District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Page 1 of 149

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	Longitude
	(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release	<u>.</u>	

Page	2
1 ugo	-

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
∐ Yes ∐ No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.
 The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

•

L48 Spill Volume Estimate Form - Fill In Gray Cells											
	Facili	ty Name	& Well Number(s):	graham cracker 16-7				Release Discovery Date & Time: 5/13/23 at 3pm			
Provi	le any kn	own deta	ils about the event:				Primary Cause (dropdown):	Mechanical Damage/Failure	Secondary Cause (dropdown):	~	
				(dropdown): Pad available, n			Volume (bbl.) (if not included in calculations)	Release Type (dro	pdown):	Method of Determination (dropdown):	
BU: Permiar	Ass	set Area:	DBW - Fine Sands 🗸	``	∕es ∨	Off-Pad ∽			Oil Mixture	~	Field Measurement \checkmark
			'olume (dropdown): n Area (dropdown):	No Vo							
				~	Spill Calo	ulation - On-Pad	Surface Pool	l Spill			
Convert Irregular shape into a series of rectangles	Length (ft.)	Width (ft.)	Average Depth (in.)	Estimated <u>Pool</u> Area (sq. ft.)	Estimated volume of each pool area (bbl.)	Penetration allowance (ft.)	Total Estima	ated Volume of Spill bbl.)	Percentage of Oil if Spilled Fluid is a Mixture (%.)	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)
Rectangle A	20	20	0.3	400.00	1.48	0.00		1.48		0.74	0.74
Rectangle B	0	0	0.0	0.00	0.00	0.00		00.0		0.00	0.00
	0	0	0.0	0.00	0.00	0.00		0.00		0.00	0.00
Rectangle C		0	0.0	0.00	0.00	0.00		0.00 0.00		0.00	0.00
Rectangle D	0	0					1 (°	1 / 1/ 1	50%		
Rectangle D Rectangle E	0			0.00	0.00	0.00			50%	0.00	0.00
Rectangle D Rectangle E Rectangle F	0			0.00	0.00	0.00	C	0.00	50%	0.00	0.00
Rectangle D Rectangle E Rectangle F Rectangle G	0			0.00 0.00	0.00 0.00	0.00 0.00	C C	0.00 0.00	50%	0.00 0.00	0.00 0.00
Rectangle D Rectangle E Rectangle F Rectangle G Rectangle H	0			0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00	C C C	0.00 0.00 0.00	50%	0.00 0.00 0.00	0.00 0.00 0.00
Rectangle D Rectangle E Rectangle F Rectangle G Rectangle H Rectangle I	0			0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00		0.00 0.00 0.00 0.00	50%	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
Rectangle D Rectangle E Rectangle F Rectangle G Rectangle H	0		T-t-1	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00	C C C C C C	0.00 0.00 0.00	50%	0.00 0.00 0.00	0.00 0.00 0.00

SITE INFORMATION

Closure Report Graham Cracker 16 State 007H (05.13.23) Incident #: NAPP2314538444 Eddy County, New Mexico Unit B Sec 16 T26S R28E 32.0488°, -104.0898°

Produced Water Release Point of Release: Flowline leak due to corrosion. Release Date: 05.13.2023 Volume Released: 0.75 Barrels of Crude Oil and 0.75 Barrels of Produced Water Volume Recovered: 0.75 Barrels of Crude Oil and 0 Barrels of Produced Water

Prepared for: Concho Operating, LLC 15 West London Road Loving, New Mexico 88256

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 RECLAMATION ACTIVITIES

7.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	SAMPLE LOCATION	FIGURE 4	EXCAVATION
FIGURE 5	RECLAMATION		
	APPEI	<u>NDICES</u>	
APPENDIX A	TABLES		
APPENDIX B	PHOTOS		
APPENDIX C	INITIAL AND FINAL C-141	/NMOCD CORR	ESPONDENCE
APPENDIX D	SITE CHARACTERIZATIO	ON AND GROUNI	OWATER
APPENDIX E	LABORATORY REPORTS		
APPENDIX F	RECLAMATION CRITERI	Α	

November 9, 2023

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report Graham Cracker 16 State 007H (05.13.23) Concho Operating, LLC Site Location: Unit B, S16, T26S, R28E (Lat 32.0488°, Long -104.0898°) Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site assessment activities for the Graham Cracker 16 State 007H. The site is located at 32.0488, -104.0898 within Unit B, S16, T26S, R28E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on May 13, 2023, caused by a flow line leak due to corrosion. It resulted in approximately point seven five (0.75) barrels of crude oil being released, with point seven five (0.75) barrels of crude oil recovered, as well as point seven five (0.75) barrels of produced water being released, with zero (0) barrels of produced water recovered. The impacted area occurred in the pasture, shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a medium karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The closest well is approximately 0.85 miles southwest of the site in S18, T26S, R28E and was drilled in 1998. The well has a reported depth to groundwater of 16.35 feet below the ground surface (ft bgs). A copy of the associated point of diversion is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, thefollowing criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On September 5, 2023, Carmona Resources, LLC performed site assessment activities to evaluate the soil impacted by the release. A total of three (3) sample points (S-1 through S-3) and four (4) horizontal sample points (H-1 through H-4) were installed to total depths ranging from surface to 4' bgs inside and surrounding the release area. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

Vertical Delineation

Vertical delineation was achieved for all sample points. Refer to Table 1.

Horizontal Delineation

Horizontal delineation was achieved for the areas of H-3 and H-4. The areas of H-1 and H-2 showed elevated concentrations of TPH ranging from 103 to 341 mg/kg. Refer to Table 1.

5.0 Remediation Activities

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on October 27, 2023, per Subsection D of 19.15.29.12 NMAC. See Appendix C. The area of S-3 was excavated to a depth of 1.5' bgs. A total of four (4) confirmation floor samples were collected (CS-1 through CS-4), and five (5) sidewall samples (SW-1 through SW-5) were collected every 200 square feet to ensure the proper removal of the contaminated soils. Sidewalls were extended in the areas of H-1 and H-2 until delineation. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 300.0. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

6.0 Reclamation Activities

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. The backfilled areas were seeded on November 3, 2023. Double the recommended amount of seed mixture was dispersed via hand broadcasting method, and surrounding topsoil was raked onto the seed to aid the vegetation process. The seed mixture was the SLO sandy loam (SL), per SLO criteria. See Figure 5 for the reclamation area and Appendix F for reclamation criteria.

Approximately 40 cubic yards of material were excavated and transported offsite for proper disposal.

7.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Mike Carmona Environmental Manager

Onner ocari

Conner Moehring Sr. Project Manager

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

APPENDIX A

Table 1 COG Operating, LLC Graham Cracker 16 State 007H (05.13.23) Eddy County, New Mexico

	Ditt			TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	9/5/2023	0-1	<50.5	<50.5	<50.5	<50.5	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	88.2
	9/5/2023	1.5	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	127
S-1	9/5/2023	2.0	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	136
	9/5/2023	3.0	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	152
	9/5/2023	4.0	<50.1	<50.1	<50.1	<50.1	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	184
	9/5/2023	0-1	<50.3	<50.3	<50.3	<50.3	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	45.5
6.2	9/5/2023	1.5	<50.5	<50.5	<50.5	<50.5	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	92.8
S-2	9/5/2023	2.0	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	192
	9/5/2023	3.0	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	233
	9/5/2023	0-1	<49.7	<49.7	<49.7	<49.7	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	792
6.2	9/5/2023	1.5	<49.6	<49.6	<49.6	<49.6	<0.00201	<0.00201	<0.00201	<0.00403	< 0.00403	114
S-3	9/5/2023	2.0	<50.3	<50.3	<50.3	<50.3	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	116
	9/5/2023	3.0	<50.4	<50.4	<50.4	<50.4	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	70.6
Regulate	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed ^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons

ft-feet

(S) Sample Point

Removed

Table 1 COG Operating, LLC Graham Cracker 16 State 007H (05.13.23) Eddy County, New Mexico

				TPH	l (mg/kg)		Benzene	Benzene Toluene Ethlybenzene Xylene Total BTE	Total BTEX	Chloride		
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
H-1	9/5/2023	0-0.5	<49.9	228	113	341	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	45.4
H-2	9/5/2023	0-0.5	<50.3	103	<50.3	103	0.00322	<0.00198	0.00330	<0.00396	0.00652	48.9
H-3	9/5/2023	0-0.5	<50.5	76.6	<50.5	76.6	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	60.6
H-4	9/5/2023	0-0.5	<50.5	<50.5	<50.5	<50.5	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	27.2
Regulato	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons

ft-feet

(H) Horizontal Sample

Removed

Table 2 COG Operating, LLC Graham Cracker 16 State 007H (05.13.23) Eddy County, New Mexico

	Duti	Devil (0)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	10/31/2023	1.5	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	54.1
CS-2	10/31/2023	1.5	<49.6	<49.6	<49.6	<49.6	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	55.0
CS-3	10/31/2023	1.5	<50.3	<50.3	<50.3	<50.3	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	47.6
CS-4	10/31/2023	1.5	<50.3	<50.3	<50.3	<50.3	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	84.1
SW-1	10/31/2023	1.5	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	44.3
SW-2	10/31/2023	1.5	<49.6	<49.6	<49.6	<49.6	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	52.3
SW-3	10/31/2023	1.5	<50.2	<50.2	<50.2	<50.2	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	58.1
SW-4	10/31/2023	1.5	<50.4	<50.4	<50.4	<50.4	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	52.7
SW-5	10/31/2023	1.5	<50.5	<50.5	<50.5	<50.5	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	70.1
	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons

ft-feet

(CS) Confirmation Sample

(SW) Sidewall Sample

APPENDIX B

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 1

Facility:	Graham Cracker 16 State 007H
-	(05.13.23)

County: Eddy County, New Mexico

Description:

View Northwest area of CS-1 through CS-5.

Photograph No. 2

Facility:	Graham Cracker 16 State 007H (05.13.23)
County:	Eddy County, New Mexico

Description:

View Southeast area of CS-1 through CS-5.

Photograph No. 3

Facility:	Graham Cracker 16 State 007H
	(05.13.23)

County: Eddy County, New Mexico

Description:

View Southeast, hand broadcast of seed mixture.

PHOTOGRAPHIC LOG

Concho Operating, LLC

APPENDIX C

State of New Mexico Energy Minerals and Natural **Resources Department**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018

Page 23cof 149

Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID				
Contact Name	Contact Telephone				
Contact email	Incident # (assigned by OCD)				
Contact mailing address					

Location of Release Source

Latitude	

Longitude (NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2	

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
Yes No	
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

The source of the release has been stopped.

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name	Title:
Signature: _ Partian Jopanne	Date:
email:	Telephone:
OCD Only	
Received by: Jocelyn Harimon	Date:05/25/2023

Received by OCD: 3/21/2024 8:36:47 AM Form C-141 State of New Mexico

Oil Conservation Division

	Page 25 of 149
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

Received by OCD: 3/21/2 Form C-141	024 8:36:47 AM State of New Mexico	Page 26 of 149
Page 4	Oil Conservation Division	Incident ID District RP
		Facility ID
		Application ID
regulations all operators are public health or the enviror failed to adequately investi addition, OCD acceptance and/or regulations. Printed Name: Signature:	required to report and/or file certain release notification ment. The acceptance of a C-141 report by the OCD do gate and remediate contamination that pose a threat to g of a C-141 report does not relieve the operator of respon Title	f my knowledge and understand that pursuant to OCD rules and ns and perform corrective actions for releases which may endanger oes not relieve the operator of liability should their operations have groundwater, surface water, human health or the environment. In hisbility for compliance with any other federal, state, or local laws ::
OCD Only		
Received by:		Date:

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the following i	tems must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	of the liner integrity if applicable (Note: appropriate OCD District office
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)
Description of remediation activities	
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of should their operations have failed to adequately investigate and ren human health or the environment. In addition, OCD acceptance of compliance with any other federal, state, or local laws and/or regular restore, reclaim, and re-vegetate the impacted surface area to the co accordance with 19.15.29.13 NMAC including notification to the C	ations. The responsible party acknowledges they must substantially inditions that existed prior to the release or their final land use in OCD when reclamation and re-vegetation are complete.
	Title:
Signature: Jacque Henries	Date:
email:	Telephone:
OCD Only	
OCD Only	Deter
Received by:	Date:
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.
Closure Approved by:	Date:
Printed Name:	Title:

Page 28cof 149

•

L48 Spill Volume Estimate Form - Fill In Gray Cells											
	Facili	ty Name	& Well Number(s):	graham cracker 16	6-7				Release Discovery Date & Time:	5/13/23 at 3pm	
Provid	le any kn	own deta	ils about the event:	there is a hole in one of the flowlines to the well				Primary Cause (dropdown):	Mechanical Damage/Failure	Secondary Cause (dropdown):	~
	was the Release to Soli / Caliche Pad available, n				/olume (bbl.) (if not included in alculations)	Release Type (dro	pdown):	Method of Determination (dropdown):			
BU: Permian	BU: Permian Asset Area: DBW - Fine Sands			Yes Off-Pad			Oil Mixture		Field Measurement		
		Known V	'olume (dropdown):	No							
Known Area (dropdown): No											
		Know	n Area (dropdown):	No	Spill Calc	ulation On Pad	Surface Bool	l Spill			
Convert Irregular shape into a series of rectangles	Length (ft.)	Known Width (ft.)	n Area (dropdown): Average Depth (in.)	No Estimated <u>Pool</u> Area (sq. ft.)	Spill Calc Estimated volume of each pool area (bbl.)	ulation - On-Pad Penetration allowance (ft.)	Total Estima	I Spill ated Volume of Spill bbl.)	Percentage of Oil if Spilled Fluid is a Mixture (%.)	Total Estimated Volume of Spilled Oil (bbl.)	Total Estimated Volume of Spilled Liquid other than Oil (bbl.)
		Width	Average Depth (in.) 0.3	∽ Estimated <u>Pool</u> Area	Estimated volume of each pool area (bbl.) 1.48	Penetration allowance	Total Estima S (t	ated Volume of Spill		Volume of Spilled Oil	Spilled Liquid other than Oil
series of rectangles Rectangle A Rectangle B	(ft.)	Width (ft.)	Average Depth (in.) 0.3 0.0	Estimated <u>Pool</u> Area (sq. ft.) 400.00 0.00	Estimated volume of each pool area (bbl.) 1.48 0.00	Penetration allowance (ft.)	Total Estima S (t	ated Volume of Spill bbl.) 1.48 0.00		Volume of Spilled Oil (bbl.)	Spilled Liquid other than Oil (bbl.)
series of rectangles Rectangle A	(ft.) 20	Width (ft.) 20	Average Depth (in.) 0.3 0.0 0.0	Estimated <u>Pool</u> Area (sq. ft.) 400.00 0.00 0.00	Estimated volume of each pool area (bbl.) 1.48 0.00 0.00	Penetration allowance (ft.) 0.00	Total Estima S (t 1 0 0	ated Volume of Spill bbl.) 1.48 0.00 0.00		Volume of Spilled Oil (bbl.) 0.74	Spilled Liquid other than Oil (bbl.) 0.74
Rectangle A Rectangle A Rectangle B Rectangle C Rectangle D	(ft.) 20 0	Width (ft.) 20 0	Average Depth (in.) 0.3 0.0	Estimated <u>Pool</u> Area (sq. ft.) 400.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 1.48 0.00 0.00 0.00	Penetration allowance (ft.) 0.00 0.00 0.00 0.00	Total Estima S (t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ated Volume of Spill 1.48 0.00 0.00 0.00		Volume of Spilled Oil (bbl.) 0.74 0.00 0.00 0.00	Spilled Liquid other than Oil (bbl.) 0.74 0.00 0.00 0.00
Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E	(ft.) 20 0 0	Width (ft.) 20 0	Average Depth (in.) 0.3 0.0 0.0	Estimated <u>Pool</u> Area (sq. ft.) 400.00 0.00 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 1.48 0.00 0.00 0.00 0.00	Penetration allowance (ft.) 0.00 0.00 0.00 0.00	Total Estima S (t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ated Volume of Spill Jobl.) 1.48 0.00 0.00 0.00 0.00	is a Mixture (%.)	Volume of Spilled Oil (bbl.) 0.74 0.00 0.00 0.00 0.00	Spilled Liquid other than Oil (bbl.) 0.74 0.00 0.00 0.00 0.00
series of rectangles Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E Rectangle F	(ft.) 20 0	Width (ft.) 20 0	Average Depth (in.) 0.3 0.0 0.0	Estimated <u>Pool</u> Area (sq. ft.) 400.00 0.00 0.00 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 1.48 0.00 0.00 0.00 0.00 0.00 0.00	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00	Total Estima S (t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ated Volume of Spill Jobl.) 1.48 0.00 0.00 0.00 0.00 0.00		Volume of Spilled Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00	Spilled Liquid other than Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00
series of rectangles Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E Rectangle F Rectangle G	(ft.) 20 0	Width (ft.) 20 0	Average Depth (in.) 0.3 0.0 0.0	Estimated <u>Pool</u> Area (sq. ft.) 400.00 0.00 0.00 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 1.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00 0.00	Total Estima S (t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ated Volume of Spill Jobbl.) 1.48 J.00 J.00 J.00 J.00 J.00 J.00 J.00 J.0	is a Mixture (%.)	Volume of Spilled Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Spilled Liquid other than Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00
series of rectangles Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E Rectangle F	(ft.) 20 0	Width (ft.) 20 0	Average Depth (in.) 0.3 0.0 0.0	Estimated <u>Poo/</u> Area (sq. ft.) 400.00 0.00 0.00 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 1.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Total Estima S (t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ated Volume of Spill bobl.) 1.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	is a Mixture (%.)	Volume of Spilled Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00	Spilled Liquid other than Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00
series of rectangles Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E Rectangle F Rectangle G	(ft.) 20 0	Width (ft.) 20 0	Average Depth (in.) 0.3 0.0 0.0	Estimated <u>Pool</u> Area (sq. ft.) 400.00 0.00 0.00 0.00 0.00 0.00 0.00	Estimated volume of each pool area (bbl.) 1.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Total Estima S (t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ated Volume of Spill bobl.) 1.48 0.000 0.00 0.00 0.00 0.00 0.00 0.00	is a Mixture (%.)	Volume of Spilled Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Spilled Liquid other than Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00
series of rectangles Rectangle A Rectangle B Rectangle C Rectangle D Rectangle E Rectangle F Rectangle G Rectangle H	(ft.) 20 0	Width (ft.) 20 0	Average Depth (in.) 0.3 0.0 0.0 0.0	 Estimated <u>Pool</u> Area (sq. ft.) 400.00 0.00 	Estimated volume of each pool area (bbl.) 1.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Penetration allowance (ft.) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	Total Estima S (t 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ated Volume of Spill bobl.) 1.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	is a Mixture (%.)	Volume of Spilled Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00	Spilled Liquid other than Oil (bbl.) 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	220642
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created By Condition jharimon None

Action 220642

Condition Date 5/25/2023

Page 29cof 149	
CONDITIONS	

From: Wells, Shelly, EMNRD
Sent: Friday, October 27, 2023 4:26 PM
To: Conner Moehring
Cc: Mike Carmona; Devin Dominguez; Clint Merritt; Hamlet, Robert, EMNRD; Wells, Shelly, EMNRD
Subject: RE: [EXTERNAL] COG - Graham Cracker 16 State 007H (05.13.23) - Sampling Notification

Good afternoon Conner,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive | Santa Fe, NM 87505 (505)469-7520 | Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Conner Moehring <<u>Cmoehring@carmonaresources.com</u>>
Sent: Friday, October 27, 2023 3:00 PM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>
Cc: Mike Carmona <<u>Mcarmona@carmonaresources.com</u>>; Devin Dominguez
<<u>Odominguez@carmonaresources.com</u>>; Clint Merritt <<u>MerrittC@carmonaresources.com</u>>
Subject: [EXTERNAL] COG - Graham Cracker 16 State 007H (05.13.23) - Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon,

This email is a notification for confirmation sampling for the COG – Graham Cracker 16 State 007H (05.13.23). Sampling is scheduled to begin on <u>Tuesday</u>, <u>October 31st</u>, around 3:00 p.m. Mountain Time. Carmona Resources personnel will be on-site to collect the confirmation samples.

nAPP2314538444

Please call if you have any questions.

Conner R. Moehring 310 West Wall Street, Suite 500 Midland Texas, 79701 M: <u>432-813-6823</u> Cmoehring@carmonaresources.com

APPENDIX D

Received by OCD: 3/21/2024 8:36:47 AM Nearest water well COG Operating

THE REAL

2 4 3 Mart

Graham Cracker 16 State 007H (05,13.2023)

16.35' - Drilled 1998

120' - Drilled 1961

時

Legend

5 0.50 Mile Radius

- 🍰 0.85 Miles
- 🍰 1.38 Miles
- 🍰 1.43 Miles
- 🍰 1.44 Miles
- 🍰 1.48 Miles
- Graham Cracker 16 State 007H (05.13.2023)

Page 33 of 149

- NMSEO Water Well
- USGS Water Well

120' - Drilled 1960

Received by OCD: 3/21/2024 8:36:47 AM

COG Operating

Graham Cracker 16 State 007H (05.13.2023)

Grand of maging: 5/16/2024 2:17:21 PM

Page 34 of 149

Legend

• Graham Cracker 16 State 007H (05.13.2023)

/ Medium

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? S
۱				Groundwate	er New Mexico	▼ GC	۰ <u>۲</u>

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list = • 320230104060601

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320230104060601 26S.28E.18.33111

Eddy County, New Mexico Latitude 32°02'30", Longitude 104°06'06" NAD27 Land-surface elevation 3,070 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Castile Formation (312CSTL) local aquifer.

Output formats

<u>Table of data</u>

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measur
1981-05-01		D	62610		3050.88	NGVD29	1	Z		
1981-05-01		D	62611		3052.48	NAVD88	1	Z		
1981-05-01		D	72019	17.52			1	Z		
1983-01-25		D	62610		3052.15	NGVD29	1	Z		
1983-01-25		D	62611		3053.75	NAVD88	1	Z		
1983-01-25		D	72019	16.25			1	Z		
1987-10-13		D	62610		3053.27	NGVD29	1	Z		
1987-10-13		D	62611		3054.87	NAVD88	1	Z		
1987-10-13		D	72019	15.13			1	Z		
1992-11-03		D	62610		3050.77	NGVD29	1	S		
1992-11-03		D	62611		3052.37	NAVD88	1	S		
1992-11-03		D	72019	17.63			1	S		
1998-01-22		D	62610		3052.05	NGVD29	1	S		
1998-01-22		D	62611		3053.65	NAVD88	1	S		
1998-01-22		D	72019	16.35			1	S		

Respired by QCD: 3/21/2024 8:36:47 AM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? S	
rarameter coue		02010		וטטעל זעטעט באבא, וכפנ				
Parameter code		62611	Groundwater level a	bove NAVD 1988, feet				
Parameter code		72019	Depth to water level, feet below land surface					
Referenced vertical datum		NAVD88	North American Vertical Datum of 1988					
Referenced vertical datum		NGVD29	National Geodetic Vertical Datum of 1929					
Status		1	Static					
Method of measureme	nt	S	Steel-tape measure	ment.				
Method of measurement		Z	Other.					
Measuring agency			Not determined					
Source of measuremen	nt		Not determined					
Water-level approval status		А	Approved for publication Processing and review completed.					

Questions or Comments

Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-08-16 11:39:56 EDT 0.72 0.32 nadww01 USA.gov

.

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quarte	ers are	1=N	W 2=N	E 3=SW	/ 4=SE)			
			(quar	ters ar	e sma	illest to	largest)			
Well Tag	POD) Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
	C 0	4022 POD1	4	4	2	15	26S	28E	588082	3545647 🍯	
Driller Lic	ense:	1184	Driller	Con	ıpar	ıy:	WE	EST TEX	KAS WATE	R WELL SERV	ICE
Driller Na	me:	KEITH, RONNY									
Drill Start	Date:	05/01/2017	Drill F	inish	Dat	e:	0	5/05/20	17 P	lug Date:	
Log File D	ate:	06/05/2017	PCW I	Rev I	Date	:			Se	ource:	Shallow
Pump Typ	Pump Type:				rge	Size:		E	1 GPM		
Casing Siz	e:	12.25	Depth	Well	:		2	20 feet	D	epth Water:	175 feet
X	Wate	er Bearing Stratifi	cations:		То	p I	Botton	n Desc	ription		
					17	75	180) Sand	stone/Grave	el/Conglomerate	e
X		Casing Perfe	orations:	rations: Top			Botton	1			
					16	50	220)			

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/16/23 9:35 AM

POINT OF DIVERSION SUMMARY

		w Mexico Officient of Diversity	e e	0	
		(quarters are 1=NW 2=N (quarters are smallest to	,	(NAD83 UTM in meters)	
Well Tag	POD Number	Q64 Q16 Q4 Sec	Tws Rng	X Y	
	C 02160 S5	1 1 1 14	26S 28E	588225 3546237*	
x Driller Lic	ense:	Driller Company:			
Driller Na	me: HEMLER				
Drill Start	Date:	Drill Finish Date:	09/01/1960	0 Plug Date:	
Log File D	Pate:	PCW Rcv Date:		Source:	Shallow
Pump Typ	e:	Pipe Discharge Size:		Estimated Yield	•
	ze:	Depth Well:	300 feet	Depth Water:	120 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/16/23 9:35 AM

POINT OF DIVERSION SUMMARY

		w Mexico Oj int of Di	v	v		U	
		(quarters are 1=NW (quarters are small	2=NE 3=S	W 4=SE)		TM in meters)	
Well Tag	POD Number	Q64 Q16 Q4	Sec Tws	Rng	X	Y	
	C 02160 S7	3 3 1	22 26S	28E	586638	3543998* 🧧)
Driller Lic	ense:	Driller Company	:				
Driller Na	me: HEMLER						
Drill Start	Date:	Drill Finish Date	: (01/01/1961	Ph	ug Date:	
Log File D	ate:	PCW Rcv Date:			So	urce:	Shallow
Pump Typ	e:	Pipe Discharge S	ize:			timated Yield:	

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/16/23 9:37 AM

POINT OF DIVERSION SUMMARY

	w Mexico Offic int of Dive	v	U	
	(quarters are 1=NW 2=NE (quarters are smallest to 1	argest) (N	AD83 UTM in meters)	
Well Tag POD Number C 02160 S6	Q64 Q16 Q4 Sec 3 3 1 14	8	X Y 88232 3545635*	
Driller License: Driller Name: HEMLER	Driller Company:			
Drill Start Date:	Drill Finish Date:	11/01/1960	Plug Date:	
Log File Date:	PCW Rcv Date:		Source:	Shallow
Pump Type:	Pipe Discharge Size:		Estimated Yield	:
Casing Size:	Depth Well:	300 feet	Depth Water:	120 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/16/23 9:38 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file)	(R=POD has been replaced O=orphaned, C=the file is	(2=NE 3 st to lar	3=SW 4=) AD83 UTM in me	tora	(1	n feet)	
water right file.)	closed) POD Sub-	(Q		re sr	nanes		gest)	(117-	ADos UTIVI III IIIe	lers)	,	Depth	Water
POD Number	Code basin C	ounty	-		-	Sec	Tws	Rng		Х	Y	Distance			Column
<u>C 02479</u>	CUB	ED		4	4	10	26S	28E	5879	09	3546534* 🌍	2006	200		
<u>C 02480</u>	CUB	ED		4	4	10	26S	28E	5879	09	3546534* 😜	2006	150		
C 04022 POD1	CUB	ED	4	4	2	15	26S	28E	5880	82	3545647 🌍	2224	220	175	45
C 02160 S5	CUB	ED	1	1	1	14	26S	28E	5882	25	3546237* 🌍	2296	300	120	180
<u>C 02160 S7</u>	CUB	ED	3	3	1	22	26S	28E	5866	38	3543998* 🌍	2319	300	120	180
<u>C 02160 S6</u>	CUB	ED	3	3	1	14	26S	28E	5882	32	3545635* 🌍	2372	300	120	180
<u>C 02481</u>	CUB	ED		1	1	14	26S	28E	5883	26	3546138* 😜	2397	200		
<u>C 02160 S3</u>	CUB	ED	2	2	1	14	26S	28E	5888	34	3546241* 🌍	2905	300	120	180
<u>C 02160 S4</u>	CUB	ED	2	2	1	14	26S	28E	5888	34	3546241* 🌍	2905	300	120	180
<u>C 02160 S</u>	CUB	ED	1	1	2	14	26S	28E	5890-	43	3546244* 🌍	3114	300	120	180
<u>C 02160 S2</u>	CUB	ED	1	1	2	14	26S	28E	5890 [,]	43	3546244* 🌍	3114	300	120	180
<u>C 02477</u>	CUB	ED		1	1	03	26S	28E	5866	87	3549347* 🌍	3230	150		
<u>C 02160</u>	CUB	ED	4	1	2	14	26S	28E	5892	43	3546044* 🌍	3318	300	120	180
<u>C 02924</u>	С	ED	1	3	2	11	26S	28E	5890	32	3547451* 🌍	3343			
<u>C 02478</u>	CUB	ED		2	1	05	26S	28E	5838	48	3549325* 🌍	3748	100		
C 04022 POD2	CUB	ED	2	2	2	27	26S	28E	5881	06	3543082 🌍	3808	250	145	105
											Averaç	ge Depth to	Water:	128	feet
												Minimum	Depth:	120	feet
												Maximum	Depth:	175	feet
Record Count: 16				_	_										

UTMNAD83 Radius Search (in meters):

Easting (X): 585929

Northing (Y): 3546207

Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

8/16/23 9:34 AM

New Mexico NFHL Data

August 16, 2023

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

This is a non-regulatory product for informational use only. Please consult your local floodplain administrator for further information.

APPENDIX E

Received by OCD: 3/21/2024 8:36:47 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 9/13/2023 12:53:04 PM

JOB DESCRIPTION

Graham Cracker 16 State 007H (05.13.23) SDG NUMBER Eddy County, New Mexico

JOB NUMBER

880-32993-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 9/13/2023 12:53:04 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 46 of 149

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	16
QC Sample Results	18
QC Association Summary	24
Lab Chronicle	28
Certification Summary	32
Method Summary	33
Sample Summary	34
Chain of Custody	35
Receipt Checklists	37

Definitions/Glossary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Qualifiers

		 5
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	5
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
*_	LCS and/or LCSD is outside acceptance limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
A h h	The second s	

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Case Narrative

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Job ID: 880-32993-1

Client: Carmona Resources

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-32993-1

Receipt

The samples were received on 9/7/2023 2:26 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.7°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: S-1 (0-1') (880-32993-1), S-1 (1.5') (880-32993-2), S-1 (2') (880-32993-3), S-1 (3') (880-32993-4), S-1 (4') (880-32993-5), S-2 (0-1') (880-32993-6), S-2 (1.5') (880-32993-7), S-2 (2') (880-32993-8), S-2 (3') (880-32993-9), S-3 (0-1') (880-32993-10), S-3 (1.5') (880-32993-11), S-3 (2') (880-32993-12) and S-3 (3') (880-32993-13).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-62007 and 880-62054 and analytical batch 880-62038 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (880-32979-A-1-B MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-62059 and analytical batch 880-62025 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: S-2 (0-1') (880-32993-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-62025/20), (CCV 880-62025/31) and (CCV 880-62025/5). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The laboratory control sample (LCS) associated with preparation batch 880-62059 and analytical batch 880-62025 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: S-1 (0-1') Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		09/07/23 16:17	09/08/23 14:33	1
Toluene	<0.00198	U	0.00198		mg/Kg		09/07/23 16:17	09/08/23 14:33	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		09/07/23 16:17	09/08/23 14:33	1
n-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		09/07/23 16:17	09/08/23 14:33	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		09/07/23 16:17	09/08/23 14:33	1
Kylenes, Total	<0.00396	U	0.00396		mg/Kg		09/07/23 16:17	09/08/23 14:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Bromofluorobenzene (Surr)	88		70 - 130				09/07/23 16:17	09/08/23 14:33	1
1,4-Difluorobenzene (Surr)	117		70 - 130				09/07/23 16:17	09/08/23 14:33	1
Method: TAL SOP Total BTEX - To	otal BTEX Cal	culation							
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			09/08/23 16:02	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<50.5	U	50.5		mg/Kg			09/11/23 09:54	1
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<50.5	U	50.5		mg/Kg		09/08/23 10:06	09/08/23 15:06	1
Diesel Range Organics (Over C10-C28)	<50.5	U *-	50.5		mg/Kg		09/08/23 10:06	09/08/23 15:06	1
DII Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		09/08/23 10:06	09/08/23 15:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Chlorooctane	101		70 - 130				09/08/23 10:06	09/08/23 15:06	1
p-Terphenyl	88		70 - 130				09/08/23 10:06	09/08/23 15:06	1
Method: EPA 300.0 - Anions, Ion (Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	88.2		4.96		mg/Kg			09/12/23 16:44	1
							Lab Sam	ple ID: 880-3	2993-2
lient Sample ID: S-1 (1.5')								Motri	x: Solid
								Iviau	x. 30110
ate Collected: 09/05/23 00:00								Watri	x. 5010
ate Collected: 09/05/23 00:00 ate Received: 09/07/23 14:26	Organic Comp	ounds (GC))					Wath	x. 30110
ate Collected: 09/05/23 00:00 ate Received: 09/07/23 14:26 Method: SW846 8021B - Volatile C	• •	ounds (GC) Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ate Collected: 09/05/23 00:00 ate Received: 09/07/23 14:26 Method: SW846 8021B - Volatile C Analyte	• •			MDL	Unit mg/Kg	<u>D</u>	Prepared 09/07/23 16:17		Dil Fac
lient Sample ID: S-1 (1.5') ate Collected: 09/05/23 00:00 ate Received: 09/07/23 14:26 Method: SW846 8021B - Volatile (Analyte Benzene Toluene	Result	Qualifier	RL	MDL		D		Analyzed	

<0.00398	U	0.00398	mg/Kg	09/07/23 16:17	09/08/23 14:54	1
<0.00199	U	0.00199	mg/Kg	09/07/23 16:17	09/08/23 14:54	1
<0.00398	U	0.00398	mg/Kg	09/07/23 16:17	09/08/23 14:54	1
%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
94		70 - 130		09/07/23 16:17	09/08/23 14:54	1
	<0.00199 <0.00398 %Recovery		<0.00199	<0.00199	<0.00199	<0.00199

Eurofins Midland

Page 49 of 149

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-1

Matrix: Solid

5

Released to Imaging: 5/16/2024 2:17:21 PM

Matrix: Solid

5

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-2

Client Sample ID: S-1 (1.5')

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/08/23 16:02	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			09/11/23 09:54	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		09/08/23 10:06	09/08/23 15:28	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U *-	49.7		mg/Kg		09/08/23 10:06	09/08/23 15:28	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		09/08/23 10:06	09/08/23 15:28	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	126		70 - 130				09/08/23 10:06	09/08/23 15:28	
o-Terphenyl	111		70 - 130				09/08/23 10:06	09/08/23 15:28	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	127		4.96		mg/Kg			09/12/23 16:51	1
lient Sample ID: S-1 (2')							Lab Sam	ple ID: 880-3	2993-3
ate Collected: 09/05/23 00:00								•	x: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		09/07/23 16:17	09/08/23 15:15	1
Toluene	<0.00202	U	0.00202		mg/Kg		09/07/23 16:17	09/08/23 15:15	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		09/07/23 16:17	09/08/23 15:15	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		09/07/23 16:17	09/08/23 15:15	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		09/07/23 16:17	09/08/23 15:15	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		09/07/23 16:17	09/08/23 15:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				09/07/23 16:17	09/08/23 15:15	1
1,4-Difluorobenzene (Surr)	117		70 - 130				09/07/23 16:17	09/08/23 15:15	1

Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			09/08/23 16:02	1
- Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			09/11/23 09:54	1
	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		09/08/23 10:06	09/08/23 15:50	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U *-	49.8		mg/Kg		09/08/23 10:06	09/08/23 15:50	1
C10-C28)									

Eurofins Midland

Released to Imaging: 5/16/2024 2:17:21 PM

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Client Sample ID: S-1 (2')

Date Collected: 09/05/23 00:00

Client: Carmona Resources

Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC) (Continue	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		09/08/23 10:06	09/08/23 15:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				09/08/23 10:06	09/08/23 15:50	
o-Terphenyl	112		70 - 130				09/08/23 10:06	09/08/23 15:50	
Method: EPA 300.0 - Anions, Ion	Chromatogra	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	136		4.98		mg/Kg			09/12/23 17:10	
lient Sample ID: S-1 (3')							Lab Sam	ple ID: 880-3	2993-
ate Collected: 09/05/23 00:00								-	x: Soli
ate Received: 09/07/23 14:26									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 17:21	
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 17:21	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 17:21	
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/07/23 16:17	09/08/23 17:21	
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 17:21	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/07/23 16:17	09/08/23 17:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	85		70 - 130				09/07/23 16:17	09/08/23 17:21	
1,4-Difluorobenzene (Surr)	107		70 - 130				09/07/23 16:17	09/08/23 17:21	
Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/11/23 11:11	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.0	U	50.0		mg/Kg			09/11/23 09:54	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte			50.0		mg/Kg		09/08/23 10:06	09/08/23 16:34	
	<50.0								
Gasoline Range Organics	<50.0								
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U *-	50.0		mg/Kg		09/08/23 10:06	09/08/23 16:34	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)			50.0 50.0		mg/Kg mg/Kg		09/08/23 10:06 09/08/23 10:06	09/08/23 16:34 09/08/23 16:34	
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	<50.0	U							Dil Fa
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<50.0 <50.0	U	50.0				09/08/23 10:06	09/08/23 16:34	Dil Fa

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	152		4.98		mg/Kg			09/12/23 17:16	1

Client Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: S-1 (4') Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:26

Construction Construction<	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzone <0.00198 U 0.00198 mg/kg 0.007/23 16:17 0.0008/23 17:42 m-Sylene <0.00396	< 0.00198	U	0.00198		mg/Kg		09/07/23 16:17	09/08/23 17:42	1
mx/spine & p-xylene <0.00396 U 0.00396 mg/rg 0.917/23 16:17 0.908/23 17:42 xylene <0.00198	<0.00198	U	0.00198		mg/Kg		09/07/23 16:17	09/08/23 17:42	1
Exylene <0.00198 U 0.00198 mg/Kg 09107/23 16:17 09108/23 17:42 Surrogate -0.00396 U 0.00396 mg/Kg 09107/23 16:17 09108/23 17:42 1 Surrogate -93 -70 - 130 Prepared Analyzed 0907/23 16:17 0908/23 17:42 1 Hethod: TAD -70 - 130 0907/23 16:17 0908/23 17:42 1 1 1 1 1 1 1 0907/23 16:17 0908/23 17:42 1 <t< td=""><td><0.00198</td><td>U</td><td>0.00198</td><td></td><td>mg/Kg</td><td></td><td>09/07/23 16:17</td><td>09/08/23 17:42</td><td>1</td></t<>	<0.00198	U	0.00198		mg/Kg		09/07/23 16:17	09/08/23 17:42	1
Schylene <0.00198 U 0.00198 mg/Kg 0907/23 16.17 0908/23 17.42 Surrogate <0.00396	<0.00396	U	0.00396		mg/Kg		09/07/23 16:17	09/08/23 17:42	1
Kylenes, Total < 0.00396 U 0.00396 mg/Kg 09/07/23 16:17 09/08/23 17:42 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Far 4-Bromoliurobenzene (Surr) 112 70.130 09/07/23 16:17 09/08/23 17:42 0 09/07/23 16:17 09/08/23 17:42 0 0 09/07/23 16:17 09/08/23 17:42 0 0 0 0 09/07/23 16:17 09/08/23 17:42 0	<0.00198	U	0.00198				09/07/23 16:17	09/08/23 17:42	1
4-Bromofluorobenzene (Surr) 9.3 70 . 130 09/07/23 16:17 09/08/23 17:42 (4-Difluorobenzene (Surr) 112 70 . 130 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 17:42 09/07/23 16:17 09/08/23 10:40 09/11/23 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/14/123 09/16/12 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 09/08/23 10:05 09/08/23 10:06 09/08/23 10:06	<0.00396	U	0.00396		0 0		09/07/23 16:17	09/08/23 17:42	1
1,4-Diffuorobenzene (Surr) 112 70.130 09/07/23 16:17 09/08/23 17:42 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fai Total BTEX <0.00396	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Far fotal BTEX <0.00396	93		70 - 130				09/07/23 16:17	09/08/23 17:42	
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Factor Gotal BTEX <0.00396	112		70 - 130				09/07/23 16:17	09/08/23 17:42	1
Total BTEX < 0.00396 U 0.00396 mg/kg 09/11/23 09/11/23 11:11 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <50.1	otal BTEX Cal	ulation							
Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Multime D Prepared Analyzed Dil Factor Total TPH <50.1	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal TPH<50.1	<0.00396	U	0.00396		mg/Kg			09/11/23 11:11	1
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacTotal TPH<50.1	l Range Organ	ics (DRO) (G	iC)						
Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fac Gasoline Range Organics <50.1	• •			MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fac Gasoline Range Organics <50.1	- <u></u>	U	50 1		ma/Ka		· · ·	09/11/23 09:54	1
C10-C28) Surrogate %Recovery Qualifier Limits mg/Kg 09/08/23 10:06 09/08/23 16:55 Dil Fau Colorooctane 108 70 - 130 70 - 130 09/08/23 10:06 09/08/23 16:55	<50.1	U	50.1		mg/Kg		09/08/23 10:06	09/08/23 16:55	
GRO)-C6-C10 Diesel Range Organics (Over <50.1				MDL	Unit	D	Prepared	Analyzed	Dil Fac
C10-C28) OP(08/23 10:06 OP(08/23 10	<i>-</i> F0 1	11 *	F0 1		m a /V a		00/08/22 10:06	00/00/22 46.55	
Dil Range Organics (Over C28-C36) <50.1 U 50.1 mg/Kg 09/08/23 10:06 09/08/23 16:55 Dil Fac Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 108 70 - 130 09/08/23 10:06 09/08/23 16:55 09/08/23 17:23 09/08/23 17:23 09/08/23 17:23 09/08/23 17:23 09/08/23 17:23 09/08/23 17:23 09/08/23 17:23 08/08/08/08/08/08/08/08/08/08/08/08/08/0	<50.1	0	50.1		mg/Kg		09/08/23 10:06	09/08/23 16:55	ï
1-Chlorooctane 108 70 - 130 09/08/23 10:06 09/08/23 16:55 0-Terphenyl 97 70 - 130 09/08/23 10:06 09/08/23 16:55 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 184 5.05 mg/Kg D Prepared Analyzed Dil Fac Lient Sample ID: S-2 (0-1') Lab Sample ID: 880-32993-6 Matrix: Solic Matrix: Solic ate Collected: 09/05/23 00:00 Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit D Prepared Analyzed Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Banzene <0.00202	<50.1	U	50.1		mg/Kg		09/08/23 10:06	09/08/23 16:55	-
o-Terphenyl 97 70 - 130 09/08/23 10:06 09/08/23 16:55 70 - 130 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Lient Sample ID: S-2 (0-1') Lab Sample ID: 880-32993-6 Matrix: Solic Matrix: Solic ate Collected: 09/05/23 00:00 Matrix: Solic Matrix: Solic ate Received: 09/07/23 14:26 MDL Unit D Prepared Analyzed Dil Fac Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00202									
Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 184 5.05 mg/Kg D Prepared Analyzed Dil Fac Lient Sample ID: S-2 (0-1') Lab Sample ID: 880-32993-6 Matrix: Solic ate Collected: 09/05/23 00:00 Matrix: Solic Matrix: Solic Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit D Prepared Analyzed Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene Qualifier RL MDL Unit D Prepared Analyzed Dil Fac	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacChloride1845.05mg/KgDPreparedAnalyzedDil Faclient Sample ID: S-2 (0-1') ate Collected: 09/05/23 00:00 ate Received: 09/07/23 14:26Lab Sample ID: 880-32993-6 Matrix: SolidMethod: SW846 8021B - Volatile Organic Compounds (GC) AnalyteResult QualifierRL 0.00202MDL mg/KgUnit mg/KgD Prepared 09/07/23 16:17Analyzed 09/08/23 18:03Dil Fac		Qualifier					· · ·		
Chloride 184 5.05 mg/Kg 09/12/23 17:23 Lab Sample ID: 880-32993-6 Matrix: Solid Matrix: Solid Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Analyte Analyte Analyte Op/12/23 16:17 Op/08/23 18:03 Dil Fac Benzene Qualifier RL MDL Unit D Prepared Analyzed Dil Fac	108	Qualifier	70 - 130				09/08/23 10:06	09/08/23 16:55	Dil Fac
Lab Sample ID: S-2 (0-1') Lab Sample ID: 880-32993-6 ate Collected: 09/05/23 00:00 Matrix: Solid ate Received: 09/07/23 14:26 Matrix: Solid Method: SW846 8021B - Volatile Organic Compounds (GC) Malyte Analyte Result Qualifier Result Qualifier RL 00.00202 U 0.00202	108 97		70 - 130 70 - 130				09/08/23 10:06	09/08/23 16:55	Dil Fac
ate Collected: 09/05/23 00:00 Matrix: Solid ate Received: 09/07/23 14:26 Matrix: Solid Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Analyte Result Qualifier Renzene <0.00202	108 97 Chromatograp	hy - Soluble	70 - 130 70 - 130	MDL	Unit	D	09/08/23 10:06 09/08/23 10:06	09/08/23 16:55 09/08/23 16:55	Dil Fac
ate Received: 09/07/23 14:26 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00202	108 97 Chromatograp Result	hy - Soluble	70 - 130 70 - 130 RL	MDL		<u>D</u>	09/08/23 10:06 09/08/23 10:06	09/08/23 16:55 09/08/23 16:55 Analyzed	Dil Fac
Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00202	108 97 Chromatograp Result	hy - Soluble	70 - 130 70 - 130 RL	MDL		D	09/08/23 10:06 09/08/23 10:06 Prepared	09/08/23 16:55 09/08/23 16:55 09/08/23 16:55 Analyzed 09/12/23 17:23	Dil Fac
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FactoriaBenzene<0.00202	108 97 Chromatograp Result	hy - Soluble	70 - 130 70 - 130 RL	MDL		<u>D</u>	09/08/23 10:06 09/08/23 10:06 Prepared	09/08/23 16:55 09/08/23 16:55 Analyzed 09/12/23 17:23 ple ID: 880-32	Dil Fac Dil Fac
Benzene <0.00202 U 0.00202 mg/Kg 09/07/23 16:17 09/08/23 18:03	108 97 Chromatograp Result 184	hy - Soluble Qualifier	70 - 130 70 - 130 RL	MDL		<u>D</u>	09/08/23 10:06 09/08/23 10:06 Prepared	09/08/23 16:55 09/08/23 16:55 Analyzed 09/12/23 17:23 ple ID: 880-32	Dil Fac Dil Fac
	108 97 Chromatograp Result 184 Organic Comp	hy - Soluble Qualifier ounds (GC)	70 - 130 70 - 130 RL 5.05		mg/Kg		09/08/23 10:06 09/08/23 10:06 Prepared	09/08/23 16:55 09/08/23 16:55 Analyzed 09/12/23 17:23 ple ID: 880-32 Matri	Dil Fac
Toluene <0.00202 U 0.00202 mg/Kg 09/07/23 16:17 09/08/23 18:03	108 97 Chromatograp Result 184 Organic Comp Result	hy - Soluble Qualifier ounds (GC) Qualifier	70 - 130 70 - 130 RL 5.05		mg/Kg		09/08/23 10:06 09/08/23 10:06 Prepared Lab Sam	09/08/23 16:55 09/08/23 16:55 Analyzed 09/12/23 17:23 ple ID: 880-3 Matri Analyzed	Dil Fac
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: S-2 (0-1') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26 Method: SW846 8021B - Volatile Analyte Benzene		 <0.00198 <0.00198 <0.00198 <0.00396 <0.00396 <0.00396 < < < 	<0.00198	<0.00198	<0.00198	<0.00198 U 0.00198 mg/Kg <0.00198	<0.00198	<0.00198	<0.00198

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-5

Matrix: Solid

5

Eurofins Midland

09/08/23 18:03

09/08/23 18:03

09/08/23 18:03

09/08/23 18:03

Analyzed

09/08/23 18:03

09/08/23 18:03

Released to Imaging: 5/16/2024 2:17:21 PM

Ethylbenzene

Xylenes, Total

o-Xylene

Surrogate

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

0.00202

0.00404

0.00202

0.00404

Limits

70 - 130

70 - 130

<0.00202 U

<0.00404 U

<0.00202 U

<0.00404 U

%Recovery Qualifier

90

110

mg/Kg

mg/Kg

mg/Kg

mg/Kg

09/07/23 16:17

09/07/23 16:17

09/07/23 16:17

09/07/23 16:17

Prepared

09/07/23 16:17

09/07/23 16:17

1

1

1

1

1

1

Dil Fac

Matrix: Solid

5

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-6

Client Sample ID: S-2 (0-1')

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			09/11/23 11:11	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	•••	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.3	U	50.3		mg/Kg			09/11/23 09:54	
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		09/08/23 10:06	09/08/23 17:18	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U *-	50.3		mg/Kg		09/08/23 10:06	09/08/23 17:18	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		09/08/23 10:06	09/08/23 17:18	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	140	S1+	70 - 130				09/08/23 10:06	09/08/23 17:18	
o-Terphenyl	125		70 - 130				09/08/23 10:06	09/08/23 17:18	
Method: EPA 300.0 - Anions, Ion C	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	45.5		5.01		mg/Kg			09/12/23 17:29	
Client Sample ID: S-2 (1.5')							Lab Sam	ple ID: 880-3	2993-7
ate Collected: 09/05/23 00:00								Matri	x: Solid
ate Received: 09/07/23 14:26									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 18:23	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 18:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 18:23	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		09/07/23 16:17	09/08/23 18:23	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 18:23	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		09/07/23 16:17	09/08/23 18:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				09/07/23 16:17	09/08/23 18:23	1
1,4-Difluorobenzene (Surr)	110		70 - 130				09/07/23 16:17	09/08/23 18:23	1

Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			09/11/23 11:11	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			09/11/23 09:54	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		09/08/23 10:06	09/08/23 17:40	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.5	U *-	50.5		mg/Kg		09/08/23 10:06	09/08/23 17:40	1
C10-C28)									

Eurofins Midland

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-7

Client Sample ID: S-2 (1.5')

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

Client: Carmona Resources

		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		09/08/23 10:06	09/08/23 17:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	121		70 - 130				09/08/23 10:06	09/08/23 17:40	
o-Terphenyl	107		70 - 130				09/08/23 10:06	09/08/23 17:40	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Soluble	1						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	92.8		4.97		mg/Kg			09/12/23 17:35	
Client Sample ID: S-2 (2')							Lab Sam	ple ID: 880-3	2993-
ate Collected: 09/05/23 00:00 ate Received: 09/07/23 14:26								Matri	x: Sol
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Benzene	< 0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/08/23 23:57	
Toluene	<0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/08/23 23:57	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/08/23 23:57	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/08/23 09:10	09/08/23 23:57	
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/08/23 23:57	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/08/23 09:10	09/08/23 23:57	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	91		70 - 130				09/08/23 09:10	09/08/23 23:57	
1,4-Difluorobenzene (Surr)	95		70 - 130				09/08/23 09:10	09/08/23 23:57	
•		ulation							
Method: TAL SOP Total BTEX - T	OLAI DIEN CAI	alation							
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Analyte		Qualifier	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 09/11/23 11:11	Dil F
Analyte Total BTEX		Qualifier	0.00398	MDL		<u> </u>	Prepared		Dil F
Analyte Total BTEX Method: SW846 8015 NM - Diese	Result <0.00398 Range Organ Result	Qualifier U ics (DRO) (G Qualifier	0.00398	MDL	mg/Kg	D	Prepared Prepared		
Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH	Result <0.00398 el Range Organ	Qualifier U ics (DRO) (G Qualifier	0.00398		mg/Kg			09/11/23 11:11	
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	Result <0.00398 el Range Organ Result <50.0 sel Range Orga	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (0.00398 (C) (C) (RL) (50.0 (C) (C)	MDL	mg/Kg Unit mg/Kg		Prepared	09/11/23 11:11 Analyzed 09/11/23 09:54	Dil F
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	Result <0.00398 el Range Organ Result <50.0 sel Range Orga Result	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier	0.00398		mg/Kg Unit mg/Kg Unit		Prepared	09/11/23 11:11 Analyzed 09/11/23 09:54 Analyzed	Dil F
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	Result <0.00398 el Range Organ Result <50.0 sel Range Orga	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier	0.00398 (C) (C) (RL) (50.0 (C) (C)	MDL	mg/Kg Unit mg/Kg		Prepared	09/11/23 11:11 Analyzed 09/11/23 09:54	Dil F
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <0.00398 el Range Organ Result <50.0 sel Range Orga Result	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier U	0.00398	MDL	mg/Kg Unit mg/Kg Unit		Prepared	09/11/23 11:11 Analyzed 09/11/23 09:54 Analyzed	Dil F
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <0.00398 el Range Organ Result <50.0 sel Range Orga Result <50.0	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier U U U *-	0.00398 C) RL 50.0 GC) RL 50.0	MDL	mg/Kg Unit mg/Kg Unit mg/Kg		Prepared Prepared 09/08/23 10:06	09/11/23 11:11 Analyzed 09/11/23 09:54 Analyzed 09/08/23 18:02	Dil I
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <0.00398	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier U U *- U	0.00398 (C) (RL 50.0 (GC) (RL 50.0 50.0 50.0	MDL	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06	09/11/23 11:11 Analyzed 09/11/23 09:54 Analyzed 09/08/23 18:02 09/08/23 18:02 09/08/23 18:02	Dil F
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result <0.00398	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier U U *- U	0.00398 C) RL 50.0 GC) RL 50.0 50.0 50.0 Limits	MDL	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 Prepared	09/11/23 11:11 Analyzed 09/11/23 09:54 Analyzed 09/08/23 18:02 09/08/23 18:02 09/08/23 18:02 09/08/23 18:02 Analyzed	DII F
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <0.00398	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier U U *- U	0.00398 (C) (RL 50.0 (GC) (RL 50.0 50.0 50.0	MDL	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06	09/11/23 11:11 Analyzed 09/11/23 09:54 Analyzed 09/08/23 18:02 09/08/23 18:02 09/08/23 18:02	DII F
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte	Result <0.00398	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier U U *- U Qualifier	0.00398 (C) RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 50.0 0 0 100 100 100 100 100 100	MDL	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 Prepared 09/08/23 10:06	09/11/23 11:11 Analyzed 09/11/23 09:54 Analyzed 09/08/23 18:02 09/08/23 18:02 09/08/23 18:02 09/08/23 18:02 Analyzed 09/08/23 18:02	Dil F
Analyte Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <0.00398	Qualifier U ics (DRO) (G Qualifier U nics (DRO) (Qualifier U U *- U Qualifier	0.00398 (C) RL 50.0 (GC) RL 50.0 50.0 50.0 50.0 50.0 0 0 100 100 100 100 100 100	MDL MDL	mg/Kg Unit mg/Kg Unit mg/Kg mg/Kg		Prepared Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 Prepared 09/08/23 10:06	09/11/23 11:11 Analyzed 09/11/23 09:54 Analyzed 09/08/23 18:02 09/08/23 18:02 09/08/23 18:02 09/08/23 18:02 Analyzed 09/08/23 18:02	Dil F Dil F Dil F Dil F

Matrix: Solid

5

Client Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: S-2 (3') Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/08/23 09:10	09/09/23 00:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/08/23 09:10	09/09/23 00:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/08/23 09:10	09/09/23 00:18	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/08/23 09:10	09/09/23 00:18	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/08/23 09:10	09/09/23 00:18	1
Kylenes, Total	<0.00399	U	0.00399		mg/Kg		09/08/23 09:10	09/09/23 00:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				09/08/23 09:10	09/09/23 00:18	1
1,4-Difluorobenzene (Surr)	111		70 - 130				09/08/23 09:10	09/09/23 00:18	1
Method: TAL SOP Total BTEX - To						_			
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
fotal BTEX	<0.00399	U	0.00399		mg/Kg			09/11/23 11:11	1
Method: SW846 8015 NM - Diesel	• •			MDI	11-14		Dramanad	Analyzad	
Analyte Total TPH	- Result <49.9	Qualifier		MDL	mg/Kg	D	Prepared	Analyzed 09/11/23 09:54	Dil Fac
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics	- Result <49.9	-	49.9 RL	MDL	mg/Kg	<u>D</u>	09/08/23 10:06	09/08/23 18:24	1
GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<49.9	U *-	49.9		mg/Kg		09/08/23 10:06	09/08/23 18:24	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		09/08/23 10:06	09/08/23 18:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Chlorooctane	121		70 - 130				09/08/23 10:06	09/08/23 18:24	1
p-Terphenyl	104		70 - 130				09/08/23 10:06	09/08/23 18:24	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	233		4.99		mg/Kg			09/12/23 17:48	1
lient Sample ID: S-3 (0-1')							Lab Samp	le ID: 880-32	993-10
ate Collected: 09/05/23 00:00 ate Received: 09/07/23 14:26								Matri	ix: Solid
Method: SW846 8021B - Volatile (oundo (CC)							

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/08/23 09:10	09/09/23 00:38	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/08/23 09:10	09/09/23 00:38	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/08/23 09:10	09/09/23 00:38	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		09/08/23 09:10	09/09/23 00:38	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/08/23 09:10	09/09/23 00:38	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		09/08/23 09:10	09/09/23 00:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				09/08/23 09:10	09/09/23 00:38	1
1,4-Difluorobenzene (Surr)	113		70 - 130				09/08/23 09:10	09/09/23 00:38	1

Eurofins Midland

Page 55 of 149

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-9

Matrix: Solid

5

Released to Imaging: 5/16/2024 2:17:21 PM

Client Sample Results

Page 56 of 149

Matrix: Solid

5

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-10

Client Sample ID: S-3 (0-1')

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			09/11/23 11:11	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			09/11/23 09:54	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		09/08/23 10:06	09/08/23 18:46	1
GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U *-	49.7		mg/Kg		09/08/23 10:06	09/08/23 18:46	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		09/08/23 10:06	09/08/23 18:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Chlorooctane	129		70 - 130				09/08/23 10:06	09/08/23 18:46	1
p-Terphenyl	116		70 - 130				09/08/23 10:06	09/08/23 18:46	1
Method: EPA 300.0 - Anions, Ior	n Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	792		4.98		mg/Kg			09/12/23 18:19	1
lient Sample ID: S-3 (1.5')								le ID: 880-32	000 44

Date Received: 09/07/23 14:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		09/08/23 09:10	09/09/23 00:59	1
Toluene	<0.00201	U	0.00201		mg/Kg		09/08/23 09:10	09/09/23 00:59	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		09/08/23 09:10	09/09/23 00:59	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		09/08/23 09:10	09/09/23 00:59	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		09/08/23 09:10	09/09/23 00:59	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		09/08/23 09:10	09/09/23 00:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				09/08/23 09:10	09/09/23 00:59	1
1,4-Difluorobenzene (Surr)	105		70 - 130				09/08/23 09:10	09/09/23 00:59	1

Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			09/11/23 11:11	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			09/11/23 09:54	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		09/08/23 10:06	09/08/23 19:08	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U *-	49.6		mg/Kg		09/08/23 10:06	09/08/23 19:08	1
C10-C28)									

Eurofins Midland

Released to Imaging: 5/16/2024 2:17:21 PM

Matrix: Solid

5

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-11

Client Sample ID: S-3 (1.5')

Date Collected: 09/05/23 00:00

Client: Carmona Resources

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC) (Continue	ed)					
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		09/08/23 10:06	09/08/23 19:08	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	124		70 - 130				09/08/23 10:06	09/08/23 19:08	
o-Terphenyl	111		70 - 130				09/08/23 10:06	09/08/23 19:08	
Method: EPA 300.0 - Anions, Ion	Chromatogran	hv - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	114		4.96		mg/Kg			09/12/23 18:25	
Client Sample ID: S-3 (2')							Lab Samp	le ID: 880-32	993-12
Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26								Matri	x: Solid
Method: SW846 8021B - Volatile	Organic Comp	ounde (GC)							
Analyte	•	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/09/23 01:20	
Toluene	<0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/09/23 01:20	
Ethylbenzene	< 0.00199		0.00199		mg/Kg		09/08/23 09:10	09/09/23 01:20	
m-Xylene & p-Xylene	<0.00398		0.00398		mg/Kg		09/08/23 09:10	09/09/23 01:20	
o-Xylene		U	0.00199		mg/Kg		09/08/23 09:10	09/09/23 01:20	
Xylenes, Total	<0.00398		0.00398		mg/Kg		09/08/23 09:10	09/09/23 01:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				09/08/23 09:10	09/09/23 01:20	
1,4-Difluorobenzene (Surr)	89		70 - 130				09/08/23 09:10	09/09/23 01:20	
- Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/11/23 11:11	
- Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.3	U	50.3		mg/Kg			09/11/23 09:54	
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		09/08/23 10:06	09/08/23 19:31	
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<50.3	U *-	50.3		mg/Kg		09/08/23 10:06	09/08/23 19:31	
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		09/08/23 10:06	09/08/23 19:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				09/08/23 10:06	09/08/23 19:31	
o-Terphenyl	105		70 - 130				09/08/23 10:06	09/08/23 19:31	
- Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
		-							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Eurofins Midland

Client Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: S-3 (3') Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:26

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/09/23 01:41	1
Toluene	<0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/09/23 01:41	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/09/23 01:41	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/08/23 09:10	09/09/23 01:41	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/08/23 09:10	09/09/23 01:41	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/08/23 09:10	09/09/23 01:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				09/08/23 09:10	09/09/23 01:41	1
1,4-Difluorobenzene (Surr)	111		70 - 130				09/08/23 09:10	09/09/23 01:41	1
Method: TAL SOP Total BTEX -	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/11/23 11:11	1
					ing/itg			00,11,20 11.11	
Method: SW846 8015 NM - Dies Analyte	sel Range Organ Result	ics (DRO) (Qualifier	GC)	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Dies Analyte	sel Range Organ	ics (DRO) (Qualifier	(GC)	MDL		<u>D</u>	Prepared		Dil Fac
Method: SW846 8015 NM - Dies Analyte Total TPH	sel Range OrganResult<50.4	<mark>ics (DRO) (</mark> Qualifier U	(GC) 	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di	sel Range Organ Result <50.4 esel Range Orga	<mark>ics (DRO) (</mark> Qualifier U	(GC) 		Unit	D	Prepared	Analyzed	
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics	sel Range Organ Result <50.4 esel Range Orga	ics (DRO) (Qualifier U unics (DRO) Qualifier	(GC) - <u>RL</u> 50.4 -		Unit mg/Kg			Analyzed 09/11/23 09:54	1
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Organ Result <50.4 esel Range Orga	ics (DRO) (Qualifier U mics (DRO) Qualifier U	(GC) <u>RL</u> 50.4 (GC) <u>RL</u>		Unit mg/Kg Unit		Prepared	Analyzed 09/11/23 09:54 Analyzed	1 Dil Fac
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Organ Result <50.4 esel Range Orga Result <50.4	ics (DRO) (Qualifier U mics (DRO) Qualifier U U *-	(GC) - <u>RL</u> - 50.4 - (GC) - <u>RL</u> - 50.4		Unit mg/Kg Unit mg/Kg		Prepared 09/08/23 10:06	Analyzed 09/11/23 09:54 Analyzed 09/08/23 19:53	1 Dil Fac 1
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Organ Result <50.4 esel Range Orga Result <50.4 <50.4	ics (DRO) (Qualifier U mics (DRO) Qualifier U U *- U	(GC) - RL - 50.4 - (GC) - RL - 50.4 - 50.4		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:06 09/08/23 10:06	Analyzed 09/11/23 09:54 Analyzed 09/08/23 19:53 09/08/23 19:53	1 Dil Fac 1
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate	sel Range Organ Result <50.4 esel Range Orga Result <50.4 <50.4	ics (DRO) (Qualifier U mics (DRO) Qualifier U U *- U	(GC) RL 50.4 (GC) RL 50.4 50.4 50.4		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06	Analyzed 09/11/23 09:54 Analyzed 09/08/23 19:53 09/08/23 19:53	1 Dil Fac 1 1 1
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	sel Range Organ <u>Result</u> <50.4 esel Range Orga Result <50.4 <50.4 <50.4 <50.4 <50.4	ics (DRO) (Qualifier U mics (DRO) Qualifier U U *- U	(GC) RL 50.4 (GC) RL 50.4 50.4 50.4 50.4 50.4 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 Prepared	Analyzed 09/11/23 09:54 Analyzed 09/08/23 19:53 09/08/23 19:53 09/08/23 19:53 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	sel Range Organ <u>Result</u> <50.4 esel Range Orga Result <	ics (DRO) (Qualifier U Qualifier U U *- U Qualifier	(GC) RL 50.4 (GC) RL 50.4 50.4 50.4 50.4 50.4 50.4 50.4 70 - 130 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 Prepared 09/08/23 10:06	Analyzed 09/11/23 09:54 Analyzed 09/08/23 19:53 09/08/23 19:53 09/08/23 19:53 Analyzed 09/08/23 19:53	1 Dil Fac 1 1 1 1 1 Dil Fac 1
Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Di Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ic Analyte	sel Range Organ Result <pre></pre> <pre> Result </pre> <pre> control </pre> <pre> Result </pre> <pre> control </pre> <pre> Chromatograp </pre>	ics (DRO) (Qualifier U Qualifier U U *- U Qualifier	(GC) RL 50.4 (GC) RL 50.4 50.4 50.4 50.4 50.4 50.4 50.4 70 - 130 70 - 130 70 - 130	MDL	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:06 09/08/23 10:06 09/08/23 10:06 Prepared 09/08/23 10:06	Analyzed 09/11/23 09:54 Analyzed 09/08/23 19:53 09/08/23 19:53 09/08/23 19:53 Analyzed 09/08/23 19:53	1 Dil Fac 1 1 1 1 1 Dil Fac 1

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-13

Matrix: Solid

5

Eurofins Midland

Released to Imaging: 5/16/2024 2:17:21 PM

Surrogate Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-32979-A-1-B MS	Matrix Spike	49 S1-	90	
880-32979-A-1-C MSD	Matrix Spike Duplicate	96	110	
880-32993-1	S-1 (0-1')	88	117	
880-32993-2	S-1 (1.5')	94	113	
880-32993-3	S-1 (2')	90	117	
880-32993-4	S-1 (3')	85	107	
880-32993-5	S-1 (4')	93	112	
880-32993-6	S-2 (0-1')	90	110	
880-32993-7	S-2 (1.5')	93	110	
880-32993-8	S-2 (2')	91	95	
880-32993-9	S-2 (3')	92	111	
880-32993-10	S-3 (0-1')	88	113	
880-32993-11	S-3 (1.5')	89	105	
880-32993-12	S-3 (2')	77	89	
880-32993-13	S-3 (3')	101	111	
880-33024-A-16-A MS	Matrix Spike	90	101	
880-33024-A-16-B MSD	Matrix Spike Duplicate	86	97	
LCS 880-62007/1-A	Lab Control Sample	87	97	
LCS 880-62054/1-A	Lab Control Sample	92	96	
LCSD 880-62007/2-A	Lab Control Sample Dup	89	103	
LCSD 880-62054/2-A	Lab Control Sample Dup	88	102	
MB 880-62007/5-A	Method Blank	79	90	
MB 880-62054/5-A	Method Blank	79	90	
Surrogate Legend				

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-32977-A-1-D MS Matrix Spike 108 82 880-32977-A-1-E MSD Matrix Spike Duplicate 92 71 880-32993-1 S-1 (0-1') 101 88 880-32993-2 S-1 (1.5') 126 111 880-32993-3 S-1 (2') 127 112 880-32993-4 S-1 (3') 126 108 880-32993-5 97 S-1 (4') 108 880-32993-6 S-2 (0-1') 140 S1+ 125 880-32993-7 S-2 (1.5') 121 107 880-32993-8 S-2 (2') 125 108 880-32993-9 104 S-2 (3') 121 880-32993-10 S-3 (0-1') 129 116 880-32993-11 S-3 (1.5') 124 111 880-32993-12 S-3 (2') 118 105 880-32993-13 S-3 (3') 125 109 LCS 880-62059/2-A Lab Control Sample 84 87

Eurofins Midland

Prep Type: Total/NA

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Surrogate Summary

		Sunoyai	le Suim	ilaly	
Client: Carmona Resou	irces			Job ID: 880-32993-1	
Project/Site: Graham C	Cracker 16 State 007H (05.13.23	3)		SDG: Eddy County, New Mexico	
Method: 8015B NM	I - Diesel Range Organics	s (DRO) (GC	;) (Contir	nued)	
Matrix: Solid				Prep Type: Total/NA	
				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
LCSD 880-62059/3-A	Lab Control Sample Dup	91	87		J
MB 880-62059/1-A	Method Blank	133 S1+	120		6
Surrogate Legend					

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Eurofins Midland

Lab Sample ID: MB 880-62007/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 62038								Prep Type: 1 Prep Batch	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 11:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 11:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 11:46	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/07/23 16:17	09/08/23 11:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/23 16:17	09/08/23 11:46	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/07/23 16:17	09/08/23 11:46	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		70 - 130				09/07/23 16:17	09/08/23 11:46	1
1,4-Difluorobenzene (Surr)	90		70 - 130				09/07/23 16:17	09/08/23 11:46	1

Lab Sample ID: LCS 880-62007/1-A Matrix: Solid

Analysis Batch: 62038

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08374		mg/Kg		84	70 - 130	
Toluene	0.100	0.07828		mg/Kg		78	70 - 130	
Ethylbenzene	0.100	0.07675		mg/Kg		77	70 - 130	
m-Xylene & p-Xylene	0.200	0.1528		mg/Kg		76	70 - 130	
o-Xylene	0.100	0.07385		mg/Kg		74	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	87		70 - 130
1,4-Difluorobenzene (Surr)	97		70 - 130

Lab Sample ID: LCSD 880-62007/2-A

Matrix: Solid

	Analysis Batch: 62038							Prep	Batch:	62007
		Spike	LCSD	LCSD				%Rec		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Benzene	0.100	0.09245		mg/Kg		92	70 - 130	10	35
	Toluene	0.100	0.08722		mg/Kg		87	70 - 130	11	35
	Ethylbenzene	0.100	0.08649		mg/Kg		86	70 - 130	12	35
	m-Xylene & p-Xylene	0.200	0.1728		mg/Kg		86	70 - 130	12	35
	o-Xylene	0.100	0.08263		mg/Kg		83	70 - 130	11	35
I										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	89		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 880-32979-A-1-B MS

Matrix: Solid alveie Ratch: 60020

Analysis Batch: 62038									Prep	Batch: 62007
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U	0.0996	0.06984		mg/Kg		70	70 - 130	
Toluene	<0.00198	U F1 F2	0.0996	0.03540	F1	mg/Kg		36	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Client Sample ID: Method Blank

13

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 62007

Furofins	Midla

Client Sample ID: Matrix Spike

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Analysis Batch: 62038 MB Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 Toluene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 Ethylbenzene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 09/08/23 09:10 o-Xylene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 Xylenes, Total <0.00400 U 0.00400 mg/Kg 09/08/23 09:10	Sample ID: Matr	rix Spik
Sample Sample Spike MS MS MS Analyte Result Qualifier Added Result Qualifier Unit D %Rec Ethylbenzene <0.00196 UF1F2 0.199 0.06143 F1 mg/Kg 31 o-Xylene <0.00196 UF1F2 0.199 0.06143 F1 mg/Kg 31 o-Xylene <0.00198 UF1F2 0.199 0.06143 F1 mg/Kg 29 Surrogate \$Kecovery Qualifier Limits 29 4-Bromofiluorobenzene (Surr) 49 S1 70 130 Client Sample ID: Analyte Result Qualifier Limits MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Toluene <0.00198 UF1F2 0.100 0.07131 F2 mg/Kg 67 Toluene <0.	Prep Type:	Total/N/
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Ethytbenzene <0.00196 UF1 F2 0.0996 0.03269 F1 mg/Kg 33 m-Xylene & p-Xylene <0.00396 UF1 F2 0.1999 0.06143 F1 mg/Kg 29 MS MS S Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 49 S1- 70.130 70.130 Client Sample ID: Lab Sample ID: 880-32979-A-1-C MSD Client Sample ID: Markix: Solid Analyte Result Qualifier Added Result Qualifier MSD MSD Analyts Result Qualifier Added Result Qualifier MID D %Rec 83 Toluene <0.00198 U F1 F2 0.100 0.07438 F2 mg/Kg 74 Ethytbenzene <0.00198 U F1 F2 0.200 0.01333 F1 Z mg/Kg 73 </th <th>Prep Batc</th> <th>h: 6200</th>	Prep Batc	h: 6200
Ethybenzene <0.00198	%Rec	
-Xylene <0.00396 U F1 F2 0.199 0.06143 F1 mg/kg 31 o-Xylene <0.0198 U F1 F2 0.0996 0.02885 F1 mg/kg 29 MS MS MS MS MS Surgate Limits 29 29 Argonofluorobenzene (Surr) 49 ST- 70.130 70.130 Client Sample ID: Lab Sample ID: 880-32979-A.1-C MSD Sample Spike MSD MSD Matrix: Solid Analysis Batch: 62038 Sample Spike MSD MSD Analysis Batch: 62038 Sample Spike MSD MSD MSD Analysis Batch: 62038 Coline V F1 F2 0.100 0.07408 F2 mg/kg 71 Toluene <0.00198 U F1 F2 0.100 0.07131 F2 mg/kg 67 o-Xylene <0.00198 U F1 F2 0.100 0.07279 F2 mg/kg 73 Surrogate MSD MSD MSD MSD Client Sa Astrix: Solid Matrix: Solid Matrix: Sol	Limits	
Sylene < <th<< td=""><td>70 - 130</td><td></td></th<<>	70 - 130	
MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 49 \$1- 70-130 1,4-Difluorobenzene (Surr) 90 70-130 Client Sample ID: Matrix: Solid Analysis Batch: 62038 Client Sample D Analyte Result Qualifier Added Result Qualifier Unit D %Rec Benzene <0.00198	70 - 130	
Surrogate %Recovery Qualifier Limits F4romofiluorobenzene (Surr) 49 \$1- 70-130 1,4-Difluorobenzene (Surr) 90 70-130 Surrogate 800-32979-A-1-C MSD Client Sample ID: Matrix: Solid Analysis Batch: 62038 Client Sample Simple Analyte Result Qualifier Added Result Qualifier Unit D %Rec Benzene <0.00198	70 - 130	
Herromofiluorobenzene (Surr) 49 51- 70-130 1,4-Difluorobenzene (Surr) 90 70-130 Client Sample ID: Lab Sample ID: 880-32979-A-1-C MSD Client Sample ID: Sample Sample Sample Spike MSD MSD Client Sample ID: Matrix: Solid Analysis Batch: 62038 Sample Qualifier Added Result Qualifier Unit D %Rec Sanzene <0.00198		
Mail		
Lab Sample ID: 880-32979-A-1-C MSD Client Sample ID: 880-32979-A-1-C MSD Matrix: Solid Analysis Batch: 62038 Sample Spike MSD MSD MSD MSD Malysis Batch: 62038 Diversity Diversity </td <td></td> <td></td>		
Matrix: Solid Analysis Batch: 62038 Sample Result Qualifier Spike Qualifier MSD Qualifier MSD Qualifier MSD Qualifier MSD Qualifier Unit Qualifier D %Rec 83 Toluene <0.00198		
Matrix: Solid Analysis Batch: 62038 Sample Result Sample Qualifier Spike Added MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Senzene <0.00198	: Matrix Spike D	uplicat
Malysis Batch: 62038 Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Benzene <0.00198	Prep Type:	
Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec Benzene <0.00198	Prep Batc	
Banzene <0.00198 U 0.100 0.08299 mg/Kg 83 Foluene <0.00198	%Rec	RP
Banzene <0.00198 U 0.100 0.08299 mg/Kg 83 Foluene <0.00198	Limits RP	D Lim
Soluene <0.00198 U F1 F2 0.100 0.07408 F2 mg/kg 74 Ethylbenzene <0.00198	70 - 130 1	
Ethylbenzene < 0.00198 U F1 F2 0.100 0.07131 F2 mg/Kg 71 n-Xylene & p-Xylene < 0.00396	70 - 130 7	
Markylene & p-Xylene <0.00396 U F1 F2 0.200 0.1333 F1 F2 mg/Kg 67 D-Xylene <0.00198 U F1 F2 0.100 0.07279 F2 mg/Kg 73 MSD MSD MSD MSD Limits mg/Kg 73 Surrogate %Recovery Qualifier Limits Limits Client Sa 4-Bromofluorobenzene (Surr) 96 70 - 130 Client Sa Client Sa Lab Sample ID: MB 880-62054/5-A MB MB Client Sa Client Sa Analyte Result Qualifier RL MDL Unit D Prepared Gouco U 0.00200 mg/Kg 09/08/23 09:10 09/08/23 09:10 09/08/23 09:10 Analyte Result Qualifier RL MDL Unit D Prepared Generation <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 09/08/23 09:10 Startistic Startistic MB MB MDL Unit D Prepared Generatin <0.00200 U </td <td>70 - 130 7</td> <td>4 3</td>	70 - 130 7	4 3
Sylene <0.00198 U F1 F2 0.100 0.07279 F2 mg/Kg 73 MSD MSD MSD Limits Limits Limits Recovery Qualifier Limits Limits Recovery Qualifier Limits Recovery Qualifier Limits Client Sa Lab Sample ID: MB 880-62054/5-A 70 - 130 70 - 130 Client Sa Client Sa Analyte Result Qualifier RL MDL Unit D Prepared Genzene <0.00200	70_130 7	4 3
Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 96 70 - 130 4,4-Difluorobenzene (Surr) 110 70 - 130 Lab Sample ID: MB 880-62054/5-A Client Sa Matrix: Solid MB Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200	70 - 130 8	6 3
4-Bromofiluorobenzene (Surr) 96 70 - 130 1,4-Difluorobenzene (Surr) 110 70 - 130 Lab Sample ID: MB 880-62054/5-A Client Sa Matrix: Solid MB MB Analysis Batch: 62038 MB MDL Unit D Prepared Benzene <0.00200		
1,4-Difluorobenzene (Surr) 110 70 - 130 Lab Sample ID: MB 880-62054/5-A Matrix: Solid Analysis Batch: 62038 Client Sa MB MB Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200		
Lab Sample ID: MB 880-62054/5-A Matrix: Solid Matrix: Solid MB MB Analysis Batch: 62038 MB MB Prepared Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 Toluene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 Ethylbenzene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 c>-Xylene & p-Xylene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 op-Xylene, Total <0.00400 U 0.00400 mg/Kg 09/08/23 09:10		
Matrix: Solid Analysis Batch: 62038 MB Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200		
Matrix: Solid Analysis Batch: 62038 MB Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200	ample ID: Metho	od Blan
Malysis Batch: 62038 MB Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200	Prep Type:	
MB MB Analyte Result Qualifier RL MDL Unit D Prepared Benzene <0.00200	Prep Batc	
Benzene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 Toluene <0.00200		
Toluene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 Ethylbenzene <0.00200	Analyzed	Dil Fa
Ethylbenzene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 m-Xylene & p-Xylene <0.00400	09/08/23 23:14	
Ethylbenzene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 m-Xylene & p-Xylene <0.00400	09/08/23 23:14	
xylene <0.00200 U 0.00200 mg/Kg 09/08/23 09:08 09:08/23 09:08 09:08/23 09:08	09/08/23 23:14	
xylene <0.00200 U 0.00200 mg/Kg 09/08/23 09:10 Kylenes, Total <0.00400	09/08/23 23:14	
Kylenes, Total <0.00400 U 0.00400 mg/Kg 09/08/23 09:10	09/08/23 23:14	
	09/08/23 23:14	
MB MB		
Surrogate %Recovery Qualifier Limits Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr) 79 70 - 130 09/08/23 09:10	09/08/23 23:14	

Lab Sample ID: LCS 880-62054/1-A Matrix: Solid Analysis Batch: 62038

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08596		mg/Kg		86	70 - 130	
Toluene	0.100	0.08383		mg/Kg		84	70 - 130	
Ethylbenzene	0.100	0.08356		mg/Kg		84	70 - 130	
m-Xylene & p-Xylene	0.200	0.1686		mg/Kg		84	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Prep Batch: 62054

Client Sample ID: Lab Control Sample

7

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Page 63 of 149

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-62	054/1-A						Client	Sample	D: Lab Co		
Matrix: Solid										Гуре: То	
Analysis Batch: 62038									Prep	Batch:	6205
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.08202		mg/Kg		82	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	92		70 - 130								
1,4-Difluorobenzene (Surr)	96		70 - 130								
Lab Sample ID: LCSD 880-6	2054/2-A					Clie	nt San	nole ID: I	Lab Contro	ol Samol	e Du
Matrix: Solid										Гуре: То	
Analysis Batch: 62038										Batch:	
			Spike	LCSD	LCSD				%Rec	Batom	RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene			0.100	0.08719		mg/Kg		87	70 - 130	1	3
Toluene			0.100	0.08261		mg/Kg		83	70 - 130	1	3
Ethylbenzene			0.100	0.08113		mg/Kg		81	70 - 130	3	3
m-Xylene & p-Xylene			0.200	0.1624		mg/Kg		81	70 - 130	4	
o-Xylene			0.100	0.07926		mg/Kg		79	70 - 130	3	3
o Aylone			0.100	0.07020		mg/itg		10	10-100	0	
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	88		70 - 130								
Lab Sample ID: 880-33024-4	A-16-A MS							Client	Sample ID		
Matrix: Solid Analysis Batch: 62038										Type: To Batch:	
Analysis Baton. 62000	Sample	Sample	Spike	MS	MS				%Rec	Batom	0200
Analyte	•	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00199	U F1	0.0998	0.07707		mg/Kg		77	70 - 130		
Toluene	<0.00199		0.0998	0.07092		mg/Kg		71	70 - 130		
Ethylbenzene	<0.00199	U F1	0.0998	0.06510	F1	mg/Kg		65	70 - 130		
m-Xylene & p-Xylene	<0.00398		0.200	0.1258		mg/Kg		63	70 - 130		
o-Xylene	< 0.00199		0.0998	0.06083		mg/Kg		61	70 - 130		
• · · ·		MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	90		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
Lab Sample ID: 880-33024-4	A-16-B MSD					C	lient Sa	ample IC): Matrix Sp	oike Dup	olicat
Matrix: Solid									Prep 1	Type: To	tal/N
Analysis Batch: 62038										Batch:	
,	Sample	Sample	Spike	MSD	MSD				%Rec		RP
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	< 0.00199	U F1	0.100	0.06789		mg/Kg		68	70 - 130	13	3
Toluene	< 0.00199		0.100	0.06215		mg/Kg		62	70 - 130	13	3
Ethylbenzene	< 0.00199		0.100	0.05615		mg/Kg		56	70 - 130	15	3
m-Xylene & p-Xylene	< 0.00398		0.200	0.1058				53		17	
m-Xviene & n-Xviene					E1	mg/Kg			70 - 130	17	3

12

35

<0.00199 UF1

o-Xylene

0.05375 F1

mg/Kg

53

70 - 130

Client: Carmona Resources

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-33024-A-1 Matrix: Solid	6-B MSD						C	Clien	it Sa	ample ID:	Matrix Spik Prep Typ		
Analysis Batch: 62038											Prep B		
-													
0	MSD M		1										
Surrogate		ualifier	Limits										
4-Bromofluorobenzene (Surr)	86 97		70 ₋ 130 70 ₋ 130										
1,4-Difluorobenzene (Surr)													
lethod: 8015B NM - Diese	I Range Org	anics (DI	RO) (GC)										
Lab Sample ID: MB 880-62059	/1 -A									Client Sa	mple ID: Me		
Matrix: Solid											Prep Typ		
Analysis Batch: 62025											Prep B	atch:	62059
	N	IB MB											
Analyte		ult Qualifier	RL		MDL	Unit		<u>D</u>	P	repared	Analyzed		Dil Fac
Gasoline Range Organics	<50	.0 U	50.0			mg/K	g _		09/0	8/23 08:00	09/08/23 09:	08	1
(GRO)-C6-C10		0.11	50.0				_		00/0		00/00/00 00		
Diesel Range Organics (Over C10-C28)		.0 U	50.0			mg/K	9			8/23 08:00	09/08/23 09:		1
Oll Range Organics (Over C28-C36)	<50	.0 U	50.0			mg/K	g		09/0	8/23 08:00	09/08/23 09:	08	1
Suma mata		IB MB	Limite						_		Amelymed		
Surrogate 1-Chlorooctane		ry Qualifier 33 S1+	Limits 70 - 130					-		repared 8/23 08:00	Analyzed		Dil Fa
		20	70 - 130 70 - 130							8/23 08:00	09/08/23 09		1
o-Terphenyl	1.	20	70 - 730						09/0	0/23 00.00	09/00/23 09.	00	
Lab Sample ID: LCS 880-6205	9/2-A							Cli	ient	Sample	ID: Lab Con	trol S	ample
Matrix: Solid											Prep Typ	e: To	tal/NA
Analysis Batch: 62025											Prep B	atch:	62059
			Spike	LCS	LCS						%Rec		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics			1000	949.2			mg/Kg			95	70 - 130		
(GRO)-C6-C10			4000								70 400		
Diesel Range Organics (Over C10-C28)			1000	689.8			mg/Kg			69	70 - 130		
	LCS L	cs											
Surrogate	%Recovery Q	ualifier	Limits										
1-Chlorooctane	84		70 - 130										
o-Terphenyl	87		70 - 130										
Lab Sample ID: LCSD 880-620	59/3-A						Cli	ent S	Sam	ple ID: L	ab Control S	Samp	le Dup
Matrix: Solid											Prep Тур	be: To	tal/NA
Analysis Batch: 62025											Prep B	atch:	62059
			Spike	LCSD	LCS	D					%Rec		RPD
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10			1000	977.9			mg/Kg		_	98	70 - 130	3	20
Diesel Range Organics (Over C10-C28)			1000	695.3			mg/Kg			70	70 - 130	1	20
	LCSD L	CSD											
Surrogate		ualifier	Limits										
1-Chlorooctane	91		70 - 130										
	-		-										

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Eurofins Midland

o-Terphenyl

87

70 - 130

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid											Sample ID		
												Type: To	
Analysis Batch: 62025											Prep	Batch:	6205
	Sample	Sample	Spike	MS	MS						%Rec		
Analyte	Result	Qualifier	Added	Result	Quali	fier	Unit		D	%Rec	Limits		
Gasoline Range Organics	<50.3	U	997	969.5			mg/Kg			92	70 - 130		
(GRO)-C6-C10													
Diesel Range Organics (Over	80.8	*_	997	1092			mg/Kg			101	70 - 130		
C10-C28)													
	MS	MS											
Surrogate	%Recovery	Qualifier	Limits										
1-Chlorooctane	108		70 - 130	-									
o-Terphenyl	82		70 - 130										
Lab Sample ID: 880-32977-A-1	-E MSD							Client	t Sa	mple ID	: Matrix Sp	oike Dup	olicat
Matrix: Solid											-	· Type: To	
Analysis Batch: 62025												Batch:	
,	Sample	Sample	Spike	MSD	MSD						%Rec		RP
Analyte	•	Qualifier	Added	Result	Quali	fier	Unit		D	%Rec	Limits	RPD	Lim
Gasoline Range Organics		<u>U</u>	997	957.7			mg/Kg			91	70 - 130	1	2
(GRO)-C6-C10													
Diesel Range Organics (Over	80.8	*_	997	937.7			mg/Kg			86	70 - 130	15	2
C10-C28)							0 0						
	MSD	MSD											
Surrogate	%Recovery		Limits										
	/Mecovery	Quaimer	70 - 130	-									
	02												
1-Chlorooctane	92												
1-Chlorooctane	92 71		70 <u>-</u> 130										
1-Chlorooctane o-Terphenyl	71	ography											
1-Chlorooctane o-Terphenyl	71	ography											
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, Io	71 n Chromat	ography								Client S	ample ID:	Method	Blan
1-Chlorooctane o-Terpheny/ lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031/	71 n Chromat	ography								Client S			
1-Chlorooctane o-Terpheny/ lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031/ Matrix: Solid	71 n Chromat	ography								Client S		Method Type: S	
I-Chlorooctane o-Terphenyl Iethod: 300.0 - Anions, Io Lab Sample ID: MB 880-62031, Matrix: Solid Analysis Batch: 62278	71 n Chromat	ography MB MB								Client S			
1-Chlorooctane o-Terpheny/ lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031, Matrix: Solid Analysis Batch: 62278	71 n Chromat /1-A	MB MB		RL	MDL	Unit					Prep	Type: S	olubl
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031 Matrix: Solid Analysis Batch: 62278 Analyte	71 I <mark>n Chromat</mark> /1-A R	MB MB esult Qualifier		RL	MDL			. <u>D</u>		Client S	Prep Analyz	Type: S	
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031 Matrix: Solid Analysis Batch: 62278 Analyte	71 I <mark>n Chromat</mark> /1-A R	MB MB		RL 5.00	MDL	Unit mg/Kg		. <u>D</u>			Prep	Type: S	olubl Dil Fa
I-Chlorooctane p-Terphenyl lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031, Matrix: Solid Analysis Batch: 62278 Analyte Chloride	71 n Chromat /1-A 	MB MB esult Qualifier			MDL				Pr	repared	Prep 	Type: S red 14:36	olubl Dil Fa
1-Chlorooctane o-Terpheny/ lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031/ Matrix: Solid Analysis Batch: 62278 Analyte Chloride Lab Sample ID: LCS 880-62034	71 n Chromat /1-A 	MB MB esult Qualifier			MDL				Pr	repared	Prep 	Type: S red 14:36 –	olubl Dil Fa
1-Chlorooctane o-Terpheny/ lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031/ Matrix: Solid Analysis Batch: 62278 Analyte Chloride Lab Sample ID: LCS 880-62037 Matrix: Solid	71 n Chromat /1-A 	MB MB esult Qualifier			MDL				Pr	repared	Prep 	Type: S red 14:36	olubl Dil Fa
1-Chlorooctane o-Terpheny/ lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031/ Matrix: Solid Analysis Batch: 62278 Analyte Chloride Lab Sample ID: LCS 880-62037 Matrix: Solid	71 n Chromat /1-A 	MB MB esult Qualifier	70 - 130	5.00					Pr	repared	Analyz 09/12/23 ID: Lab Co Prep	Type: S red 14:36 –	olubl Dil Fa
1-Chlorooctane o-Terpheny/ lethod: 300.0 - Anions, lo Lab Sample ID: MB 880-62031/ Matrix: Solid	71 n Chromat /1-A 	MB MB esult Qualifier		5.00	MDL LCS Quali	mg/Kg	Unit		Pr	repared	Prep 	Type: S red 14:36 –	olubl Dil Fa

onionae	200	240.0		iiig/itg		55	50 - 110		
Lab Sample ID: LCSD 880-62031/3-A Matrix: Solid Analysis Batch: 62278				Clier	it Sam	nple ID: I	Lab Contro Prep	l Sampl Type: So	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	247.0		mg/Kg		99	90 - 110	0	20

Page 65 of 149

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

- Lab Sample ID: 880-32977-											
Lap Sample ID: 880-32977.	A-7-C MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										Type: S	
Analysis Batch: 62278											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	32.3		250	282.6		mg/Kg		100	90 - 110		
-											
Lab Sample ID: 880-32977-	A-7-D MSD					C	Client S	ample ID	D: Matrix Sp		-
Matrix: Solid									Prep	Type: S	Solubl
Analysis Batch: 62278											
	-	Sample	Spike		MSD				%Rec		RPI
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Chloride	32.3		250	282.6		mg/Kg		100	90 - 110	0	20
Lab Sample ID: MB 880-62	032/1-A							Client S	Sample ID:	Method	l Blanl
Matrix: Solid										Type: S	
Analysis Batch: 62331									Trop	Type. e	
		МВ МВ									
Analyte	R	esult Qualifier		RL	MDL Unit		DF	Prepared	Analyz	zed	Dil Fa
Chloride		<5.00 U		5.00	mg/K	q			09/12/23		
-					-	-					
Lab Sample ID: LCS 880-6	2032/2-A						Clien	t Sample	D: Lab Co	ontrol S	Sample
									Prop	Type: S	Colubl
Matrix: Solid									1 iep	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	olubi
Matrix: Solid Analysis Batch: 62331									Пер	1900.0	Solubi
			Spike	LCS	LCS				%Rec	1900.0	Joiubi
			Spike Added		LCS Qualifier	Unit	D	%Rec	-	1900.0	SOLUDI
Analysis Batch: 62331						Unit mg/Kg	<u>D</u>	%Rec 97	%Rec		
Analysis Batch: 62331 Analyte Chloride			Added	Result		mg/Kg		97	%Rec Limits 90 - 110		
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880-	 62032/3-A		Added	Result		mg/Kg		97	%Rec Limits 90 - 110		le Duj
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid	 62032/3-A		Added	Result		mg/Kg		97	%Rec Limits 90 - 110		le Duj
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880-	 62032/3-A		Added 250	Result 242.5	Qualifier	mg/Kg		97	%Rec Limits 90 - 110 Lab Contro Prep		le Dup Soluble
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331	 62032/3-A		Added 250 Spike	Result 242.5 LCSD	Qualifier	mg/Kg	ent San	97 nple ID:	%Rec Limits 90 - 110 Lab Contro Prep %Rec	ol Samp Type: S	le Dup Soluble RPE
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte	62032/3-A		Added 250 Spike Added	Result 242.5 LCSD Result	Qualifier	Clin		97 nple ID: %Rec	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	ol Samp Type: S 	le Dup Soluble RPI Limi
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte	62032/3-A		Added 250 Spike	Result 242.5 LCSD	Qualifier	mg/Kg	ent San	97 nple ID:	%Rec Limits 90 - 110 Lab Contro Prep %Rec	ol Samp Type: S	le Duj Soluble RPI Limi
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331			Added 250 Spike Added	Result 242.5 LCSD Result	Qualifier	Clin	ent San	97 nple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	DI Samp Type: S <u>RPD</u> 0	le Dup Soluble Limi 20
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride			Added 250 Spike Added	Result 242.5 LCSD Result	Qualifier	Clin	ent San	97 nple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	DI Samp Type: S <u>RPD</u> 0	le Duj Soluble RPI Limi 2 x Spike
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940-			Added 250 Spike Added	Result 242.5 LCSD Result	Qualifier	Clin	ent San	97 nple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	ol Samp Type: S 	ole Dup Soluble Limi 20 c Spike
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid			Added 250 Spike Added	Result 242.5 LCSD Result 241.9	Qualifier	Clin	ent San	97 nple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID	ol Samp Type: S 	le Dup Soluble Limi 20 c Spike
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid		Sample Qualifier	Added 250 Spike Added 250	Result 242.5 LCSD Result 241.9	Qualifier LCSD Qualifier	Clin	ent San	97 nple ID: %Rec 97	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep	ol Samp Type: S 	ele Dup Soluble Limi 20 c Spike
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid Analysis Batch: 62331 Analyte		Qualifier	Added 250 Spike Added 250 Spike	Result 242.5 LCSD Result 241.9	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg	ent San	97 nple ID: %Rec 97 Client	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec	ol Samp Type: S 	le Dup Soluble Limi 20 c Spike
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid Analysis Batch: 62331 Analyte Chloride	A-30-C MS Sample Result 462	Qualifier	Added 250 Spike Added 250 Spike Added	Result 242.5 LCSD Result 241.9 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Unit mg/Kg	ent San	97 nple ID: %Rec 97 Client %Rec 88	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Samp Type: S <u>RPD</u> 0 : Matrix Type: S	ele Duj Soluble Limi 20 Soluble
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940-	A-30-C MS Sample Result 462	Qualifier	Added 250 Spike Added 250 Spike Added	Result 242.5 LCSD Result 241.9 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Unit mg/Kg	ent San	97 nple ID: %Rec 97 Client %Rec 88	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Samp Type: S <u>RPD</u> 0 : Matrix Type: S	ele Duy Soluble Limi 2 C Spike Soluble
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid	A-30-C MS Sample Result 462	Qualifier	Added 250 Spike Added 250 Spike Added	Result 242.5 LCSD Result 241.9 MS Result	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Unit mg/Kg	ent San	97 nple ID: %Rec 97 Client %Rec 88	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Samp Type: S <u>RPD</u> 0 : Matrix Type: S	ele Duy Soluble Limi 2 C Spike Soluble
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940-	A-30-C MS Sample Result 462 A-30-D MSD	Qualifier F1	Added 250 Spike Added 250 Spike Added 250	Result 242.5 LCSD Result 241.9 MS Result 682.1	Qualifier LCSD Qualifier MS Qualifier F1	Unit mg/Kg Unit mg/Kg	ent San	97 nple ID: %Rec 97 Client %Rec 88	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110 O: Matrix Sp Prep	ol Samp Type: S <u>RPD</u> 0 : Matrix Type: S	le Dup Soluble Limi 20 Soluble plicate Soluble
Analysis Batch: 62331 Analyte Chloride Lab Sample ID: LCSD 880- Matrix: Solid Analysis Batch: 62331 Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid Analyte Chloride Lab Sample ID: 880-32940- Matrix: Solid	A-30-C MS Sample Result 462 A-30-D MSD Sample	Qualifier	Added 250 Spike Added 250 Spike Added	Result 242.5 LCSD Result 241.9 MS Result 682.1	Qualifier LCSD Qualifier MS Qualifier	Unit mg/Kg Unit mg/Kg	ent San	97 nple ID: %Rec 97 Client %Rec 88	%Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 Sample ID Prep %Rec Limits 90 - 110	ol Samp Type: S <u>RPD</u> 0 : Matrix Type: S	le Dup Soluble Limit 20 c Spike Soluble

Page 66 of 149

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-32993-1 SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 62007

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-1	S-1 (0-1')	Total/NA	Solid	5035	
880-32993-2	S-1 (1.5')	Total/NA	Solid	5035	
880-32993-3	S-1 (2')	Total/NA	Solid	5035	
880-32993-4	S-1 (3')	Total/NA	Solid	5035	
880-32993-5	S-1 (4')	Total/NA	Solid	5035	
880-32993-6	S-2 (0-1')	Total/NA	Solid	5035	
880-32993-7	S-2 (1.5')	Total/NA	Solid	5035	
MB 880-62007/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-62007/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-62007/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-32979-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
880-32979-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 62038

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-1	S-1 (0-1')	Total/NA	Solid	8021B	62007
880-32993-2	S-1 (1.5')	Total/NA	Solid	8021B	62007
880-32993-3	S-1 (2')	Total/NA	Solid	8021B	62007
880-32993-4	S-1 (3')	Total/NA	Solid	8021B	62007
880-32993-5	S-1 (4')	Total/NA	Solid	8021B	62007
880-32993-6	S-2 (0-1')	Total/NA	Solid	8021B	62007
880-32993-7	S-2 (1.5')	Total/NA	Solid	8021B	62007
880-32993-8	S-2 (2')	Total/NA	Solid	8021B	62054
880-32993-9	S-2 (3')	Total/NA	Solid	8021B	62054
880-32993-10	S-3 (0-1')	Total/NA	Solid	8021B	62054
880-32993-11	S-3 (1.5')	Total/NA	Solid	8021B	62054
880-32993-12	S-3 (2')	Total/NA	Solid	8021B	62054
880-32993-13	S-3 (3')	Total/NA	Solid	8021B	62054
MB 880-62007/5-A	Method Blank	Total/NA	Solid	8021B	62007
MB 880-62054/5-A	Method Blank	Total/NA	Solid	8021B	62054
LCS 880-62007/1-A	Lab Control Sample	Total/NA	Solid	8021B	62007
LCS 880-62054/1-A	Lab Control Sample	Total/NA	Solid	8021B	62054
LCSD 880-62007/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	62007
LCSD 880-62054/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	62054
880-32979-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	62007
880-32979-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	62007
880-33024-A-16-A MS	Matrix Spike	Total/NA	Solid	8021B	62054
880-33024-A-16-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	62054

Prep Batch: 62054

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-32993-8	S-2 (2')	Total/NA	Solid	5035	
880-32993-9	S-2 (3')	Total/NA	Solid	5035	
880-32993-10	S-3 (0-1')	Total/NA	Solid	5035	
880-32993-11	S-3 (1.5')	Total/NA	Solid	5035	
880-32993-12	S-3 (2')	Total/NA	Solid	5035	
880-32993-13	S-3 (3')	Total/NA	Solid	5035	
MB 880-62054/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-62054/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-62054/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-33024-A-16-A MS	Matrix Spike	Total/NA	Solid	5035	

Eurofins Midland

5

8 9

Released to Imaging: 5/16/2024 2:17:21 PM

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

GC VOA (Continued)

Prep Batch: 62054 (Continued)

ab Sample ID 80-33024-A-16-B MSD	Client Sample ID Matrix Spike Duplicate	Prep Type Total/NA	Matrix Solid	Method	Prep Batch
alysis Batch: 62112	2				
ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
80-32993-1	S-1 (0-1')	Total/NA	Solid	Total BTEX	
80-32993-2	S-1 (1.5')	Total/NA	Solid	Total BTEX	
80-32993-3	S-1 (2')	Total/NA	Solid	Total BTEX	
80-32993-4	S-1 (3')	Total/NA	Solid	Total BTEX	
80-32993-5	S-1 (4')	Total/NA	Solid	Total BTEX	
80-32993-6	S-2 (0-1')	Total/NA	Solid	Total BTEX	
80-32993-7	S-2 (1.5')	Total/NA	Solid	Total BTEX	
80-32993-8	S-2 (2')	Total/NA	Solid	Total BTEX	
80-32993-9	S-2 (3')	Total/NA	Solid	Total BTEX	
80-32993-10	S-3 (0-1')	Total/NA	Solid	Total BTEX	
80-32993-11	S-3 (1.5')	Total/NA	Solid	Total BTEX	
80-32993-12	S-3 (2')	Total/NA	Solid	Total BTEX	
80-32993-13	S-3 (3')	Total/NA	Solid	Total BTEX	
C Semi VOA					

GC Semi VOA

Analysis Batch: 62025

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-1	S-1 (0-1')	Total/NA	Solid	8015B NM	62059
880-32993-2	S-1 (1.5')	Total/NA	Solid	8015B NM	62059
880-32993-3	S-1 (2')	Total/NA	Solid	8015B NM	62059
880-32993-4	S-1 (3')	Total/NA	Solid	8015B NM	62059
880-32993-5	S-1 (4')	Total/NA	Solid	8015B NM	62059
880-32993-6	S-2 (0-1')	Total/NA	Solid	8015B NM	62059
880-32993-7	S-2 (1.5')	Total/NA	Solid	8015B NM	62059
880-32993-8	S-2 (2')	Total/NA	Solid	8015B NM	62059
880-32993-9	S-2 (3')	Total/NA	Solid	8015B NM	62059
880-32993-10	S-3 (0-1')	Total/NA	Solid	8015B NM	62059
880-32993-11	S-3 (1.5')	Total/NA	Solid	8015B NM	62059
880-32993-12	S-3 (2')	Total/NA	Solid	8015B NM	62059
880-32993-13	S-3 (3')	Total/NA	Solid	8015B NM	62059
MB 880-62059/1-A	Method Blank	Total/NA	Solid	8015B NM	62059
LCS 880-62059/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	62059
LCSD 880-62059/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	62059
880-32977-A-1-D MS	Matrix Spike	Total/NA	Solid	8015B NM	62059
880-32977-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	62059

Prep Batch: 62059

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32993-1	S-1 (0-1')	Total/NA	Solid	8015NM Prep	
880-32993-2	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-32993-3	S-1 (2')	Total/NA	Solid	8015NM Prep	
880-32993-4	S-1 (3')	Total/NA	Solid	8015NM Prep	
880-32993-5	S-1 (4')	Total/NA	Solid	8015NM Prep	
880-32993-6	S-2 (0-1')	Total/NA	Solid	8015NM Prep	
880-32993-7	S-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-32993-8	S-2 (2')	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 68 of 149

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

GC Semi VOA (Continued)

Prep Batch: 62059 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-9	S-2 (3')	Total/NA	Solid	8015NM Prep	
880-32993-10	S-3 (0-1')	Total/NA	Solid	8015NM Prep	
880-32993-11	S-3 (1.5')	Total/NA	Solid	8015NM Prep	
880-32993-12	S-3 (2')	Total/NA	Solid	8015NM Prep	
880-32993-13	S-3 (3')	Total/NA	Solid	8015NM Prep	
MB 880-62059/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-62059/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-62059/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-32977-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-32977-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 62141

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-1	S-1 (0-1')	Total/NA	Solid	8015 NM	
880-32993-2	S-1 (1.5')	Total/NA	Solid	8015 NM	
880-32993-3	S-1 (2')	Total/NA	Solid	8015 NM	
880-32993-4	S-1 (3')	Total/NA	Solid	8015 NM	
880-32993-5	S-1 (4')	Total/NA	Solid	8015 NM	
880-32993-6	S-2 (0-1')	Total/NA	Solid	8015 NM	
880-32993-7	S-2 (1.5')	Total/NA	Solid	8015 NM	
880-32993-8	S-2 (2')	Total/NA	Solid	8015 NM	
880-32993-9	S-2 (3')	Total/NA	Solid	8015 NM	
880-32993-10	S-3 (0-1')	Total/NA	Solid	8015 NM	
880-32993-11	S-3 (1.5')	Total/NA	Solid	8015 NM	
880-32993-12	S-3 (2')	Total/NA	Solid	8015 NM	
880-32993-13	S-3 (3')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 62031

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-1	S-1 (0-1')	Soluble	Solid	DI Leach	
880-32993-2	S-1 (1.5')	Soluble	Solid	DI Leach	
880-32993-3	S-1 (2')	Soluble	Solid	DI Leach	
880-32993-4	S-1 (3')	Soluble	Solid	DI Leach	
880-32993-5	S-1 (4')	Soluble	Solid	DI Leach	
880-32993-6	S-2 (0-1')	Soluble	Solid	DI Leach	
880-32993-7	S-2 (1.5')	Soluble	Solid	DI Leach	
880-32993-8	S-2 (2')	Soluble	Solid	DI Leach	
880-32993-9	S-2 (3')	Soluble	Solid	DI Leach	
MB 880-62031/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-62031/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62031/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-32977-A-7-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-32977-A-7-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 62032

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32993-10	S-3 (0-1')	Soluble	Solid	DI Leach	
880-32993-11	S-3 (1.5')	Soluble	Solid	DI Leach	
880-32993-12	S-3 (2')	Soluble	Solid	DI Leach	

Eurofins Midland

Job ID: 880-32993-1

SDG: Eddy County, New Mexico

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

HPLC/IC (Continued)

Leach Batch: 62032 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-13	S-3 (3')	Soluble	Solid	DI Leach	
MB 880-62032/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-62032/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62032/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-32940-A-30-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-32940-A-30-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 62278

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-1	S-1 (0-1')	Soluble	Solid	300.0	62031
880-32993-2	S-1 (1.5')	Soluble	Solid	300.0	62031
880-32993-3	S-1 (2')	Soluble	Solid	300.0	62031
880-32993-4	S-1 (3')	Soluble	Solid	300.0	62031
880-32993-5	S-1 (4')	Soluble	Solid	300.0	62031
880-32993-6	S-2 (0-1')	Soluble	Solid	300.0	62031
880-32993-7	S-2 (1.5')	Soluble	Solid	300.0	62031
880-32993-8	S-2 (2')	Soluble	Solid	300.0	62031
880-32993-9	S-2 (3')	Soluble	Solid	300.0	62031
MB 880-62031/1-A	Method Blank	Soluble	Solid	300.0	62031
LCS 880-62031/2-A	Lab Control Sample	Soluble	Solid	300.0	62031
LCSD 880-62031/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	62031
880-32977-A-7-C MS	Matrix Spike	Soluble	Solid	300.0	62031
880-32977-A-7-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	62031

Analysis Batch: 62331

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32993-10	S-3 (0-1')	Soluble	Solid	300.0	62032
880-32993-11	S-3 (1.5')	Soluble	Solid	300.0	62032
880-32993-12	S-3 (2')	Soluble	Solid	300.0	62032
880-32993-13	S-3 (3')	Soluble	Solid	300.0	62032
MB 880-62032/1-A	Method Blank	Soluble	Solid	300.0	62032
LCS 880-62032/2-A	Lab Control Sample	Soluble	Solid	300.0	62032
LCSD 880-62032/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	62032
880-32940-A-30-C MS	Matrix Spike	Soluble	Solid	300.0	62032
880-32940-A-30-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	62032

Page 70 of 149

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Chronicle

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: S-1 (0-1') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

÷	09/07/23 14:26		
	Batch	Batch	Dil

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	62007	09/07/23 16:17	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/08/23 14:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/08/23 16:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	62059	09/08/23 10:06	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 15:06	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 16:44	CH	EET MID

Client Sample ID: S-1 (1.5') Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	62007	09/07/23 16:17	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/08/23 14:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/08/23 16:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	62059	09/08/23 10:06	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 15:28	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 16:51	СН	EET MID

Client Sample ID: S-1 (2') Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	62007	09/07/23 16:17	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/08/23 15:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/08/23 16:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	62059	09/08/23 10:06	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 15:50	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 17:10	СН	EET MID

Client Sample ID: S-1 (3') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	62007	09/07/23 16:17	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/08/23 17:21	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 71 of 149

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-1 Matrix: Solid

5 6 9

Lab Sample ID: 880-32993-2 Matrix: Solid

Lab Sample ID: 880-32993-3

Lab Sample ID: 880-32993-4

Matrix: Solid

Lab Chronicle

Page 72 of 149

Matrix: Solid

Matrix: Solid

Matrix: Solid

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-4

Lab Sample ID: 880-32993-5

Client Sample ID: S-1 (3') Date Collected: 09/05/23 00:00

Client: Carmona Resources

Date Received: 09/07/23 14:26

Ргер Туре	Batch Type	Batch		Dil un Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
		Method	Run							
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	62059	09/08/23 10:06	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 16:34	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 17:16	СН	EET MID

Client Sample ID: S-1 (4') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

Ргер Туре	Batch Type	Batch		Dil	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
		Method	Run	Factor						
Total/NA	Prep	5035			5.05 g	5 mL	62007	09/07/23 16:17	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/08/23 17:42	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	62059	09/08/23 10:06	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 16:55	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 17:23	СН	EET MID

Client Sample ID: S-2 (0-1')

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	62007	09/07/23 16:17	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/08/23 18:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	62059	09/08/23 10:06	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 17:18	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 17:29	CH	EET MID

Client Sample ID: S-2 (1.5') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

Prep Type	Batch Type	Batch		Dil n Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
		Method	Run							
Total/NA	Prep	5035			4.99 g	5 mL	62007	09/07/23 16:17	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/08/23 18:23	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	62059	09/08/23 10:06	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 17:40	SM	EET MID

Eurofins Midland

Matrix: Solid

5

9

Lab Sample ID: 880-32993-7

Lab Sample ID: 880-32993-6
Project/Site: Graham Cracker 16 State 007H (05.13.23)

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Client Sample ID: S-2 (1.5') Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:26

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 17:35	СН	EET MID

Client Sample ID: S-2 (2') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	62054	09/08/23 09:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/08/23 23:57	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	62059	09/08/23 10:06	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 18:02	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 17:42	СН	EET MID

Client Sample ID: S-2 (3') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	62054	09/08/23 09:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/09/23 00:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	62059	09/08/23 10:06	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 18:24	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 17:48	СН	EET MID

Client Sample ID: S-3 (0-1') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

Lab Sample ID: 880-32993-10 Matrix: Solid

Lab Sample ID: 880-32993-9

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	62054	09/08/23 09:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/09/23 00:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	62059	09/08/23 10:06	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 18:46	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	62032	09/08/23 08:04	СН	EET MID
Soluble	Analysis	300.0		1			62331	09/12/23 18:19	CH	EET MID

Eurofins Midland

Lab Sample ID: 880-32993-8

Lab Sample ID: 880-32993-7 Matrix: Solid Matrix: Solid

9

Lab Chronicle

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: S-3 (1.5') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

/pe	Туре	Method	Run	Factor
	Batch	Batch		Dil

Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.965 g	5 mL	62054	09/08/23 09:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/09/23 00:59	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	62059	09/08/23 10:06	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 19:08	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	62032	09/08/23 08:04	СН	EET MID
Soluble	Analysis	300.0		1			62331	09/12/23 18:25	СН	EET MID

Initial

Lab Sample ID: 880-32993-12

Final

Batch

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

Client Sample ID: S-3 (2')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	62054	09/08/23 09:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/09/23 01:20	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	62059	09/08/23 10:06	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 19:31	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	62032	09/08/23 08:04	СН	EET MID
Soluble	Analysis	300.0		1			62331	09/12/23 18:45	СН	EET MID

Client Sample ID: S-3 (3') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:26

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	62054	09/08/23 09:10	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	62038	09/09/23 01:41	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			62112	09/11/23 11:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			62141	09/11/23 09:54	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	62059	09/08/23 10:06	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62025	09/08/23 19:53	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	62032	09/08/23 08:04	СН	EET MID
Soluble	Analysis	300.0		1			62331	09/12/23 18:52	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Page 74 of 149

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32993-11

Lab Sample ID: 880-32993-13

Prepared

Matrix: Solid

Matrix: Solid

Matrix: Solid

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	Pr	rogram	Identification Number	Expiration Date
xas	N	ELAP	T104704400-23-26	06-30-24
• •	• •	ut the laboratory is not certif	ied by the governing authority. This list ma	y include analytes for v
the agency does not of		Matrix	Analyte	
the agency does not o Analysis Method 8015 NM	ter certification Prep Method	Matrix Solid	Analyte Total TPH	

Eurofins Midland

Released to Imaging: 5/16/2024 2:17:21 PM

10

Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Method Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-32993-1 SDG: Eddy County, New Mexico

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
00.0	Anions, Ion Chromatography	EPA	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
)I Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-32993-1 SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-32993-1	S-1 (0-1')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-2	S-1 (1.5')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-3	S-1 (2')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-4	S-1 (3')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-5	S-1 (4')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-6	S-2 (0-1')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-7	S-2 (1.5')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-8	S-2 (2')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-9	S-2 (3')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-10	S-3 (0-1')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-11	S-3 (1.5')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-12	S-3 (2')	Solid	09/05/23 00:00	09/07/23 14:26
880-32993-13	S-3 (3')	Solid	09/05/23 00:00	09/07/23 14:26

		IComments: Email to Mike Carm	S-3 (0-1')	S-2 (3')	S-2 (2')	S-2 (1 5')	S-2 (0-1')	S-1 (4')	S-1 (3')	S-1 (2')	S-1 (1 5')	S-1 (0-1')	Sample Identification	Total Containers.	Sample Custody Seals Yes	Cooler Custody Seals Yes	Received Intact:	SAMPLE RECEIPT Ter	PO #:	•		Project Number	Project Name Graham Crac	Phone 432-813-6823	City, State ZIP Midland, TX 79701		Company Name Carmona Resources	Project Manager Conner Moehring	-
	Relinquished by	nona / Mcarmon	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	9/5/2023	Date		NO NIA	NO RIA O		Fema Blank.		JR/JM	Eddy County New Mexico	2121	Graham Cracker 16 State 007H (05 13 23)		9701	t Ste 500	ources	ing	
	(Signature)	1a@carmonare											Time	Corrected Temperature	Temperature Reading	Correction Factor	Thermometer ID	Yes No	>				7H (05 13 23)						
		sources.com	×	×	×	×	×	×	×	×	×	×	Soil	rature	ding			Wet Ice			Due Date	Routine	Turn /	Email					
		and Conner M	6	G	G	G	G	G	ഒ	G	9	G	Water Comp	2.5	(n:0	- 20	BBA	Kes) No			72 Hrs	マ Rush	Turn Around	Email mcarmona@carmonaresources.com	City, State ZIP	Address	Company Name	Bill to (if different)	
\$		oehring				_					1		# of Cont		L	Pa	iran	neter	5	1	- Cone	Pres.		rmonare					199
	Date/Time	/ Cmoe	×	×	×	×	×	×	×	×	×	×		L	B	TEX	802 [.]	B						sources				Carmor	
)	me	hring@	×	××	× ×	××	××	××	××	× ×	× ×	× ×	TPł	4 801			0 + le 30		+ MI	20)				.com				Carmona Resources	**********
	Rej	armonaresources.com																					ANALYSIS REQUEST					ces	
VAN-	Reseived by (Signature)																						QUEST	Deliverables EDD ADa	Reporting Level II Level III	State of Project:	Program: UST/PST PRP }rownfields	Work Orde	
	Date/Time												Sample Comments	NaOH+Ascorbic Acid SAPC	Zn Acetate+NaOH Zn	Na ₂ S ₂ O ₃ NaSO ₃	NaHSO4 NABIS	0	HASO, HA NAOH NA	2			Preservative Codes	ADaPT Other		[ownfields RC Deerfund	- 88.6	Page 1 of 2

Page 78 of 149

5

13

Chain of Custody

Xc

	and a state of the	Late Science of the second	and the second se						The second					Page_	2	¥ <u></u> 2
^o roject Manager Co	Conner Moehring			Bill to: (if different)	0	Carmon	Carmona Resources	Ces		L., r-;		×	Vork Or	Work Order Comments	ts	and the second se
Company Name	Carmona Resources			Company Name	¢						Program, UST/PST PRP	T/PST	PRP	rownfields	ິດ	perfund
Address. 31	310 W Wall St Ste 500	0		Address							State of Project:	ř.	ſ			[
e ZIP	Midland, TX 79701			City, State ZIP							Reporting Level II CLevel III		vel III	ST/UST		
hone 43	432-813-6823		Email	mcarmona@carmonaresources.com	carmonare	sources.	com				Deliverables EDD		Þ		:	
Project Name.	araham Cracker 16 (Graham Cracker 16 State 007H (05 13 23)	Turn	Turn Around					ANALYSI	LYSIS REQUEST	T			Pro	convotivo (·
۳	21	2121	Routin	✓ Rush	Pres.		_					4		Ninno Ni	CIVAC	COUES
Project Location	Eddy County	Eddy County, New Mexico	Due Date	72 Hrs			+								-	
Sampler's Name.	JR	JR/JM					τO) 								2	HND- HN
Ŏ#			I		's		+ MI									NaOH Na
SAMPLE RECEIPT	Temp Blank	x Yes No	Wet Ice.	Yes No	ieter		0.0							H-DO- HD		
Received Intact:	Yes No	The			iran	802 [.]	0 + e 30							NaHSO, NARIS	NARIS	
Cooler Custody Seals	Yes No N	N/A Correction Factor	tor		Pa									Na,S,O, NaSO,	NaSO,	
ample Custody Seals.	Yes No N	N/A Temperature Reading	eading											Zn Aceta	Zn Acetate+NaOH Zn	ر
otal Containers.		Corrected Temperature	perature				801							NaOH+A	NaOH+Ascorbic Acid SAPC	SAPC
Sample Identification		Date Time	Soil	Water Grab/ Comp	hy #of Cont	L	ТРН							Sa	Sample Comments	nents
S-3 (1 5')		9/5/2023	×	G	_	×	× ×		_			_				
S-3 (2')		9/5/2023	×	G	1	×	× ×									
S-3 (3')		9/5/2023	×	G	-1	×	× ×							-+		
							$\left \right $					-+				
				 	+		╞									
					+	<u> </u>	+					-				
					+		╀									
							-+					_				
omments: Email to	Mike Carmona / N	carmona@carmona	Iresolirces com	and Conner	Mochring	Cmool										
) Mike Carmona / N	-onnnents: Ethan to wrike Carrnona / wcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	aresources.com	and Conner	Moehring	/ Cmoel	ıring@c	armonares	ources.con	2						
y - Andre en ante ante ante ante ante ante ante	Relinqu	Relinquished by (Signature)				Date/Time	ne			Receiv	Received by: (Signature)	nature)			Date	Date/Time
										7	Z					
·					6-1	7-23										
						L L	とろ	-								
- Contraction																

9/13/2023

Page 79 of 149

5

NULL N

13

Chan of Custody

Work Order No:

M

Loc: 880 32993

Job Number: 880-32993-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 32993 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True MS/MSDs

N/A

Eurofins Midland Released to Imaging: 5/16/2024 2:17:21 PM

Containers requiring zero headspace have no headspace or bubble is

Received by OCD: 3/21/2024 8:36:47 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 9/13/2023 12:52:01 PM

JOB DESCRIPTION

Graham Cracker 16 State 007H (05.13.23) SDG NUMBER Eddy County, New Mexico

JOB NUMBER

880-32976-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 9/13/2023 12:52:01 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440 9/13/2023 12:52:01 PM

Page 83 of 149

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	22

Definitions/Glossary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Page 84 of 149

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Qualifiers

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA	A Contraction of the second	
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
S1+	Surrogate recovery exceeds control limits, high biased.	8
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		9
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	4 4
CFU	Colony Forming Unit	13
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

	· · · · ·
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

MPN Most Probable Number

MQL Method Quantitation Limit

NC Not Calculated ND Not Detected at the reporting limit (or MDL or E

ND Not Detected at the reporting limit (or MDL or EDL if shown) NEG Negative / Absent

POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Job ID: 880-32976-1

Client: Carmona Resources

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-32976-1

Receipt

The samples were received on 9/7/2023 2:24 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.7°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-32976-1), H-2 (0-0.5') (880-32976-2), H-3 (0-0.5') (880-32976-3) and H-4 (0-0.5') (880-32976-4).

GC VOA

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-62002 and analytical batch 880-61968 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-62060 and analytical batch 880-62028 was outside the upper control limits.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-62060 and analytical batch 880-62028 was outside control limits. Sample matrix interference and/or non-homogeneity is suspected.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-62060 and analytical batch 880-62028 recovered outside control limits for the following analytes: Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: H-1 (0-0.5') Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:24

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 19:23	1
Foluene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 19:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 19:23	1
n-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/07/23 15:49	09/07/23 19:23	
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 19:23	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/07/23 15:49	09/07/23 19:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	93		70 - 130				09/07/23 15:49	09/07/23 19:23	1
1,4-Difluorobenzene (Surr)	112		70 - 130				09/07/23 15:49	09/07/23 19:23	1
Method: TAL SOP Total BTEX - Tota	al BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/08/23 08:59	1
Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) (GC)						
						-			Dil Fac
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dirrac
Analyte Total TPH	Result 341	Qualifier		MDL	Unit mg/Kg	D	Prepared	09/11/23 10:03	1
Total TPH	341		49.9	MDL		D	Prepared		
Total TPH Method: SW846 8015B NM - Diesel	341 Range Orga		49.9			<u>D</u>	Prepared		
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics	341 Range Orga Result	nics (DRO)	49.9 (GC)		mg/Kg			09/11/23 10:03	Dil Fac
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	341 Range Orga Result <49.9	nics (DRO) Qualifier	49.9 (GC) RL		mg/Kg Unit		Prepared	09/11/23 10:03 Analyzed	1 Dil Fac
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over	341 Range Orga Result <49.9	nics (DRO) Qualifier U F2 *1	49.9 (GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared 09/08/23 10:09	09/11/23 10:03 Analyzed 09/08/23 11:42	Dil Fac
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	341 Range Orga Result <49.9 228	nics (DRO) Qualifier U F2 *1	49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:09 09/08/23 10:09	09/11/23 10:03 Analyzed 09/08/23 11:42 09/08/23 11:42	Dil Fac
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10	341 Range Orga Result <49.9 228 113	nics (DRO) Qualifier U F2 *1 F1 *1	49.9 (GC) 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:09 09/08/23 10:09 09/08/23 10:09	O9/11/23 10:03 Analyzed 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42	1
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	341 Range Orga Result <49.9 228 113 %Recovery	nics (DRO) Qualifier U F2 *1 F1 *1	49.9 (GC) 49.9 49.9 49.9 49.9 <i>Limits</i>		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:09 09/08/23 10:09 09/08/23 10:09 Prepared	09/11/23 10:03 Analyzed 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	341 Range Orga Result <49.9 228 113 %Recovery 110 115	nics (DRO) Qualifier U F2 *1 F1 *1 Qualifier	49.9 (GC) <u>RL</u> 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 09/08/23 10:09 09/08/23 10:09 09/08/23 10:09 Prepared 09/08/23 10:09	O9/11/23 10:03 Analyzed 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42	Dil Fac
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Cl	341 Range Orga Result <49.9 228 113 %Recovery 110 115	nics (DRO) Qualifier U F2 *1 F1 *1 Qualifier	49.9 (GC) <u>RL</u> 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 09/08/23 10:09 09/08/23 10:09 09/08/23 10:09 Prepared 09/08/23 10:09	O9/11/23 10:03 Analyzed 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42	Dil Fac
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	341 Range Orga Result <49.9 228 113 %Recovery 110 115	nics (DRO) Qualifier U F2 *1 F1 *1 Qualifier	49.9 (GC) RL 49.9 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared 09/08/23 10:09 09/08/23 10:09 09/08/23 10:09 Prepared 09/08/23 10:09 09/08/23 10:09	09/11/23 10:03 Analyzed 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 Analyzed 09/08/23 11:42 09/08/23 11:42	Dil Fac
Total TPH Method: SW846 8015B NM - Diesel Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Ch Analyte	341 Range Orga Result <49.9 228 113 %Recovery 110 115 nromatograp Result	nics (DRO) Qualifier U F2 *1 F1 *1 Qualifier	49.9 (GC) RL 49.9 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared 09/08/23 10:09 09/08/23 10:09 09/08/23 10:09 Prepared 09/08/23 10:09 09/08/23 10:09 Prepared	09/11/23 10:03 Analyzed 09/08/23 11:42 09/08/23 11:42 09/08/23 11:42 Analyzed Analyzed Analyzed	Dil Fac

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32976-1

Matrix: Solid

5

Eurofins Midland

Analyzed

09/07/23 19:44

09/07/23 19:44

09/07/23 19:44

09/07/23 19:44

09/07/23 19:44

09/07/23 19:44

Analyzed

09/07/23 19:44

09/07/23 19:44

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

0.00322

0.00330

<0.00198 U

<0.00396 U

<0.00198 U

<0.00396 U

%Recovery Qualifier

89

108

RL

0.00198

0.00198

0.00198

0.00396

0.00198

0.00396

Limits

70 - 130

70 - 130

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

09/07/23 15:49

09/07/23 15:49

09/07/23 15:49

09/07/23 15:49

09/07/23 15:49

09/07/23 15:49

Prepared

09/07/23 15:49

09/07/23 15:49

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32976-2

Client Sample ID: H-2 (0-0.5')

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:24

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00652		0.00396		mg/Kg			09/08/23 08:59	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	103		50.3		mg/Kg			09/11/23 10:03	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U *1	50.3		mg/Kg		09/08/23 10:09	09/08/23 12:48	1
(GRO)-C6-C10									
Diesel Range Organics (Over	103	*1	50.3		mg/Kg		09/08/23 10:09	09/08/23 12:48	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		09/08/23 10:09	09/08/23 12:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				09/08/23 10:09	09/08/23 12:48	1
o-Terphenyl	102		70 - 130				09/08/23 10:09	09/08/23 12:48	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	48.9		5.00		mg/Kg			09/12/23 15:15	1

Client Sample ID: H-3 (0-0.5')

Date Collected: 09/05/23 00:00

Date Received: 09/07/23 14:24

Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 09/07/23 15:49 09/07/23 20:04 mg/Kg 09/07/23 15:49 Toluene <0.00199 U 0.00199 09/07/23 20:04 mg/Kg Ethylbenzene <0.00199 U 0.00199 09/07/23 15:49 09/07/23 20:04 mg/Kg m-Xylene & p-Xylene <0.00398 U 0.00398 mg/Kg 09/07/23 15:49 09/07/23 20:04 o-Xylene <0.00199 U 0.00199 mg/Kg 09/07/23 15:49 09/07/23 20:04 Xylenes, Total <0.00398 U 0.00398 09/07/23 15:49 09/07/23 20:04 mg/Kg 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 09/07/23 15:49 09/07/23 20:04 4-Bromofluorobenzene (Surr) 95 1,4-Difluorobenzene (Surr) 110 70 - 130 09/07/23 15:49 09/07/23 20:04

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/08/23 08:59	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	76.6		50.5		mg/Kg			09/11/23 10:03	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U *1	50.5		mg/Kg		09/08/23 10:09	09/08/23 13:11	1
(GRO)-C6-C10									
	76.6	*1	50.5		mg/Kg		09/08/23 10:09	09/08/23 13:11	1
Diesel Range Organics (Over	70.0		00.0		ing/itg		00/00/20 10.00	00/00/20 10.11	

Eurofins Midland

Matrix: Solid

Matrix: Solid

1

1

1

1

1

1

1

5

Page 7 of 22

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32976-3

Client Sample ID: H-3 (0-0.5')

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:24

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		09/08/23 10:09	09/08/23 13:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				09/08/23 10:09	09/08/23 13:11	1
o-Terphenyl	120		70 - 130				09/08/23 10:09	09/08/23 13:11	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
· · · · · · · · · · · · · · · · · · ·	• •	hy - Solubl Qualifier	e RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	• •			MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Chloride			RL	MDL		<u> </u>	•		1
Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: H-4 (0-0.5 Date Collected: 09/05/23 00:00			RL	MDL		<u>D</u>	•	09/12/23 15:21	1

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 20:25	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 20:25	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 20:25	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/07/23 15:49	09/07/23 20:25	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 20:25	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/07/23 15:49	09/07/23 20:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				09/07/23 15:49	09/07/23 20:25	1
1,4-Difluorobenzene (Surr)	96		70 - 130				09/07/23 15:49	09/07/23 20:25	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	C	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			09/08/23 08:59	1

	Method: SW846 8015 NM - Diesel R	ange Organi	ics (DRO) (G	SC)						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<50.5	U	50.5		mg/Kg			09/11/23 10:03	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U *1	50.5		mg/Kg		09/08/23 10:09	09/08/23 13:37	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.5	U *1	50.5		mg/Kg		09/08/23 10:09	09/08/23 13:37	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		09/08/23 10:09	09/08/23 13:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130				09/08/23 10:09	09/08/23 13:37	1
o-Terphenyl	104		70 - 130				09/08/23 10:09	09/08/23 13:37	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	27.2		4.95		mg/Kg			09/12/23 15:28	1

Matrix: Solid

5

Surrogate Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

-				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID 880-32976-1	Client Sample ID H-1 (0-0.5')	(70-130) 	(70-130) 112	· ·
880-32976-2	H-2 (0-0.5')	89	108	
880-32976-3	H-3 (0-0.5')	95	110	
880-32976-4	H-4 (0-0.5')	113	96	
380-32978-A-1-A MS	Matrix Spike	91	103	
380-32978-A-1-B MSD	Matrix Spike Duplicate	86	101	
_CS 880-62002/1-A	Lab Control Sample	88	100	
LCSD 880-62002/2-A	Lab Control Sample Dup	97	101	
MB 880-62002/5-A	Method Blank	81	92	
Surrogate Legend				

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Sample ID	Client Sample ID	(70-130)	(70-130)	
976-1	H-1 (0-0.5')	110	115	
76-1 MS	H-1 (0-0.5')	96	92	
2976-1 MSD	H-1 (0-0.5')	96	92	
2976-2	H-2 (0-0.5')	97	102	
76-3	H-3 (0-0.5')	112	120	
976-4	H-4 (0-0.5')	96	104	
80-62060/2-A	Lab Control Sample	91	96	
880-62060/3-A	Lab Control Sample Dup	82	89	
30-62060/1-A	Method Blank	163 S1+	180 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 89 of 149

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-62002/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 61968								Prep Type: 1 Prep Batch	
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 18:40	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 18:40	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 18:40	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/07/23 15:49	09/07/23 18:40	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/07/23 15:49	09/07/23 18:40	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/07/23 15:49	09/07/23 18:40	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130				09/07/23 15:49	09/07/23 18:40	1
1,4-Difluorobenzene (Surr)	92		70 - 130				09/07/23 15:49	09/07/23 18:40	1

Lab Sample ID: LCS 880-62002/1-A Matrix: Solid

Analysis Batch: 61968

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.08595		mg/Kg		86	70 - 130	·
Toluene	0.100	0.08295		mg/Kg		83	70 - 130	
Ethylbenzene	0.100	0.08107		mg/Kg		81	70 - 130	
m-Xylene & p-Xylene	0.200	0.1624		mg/Kg		81	70 - 130	
o-Xylene	0.100	0.07819		mg/Kg		78	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	88		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-62002/2-A

Matrix: Solid

	Analysis Batch: 61968							Prep	Batch:	62002
		Spike	LCSD	LCSD				%Rec		RPD
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
	Benzene	0.100	0.1137		mg/Kg		114	70 - 130	28	35
	Toluene	0.100	0.1093		mg/Kg		109	70 - 130	27	35
	Ethylbenzene	0.100	0.1087		mg/Kg		109	70 - 130	29	35
	m-Xylene & p-Xylene	0.200	0.2186		mg/Kg		109	70 - 130	29	35
	o-Xylene	0.100	0.1045		mg/Kg		104	70 - 130	29	35
1										

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	101		70 - 130

Lab Sample ID: 880-32978-A-1-A MS

Matrix: Solid

Analysis Batch: 61968									Pre	Batch: 62002
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U F1	0.100	0.08687		mg/Kg		86	70 - 130	
Toluene	<0.00201	U F1	0.100	0.08240		mg/Kg		82	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 62002

13

QC Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid									Prep ⁻	Type: Tot	tal/N/
Analysis Batch: 61968									Prep	Batch:	6200
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00201	U F1	0.100	0.07979		mg/Kg		80	70 - 130		
m-Xylene & p-Xylene	<0.00402	U F1	0.200	0.1569		mg/Kg		78	70 - 130		
o-Xylene	<0.00201	U F1	0.100	0.07419		mg/Kg		74	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	91		70 - 130								
1,4-Difluorobenzene (Surr)	103		70 - 130								
Lab Sample ID: 880-32978-A	-1-B MSD					Cli	ent S	ample IF): Matrix S	nike Dun	licat
Matrix: Solid										Type: To	
Analysis Batch: 61968										Batch:	
,, ,	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	<0.00201	U F1	0.101	0.06854	F1	mg/Kg		67	70 - 130	24	3
Toluene	<0.00201	U F1	0.101	0.06166	F1	mg/Kg		61	70 - 130	29	3
Ethylbenzene	<0.00201	U F1	0.101	0.05995	F1	mg/Kg		59	70 - 130	28	3
m-Xylene & p-Xylene	<0.00402	U F1	0.202	0.1171	F1	mg/Kg		58	70 - 130	29	3
o-Xylene	<0.00201	U F1	0.101	0.05482	F1	mg/Kg		54	70 - 130	30	3
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	86		70 - 130								
	101		70 - 130								
1,4-Difluorobenzene (Surr)											
	sel Range Or	ganics (E	RO) (GC)								
lethod: 8015B NM - Dies		ganics (E)RO) (GC)								
		ganics (E	0RO) (GC)					Client S	ample ID:	Method Type: Tot	

	NID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		09/08/23 08:00	09/08/23 09:08	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		09/08/23 08:00	09/08/23 09:08	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		09/08/23 08:00	09/08/23 09:08	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	163	S1+	70 - 130				09/08/23 08:00	09/08/23 09:08	1

70 - 130

180 S1+

Lab Sample ID: LCS 880-62060/2-A Matrix: Solid Analysis Batch: 62028

o-Terphenyl

Analysis Batch: 62028							Prep	Batch: 62060
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1166		mg/Kg		117	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1051		mg/Kg		105	70 - 130	
C10-C28)								

Eurofins Midland

Prep Type: Total/NA

09/08/23 08:00 09/08/23 09:08

Client Sample ID: Lab Control Sample

Released to Imaging: 5/16/2024 2:17:21 PM

1

QC Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Lab Sample ID: LCS 880-6206 Matrix: Solid	50/2-A						Client	Sample	ID: Lab Co Prep T	ontrol Sa Type: Tot	
Analysis Batch: 62028										Batch:	
		LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	91		70 - 130								
o-Terphenyl	96		70 - 130								
Lab Sample ID: LCSD 880-620	060/3-A					Clier	nt Sam	ple ID: I	_ab Contro	I Sampl	e Dup
Matrix: Solid								·		ype: To	
Analysis Batch: 62028										Batch:	
-			Spike	LCSD	LCSD				%Rec		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10			1000	938.4	*1	mg/Kg		94	70 - 130	22	20
Diesel Range Organics (Over C10-C28)			1000	783.4	*1	mg/Kg		78	70 - 130	29	20
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane	82		70 - 130								
o-Terphenyl	89		70 - 130								
, ,											
Lab Sample ID: 880-32976-1	NS							Clien	t Sample II	D: H-1 (0-0.5'
Matrix: Solid									Prep T	ype: To	tal/N/
Analysis Batch: 62028									Prep	Batch:	62060
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U F2 *1	995	829.3		mg/Kg		82	70 - 130		
Diesel Range Organics (Over C10-C28)	228	F1 *1	995	863.5	F1	mg/Kg		64	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	96		70 - 130								
o-Terphenyl	92		70 - 130								
Lab Sample ID: 880-32976-1	100							Clien	t Comula II		0 0 FI
•	130							Clien	t Sample II		
Matrix: Solid										ype: To Batch:	
Analysis Batch: 62028	Cample	Sample	Spike	MSD	мер				%Rec	Batch:	RPE
	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
∆nalvte		U F2 *1	995	1142		mg/Kg		113	70 - 130	32	2
-	<10 0	<u> </u>	000	1172	· -			110	10-100	02	20
Gasoline Range Organics	<49.9										
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		F1 *1	995	864.8	F1	mg/Kg		64	70 - 130	0	20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	228	F1 *1	995	864.8	F1	mg/Kg		64	70 - 130	0	20
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	228 MSD	F1 *1 <i>MSD</i>		864.8	F1	mg/Kg		64	70 - 130	0	20
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	228	F1 *1 <i>MSD</i>	995 	864.8	F1	mg/Kg		64	70 - 130	0	20

Client: Carmona Resources

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Project/Site: Graham Cracker 16 State 007H (05.13.23) Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-62031/1-A												Client S	ample ID:		
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 62278															
Analyte			Qualifier		RL		MDL			<u>D</u>	PI	repared	Analyz		Dil Fac
Chloride	•	<5.00	U		5.00			mg/Kg					09/12/23	14:36	1
Lab Sample ID: LCS 880-62031/2-A										CI	ient	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 62278															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride				250		246.6			mg/Kg		_	99	90 - 110		
Lab Sample ID: LCSD 880-62031/3-	-A								Cli	ent S	Sam	ple ID:	Lab Contro	ol Sampl	le Dur
Matrix: Solid														Type: S	
Analysis Batch: 62278															
-				Spike		LCSD	LCSI	D					%Rec		RPD
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride				250		247.0			mg/Kg		_	99	90 - 110	0	20
Lab Sample ID: 880-32976-1 MS												Clien	t Sample I	D: H-1(0-0.5
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 62278															
	Sample	Sam	ple	Spike		MS	MS						%Rec		
						Posult	Qual	ifier	Unit		D	%Rec	Limits		
Analyte	Result	Qual	lifier	Added		Result									
	Result 45.4	Qual	lifier	248		298.5			mg/Kg			102	90 - 110		
Chloride		Qual	lifier						mg/Kg					D: H-1 (0-0.5'
Chloride Lab Sample ID: 880-32976-1 MSD		Qual	lifier						mg/Kg				t Sample I		
Chloride Lab Sample ID: 880-32976-1 MSD Matrix: Solid		Qual	lifier						mg/Kg				t Sample I	D: H-1(Type: S	
Chloride Lab Sample ID: 880-32976-1 MSD Matrix: Solid							MSD		mg/Kg				t Sample I		oluble
Analyte Chloride Lab Sample ID: 880-32976-1 MSD Matrix: Solid Analysis Batch: 62278 Analyte	45.4	Sam	ple	248		298.5			mg/Kg Unit		D		t Sample I Prep		

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

GC VOA

Analysis Batch: 61968

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
80-32976-1	H-1 (0-0.5')	Total/NA	Solid	8021B	62002
80-32976-2	H-2 (0-0.5')	Total/NA	Solid	8021B	62002
80-32976-3	H-3 (0-0.5')	Total/NA	Solid	8021B	62002
80-32976-4	H-4 (0-0.5')	Total/NA	Solid	8021B	6200
B 880-62002/5-A	Method Blank	Total/NA	Solid	8021B	6200
CS 880-62002/1-A	Lab Control Sample	Total/NA	Solid	8021B	6200
CSD 880-62002/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	6200
30-32978-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	6200
30-32978-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	6200

Prep Batch: 62002

LC3D 000-02002/2-A	Lab Control Sample Dup	TOtal/INA	Solid	00210	02002	
880-32978-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	62002	8
880-32978-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	62002	
Prep Batch: 62002						9
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	10
880-32976-1	H-1 (0-0.5')	Total/NA	Solid	5035		
880-32976-2	H-2 (0-0.5')	Total/NA	Solid	5035		11
880-32976-3	H-3 (0-0.5')	Total/NA	Solid	5035		
880-32976-4	H-4 (0-0.5')	Total/NA	Solid	5035		12
MB 880-62002/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-62002/1-A	Lab Control Sample	Total/NA	Solid	5035		4.9
LCSD 880-62002/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		13
880-32978-A-1-A MS	Matrix Spike	Total/NA	Solid	5035		
880-32978-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		14

Analysis Batch: 62043

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32976-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-32976-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-32976-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-32976-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 62028

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32976-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	62060
880-32976-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	62060
880-32976-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	62060
880-32976-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	62060
MB 880-62060/1-A	Method Blank	Total/NA	Solid	8015B NM	62060
LCS 880-62060/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	62060
LCSD 880-62060/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	62060
880-32976-1 MS	H-1 (0-0.5')	Total/NA	Solid	8015B NM	62060
880-32976-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8015B NM	62060

Prep Batch: 62060

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32976-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-32976-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-32976-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-32976-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-62060/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-62060/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 94 of 149

5

QC Association Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

GC Semi VOA (Continued)

Prep Batch: 62060 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCSD 880-62060/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-32976-1 MS	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-32976-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
Analysia Databy 62445					

Analysis Batch: 62145

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-32976-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-32976-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-32976-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-32976-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 62031

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32976-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-32976-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-32976-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-32976-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-62031/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-62031/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62031/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-32976-1 MS	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-32976-1 MSD	H-1 (0-0.5')	Soluble	Solid	DI Leach	

Analysis Batch: 62278

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32976-1	H-1 (0-0.5')	Soluble	Solid	300.0	62031
880-32976-2	H-2 (0-0.5')	Soluble	Solid	300.0	62031
880-32976-3	H-3 (0-0.5')	Soluble	Solid	300.0	62031
880-32976-4	H-4 (0-0.5')	Soluble	Solid	300.0	62031
MB 880-62031/1-A	Method Blank	Soluble	Solid	300.0	62031
LCS 880-62031/2-A	Lab Control Sample	Soluble	Solid	300.0	62031
LCSD 880-62031/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	62031
880-32976-1 MS	H-1 (0-0.5')	Soluble	Solid	300.0	62031
880-32976-1 MSD	H-1 (0-0.5')	Soluble	Solid	300.0	62031

Page 95 of 149

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Eurofins Midland

Lab Chronicle

Initial

Amount

5.01 g

5 mL

10.02 g

1 uL

5.04 g

Dil

1

1

1

1

1

Factor

Run

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: H-1 (0-0.5') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:24

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

	SE)G: I	Edc	ly
		-		

Batch

62002

61968

62043

62145

62060

62028

62031

62278

Number

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-32976-1 Matrix: Solid

Analyst

EL

SM

SM

SM

ткс

SM

СН

СН

Prepared

or Analyzed

09/07/23 15:49

09/07/23 19:23

09/08/23 08:59

09/11/23 10:03

09/08/23 10:09

09/08/23 11:42

09/08/23 08:03

09/12/23 14:56

Lab Sample ID: 880-32976-2 Matrix: Solid

Lab Sample ID: 880-32976-3

Lab Sample ID: 880-32976-4

rix: Solid

Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:24

Client Sample ID: H-2 (0-0.5')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	62002	09/07/23 15:49	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61968	09/07/23 19:44	SM	EET MID
Total/NA	Analysis	Total BTEX		1			62043	09/08/23 08:59	SM	EET MID
Total/NA	Analysis	8015 NM		1			62145	09/11/23 10:03	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	62060	09/08/23 10:09	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62028	09/08/23 12:48	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 15:15	СН	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:24

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	62002	09/07/23 15:49	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61968	09/07/23 20:04	SM	EET MID
Total/NA	Analysis	Total BTEX		1			62043	09/08/23 08:59	SM	EET MID
Total/NA	Analysis	8015 NM		1			62145	09/11/23 10:03	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	62060	09/08/23 10:09	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62028	09/08/23 13:11	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 15:21	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:24

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	62002	09/07/23 15:49	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	61968	09/07/23 20:25	SM	EET MID
Total/NA	Analysis	Total BTEX		1			62043	09/08/23 08:59	SM	EET MID

Eurofins Midland

Matrix: Solid

Lab

EET MID

Matrix: Solid

Released to Imaging: 5/16/2024 2:17:21 PM

Lab Chronicle

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) SDG: Eddy County, New Mexico

Client Sample ID: H-4 (0-0.5') Date Collected: 09/05/23 00:00 Date Received: 09/07/23 14:24

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			62145	09/11/23 10:03	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	62060	09/08/23 10:09	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	62028	09/08/23 13:37	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	62031	09/08/23 08:03	СН	EET MID
Soluble	Analysis	300.0		1			62278	09/12/23 15:28	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-32976-1

Page 97 of 149

Lab Sample ID: 880-32976-4 Matrix: Solid 5 6 7 8 9

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	P	rogram	Identification Number	Expiration Date
exas	N	ELAP	T104704400-23-26	06-30-24
I ne tollowing analytes	are included in this report, b	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for v
the agency does not o		Matrix	Analyte	
the agency does not o Analysis Method 8015 NM	fer certification . Prep Method	Matrix Solid	Analyte Total TPH	

Eurofins Midland

Released to Imaging: 5/16/2024 2:17:21 PM

10

Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Method Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-32976-1 SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-32976-1 SDG: Eddy County, New Mexico

880-32976-1 H-1 (0-0.5') Solid 09/05/23 00:00 09/07/23 14:24 880-32976-2 H-2 (0-0.5') Solid 09/05/23 00:00 09/07/23 14:24 880-32976-3 H-3 (0-0.5') Solid 09/05/23 00:00 09/07/23 14:24 880-32976-4 H-4 (0-0.5') Solid 09/05/23 00:00 09/07/23 14:24 880-32976-4 H-4 (0-0.5') Solid 09/05/23 00:00 09/07/23 14:24		
Solid 09/05/23 00:00 09/07/23 14:24	24	
	.24	
Solid 09/05/23 00:00 09/07/23 14:24	.24	
	24	

Page 100 of 149

Image: Contract of Contrecont of Contract of Contract of Contract of Co	Cmoehring@car	Oehring D	Conner Mc	sources.com	/ (Signature)	PJ5/2023 9/5/2023 9/5/2023 9/5/2023 Relinquished by (Signature)	li to Mike Carm	H-1 (0-0 5) H-2 (0-0 5) H-3 (0-0 5) H-4 (0-0 5) H-4 (0-0 5)
Received by (Signature)	× × × × × × × × × × × × × × × × × × × × × × × × Cmoehring@car × ×	Oehring / C	und Conner Mc	sources.com a	1a@carmonare	ona / Mcarmor Relinguished by	II to Mike Carm	H-1 (0 H-2 (0 H-3 (0 H-4 (0
	Cmoehring@ca	oehring / 0	Ind Conner M	sources.com	na@carmonare	ona / Mcarmor	11 to Mike Carm	H-1 (0 H-2 (0 H-3 (0 H-4 (0
	Cmoehring@car	oehring / C	und Conner Mc	sources.com a	1a@carmonare	ona / Mcarmor	11 to Mike Carm	H-1 (0 H-2 (0 H-3 (0 H-4 (0
╽┝╾╄╼╋╶┸┈┸╍╉╼╉═	X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X Cmoehring@car X X X	oehring / C	Ind Conner Mc	sources.com a	na@carmonare	9/5/2023 9/5/2023 9/5/2023 9/5/2023	-0 5') -0 5') -0 5') -0 5')	H-1 (0 H-2 (0 H-3 (0 H-4 (0
						9/5/2023 9/5/2023 9/5/2023 9/5/2023	-0.5) -0.5) -0.5)	H-1 (0 H-2 (0 H-3 (0 H-4 (0
	××××		ດດດ			9/5/2023 9/5/2023 9/5/2023 9/5/2023	-0-5) 5)	H-1 (0 H-2 (0 H-3 (0 H-4 (0
						9/5/2023 9/5/2023 9/5/2023 9/5/2023	-0-0-5) -0-5) -0-5) -0-5)	H-1 (0 H-2 (0 H-3 (0 H-4 (0
	× × × ×					9/5/2023 9/5/2023 9/5/2023 9/5/2023	-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	H-1 (0 H-2 (0 H-4 (0
	× × × ×		ە ە ە •	× × × ×		9/5/2023 9/5/2023 9/5/2023 9/5/2023	-0 5') -0 5') -0 5')	H-1 (0 H-2 (0 H-3 (0 H-4 (0
X	× × × ×		م م م	× × × ×		9/5/2023 9/5/2023 9/5/2023 9/5/2023	-0 5') -0 5') -0 5')	H-1 (0 H-2 (0 H-3 (0 H-4 (0
	× × ×		ە م ە	×××		9/5/2023 9/5/2023 9/5/2023	-0 5') -0 5')	H-1 (0 H-2 (0 H-3 (0
	× >		ۍ م	××		9/5/2023	-0 5')	H-1 (0
×	>		G	×		02021010	-0 5')	н-1 (0
×	<	1				9/5/2023	+	
Sample Comments	TPH	# of Cont	Water Grab/ Comp	Soil	Time	Date	ntification	Sample Identification
NaOH+Ascorbic Acid SAPC	801		5	ature.	Corrected Temperature.	(Total Containers.
	5M (L	0:0	ding	Temperature Reading	No (NIA) 1	als. Yes	Sample Custody Seals.
	GR	Pa	-30		Correction Factor	No WA)	s. Yes	Cooler Custody Seals
Nation Applies		iram	THE		Thermometer ID)	R	Received Intact:
	DRO	ietei	(Yes No	Wet Ice	Yes No	erpp-Blank.		SAMPLE RECEIPT
	+ MI	5))			PO #·
2	२०)					JR/JM		Sampler's Name
			72 Hrs	Due Date		Eddy County, New Mexico	Eddy	Project Location
		Pres.	Rush	Routine		2121		Project Number
ANALYSIS REQUEST Preservative Codes			round	Turn Around	7H (05 13 23)	Graham Cracker 16 State 007H (05 13 23)	Graham Crac	Project Name
Deliverables EDD ADaPT Other	ources.com	rmonareso	mcarmona@carmonaresources.com	Email n			432-813-6823	Phone
Reporting Level II Level III ST/UST RRP Level IV			City, State ZIP	0		9701	Midland, TX 79701	City, State ZIP
1			Address	A		Ste 500	310 W Wall St Ste 500	Address.
Program: UST/PST PRP prownfields RC perfund			Company Name	0		ources	Carmona Resources	Company Name
Surces Work Order Comments	Carmona Resources	0	Bill to: (if different)	(D)		ŋg	Conner Moehring	Project Manager

Released to Imaging: 5/16/2024 2:17:21 PM

9/13/2023

Work Order No: 32976

Page 101 of 149

Crain of Custody

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 32976 List Number: 1 Creator: Rodriguez, Leticia

MS/MSDs

<6mm (1/4").

Question Answer Comment The cooler's custody seal, if present, is intact. N/A N/A Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or True tampered with. Samples were received on ice. True True Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. True Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate True HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. True Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. N/A There is sufficient vol. for all requested analyses, incl. any requested True

N/A

Eurofins Midland Released to Imaging: 5/16/2024 2:17:21 PM

Containers requiring zero headspace have no headspace or bubble is

Job Number: 880-32976-1

SDG Number: Eddy County, New Mexico

List Source: Eurofins Midland

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 11/3/2023 11:20:16 AM

JOB DESCRIPTION

Graham Cracker 16 State 007H (05.13.23) SDG NUMBER Eddy County, New Mexico

JOB NUMBER

880-35134-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 11/3/2023 11:20:16 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 105 of 149

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	20
Lab Chronicle	23
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

Definitions/Glossary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Page 106 of 149

Job ID: 880-35134-	1
SDG: Eddy County, New Mexico	כ

Qualifiers		3
GC VOA		
Qualifier *-	Qualifier Description LCS and/or LCSD is outside acceptance limits, low biased.	4
- S1+	Surrogate recovery exceeds control limits, high biased.	5
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	
S1+ U	Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.	
HPLC/IC		ð
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	[10
a previation	Listed under the "D" column to designate that the result is reported on a dry weight basis	
- %R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD TEF	Relative Percent Difference, a measure of the relative difference between two points Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)	

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Job ID: 880-35134-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-35134-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/1/2023 9:27 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -2.4°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: CS-1 (1.5') (880-35134-1), CS-2 (1.5') (880-35134-2), CS-3 (1.5') (880-35134-3), CS-4 (1.5') (880-35134-4), SW-1 (1.5') (880-35134-5), SW-2 (1.5') (880-35134-6), SW-3 (1.5') (880-35134-7), SW-4 (1.5') (880-35134-8) and SW-5 (1.5') (880-35134-9).

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-65962 and analytical batch 880-65954 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-65962/5-A). Evidence of matrix interferences is not obvious.

Method 8021B: Surrogate recovery for the following sample was outside control limits: (MB 880-66035/5-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-65965 and analytical batch 880-65945 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: CS-1 (1.5') (880-35134-1), CS-3 (1.5') (880-35134-3), CS-4 (1.5') (880-35134-4), SW-1 (1.5') (880-35134-5), SW-2 (1.5') (880-35134-6), SW-3 (1.5') (880-35134-7), (880-35073-A-25-C), (880-35073-A-25-D MS) and (880-35073-A-25-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-65945/20) and (CCV 880-65945/5). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: CS-1 (1.5')

Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		11/01/23 09:35	11/01/23 16:10	
Toluene	<0.00202	U	0.00202		mg/Kg		11/01/23 09:35	11/01/23 16:10	
Ethylbenzene	<0.00202	U *-	0.00202		mg/Kg		11/01/23 09:35	11/01/23 16:10	
n-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/01/23 09:35	11/01/23 16:10	
p-Xylene	<0.00202	U	0.00202		mg/Kg		11/01/23 09:35	11/01/23 16:10	
Kylenes, Total	<0.00403	U	0.00403		mg/Kg		11/01/23 09:35	11/01/23 16:10	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Bromofluorobenzene (Surr)	102		70 - 130				11/01/23 09:35	11/01/23 16:10	
,4-Difluorobenzene (Surr)	114		70 - 130				11/01/23 09:35	11/01/23 16:10	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal BTEX	<0.00403	U	0.00403		mg/Kg			11/01/23 16:10	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
otal TPH	<50.0	U	50.0		mg/Kg			11/01/23 15:13	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/01/23 10:31	11/01/23 15:13	
Diesel Range Organics (Over 210-C28)	<50.0	U	50.0		mg/Kg		11/01/23 10:31	11/01/23 15:13	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/01/23 10:31	11/01/23 15:13	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-Chlorooctane	136	S1+	70 - 130				11/01/23 10:31	11/01/23 15:13	
-Terphenyl	128		70 - 130				11/01/23 10:31	11/01/23 15:13	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	54.1		5.02		mg/Kg			11/02/23 19:08	
lient Sample ID: CS-2 (1.5))						Lab Sam	ple ID: 880-3	5134-2
te Collected: 10/31/23 00:00 te Received: 11/01/23 09:27								Matri	x: Solie
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/01/23 09:35	11/01/23 16:31	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/23 09:35	11/01/23 16:31	1
Ethylbenzene	<0.00201	U *-	0.00201		mg/Kg		11/01/23 09:35	11/01/23 16:31	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/23 09:35	11/01/23 16:31	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/23 09:35	11/01/23 16:31	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/23 09:35	11/01/23 16:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				11/01/23 09:35	11/01/23 16:31	1
1,4-Difluorobenzene (Surr)	115		70 - 130				11/01/23 09:35	11/01/23 16:31	1

Eurofins Midland

Page 108 of 149

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-35134-1

Matrix: Solid

5

Released to Imaging: 5/16/2024 2:17:21 PM
Project/Site: Graham Cracker 16 State 007H (05.13.23)

Matrix: Solid

Matrix: Solid

5

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-35134-2

Client Sample ID: CS-2 (1.5')

Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/01/23 16:31	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			11/01/23 15:36	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		11/01/23 10:31	11/01/23 15:36	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		11/01/23 10:31	11/01/23 15:36	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		11/01/23 10:31	11/01/23 15:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	129		70 - 130				11/01/23 10:31	11/01/23 15:36	
o-Terphenyl	120		70 - 130				11/01/23 10:31	11/01/23 15:36	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	55.0		4.98		mg/Kg			11/02/23 19:14	

Date Collected: 10/31/23 00:00

Date Received: 11/01/23 09:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201		mg/Kg		11/01/23 09:35	11/01/23 16:51	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/01/23 09:35	11/01/23 16:51	1
Ethylbenzene	<0.00201	U *-	0.00201		mg/Kg		11/01/23 09:35	11/01/23 16:51	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/01/23 09:35	11/01/23 16:51	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/01/23 09:35	11/01/23 16:51	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/01/23 09:35	11/01/23 16:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				11/01/23 09:35	11/01/23 16:51	1
1,4-Difluorobenzene (Surr)	113		70 - 130				11/01/23 09:35	11/01/23 16:51	1

Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/01/23 16:51	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3		mg/Kg			11/01/23 16:21	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		11/01/23 10:31	11/01/23 16:21	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		11/01/23 10:31	11/01/23 16:21	1
C10-C28)									

Eurofins Midland

Released to Imaging: 5/16/2024 2:17:21 PM

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Matrix: Solid

5

12 13

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-35134-3

Client Sample ID: CS-3 (1.5')

Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		11/01/23 10:31	11/01/23 16:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	137	S1+	70 - 130				11/01/23 10:31	11/01/23 16:21	1
o-Terphenyl	127		70 - 130				11/01/23 10:31	11/01/23 16:21	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	47.6		5.04		mg/Kg			11/02/23 19:21	1
Client Sample ID: CS-4 (1.5))						Lab Sam	ple ID: 880-3	5134-4
ate Collected: 10/31/23 00:00	•							Motri	x: Solid

Date Collected: 10/31/23 00:00

Date Received: 11/01/23 09:27

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		11/02/23 08:43	11/02/23 11:58	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/02/23 08:43	11/02/23 11:58	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/02/23 08:43	11/02/23 11:58	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/02/23 08:43	11/02/23 11:58	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/02/23 08:43	11/02/23 11:58	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/02/23 08:43	11/02/23 11:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 - 130				11/02/23 08:43	11/02/23 11:58	1
1,4-Difluorobenzene (Surr)	106		70 - 130				11/02/23 08:43	11/02/23 11:58	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg				11/02/23 11:58	1

Method: SW846 8015 NM - Diesel R	ange Organi	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3		mg/Kg			11/01/23 16:43	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		11/01/23 10:31	11/01/23 16:43	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		11/01/23 10:31	11/01/23 16:43	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		11/01/23 10:31	11/01/23 16:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	134	S1+	70 - 130				11/01/23 10:31	11/01/23 16:43	1
o-Terphenyl	126		70 - 130				11/01/23 10:31	11/01/23 16:43	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	84.1		5.02		mg/Kg			11/02/23 19:41	1

Client Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: SW-1 (1.5')

Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/02/23 08:43	11/02/23 12:19	1
oluene	<0.00201	U	0.00201		mg/Kg		11/02/23 08:43	11/02/23 12:19	1
thylbenzene	<0.00201	U	0.00201		mg/Kg		11/02/23 08:43	11/02/23 12:19	1
n-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/02/23 08:43	11/02/23 12:19	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/02/23 08:43	11/02/23 12:19	1
Kylenes, Total	<0.00402	U	0.00402		mg/Kg		11/02/23 08:43	11/02/23 12:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Bromofluorobenzene (Surr)	99		70 - 130				11/02/23 08:43	11/02/23 12:19	1
,4-Difluorobenzene (Surr)	109		70 - 130				11/02/23 08:43	11/02/23 12:19	1
Method: TAL SOP Total BTEX - T									
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal BTEX	<0.00402	U	0.00402		mg/Kg			11/02/23 12:19	1
Nethod: SW846 8015 NM - Diese									
analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
otal TPH	<49.9	U	49.9		mg/Kg			11/01/23 17:05	
Nethod: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
nalyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/01/23 10:31	11/01/23 17:05	1
Diesel Range Organics (Over 210-C28)	<49.9	U	49.9		mg/Kg		11/01/23 10:31	11/01/23 17:05	1
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/01/23 10:31	11/01/23 17:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
-Chlorooctane	136	S1+	70 - 130				11/01/23 10:31	11/01/23 17:05	1
p-Terphenyl	126		70 - 130				11/01/23 10:31	11/01/23 17:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	44.3		4.96		mg/Kg			11/02/23 19:47	1
lient Sample ID: SW-2 (1.5	')						Lab Sam	ple ID: 880-3	5134-6
ate Collected: 10/31/23 00:00								Matri	ix: Solid
te Received: 11/01/23 09:27									
Method: SW846 8021B - Volatile			·		11	-	Drensus	A	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202		0.00202		mg/Kg		11/02/23 08:43	11/02/23 12:39	1
oluene	<0.00202		0.00202		mg/Kg		11/02/23 08:43	11/02/23 12:39	1
Ethylbenzene	<0.00202		0.00202		mg/Kg		11/02/23 08:43	11/02/23 12:39	
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/02/23 08:43	11/02/23 12:39	1

< 0.00403	U	0.00403	mg/Kg	11/02/23 08:43	11/02/23 12:39	1
<0.00202	U	0.00202	mg/Kg	11/02/23 08:43	11/02/23 12:39	1
<0.00403	U	0.00403	mg/Kg	11/02/23 08:43	11/02/23 12:39	1
%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
94		70 - 130		11/02/23 08:43	11/02/23 12:39	1
109		70 - 130		11/02/23 08:43	11/02/23 12:39	1
	<0.00202 <0.00403 %Recovery 94	<0.00202 U <0.00403 U <u>%Recovery</u> <u>Qualifier</u> 94	<0.00202	<0.00202	<0.00202	<0.00403 U

Eurofins Midland

Matrix: Solid

5

Job ID: 880-35134-1

SDG: Eddy County, New Mexico
Lab Sample ID: 880-35134-5

Matrix: Solid

Matrix: Solid

5

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-35134-6

Client Sample ID: SW-2 (1.5')

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/02/23 12:39	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			11/01/23 17:27	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		11/01/23 10:31	11/01/23 17:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		11/01/23 10:31	11/01/23 17:27	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		11/01/23 10:31	11/01/23 17:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	131	S1+	70 - 130				11/01/23 10:31	11/01/23 17:27	1
o-Terphenyl	120		70 - 130				11/01/23 10:31	11/01/23 17:27	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	52.3		4.96		mg/Kg			11/02/23 20:07	1

Date Collected: 10/31/23 00:00

Date Received: 11/01/23 09:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		11/02/23 08:43	11/02/23 12:59	1
Toluene	<0.00199	U	0.00199		mg/Kg		11/02/23 08:43	11/02/23 12:59	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		11/02/23 08:43	11/02/23 12:59	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		11/02/23 08:43	11/02/23 12:59	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		11/02/23 08:43	11/02/23 12:59	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		11/02/23 08:43	11/02/23 12:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				11/02/23 08:43	11/02/23 12:59	1
1,4-Difluorobenzene (Surr)	116		70 - 130				11/02/23 08:43	11/02/23 12:59	1

Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			11/02/23 12:59	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2		mg/Kg			11/01/23 17:49	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.2	U	50.2		mg/Kg		11/01/23 10:31	11/01/23 17:49	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.2	U	50.2		mg/Kg		11/01/23 10:31	11/01/23 17:49	1
C10-C28)									

Eurofins Midland

1.0

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Client Sample ID: SW-3 (1.5')

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Date Collected: 10/31/23 00:00

Client: Carmona Resources

Method: SW846 8015B NM - Dies				-					
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		11/01/23 10:31	11/01/23 17:49	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	154	S1+	70 - 130				11/01/23 10:31	11/01/23 17:49	
o-Terphenyl	135	S1+	70 - 130				11/01/23 10:31	11/01/23 17:49	
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubl							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	58.1		5.03		mg/Kg			11/02/23 20:14	
Client Sample ID: SW-4 (1.5	')						Lab Sam	ple ID: 880-3	5134-8
Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27								Matri	ix: Solie
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		mg/Kg		11/02/23 08:43	11/02/23 13:20	
Toluene	<0.00198	U	0.00198		mg/Kg		11/02/23 08:43	11/02/23 13:20	
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/02/23 08:43	11/02/23 13:20	
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/02/23 08:43	11/02/23 13:20	
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/02/23 08:43	11/02/23 13:20	
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/02/23 08:43	11/02/23 13:20	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	105		70 - 130				11/02/23 08:43	11/02/23 13:20	
1,4-Difluorobenzene (Surr)	113		70 - 130				11/02/23 08:43	11/02/23 13:20	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00396	U	0.00396		mg/Kg			11/02/23 13:20	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.4	U	50.4		mg/Kg			11/01/23 18:12	
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.4	U	50.4		mg/Kg		11/01/23 10:31	11/01/23 18:12	
Diesel Range Organics (Over C10-C28)	<50.4	U	50.4		mg/Kg		11/01/23 10:31	11/01/23 18:12	
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		11/01/23 10:31	11/01/23 18:12	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	130		70 - 130				11/01/23 10:31	11/01/23 18:12	
o-Terphenyl	125		70 - 130				11/01/23 10:31	11/01/23 18:12	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
-									

Eurofins Midland

Lab Sample ID: 880-35134-7 Matrix: Solid

Client Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: SW-5 (1.5')

Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		11/02/23 08:43	11/02/23 13:40	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/02/23 08:43	11/02/23 13:40	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/02/23 08:43	11/02/23 13:40	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		11/02/23 08:43	11/02/23 13:40	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/02/23 08:43	11/02/23 13:40	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		11/02/23 08:43	11/02/23 13:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				11/02/23 08:43	11/02/23 13:40	1
1,4-Difluorobenzene (Surr)	117		70 - 130				11/02/23 08:43	11/02/23 13:40	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			0.00404					11/02/23 13:40	1
Total BTEX	<0.00404	U	0.00404		mg/Kg			11/02/23 13:40	1
					mg/Kg			11/02/23 13:40	I
Method: SW846 8015 NM - Diese	el Range Organ			MDL	mg/Kg Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte	el Range Organ	<mark>ics (DRO) (</mark> Qualifier	GC)	MDL		<u>D</u>	Prepared		·
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <50.5	<mark>ics (DRO) (</mark> Qualifier U	GC) 	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result <50.5 sel Range Orga	<mark>ics (DRO) (</mark> Qualifier U	GC) 		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	el Range Organ Result <50.5 sel Range Orga	ics (DRO) (Qualifier U unics (DRO) Qualifier	GC) <u>RL</u> 50.5 (GC)		Unit mg/Kg			Analyzed 11/01/23 18:33	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <50.5 sel Range Orga Result	ics (DRO) (Qualifier U mics (DRO) Qualifier U	GC) 		Unit mg/Kg Unit		Prepared	Analyzed 11/01/23 18:33 Analyzed	Dil Fac 1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result <50.5 sel Range Orga Result <50.5	ics (DRO) (Qualifier U mics (DRO) Qualifier U U	GC) <u>RL</u> 50.5 (GC) <u>RL</u> 50.5		Unit mg/Kg Unit mg/Kg		Prepared 11/01/23 10:31	Analyzed 11/01/23 18:33 Analyzed 11/01/23 18:33	Dil Fac 1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	el Range Organ Result <50.5 sel Range Orga Result <50.5 <50.5	ics (DRO) (Qualifier U mics (DRO) Qualifier U U U	GC) RL 50.5 (GC) RL 50.5 50.5 50.5		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/23 10:31 11/01/23 10:31	Analyzed 11/01/23 18:33 Analyzed 11/01/23 18:33 11/01/23 18:33	Dil Fac 1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate	el Range Organ Result <50.5 sel Range Orga Result <50.5 <50.5 <50.5	ics (DRO) (Qualifier U mics (DRO) Qualifier U U U	GC) RL 50.5 (GC) RL 50.5 50.5 50.5		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/23 10:31 11/01/23 10:31 11/01/23 10:31	Analyzed 11/01/23 18:33 Analyzed 11/01/23 18:33 11/01/23 18:33 11/01/23 18:33	1 1 1 1
Method: SW846 8015 NM - Diese Analyte Fotal TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane	el Range Organ Result <50.5 sel Range Orga Result <50.5 <50.5 <50.5 <50.5	ics (DRO) (Qualifier U mics (DRO) Qualifier U U U	GC) RL 50.5 (GC) RL 50.5 50.5 50.5 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/23 10:31 11/01/23 10:31 11/01/23 10:31 Prepared	Analyzed 11/01/23 18:33 Analyzed 11/01/23 18:33 11/01/23 18:33 11/01/23 18:33 Analyzed	Dil Fac 1 Dil Fac 1 1 1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Range Organ Result <50.5	ics (DRO) (Qualifier U Qualifier U U U Qualifier	GC) RL 50.5 (GC) RL 50.5 50.5 50.5 <i>Limits</i> 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/23 10:31 11/01/23 10:31 11/01/23 10:31 Prepared 11/01/23 10:31	Analyzed 11/01/23 18:33 Analyzed 11/01/23 18:33 11/01/23 18:33 11/01/23 18:33 Analyzed 11/01/23 18:33	Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total BTEX Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	el Range Organ Result <50.5 sel Range Orga Result <50.5 <50.5 <50.5 <50.5 <50.5 <20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	ics (DRO) (Qualifier U Qualifier U U U Qualifier	GC) RL 50.5 (GC) RL 50.5 50.5 50.5 <i>Limits</i> 70 - 130 70 - 130	MDL	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 11/01/23 10:31 11/01/23 10:31 11/01/23 10:31 Prepared 11/01/23 10:31	Analyzed 11/01/23 18:33 Analyzed 11/01/23 18:33 11/01/23 18:33 11/01/23 18:33 Analyzed 11/01/23 18:33	Dil Fac 1 Dil Fac 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Page 114 of 149

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-35134-9

Matrix: Solid

Eurofins Midland

5134-1 Mexico 2 134-9 :: Solid 3

Surrogate Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-35121-A-1-B MS	Matrix Spike	103	118		
880-35121-A-1-C MSD	Matrix Spike Duplicate	98	98		6
880-35134-1	CS-1 (1.5')	102	114		
880-35134-2	CS-2 (1.5')	102	115		
880-35134-3	CS-3 (1.5')	101	113		
880-35134-4	CS-4 (1.5')	83	106		8
880-35134-4 MS	CS-4 (1.5')	102	104		
880-35134-4 MSD	CS-4 (1.5')	91	99		0
880-35134-5	SW-1 (1.5')	99	109		3
880-35134-6	SW-2 (1.5')	94	109		
880-35134-7	SW-3 (1.5')	93	116		
880-35134-8	SW-4 (1.5')	105	113		
880-35134-9	SW-5 (1.5')	95	117		
LCS 880-65962/1-A	Lab Control Sample	97	109		
LCS 880-66035/1-A	Lab Control Sample	95	104		
LCSD 880-65962/2-A	Lab Control Sample Dup	106	107		
LCSD 880-66035/2-A	Lab Control Sample Dup	102	106		13
MB 880-65962/5-A	Method Blank	105	150 S1+		
MB 880-66035/5-A	Method Blank	110	144 S1+		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-35073-A-25-D MS	Matrix Spike	134 S1+	116
880-35073-A-25-E MSD	Matrix Spike Duplicate	138 S1+	118
880-35134-1	CS-1 (1.5')	136 S1+	128
880-35134-2	CS-2 (1.5')	129	120
880-35134-3	CS-3 (1.5')	137 S1+	127
880-35134-4	CS-4 (1.5')	134 S1+	126
880-35134-5	SW-1 (1.5')	136 S1+	126
880-35134-6	SW-2 (1.5')	131 S1+	120
880-35134-7	SW-3 (1.5')	154 S1+	135 S1+
880-35134-8	SW-4 (1.5')	130	125
880-35134-9	SW-5 (1.5')	126	121
LCS 880-65965/2-A	Lab Control Sample	103	116
LCSD 880-65965/3-A	Lab Control Sample Dup	103	109
MB 880-65965/1-A	Method Blank	225 S1+	224 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 880-35134-1

Lab Sample ID: MB 880-65962/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid								Prep Type: 1	otal/NA
Analysis Batch: 65954								Prep Batch	: 65962
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		11/01/23 09:35	11/01/23 13:18	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/01/23 09:35	11/01/23 13:18	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/01/23 09:35	11/01/23 13:18	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/01/23 09:35	11/01/23 13:18	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/01/23 09:35	11/01/23 13:18	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/01/23 09:35	11/01/23 13:18	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				11/01/23 09:35	11/01/23 13:18	1
1,4-Difluorobenzene (Surr)	150	S1+	70 - 130				11/01/23 09:35	11/01/23 13:18	1

Lab Sample ID: LCS 880-65962/1-A Matrix: Solid

Analysis Batch: 65954

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.1111		mg/Kg		111	70 - 130
Toluene	0.100	0.09242		mg/Kg		92	70 - 130
Ethylbenzene	0.100	0.09005		mg/Kg		90	70 - 130
m-Xylene & p-Xylene	0.200	0.2045		mg/Kg		102	70 - 130
o-Xylene	0.100	0.09676		mg/Kg		97	70 _ 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	109		70 - 130

Lab Sample ID: LCSD 880-65962/2-A

Matrix: Solid

Analysis Batch: 65954							Prep	Batch:	65962
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09826		mg/Kg		98	70 - 130	12	35
Toluene	0.100	0.07905		mg/Kg		79	70 - 130	16	35
Ethylbenzene	0.100	0.06910	*_	mg/Kg		69	70 - 130	26	35
m-Xylene & p-Xylene	0.200	0.1566		mg/Kg		78	70 - 130	27	35
o-Xylene	0.100	0.07738		mg/Kg		77	70 - 130	22	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	106		70 - 130
1,4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: 880-35121-A-1-B MS

Matrix: Solid

Analysis Batch: 65954									Prep	p Batch: 6	5962
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00199	U	0.100	0.1074		mg/Kg		107	70 - 130		
Toluene	<0.00199	U	0.100	0.1002		mg/Kg		100	70 - 130		

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 65962

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-35121-A	-1-B MS									Client S	Sample ID:	Matrix	Spike
Matrix: Solid											Prep T	ype: To	tal/NA
Analysis Batch: 65954											Prep	Batch:	65962
	Sample	Sam	ple	Spike	MS	MS					%Rec		
Analyte	Result	Qual	ifier	Added	Result	Qualif	ier Unit		D	%Rec	Limits		
Ethylbenzene	<0.00199	U *-		0.100	0.09214		mg/Kg			92	70 - 130		
n-Xylene & p-Xylene	<0.00398	U		0.200	0.2199		mg/Kg			110	70 - 130		
o-Xylene	<0.00199	U		0.100	0.1044		mg/Kg			104	70 - 130		
	MS	мs											
Surrogate	%Recovery	Qual	ifier	Limits									
-Bromofluorobenzene (Surr)	103			70 - 130									
,4-Difluorobenzene (Surr)	118			70 - 130									
_ab Sample ID: 880-35121-A	-1-C MSD							Clie	nt Sa	mple ID:	Matrix Sp	ike Dur	licate
Aatrix: Solid												ype: To	
Analysis Batch: 65954												Batch:	
	Sample	Sam	ple	Spike	MSD	MSD					%Rec		RPD
nalyte	Result	Qual	ifier	Added	Result	Qualif	ier Unit		D	%Rec	Limits	RPD	Limit
enzene	<0.00199	U		0.0992	0.09353		mg/Kg			94	70 - 130	14	35
oluene	<0.00199	U		0.0992	0.08523		mg/Kg			86	70 - 130	16	35
thylbenzene	<0.00199	U *-		0.0992	0.07792		mg/Kg			79	70 - 130	17	35
n-Xylene & p-Xylene	<0.00398	U		0.198	0.1744		mg/Kg			88	70 - 130	23	35
-Xylene	<0.00199	U		0.0992	0.08390		mg/Kg			85	70 - 130	22	35
	MSD	MSD											
Surrogate	%Recovery	Qual	ifier	Limits									
l-Bromofluorobenzene (Surr)	98			70 - 130									
,4-Difluorobenzene (Surr)	98			70 - 130									
ab Sample ID: MB 880-6603	35/5-A									Client Sa	ample ID: N	/lethod	Blank
Matrix: Solid												ype: To	
Analysis Batch: 66027												Batch:	
-		ΜВ	МВ										
nalyte	Re	sult	Qualifier	F	RL.	MDL	Unit	D	Pr	epared	Analyze	əd	Dil Fac
Benzene	<0.00	200	U	0.0020	00	i	ng/Kg		11/02	2/23 08:43	11/02/23 1	1:29	1
oluene	<0.00	200	U	0.0020	00	1	ng/Kg		11/02	2/23 08:43	11/02/23 1	1:29	1
thylbenzene	<0.00	200	U	0.0020	00	1	ng/Kg		11/02	2/23 08:43	11/02/23 1	1:29	1
n-Xylene & p-Xylene	<0.00	400	U	0.0040	0		mg/Kg		11/02	2/23 08:43	11/02/23 1	1:29	1
-Xylene	<0.00	200	U	0.0020	00	I	ng/Kg		11/02	2/23 08:43	11/02/23 1	1:29	1
(ylenes, Total	<0.00	400	U	0.0040	00	1	mg/Kg		11/02	2/23 08:43	11/02/23 1	1:29	1
		ΜВ	МВ										
	a (-	very	Qualifier	Limits	_				Pr	repared	Analyze	ed	Dil Fac
urrogate	%Reco			70 - 130					11/02	2/23 08:43	11/02/23 1	1:29	1
Surrogate I-Bromofluorobenzene (Surr)	%Reco	110											
	%Reco	110 144	S1+	70 - 130					11/02	2/23 08:43	11/02/23 1	1:29	1
Bromofluorobenzene (Surr) 4-Difluorobenzene (Surr)			S1+					С					
-Bromofluorobenzene (Surr)			S1+					с			ID: Lab Co		ample

-	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.09947		mg/Kg		99	70 - 130
Toluene	0.100	0.08623		mg/Kg		86	70 - 130
Ethylbenzene	0.100	0.08715		mg/Kg		87	70 - 130
m-Xylene & p-Xylene	0.200	0.1907		mg/Kg		95	70 - 130

Eurofins Midland

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Page 118 of 149

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-660							Chem	Sample	ID: Lab Co		
Matrix: Solid										Type: To	
Analysis Batch: 66027			Califo	1.00	LCS				%Rec	Batch:	6603
Analyta			Spike Added		Qualifier	Unit	D	% Boo	Limits		
Analyte			0.100		Quaimer				70 - 130		
o-Xylene			0.100	0.08967		mg/Kg		90	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		70 - 130								
1,4-Difluorobenzene (Surr)	104		70 - 130								
Lab Sample ID: LCSD 880-6	6035/2-A					Clie	nt Sam	nole ID: I	Lab Contro	l Sampl	e Dui
Matrix: Solid										ype: To	
Analysis Batch: 66027										Batch:	
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene			0.100	0.1054		mg/Kg		105	70 - 130	6	3
Toluene			0.100	0.08968		mg/Kg		90	70 - 130	4	3
Ethylbenzene			0.100	0.09339		mg/Kg		93	70 - 130	7	3
m-Xylene & p-Xylene			0.200	0.2051		mg/Kg		103	70 - 130	7	3
p-Xylene			0.100	0.09722		mg/Kg		97	70 - 130	8	3
	LCSD	LCSD									
	a / -	Qualifier	Limits								
Surrogate	%Recovery	Quanner									
	% <i>Recovery</i> 102	Quanner	70 - 130								
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)		Quanner									
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	102 106	Quanner	70 - 130					Clier	nt Sample I	D' CS-4	(1.5
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4	102 106	Quanner	70 - 130					Clier	nt Sample I Prep 1		
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid	102 106	Quanner	70 - 130					Clier	Prep 1	Type: To	tal/N/
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4	102 106 MS		70 - 130 70 - 130	MS	MS			Clier	Prep 1		tal/N/
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027	102 106 MS Sample	Sample Qualifier	70 - 130		MS Qualifier	Unit	D	Clier %Rec	Prep 1 Prep	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid	102 106 MS Sample	Sample Qualifier	70 - 130 70 - 130 Spike				<u>D</u>		Prep 1 Prep %Rec	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte	102 106 MS Sample Result	Sample Qualifier U	70 - 130 70 - 130 Spike Added	Result		mg/Kg	D	%Rec	Prep 1 Prep %Rec Limits	Type: To	tal/N/
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene	102 106 MS Sample Result <0.00199	Sample Qualifier U U	70 - 130 70 - 130 Spike Added 0.0996	Result 0.1066		mg/Kg mg/Kg	D	%Rec 107	Prep 7 Prep %Rec Limits 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene	102 106 MS Sample Result <0.00199 <0.00199	Sample Qualifier U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996	Result 0.1066 0.09336		mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 107 94	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: To	tal/N/
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene	102 106 MS Sample Result <0.00199 <0.00199 <0.00199	Sample Qualifier U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996	Result 0.1066 0.09336 0.09136		mg/Kg mg/Kg	<u> </u>	%Rec 107 94 92	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Sample Qualifier U U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996 0.199	Result 0.1066 0.09336 0.09136 0.2067		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 107 94 92 104	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS	Sample Qualifier U U U U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996 0.199 0.0996	Result 0.1066 0.09336 0.09136 0.2067		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 107 94 92 104	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N/
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Sample Qualifier U U U U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996	Result 0.1066 0.09336 0.09136 0.2067		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 107 94 92 104	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N/
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Sample Qualifier U U U U U U U	70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.0996 0.199 0.0996	Result 0.1066 0.09336 0.09136 0.2067		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 107 94 92 104	Prep 7 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/N
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 102 104	Sample Qualifier U U U U U U U	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 D.130	Result 0.1066 0.09336 0.09136 0.2067		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 107 94 92 104 98	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch:	tal/N/ 6603
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 102 104	Sample Qualifier U U U U U U U	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 D.130	Result 0.1066 0.09336 0.09136 0.2067		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 107 94 92 104 98	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	D: CS-4	(1.5
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 102 104	Sample Qualifier U U U U U U U	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 D.130	Result 0.1066 0.09336 0.09136 0.2067		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 107 94 92 104 98	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	D: CS-4	(1.5 (1.5) (1.7)
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 102 104 MSD	Sample Qualifier U U U U U MS Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996	Result 0.1066 0.09336 0.09136 0.2067 0.09830	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 107 94 92 104 98	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 Prep 7 Prep 7 Prep 7	D: CS-4	(1.5 ⁻ tal/N) 6603:
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 102 104 MSD Sample	Sample Qualifier U U U U U MS Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Result 0.1066 0.09336 0.09136 0.2067 0.09830 MSD	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 107 94 92 104 98	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 190 70 - 1	D: CS-4 D: CS-4 D: EX-4	(1.5 (1.5 tal/N/ 6603 RP
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 102 104 MSD Sample Result	Sample Qualifier U U U U MS Qualifier Sample Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.130 70 - 130 70 - 130 70 - 130	Result 0.1066 0.09336 0.09136 0.2067 0.09830	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 107 94 92 104 98 Clier	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 190 %Rec Limits	D: CS-4 D: CS-4 Dype: To Batch: 	(1.5 (1.5 tal/N/ 6603 RP Lim
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 102 104 MSD Sample Result <0.00199	Sample Qualifier U U U U U MS Qualifier U	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 Limits 70 - 130 70 - 130 Spike Added 0.100	Result 0.1066 0.09336 0.09136 0.2067 0.09830 MSD Result 0.1091	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg		%Rec 107 94 92 104 98 Clier %Rec 109	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130	D: CS-4 Dype: Tor Batch: D: CS-4 Dype: Tor Batch: RPD 2	(1.5 (1.5 tal/N, 6603 RP Lim 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00199 MS %Recovery 102 104 MSD Sample Result <0.00199 <0.00199 <0.00199	Sample Qualifier U U U U U MS Qualifier Sample Qualifier U	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 0.100 0.100	Result 0.1066 0.09336 0.09136 0.2067 0.09830 MSD Result 0.1091 0.09621	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 107 94 92 104 98 Clier %Rec 109 96	Prep 1 Prep 2 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits 70 - 130 70 - 130	D: CS-4 Dype: To Batch: D: CS-4 Type: To Batch: RPD 2 3	(1.5 (1.5 tal/N/ 6603 RPI Lim 3 3
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-35134-4 Matrix: Solid Analysis Batch: 66027 Analyte Benzene	102 106 MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 102 104 MSD Sample Result <0.00199	Sample Qualifier U U U U U U MS Qualifier U U U U U	70 - 130 70 - 130 70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 Limits 70 - 130 70 - 130 Spike Added 0.100	Result 0.1066 0.09336 0.09136 0.2067 0.09830 MSD Result 0.1091	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Unit mg/Kg		%Rec 107 94 92 104 98 Clier %Rec 109	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130	D: CS-4 Dype: Tor Batch: D: CS-4 Dype: Tor Batch: RPD 2	(1.5 [°]

Eurofins Midland

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-35134-4 N Matrix: Solid Analysis Batch: 66027	ISD											Clien		D: CS-4 ype: To Batch:	otal/NA
	MSD	MSD	,												
Surrogate		Qua		Limits											
4-Bromofluorobenzene (Surr)	91			70 - 130											
1,4-Difluorobenzene (Surr)	99			70 - 130											
 Method: 8015B NM - Diese	el Range Or	gar	nics (DR	O) (GC)											
_ Lab Sample ID: MB 880-65965	5/1-A										CI	ient Sa	ample ID: I	Nethod	Blank
Matrix: Solid														ype: To	
Analysis Batch: 65945														Batch:	
· · · · · · · · · · · · · · · · · · ·		ΜВ	мв												
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Prep	ared	Analyz	ed	Dil Fac
Gasoline Range Organics		50.0			50.0			mg/Kg	1			3 08:00	11/01/23 (1
(GRO)-C6-C10									,						
Diesel Range Organics (Over C10-C28)	<	50.0	U		50.0			mg/Kg)	11	1/01/2:	3 08:00	11/01/23 (8:37	1
Oll Range Organics (Over C28-C36)	<	50.0	U		50.0			mg/Kg)	1′	1/01/2:	3 08:00	11/01/23 (8:37	1
		ΜВ	МВ												
Surrogate	%Reco	very	Qualifier	Limit	ts						Prep	ared	Analyz	ed	Dil Fac
1-Chlorooctane		225	S1+	70 - 1	130					1	1/01/2	3 08:00	11/01/23 (08:37	1
o-Terphenyl		224	S1+	70 - 1	130					1	1/01/2	3 08:00	11/01/23 (08:37	1
Lab Sample ID: LCS 880-6596 Matrix: Solid Analysis Batch: 65945	5/2- A									Clie	ent Sa	ample	Prep	ontrol S ype: To Batch:	otal/NA
				Spike			LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit		D_%	Rec	Limits		
Gasoline Range Organics				1000		907.3			mg/Kg			91	70 - 130		
(GRO)-C6-C10				1000		045.7			malka			05	70 120		
Diesel Range Organics (Over C10-C28)				1000		945.7			mg/Kg			95	70 - 130		
010-020)															
	LCS														
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	103			70 - 130											
o-Terphenyl	116			70 - 130											
Lab Sample ID: LCSD 880-659	65/3-A								Cli	ent Sa	amnl		ab Contro	l Samn	le Dun
Matrix: Solid									011		, in pr			ype: To	
Analysis Batch: 65945														Batch:	
Analysis Datch. 00040				Spike		LCSD	LCS	п					%Rec	Daten.	RPD
Analyte				Added		Result			Unit	г	D %	Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10				1000		880.5			mg/Kg			88	70 - 130	3	20
Diesel Range Organics (Over C10-C28)				1000		910.0			mg/Kg			91	70 - 130	4	20
			_												
•	LCSD														
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	103			70 - 130											

Job ID: 880-35134-1

o-Terphenyl

109

70 - 130

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	-25-D MS							Chefft	Sample ID		
										Гуре: То	
Analysis Batch: 65945	0	0	0						-	Batch:	6596
Analyta	-	Sample	Spike		MS Qualifiar	Unit		% Boo	%Rec		
Analyte Gasoline Range Organics		Qualifier	Added		Qualifier	Unit	D	· ·	Limits 70 - 130		
Gasoline Range Organics	<50.3	U	998	1215		mg/Kg		118	70 - 130		
Diesel Range Organics (Over	<50.3	U	998	1197		mg/Kg		118	70 - 130		
C10-C28)		-									
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane		S1+	70 - 130	-							
o-Terphenyl	116		70 - 130								
Lab Sample ID: 880-35073-A	-25-E MSD						Client S	Samnlo IF): Matrix S	niko Dur	olicat
Matrix: Solid							onone c			Гуре: То	
Analysis Batch: 65945										Batch:	
Analysis Baten. 00040	Sample	Sample	Spike	MSD	MSD				%Rec	Baten.	RPE
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<50.3		998	1223		mg/Kg		119	70 - 130	1	2
(GRO)-C6-C10	-00.0	0	000	1220		mg/rtg		110	10-100	•	2.
Diesel Range Organics (Over	<50.3	U	998	1239		mg/Kg		122	70 - 130	3	20
C10-C28)											
	MSD	MSD									
		• ····									
Surrogate	%Recovery	Qualifier	Limits	-							
		Qualifier	<i>Limits</i> 70 ₋ 130	-							
1-Chlorooctane				-							
1-Chlorooctane o-Terphenyl	138 118	S1+	70 - 130								
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I	138 118 Ion Chromat	S1+	70 - 130					Client S	ample ID:	Method	Blanl
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596	138 118 Ion Chromat	S1+	70 - 130					Client S	ample ID: Prep		
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid	138 118 Ion Chromat	S1+	70 - 130					Client S	-	Method Type: S	
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid	138 118 Ion Chromat	S1+	70 - 130					Client S	-		
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I	138 118 Ion Chromat 64/1-A	s1+	70 - 130	RL	MDL Unit		D	Client S Prepared	-	Type: S	
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte	138 118 10n Chromat 64/1-A	S1+ ography MB MB	70 - 130	- RL 5.00	MDL Unit mg/K	9	<u> </u>		Prep	Type: S	oluble Dil Fae
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride	138 118 10n Chromat 64/1-A	S1+ ography MB MB esult Qualifier	70 - 130			9	·	Prepared	Prep 	Type: S 2ed 17:29	oluble Dil Fa
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659	138 118 10n Chromat 64/1-A	S1+ ography MB MB esult Qualifier	70 - 130			9	·	Prepared	Prep 	Type: S zed 17:29 – ontrol S	Dil Fa
1-Chlorooctane o-Terphenyl Iethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659 Matrix: Solid	138 118 10n Chromat 64/1-A	S1+ ography MB MB esult Qualifier	70 - 130			9	·	Prepared	Prep 	Type: S 2ed 17:29	Dil Fac
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659	138 118 10n Chromat 64/1-A	S1+ ography MB MB esult Qualifier	70 - 130 70 - 130	5.00	mg/K	9	·	Prepared	Prep Analyz 11/02/23 e ID: Lab C Prep	Type: S zed 17:29 – ontrol S	Dil Fac
1-Chlorooctane o-Terphenyl Iethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659 Matrix: Solid Analysis Batch: 65983	138 118 10n Chromat 64/1-A	S1+ ography MB MB esult Qualifier	70 - 130 70 - 130	5.00 LCS	LCS		Clier	Prepared nt Sample	Prep Analyz 11/02/23 e ID: Lab Co Prep %Rec	Type: S zed 17:29 – ontrol S	Dil Fac
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659 Matrix: Solid Analysis Batch: 65983 Analyte	138 118 10n Chromat 64/1-A	S1+ ography MB MB esult Qualifier	70 - 130 70 - 130	5.00 LCS	mg/K	g Unit mg/Kg	·	Prepared	Prep Analyz 11/02/23 e ID: Lab C Prep	Type: S zed 17:29 – ontrol S	Dil Fac
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659 Matrix: Solid Analysis Batch: 65983 Analyte Chloride	138 118 118 64/1-A 	S1+ ography MB MB esult Qualifier	70 - 130 70 - 130 	5.00 LCS Result	LCS	Unit mg/Kg	Clier	Prepared Int Sample <u>%Rec</u> 106	Prep <u>Analyz</u> 11/02/23 Prep %Rec <u>Limits</u> 90 - 110	Type: S zed 17:29	oluble Dil Fa ample oluble
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCSD 880-65	138 118 118 64/1-A 	S1+ ography MB MB esult Qualifier	70 - 130 70 - 130 	5.00 LCS Result	LCS	Unit mg/Kg	Clier	Prepared Int Sample <u>%Rec</u> 106	Prep Analyz 11/02/23 PID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S 2ed 17:29	oluble Dil Fa ample oluble
1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659 Matrix: Solid Analyte Chloride Lab Sample ID: LCSD 880-659	138 118 118 64/1-A 	S1+ ography MB MB esult Qualifier	70 - 130 70 - 130 	5.00 LCS Result	LCS	Unit mg/Kg	Clier	Prepared Int Sample <u>%Rec</u> 106	Prep Analyz 11/02/23 PID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S zed 17:29	oluble Dil Fa ample oluble
1-Chlorooctane o-Terphenyl Iethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659 Matrix: Solid	138 118 118 64/1-A 	S1+ ography MB MB esult Qualifier	70 - 130 70 - 130 Spike Added 250	5.00 LCS <u>Result</u> 265.4	LCS Qualifier	Unit mg/Kg	Clier	Prepared Int Sample <u>%Rec</u> 106	Prep Analyz 11/02/23 PID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: S 2ed 17:29	Dil Fa ample oluble
1-Chlorooctane o-Terphenyl Iethod: 300.0 - Anions, I Lab Sample ID: MB 880-6596 Matrix: Solid Analysis Batch: 65983 Analyte Chloride Lab Sample ID: LCS 880-659 Matrix: Solid Analyte Chloride Lab Sample ID: LCSD 880-659	138 118 118 64/1-A 	S1+ ography MB MB esult Qualifier	70 - 130 70 - 130 	5.00 LCS Result 265.4	LCS	Unit mg/Kg	Clier	Prepared nt Sample <u>%Rec</u> 106 mple ID:	Prep Analyz 11/02/23 PID: Lab Co Prep %Rec Limits 90 - 110 Lab Contro	Type: S 2ed 17:29	oluble Dil Fac ample oluble

Eurofins Midland

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Page 121 of 149

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-35134-3 MS Matrix: Solid								Clier	it Sample I Prep	D: CS-3 Type: S	· · ·
Analysis Batch: 65983											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	47.6		252	313.1		mg/Kg		105	90 - 110		
Lab Sample ID: 880-35134-3 MSD								Clier	it Sample I	D: CS-3	(1.5')
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 65983											
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	47.6		252	312.0		mg/Kg		105	90 - 110	0	20

Eurofins Midland

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID

CS-1 (1.5')

CS-2 (1.5')

CS-3 (1.5')

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Client Sample ID

CS-1 (1.5')

CS-2 (1.5')

CS-3 (1.5')

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Method

8021B

8021B

8021B

8021B

8021B

8021B

8021B

8021B

Method

5035

5035

5035

5035

5035

5035

5035

5035

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

	5
	8

Page 122 of 149

Prep Batch

65962

65962

65962

65962

65962

65962

65962

65962

Prep Batch

	6	

880-35121-A-1-C MSD Analysis Batch: 66027

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-35134-4	CS-4 (1.5')	Total/NA	Solid	8021B	66035
880-35134-5	SW-1 (1.5')	Total/NA	Solid	8021B	66035
880-35134-6	SW-2 (1.5')	Total/NA	Solid	8021B	66035
880-35134-7	SW-3 (1.5')	Total/NA	Solid	8021B	66035
880-35134-8	SW-4 (1.5')	Total/NA	Solid	8021B	66035
880-35134-9	SW-5 (1.5')	Total/NA	Solid	8021B	66035
MB 880-66035/5-A	Method Blank	Total/NA	Solid	8021B	66035
LCS 880-66035/1-A	Lab Control Sample	Total/NA	Solid	8021B	66035
LCSD 880-66035/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	66035
880-35134-4 MS	CS-4 (1.5')	Total/NA	Solid	8021B	66035
880-35134-4 MSD	CS-4 (1.5')	Total/NA	Solid	8021B	66035

Prep Batch: 66035

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35134-4	CS-4 (1.5')	Total/NA	Solid	5035	
880-35134-5	SW-1 (1.5')	Total/NA	Solid	5035	
880-35134-6	SW-2 (1.5')	Total/NA	Solid	5035	
880-35134-7	SW-3 (1.5')	Total/NA	Solid	5035	
880-35134-8	SW-4 (1.5')	Total/NA	Solid	5035	
880-35134-9	SW-5 (1.5')	Total/NA	Solid	5035	
MB 880-66035/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-66035/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-66035/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-35134-4 MS	CS-4 (1.5')	Total/NA	Solid	5035	
880-35134-4 MSD	CS-4 (1.5')	Total/NA	Solid	5035	
Analysis Batch: 66107					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-35134-1	CS-1 (1.5')	Total/NA	Solid	Total BTEX	

Eurofins Midland

GC VOA

Lab Sample ID

880-35134-1

880-35134-2

880-35134-3

MB 880-65962/5-A

LCS 880-65962/1-A

LCSD 880-65962/2-A

880-35121-A-1-B MS

Prep Batch: 65962 Lab Sample ID

880-35134-1

880-35134-2

880-35134-3

MB 880-65962/5-A

LCS 880-65962/1-A

LCSD 880-65962/2-A

880-35121-A-1-B MS

880-35121-A-1-C MSD

Analysis Batch: 65954

QC Association Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

GC VOA (Continued)

Analysis Batch: 66107 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35134-2	CS-2 (1.5')	Total/NA	Solid	Total BTEX	
880-35134-3	CS-3 (1.5')	Total/NA	Solid	Total BTEX	
880-35134-4	CS-4 (1.5')	Total/NA	Solid	Total BTEX	
880-35134-5	SW-1 (1.5')	Total/NA	Solid	Total BTEX	
880-35134-6	SW-2 (1.5')	Total/NA	Solid	Total BTEX	
880-35134-7	SW-3 (1.5')	Total/NA	Solid	Total BTEX	
880-35134-8	SW-4 (1.5')	Total/NA	Solid	Total BTEX	
880-35134-9	SW-5 (1.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 65945

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35134-1	CS-1 (1.5')	Total/NA	Solid	8015B NM	65965
880-35134-2	CS-2 (1.5')	Total/NA	Solid	8015B NM	65965
880-35134-3	CS-3 (1.5')	Total/NA	Solid	8015B NM	65965
880-35134-4	CS-4 (1.5')	Total/NA	Solid	8015B NM	65965
880-35134-5	SW-1 (1.5')	Total/NA	Solid	8015B NM	65965
880-35134-6	SW-2 (1.5')	Total/NA	Solid	8015B NM	65965
880-35134-7	SW-3 (1.5')	Total/NA	Solid	8015B NM	65965
880-35134-8	SW-4 (1.5')	Total/NA	Solid	8015B NM	65965
880-35134-9	SW-5 (1.5')	Total/NA	Solid	8015B NM	65965
MB 880-65965/1-A	Method Blank	Total/NA	Solid	8015B NM	65965
LCS 880-65965/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	65965
LCSD 880-65965/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	65965
880-35073-A-25-D MS	Matrix Spike	Total/NA	Solid	8015B NM	65965
880-35073-A-25-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	65965

Prep Batch: 65965

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-35134-1	CS-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-35134-2	CS-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-35134-3	CS-3 (1.5')	Total/NA	Solid	8015NM Prep	
880-35134-4	CS-4 (1.5')	Total/NA	Solid	8015NM Prep	
880-35134-5	SW-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-35134-6	SW-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-35134-7	SW-3 (1.5')	Total/NA	Solid	8015NM Prep	
880-35134-8	SW-4 (1.5')	Total/NA	Solid	8015NM Prep	
880-35134-9	SW-5 (1.5')	Total/NA	Solid	8015NM Prep	
MB 880-65965/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-65965/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-65965/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-35073-A-25-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-35073-A-25-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 66065

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35134-1	CS-1 (1.5')	Total/NA	Solid	8015 NM	
880-35134-2	CS-2 (1.5')	Total/NA	Solid	8015 NM	
880-35134-3	CS-3 (1.5')	Total/NA	Solid	8015 NM	
880-35134-4	CS-4 (1.5')	Total/NA	Solid	8015 NM	

Page 123 of 149

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

11 12 13

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

GC Semi VOA (Continued)

Analysis Batch: 66065 (Continued)

Lab Sample ID 880-35134-5	Client Sample ID	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
880-35134-6	SW-2 (1.5')	Total/NA	Solid	8015 NM	
880-35134-7	SW-3 (1.5')	Total/NA	Solid	8015 NM	
880-35134-8	SW-4 (1.5')	Total/NA	Solid	8015 NM	
880-35134-9	SW-5 (1.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 65964

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-35134-1	CS-1 (1.5')	Soluble	Solid	DI Leach	
880-35134-2	CS-2 (1.5')	Soluble	Solid	DI Leach	
880-35134-3	CS-3 (1.5')	Soluble	Solid	DI Leach	
880-35134-4	CS-4 (1.5')	Soluble	Solid	DI Leach	
880-35134-5	SW-1 (1.5')	Soluble	Solid	DI Leach	
880-35134-6	SW-2 (1.5')	Soluble	Solid	DI Leach	
880-35134-7	SW-3 (1.5')	Soluble	Solid	DI Leach	
880-35134-8	SW-4 (1.5')	Soluble	Solid	DI Leach	
880-35134-9	SW-5 (1.5')	Soluble	Solid	DI Leach	
MB 880-65964/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-65964/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-65964/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-35134-3 MS	CS-3 (1.5')	Soluble	Solid	DI Leach	
880-35134-3 MSD	CS-3 (1.5')	Soluble	Solid	DI Leach	

Analysis Batch: 65983

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35134-1	CS-1 (1.5')	Soluble	Solid	300.0	65964
880-35134-2	CS-2 (1.5')	Soluble	Solid	300.0	65964
880-35134-3	CS-3 (1.5')	Soluble	Solid	300.0	65964
880-35134-4	CS-4 (1.5')	Soluble	Solid	300.0	65964
880-35134-5	SW-1 (1.5')	Soluble	Solid	300.0	65964
880-35134-6	SW-2 (1.5')	Soluble	Solid	300.0	65964
880-35134-7	SW-3 (1.5')	Soluble	Solid	300.0	65964
880-35134-8	SW-4 (1.5')	Soluble	Solid	300.0	65964
880-35134-9	SW-5 (1.5')	Soluble	Solid	300.0	65964
MB 880-65964/1-A	Method Blank	Soluble	Solid	300.0	65964
LCS 880-65964/2-A	Lab Control Sample	Soluble	Solid	300.0	65964
LCSD 880-65964/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	65964
880-35134-3 MS	CS-3 (1.5')	Soluble	Solid	300.0	65964
880-35134-3 MSD	CS-3 (1.5')	Soluble	Solid	300.0	65964

Job ID: 880-35134-1

SDG: Eddy County, New Mexico

8 9 10 11 12 13

5

11/3/2023

Lab Chronicle

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Client Sample ID: CS-1 (1.5') Date Collected: 10/31/23 00:00

Client Sample ID: CS-2 (1.5')

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Leach

Analysis

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Date Collected: 10/31/23 00:00

Date Received: 11/01/23 09:27

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Date Received: 11/01/23 09:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	65962	11/01/23 09:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65954	11/01/23 16:10	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66107	11/01/23 16:10	AJ	EET MID
Total/NA	Analysis	8015 NM		1			66065	11/01/23 15:13	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	65965	11/01/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65945	11/01/23 15:13	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	65964	11/01/23 10:27	SA	EET MID
Soluble	Analysis	300.0		1	10 mL	10 mL	65983	11/02/23 19:08	СН	EET MID

Initial

Amount

4.97 g

5 mL

5.02 g

10 mL

Dil

1

1

1

1

1

Factor

Run

Lab Sample ID: 880-35134-2

Analyst

EL

AJ

A.I

SM

TKC

SM

SA

СН

Lab Sample ID: 880-35134-3

Lab Sample ID: 880-35134-4

Prepared

or Analyzed

11/01/23 09:35

11/01/23 16:31

11/01/23 16:31

11/01/23 10:27

11/02/23 19:14

Matrix: Solid

11 12

9

5

Lab EET MID

Matrix: Solid

66065 11/01/23 15:36 10.09 g 10 mL 65965 11/01/23 10:31 1 uL 1 uL 65945 11/01/23 15:36

Batch

65962

65954

66107

65964

65983

Number

Final

Amount

5 mL

5 mL

50 mL

10 mL

Client Sample ID: CS-3 (1.5') Date Collected: 10/31/23 00:00

Date Received: 11/01/23 09:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	65962	11/01/23 09:35	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65954	11/01/23 16:51	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66107	11/01/23 16:51	AJ	EET MID
Total/NA	Analysis	8015 NM		1			66065	11/01/23 16:21	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	65965	11/01/23 10:31	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65945	11/01/23 16:21	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	65964	11/01/23 10:27	SA	EET MID
Soluble	Analysis	300.0		1	10 mL	10 mL	65983	11/02/23 19:21	CH	EET MID

Client Sample ID: CS-4 (1.5') Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	66035	11/02/23 08:43	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/02/23 11:58	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66107	11/02/23 11:58	AJ	EET MID

Eurofins Midland

Matrix: Solid

Page 125 of 149

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-35134-1 Matrix: Solid

_

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Client Sample ID: CS-4 (1.5') Date Collected: 10/31/23 00:00

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Date Received: 11/01/23 09:27

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			66065	11/01/23 16:43	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	65965	11/01/23 10:31	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65945	11/01/23 16:43	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	65964	11/01/23 10:27	SA	EET MID
Soluble	Analysis	300.0		1	10 mL	10 mL	65983	11/02/23 19:41	СН	EET MID

Client Sample ID: SW-1 (1.5') Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	66035	11/02/23 08:43	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/02/23 12:19	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66107	11/02/23 12:19	AJ	EET MID
Total/NA	Analysis	8015 NM		1			66065	11/01/23 17:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	65965	11/01/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65945	11/01/23 17:05	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	65964	11/01/23 10:27	SA	EET MID
Soluble	Analysis	300.0		1	10 mL	10 mL	65983	11/02/23 19:47	СН	EET MID

Client Sample ID: SW-2 (1.5')

Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	66035	11/02/23 08:43	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/02/23 12:39	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66107	11/02/23 12:39	AJ	EET MID
Total/NA	Analysis	8015 NM		1			66065	11/01/23 17:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	65965	11/01/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65945	11/01/23 17:27	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	65964	11/01/23 10:27	SA	EET MID
Soluble	Analysis	300.0		1	10 mL	10 mL	65983	11/02/23 20:07	CH	EET MID

Client Sample ID: SW-3 (1.5') Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	66035	11/02/23 08:43	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/02/23 12:59	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66107	11/02/23 12:59	AJ	EET MID
Total/NA	Analysis	8015 NM		1			66065	11/01/23 17:49	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	65965	11/01/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65945	11/01/23 17:49	SM	EET MID

Eurofins Midland

Lab Sample ID: 880-35134-6

Lab Sample ID: 880-35134-5

Matrix: Solid

Matrix: Solid

Lab Sample ID: 880-35134-7 Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-35134-7

Lab Sample ID: 880-35134-8

Lab Sample ID: 880-35134-9

Client Sample ID: SW-3 (1.5') Date Collected: 10/31/23 00:00

Project/Site: Graham Cracker 16 State 007H (05.13.23)

Date Received: 11/01/23 09:27

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	65964	11/01/23 10:27	SA	EET MID
Soluble	Analysis	300.0		1	10 mL	10 mL	65983	11/02/23 20:14	СН	EET MID

Client Sample ID: SW-4 (1.5') Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	66035	11/02/23 08:43	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/02/23 13:20	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66107	11/02/23 13:20	AJ	EET MID
Total/NA	Analysis	8015 NM		1			66065	11/01/23 18:12	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	65965	11/01/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65945	11/01/23 18:12	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	65964	11/01/23 10:27	SA	EET MID
Soluble	Analysis	300.0		1	10 mL	10 mL	65983	11/02/23 20:20	СН	EET MID

Client Sample ID: SW-5 (1.5') Date Collected: 10/31/23 00:00 Date Received: 11/01/23 09:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	66035	11/02/23 08:43	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/02/23 13:40	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66107	11/02/23 13:40	AJ	EET MID
Total/NA	Analysis	8015 NM		1			66065	11/01/23 18:33	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	65965	11/01/23 10:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65945	11/01/23 18:33	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	65964	11/01/23 10:27	SA	EET MID
Soluble	Analysis	300.0		1	10 mL	10 mL	65983	11/02/23 20:27	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	n	Identification Number	Expiration Date
exas	NELAP		T104704400-23-26	06-30-24
The fellowing such	an are included in this report, but	the laboratory is not cortif	ied by the governing authority. This lis	t may include analyter
for which the agenc	does not offer certification.		, , , , , ,	
for which the agence Analysis Method	•	Matrix	Analyte	
for which the agenc	does not offer certification.		, , , , , ,	

Eurofins Midland

Page 128 of 149

Method Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23) Job ID: 880-35134-1 SDG: Eddy County, New Mexico

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
00.0	Anions, Ion Chromatography	EPA	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
I Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Graham Cracker 16 State 007H (05.13.23)

Job ID: 880-35134-1 SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-35134-1	CS-1 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27
880-35134-2	CS-2 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27
880-35134-3	CS-3 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27
880-35134-4	CS-4 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27
880-35134-5	SW-1 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27
880-35134-6	SW-2 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27
880-35134-7	SW-3 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27
880-35134-8	SW-4 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27
880-35134-9	SW-5 (1.5')	Solid	10/31/23 00:00	11/01/23 09:27

										Page 1 of 1
Project Manager C	Conner Moehring			Bill to. (if different)		Carmona	Carmona Resources	Ж	Work	
	Carmona Resources			Company Name					Program: IIST/PST DRP knownfields	
	310 W Wall St Ste 500			Address.					State of Project:	
City, State ZIP N	Midland, TX 79701			City, State ZIP					Reporting Level II Level III RST/UST	
Phone 4	432-813-6823		Email	mcarmona@carmonaresources.com	monares	ources.c	öm		Deliverables. EDD	Other
Project Name	Graham Cracker 16 State 007H (05 13 23)	tate 007H (05 13 23)	Turn	Turn Around				ANALYSIS REQUEST	OUEST	Preservative Codes
Project Number	2121	14	Routine	ব Rush	Pres. Code					None NO DI Water
Project Location	Eddy County, New Mexico	New Mexico	Due Date	48 HR			-			-
Sampler's Name:	JR	~							······	2
PO #					s	+ M				
SAMPLE RECEIPT	T Teppor Skank	Yes No	Wet Ice	(Yes) No	eter					nach na
Received Intact:				3	ram	B021	e 300			Nahoo Nabio
Cooler Custody Seals.	Yes No (NHA	Ľ	-	4.20	Pa				······	Na-S-O- NaSO-
Sample Custody Seals	. Yes No	\mathbb{N}	ading:	. 22.	·)			······································		Zn Acetate+NaOH Zn
Total Containers.		Corrected Temperature	erature	1 2		- 80'				NaOH+Ascorbic Acid SAPC
Sample Identification	fication Date	le Time	Soil	Water Comp	# of	т				Sample Comments
CS-1 (1 5)	5') 10/31/2023	2023	×	Comp	-	×	× ×			
CS-2 (1 5)	5) 10/31/2023	2023	×	Comp	1	×	× ×			
CS-3 (1 5)	5) 10/31/2023	2023	×	Comp		×	× ×			
CS-4 (1 5)	5') 10/31/2023	2023	×	Comp		×	× ×			
SW-1 (1 5)	5') 10/31/2023	2023	×	Comp	-	×	× ×			
SW-2 (1 5)	5) 10/31/2023	2023	×	Comp	-1	×	××			
SW-3 (1 5')	5') 10/31/2023	2023	×	Comp	1	×	×			
SW-4 (1 5)	5') 10/31/2023	2023	×	Comp	1	< ×	× ×			
SW-5 (1 5')	5') 10/31/2023	2023	×	Comp	1	×	×			
							$\left - \right $			
024 8:36:4 Comments: Email t	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmona	:armona@carmonar	esources.com	and Conner M	oehring /	Cmoeh	ring@cc	armonaresources.com		
	Relinquished by	hed by (Signature)				Date/Time	e	P Re	Received by (Signature)	Date/Time
- ANN	the work	1 1 10 (1)			111				1100	
NNNN	All MAN	NMCX				12	\square			

Received by OCD: 3/21/2024 8:36:47 AM

Released to Imaging: 5/16/2024 2:17:21 PM

11/3/2023

×

Page 131 of 149

Job Number: 880-35134-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 35134 List Number: 1

<6mm (1/4").

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

APPENDIX F

Stephanie Garcia Richard, Commissioner of Public Lands State of New Mexico

NMSLO Cultural Resources Cover Sheet Exhibit

NMCRIS Activity Number:

Exhibit Type (select one)

(if applicable)

ARMS Inspection/Review - Summarize the results (select one):

- (A) The entire area of potential effect or project area has been previously surveyed to current standards and **no cultural properties** were found within the survey area.
- (B) The entire area of potential effect or project area has been previously surveyed to current standards and **cultural properties were found** within the survey area.
- (C) The entire area of potential effect or project area has **not** been previously surveyed or has not been surveyed to current standards. A complete archaeological survey will be conducted and submitted for review.

Archaeological Survey

Findings:

Negative - No further archaeological review is required.

Positive - Have avoidance and protection measures been devised? Select one:

Comments:

Project Details:

NMSLO Lease Number (if available):

Cultural Resources Consultant:

Project Proponent (Applicant):

Project Title/Description:

Project Location:

County(ies): PLSS/Section/Township/Range):

For NMSLO Agency Use Only:

NMSLO Lease Number:

Lease Analyst:

Date Exhibit Routed to Cultural Resources Office:

Acknowledgment-Only:

No person may alter the wording of the questions or layout of the cover sheet. The completion of this cover sheet by itself does not authorize anyone to engage in new surface disturbing activity before the review and approvals required by the Cultural Properties Protections Rule. Form Revised 12 22 From: Conner Moehring
Sent: Friday, October 27, 2023 4:20 PM
To: eco@slo.state.nm.us
Cc: Mike Carmona; Devin Dominguez; Clint Merritt
Subject: COG - Graham Cracker 16 State 007H (05.13.23) - Sampling Notification

Good Afternoon,

This email is a notification for confirmation sampling for the COG Graham Cracker 16 State 007H (05.13.23). We will be kicking off Remediation activities on Monday the 30th. Sampling is scheduled to begin on Tuesday, October 31^{st,} around 3:00 p.m. Mountain Time. Carmona Resources personnel will be on-site to collect the confirmation samples. Once the confirmation samples have been received and all samples are below the regulatory limits. We will reseed the disturbed areas with the appropriate SLO seed mixture. Also attached is the cover page from the arch survey, clearing us to work.

nAPP2314538444

Please call if you have any questions.

Conner R. Moehring 310 West Wall Street, Suite 500 Midland Texas, 79701 M: <u>432-813-6823</u> Cmoehring@carmonaresources.com

CARMONA RESOURCES

Received by OCD: 3/21/2024 8:36:47 AM

USDA Natural Resources Conservation Service Released to Imaging: 5/16/2024 2:17:21 PM Web Soil Survey National Cooperative Soil Survey 10/25/2023 Page 1 of 3

USDA Natural Resources Conservation Service Released to Imaging: 5/16/2024 2:17:21 PM

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
RA	Reagan loam, 0 to 3 percent slopes	0.1	100.0%
Totals for Area of Interest		0.1	100.0%

Map Unit Description: Reagan loam, 0 to 3 percent slopes---Eddy Area, New Mexico

Eddy Area, New Mexico

RA—Reagan loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w5c Elevation: 1,100 to 4,400 feet Mean annual precipitation: 7 to 14 inches Mean annual air temperature: 60 to 70 degrees F Frost-free period: 200 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Reagan and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Reagan

Setting

Landform: Fan remnants, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Alluvium and/or eolian deposits

Typical profile

H1 - 0 to 8 inches: loam *H2 - 8 to 60 inches:* loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water
(Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 8.2 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: B *Ecological site:* R070BC007NM - Loamy *Hydric soil rating:* No

Minor Components

Upton

Percent of map unit: 1 percent Ecological site: R070BC025NM - Shallow Hydric soil rating: No

Atoka

Percent of map unit: 1 percent *Ecological site:* R070BC007NM - Loamy *Hydric soil rating:* No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 19, Sep 7, 2023

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 325453

QUESTIONS	
Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	325453
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS Proroquisitos

Frerequisites	
Incident ID (n#)	nAPP2314538444
Incident Name	NAPP2314538444 GRAHAM CRACKER 16 STATE 007H @ 0
Incident Type	Release Other
Incident Status	Reclamation Report Received
Incident Facility	[fAPP2203933496] Graham Cracker 16 St 2H Battery

Location of Release Source

Please answer all the questions in this group.	
Site Name	GRAHAM CRACKER 16 STATE 007H
Date Release Discovered	05/13/2023
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.
Incident Type

Incident Type	Release Other
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reachin watercourse	ng a No
Has this release endangered or does it have a reasonable probability of endangering public health	Νο
Has this release substantially damaged or will it substantially damage prope the environment	erty or No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Cause: Corrosion Flow Line - Production Crude Oil Released: 1 BBL Recovered: 1 BBL Lost: 0 BBL.	
Produced Water Released (bbls) Details	Cause: Corrosion Flow Line - Production Produced Water Released: 1 BBL Recovered: 0 BBL Lost: 1 BBL.	
Is the concentration of chloride in the produced water >10,000 mg/l	Yes	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 142 of 149

QUESTIONS, Page 2

Action 325453

QUESTIONS (continued)		
Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	325453	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Unavailable.	
Reasons why this would be considered a submission for a notification of a major release	Unavailable.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.		

Initial Response	
------------------	--

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.	
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 03/21/2024	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	325453
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Less than or equal 25 (ft.)	
What method was used to determine the depth to ground water	U.S. Geological Survey	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)	
Any other fresh water well or spring	Greater than 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Greater than 5 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Medium	
A 100-year floodplain	Between 1 and 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	Yes	

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.			
Yes			
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.			
Yes			
No			
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)			
792			
341			
228			
0.1			
0.1			
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.			
10/27/2023			
10/31/2023			
11/03/2023			
720			
40			
720			
40			
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.			
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.			

Page 143 of 149

QUESTIONS, Page 3

Action 325453

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 325453

QUESTIONS (continued)		
Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	325453	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	LUSK DEEP UNIT A #1 BATTERY [fAPP2204035753]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No	
(In Situ) Soil Vapor Extraction	No	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No	
Ground Water Abatement pursuant to 19.15.30 NMAC	No	
OTHER (Non-listed remedial process)	No	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 03/21/2024	

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 325453

QUESTIONS (continued)	
Operator: COG OPERATING LLC 600 W Illinois Ave	OGRID: 229137 Action Number: OGRID: 229137
Midland, TX 79701	325453 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)
QUESTIONS	
Deferral Requests Only	

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	No	

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 325453

QUESTIONS (continued)		
Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	325453	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	325462
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	09/05/2023
What was the (estimated) number of samples that were to be gathered	9
What was the sampling surface area in square feet	720

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	720	
What was the total volume (cubic yards) remediated	40	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	720	
What was the total volume (in cubic yards) reclaimed	40	
Summarize any additional remediation activities not included by answers (above)	All confirmation sample locations were below regulatory thresholds for TPH, BTEX, and chloride.	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.		
	Name: Brittany Esparza	

I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com
	Date: 03/21/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

What was the total volume of replacement material (in cubic yards) for this site

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Page 147 of 149

Action 325453

QUESTIONS (continued)

Operator: COG OPERATING LLC 600 W Illinois Ave	OGRID: 229137 Action Number:
Midland, TX 79701	325453
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)
QUESTIONS	
Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	Yes
What was the total reclamation surface area (in square feet) for this site	720

Per Paragraph (1) of Subsection D of 19.15.29.13 NMAC the reclamation must contain a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 mg/kg as analyzed by EPA Method 300.0, or other test methods approved by the division. The soil cover must include a top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater.		
Is the soil top layer complete and is it suitable material to establish vegetation	Yes	
On what (estimated) date will (or was) the reseeding commence(d)	11/03/2023	
Summarize any additional reclamation activities not included by answers (above)	After remediation activities, the backfilled areas were reseeded with double the amount of SLO Sandy Loam (SL) Seed Mixture.	
of attachments (in .pdf format) including a scaled site map, any proposed reseeding plans or relevant field notes, photographs of reclaimed area, and a narrative of the reclamation activities. Refer to 19.15.29.13 NMAC.		
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete.	

I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 03/21/2024
--	---

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

Operator:

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

600 W Illinois Ave

Midland, TX 79701

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 8

Action 325453

Page 148 of 149

QUESTIONS (continued) OGRID: COG OPERATING LLC 229137 Action Number

325453

[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

Action Type:

QUESTIONS

Revegetation Report

Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied

Requesting a restoration complete approval with this submission

No Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS	5

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	325453
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)
	-

CONDITIONS

Created By Condition Condition Date Reclamation approved but note going forward that at least one representative 5-point composite sample needs to be collected from the backfill and 5/16/2024 scwells laboratory results submitted with your report for reclamation to be approved.

CONDITIONS

Action 325453