870-2	PH01@8'	Soluble	Solid	DI Leach	
885-1870-3	PH02@2'	Soluble	Solid	DI Leach	
885-1870-4	PH02@8'	Soluble	Solid	DI Leach	
885-1870-5	PH03@2'	Soluble	Solid	DI Leach	
885-1870-6	PH03@8'	Soluble	Solid	DI Leach	
MB 880-76941/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-76941/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-76941/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
885-1870-1 MS	PH01@2'	Soluble	Solid	DI Leach	
885-1870-1 MSD	PH01@2'	Soluble	Solid	DI Leach	

Analysis Batch: 76961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1870-1	PH01@2'	Soluble	Solid	300.0	76941
885-1870-2	PH01@8'	Soluble	Solid	300.0	76941
885-1870-3	PH02@2'	Soluble	Solid	300.0	76941
885-1870-4	PH02@8'	Soluble	Solid	300.0	76941
885-1870-5	PH03@2'	Soluble	Solid	300.0	76941
885-1870-6	PH03@8'	Soluble	Solid	300.0	76941
MB 880-76941/1-A	Method Blank	Soluble	Solid	300.0	76941
LCS 880-76941/2-A	Lab Control Sample	Soluble	Solid	300.0	76941
LCSD 880-76941/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	76941
885-1870-1 MS	PH01@2'	Soluble	Solid	300.0	76941
885-1870-1 MSD	PH01@2'	Soluble	Solid	300.0	76941

Eurofins Albuquerque

Page 36 of 51

Job ID: 885-1870-1
Project/Site: Kate Standage 1E

Client Sample ID: PH01@2'

Batch

Туре

Prep

Prep

Analysis

Analysis

Analysis

Leach

Client Sample ID: PH01@8'

Batch

5035

8021B

8015NM Prep

8015B NM

DI Leach

300.0

Method

Date Collected: 03/26/24 11:24

Date Received: 03/27/24 07:00

Client: Hilcorp Energy

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Dilution

Run

Factor

1

1

1

Batch

Number Analyst

76839 MNR

76687 MNR

76837 EL

76762 SM

76941 SA

76961 SMC

Lab

EET MID

EET MID

EET MID

EET MID

EET MID

EET MID

Job ID: 885-1870-1

Lab Sample ID: 885-1870-1

Prepared

or Analyzed

03/28/24 11:49

03/28/24 23:01

03/28/24 12:48

03/29/24 04:39

03/29/24 13:03

04/01/24 14:33

Matrix: Solid

Lab Sample ID: 885-1870-2 Matrix: Solid

Date Collected: 03/26/24 11:30 Date Received: 03/27/24 07:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76839	MNR	EET MID	03/28/24 11:49
Total/NA	Analysis	8021B		1	76687	MNR	EET MID	03/28/24 23:21
Total/NA	Prep	8015NM Prep			76837	EL	EET MID	03/28/24 12:48
Total/NA	Analysis	8015B NM		1	76762	SM	EET MID	03/29/24 05:00
Soluble	Leach	DI Leach			76941	SA	EET MID	03/29/24 13:03
Soluble	Analysis	300.0		1	76961	SMC	EET MID	04/01/24 14:51

Client Sample ID: PH02@2' Date Collected: 03/26/24 11:44 Date Received: 03/27/24 07:00

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76839	MNR	EET MID	03/28/24 11:49
Total/NA	Analysis	8021B		1	76687	MNR	EET MID	03/28/24 23:42
Total/NA	Prep	8015NM Prep			76837	EL	EET MID	03/28/24 12:48
Total/NA	Analysis	8015B NM		1	76762	SM	EET MID	03/29/24 05:21
Soluble	Leach	DI Leach			76941	SA	EET MID	03/29/24 13:03
Soluble	Analysis	300.0		1	76961	SMC	EET MID	04/01/24 14:57

Client Sample ID: PH02@8' Date Collected: 03/26/24 11:50 Date Received: 03/27/24 07:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76839	MNR	EET MID	03/28/24 11:49
Total/NA	Analysis	8021B		1	76687	MNR	EET MID	03/29/24 00:03
Total/NA	Prep	8015NM Prep			76837	EL	EET MID	03/28/24 12:48
Total/NA	Analysis	8015B NM		1	76762	SM	EET MID	03/29/24 05:42
Soluble	Leach	DI Leach			76941	SA	EET MID	03/29/24 13:03
Soluble	Analysis	300.0		1	76961	SMC	EET MID	04/01/24 15:16

Lab Sample ID: 885-1870-3 Matrix: Solid

Lab Sample ID: 885-1870-4 Matrix: Solid

Eurofins Albuquerque

Job ID: 885-1870-1

Lab Sample ID: 885-1870-5

Lab Sample ID: 885-1870-6

Matrix: Solid

Matrix: Solid

Client: Hilcorp Energy Project/Site: Kate Standage 1E

Client Sample ID: PH03@2' Date Collected: 03/26/24 12:14 Date Received: 03/27/24 07:00

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76839	MNR	EET MID	03/28/24 11:49
Total/NA	Analysis	8021B		1	76687	MNR	EET MID	03/29/24 00:23
Total/NA	Prep	8015NM Prep			76919	EL	EET MID	03/29/24 12:09
Total/NA	Analysis	8015B NM		1	76887	SM	EET MID	03/29/24 12:22
Soluble	Leach	DI Leach			76941	SA	EET MID	03/29/24 13:03
Soluble	Analysis	300.0		1	76961	SMC	EET MID	04/01/24 15:22

Client Sample ID: PH03@8' Date Collected: 03/26/24 12:20 Date Received: 03/27/24 07:00

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			76839	MNR	EET MID	03/28/24 11:49
Total/NA	Analysis	8021B		1	76687	MNR	EET MID	03/29/24 00:44
Total/NA	Prep	8015NM Prep			76919	EL	EET MID	03/29/24 12:09
Total/NA	Analysis	8015B NM		1	76887	SM	EET MID	03/29/24 13:26
Soluble	Leach	DI Leach			76941	SA	EET MID	03/29/24 13:03
Soluble	Analysis	300.0		1	76961	SMC	EET MID	04/01/24 15:28

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Albuquerque

Page 38 of 51

5 8

Page 39 of 51

Accreditation/Certification	Summary
-----------------------------	---------

Client: Hilcorp Energy Project/Site: Kate Standage 1E Job ID: 885-1870-1

Laboratory: Eurofins Midland	
All accreditations/certifications held by this laboratory are listed.	Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Texas	NELAP	T104704400-23-26	06-30-24

		ustody Record	Turn-Around	Time:					1	8	1 1		NI 14	7 T 6	20	NM		A TEL	. 11
Client:	COTP	Energy Co (illowin	Standard													30I			
Attn: M	Hch K	(illough	Project Nam	e:											tal.co		1	, Н	
Mailing Addres	s:	···	Kate S	Standage	1E		10	<u>01 н</u>								M 871	100	þ	
			Project #:	<u> </u>)5-34							-4107		885 1	870 COC
Phone #:							10	51. 30	10-0-	-0-08	GEORGE STATE	Autoritation Control Autor		outball in success to	uesí	New York and the Dorthon - Dore Suite		000-1	870 000
email or Fax#:			Project Mana	iger:			ไล้					SO₄							
QA/QC Package	:		Stua	rt Hyd	le	(8021)	/ MRO)	PCB's		MS					bser				
□ Standard		Level 4 (Full Validation)		•		l\ o	DRO /	PC		0SII		, PO4,			nt/A				
Accreditation:		ompliance		anny Bu			IA ~ I	3082	4.1)	827		NO_{2} ,			rese				
□ NELAC □ EDD (Type)	□ Other	•	On Ice: # of Coolers:	∯ Yés	□ No morty	Ţ	TPH:8015D(GRO	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or 8270SIMS	als			8270 (Semi-VOA)	Total Coliform (Present/Absent)				
	T			(including CF): 0.7	2-0-1=0.1 (°C)	MTBEL	50	sticio	thoc	831	Met	Ň	Ŕ	mi-/	iforr				
						(-)	801	Pe	₩)	sby	A 8	, Br,	Š	(Se	Col				
Date Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No.	BTEX	ΓPH	3081	EBB BBB	AH	RCRA 8 Metals	E)	8260 (VOA)	3270	[otal				
2024 1124	SOIL	PHOI@2'	1-402	COOL		$\overline{\mathbb{X}}$	$\overline{\mathbf{X}}$				<u> </u>	\mathbb{X}		<u></u>			-	-	
$\begin{array}{c c} \hline P \\ P$	1	PHOICS'	1	r	Z	$\frac{1}{1}$						Δ							
123 1144	+1-	PH02@2'			3		$\left \right $					+				┝━━╋╴			
1150	+	PH02@8'			<u> </u>	H	\vdash					+							
	+	PH03@2'			· · · · · · · · · · · · · · · · · · ·	$\left \right $						+							
1214		PH03@8'	$ -\downarrow-$	<u> </u>	5							-							
V 1220		110300		`	(e	•	V					*							
		7		\															<u> </u>
						-											===		
	\vdash					<u> </u>		_	_	_	*****								
	-																		
Date [,] "Time	Relinquish	edb	Received by	Via [.]	Date Time	Bor	nark												
Date: Time 3-26 3 074 333			A ha	+ 1 lost	2hili 1322		<u>C</u>	-	ち	iche	>	\bigcirc	•	~ ~	l.		<i>C</i> .		
100					رب	ر . ارم .	<u>L'</u>		r	C	U	112	2011	лт.	COI	M			
4 Date Time	1/2/	not Walt			3phu -			V	VV	ィリ	5								
		mitted to Hall Environmental may be auto			This sopros so potion of the	L	16. 1914	A											

Page 40 of 51

5

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories This serves as notice of this possibility Any sub-contracted data will be clearly notated on the analytical report.

10

4901 Hawkins NE

Page 41 of 51

Chain of Custody Record

9

💸 eurofins

Environment Testing

.

Albuquerque NM 87109 Phone 505-345-3975 Fax 505-345-4107

Phone 505-545-5975 Pax. 505-545-4107	-													-								
Client Information (Sub Contract Lab)	Sampler [.]			Lab F Free	≥M eman,	, And	ly					Ca	arrier T	racking	No(s)			COC N 885-2				
Client Contact: Shipping/Receiving	Phone			E-Ma and		man	@et.e	eurofir	nsus c	com			ate of (ew M					Page: Page	1 of 1			
Company Eurofins Environment Testing South Centr					Accre	editatic	ons Re	quired	(See no	ote):	Mevi							Job # 885-1				
Address:	Due Date Request	ed				NELAP - Oregon, State - New Mexico											rvation Co	odes				
1211 W Florida Ave, , City	4/2/2024 TAT Requested (di	ays)				Analysis Req								d	1 1			A - HC			Hexane None	
Midland State Zip [.]	-						GRO												Acetate		- AsNaO2 Na2O4S	
TX, 79701							0 and											E - Na			Na2SO3 - Na2S2O3	
Phone: 432-704-5440(Tel)	PO #:						DR(F Me G-Am	nchlor	S T	H2SO4 TSP Dodeci	ahydrate
Email:	WO #				or No	-	8021B/5035FM_Calc BTEX 8015MOD_NM/8015NM_S_Prep (MOD) DRO	300_ORGFM_28D/DI_LEACH Chloride										I Ice	corbic Acid Water	U	Acetone MCAA	,
Project Name	Project #:				1279 22	or No)	Prep	U H									0.91%	K ED	TA		pH 4-5 Trizma	
KAte Standage 1E Site	88500531 SSOW#				ple (Yes o	N N	FE									ontai	L ED	•	Z	other (speci	ify)
	00011				Sam	os se	Carc 3015N	IQ/Q8									of ci	200				
			Sample	Matrix	ered	Perform NS/NSD (Yes or 8021B/6035EM Calc RTEY	MHC NWN	- N									nher					
		Sample	Type (C=comp,	(W=water S=solid,	HE I	Perform MS/I 8021B/5035EM		ORG									Total Number					
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab) B	O=waste/oil, T=Tissue, A=Air		Per	8015	30									Tots	3	Special	Instru	uctions/N	ote:
	\searrow	\geq	Preservati	on Code:	\mathbb{X}	X											<u>></u>	$\langle $		_		
PH01@2' (885-1870-1)	3/26/24	11 24 Mountain		Solid)	x x	(X										1				
PH01@8' (885-1870-2)	3/26/24	11 30 Mountain		Solid)	x x	(x										1				
PH02@2' (885-1870-3)	3/26/24	11 44 Mountain		Solid	Π	,	x >	(X										1.				
PH02@8' (885-1870-4)	3/26/24	11 50 Mountain		Solid		;	x)	(x							1			1				
PH03@2' (885-1870-5)	3/26/24	12 14 Mountain		Solid	\square	;	x)	< x										1				
PH03@8' (885-1870-6)	3/26/24	12 20 Mountain		Solid		3	x >	< x										1				
Note Since laboratory accreditations are subject to change, Eurofins Environme laboratory does not currently maintain accreditation in the State of Origin listed a accreditation status should be brought to Eurofins Environment Testing South C	bove for analysis/test	s/matrix being a	analvzed, the san	nples must b	e shior	oed ba	ick to t	he Fur	ofins Fr	nvironr	nent Te	estina S	South C	entral	11 C la	horator	v or oth	er instruct	tions will be	a provid	ed Any cha	mage to
Possible Hazard Identification						Sam	ple D	ispos	al (A	fee	may l	e as	sesse	d if s	ampl	es are	retai	ined lor	ger thar	n 1 ma	onth)	
Unconfirmed									clier		L		· ·	l By L	ab	Ľ	An	chive Fo	»r		Months	
Deliverable Requested I, II, III IV Other (specify)	Primary Deliver	able Rank	2			Speci	ial Ins	structi	ions/C	2C Re	equire	ment	S.									
Empty Kit Relinquished by		Date			Tim			\square	1	9			M	ethod o	f Shipn							
Relinquished by	Date/Time: 3/27/2	4 14.	43 °	Company		R	eceive	ď	M	Æ	YN	NO	K		Date	ST.	R	513	4	112	ompany	
Relinquished by	Date/Time:		C	Company		R	eceive	dby.					85 .		Date	/Tine		/		C	ompany	
Relinquished by	Date/Time [.]		c	Company		R	eceive	d by							Date	/Time:				c	ompany	
Custody Seals Intact: Custody Seal No			1	7707AM		c	ooler 1	remper	rature(s)°Ca	nd Othe	er Rem	arks.	L	12	3/2		2				
						1.						• • • •				4	0			v	'er [.] 06/08/2	2021

Client: Hilcorp Energy

Login Number: 1870 List Number: 1 Creator: Casarrubias, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

11

Job Number: 885-1870-1

List Source: Eurofins Albuquerque

Login Sample Receipt Checklist

Client: Hilcorp Energy

Login Number: 1870 List Number: 2 Creator: Kramer, Jessica

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

11

Job Number: 885-1870-1

List Source: Eurofins Midland

List Creation: 03/28/24 11:22 AM

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 336255

QUESTIONS	
Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	336255
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2406119660
Incident Name	NAPP2406119660 KATE STANDAGE 1E @ 30-045-33413
Incident Type	Release Other
Incident Status	Remediation Closure Report Received
Incident Well	[30-045-33413] KATE STANDAGE #001E

Location of Release Source

Please answer all the questions in this group.	
Site Name	Kate Standage 1E
Date Release Discovered	02/29/2024
Surface Owner	Private

Incident Details

Please answer all the questions in this group.	
Incident Type	Release Other
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
Has this release endangered or does it have a reasonable probability of endangering public health	Νο
Has this release substantially damaged or will it substantially damage property or the environment	Νο
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission Crude Oil Released (bbls) Details Not answered. Cause: Corrosion | Production Tank | Produced Water | Released: 7 BBL | Recovered: 0 BBL | Produced Water Released (bbls) Details Lost: 7 BBL Is the concentration of chloride in the produced water >10,000 mg/l No Cause: Corrosion | Production Tank | Condensate | Released: 8 BBL | Recovered: 0 BBL | Condensate Released (bbls) Details Lost: 8 BBL Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered On 2/29/2024, Hilcorp operations discovered a 15.03-bbl condensate/produced water release (8.35 bbls condensate, 6.68 bbls produced water) at the Kate Standage 1E in San Juan County, NM. While conducting tank gauging operations, an operator observed that a 300-bbl storage tank had a drop in gauge height from the prior month. Upon further inspection of the tank and adjacent surface soils, it was determined that a loss in the storage Are there additional details for the questions above (i.e. any answer containing tank occurred most likely due to a hole in the bottom of the tank (corrosion). This would not Other, Specify, Unknown, and/or Fire, or any negative lost amounts) have been visible during routine site visits or weekly AVO surveys. At this time, the storage tank and oil dump have been removed from service. In addition, a water truck and tank cleaning crew were called out to pull remaining liquids. The spilled fluids did not migrate horizontally outside of secondary containment. However, none of the fluids could be recovered since the secondary containment area is unlined. Area 3 operations will work with

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 46 of 51

QUESTIONS, Page 2

Action 336255

QUESTIONS (continued)

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	336255
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e, gas only) are to be submitted on the C-129 form.

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative or actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist	

Email: shyde@ensolum.com Date: 04/22/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Page 47 of 51

Action 336255

QUESTIONS (continued)

Operator:	OGRID:	
HILCORP ENERGY COMPANY	372171	
1111 Travis Street	Action Number:	
Houston, TX 77002	336255	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	id the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 300 and 500 (ft.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between ½ and 1 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1000 (ft.) and ½ (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1000 (ft.) and ½ (mi.)
Any other fresh water well or spring	Between 1000 (ft.) and ½ (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Between 1000 (ft.) and ½ (mi.)
A wetland	Between 300 and 500 (ft.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	None
A 100-year floodplain	Between 1000 (ft.) and ½ (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediation p	olan approval with this submission	Yes
Attach a comprehensive report der	nonstrating the lateral and vertical extents of soil contamination	associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical	extents of contamination been fully delineated	Yes
Was this release entirely co	ntained within a lined containment area	No
Soil Contamination Sampling	(Provide the highest observable value for each, in mil	ligrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 CI B)	62
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	0
GRO+DRO	(EPA SW-846 Method 8015M)	0
BTEX	(EPA SW-846 Method 8021B or 8260B)	0
Benzene	(EPA SW-846 Method 8021B or 8260B)	0
	MAC unless the site characterization report includes completed elines for beginning and completing the remediation.	efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
On what estimated date wil	the remediation commence	03/26/2024
On what date will (or did) th	e final sampling or liner inspection occur	03/26/2024
On what date will (or was) t	he remediation complete(d)	03/26/2024
What is the estimated surfa	ce area (in square feet) that will be reclaimed	0
What is the estimated volum	ne (in cubic yards) that will be reclaimed	0
What is the estimated surfa	ce area (in square feet) that will be remediated	0
What is the estimated volum	ne (in cubic yards) that will be remediated	0
These estimated dates and measur	ements are recognized to be the best guess or calculation at the	time of submission and may (be) change(d) over time as more remediation efforts are completed.
		ccordance with the physical realities encountered during remediation. If the responsible party has any need to o determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 336255

QUEST	ONS (continued)	
Operator:	OGRID:	
HILCORP ENERGY COMPANY 1111 Travis Street	372171 Action Number:	
Houston, TX 77002	336255	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the		
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	No	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No	
(In Situ) Soil Vapor Extraction	No	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No	
Ground Water Abatement pursuant to 19.15.30 NMAC	No	
OTHER (Non-listed remedial process)	Yes	
Other Non-listed Remedial Process. Please specify	Petroleum hydrocarbon and/or chloride contaminants were not detected in any of the samples collected at the Site above the NMOCD Table I Closure Criteria or reclamation requirement	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	Forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	snowledge and understand that pursuant to OCD rules and regulations all operators are required uses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist Email: shyde@ensolum.com Date: 04/22/2024	

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Action 336255

Page 49 of 51

QUESTIONS (continued)	
Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	336255
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 50 of 51

Action 336255

QUESTIONS (continued)	
Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	336255
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	326280
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/26/2024
What was the (estimated) number of samples that were to be gathered	12
What was the sampling surface area in square feet	10000

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all re	emediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	0
What was the total volume (cubic yards) remediated	0
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	0
What was the total volume (in cubic yards) reclaimed	0
Summarize any additional remediation activities not included by answers (above)	Petroleum hydrocarbon and/or chloride contaminants were not detected in any of the samples collected at the Site above the NMOCD Table I Closure Criteria or reclamation requirement. The Site appears to be absent of soil impacts and waste-containing soil.
	losure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of
to report and/or file certain release notifications and perform corrective actions for releas the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ally restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.
	Name: Stuart Hyde

I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist Email: shyde@ensolum.com Date: 04/22/2024
--	--

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 336255

Page 51 of 51

QUESTIONS (continued)		
Operator: HILCORP ENERGY COMPANY 1111 Travis Street Houston, TX 77002	OGRID: 372171 Action Number: 336255	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		

No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 52 of 51

CONDITIONS

Action 336255

Operator: OGRID: HILCORP ENERGY COMPANY 372171 1111 Travis Street Action Number: Houston, TX 77002 336255 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

CONDITIONS

Created	Condition	Condition
By		Date
nvelez	None	5/15/2024