REVIEWED

By Mike Buchanan at 10:36 am, Jun 03, 2024

ENSOLUM

April 24, 2024

Review of the 2024 First Quarter Remediation System Operation and Monitoring Report for Standard #1: Content Satisfactory

- 1. Continue as planned to conduct biweekly or bimonthly sampling events to ensure the DPE system is functioning normally.
- 2. Note any deviations as stated in report.
- 3. Submit next quarterly report to OCD 15 to 30 days after the end of each quarter.

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: 2024 First Quarter – Remediation System Operation and Monitoring Report

Standard #1

San Juan County, New Mexico Hilcorp Energy Company

NMOCD Incident Number: NCS1735235018

Abatement Plan Number: AP-126

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this 2024 First Quarter - Remediation System Operation and Monitoring Report summarizing remediation system performance during the first quarter of 2024 at the Standard #1 (Site, Figure 1). The duration of operation and monitoring activities included in this report is for the period from January 2, 2024 (system startup), through March 21, 2024.

This report was prepared following the approval from the New Mexico Oil Conservation Division (NMOCD) regarding the dual-phase extraction (DPE) remediation system described in the Stage 2 Abatement Plan submitted by LT Environmental, Inc. in September 2019. Although no formal conditions of approval (COAs) have been provided in response to the aforementioned report, this report includes the following information based on COAs issued for similar Sites:

- A summary of remediation activities during the quarter;
- The system run time summary (90% run time typically required);
- Total system flow and vacuum measurements;
- Individual well flow rates, photoionization detector (PID) measurements of volatile organic compounds (VOCs), vacuum measurements, and oxygen/carbon dioxide measurements via hand-held analyzers;
- The petroleum mass removal and fluid product recovery from the remediation system.

Per correspondence with the NMOCD in April 2024, the quarterly remediation summary reports also include data and summaries from groundwater sampling events conducted at the Site during each reporting period. Because groundwater sampling activities have been performed quarterly while the system was being procured and installed, this report summarizes groundwater data gathered between the fourth quarter of 2022 and the first quarter of 2024.

REMEDIATION SYSTEM DESCRIPTION

The remediation system at the Site includes a DPE system which uses a high vacuum rotary claw blower to apply vacuum to remediation wells (MW01, MW02, MW03, MW06, MW10, and MW15) that are connected to the blower via subsurface piping (Figure 2). The extracted air, petroleum

Page 2

vapors, and fluids enter a vapor/liquid separator or "knock out" tank. Air and petroleum vapors are passed through the high vacuum extraction blower and discharged to the atmosphere via an exhaust stack. Separated liquid, which includes light non-aqueous phase liquids (LNAPL) and potentially impacted groundwater, is pumped to an aboveground storage tank for storage and offsite disposal. The system layout is depicted on Figure 3.

FIRST QUARTER 2024 OPERATION AND MAINTENANCE

Field data measurements were collected from the system daily for the first week of operation and then weekly thereafter for the remainder of the first quarter of January, February, and March 2024. Regular weekly system operations and maintenance (O&M) activities have been performed through the first quarter of 2024. Field forms completed during O&M visits are presented in Appendix A.

Since startup on January 2, 2024, all Site DPE wells were operated in order to recover LNAPL, draw down the groundwater table, and induce air flow in impacted soil zones. Between January 2 and March 21, 2024, the DPE system operated for 1,872 hours for a runtime efficiency of 99 percent (%). Appendix B presents photographs of the runtime meter for calculating the first quarter 2024 runtime efficiency. Table 1 presents the SVE system operational hours and calculated percent runtime.

During an O&M field visit in January of 2024, it was determined that excess liquid carryover through the knockout tank was occurring, causing recovered liquids to be processed through the blower. In order to minimize risk to the blower, the motor speed was temporarily slowed to decrease vacuum applied to the extraction wells. Additional demister material was added to the inside of the knockout tank and the motor speed was increased in March 2024 to maximize vacuum and associated liquid and vapor recovery. Field measurements collected during O&M events are summarized in Table 2.

Vapor Recovery

Initial influent vapor samples from the DPE system were collected on January 2, January 3, January 4, and January 5, 2024 using a high vacuum air sampling pump on the system inlet, after the manifold assembly, but prior to the liquid knock out tank. Influent vapor samples were collected weekly for the remainder of January and semi-monthly (twice per month) for the remainder of the first quarter of 2024. Samples were collected into 1-Liter Tedlar® bags and submitted to Eurofins Environment Testing (Eurofins) in Albuquerque, New Mexico for analysis of VOCs following United States Environmental Protection Agency (EPA) EPA Method 8260B, total petroleum hydrocarbons (TPH) following EPA Method 8015D, and fixed gas analysis of oxygen and carbon dioxide following Gas Processors Association (GPA) Method 2261. A summary of laboratory analytical results are summarized in Table 3, with complete laboratory analytical reports attached as Appendix C. Graphs 1 and 2 also present oxygen and carbon dioxide levels over time, respectively.

Vapor sample data and measured influent flow rates are used to estimate total mass recovered and total emissions generated by the DPE system (Table 4). Based on these estimates, 5,914 pounds (3.0 tons) of TPH have been removed by the system to date.

Liquid Recovery

Total liquid recovery volumes are measured using a totalizing flow metering device. Since startup of the system on January 2, 2024, through March 21, 2024, approximately 37,795 gallons of liquid have been recovered. The impacted groundwater and recovered LNAPL are emulsified and homogenously commingled enough during extraction that product thickness is unmeasurable in

Page 3

the liquid recovery tank. Therefore, the estimated volume of LNAPL recovered is not measurable and not reported. Liquid recovery is summarized in Table 5.

GROUNDWATER MONITORING

Since October 2018, groundwater gauging and sampling activities have been conducted at the Site. Previous to this report, the last summary of groundwater analytical results was presented in the *Executive Summary – November 2022* document prepared by Ensolum and dated November 20, 2022. The *Executive Summary – November 2022* document summarized groundwater sampling activities and data that had been collected at the Site between October 2018 and September 2022. As such, this report summarizes quarterly groundwater sampling activities and data collected from the fourth quarter of 2022 to the first quarter 2024.

Fluid Level Measurements

Prior to purging and sampling, static depth to groundwater and total depth of each monitoring well was measured using an oil/water interface probe. Depth to phase-separated hydrocarbons (PSH, synonyms with LNAPL) was also recorded when present and a correction factor of 0.8 was applied to the calculated groundwater elevation to account for the depression of the water column caused by the presence of overlying PSH. The interface probe was decontaminated with Alconox® soap and rinsed with distilled water prior to each measurement to prevent cross contamination. Depth to groundwater, depth to PSH, and calculated groundwater elevations are summarized in Table 6. Potentiometric surface maps were drafted with groundwater elevations and PSH thickness measured during the fourth quarter 2022 through first quarter 2024 quarterly monitoring events (Figures 4 through 9).

In general, the presence of groundwater at the Site is highly variable and no apparent continuous groundwater aquifer has been observed during drilling and/or groundwater monitoring activities. Groundwater flow direction and gradient is generally difficult to interpret, as dry wells often exist around the perimeter of the Site, as well as between wells containing groundwater. Based on historical measurements, groundwater flow direction is variable across the Site, but is generally to the west-northwest.

Groundwater Sampling Activities and Analytical Results

Groundwater samples were collected for laboratory analysis from monitoring wells containing sufficient water to sample and that did not contain measurable PSH. Disposable polyvinyl chloride (PVC) bailers were used to collect groundwater samples due to limited water volume within several of the monitoring wells. Prior to collecting groundwater samples, Hilcorp purged a minimum of three casing volumes or until the well was bailed dry to ensure water from the adjacent formation, representative of actual aquifer conditions, was sampled. If a well was purged dry, the well was allowed to recharge before samples were collected. Water quality parameters including pH, electrical conductivity, and temperature were measured in each well using a multi-probe water quality field meter during purging.

Groundwater samples were collected into laboratory provided sample bottles and immediately placed on ice for preservation. Samples were submitted to Hall Environmental Analysis Laboratory (Hall) and/or Eurofins (formerly Hall) for analysis of benzene, toluene, ethylbenzene, and xylenes (BTEX). A summary of groundwater analytical results is presented in Table 7 and on Figure 10, with complete laboratory analytical reports attached as Appendix D.

Page 4

DISCUSSIONS AND RECOMMENDATIONS

Bi-weekly (every other week) to monthly O&M visits and bi-monthly (every other month) sampling events will be performed by Ensolum and/or Hilcorp personnel to ensure the DPE system is operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following quarterly report.

Reporting

Updated remediation reports will be prepared and submitted to the NMOCD on a quarterly basis within 15 days following the end of the quarter and will contain the following:

- A summary of remediation and monitoring activities during the period;
- System run-time summary;
- Petroleum hydrocarbon mass removal and fluid recovery from the remediation system;
- DPE volume liquid removal; and
- Groundwater monitoring results, when applicable.

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely, **Ensolum**, **LLC**

Stuart Hyde Senior Managing Geologist (970) 903-1607 shyde@ensolum.com Daniel R. Moir Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

Figure 1	Site Location Map
Figure 2	Site Features
Figure 3	Dual Phase Extraction System Layout
Figure 4	Groundwater Elevation Map – Q4 2022
Figure 5	Groundwater Elevation Map – Q1 2023
Figure 6	Groundwater Elevation Map – Q2 2023
Figure 7	Groundwater Elevation Map – Q3 2023
Figure 8	Groundwater Elevation Map – Q4 2023
Figure 9	Groundwater Elevation Map – Q1 2024
Figure 10	Groundwater Analytical Results

Hilcorp Energy Company 2024 First Quarter – Remediation System Operation and Monitoring Report Standard #1

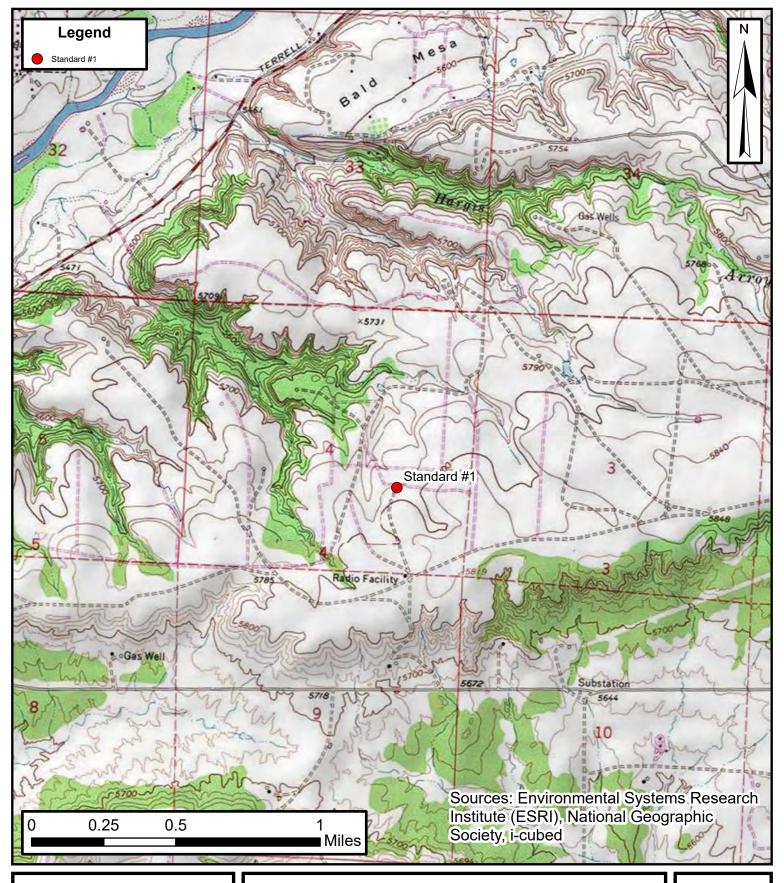
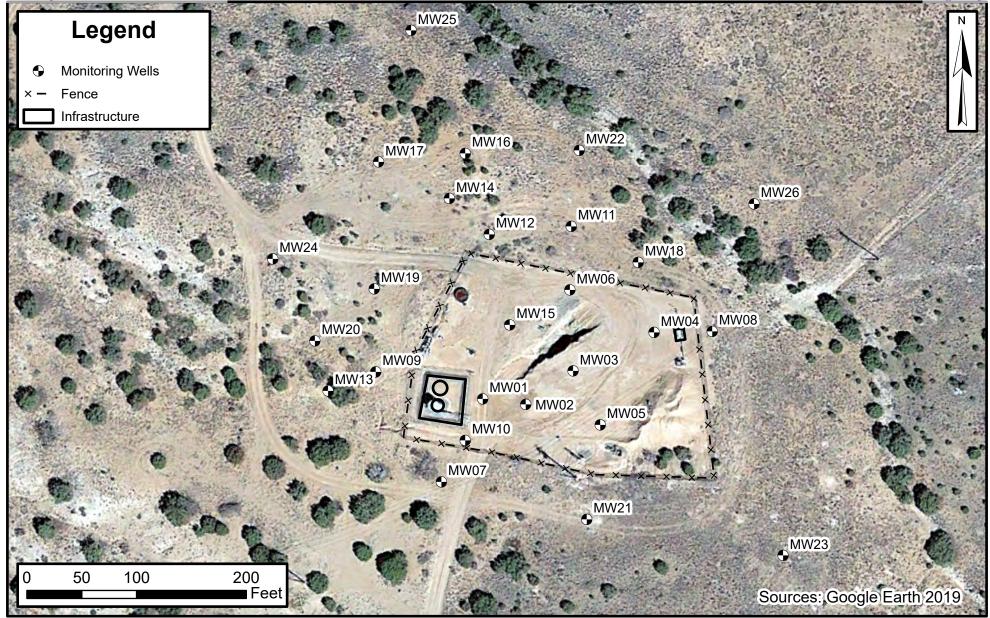

Page 5

Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7	Dual Phase Extraction System Runtime Calculations Dual Phase Extraction System Field Measurements Dual Phase Extraction System Emissions Analytical Results Dual Phase Extraction System Mass Removal and Emissions Liquid Recovery Groundwater Elevation Groundwater Analytical Results
Graph 1 Graph 2	O_2 vs. Time CO_2 vs. Time
Appendix A Appendix B Appendix C Appendix D	O&M Field Notes Project Photographs DPE Laboratory Analytical Reports Groundwater Laboratory Analytical Reports

Figures

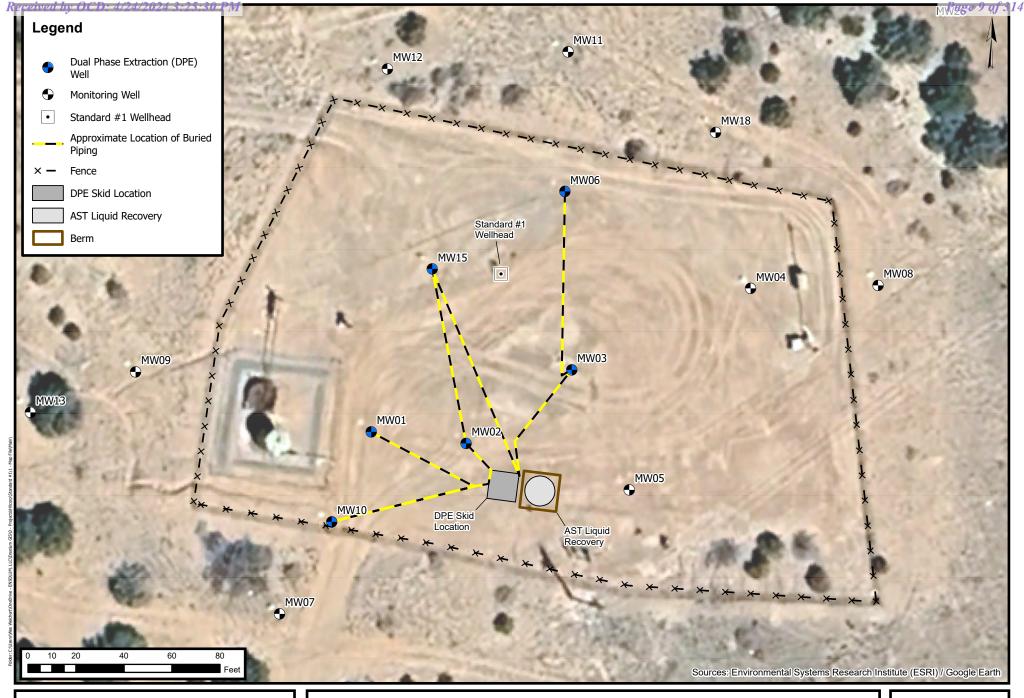


Site Location Map

Standard #1 Hilcorp Energy Company

36.75285, -108.099744 San Juan County, New Mexico **FIGURE**

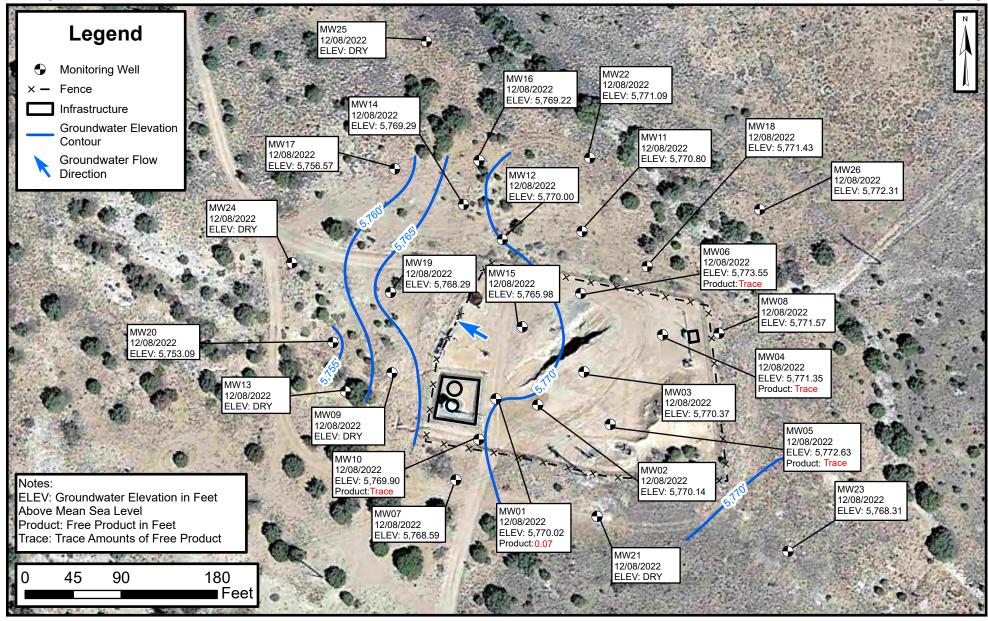
1



Site Features

Standard #1 Hilcorp Energy Company

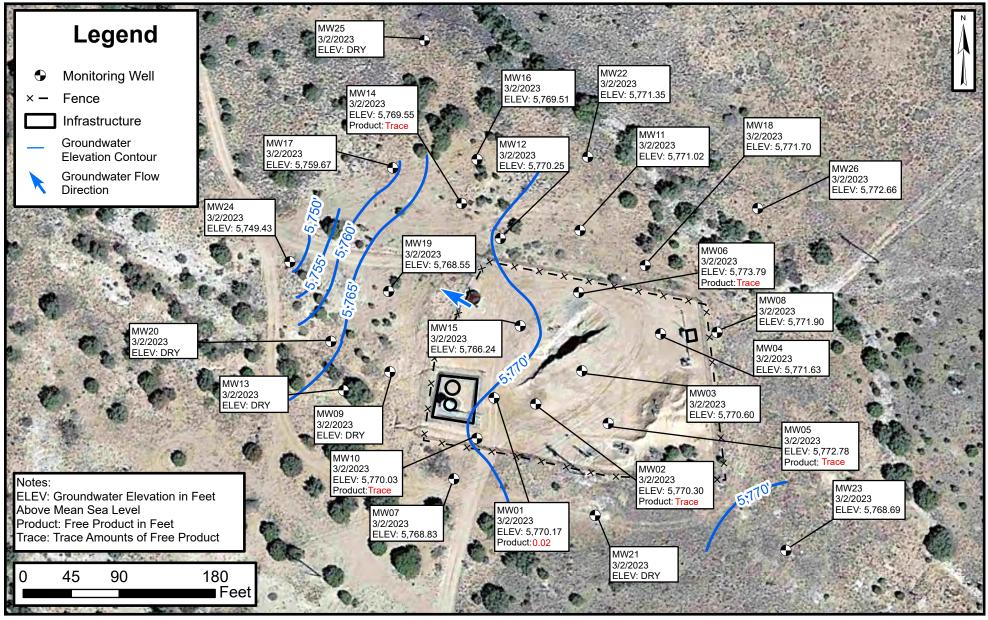
36.75285, -108.099744 San Juan County, New Mexico FIGURE 2



Dual Phase Extraction System Layout
Standard #1
Hilcorp Energy Company

36.75285, -108.099744 San Juan County, New Mexico **FIGURE**

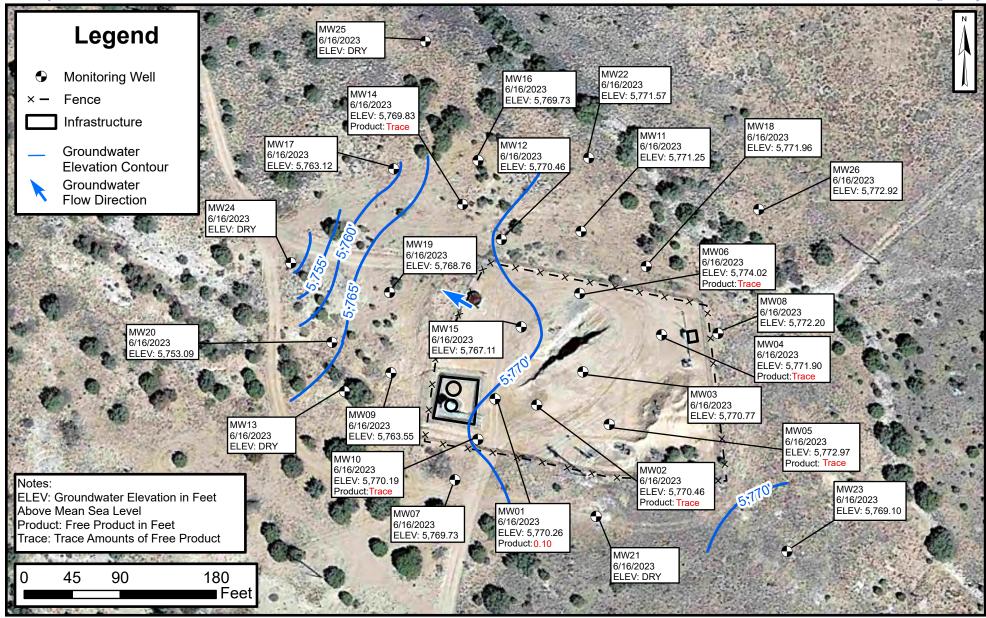
3



Groundwater Elevation Map - Q4 2022

Standard #1 Hilcorp Energy Company

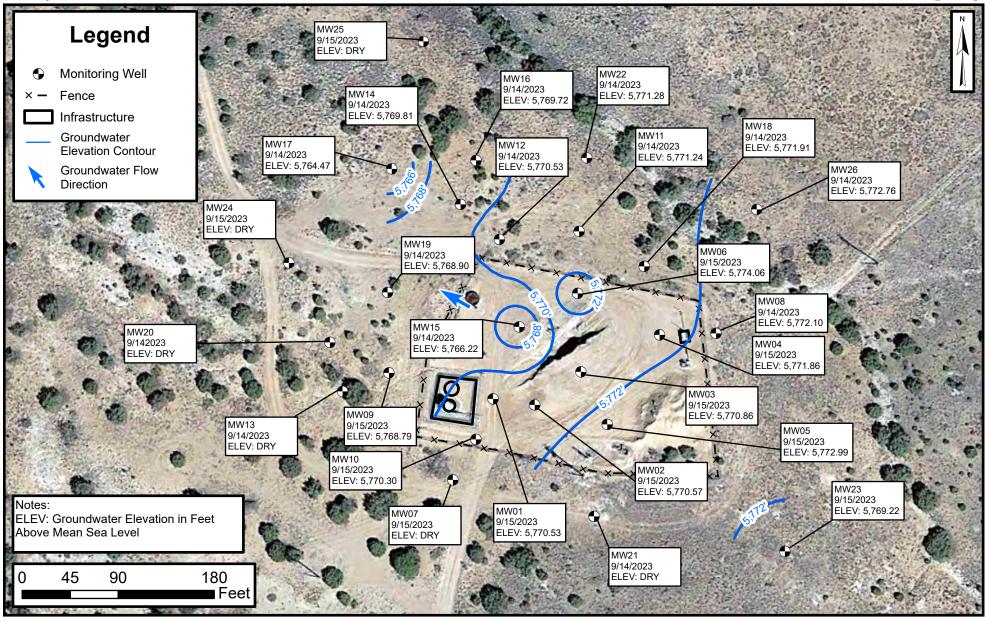
36.75285, -108.099744 San Juan County, New Mexico FIGURE



Groundwater Elevation Map - Q1 2023

Standard #1 Hilcorp Energy Company

36.75285, -108.099744 San Juan County, New Mexico FIGURE **5**

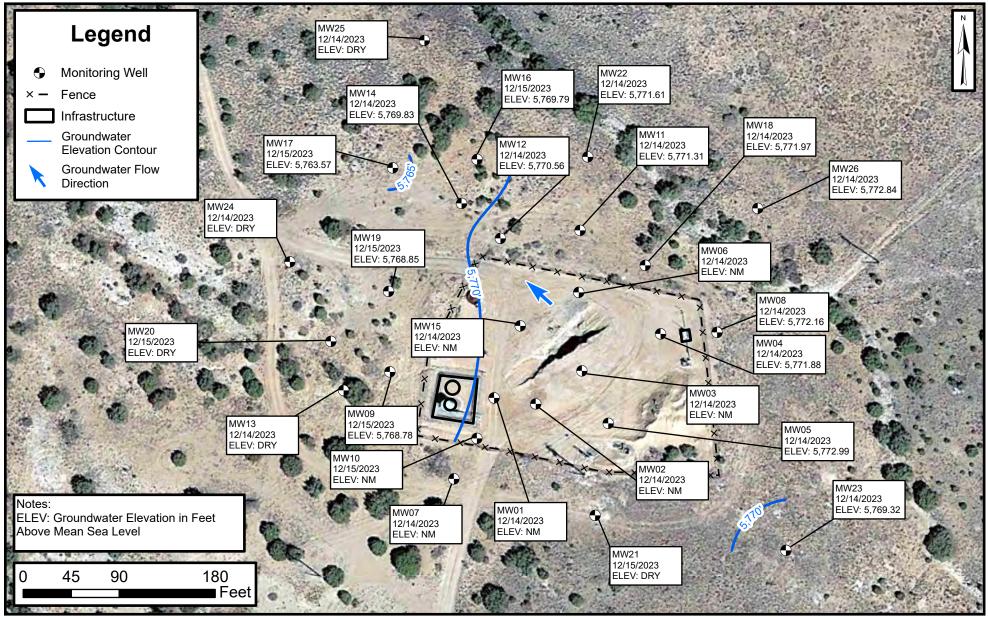


Groundwater Elevation Map - Q2 2023

Standard #1 Hilcorp Energy Company

36.75285, -108.099744 San Juan County, New Mexico **FIGURE**

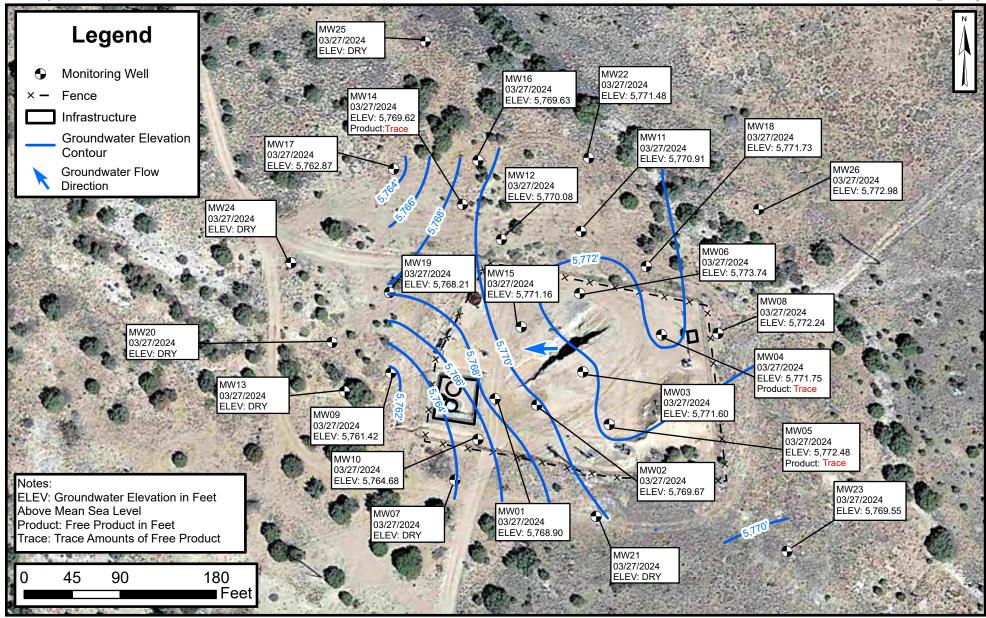
6



Groundwater Elevation Map - Q3 2023

Standard #1 Hilcorp Energy Company

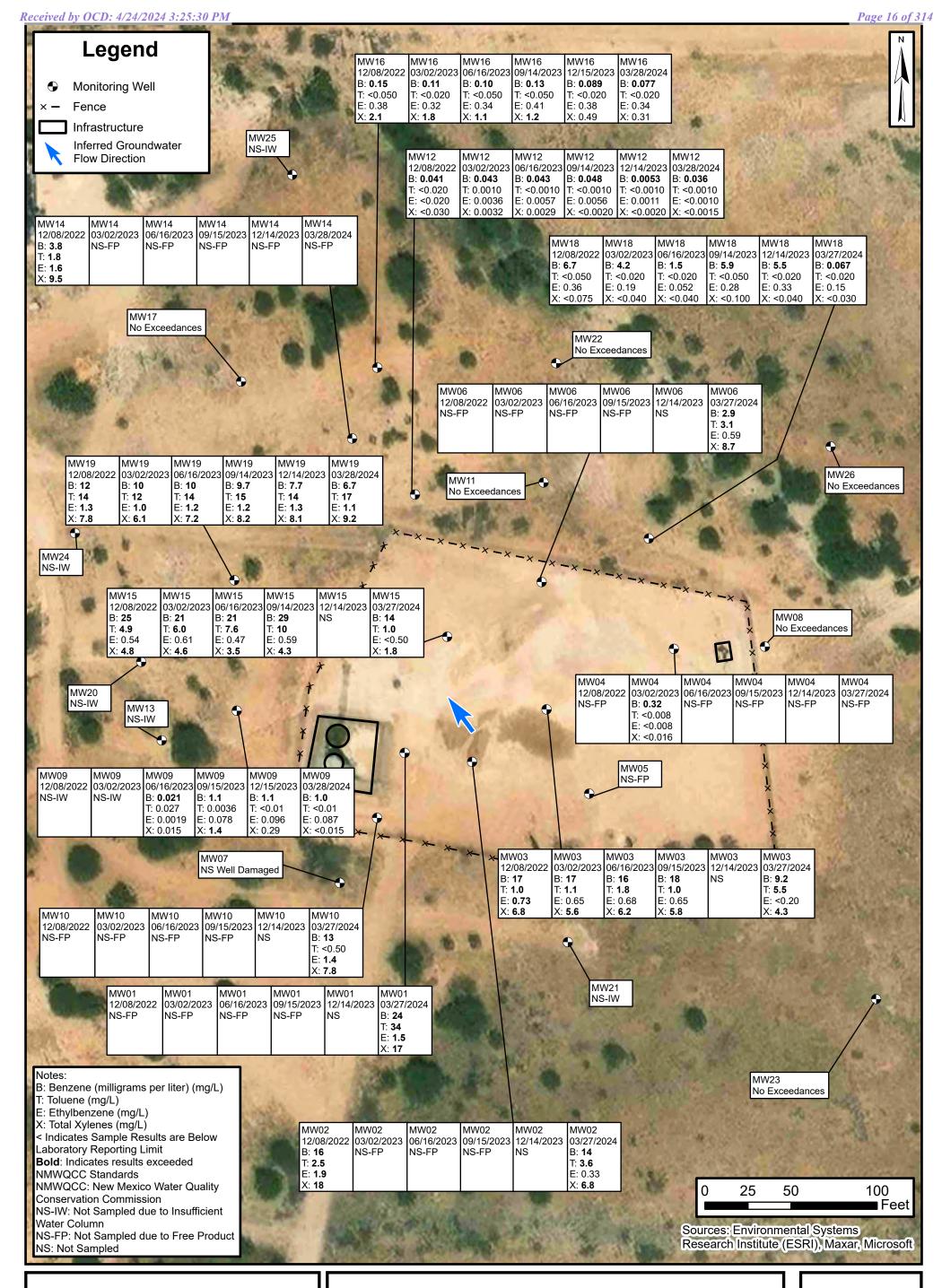
36.75285, -108.099744 San Juan County, New Mexico FIGURE **7**



Groundwater Elevation Map - Q4 2023

Standard #1 Hilcorp Energy Company

36.75285, -108.099744 San Juan County, New Mexico FIGURE **Q**



Groundwater Elevation Map - Q1 2024

Standard #1 Hilcorp Energy Company

36.75285, -108.099744 San Juan County, New Mexico FIGURE

Groundwater Analytical Results

Standard #1
Hilcorp Energy Company
36.75285, -108.099744
San Juan County, New Mexico

figure 10

Tables & Graphs

TABLE 1

DUAL PHASE EXTRACTION SYSTEM RUNTIME CALCULATIONS

Standard #1

Hilcorp Energy Company
San Juan County, New Mexico

Date/Time of Reading	System Hour Runtime	Run Time (%)	Cumulative Run Time (%)	Notes
1/2/2024	4	STAF	RT UP	
1/3/2024	28	99%	99%	
1/4/2024	53	102%	101%	
1/5/2024	76	97%	99%	
1/11/2024	218	99%	99%	
1/12/2024	247	121%	101%	
1/18/2024	376	89%	97%	
1/24/2024	518	99%	97%	
2/1/2024	707	98%	98%	
2/8/2024	874	100%	98%	
2/15/2024	1,040	99%	98%	
2/21/2024	1,183	99%	98%	
3/1/2024	1,398	100%	98%	
3/7/2024	1,545	102%	99%	
3/14/2024	1,710	98%	99%	
3/21/2024	1,876	100%	99%	

Notes:

%: percent

Dashed line indicates quarter change

--: not applicable/not collected

Ensolum 1 of 32

	TABLE 2 DUAL PHASE EXTRACTION SYSTEM FIELD MEASUREMENTS Standard #1 Hillorop Energy Company San Juan County, New Mexico										
SVE Well ID	Date	PID (ppm)	Differential Pressure (IWC)	Flow Rate (acfm)	Flow Rate (scfm) ⁽¹⁾	Vacuum (IHG)	Vacuum (psi)	Oxygen (%)	Carbon Dioxide (%)		
	1/2/2024	198	4.50	742	534	2.5	1.23	20.9	0.06		
	1/3/2024 1/4/2024	69 467	4.50 2.50	742 553	534 398	2.5 2.5	1.23 1.23	20.9 16.6	0.02 4.99		
	1/5/2024	416	2.50	553	216	15.0	7.37	19.8	1.34		
	1/11/2024	993	1.75	463	187	14.5	7.12				
	1/18/2024	234	2.00	495	220	13.0	6.39	1			
	1/24/2024	521	2.50	553	260	12.0	5.89	1			
Influent, All Wells	2/1/2024	397	3.25	630	379	7.0	3.44	-			
	2/8/2024	350	3.00	606	348	8.0	3.93	-			
	2/15/2024 2/21/2024	401 400	3.00	606 606	340 340	8.5 8.5	4.17 4.17	20.0	0.38		
	3/1/2024	662	2.25	525	267	10.5	5.16				
	3/7/2024	525	2.25	525	271	10.3	5.03	20.9	0.30		
	3/14/2024	763	2.50	553	282	10.5	5.16	20.9	0.28		
	3/21/2024	568	2.50	553	282	10.5	5.16	-			
	1/2/2024	102		-	44.0	1.0	0.49	20.9	0.08		
	1/3/2024	87			14.0	1.0	0.49	20.9	0.04		
	1/4/2024 1/5/2024	403			93.0 53.0	13.5 13.0	6.63 6.39	20.7	0.58		
	1/11/2024	135	0.95	85.2	42.3	11.0	5.40		0.56		
	1/18/2024	655	0.08	24.7	11.6	12.0	5.89				
	1/24/2024	1394	0.55	64.8	32.2	11.0	5.40	20.2	0.52		
MW01	2/1/2024	468	0.54	64.2	41.2	5.5	2.70	-			
	2/8/2024	436				7.0	3.44	19.8	0.78		
	2/15/2024	413	0.20	39.1	23.5	7.0	3.44	19.8	0.44		
	2/21/2024	543	0.20	39.1	23.5	7.0	3.44	20.0	0.40		
	3/1/2024 3/7/2024	353 431	0.28 0.51	46.3 62.4	25.4 34.3	9.0 9.0	4.42 4.42	20.5	0.44 0.36		
	3/14/2024	409	0.19	38.1	20.9	9.0	4.42	20.9	0.38		
	3/21/2024	398	0.49	61.2	33.6	9.0	4.42	20.9	0.36		
	1/2/2024	102			20.0	1.0	0.49	20.9	0.02		
	1/3/2024	240			25.0	1.0	0.49	20.9	0.06		
	1/4/2024				86.0	13.5	6.63	-			
	1/5/2024	243			84.0	12.5	6.14	20.6	0.82		
	1/11/2024	392	0.80	78.2	38.8	11.0	5.40				
	1/18/2024	335 710	1.05 0.75	89.6 75.7	42.1 38.6	12.0 10.5	5.89 5.16	20.7	0.52		
MW02	1/24/2024 2/1/2024	179	0.75	33.9	21.2	6.0	2.95		0.52		
IVIVVO2	2/8/2024	380				7.3	3.56	20.7	0.54		
	2/15/2024	232	0.21	40.1	23.6	7.5	3.68	20.3	0.32		
	2/21/2024	175	0.15	33.9	20.4	7.0	3.44	20.6	0.18		
	3/1/2024	315	0.56	65.4	35.9	9.0	4.42	20.9	0.36		
	3/7/2024	396	0.64	69.9	38.4	9.0	4.42	20.9	0.24		
	3/14/2024	412 408	0.64	69.9	38.4	9.0	4.42 4.42	20.9	0.20		
	3/21/2024		0.61	68.3	37.5			20.9	0.18		
	1/2/2024	139 240			45.0 25.0	1.0	0.49 0.49	20.9 20.9	0.14 0.06		
	1/4/2024				37.0	13.0	6.39	20.9	0.06		
	1/5/2024	332			18.0	12.0	5.89	18.9	1.56		
	1/11/2024	187	1.30	99.7	44.3	13.0	6.39	-			
	1/18/2024	452	1.11	92.1	36.1	15.0	7.37				
	1/24/2024	1775	0.62	68.8	30.6	13.0	6.39	19.2	1.26		
MW03	2/1/2024	644	0.24	42.8	24.1	8.5	4.17				
	2/8/2024	325 235			21.0	9.5	4.67	19.0	1.30		
	2/15/2024 2/21/2024	235 498	0.23	41.9	21.9	10.0	4.91	20.3 19.1	0.28 0.72		
	3/1/2024	404	0.13	31.5	14.8	12.0	5.89	19.7	1.04		
	3/7/2024	721	0.41	56.0	27.1	11.5	5.65	20.2	0.66		
	3/14/2024	687	0.35	51.7	25.0	11.5	5.65	20.4	0.44		
1	3/21/2024	627	0.36	52.5	25.4	11.5	5.65	20.3	0.45		

	TABLE 2 DUAL PHASE EXTRACTION SYSTEM FIELD MEASUREMENTS Standard #1 Hilcorp Energy Company San Juan County, New Mexico										
SVE Well ID	Date	PID (ppm)	Differential Pressure (IWC)	Flow Rate (acfm)	Flow Rate (scfm) ⁽¹⁾	Vacuum (IHG)	Vacuum (psi)	Oxygen (%)	Carbon Dioxide (%)		
	1/2/2024	153		-	48.0	1.0	0.49	20.9	0.14		
	1/3/2024	161			23.0	1.0	0.49	20.9	0.04		
	1/4/2024	_		-	48.0	12.0	5.89	-			
	1/5/2024	295		-	26.0	11.5	5.65	19.1	1.41		
	1/11/2024	323	1.18	95.0	47.1	11.0	5.40				
	1/18/2024	35	1.12	92.5	42.3	12.5	6.14				
	1/24/2024	439	0.40	55.3	28.2	10.5	5.16	20.9	0.56		
MW06	2/1/2024	245	0.17	36.0	23.1	5.5	2.70				
	2/8/2024	220		-	-	7.0	3.44	20.9	0.42		
	2/15/2024	120	0.15	33.9	20.4	7.0	3.44	20.9	0.12		
	2/21/2024	319	0.22	41.0	24.4	7.2	3.54	20.6	0.20		
	3/1/2024	121	0.04	17.5	9.6	9.0	4.42	20.9	0.24		
	3/7/2024	314	0.65	70.5	38.7	9.0	4.42	20.9	0.16		
	3/14/2024	402	0.30	47.9	26.3	9.0	4.42	20.9	0.20		
	3/21/2024	372	0.27	45.4	25.5	8.5	4.17	20.9	0.15		
	1/2/2024	104			44.0	1.0	0.49	20.9	0.08		
	1/3/2024	92			16.0	1.0	0.49	20.9	0.02		
	1/4/2024			-	85.0	14.0	6.88				
	1/5/2024	147			69.0	13.5	6.63	20.9	0.36		
	1/11/2024	59	0.88	82	43.9	9.5	4.67	_	-		
	1/18/2024	256	0.77	77	35.1	12.5	6.14	-	-		
	1/24/2024	7	0.62	69	34.2	11.0	5.40	20.9	0.00		
MW10	2/1/2024	435	0.21	40	26.2	5.0	2.46	-			
	2/8/2024	381		-	-	7.0	3.44	20.9	0.32		
	2/15/2024	205	0.05	20	11.8	7.0	3.44	20.6	0.18		
	2/21/2024	204	0.03	15	9.1	7.0	3.44	20.7	0.16		
	3/1/2024	91	0.12	30	16.6	9.0	4.42	20.9	0.12		
	3/7/2024	60	0.34	51	28.0	9.0	4.42	20.9	0.18		
	3/14/2024	75	0.57	66	36.2	9.0	4.42	20.9	0.16		
	3/21/2024	77	0.48	61	33.2	9.0	4.42	20.9	0.13		
	1/2/2024	126		-	46.0	1.0	0.49	20.9	0.12		
	1/3/2024	125		-	20.0	1.0	0.49	20.9	0.02		
	1/4/2024	-	-	_	45.0	11.5	5.65		-		
	1/5/2024	138	-	_	43.0	11.5	5.65	20.9	0.10		
	1/11/2024				Fro	zen					
	1/18/2024	124	3.78	170.0	79.9	12.0	5.89	-	-		
	1/24/2024	425	0.18	37.1	20.8	8.5	4.17	20.9	0.18		
MW15	2/1/2024	34	0.12	30.3	19.0	6.0	2.95				
	2/8/2024	90		-	-	5.0	2.43	20.9	0.06		
	2/15/2024	25	0.05	19.5	11.8	7.0	3.44	20.9	0.08		
	2/21/2024	57		-	-			20.9	0.08		
	3/1/2024	129	0.07	23.1	12.7	9.0	4.42	20.9	0.00		
	3/7/2024	114	0.16	35.0	19.2	9.0	4.42	20.9	0.00		
	3/14/2024	130	0.13	31.5	17.3	9.0	4.42	20.9	0.00		
	3/21/2024	122	0.13	31.5	17.3	9.0	4.42	20.9	0.00		

Notes:

(1) Individual Well Flow Rates in scfm estimated based on rotometer readings from 1/2/24 to 1/5/24

IHG: inches of mercury

PID: photoionization detector

ppm: parts per million

acfm: actual cubic feet per minute

scfm: standard cubic feet per minute

%: percent

-: not measured

TABLE 3 **DUAL PHASE EXTRACTION SYSTEM EMISSIONS ANALYTICAL RESULTS** Standard #1 Hilcorp Energy Company San Juan County, New Mexico PID Benzene Toluene Ethylbenzene **Total Xylenes** TVPH/GRO Oxygen **Carbon Dioxide** Date (ppm) (µg/L) (µg/L) (µg/L) (µg/L) (µg/L) (%) (%) 0.09 1/2/2024 198 0.58 2.8 0.42 8.9 170 21.64 1/3/2024 69 0.21 1.2 0.24 5.0 69 21.71 0.06 1/4/2024 467 29 40 <5.0 18 3,400 17.40 4.80 1/5/2024 416 18 <5.0 8.7 26 2.300 20.83 1 26 1/12/2024(1) 993 22 42 <5.0 56 6,500 20.53 1.49 1/18/2024 234 21 28 <5.0 10 2,700 21.30 0.42 1/24/2024 523 22 40 <5.0 30 4,400 21.19 0.57 2/8/2024 350 19 31 <5.0 34 2,200 21.33 0.51 2/21/2024 400 13 18 <2.0 18 2,900 19.74 0.40 3/7/2024 525 14 28 <5.0 36 2,100 21.91 0.30 3/21/2024 568 15 34 2,900 21.57 0.29

Notes

GRO: gasoline range organics
µg/L: microgram per liter
PID: photoionization detector
ppm: parts per million
(1) PID reading is from 1/11/2024

TVPH: total volatile petroleum hydrocarbons

%: percent
--: not sampled

Ensolum 4 of 32

TABLE 4

DUAL PHASE EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS

Standard #1 Hilcorp Energy Company San Juan County, New Mexico

Laboratory Analysis

	Laboratory Analysis									
Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)				
1/2/2024	198	0.58	2.8	0.42	8.9	170				
1/3/2024	69	0.21	1.2	0.24	5.0	69				
1/4/2024	467	29	40	<5.0	18	3,400				
1/5/2024	416	18	26	<5.0	8.7	2,300				
1/12/2024 ⁽¹⁾	993	22	42	<5.0	56	6,500				
1/18/2024	234	21	28	<5.0	10	2,700				
1/24/2024	523	22	40	<5.0	30	4,400				
2/8/2024	350	19	31	<5.0	34	2,200				
2/21/2024	400	13	18	<2.0	18	2,900				
3/7/2024	525	14	28	<5.0	36	2,100				
3/21/2024	568	15	27	1.1	34	2,900				
Average	431	16	26	4	24	2,694				

Vapor Extraction Summary

			· up	JI EXTRACTION SUM				
Date	Flow Rate (scfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
1/2/2024	534	0	0	0.0012	0.0056	0.0008	0.0178	0.34
1/3/2024	534	762,552	762,552	0.0008	0.0040	0.0007	0.0139	0.24
1/4/2024	398	1,347,612	585,060	0.0217	0.0307	0.0039	0.0171	2.58
1/5/2024	216	1,648,284	300,672	0.0190	0.0267	0.0040	0.0108	2.30
1/12/2024 ⁽¹⁾	187	3,569,148	1,920,864	0.0140	0.0238	0.0035	0.0226	3.08
1/18/2024	220	5,271,948	1,702,800	0.0177	0.0288	0.0041	0.0272	3.78
1/24/2024	260	7,487,148	2,215,200	0.0209	0.0331	0.0049	0.0194	3.45
2/8/2024	340	14,749,548	7,262,400	0.0261	0.0451	0.0064	0.0407	4.20
2/21/2024	340	21,055,188	6,305,640	0.0203	0.0312	0.0045	0.0331	3.24
3/7/2024	271	26,939,682	5,884,494	0.0137	0.0233	0.0035	0.0274	2.53
3/21/2024	282	32,540,202	5,600,520	0.01529	0.0290	0.00322	0.0369	2.64
	•	•	Average	0.0155	0.026	0.0036	0.024	2.58

Mass Recovery

Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
1/2/2024	4	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1/3/2024	28	24	0.0	0.1	0.0	0.3	5.7	0.0
1/4/2024	53	25	0.5	0.8	0.1	0	63	0.03
1/5/2024	76	23	0.4	0.6	0.1	0.3	53	0.03
1/12/2024 ⁽¹⁾	247	171	2.4	4.1	0.6	4	527	0.26
1/18/2024	376	129	2.3	3.7	0.5	4	488	0.24
1/24/2024	518	142	3.0	4.7	0.7	2.8	490	0.25
2/8/2024	874	356	9.3	16	2.3	14	1,494	0.75
2/21/2024	1183	309	6.29	9.6	1.4	10	1,002	0.50
3/7/2024	1545	362	4.95	8.4	1.3	10	917	0.46
3/21/2024	1876	331	5.06	9.6	1.06	12.2	873	0.44
	Total Mass	Recovery to Date	34	58	8	58	5,914	3.0

Notes:

cf: cubic feet

cfm: cubic feet per minute

μg/L: micrograms per liter

lb/hr: pounds per hour

--: not sampled

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

Laboratory detection limit used to estimate mass removal

(1) PID reading and flow rate are from 1/11/2024

TABLE 5 LIQUID RECOVERY

Standard #1

Hilcorp Energy Company San Juan County, New Mexico

Date/Time	Hour Meter Reading	er Gallons Volu		Time Period	Recovery Rate		Notes		
Date/Time	Reading	Reading (gal)	this Period	Recovered (gal)	(hr:min:sec)	(min)	(gpm)	(gal/day)	Notes
1/11/24 13:15	219	2,648	0	0					
1/18/24 14:05	376	8,518	5,870	5,870	168:50:00	10,130	0.58	834	
1/24/24 12:30	518	12,337	3,819	9,689	142:25:00	8,545	0.45	644	
2/1/24 11:00	707	14,170	1,834	11,522	190:30:00	11,430	0.16	231	
2/8/24 10:39	874	17,328	3,158	14,680	167:39:00	10,059	0.31	452	
2/15/24 10:40	1,040	21,029	3,701	18,381	168:01:00	10,081	0.37	529	
2/21/24 10:05	1,183	23,866	2,837	21,218	143:25:00	8,605	0.33	475	
3/1/24 13:20	1,399	28,034	4,168	25,385	219:15:00	13,155	0.32	456	
3/7/24 14:50	1,545	32,076	4,042	29,428	145:30:00	8,730	0.46	667	
3/14/24 13:05	1,710	36,362	4,286	33,713	166:15:00	9,975	0.43	619	
3/21/24 10:02	1,876	40,443	4,082	37,795	164:57:00	9,897	0.41	594	

Notes:

bbl: barrel in: inch

ft: feet min: minute

gal: gallon sec: second

gal/day: gallon per day

Dashed line indicated quarter change

gpm: gallon per minute --: not applicable

hr: hour

Total Quantity of Liquid Removed: 37,795 Gal
900 bbl

Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
		10/22/2018	20.80	20.97	0.17	5,768.25
		3/29/2019	20.69	21.35	0.66	5,768.26
		6/28/2019	20.70	21.44	0.74	5,768.23
		9/17/2019	20.64	20.83	0.19	5,768.40
		12/17/2019	20.50	20.89	0.39	5,768.50
		3/12/2020	20.49	20.76	0.27	5,768.54
		6/25/2020	20.39	20.65	0.26	5,768.64
		9/23/2020	20.19	20.46	0.27	5,768.84
		3/21/2021	20.11	20.20	0.09	5,768.95
		6/14/2021	Trace	20.18	Trace	5,768.90
MW01	5,789.08	9/20/2021		19.62		5,769.46
		12/2/2021	Trace	19.50	Trace	5,769.58
		3/1/2022	Trace	19.62	Trace	5,769.46
		6/7/2022	Trace	19.39	Trace	5,769.69
		9/29/2022	19.08	19.10	0.02	5,770.00
		12/8/2022	19.05	19.12	0.07	5,770.02
		3/2/2023	18.91	18.93	0.02	5,770.17
		6/16/2023	18.80	18.90	0.10	5,770.26
		9/15/2023	Trace	18.55	Trace	5,770.53
		12/14/2023				
		3/27/2024		20.18		5,768.90
		10/22/2018		21.12		5,768.24
		3/29/2019	20.85	21.11	0.26	5,768.46
		6/28/2019	20.95	21.30	0.35	5,768.34
		9/17/2019	20.80	20.85	0.05	5,768.55
		12/17/2019		20.74		5,768.62
		3/12/2020		20.65		5,768.71
		6/25/2020		20.58		5,768.78
		9/23/2020		20.43		5,768.93
		3/31/2021		20.29		5,769.07
		6/14/2021	Trace	20.21	Trace	5,769.15
MW02	5,789.36	9/20/2021		19.77		5,769.59
		12/3/2021		19.68		5,769.68
		3/1/2022		19.83		5,769.53
		6/7/2022	Trace	19.56	Trace	5,769.80
		9/29/2022		19.26		5,770.10
		12/8/2022		19.22		5,770.14
		3/2/2023	Trace	19.06	Trace	5,770.30
		6/16/2023	Trace	18.90	Trace	5,770.46
		9/15/2023	Trace	18.79	Trace	5,770.57
		12/14/2023				
		3/27/2024		19.69		5,769.67

Ensolum 7 of 32

	Tom of Occio		Don'th to		Dungland	Consum de la constant
Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
		10/22/2018		DRY		DRY
		3/29/2019		30.90		5,761.16
		6/28/2019		32.14		5,759.92
		9/17/2019		27.32		5,764.74
		12/17/2019		23.75		5,768.31
		3/12/2020		23.40		5,768.66
		6/25/2020		23.25		5,768.81
		9/23/2020		23.08		5,768.98
		3/31/2021		22.81		5,769.25
		6/14/2021		22.61		5,769.45
MW03	5,792.06	9/24/2021	22.24	22.25	0.01	5,769.82
		12/3/2021		22.17		5,769.89
		3/1/2022		22.30		5,769.76
		6/7/2022		22.04		5,770.02
		9/29/2022		21.71		5,770.35
		12/8/2022		21.69		5,770.37
		3/2/2023		21.46		5,770.60
		6/16/2023		21.29		5,770.77
		9/15/2023		21.20		5,770.86
		12/14/2023				
		3/27/2024		20.46		5,771.60
		10/22/2018		31.80		5,760.55
		3/29/2019		DRY		DRY
		6/28/2019		DRY		DRY
		9/17/2019		31.88		5,760.47
		12/17/2019		31.87		5,760.48
		3/12/2020		DRY		DRY
		6/25/2020		31.89		5,760.46
		9/23/2020		30.99		5,761.36
		3/31/2021		28.31		5,764.04
		6/14/2021		26.98		5,765.37
MW04	5,792.35	9/24/2021		24.85		5,767.50
		12/3/2021		22.12		5,770.23
		3/1/2022		22.52		5,769.83
		6/7/2022		21.38		5,770.97
		9/29/2022		21.13		5,771.22
		12/8/2022	Trace	21.00	Trace	5,771.35
		3/2/2023		20.72		5,771.63
		6/16/2023	Trace	20.45	Trace	5,771.90
		9/15/2023		20.49		5,771.86
		12/14/2023		20.47		5,771.88
		3/27/2024	Trace	20.60	Trace	5,771.75

Ensolum 8 of 32

Monitoring Well	Top of Casing Elevation (feet)	10/22/2018 3/29/2019 6/28/2019	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
		3/29/2019		28.39		
				20.00		5,764.21
		6/28/2019		24.65		5,767.95
		0/20/2010		24.53		5,768.07
		9/17/2019		21.41		5,771.19
		12/17/2019		21.25		5,771.35
		3/12/2020		21.10		5,771.50
		6/25/2020		21.13		5,771.47
		9/23/2020		20.93		5,771.67
		3/31/2021		20.76		5,771.84
		6/14/2021		20.61		5,771.99
MW05	5,792.60	9/24/2021		20.37		5,772.23
		12/3/2021		20.41		5,772.19
		3/1/2022		20.58		5,772.02
		6/7/2022	Trace	20.24	Trace	5,772.36
		9/29/2022	Trace	20.02	Trace	5,772.58
		12/8/2022	Trace	19.97	Trace	5,772.63
		3/2/2023	Trace	19.82	Trace	5,772.78
		6/16/2023	Trace	19.63	Trace	5,772.97
		9/15/2023		19.61		5,772.99
		12/14/2023		19.61		5,772.99
		3/27/2024	Trace	20.12	Trace	5,772.48
		10/22/2018	24.08	24.48	0.40	5,768.15
		3/29/2019	23.55	24.00	0.45	5,768.67
		6/28/2019	23.72	23.95	0.23	5,768.54
		9/17/2019	20.67	20.75	0.08	5,771.62
		12/17/2019	20.61	20.62	0.01	5,771.70
		3/12/2020		20.43		5,771.88
		6/25/2020		20.36		5,771.95
		9/23/2020		20.16		5,772.15
		3/31/2021		19.89		5,772.42
		6/14/2021	Trace	19.63	Trace	5,772.68
MW06	5,792.31	9/24/2021		19.27		5,773.04
		12/3/2021		19.27		5,773.04
		3/1/2022		19.43		5,772.88
	6/7/2022		19.11		5,773.20	
		9/29/2022	Trace	18.80	Trace	5,773.51
		12/8/2022	Trace	18.76	Trace	5,773.55
		3/2/2023	Trace	18.52	Trace	5,773.79
		6/16/2023	Trace	18.29	Trace	5,774.02
		9/15/2023		18.25		5,774.06
	ļ	12/14/2023				
	ļ	3/27/2024		18.57		5,773.74

Ensolum 9 of 32

San Juan County, New Mexico									
Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)			
		10/22/2018		DRY		DRY			
		3/29/2019		DRY		DRY			
		6/28/2019		DRY		DRY			
		9/17/2019		DRY		DRY			
		12/17/2019		DRY		DRY			
		3/12/2020		DRY		DRY			
		6/25/2020		DRY		DRY			
		9/23/2020		DRY		DRY			
		3/31/2021		DRY		DRY			
		6/14/2021		DRY		DRY			
MW07	5,791.15	9/24/2021		DRY		DRY			
		12/2/2021		DRY		DRY			
		3/1/2022		DRY		DRY			
		6/7/2022		DRY		DRY			
		9/29/2022		21.80		5,769.35			
		12/8/2022		22.56		5,768.59			
		3/2/2023		22.32		5,768.83			
		6/16/2023		21.42		5,769.73			
		9/15/2023		DRY		DRY			
		12/14/2023							
		3/27/2024							
		10/22/2018		DRY		DRY			
		3/29/2019		DRY		DRY			
		6/28/2019		24.07		5,768.35			
		9/17/2019		23.81		5,768.61			
		12/17/2019		23.42		5,769.00			
		3/12/2020		23.37		5,769.05			
		6/25/2020		23.28		5,769.14			
		9/23/2021		22.88		5,769.54			
		3/31/2021		22.14		5,770.28			
		6/14/2021		21.67		5,770.75			
MW08	E 700 40	9/24/2021		21.52		5,770.90			
IVIVVUO	5,792.42	12/2/2021		21.76		5,770.66			
		3/1/2022		21.81		5,770.61			
		6/7/2022		21.17		5,771.25			
		9/29/2022		21.02		5,771.40			
		12/8/2022		20.85		5,771.57			
		3/2/2023		20.52		5,771.90			
				-					
		6/16/2023		20.22		5,772.20			
		9/14/2023		20.32		5,772.10			
		12/14/2023		20.26		5,772.16			
		3/27/2024		20.18		5,772.24			

Ensolum 10 of 32

Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
		10/22/2018		DRY		DRY
		3/29/2019		DRY		DRY
		6/28/2019		DRY		DRY
		9/17/2019		DRY		DRY
		12/17/2019		DRY		DRY
		3/12/2020		DRY		DRY
		6/25/2020		DRY		DRY
		9/23/2020		DRY		DRY
		3/31/2021		DRY		DRY
		6/14/2021		DRY		DRY
MW09	5,786.16	9/24/2021		DRY		DRY
		12/2/2021		DRY		DRY
		3/1/2022		DRY	1	DRY
		6/7/2022		DRY	1	DRY
		9/29/2022		DRY		DRY
		12/8/2022		DRY		DRY
		3/2/2023		DRY		DRY
		6/16/2023		22.61		5,763.55
		9/15/2023		17.37		5,768.79
		12/15/2023		17.38		5,768.78
		3/28/2024		24.74		5,761.42
		10/22/2018		32.26		5,757.04
		3/29/2019	21.73	22.04	0.31	5,767.51
		6/28/2019	21.55	21.94	0.39	5,767.67
		9/17/2019	21.23	21.55	0.32	5,768.01
		12/17/2019	20.88	21.71	0.83	5,768.25
		3/12/2020	20.81	21.68	0.87	5,768.32
		6/25/2020	20.75	21.43	0.68	5,768.41
		9/23/2020	20.51	21.03	0.52	5,768.69
		3/31/2021	20.42	20.63	0.21	5,768.84
		6/14/2021	Trace	20.71	Trace	5,768.59
MW10	5,789.30	9/24/2021		19.92		5,769.38
-	.,	12/3/2021		19.80		5,769.50
		3/1/2022		19.95		5,769.35
	ľ	6/7/2022	Trace	19.70	Trace	5,769.60
	ľ	9/29/2022	Trace	19.43	Trace	5,769.87
		12/8/2022	Trace	19.40	Trace	5,769.90
		3/2/2023	Trace	19.27	Trace	5,770.03
		6/16/2023	Trace	19.11	Trace	5,770.19
		9/15/2023		19.00		5,770.30
		12/15/2023				
		3/28/2024		24.62		5,764.68

Ensolum 11 of 32

		- Jan Ju	lan-oddinty, New	MCXICO	San Juan County, New Mexico									
Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)								
		10/22/2018		19.89		5,768.10								
		3/29/2019		19.63		5,768.36								
		6/28/2019		19.37	-	5,768.62								
		9/17/2019		19.31	1	5,768.68								
		12/17/2019		19.17		5,768.82								
		3/12/2020		18.91		5,769.08								
		6/25/2020		18.85	-	5,769.14								
		9/23/2020		18.71		5,769.28								
		3/31/2021		18.40		5,769.59								
		6/14/2021		18.06	-	5,769.93								
MW11	5,787.99	9/24/2021		17.72	1	5,770.27								
		12/2/2021		17.79	1	5,770.20								
		3/1/2022		17.90	1	5,770.09								
		6/7/2022		17.55	-	5,770.44								
		9/29/2022		17.27	1	5,770.72								
		12/8/2022		17.19		5,770.80								
		3/2/2023		16.97	-	5,771.02								
		6/16/2023		16.74		5,771.25								
		9/14/2023		16.75		5,771.24								
		12/14/2023		16.68	1	5,771.31								
		3/28/2024		17.08		5,770.91								
		10/22/2018		21.77		5,767.80								
		3/29/2019		21.88		5,767.69								
		6/28/2019		21.67		5,767.90								
		9/17/2019		21.49		5,768.08								
		12/17/2019		21.54		5,768.03								
		3/12/2020		21.31		5,768.26								
		6/25/2020		21.21		5,768.36								
		9/23/2020		21.02		5,768.55								
		3/31/2021		20.93		5,768.64								
		6/14/2021		20.61		5,768.96								
MW12	5,789.57	9/24/2021		20.17		5,769.40								
	·	12/2/2021		20.17		5,769.40								
		3/1/2022		20.30		5,769.27								
		6/7/2022		20.02		5,769.55								
		9/29/2022		19.68		5,769.89								
		12/8/2022		19.57		5,770.00								
		3/2/2023		19.32		5,770.25								
		6/16/2023		19.11		5,770.46								
		9/14/2023		19.04		5,770.53								
		12/14/2023		19.01		5,770.56								
		3/28/2024		19.49		5,770.08								

Ensolum 12 of 32

	Ton of Cooing		Don'th to		Dungland	Groundwater
Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Elevation (feet AMSL)
		10/22/2018		DRY		DRY
		3/29/2019		DRY		DRY
		6/28/2019		DRY		DRY
		9/17/2019		DRY		DRY
		12/17/2019		DRY		DRY
		3/12/2020		DRY		DRY
		6/25/2020		DRY		DRY
		9/23/2020		DRY		DRY
		3/31/2021		DRY		DRY
		6/14/2021		DRY		DRY
MW13	5,785.16	9/24/2021		DRY		DRY
		12/2/2021		DRY		DRY
		3/1/2022		DRY		DRY
		6/7/2022		DRY		DRY
		9/29/2022		DRY		DRY
		12/8/2022		DRY		DRY
		3/2/2023		DRY		DRY
		6/16/2023		DRY		DRY
		9/14/2023		DRY		DRY
		12/14/2023		DRY		DRY
		3/28/2024		DRY		DRY
		10/22/2018		22.87		5,762.59
		3/29/2019	20.26	20.47	0.21	5,765.16
		6/28/2019	19.15	19.16	0.01	5,766.31
		9/17/2019	18.65	18.69	0.04	5,766.80
		12/17/2019	18.61	18.74	0.13	5,766.82
		3/12/2020		18.81		5,766.65
		6/25/2020		18.18		5,767.28
		9/23/2020		17.92		5,767.54
		3/31/2021		17.92		5,767.54
		6/14/2021	Trace	17.78	Trace	5,767.68
MW14	5,785.46	9/24/2021		17.52		5,767.94
		12/3/2021		17.79		5,767.67
		3/1/2022		17.18		5,768.28
		6/7/2022		16.84		5,768.62
		9/29/2022		16.37		5,769.09
		12/8/2022		16.17	-	5,769.29
		3/2/2023	Trace	15.91	Trace	5,769.55
		6/16/2023	Trace	15.63	Trace	5,769.83
		9/14/2023		15.65	-	5,769.81
		12/14/2023		15.63		5,769.83
		3/28/2024	Trace	15.84	Trace	5,769.62

Ensolum 13 of 32

Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
	(.551)	0/00/25:55		` '		
		3/29/2019		DRY		DRY
		6/28/2019		35.95		5,756.24
		9/17/2019		33.22		5,758.97
		12/17/2019		31.61		5,760.58
		3/12/2020		31.42		5,760.77
		6/25/2020		30.41		5,761.78
		9/23/2020		27.42		5,764.77
		3/31/2021		27.8		5,764.39
		6/14/2021		29.18		5,763.01
MW15	5,792.19	9/24/2021		26.69		5,765.50
14144 10	0,7 02.10	12/3/2021		26.82		5,765.37
		3/1/2022		26.57		5,765.62
		6/7/2022		26.49		5,765.70
		9/29/2022		25.95		5,766.24
		12/8/2022		26.21		5,765.98
		3/2/2023		25.95		5,766.24
		6/16/2023		25.08		5,767.11
		9/14/2023		25.97		5,766.22
		12/14/2023				
		3/28/2024		21.03		5,771.16
		3/29/2019		28.59		5,757.95
		6/28/2019		21.00		5,765.54
		9/17/2019		20.91		5,765.63
		12/17/2019		21.11		5,765.43
		3/12/2020		20.89		5,765.65
		6/25/2020		20.51		5,766.03
		9/23/2020		20.37		5,766.17
		3/31/2021	19.99	20.04	0.05	5,766.54
		6/14/2021	Trace	19.51	Trace	5,767.03
		9/24/2021		18.81		5,767.73
MW16	5,786.54	12/2/2021	Trace	18.46	Trace	5,768.08
		3/1/2022		18.39		5,768.15
		6/7/2022		18.00		5,768.54
		9/29/2022	17.53	17.54	0.01	5,769.01
		12/8/2022		17.32		5,769.22
		3/2/2023		17.03		5,769.51
		6/16/2023		16.81		5,769.73
		9/14/2023		16.82		5,769.72
		12/15/2023		16.75		5,769.79
		3/28/2024		16.91		5,769.63
		3/20/2024		10.91		5,769.63

Ensolum 14 of 32

	Top of Casing		Depth to	Depth to	Product	Groundwater
Monitoring Well	Elevation (feet)	Date	Product (feet BTOC)	Groundwater (feet BTOC)	Thickness (feet)	Elevation (feet AMSL)
		3/29/2019		DRY		DRY
		6/28/2019		DRY		DRY
		9/17/2019		30.24		5,755.01
		12/17/2019		DRY		DRY
		3/12/2020		DRY		DRY
		6/25/2020		DRY		DRY
		9/23/2020		DRY		DRY
		3/31/2021		DRY		DRY
		6/14/2021		DRY		DRY
NAVA 4 7	E 70E 0E	9/24/2021		DRY		DRY
MW17	5,785.25	12/2/2021		30.24		5,755.01
		3/1/2022		DRY		DRY
		6/7/2022		30.21		5,755.04
		9/29/2022		30.22		5,755.03
		12/8/2022		28.68		5,756.57
		3/2/2023		25.58		5,759.67
		6/16/2023		22.13	1	5,763.12
		9/14/2023		20.78		5,764.47
		12/15/2023		21.68		5,763.57
		3/28/2024		22.38		5,762.87
		3/29/2019		DRY		DRY
		6/28/2019		20.39		5,768.95
		9/17/2019		19.06		5,770.28
		12/17/2019		19.98		5,769.36
		3/12/2020		19.98		5,769.36
		6/25/2020		19.79		5,769.55
		9/23/2020		19.55		5,769.79
		3/31/2021		19.43		5,769.91
		6/14/2021		18.98		5,770.36
		9/24/2021		18.52		5,770.82
MW18	5,789.34	12/2/2021		18.64		5,770.70
		3/1/2022		18.90		5,770.44
		6/7/2022		18.25		5,771.09
		9/29/2022		18.01		5,771.33
		12/8/2022		17.91		5,771.43
		3/2/2023		17.64		5,771.70
		6/16/2023		17.38		5,771.96
		9/14/2023		17.43		5,771.91
		12/14/2023		17.37		5,771.97
		3/27/2024		17.61		5,771.73
		0,2.,202.				5,

Ensolum 15 of 32

Can dain Sounty, New Mexico							
Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)	
		3/29/2019		19.60		5,766.88	
		6/28/2019		19.55		5,766.93	
		9/17/2019		19.35		5,767.13	
		12/17/2019		19.37		5,767.11	
		3/12/2020		19.45		5,767.03	
		6/25/2020		19.30		5,767.18	
		9/23/2020		19.08		5,767.40	
		3/31/2021		19.21		5,767.27	
		6/14/2021		19.10		5,767.38	
MW19	5,786.48	9/24/2021		18.70		5,767.78	
IVIVVIS	3,760.46	12/2/2021		DRY		DRY	
		3/1/2022		18.49		5,767.99	
		6/7/2022		18.35		5,768.13	
		9/29/2022		17.15		5,769.33	
		12/8/2022		18.19		5,768.29	
		3/2/2023		17.93		5,768.55	
		6/16/2023		17.72		5,768.76	
		9/14/2023		17.58		5,768.90	
		12/15/2023		17.63		5,768.85	
		3/28/2024		18.27		5,768.21	
		3/29/2019		29.61		5,753.73	
		6/28/2019		30.00		5,753.34	
		9/17/2019		30.21		5,753.13	
		12/17/2019		30.15		5,753.19	
		3/12/2020		30.30		5,753.04	
		6/25/2020		DRY		DRY	
		9/23/2020		DRY		DRY	
		3/31/2021		DRY		DRY	
		6/14/2021		DRY		DRY	
141400	5 700 04	9/24/2021		DRY		DRY	
MW20	5,783.34	12/2/2021		30.24		5,753.10	
		3/1/2022		DRY		DRY	
		6/7/2022		DRY		DRY	
		9/29/2022		DRY		DRY	
		12/8/2022		30.25		5,753.09	
		3/2/2023		DRY		DRY	
		6/16/2023		30.25		5,753.09	
		9/14/2023		DRY		DRY	
		12/15/2023		DRY		DRY	
		3/27/2024		DRY		DRY	

Ensolum 16 of 32

	Top of Casing		Depth to	Depth to	Product	Groundwater
Monitoring Well		Date	Product (feet BTOC)	Groundwater (feet BTOC)	Thickness (feet)	Elevation (feet AMSL)
		3/29/2019		DRY		DRY
		6/28/2019		DRY		DRY
		9/17/2019		DRY		DRY
		12/17/2019		DRY		DRY
		3/12/2020		DRY		DRY
		6/25/2020		DRY		DRY
		9/23/2020		DRY		DRY
		3/31/2021		DRY		DRY
		6/14/2021		DRY		DRY
MINIOA	E 000 20	9/24/2021		DRY		DRY
MW21	5,800.30	12/2/2021		DRY		DRY
		3/1/2022		DRY		DRY
		6/7/2022		DRY		DRY
		9/29/2022		DRY		DRY
		12/8/2022		DRY		DRY
		3/2/2023		DRY		DRY
		6/16/2023		DRY		DRY
		9/14/2023		DRY		DRY
		12/15/2023		DRY		DRY
		3/27/2024		DRY		DRY
		3/29/2019		22.56		5,763.69
		6/28/2019		17.62		5,768.63
		9/17/2019		17.54		5,768.71
		12/17/2019		17.35		5,768.90
		3/12/2020		17.10		5,769.15
		6/25/2020		17.04		5,769.21
		9/23/2020		16.85		5,769.40
		3/31/2021		16.43		5,769.82
		6/14/2021		16.10		5,770.15
		9/24/2021		15.74		5,770.51
MW22	5,786.25	12/2/2021		15.84		5,770.41
		3/1/2022		15.95		5,770.30
		6/7/2022		15.53		5,770.72
		9/29/2022		15.25		5,771.00
		12/8/2022		15.16		5,771.09
		3/2/2023		14.90		5,771.35
		6/16/2023		14.68		5,771.57
		9/14/2023		14.97		5,771.28
		12/14/2023		14.64		5,771.61
		3/28/2024		14.77		5,771.48

Ensolum 17 of 32

	Top of Casing		Depth to	Depth to	Product	Groundwater
Monitoring Well		Date	Product (feet BTOC)	Groundwater (feet BTOC)	Thickness (feet)	Elevation (feet AMSL)
		6/28/2019		45.99		5,758.81
		9/17/2019		40.23	-	5,764.57
		12/17/2019		39.16	-	5,765.64
		3/12/2020		38.71		5,766.09
		6/25/2020		38.92	1	5,765.88
		9/23/2020		38.83	1	5,765.97
		3/31/2021		37.97	1	5,766.83
		6/14/2021		37.90	-	5,766.90
		9/24/2021		37.44		5,767.36
MW23	5,804.80	12/3/2021		37.32	-	5,767.48
		3/1/2022		37.38	-	5,767.42
		6/7/2022		36.99		5,767.81
		9/29/2022		36.61		5,768.19
		12/8/2022		36.49		5,768.31
		3/2/2023		36.11		5,768.69
		6/16/2023		35.70		5,769.10
		9/15/2023		35.58		5,769.22
		12/14/2023		35.48		5,769.32
		3/27/2024		35.25		5,769.55
		6/28/2019		DRY		DRY
		9/17/2019		DRY		DRY
		12/17/2019		DRY		DRY
		3/12/2020		DRY		DRY
		6/25/2020		DRY		DRY
		9/23/2020		DRY		DRY
		3/31/2021		DRY		DRY
		6/14/2021		DRY		DRY
		9/24/2021		DRY		DRY
MW24	5,782.50	12/2/2021		33.08		5,749.42
	,	3/1/2022		DRY		DRY
		6/7/2022		DRY		DRY
		9/29/2022		33.09		5,749.41
		12/8/2022		DRY		DRY
		3/2/2023		33.07		5,749.43
		6/16/2023		DRY		DRY
		9/15/2023		DRY		DRY
		12/14/2023		DRY		DRY
		3/27/2024		DRY		DRY

Ensolum 18 of 32

Monitoring Well	Top of Casing Elevation (feet)	Date	Depth to Product (feet BTOC)	Depth to Groundwater (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
		6/28/2019		32.98		5,742.67
		9/17/2019		32.91	1	5,742.74
		12/17/2019		32.92	-	5,742.73
		3/12/2020		32.92		5,742.73
		6/25/2020		32.93		5,742.72
		9/23/2020		DRY		DRY
		3/31/2021		DRY	-	DRY
		6/14/2021		DRY		DRY
		9/24/2021		DRY	1	DRY
MW25	5,775.65	12/1/2021		33.06	-	5,742.59
		3/1/2022		DRY	1	DRY
		6/7/2022		33.04		5,742.61
		9/29/2022		33.05		5,742.60
		12/8/2022		DRY		DRY
		3/2/2023		DRY		DRY
		6/16/2023		DRY		DRY
		9/15/2023		DRY		DRY
		12/14/2023		DRY		DRY
		3/27/2024		DRY		DRY
		6/28/2019		19.71		5,770.25
		9/17/2019		19.64	-	5,770.32
		12/17/2019		19.41		5,770.55
		3/12/2020		19.29		5,770.67
		6/25/2020		19.29		5,770.67
		9/23/2020		19.28		5,770.68
		3/31/2021		18.64		5,771.32
		6/14/2021		18.30		5,771.66
		9/24/2021		18.32		5,771.64
MW26	5,789.96	12/3/2021		18.55		5,771.41
		3/1/2022		18.50		5,771.46
		6/7/2022		17.86		5,772.10
		9/29/2022		17.81		5,772.15
		12/8/2022		17.65		5,772.31
		3/2/2023		17.30		5,772.66
		6/16/2023		17.04		5,772.92
		9/14/2023		17.20		5,772.76
		12/14/2023		17.12		5,772.84
		3/27/2024		16.98		5,772.98

Notes:

AMSL: above mean sea level BTOC: below top of casing

Trace: trace amounts of free product in well

--: not measured

A product density factor if 0.8 was used to account for the presence of free product

Ensolum 19 of 32

		TABLE	7					
	CDOUNE							
	GROUNL		YTICAL RESULT	8				
		Standard						
	Sa	Hilcorp Energy (In Juan County, I						
	Sa	Benzene	Toluene	Ethylbenzene	Total Xylenes			
Monitoring Well	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)			
NMWQCC Sta	_ Indard	0.005	1.0	0.7	0.62			
	10/22/2018		No sample collected d	lue to presence of PS	SH			
	3/29/2019	ı	No sample collected of	lue to presence of PS	SH SH			
	6/28/2019	ı	No sample collected of	lue to presence of PS	SH SH			
	9/17/2019	ı	No sample collected of	lue to presence of PS	SH SH			
	12/17/2019	ı	No sample collected of	lue to presence of PS	SH SH			
	3/12/2020	ı	No sample collected of	lue to presence of PS	SH .			
	6/25/2020	ı	No sample collected of	lue to presence of PS	SH .			
	9/23/2020	ı	No sample collected of	lue to presence of PS	SH SH			
	3/21/2021	ı	No sample collected of	lue to presence of PS	SH SH			
	6/14/2021	ı	No sample collected d	lue to presence of PS	SH .			
MW01	9/20/2021	27	39	1.3	15			
	12/2/2021	!	No sample collected d	lue to presence of PS	SH			
	3/1/2022	1	No sample collected o	lue to presence of PS	SH .			
	6/7/2022	!	No sample collected d	lue to presence of PS	SH .			
	9/29/2022	1	No sample collected o	lue to presence of PS	SH .			
	12/8/2022	1	No sample collected o	lue to presence of PS	SH .			
	3/2/2023	No sample collected due to presence of PSH						
	6/16/2023	No sample collected due to presence of PSH						
	9/15/2023	NS	NS	NS	NS			
	12/14/2023	NS	NS	NS	NS			
	3/27/2024	24	34	1.5	17			
	10/22/2018	14	7.1	1.2	12			
	3/29/2019	ı	No sample collected o	lue to presence of PS	SH .			
	6/28/2019	1	No sample collected of	lue to presence of PS	H			
	9/17/2019	I	No sample collected o	lue to presence of PS	SH .			
	12/17/2019	I	No sample collected o	lue to presence of PS	H			
	3/12/2020	17	8.2	1.8	15			
	6/25/2020	19	18	2.3	21			
	9/23/2020	17	16	2.8	25			
	3/31/2021	16	12	2.0	20			
	6/14/2021	I	No sample collected of	lue to presence of PS	SH			
MW02	9/20/2021	15	7.3	1.6	20			
	12/3/2021	16	6.9	1.8	21			
	3/1/2022	14	4.4	1.3	15			
	6/7/2022	I	No sample collected of	lue to presence of PS	SH .			
	9/29/2022	16	2.6	1.6	16			
	12/8/2022	16	2.5	1.9	18			
	3/2/2023		No sample collected of					
	6/16/2023		No sample collected o	1				
	9/15/2023	NS	NS	NS	NS			
	12/14/2023	NS	NS	NS	NS			
	3/27/2024	14	3.6	0.33	6.8			

Ensolum 20 of 32

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 10/22/2018 Insufficient Water Volumes to Collect Sample 3/29/2019 21 0.110 11 6/28/2019 Insufficient Water Volumes to Collect Sample 9/17/2019 0.25 0.22 12 6.9 12/17/2019 Insufficient Water Volumes to Collect Sample 3/12/2020 0.47 15 < 0.20 6.3 6/25/2020 14 0.11 0.51 1.5 9/23/2020 14 0.57 0.46 3.5 3/31/2021 0.48 13 1.3 1.7 6/14/2021 12 1.8 0.37 4.9 9/23/2021 13 4.2 0.34 8.2 MW03 12/3/2021 0.54 16 5.5 2.3 3/1/2022 0.59 16 2.2 6.0 6/7/2022 0.70 16 2.6 6.6 9/29/2022 0.66 17 1.0 6.4 12/8/2022 17 1.0 0.73 6.8 3/2/2023 17 1.1 0.65 5.6 6/16/2023 16 1.8 0.68 6.2 9/15/2023 18 1.0 0.65 5.8 12/14/2023 NS NS NS NS 3/27/2024 9.2 5.5 < 0.20 4.3 10/22/2018 Insufficient Water Volumes to Collect Sample 3/29/2019 Insufficient Water Volumes to Collect Sample 6/28/2019 Insufficient Water Volumes to Collect Sample 9/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 3/12/2020 Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 3/31/2021 0.018 1.1 < 0.002 0.095 6/14/2021 0.0035 0.11 0.020 1.7 MW04 9/20/2021 0.83 0.045 0.051 0.14 12/3/2021 1.3 < 0.010 0.099 < 0.020 3/1/2022 0.91 <0.020 0.066 < 0.040 6/7/2022 <0.0010 0.24 < 0.0010 < 0.0020 0.033 9/29/2022 1.5 < 0.020 < 0.030 12/8/2022 No sample collected due to presence of PSH 3/2/2023 0.32 <0.016 6/16/2023 No sample collected due to presence of PSH 9/15/2023 No sample collected due to presence of PSH 12/14/2023 No sample collected due to presence of PSH 3/27/2024 No sample collected due to presence of PSH

Ensolum 21 of 32

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 10/22/2018 Insufficient Water Volumes to Collect Sample 3/29/2019 10 0.88 0.45 2.9 6/28/2019 5.9 0.16 0.20 1.4 9/17/2019 0.77 0.11 3.1 5.0 12/17/2019 0.14 0.15 5.4 2.6 3/12/2020 0.13 0.18 4.4 1.0 6/25/2020 5.0 0.17 0.087 0.70 9/23/2020 3.9 1.1 0.26 4.2 3/31/2021 2.5 6.0 0.73 15 6/14/2021 4.4 1.8 0.55 18 MW05 9/20/2021 3.5 4.0 0.80 20 12/3/2021 3.5 0.72 19 3.6 3/1/2022 0.62 13 2.9 0.81 6/7/2022 No sample collected due to presence of PSH 9/29/2022 No sample collected due to presence of PSH 12/8/2022 No sample collected due to presence of PSH No sample collected due to presence of PSH 3/2/2023 6/16/2023 No sample collected due to presence of PSH 9/15/2023 No sample collected due to presence of PSH 12/14/2023 No sample collected due to presence of PSH 3/27/2024 No sample collected due to presence of PSH 10/22/2018 No sample collected due to presence of PSH 3/29/2019 No sample collected due to presence of PSH 6/28/2019 No sample collected due to presence of PSH 9/17/2019 No sample collected due to presence of PSH 12/17/2019 No sample collected due to presence of PSH 3/12/2020 19 14 6/25/2020 20 31 1.5 17 9/23/2020 24 1.5 16 18 3/31/2021 16 1.7 21 9/24/2021 No sample collected due to presence of PSH 9/20/2021 MW06 14 19 1.3 16 12/3/2021 13 19 1.3 17 3/1/2022 13 20 1.3 18 6/7/2022 11 15 1.1 16 9/29/2022 No sample collected due to presence of PSH 12/8/2022 No sample collected due to presence of PSH 3/2/2023 No sample collected due to presence of PSH 6/16/2023 No sample collected due to presence of PSH No sample collected due to presence of PSH 9/15/2023 12/14/2023 NS NS NS NS 3/27/2024 2.9 3.1 0.59 8.7

Ensolum 22 of 32

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 10/22/2018 Well Damaged, No Sample Collected 3/29/2019 Well Damaged, No Sample Collected 6/28/2019 Well Damaged, No Sample Collected 9/17/2019 Well Damaged, No Sample Collected 12/17/2019 Well Damaged, No Sample Collected 3/12/2020 Well Damaged, No Sample Collected 6/25/2020 Well Damaged, No Sample Collected 9/23/2020 Well Damaged, No Sample Collected 3/31/2021 Well Damaged, No Sample Collected 6/14/2021 Well Damaged, No Sample Collected 9/20/2021 MW07 Well Damaged, No Sample Collected 12/3/2021 Well Damaged, No Sample Collected 3/1/2022 Well Damaged, No Sample Collected 6/7/2022 Well Damaged, No Sample Collected 9/29/2022 Well Damaged, No Sample Collected 12/8/2022 Well Damaged, No Sample Collected 3/2/2023 Well Damaged, No Sample Collected 6/16/2023 Well Damaged, No Sample Collected 9/15/2023 Well Damaged, No Sample Collected 12/14/2023 Well Damaged, No Sample Collected 3/27/2024 Well Damaged, No Sample Collected 10/22/2018 Insufficient Water Volumes to Collect Sample 3/29/2019 Insufficient Water Volumes to Collect Sample <0.0010 6/28/2019 < 0.0010 < 0.0010 < 0.0020 9/17/2019 < 0.0010 < 0.0010 <0.0010 <0.0020 3/12/2020 < 0.0010 < 0.0010 < 0.0010 0.0017 6/25/2020 < 0.0010 <0.0010 <0.0010 <0.0015 9/23/2020 < 0.0010 <0.0010 <0.0010 < 0.0015 3/31/2021 < 0.0010 < 0.0010 < 0.0010 < 0.0015 6/14/2021 <0.0010 < 0.0015 < 0.0010 < 0.0010 9/23/2021 < 0.0010 < 0.0010 < 0.0010 < 0.0020 MW08 12/2/2021 < 0.0010 < 0.0010 < 0.0010 < 0.0020 3/1/2022 < 0.0010 <0.0010 <0.0010 < 0.0020 6/7/2022 < 0.0010 < 0.0010 < 0.0010 < 0.0020 <0.0015 9/29/2022 < 0.0010 < 0.0010 < 0.0010 12/8/2022 < 0.0010 <0.0010 <0.0010 <0.0015 3/2/2023 < 0.0010 < 0.0010 < 0.0010 < 0.0020 <0.0010 6/16/2023 < 0.0010 <0.0010 < 0.0020 9/14/2023 < 0.0010 <0.0010 <0.0010 < 0.0020 12/14/2023 < 0.0010 < 0.0010 < 0.0010 < 0.0020 <0.0010 3/27/2024 < 0.0010 < 0.0010 < 0.0015

Ensolum 23 of 32

Monitoring Well			TABLE	7						
Monitoring Well Date Genzene Toluene (mg/L) (
Monitoring Well Date Benzene Toluene (mg/L) (GROUNE			S					
Monitoring Well Date Benzene Toluene Ethylbenzene (mg/L) (mg/										
Name										
NMWQCC Standard		Sa	ın Juan County,	New Mexico						
NMWQCC Standard 0,005 1,0 0,7 0,62	Monitoring Well	Date				_				
10/22/2018			(mg/L)	(mg/L)	(mg/L)					
3/29/2019 Insufficient Water Volumes to Collect Sample 6/28/2019 Insufficient Water Volumes to Collect Sample 9/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 13/19/2021 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample 12/23/2021 Insufficient Water Volumes to Collect Sample 6/17/2022 Insufficient Water Volumes to Collect Sample 12/28/2022 Insufficient Water Volumes to Collect Sample 12/28/2023 Insufficient Water Volumes to Collect Sample 12/28/2024	NMWQCC Sta		0.005	1.0	0.7	0.62				
6/28/2019 Insufficient Water Volumes to Collect Sample 9/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 3/12/2020 Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2022 Insufficient Water Volumes to Collect Sample 6/16/2022 Insufficient Water Volumes to Collect Sample 12/3/2022 Insufficient Water Volumes to Collect Sample 12/3/2022 Insufficient Water Volumes to Collect Sample 12/3/2023 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes				Insufficient Water Volu	umes to Collect Sample	1				
9/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 3/12/2020 Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 13/31/2021 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample 12/32/2021 Insufficient Water Volumes to Collect Sample 12/32/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2022 Insufficient Water Volumes to Collect Sample 6/17/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2023 Insufficient Water Volumes to Collect Sample 6/16/2023 0.021 0.027 0.0019 0.015 9/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.0036 0.087 0.0015 10/22/2018 22 21 1.6 13 3/29/2019 No sample collected due to presence of PSH 6/28/2019 No sample collected due to presence of PSH 9/17/2019 No sample collected due to presence of PSH 12/17/2019 No sample collected due to presence of PSH 12/17/2020 No sample collected due to presence of PSH 9/23/2020 No sample collected due to presence of PSH 9/23/2020 No sample collected due to presence of PSH 12/13/2021 19 4.8 1.4 15 12/23/2021 19 4.8 1.4 15 12/23/2021 21 5.8 1.4 14 3/11/2022 20 5.6 1.4 13 6/17/2022 PO So sample collected due to presence of PSH No sample collected due					•					
12/17/2019 Insufficient Water Volumes to Collect Sample 3/12/2020 Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 3/31/2021 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2022 Insufficient Water Volumes to Collect Sample 12/2/2022 Insufficient Water Volumes to Collect Sample 12/2/2022 Insufficient Water Volumes to Collect Sample 12/2/2023 Insufficient Water Volumes to Collect Sample 12/2/2023 Insufficient Water Volumes to Collect Sample 12/2/2023 Insufficient Water Volumes to Collect Sample 14/2/2023 Insufficient Water Volumes to Collect Sample 14/2/2023 14/2/2023 14/2/2023 14/2/2024 14/2/2023 14/2/2023 14/2/2023 14/2/2023 14/2/2023 14/2/2024 14/2/20										
3/12/2020 Insufficient Water Volumes to Collect Sample		9/17/2019			· · · · · · · · · · · · · · · · · · ·					
MW09 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 3/31/2021 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2022 Insufficient Water Volumes to Collect Sample 6/7/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2023 Insufficient Water Volumes to Collect Sample 12/8/2023 Insufficient Water Volumes to Collect Sample 12/8/2023 1.1 0.0036 0.078 0.015 0.015 0.015 0.027 0.0019 0.015 0.015 0.027 0.0019 0.015 0.027 0.0019 0.015 0.027 0.0019 0.015 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.027 0.0019 0.0015 0.0019 0.0015 0.0019 0.0015 0.0019 0.00										
9/23/2020 Insufficient Water Volumes to Collect Sample										
MW09 Signature Signature		6/25/2020			•					
MW09 9/20/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 3/1/2022 Insufficient Water Volumes to Collect Sample 6/7/2022 Insufficient Water Volumes to Collect Sample 6/7/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2023 Insufficient Water Volumes to Collect Sample 12/15/2023 Insufficient Water Volumes to Collect Sample 12/15/2024					· · · · · · · · · · · · · · · · · · ·					
MW09 9/20/2021 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 3/1/2022 Insufficient Water Volumes to Collect Sample 6/7/2022 Insufficient Water Volumes to Collect Sample 9/29/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2023 Insufficient Water Volumes to Collect Sample 12/8/2023 Insufficient Water Volumes to Collect Sample 6/16/2023 0.021 0.027 0.0019 0.015 9/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.001 0.096 0.29 3/28/2024 1.0 0.01 0.087 0.015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.027 0.0015 0.					· · · · · · · · · · · · · · · · · · ·					
12/3/2021 Insufficient Water Volumes to Collect Sample		6/14/2021			•					
3/1/2022 Insufficient Water Volumes to Collect Sample	MW09	9/20/2021			· · · · · · · · · · · · · · · · · · ·					
6/7/2022 Insufficient Water Volumes to Collect Sample 9/29/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 12/8/2023 Insufficient Water Volumes to Collect Sample 6/16/2023 0.021 0.027 0.0019 0.015 9/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 0.001 0.096 0.29 3/28/2024 1.0 <0.01 0.087 <0.015 10/22/2018 22 21 1.6 13 3/29/2019 No sample collected due to presence of PSH 6/28/2019 No sample collected due to presence of PSH 9/17/2019 No sample collected due to presence of PSH 12/17/2019 No sample collected due to presence of PSH 3/12/2020 No sample collected due to presence of PSH 9/23/2020 No sample collected due to presence of PSH 3/31/2021 No sample collected due to presence of PSH 9/23/2020 No sample collected due to presence of PSH 3/31/2021 No sample collected due to presence of PSH 12/3/2021 19 4.8 1.4 15 12/3/2021 19 4.8 1.4 15 12/3/2021 21 5.8 1.4 14 14 3/1/2022 20 5.6 1.4 13 13 6/7/2022 No sample collected due to presence of PSH 9/29/2022 No sample collected due to presence of PSH 9/29/2022 No sample collected due to presence of PSH 1.4 13 1.5 1.			Insufficient Water Volumes to Collect Sample							
9/29/2022 Insufficient Water Volumes to Collect Sample		3/1/2022	·							
12/8/2022 Insufficient Water Volumes to Collect Sample			<u> </u>							
Size		9/29/2022	·							
6/16/2023 0.021 0.027 0.0019 0.015		12/8/2022								
9/15/2023 1.1 0.0036 0.078 1.4 12/15/2023 1.1 < 0.001 0.096 0.29 3/28/2024 1.0 < 0.01 0.087 < 0.015 10/22/2018 22 21 1.6 13 3/29/2019 No sample collected due to presence of PSH 6/28/2019 No sample collected due to presence of PSH 9/17/2019 No sample collected due to presence of PSH 12/17/2019 No sample collected due to presence of PSH 3/12/2020 No sample collected due to presence of PSH 6/25/2020 No sample collected due to presence of PSH 9/23/2020 No sample collected due to presence of PSH 9/23/2020 No sample collected due to presence of PSH 6/14/2021 No sample collected due to presence of PSH 6/14/2021 No sample collected due to presence of PSH 12/3/2021 19 4.8 1.4 15 12/3/2021 21 5.8 1.4 14 3/1/2022 20 5.6 1.4 13 6/7/2022 No sample collected due to presence of PSH No sample collected due to presence of PSH No sample collected due to presence of PSH		3/2/2023								
12/15/2023 1.1 <0.01 0.096 0.29		6/16/2023	0.021	0.027	0.0019	0.015				
3/28/2024 1.0 <0.01 0.087 <0.015		9/15/2023	1.1	0.0036	0.078	1.4				
10/22/2018 22 21 1.6 13		12/15/2023	1.1	<0.01	0.096	0.29				
3/29/2019 No sample collected due to presence of PSH		3/28/2024	1.0	<0.01	0.087	<0.015				
No sample collected due to presence of PSH		10/22/2018	22	21	1.6	13				
9/17/2019 No sample collected due to presence of PSH		3/29/2019		No sample collected o	lue to presence of PS	Н				
12/17/2019 No sample collected due to presence of PSH		6/28/2019		No sample collected o	lue to presence of PS	Н				
3/12/2020 No sample collected due to presence of PSH		9/17/2019		No sample collected o	lue to presence of PS	Н				
No sample collected due to presence of PSH		12/17/2019		No sample collected o	lue to presence of PS	Н				
9/23/2020 No sample collected due to presence of PSH		3/12/2020		No sample collected o	lue to presence of PS	Н				
3/31/2021 No sample collected due to presence of PSH		6/25/2020		No sample collected o	lue to presence of PS	Н				
MW10		9/23/2020		No sample collected o	lue to presence of PS	Н				
MW10 9/23/2021 19 4.8 1.4 15 12/3/2021 21 5.8 1.4 14 3/1/2022 20 5.6 1.4 13 6/7/2022 No sample collected due to presence of PSH 9/29/2022 No sample collected due to presence of PSH		3/31/2021		No sample collected o	lue to presence of PS	Н				
12/3/2021 21 5.8 1.4 14 3/1/2022 20 5.6 1.4 13 6/7/2022 No sample collected due to presence of PSH 9/29/2022 No sample collected due to presence of PSH		6/14/2021		No sample collected of	lue to presence of PS	Н				
3/1/2022 20 5.6 1.4 13 6/7/2022 No sample collected due to presence of PSH 9/29/2022 No sample collected due to presence of PSH	MW10	9/23/2021	19	4.8	1.4	15				
6/7/2022 No sample collected due to presence of PSH 9/29/2022 No sample collected due to presence of PSH		12/3/2021	21	5.8	1.4	14				
9/29/2022 No sample collected due to presence of PSH		3/1/2022	20	5.6	1.4	13				
		6/7/2022		No sample collected o	lue to presence of PS	Н				
12/8/2022 No sample collected due to presence of PSH		9/29/2022		•						
		12/8/2022								
3/2/2023 No sample collected due to presence of PSH		3/2/2023		No sample collected o	lue to presence of PS	Н				
6/16/2023 No sample collected due to presence of PSH		6/16/2023		•						
9/15/2023 No sample collected due to presence of PSH		9/15/2023		No sample collected o	lue to presence of PS	Н				
12/14/2023 NS NS NS NS		12/14/2023	NS	NS	NS	NS				
3//27/23 13 <0.5 1.4 7.8		3//27/23	13	<0.5	1.4	7.8				

Ensolum 24 of 32

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 <0.0010 <0.0015 10/22/2018 < 0.0010 < 0.0010 3/29/2019 0.0036 <0.0010 <0.0010 < 0.0015 6/28/2019 < 0.0010 <0.0010 < 0.0010 < 0.0015 9/17/2019 < 0.0010 <0.0010 <0.0010 < 0.002 12/17/2019 NS NS NS NS 3/12/2020 0.001 0.0011 <0.0010 0.0051 6/25/2020 < 0.0010 < 0.0010 < 0.0010 < 0.0015 9/23/2020 < 0.0010 <0.0010 < 0.0010 < 0.0015 3/31/2021 < 0.0010 < 0.0010 < 0.0010 < 0.0015 6/14/2021 <0.0010 <0.0010 <0.0010 <0.0015 9/23/2021 < 0.0010 <0.0010 < 0.0010 < 0.002 MW11 12/2/2021 < 0.0010 < 0.0010 < 0.0010 < 0.002 3/1/2022 <0.0010 <0.0010 < 0.0010 < 0.002 6/7/2022 <0.0010 < 0.0010 < 0.0010 < 0.002 <0.0010 9/29/2022 < 0.0010 <0.0010 < 0.0015 12/8/2022 < 0.0010 < 0.0010 < 0.0010 < 0.0015 3/2/2023 < 0.0010 <0.0010 <0.0010 < 0.0020 6/16/2023 <0.0010 < 0.0010 <0.0010 < 0.0020 9/14/2023 < 0.0010 < 0.0010 < 0.0010 < 0.0020 12/14/2023 < 0.0010 < 0.0010 < 0.0020 < 0.0010 3/28/2024 < 0.0010 <0.0010 <0.0010 < 0.0015 10/22/2018 2.4 3.8 1.1 5.0 3/29/2019 0.87 0.018 1.2 1.5 6/28/2019 0.055 0.81 1.0 0.50 9/17/2019 0.41 0.92 0.12 1.1 12/17/2019 0.94 0.034 0.46 0.24 3/12/2020 1.6 0.360 0.48 0.55 6/25/2020 0.220 <0.02 0.34 0.71 0.22 9/23/2020 0.89 0.087 0.12 3/31/2021 0.051 0.14 0.054 0.69 6/14/2021 0.37 0.0052 0.072 0.012 MW12 12/2/2021 NS NS NS NS 12/2/2021 < 0.0050 0.110 < 0.010 0.37 3/1/2022 0.24 < 0.0020 0.031 < 0.0040 0.016 6/7/2022 0.11 < 0.0010 0.0030 9/29/2022 0.046 <0.0050 0.014 <0.0075 12/8/2022 0.041 < 0.020 < 0.020 < 0.030 0.0036 3/2/2023 0.043 0.0010 0.0032 6/16/2023 <0.0010 0.0057 0.0029 0.052 9/14/2023 0.048 <0.0010 0.0056 < 0.0020 12/14/2023 0.0053 < 0.0010 0.0011 < 0.0020 3/28/2024 < 0.0010 < 0.0010 < 0.0015 0.036

Ensolum 25 of 32

		TABLE							
	GROUNE		TICAL RESULT	S					
		Standard							
		Hilcorp Energy C							
	Sa	ın Juan County, I							
Monitoring Well	Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Total Xylenes (mg/L)				
NMWQCC Star	ndard	0.005	1.0	0.7	0.62				
Minve Goo Clair	10/22/2018	13	26	1.1	10				
	3/29/2019	-	No sample collected d						
	6/28/2019		No sample collected d						
	9/17/2019		No sample collected d						
	12/17/2019	NS	NS	NS	NS				
	3/12/2020	13	13	1.3	14				
	6/25/2020	11	17	1.0	15				
	9/23/2020	8.2	14	0.80	16				
	3/31/2021	9.4	17	1.5	18				
	6/14/2021	1	No sample collected d	lue to presence of PS	H				
MW14	9/24/2021	7.1	9.2	0.80	14				
	12/3/2021	6.5	7.6	1.2	15				
	3/1/2022	5.3	5.7	1.2	14				
	6/7/2022	١	No sample collected d	ue to presence of PS	Н				
	9/29/2022	4.3	1.3	1.1	6.3				
	12/8/2022	3.8	1.8	1.6	9.5				
	3/2/2023	١	No sample collected d	ue to presence of PS	Н				
	6/16/2023 No sample collected due to presence of PSH								
	9/15/2023	N	No sample collected d	lue to presence of PS	Н				
	12/14/2023	١	No sample collected d	lue to presence of PS	H				
	3/28/2024	N	No sample collected d	ue to presence of PS	H				
	3/29/2019	lı .	nsufficient Water Volu	ımes to Collect Samp	le				
	6/28/2019	24	28	1.1	10				
	9/17/2019	24	28	0.87	9.4				
	12/17/2019	23	29	0.64	10				
	3/12/2020	23	4.5	0.66	9.4				
	6/25/2020	28	1.0	0.47	8.6				
	9/23/2020	21	1.2	0.61	8.6				
	3/31/2021	25	0.6	0.69	8.5				
	6/14/2021	26	0.42	0.60	8.9				
MW15	9/23/2021	22	0.82	0.57	6.6				
-	12/3/2021	24	1.0	0.56	4.1				
	3/1/2022	23	3.4	0.65	4.4				
	6/7/2022	22	3.9	0.50	2.9				
	9/29/2022	24	7.5	0.64	4.6				
	12/8/2022	25	4.9	0.54	4.8				
	3/2/2023	21	6.0	0.61	4.6				
	6/16/2023	21	7.6	0.47	3.5				
	9/14/2023	29 NS	10 NS	0.59	4.3				
	12/14/2023	NS 14	NS 1.0	NS <0.5	NS 4.0				
	3/27/2024	14	1.0	<0.5	1.8				

Ensolum 26 of 32

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 3/29/2019 0.94 7.7 14 8.6 6/28/2019 3.4 0.62 0.080 2.1 9/17/2019 3.3 1.6 0.037 4.4 12/17/2019 0.23 0.039 1.8 2.3 3/12/2020 0.83 < 0.050 2.3 3.8 6/25/2020 0.34 0.051 2.1 3.3 9/23/2020 1.4 0.23 0.075 3.6 3/31/2021 No sample collected due to presence of PSH No sample collected due to presence of PSH 6/14/2021 9/23/2021 0.32 0.62 0.71 17 MW16 No sample collected due to presence of PSH 12/3/2021 3/1/2022 0.56 < 0.020 0.43 6.4 6/7/2022 <0.010 0.54 6.5 0.29 9/29/2022 No sample collected due to presence of PSH 12/8/2022 < 0.050 0.38 0.15 2.1 3/2/2023 0.11 < 0.020 0.32 1.8 6/16/2023 0.10 <0.050 0.34 1.1 9/14/2023 0.13 < 0.050 0.41 1.2 12/15/2023 0.089 < 0.020 0.38 0.49 3/28/2024 < 0.020 0.34 0.31 0.077 3/29/2019 Insufficient Water Volumes to Collect Sample 6/28/2019 Insufficient Water Volumes to Collect Sample 9/17/2019 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 12/17/2019 3/12/2020 Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 3/31/2021 6/14/2021 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 9/23/2021 MW17 12/3/2021 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 3/1/2022 6/7/2022 Insufficient Water Volumes to Collect Sample 9/29/2022 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 12/8/2022 3/2/2023 < 0.002 < 0.002 < 0.004 < 0.002 6/16/2023 < 0.0010 < 0.0010 < 0.0010 < 0.0020 9/14/2023 <0.0010 <0.0010 <0.0010 <0.0020 12/15/2023 < 0.0010 < 0.0010 <0.0010 < 0.0020

Ensolum 27 of 32

< 0.0010

< 0.0010

< 0.0015

< 0.0010

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 3/29/2019 No sample collected due to presence of PSH 6/28/2019 15 18 0.77 9.4 9/17/2019 16 23 0.87 9.8 12/17/2019 17 19 0.78 10 3/12/2020 1.2 0.36 0.059 0.72 6/25/2020 < 0.2 0.56 13 6.0 9/23/2020 8.4 < 0.05 0.32 4.20 3/31/2021 11.0 0.011 0.31 1.70 6/14/2021 0.28 0.62 8.5 <.01 9/24/2021 5.3 <0.050 0.37 <0.100 MW18 < 0.0040 12/2/2021 9.9 < 0.0020 0.61 3/1/2022 0.45 < 0.016 8.0 <0.008 6/7/2022 6.6 <0.010 0.38 < 0.020 9/29/2022 <0.020 0.35 6.4 < 0.030 12/8/2022 <0.050 0.36 < 0.075 6.7 3/2/2023 4.2 < 0.020 0.19 < 0.040 6/16/2023 1.5 < 0.020 0.052 < 0.040 9/14/2023 5.9 <0.050 0.28 < 0.100 12/14/2023 5.5 < 0.020 0.33 < 0.040 3/27/2024 0.15 < 0.030 < 0.020 0.067 3/29/2019 14 10 0.93 6.2 6/28/2019 13 0.230 0.90 4.9 9/17/2019 17 0.44 1.1 5.8 12/17/2019 11 0.88 0.76 3.4 0.76 3/12/2020 10 1.60 2.4 6/25/2020 16 5.40 0.95 3.4 9/23/2020 12 4.10 0.73 2.8 3/31/2021 16 8.5 1.1 4.7 6/14/2021 1.0 15 10 5.1 9/23/2021 14 9.9 1.1 4.8 MW19 12/2/2021 10 1.1 15 5.2 3/1/2022 13 1.1 9.6 5.2 6/7/2022 12 10 1.1 5.4 9/29/2022 13 12 1.1 6.2 12/8/2022 12 14 1.3 7.8 3/2/2023 1.0 10 12 6.1 6/16/2023 10 14 1.2 7.2 9/14/2023 9.7 15 1.2 8.2 12/14/2023 7.7 14 1.3 8.1

Ensolum 28 of 32

17

1.1

9.2

6.7

3/28/2024

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 3/29/2019 Insufficient Water Volumes to Collect Sample 6/28/2019 Insufficient Water Volumes to Collect Sample 9/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 3/12/2020 Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample 3/31/2021 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 6/14/2021 9/23/2021 Insufficient Water Volumes to Collect Sample MW20 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 3/1/2022 Insufficient Water Volumes to Collect Sample 6/7/2022 Insufficient Water Volumes to Collect Sample 9/29/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 3/2/2023 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 6/16/2023 9/14/2023 Insufficient Water Volumes to Collect Sample 12/14/2023 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 3/27/2024 3/29/2019 Insufficient Water Volumes to Collect Sample 6/28/2019 Insufficient Water Volumes to Collect Sample 9/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 3/12/2020 6/25/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 3/31/2021 6/14/2021 Insufficient Water Volumes to Collect Sample 9/23/2021 Insufficient Water Volumes to Collect Sample MW21 Insufficient Water Volumes to Collect Sample 12/3/2021 Insufficient Water Volumes to Collect Sample 3/1/2022 Insufficient Water Volumes to Collect Sample 6/7/2022 Insufficient Water Volumes to Collect Sample 9/29/2022 12/8/2022 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 3/2/2023 6/16/2023 Insufficient Water Volumes to Collect Sample 9/14/2023 Insufficient Water Volumes to Collect Sample 12/14/2023 Insufficient Water Volumes to Collect Sample

Ensolum 29 of 32

Insufficient Water Volumes to Collect Sample

< 0.001

< 0.0015

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 3/29/2019 0.002 < 0.001 0.002 0.001 6/28/2019 < 0.001 < 0.001 < 0.001 < 0.002 9/17/2019 < 0.001 < 0.001 < 0.001 < 0.002 12/17/2019 NS NS NS NS 3/12/2020 0.0011 0.0012 < 0.001 0.0067 6/25/2020 < 0.001 < 0.001 < 0.001 0.0032 9/23/2020 < 0.001 < 0.001 < 0.001 < 0.0015 3/31/2021 <0.001 < 0.001 < 0.001 < 0.0015 < 0.001 6/14/2021 < 0.001 < 0.0015 < 0.001 9/23/2021 <0.001 < 0.001 < 0.001 < 0.002 MW22 12/2/2021 < 0.001 < 0.001 < 0.001 < 0.002 3/1/2022 < 0.001 < 0.001 < 0.001 < 0.002 6/7/2022 <0.001 < 0.001 < 0.001 < 0.002 9/29/2022 < 0.0015 < 0.001 < 0.001 < 0.001 < 0.003 12/8/2022 < 0.002 < 0.002 < 0.002 3/2/2023 < 0.002 < 0.002 < 0.002 < 0.004 6/16/2023 < 0.0020 <0.0020 <0.0020 < 0.0040 9/14/2023 <0.0010 < 0.0010 <0.0010 < 0.0020 12/14/2023 < 0.0010 < 0.0010 < 0.0010 < 0.0020 3/28/2024 < 0.0015 < 0.0010 < 0.0010 < 0.0010 6/18/2019 < 0.001 < 0.001 < 0.001 < 0.002 9/17/2019 < 0.001 < 0.001 < 0.001 < 0.002 12/17/2019 NS NS NS NS 3/12/2020 < 0.001 < 0.001 < 0.001 < 0.0015 6/25/2020 < 0.001 < 0.001 < 0.001 < 0.0015 9/23/2020 < 0.001 < 0.001 < 0.0015 < 0.001 3/31/2021 < 0.001 < 0.001 < 0.001 < 0.0015 6/14/2021 <0.001 < 0.001 <0.001 < 0.0015 Insufficient Water Volumes to Collect Sample 9/23/2021 12/3/2021 < 0.001 < 0.001 < 0.001 < 0.002 MW23 3/1/2022 <0.001 <0.001 < 0.001 < 0.002 6/7/2022 < 0.001 < 0.001 < 0.001 < 0.002 9/29/2022 < 0.001 < 0.001 < 0.001 < 0.0015 12/8/2022 <0.002 < 0.002 <0.002 < 0.003 < 0.002 < 0.002 3/2/2023 < 0.002 < 0.004 6/16/2023 < 0.0020 < 0.0020 < 0.0020 < 0.0040 9/15/2023 <0.001 < 0.001 < 0.001 < 0.002 12/14/2023 < 0.001 < 0.001 < 0.001 < 0.002

Ensolum 30 of 32

< 0.001

< 0.001

TABLE 7 **GROUNDWATER ANALYTICAL RESULTS** Standard #1 **Hilcorp Energy Company** San Juan County, New Mexico Benzene Toluene Ethylbenzene **Total Xylenes Monitoring Well** Date (mg/L) (mg/L) (mg/L) (mg/L) NMWQCC Standard 0.005 1.0 0.7 0.62 6/28/2019 Insufficient Water Volumes to Collect Sample 9/17/2019 Insufficient Water Volumes to Collect Sample 12/17/2019 Insufficient Water Volumes to Collect Sample 3/12/2020 Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 9/23/2020 3/31/2021 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 9/23/2021 MW24 12/3/2021 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 3/1/2022 Insufficient Water Volumes to Collect Sample 6/7/2022 9/29/2022 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 3/2/2023 6/16/2023 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 9/14/2023 12/14/2023 Insufficient Water Volumes to Collect Sample 3/27/2024 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 6/28/2019 9/17/2019 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 12/17/2019 3/12/2020 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 6/25/2020 Insufficient Water Volumes to Collect Sample 9/23/2020 3/31/2021 Insufficient Water Volumes to Collect Sample 6/14/2021 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 9/23/2021 MW25 12/3/2021 Insufficient Water Volumes to Collect Sample 3/1/2022 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 6/7/2022 Insufficient Water Volumes to Collect Sample 9/29/2022 Insufficient Water Volumes to Collect Sample 12/8/2022 Insufficient Water Volumes to Collect Sample 3/2/2023 6/16/2023 Insufficient Water Volumes to Collect Sample Insufficient Water Volumes to Collect Sample 9/14/2023 12/14/2023 Insufficient Water Volumes to Collect Sample

Ensolum 31 of 32

Insufficient Water Volumes to Collect Sample

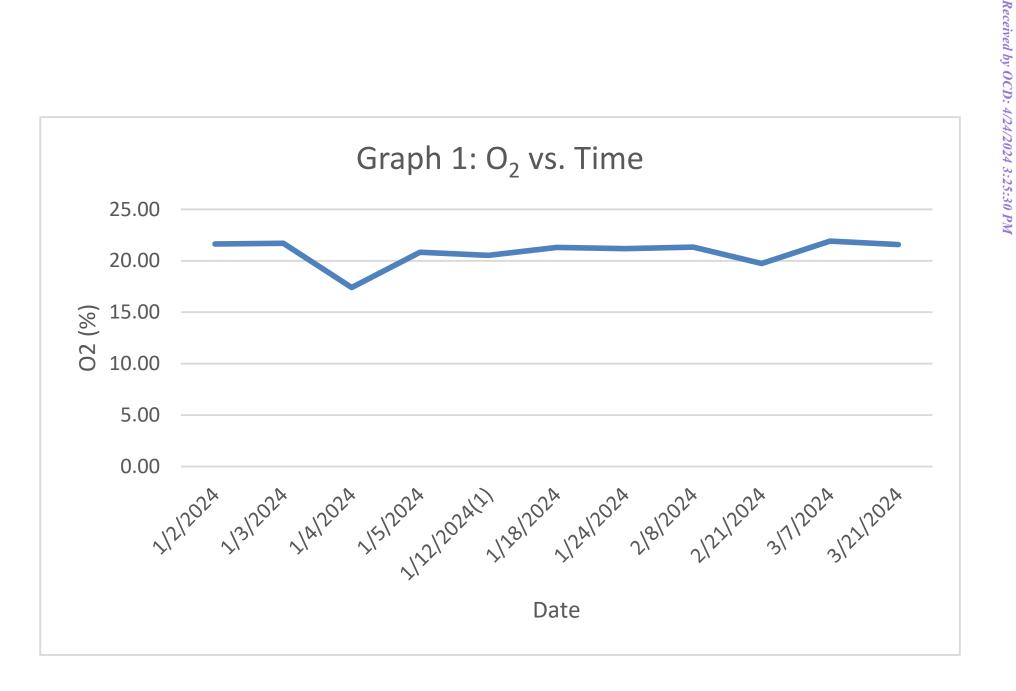
TABLE 7 GROUNDWATER ANALYTICAL RESULTS Standard #1 Hilcorp Energy Company San Juan County, New Mexico

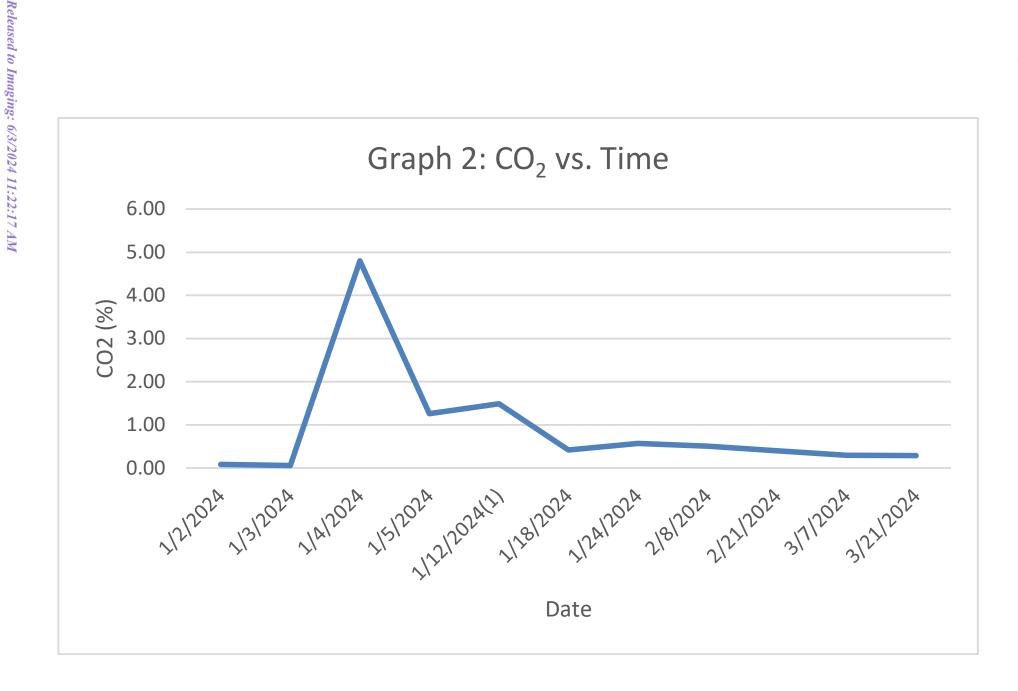
Monitoring Well	Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Total Xylenes (mg/L)
NMWQCC St	tandard	0.005	1.0	0.7	0.62
	6/18/2019	0.0052	<0.001	<0.001	<0.002
	9/17/2019	<0.001	<0.001	<0.001	<0.002
	12/17/2019	<0.001	<0.001	<0.001	<0.002
	3/12/2020	<0.001	<0.001	<0.001	<0.0015
	6/25/2020	<0.001	<0.001	<0.001	<0.0015
	9/23/2020	<0.001	<0.001	<0.001	<0.0015
	3/31/2021	<0.001	<0.001	<0.001	<0.0015
	6/14/2021	<0.001	<0.001	<0.001	<0.0015
	9/24/2021	<0.001	<0.001	<0.001	<0.002
MW26	12/3/2021	<0.001	<0.001	<0.001	<0.002
	3/1/2022	<0.001	<0.001	<0.001	<0.002
	6/7/2022	<0.001	<0.001	<0.001	<0.002
	9/29/2022	<0.001	<0.001	<0.001	<0.0015
	12/8/2022	<0.001	<0.001	<0.001	<0.0015
	3/2/2023	<0.001	<0.001	<0.001	<0.002
	6/16/2023	<0.0010	<0.0010	<0.0010	<0.0020
	9/14/2023	<0.0010	<0.0010	<0.0010	<0.0020
	12/14/2023	<0.0010	<0.0010	<0.0010	<0.0020
	3/27/2024	<0.0010	<0.0010	<0.0010	<0.0015

Notes:

mg/L: milligrams per liter

NMWQCC: New Mexico Water Quality Control Commission


NS: not sampled


PSH: phase separated hydrocarbon

<: indicates result less than the stated laboratory reporting limit (RL)

Concentrations in bold exceed the New Mexico Water Quality Control Commission Standards, 20.6.2 of the New Mexico Administrative Code

Ensolum 32 of 32

ENSOLUM

APPENDIX A

O&M Field Notes

Sunny 30'5 1-2-24

OBM dota

Standard #14

	Mani	moni	Mani	moni	mani		and the second	- 10 - IM
Well	VOL	Flow	PID	0'2 VOIS	CHY YOLEL	Has PPM	COPPA	1 CO2 VOI
01	12.7 IWC	44 CFM	101.8	20.9	o l	0	C	0.08
10	13.05	44	104.2	20.9	C	0	0	0.08
02	13.01	44	74.2	20-9	0	0	0	0.06
15	13.05	46	125.6	20.9	0	0	0	0.12
06	13.10	48	153.2	20.9	1	0	0	0.18
03	13.04	45	139.8	20.9	D	0	0	0.14
Int 1	2.5 TH9		198.2	20.9		0	C	10.00

Blower Readings Pre-vac 2.5 Ing Post Vac 2.5 IH, Piff-Press 4.5 INC

Influence Well Vaic 0.02 IWC mw-04 mw-07 0-01 IWC

Hours: 4-3 @ 14:20

Influent Sample "Influent 1-2-24" collected at 14:10

Released to Imaging: 6/3/2024 11:22:17 AM

AMPAD"

HEC 1-3-24

SUMPLY 408

1300 on site for OSM and samplim

well	LAC	FICE	1 PIP	02 70	CHY TALELI	HJ5PM	1 CO PPM	1 con 200
01	13.07	14 CFM	87.4	20.9	#2	0	0	0.04
10	13-11	16	92.3	20.9	1	O	0	0.02
02	13.17	20	101-7	20.9	1	0	0	0.02
15	13.16	20	124.6	20.9	1	0	0	0.02
06	13-17		161.0	20.9	1	0	0	0.04
03	13-13	25	240.4	20.9	T.	O	0	0.06
nt	-	-	68.7	20.9	0	0	0	0.02

Pre Vac: 2.5 IH9 Pose vac; 2.5 IH9 Piff Press: 4.5 IWC

Influence MW04 0.01 IWC MW07 0.02 IWC

HOWS Blower 28-1 @ 14:02 Transer 0.3 @ 14:02

Exhaust Temp 125° F

pressure o pst Volume 99997528.5 Standard 1

12:00 EC ON site for OBM and sampling

Vac: 2.5 I Hg

17:30 Found fresh air by pass was loogo open low vacuum will allow blower to run for ~ I how to equiblinate

before taking readings

Well	mani Vac	man:	PID	100 % vol	CHYLEL	Copon	Ha Spanl	CO2 90V01
01	13.5 IN	493 CFM		1	7.7	3 2(1:5)	1 4 11	
10	14.0	85				1	1	
02	13.5	86					1	
15	11-5	45			1		1	
06	12.0	48	1				1	
03	13-0	37				1	1	

To much water at manifold to field screen Individual wells. Pulling water to vacuum sumpler

Pre-filter Vac: 16 Ing Post - filter Vac: 15.5 Ing Diff pressure: 2.5 INC

Influent 5.5 30.7 0 0 0.06 467 16.6 490 0 0 4.99

Hours Blower: 52-6 @ 14:36 PUMP: 0.3

Influence MW04: 0.00 IWC MW07 0.01 IWC Standard 14

12:50 EC on Site for OBM

well	Vac	PID.	CHY	02	H25	00	CO2
01	188 IWC	403	4	20.7	0	~,	3.58
10	125	147	XI	20-9	0	0	0.36
02	109	243	3	20.6	C	0	0.32
15	139.7	138	1	20,7	0	0	0.10
06	89.4	33723	3	19.1	C.	0	1.41
03	93.6	233	23	18.9	0	0	1.56

manifold	. Vactr	Flow
01	13.0	53
10	13.5	69
02	12.5	84
15	11,5	43
06	11.5	26
03	12.0	19

Ple filter vac: 15.0 Post filter Vac: 15.5 Diff press: 2.5

Exhaust Temp 175 Hours Blower 75.8 Pump 1-2

pump pressure 5 PSF pump volume 99998523.9

Influent 416 19.8 19.8 0 0 1.34

Sample collected @ 1400

Influence MWD4 0.0 INC MW 07 0-1 IWC

41

1

		SVE SYSTEM -	MONTHLY O&M		
- T					
IDPE ALARMS:	No	KO TANK HIGH LEVEL			
DPE SYSTEM	DEADING		1		
Blower Hours (take photo)	218.9	TIME			
Transfer Pump Hours	4.6	13:15			
Mr.	188.8 INC	13.85 intly	TNFLAGNT - Maybe Instal	VAC -PI	re KO
Post-Filter Vacuum (Ing)	14.5	12.00 1419	- marke instal	la Intla	gauge.
Differential Pressure (IWC)	1.75	(Klow)			
Exhaust Temperature	170	(+ 10 10)	-add ed car	dion-Hot	5141
Transfer Pump Pressure	5 45I				
Transfer Pump Totalizer	2,648.3		- 0566	on on Fil	er tor
Exhaust	011 011	pm	6011	on Filts IWC, s	10.18 60
		SVE SYSTEM	304	> (WC, 5	NOWIN DE
SAMPLE ID:	Influent H	1-24			
PID (ppm)	993	OXYGEN (%)	SAMPLE TIME:		1 00
			19.8 er month) for TVPH (8015), BTE	CARBON DIOXIDE	%) 1.50
OPERATING WELLS	ALL M	W-15 was froze	n on 1-11	A (8260), Fixed Gas (CC	22 AND (02)
		1			
O1					
Change in Well Operation:	None				
	None				
Operation:					
Operation:	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIC
Operation: NELLHEAD MEASUREMENT	rs	DIFF PRESSURE (IWC)	135	OXYGEN (%)	CARBON DIO
Operation: WELLHEAD MEASUREMENT WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	135 392	OXYGEN (%)	CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW01	VACUUM (IWC)	DIFF PRESSURE (IWC)	135 392 187	OXYGEN (%)	CARBON DIC
WELLHEAD MEASUREMENT WELL ID MW07 MW02	VACUUM (IWC) 156 111 110	DIFF PRESSURE (IWC)	135 392 187 323	OXYGEN (%)	CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW01 MW02 MW03	VACUUM (IWC)	DIFF PRESSURE (IWC)	135 392 187	OXYGEN (%)	CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06	VACUUM (IWC) 156 111 110	DIFF PRESSURE (IWC)	135 392 187 323	OXYGEN (%)	CARBON DIC
WELLHEAD MEASUREMENT WELL ID MW07: MW02- MW03 MW06 MW10	VACUUM (IWC) 156 111 110		135 392 187 323 59		CARBON DIC
MELLID MW07 MW02 MW03 MW06 MW10 MW15	VACUUM (IWC) 156 111 190 110 129		135 392 187 323		CARBON DIC
WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06 MW10 MW15	VACUUM (IWC) 156 111 190 129 VACUUM (IHg)	DIET Press	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS	VACUUM (IWC) 15 6 111 170 12 9 VACUUM (IHg)	DIET Press	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID	VACUUM (IWC) 15 6 111 190 12 9 VACUUM (IHg)	DIET Press IN ELEWICEMI 0. 95 6.8	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW01 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01	VACUUM (IWC) 15 6 111 170 12 9 VACUUM (IHg)	DIET PRESS FLOW (CFM) 0. 95 6.8	135 392 187 323 59		CARBON DIC
Operation: WELL ID MW01 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW01 MW01	VACUUM (IWC) 15 6 111 190 12 9 VACUUM (IHg)	DIET Press IN FLOWICEM) 0. 95 6.8 1.3	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW01 MW02 MW03	VACUUM (IWC) 15 6 111 170 12 9 VACUUM (IHg)	DIET PRESS FLOW (CFM) 0. 95 6.8	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW02 MW03 MW03 MW03 MW03 MW03 MW03	VACUUM (IWC) 15 6 111 170 12 9 VACUUM (IHg)	DIET Press IN FLOWICEM) 0. 95 6.8 1.3	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW01 MW02 MW03 MW08 MW08 MW10	VACUUM (IWC) 156 111 196 110 129 VACUUM (IHg) 11 13	DIET Press FLOW (CFM) 0. 95 1.3 1.3 0.88	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW01 MW02 MW03 MW08 MW10 MW10 MW10 MW10 MW10	VACUUM (IWC) 15 6 111 170 12 9 VACUUM (IHg)	DIET Press FLOW (CFM) 0. 95 1.3 1.3 0.88	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW02 MW03 MW08 MW08 MW10 MW15 FLUENCE	VACUUM (IWC) 156 111 170 110 129 VACUUM (IHg) 11	DIET Press FLOW (CFM) 0. 95 1.3 1.3 0.88	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW02 MW03 MW08 MW08 MW10 MW15 FLUENCE	VACUUM (IWC) 156 111 196 110 129 VACUUM (IHg) 11 13	DIET Press FLOW (CFM) 0. 95 1.3 1.3 0.88	135 392 187 323 59		CARBON DIC
Operation: WELLHEAD MEASUREMENT WELL ID MW07 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW02 MW03 MW06 MW10 MW15 ANIFOLD MEASUREMENTS WELL ID MW01 MW02 MW03 MW06 MW10 MW15	VACUUM (IWC) 156 111 170 110 129 VACUUM (IHg) 11	DIET Press IN FLOW (CFM) 0. 95 6.8 1.3 1.3 1.3	135 392 187 323 59		CARBON DIC

7-11-24

993

Inshiet

15 CH4 1. LEL 20.4 vol % 202 20.2 UXY 425 60 pm 0) e pm 1.50 0.76 0.52 0.42 0.30 CO2 vol 1. % LEL CH4

Influent

CHY 3% LEL

DXY 19.7 VOI Y.

H25 0.0 ppm

CO 0 ppm

CO2 0.66 Vol Y.

CHy 6 % LEL

■ ENSOLUM

STANDARD TA DPE SYSTEM

	1-18-24		O&M PERSONNEL TIME OFFSITE	204 11	
		SVE SYSTEM	- MONTHLY D&M	ac volu	I V V and
	Suste	most upon	errivel, Pulled pump activate	flood stem	out of transit
DPE ALARMS	YES, 4	KO TANK HIGH LEVEL	pump activate	d. Manuelly	name
			on pump to	o drain ku	company
DPE SYSTEM	READING	TIME			
Blower Hours (take photo)	375.7	14.05			
Transfer Pump Hours		1406	Γ.	1 1 0	brunes
Pre-Filter Vacuum (IHg)			Cargovo Lites	(19610)	
Post-Filter Vacuum (Ing)	13		- 1		
Differential Pressure (IWC)	20				
Exhaust Temperature	135° F				
Transfer Pump Pressure	5 PSI	1406	21 + 010	- 7 opm	
Transfer Pump Totalizer	8518.0	1406	Exhaust PID -	-100 + M	
Pre KO VAC	177 INWC	1408			
Freshair by Pas		SVE SYSTE	M SAMPLING	7.12	
SAMPLE ID:	m /1	8-24	SAMPLE TIME:	15:15	m (III)
BID (I	2211	OXYGEN (%	20 H	CARBON DIOXIDE (
Analytes	Sample Ri-Monthly (every oil	Sample Bi-Monthly (every ott	ner month) for TVPH (8015), BTE	X (8260), Fixed Gas (CO	2 AND O2)
OPERATING WELLS	All				
OF ERATING WELLS	711				
Change in Well	NONE				
Operation:	100100				
		Marcala Wr. Land	K -		
	The state of the s	Observable liquid	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE
WELL ID	VACUUM (IWC)	Observable liquid	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE
WELL ID MW01	146.0		PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE
WELL ID MW01 MW02	VACUUM (IWC) 146.0 108		PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE
WELL ID MW01 MW02 MV03	VACUUM (IWC) 146.0 108 156	Y Y	403-655	OXYGEN (%)	CARBON DIOXIDE
WELL ID MW01 MW02	VACUUM (IWC) 146.0 108 156 129.0		PID HEADSPACE (PPM) 403-655 535 451	OXYGEN (%)	CARBON DIOXIDE
WELL ID MW01 MW02 MV03	VACUUM (IWC) 146.0 108 156 129.0 122.8	y Y Y Y Y Y Y Y Y	PID HEADSPACE (PPM) 403-655 535 451 55 756	OXYGEN (%)	CARBON DIOXIDE
WELL ID MW01 MW02 MV03 MW06	VACUUM (IWC) 146.0 108 156 129.0	Y Y Y Y Y Y Y Y N	PID HEADSPACE (PPM) 403-655 535 452 55 756 124		CARBON DIOXIDE
MV01 MV02 MV03 MV06 MV10 MV15	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0	Y Y Y Y Y Y Y Y N	PID HEADSPACE (PPM) 403-655 535 452 55 756 124		CARBON DIOXIDE
WELL ID MW01 MW02 MW03 MW06 MW10	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0	N DIFF RUSSURE	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
MV01 MV02 MV03 MV06 MV10 MV15	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg)	V V V V V V V V V V V V V V V V V V V	PID HEADSPACE (PPM) 403-655 535 452 55 756 124	SSUES	
WELL ID MW01 MW02 MW03 MW06 MW10 MW15	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0	N DIFF PUSSURE (INVO) Y N DIFF PUSSURE DIFF PUSSURE DIFF PUSSURE	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MW01 MW02 MW03 MW06 MW10 MW15 MANIFOLD MEASUREMEN WELL ID	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6	N DIFF PUSSURE N DIFF PUSSURE DIFF PUSSURE DIFF PUSSURE DIFF PUSSURE	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MW01 MW02 MW03 MW06 MW10 MW15 MANIFOLD MEASUREMEN WELL ID MW01	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0	N DIFF RUSSURE O.08 1.05	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MIVV01 MIVV02 MIVV03 MIVV06 MIVV15 MANIFOLD MEASUREMEN WELL ID MIVV01 MIVV02	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.// /./2	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MW01 MW02 MV03 MW06 MW10 MW15 MANIFOLD MEASUREMEN WELL ID MW01 MW02 MW03	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6 15.0 12.5	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.1/ 1./2 0.777	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MW01 MW02 MW03 MW06 MW10 MW15 MANIFOLD MEASUREMEN WELL ID MW01 MW02 MW03 MW06	VACUUM (IWC) 140.0 108 155 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6 15.0	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.// /./2	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MW01 MW02 MW03 MW06 MW10 MW15 MANIFOLD MEASUREMEN WELL ID MW01 MW02 MW03 MW06 MW10	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6 15.0 12.5	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.1/ 1./2 0.777	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MW01 MW02 MW03 MW06 MW10 MW15 MANIFOLD MEASUREMEN WELL ID MW01 MW02 MW03 MW08 MW10 MW15	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6 15.0 12.5	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.1/ 1./2 0.777	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MIVO1 MIVO2 MIVO3 MIVO6 MIV10 MIV15 MANIFOLD MEASUREMEN WELL ID MIVO1 MIVO2 MIVO3 MIVO6 MIV10 MIV15	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6 15.0 12.5 12.5	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.1/ 1./2 0.777	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MIVO1 MIVO2 MIVO3 MIVO6 MIV10 MIV15 MANIFOLD MEASUREMEN WELL ID MIVO2 MIVO3 MIVO6 MIV10 MIV15 INFLUENCE WELL ID	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6 15.0 12.5	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.1/ 1./2 0.777	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
WELL ID MIVO1 MIVO2 MIVO3 MIVO6 MIV10 MIV15 MANIFOLD MEASUREMEN WELL ID MIVO2 MIVO3 MIVO6 MIV10 MIV15 INFLUENCE WELL ID MIVG4	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6 15.0 12.5 12.5	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.1/ 1./2 0.777	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	
MVV01 MVV02 MVV03 MVV06 MVV10 MVV15 MANIFOLD MEASUREMEN WELL ID MVV01 MVV02 MVV03 MVV06 MVV10 MVV15 INFLUENCE WELL ID	VACUUM (IWC) 140.0 108 156 129.0 122.8 177.0 ITS VACUUM (IHg) 12.0 12.6 15.0 12.5 12.5	DIFF RUSSURE (INVO) Y Y N DIFF RUSSURE 0.08 1.05 1.1/ 1./2 0.777	PID HEADSPACE (PPM) 103655 335 432 256 124 (SWC) COMMENTS/MAINTENANCE II	SSUES	

8 20	5.2	19.2	00	10 1 20.9	4	Influen
-		19.2	20.9	20.9	1	-
10	0				1209	20.4
		0	0	0.0	0.0	0
C) (5	0 /	0.0	0.0	0
0.5	54 0	9 0	5.06	0.24	0.89	0.44
1	7	3 (0	1	3	1
	0.5	1	1254 20		254 20	0.54 0.9 0.06 0.24 0.89

(-18-24

尼 ENSOLUM

STANDARD 1A DPE SYSTEM O&M FORM

TIME ONSITE

O&M PERSONNEL D. BUCK TIME OFFSITE

		SVE SYSTEM - MONTHLY O&M
DPE ALARMS	NA	KO TANK HIGH LEVEL
DPE SYSTEM	READING	TIME
Blower Hours (photo)	518.2	1230
Transfer Pump Hours (photo)	14.2	1230
Influent Vacuum Pre-KO (JaHg)	158 INC	
Fresh Air Bypass (% Open)	0	
Pre-Filter Vacuum (InHg)	12	
Post-Filter Vacuum (InHg)	12	
Differential Pressure (IWC)	2.5 ^	- 80 SEFM
Exhaust Temperature (°F)	160	90 3cm
Exhaust PID (ppm)	1,607	
Transfer Pump Pressure (PSI)	,,	
Transfer Pump Totalizer (Gal) (photo)	12,336.8	

MW-6 +15 didn't have any flow upon arrival. Reset stingers. flow resumed.

		SVE SYSTEM	SAMPLING		
SAMPLE ID:	Influent	1-24-24		SAMPLE TIME: 13:40	
	521	OXYGEN (%)	20.5	CARBON DIOXIDE (%)	0.56
Analytes:	Sample Bi-Month	ly (every other month) for 1	TVPH (8015).	8260 - Full List VOCs, Fixed Gas (CO2 AND O2)	
OPERATING WELLS	A11 6		1		

Change in Well Operation: None

WELLHEAD MEASUREMENTS

WELL ID	VACUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE
MW01	125	1.394	25.2	0.52
MVV02	99	710	20,7	0.52
MVV03	135	1,775	19.2	1.26
MW06	103	439	20.9	0.56
MW10	112	7	20.9	0.90
MW15	64	425	20.9	0.15
Influent		521		V-18

-Inthent MANIFOLD MEASUREMENTS

WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF. PRESS. (IWC)	
MW01	- 11	Y	0.55	
MW02	10.5	Y	0.75	
MW03	13	Ý	0.62	
MW06	10.5	Ý	0.40	
MW10	10.511	YO	0.00	
MW15	8.5	Υ'.	0.18	

COMMENTS/MAINTENANCE ISSUES

- carry over liquids still
observed in our fitter, postky.
- short dawn system to emply
liquids out of our fitter

INFLUENCE

WELL ID	VACUUM (IWC)
MW04	0.00
MW07	1.06

Received	by	OCD:	4/24/2	2024	3:25:30	PM .			
Received					1-	11	1	-7	U
						-		-	

		-	_				
20.00	MW	02	03	06	10	15	Influent
CH4 % LE	L 7	3	03	2	O	1	4
Oxy vol /	20.2	20.7	19.2	20.9	20.9	20.9	20.5
H2S pfm	0. 0	6. 0	0.0	0.6	0.0	0.0	6.0
CO ppm	0	0	0	0	0	0	0
(02 vol'/	. 0.52	0.52	1.26	0.56	0.00	0.18	0.56
CH4 ppm	7	2	7	2	0	1	3

STANDARD 1A DPE SYSTEM O&M FORM

DATE: 2-1-24
TIME ONSITE: 1000

O&M PERSONNEL: DB 1420

SVE SYS	TEM - MC	NTHLY	O&M

DPE ALARMS: NANE KO TANK HIGH LEVEL

DPE SYSTEM	READING	TIME
Blower Hours (photo)	706.6	11:00
Transfer Pump Hours (photo)	15.8	
Influent Vacuum Pre-KO (InHg)	7.5	
Fresh Air Bypass (% Open)	25%	
Pre-Filter Vacuum (InHg)	7.0	
Post-Filter Vacuum (InHg)	7.0	
Differential Pressure (IWC)	3.25	
Exhaust Temperature (*F)	140	
Exhaust PID (ppm)	347	
Transfer Pump Pressure (PSI)	5	
Transfer Pump Totalizer (Gal) (photo)	14.170.3	

No flow in 03,06,+15 upon arrival. Resumed flow prior to readings,

	SVE SYSTEM SAMPLING	
SAMPLE ID:		SAMPLE TIME:
PID (ppm)	OXYGEN (%)	CARBON DIOXIDE (%)
Analytes:	Sample Bi-Monthly (every other month) for TVPH (8015), 826	0 - Full List VOCs, Fixed Gas (CO2 AND O2)
OPERATING WELLS		

Change in Well Operation: Nowe

WELLHEAD MEASUREMENTS

WELL ID	VACUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%)
MVV01	68.0	468		
MVV02	60.9	179		
MVV03	60.3	644		
MVV06	61.9	245		
MVV10	64.0	435		
MVV15	40.3	834		

MANIFOLD MEASUREMENTS

WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF, PRESS. (IWC)
MW01	5.5	Yes	0.54
MW02	6.0	Ves	0.15
MVV03	8.5	No	0.24
MVV06	5.5	Ver	4600 TES
MW10	5.0	yes	0.21
MW15	6.0	No	0.12

-cleaned/scrubbed 03 signifule of scale/hardness build up.

0.17

INFLUENCE

WELL ID	VACUUM (IWC)
MVV04	
MW07	

472 con

	Influent	a	02	03	06	10	15
CH4 ppm	1450	4,150		10,250	1,300		290
		19.2	20,2	17.8	18.6	20.9	20.9
Oxy vol/. HzS ppm	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CO ppm	0		0			O	6
(02 vol 7.	0.50	0.82	0.70	1.78	1.26	0.34	0.06
CHy 7.		7	2	28	2	ĺ	0

STANDARD 1A DPE SYSTEM D&M FORM

DATE: 2-8-24

O&M PERSONNEL: EC + PA

SVE	SYSTEM	- MONTHLY	O&M
		- MOISTIFF	Ualvi

DPE ALARMS: KO TANK HIGH LEVEL DPE SYSTEM READING TIME Blower Hours (photo) 874 Transfer Pump Hours (photo) 10:39 18.4 Influent Vacuum Pre-KO (InHg) [WC 10:38 110 Fresh Air Bypass (% Open) 40 Pre-Filter Vacuum (InHg) 9 Post-Filter Vacuum (InHg) Differential Pressure (IWC) 3 Exhaust Temperature (*F)

17328

NOTES

	SVE SYSTEM SAMPLING	
PID (ppm)	Influent 1-8-24 395 OXYGEN (%) 20.6 Sample Bi-Monthly (every other month) for TVPH (8015),	SAMPLE TIME: 12:00 CARBON DIOXIDE (%) 0.49
OPERATING WELLS	, (0015);	6250 - Full List VOCs, Fixed Gas (CO2 AND O2)

Change in Well Operation:

WELLHEAD MEASUREMENTS

Exhaust PID (ppm)

Transfer Pump Pressure (PSI)
Transfer Pump Totalizer (Gal) (photo)

WELL ID	VACUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE
MW01	84.3	436	19.8	0.75
MW02	67.4	380	20.7	0.54
MW03	78.4	325	19.0	1.36
MW06	73.4	220	20.9	0.42
MW10	79_1	381	20.9	0-37
MW15	55.0	89.6	20.9	0.06

MANIFOLD MEASUREMENTS

WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF. PRESS. (IWC)	
MW01	7.00	ives		
MW02	7.25	Ves	11	
MVV03	9,50	Ves	9	
MVV06	7.00	405	10	
MVV10	7.00	yes	11	
MW15	4.95	VE5	9	

1.64	-		_	R.I	_	_
IN	r L	·u	_	w	•	_

WELL ID	VACUUM (IWC)
MVV04	0.0
MW07	0.1

COMMENTS/MAINTENANCE ISSUES

ENSOLUM

STANDARD 1A DPE SYSTEM O&M FORM

2/15/24 TIME ONSITE: 103

O&M PERSONNEL:

SVE SYSTEM - MONTHLY O&M				
DPE ALARMS:		KO TANK HIGH LEVEL	NOTES	
DPE SYSTEM	READING	TIME		
Blower Hours (photo)	1039.8	1040		
Transfer Pump Hours (photo)	21.5	10 90	1	
Influent Vacuum Pre-KO (InHg)	8.5	1044		
Fresh Air Bypass (% Open)	40	1045		
Pre-Filter Vacuum (InHg)	8.5	10.46		
Post-Filter Vacuum (InHg)	7.6	1047		
Differential Pressure (IWC)	3.0	1647		
Exhaust Temperature (°F)	145.0	1048		
Exhaust PID (ppm)	401.4	1200		
Transfer Pump Pressure (PSI)	5.0	1049		
Transfer Pump Totalizer (Gal) (photo)	210201	1043		

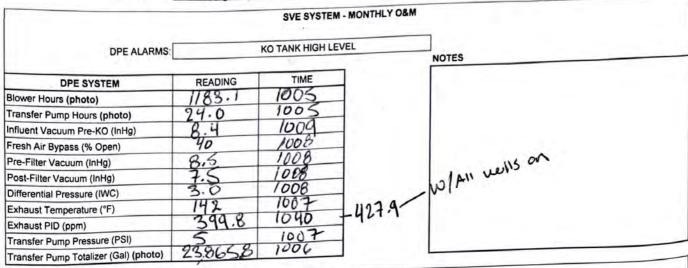
SVE SYSTEM SAMPLING SAMPLE TIME: SAMPLE ID: CARBON DIOXIDE (%) OXYGEN (%) PID (ppm) Analytes: Sample Bi-Monthly (every other month) for TVPH (8015), 8260 - Full List VOCs, Fixed Gas (CO2 AND O2) OPERATING WELLS

Change in Well Operation: WELLHEAD MEASUREMENTS	Prior to C	learing Hzo	for 3rd 7	
WELL ID	VACUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE
MW01	63.8	## 41/2.	8 70.9 Mil	0.32
MW02 MW08 DAG	73.1	120.3	20.0	0.12
MW03 MW0317	707.0	234.5	53 20-9286	0.18
MW15 8.0 <	- 107.1	25.2	20.9	0.08

MANIFOLD	MEASUREMENTS

WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF. PRESS. (IWC)
MW01	7.0	Yes	0,2
MW02	7.5	Yes	6 2 2
MW03	10	1 405	0.15
MW06	7.0	1 1.5	620.0
MW10	7.0	1403	0.05
MW15	t.	7040	0.03

INFLUENCE	VACUUM (IWC)	194105
WELL ID	VACOUM (IVO)	/1
MW04	0.00	, gom
MW07	0.02	406
MWOS	0.55	7-0


COMMENTS/MAINTENANCE ISSUES

wells 15 \$ 03 us pressure

@ Wellhead - Clogged from
water @ Manifold - Can visibly
see weter draining down Sight
tubes from other wells

STANDARD 1A DPE SYSTEM O&M FORM

O&M PERSONNEL TIME OFFSITE

SVE SYSTEM SAMPLING SAMPLE TIME: SAMPLE ID: **CARBON DIOXIDE (%)** OXYGEN (%) Analytes: Sample Bi-Monthly (every other month) for TVPH (8015), 8260 - Full List VOCs, Fixed Gas (CO2 AND O2) PID (ppm) **OPERATING WELLS**

Shot of @ menifild

Change in Well Operation:	Wells 1	5 \$ 03	5lwt	off (2) Men
WELLHEAD MEASUREMENTS			en 12.70.	CARBON DIOXIDE
WELL ID	VACUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	(%)
MW01	85.5	543.1	20.0	0.40
MW02	73.3	175.4	10.0	0.77
MW03	45.2	448.3	20.6	0.20
MW06	73.0	318.8	20.7	0.16
MW10	79.4	204.9	20.9	0.08
MW15	108.0	5/33.3	20.0	0.38
		1 1 1		

15

Wells

- Nell'S 01,02,03,10
Collected other surples while 03\$ 15 short off 0.772 - opened 03\$15, Cleared
0.20 - opened 03\$15, Cleared
0.16 Hzo firm 1 sucs then
0.08 Ollected Samples and
comments/maintenance issues
Tuffuet Sample

OLD MEASUREMENTS WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF. PRESS (IWC)
MW01	7.0	У	0.20
MW02	7.0	Ý	0.15
MW03		J	0.22
MW06	7.7	1)	0.03
MW10	7.0	1	0.00
MW15			

Turned Back off 15\$03 after Sinfluent Sample Connected afterpted to remove 90° above to Tank to Put mesh M ko Tank but needed more/D, forest tools

INFLUENCE	1
WELL ID	VACUUM (IWC
FO XWM	0.05
MWPK O4	0.01
MW05	0.59

STANDARD 1A DPE SYSTEM **O&M FORM**

DATE 3-1-24 TIME ONSITE

D. Burns O&M PERSONNEL TIME OFFSITE

0.36

20.9

SVE SYSTEM - MONTHLY O&M

KO TANK HIGH LEVEL DPE ALARMS None

DPE SYSTEM	READING	TIME
Blower Hours (photo) 1395	3 -139207	1320
Transfer Pump Hours (photo)	27.8	
Influent Vacuum Pre-KO (InHg)	10.5	
Fresh Air Bypass (% Open)	0	
Pre-Filter Vacuum (InHg)	12.0	
Post-Filter Vacuum (InHg)	10.5	
Differential Pressure (IWC)	2.25	
Exhaust Temperature ("F)	170	
Exhaust PID (ppm)	662	
Transfer Pump Pressure (PSI)	5	
Transfer Pump Totalizer (Gal) (photo)	28.033.7	

Turned vac up, MW 03+15 on Added demister mesh on top of KO tank

SVE SYSTEM SAMPLING SAMPLE TIME: SAMPLE ID: CARBON DIOXIDE (%) 0.36 OXYGEN (%) 20.9 269 PID (ppm) Analytes: Sample Bi-Monthly (every other month) for TVPH (8015), 8260 - Full List VOCs, Fixed Gas (CO2 AND O2) **OPERATING WELLS**

Change in Well Operation: WELLHEAD MEASUREMENTS VU CARBON DIOXIDE PID HEADSPACE OXYGEN (%) VACUUM (IWC) WELL ID VO1(%) (PPM) 20.5 0.44 353 107 MW01 0.36 20.9 MW02 19.7 404 92 MW03 0.24 20.9 121 MW06 20.9 0.12 101 MW10 0,00 20.9 MW15

Inlet: 269

% LEL PPM CHA 1,950 1,250 3650 0.0 780 0.0 0.0 0 470 0.0 620 0.36 3 C 0.0 1,950

MANIFOLD MEASUREMENTS

WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF, PRESS. (IWC)
MW01	9	Y	0.28
MW02	9	Y	0.56
MW03	2	Y	0.13
MVV06	9	Y	0,040
MW10	9		0.12
MW15	9	y	0.07

14.15	2.00	EIR	_	
INFL	111	NL	_	

WELL ID	VACUUM (IWC)
MW04	
MW07	

回 ENSOLUM

STANDARD 1A DPE SYSTEM O&M FORM

SVE SYSTEM - MONTHLY O&M

TIME ONSITE 1300

OM PERSONNEL D. BATAS

DPE ALARMS	10 /4 KI	TANK HIGH L
DPE SYSTEM	READING	TIME
Blower Hours (photo)	15447	1450
Transfer Pump Hours (photo)	32.0	1430
Influent Vacuum Pre-KO (InHg)	10.25	
Fresh Air Bypass (% Open)	0	
Pre-Filter Vacuum (InHg)	12.0	
Post-Filter Vacuum (InHg)	10.25	
Differential Pressure (IWC)	2.25	
Exhaust Temperature ("F)	170	
Exhaust PID (ppm)	525	
Transfer Pump Pressure (PSI)	525	
Transfer Pump Totalizer (Gal) (photo)	32074.1	

MW 15 not
flowing upon arrival.
Reset flow and added
a bit of freshair via
open cambook (1005e, not
acompletely stabl) to try + Keeg
tlow

		SVE SYSTEM	SAMPLING		
PID (ppm)	100	OXYGEN (%)	20.9	SAMPLE TIME: 1415 CARBON DIOXIDE (%) 8260 - Full List VOCs, Fixed Gas (CO2 AND O2)	
OPERATING WELLS	AII		1		

Change in Well Operation:								
WELLHEAD MEASUREMENTS				•	m. His	Bow	ppm	1.4
WELL ID	VAGUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE	C44	Flas	CO	CH
MW01	110.0	431	20.9	0.36	2,600	0.0	0	4
MW02	90.4	396	20.4	0.24	1,050	0,0	0	2
MW03	114.2	721	20.7	0.66	3,400	0.0	0	2
MW06	93.5	314	20.9	0.16	810	0.0	0	2
MW10	99.8	60	20.9	0.18	980	0.0	0	-1
MW15	132.7	114	20.9	0.00	350	0.0	6	- 1
Influent MANIFOLD MEASUREMENTS		453	20.9	0.30	1,450	0.0	0	2

WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF PRESS (IWC)
MW01	9	Y	0.51
MW02	9	Y	0.64
MVV03	11.5	Y	0.41
MW06	9	y	0.65
MW10	9	Y	0.34
MW15	9	Y	0.16

VACUUM (IWC)

5

STANDARD 1A DPE SYSTEM O&M FORM

DATE 3-14-24

ORM PERSONNEL D. BUTTS

SVE SYSTEM - MONTHLY O&M KO TANK HIGH LEVEL DPE ALARMS NOTES TIME READING MW 15 flowing now. Cleaned floot stem DPE SYSTEM 1305 1710.1 Blower Hours (photo) 36.6 Transfer Pump Hours (photo) 10.5 Influent Vacuum Pre-KO (InHg) Fresh Air Bypass (% Open) 0 Pre-Filter Vacuum (InHg) 12.25 10.5 Post-Filter Vacuum (InHg) 2.5 Differential Pressure (IWC) 160 Exhaust Temperature ("F) 763 Exhaust PID (ppm) Transfer Pump Pressure (PSI) 36361 Transfer Pump Totalizer (Gal) (photo)

	SVE SYSTEM SAMPLING	ubmission.
	SVE SYSTEM SAMPLING THE COLLECTED THIS USE IT FOR S ONYGEN (%) 20.9 BI-Monthly (every other month) for TVPH (8015). 8260-F	
Analytes: Sample		Full List VOCs, Fixed Gas (CO2 AND O2

Change in Well Operation:	NONE							
WELLHEAD MEASUREMENTS					ppm	Prim	ppm	V- LE
WELL ID	VACUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%)	CH4	HZS	CO	CHY
MW01	108	409	20.9	0.38	3,050	0.0	0	4
MW02	91	412	20.9	0.20	1,100	0.0	0	6
MW03	110	687	20.4	0.44	3,500	0.0	Ø	2
MW06	94	402	20.9	0.20	750	0.0	0	F
MW10	100	130	20.9	0.00	410	0.0	0	1
Jufluent	132	504	20.9	0.28	1,500	0 D	0	2

MANIFOLD MEASUREMENTS

WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF PRESS (IWC)
MW01	99.0	Y	0.19
MW02	9.0	Y	0.64
MW03	11.5	Y	0.35
MW06	9.0 9	Y	0.30
MW10	9.0	Y	0.57
MW15	9.0	Y	0.13

INFLUENCE	
WELL ID	VACUUM (IWC)
MW04	
MW07	

TIME ONSITE 4.30

O&M PERSONNEL E. Corroll TIME OFFSITE

SVE SYSTEM - MONTHLY O&M

DPE ALARMS KO TANK HIGH LEVEL DPE SYSTEM Blower Hours (photo) READING TIME Transfer Pump Hours (photo) 1875.9 10:52 Influent Vacuum Pre-KO (InHg) 41.0 10:52 Fresh Air Bypass (% Open) 10.5 Pre-Filter Vacuum (InHg) 0 12.0 Post-Filter Vacuum (InHg) 11-0 Differential Pressure (IWC) Exhaust Temperature (°F) 2.5

NOTES		

PID (ppm)	1 458		SAMPLE TIME: 1/: 40
Analytes:	Sample Bi-Monthly (au	OXYGEN (%) 20.9	CARRON DIOVIDE
OPERATING WELLS	Au stanially (evi	ery other month) for TVPH (8015), 826	CARBON DIOXIDE (%) 0,28

None

170 568

40443.4

WELLHEAD MEASUREMENTS

Exhaust PID (ppm)

Transfer Pump Pressure (PSI) Transfer Pump Totalizer (Gal) (photo)

WELL ID	VACUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN	CARBON DIOXIDE
MW01	108		(%)	(%)
MW02	91	398	20,9	0.36
MW03	109	408	20.9	0.18
MW06	93	627	20.3	0.45
MW10	100	372	20.9	0.15
MW15	/3/	122	20.9	0.13
	. 21	111	20.9	0.00

MANIFOLD MEASUREMENTS

WELL ID	VACUUM (InHg)	SEE LIQUIDS? (YES/NO)	DIFF. PRESS.
MW01	9	V	
MW02	2	7	0.49
MW03	2 11 5	У	0.61
MW06	8.5	<i>y</i>	0.36
MW10	9	· / ·	0.27
MW15	ut a	· /	0.48
	7	V	0 13

INFLUENCE

WELL ID	VACUUM (IWC)
MW04	NM
MW07	
	NM

COMMENTS/MAINTENANCE ISSUES

APPENDIX B

Project Photographs

PROJECT PHOTOGRAPHS

Standard #1
San Juan County, New Mexico
Hilcorp Energy Company

Photograph 1

Runtime meter taken on January 3, 2024 at 2:02 PM Hours = 28.1

Photograph 2

Runtime meter taken on March 21, 2024 at 10:52 AM Hours = 1,875.9

PROJECT PHOTOGRAPHS

Standard #1
San Juan County, New Mexico
Hilcorp Energy Company

Photograph 3

Runtime meter taken on January 11, 2024 at 1:15 PM Gallons = 2,648.3

Photograph 4

Totalizer taken on March 21, 2024 at 10:52 AM Gallons = 40,443.4

APPENDIX C

DPE Laboratory Analytical Reports

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 24, 2024

Mitch Killough
HILCORP ENERGY
PO Box 4700
Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Standard 1A OrderNo.: 2401141

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 2 sample(s) on 1/4/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 1/24/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-2-24

 Project:
 Standard 1A
 Collection Date: 1/2/2024 2:10:00 PM

 Lab ID:
 2401141-001
 Matrix: AIR
 Received Date: 1/4/2024 7:00:00 AM

EPA METHOD 8015D: GASOLINE RANGE Gasoline Range Organics (GRO) 170 5.0 μg/L 1 Surr: BFB 409 15-412 %Rec 1 EPA METHOD 8260B: VOLATILES Benzene 0.58 0.10 μg/L 1 Toluene 2.8 0.10 μg/L 1 Ethylbenzene 0.42 0.10 μg/L 1 Methyl tert-butyl ether (MTBE) ND 0.10 μg/L 1 Methyl tert-butyl ether (MTBE) ND 0.10 μg/L 1 1,2,4-Trimethylbenzene 0.79 0.10 μg/L 1 1,2,5-Trimethylbenzene 0.51 0.10 μg/L 1 1,2-Dichloroethane (EDC) ND 0.10 μg/L 1 1,2-Dibromoethane (EDB) ND 0.10 μg/L 1 1,2-Dibromoethane (EDB) ND 0.10 μg/L 1 1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND	Analyst: JJP 1/5/2024 1:47:55 PM 1/5/2024 1:47:55 PM
Surr: BFB 409 15-412 %Rec 1 EPA METHOD 8260B: VOLATILES Benzene 0.58 0.10 µg/L 1 Toluene 2.8 0.10 µg/L 1 Ethylbenzene 0.42 0.10 µg/L 1 Methyl tert-butyl ether (MTBE) ND 0.10 µg/L 1 1,2,4-Trimethylbenzene 0.79 0.10 µg/L 1 1,3,5-Trimethylbenzene 0.51 0.10 µg/L 1 1,2-Dichloroethane (EDC) ND 0.10 µg/L 1 1,2-Dibromoethane (EDB) ND 0.10 µg/L 1 Nphthalene ND 0.20 µg/L 1 1-Methylnaphthalene ND 0.40 µg/L 1 2-Methylnaphthalene ND 0.40 µg/L 1 Acetone ND 0.10 µg/L 1 Bromobenzene ND 0.10 µg/L 1 Bromodichloromethane	
Benzene 0.58 0.10 µg/L 1 Toluene 2.8 0.10 µg/L 1 Ethylbenzene 0.42 0.10 µg/L 1 Methyl tert-butyl ether (MTBE) ND 0.10 µg/L 1 1 1,2,4-Trimethylbenzene 0.79 0.10 µg/L 1 1 1,3,5-Trimethylbenzene 0.51 0.10 µg/L 1 1,2-Dichloroethane (EDC) ND 0.10 µg/L 1 1,2-Dibromoethane (EDC) ND 0.10 µg/L 1 1,2-Dibromoethane (EDB) ND 0.10 µg/L 1 1 1-Methylnaphthalene ND 0.20 µg/L 1 1 1-Methylnaphthalene ND 0.40 µg/L 1 1 2-Methylnaphthalene ND 0.40 µg/L 1 1 1 1 1 1 1 1 1	1/5/2024 1:47:55 PM
Benzene 0.58 0.10 μg/L 1 Toluene 2.8 0.10 μg/L 1 Ethylbenzene 0.42 0.10 μg/L 1 Methyl tert-butyl ether (MTBE) ND 0.10 μg/L 1 1,2,4-Trimethylbenzene 0.79 0.10 μg/L 1 1,3,5-Trimethylbenzene 0.51 0.10 μg/L 1 1,2-Dichloroethane (EDC) ND 0.10 μg/L 1 1,2-Dibromoethane (EDB) ND 0.10 μg/L 1 Naphthalene ND 0.20 μg/L 1 1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 0.10 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	
Toluene 2.8 0.10 μg/L 1 Ethylbenzene 0.42 0.10 μg/L 1 Methyl tert-butyl ether (MTBE) ND 0.10 μg/L 1 1,2,4-Trimethylbenzene 0.79 0.10 μg/L 1 1,3,5-Trimethylbenzene 0.51 0.10 μg/L 1 1,2-Dichloroethane (EDC) ND 0.10 μg/L 1 1,2-Dibromoethane (EDB) ND 0.10 μg/L 1 Naphthalene ND 0.20 μg/L 1 1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 0.10 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	Analyst: JR
Ethylbenzene 0.42 0.10 μg/L 1 Methyl tert-butyl ether (MTBE) ND 0.10 μg/L 1 1,2,4-Trimethylbenzene 0.79 0.10 μg/L 1 1,3,5-Trimethylbenzene 0.51 0.10 μg/L 1 1,2-Dichloroethane (EDC) ND 0.10 μg/L 1 1,2-Dibromoethane (EDB) ND 0.10 μg/L 1 Naphthalene ND 0.20 μg/L 1 1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 0.10 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
Ethylbenzene 0.42 0.10 μg/L 1 Methyl tert-butyl ether (MTBE) ND 0.10 μg/L 1 1,2,4-Trimethylbenzene 0.79 0.10 μg/L 1 1,3,5-Trimethylbenzene 0.51 0.10 μg/L 1 1,2-Dichloroethane (EDC) ND 0.10 μg/L 1 1,2-Dibromoethane (EDB) ND 0.10 μg/L 1 Naphthalene ND 0.20 μg/L 1 1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 0.10 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
1,2,4-Trimethylbenzene 0.79 0.10 μg/L 1 1,3,5-Trimethylbenzene 0.51 0.10 μg/L 1 1,2-Dichloroethane (EDC) ND 0.10 μg/L 1 1,2-Dibromoethane (EDB) ND 0.10 μg/L 1 Naphthalene ND 0.20 μg/L 1 1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 1.0 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
1,2,4-Trimethylbenzene 0.79 0.10 µg/L 1 1,3,5-Trimethylbenzene 0.51 0.10 µg/L 1 1,2-Dichloroethane (EDC) ND 0.10 µg/L 1 1,2-Dibromoethane (EDB) ND 0.10 µg/L 1 Naphthalene ND 0.20 µg/L 1 1-Methylnaphthalene ND 0.40 µg/L 1 2-Methylnaphthalene ND 0.40 µg/L 1 Acetone ND 1.0 µg/L 1 Bromobenzene ND 0.10 µg/L 1 Bromodichloromethane ND 0.10 µg/L 1 Bromoform ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
1,3,5-Trimethylbenzene 0.51 0.10 µg/L 1 1,2-Dichloroethane (EDC) ND 0.10 µg/L 1 1,2-Dibromoethane (EDB) ND 0.10 µg/L 1 Naphthalene ND 0.20 µg/L 1 1-Methylnaphthalene ND 0.40 µg/L 1 2-Methylnaphthalene ND 0.40 µg/L 1 Acetone ND 1.0 µg/L 1 Bromobenzene ND 0.10 µg/L 1 Bromodichloromethane ND 0.10 µg/L 1 Bromoform ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
1,2-Dichloroethane (EDC) ND 0.10 µg/L 1 1,2-Dibromoethane (EDB) ND 0.10 µg/L 1 Naphthalene ND 0.20 µg/L 1 1-Methylnaphthalene ND 0.40 µg/L 1 2-Methylnaphthalene ND 0.40 µg/L 1 Acetone ND 1.0 µg/L 1 Bromobenzene ND 0.10 µg/L 1 Bromodichloromethane ND 0.10 µg/L 1 Bromoform ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
1,2-Dibromoethane (EDB) ND 0.10 μg/L 1 Naphthalene ND 0.20 μg/L 1 1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 1.0 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
Naphthalene ND 0.20 μg/L 1 1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 1.0 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
1-Methylnaphthalene ND 0.40 μg/L 1 2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 1.0 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
2-Methylnaphthalene ND 0.40 μg/L 1 Acetone ND 1.0 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
Acetone ND 1.0 μg/L 1 Bromobenzene ND 0.10 μg/L 1 Bromodichloromethane ND 0.10 μg/L 1 Bromoform ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/16/2024 11:25:09 AM
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/16/2024 11:25:09 AM
Bromoform ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
	1/16/2024 11:25:09 AM
Bromomethane ND 0.20 µg/L 1	1/16/2024 11:25:09 AM
2-Butanone ND 1.0 μg/L 1	1/16/2024 11:25:09 AM
Carbon disulfide ND 1.0 µg/L 1	1/16/2024 11:25:09 AM
Carbon tetrachloride ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
Chlorobenzene ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
Chloroethane ND 0.20 µg/L 1	1/16/2024 11:25:09 AM
Chloroform ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
Chloromethane ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
2-Chlorotoluene ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
4-Chlorotoluene ND 0.10 μg/L 1	1/16/2024 11:25:09 AM
cis-1,2-DCE ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
cis-1,3-Dichloropropene ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
1,2-Dibromo-3-chloropropane ND 0.20 µg/L 1	1/16/2024 11:25:09 AM
Dibromochloromethane ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
Dibromomethane ND 0.20 μg/L 1	1/16/2024 11:25:09 AM
1,2-Dichlorobenzene ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
1,3-Dichlorobenzene ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
1,4-Dichlorobenzene ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
Dichlorodifluoromethane ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
1,1-Dichloroethane ND 0.10 µg/L 1	1/16/2024 11:25:09 AM
1,1-Dichloroethene ND 0.10 µg/L 1	.,

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/24/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-2-24

 Project:
 Standard 1A
 Collection Date: 1/2/2024 2:10:00 PM

 Lab ID:
 2401141-001
 Matrix: AIR
 Received Date: 1/4/2024 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
1,2-Dichloropropane	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,3-Dichloropropane	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
2,2-Dichloropropane	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,1-Dichloropropene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
Hexachlorobutadiene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
2-Hexanone	ND	1.0	μg/L	1	1/16/2024 11:25:09 AM
Isopropylbenzene	0.11	0.10	μg/L	1	1/16/2024 11:25:09 AM
4-Isopropyltoluene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	1/16/2024 11:25:09 AM
Methylene chloride	ND	0.30	μg/L	1	1/16/2024 11:25:09 AM
n-Butylbenzene	ND	0.30	μg/L	1	1/16/2024 11:25:09 AM
n-Propylbenzene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
sec-Butylbenzene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
Styrene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
tert-Butylbenzene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,1,1,2-Tetrachloroethane	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,1,2,2-Tetrachloroethane	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
Tetrachloroethene (PCE)	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
trans-1,2-DCE	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
trans-1,3-Dichloropropene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,2,3-Trichlorobenzene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,2,4-Trichlorobenzene	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,1,1-Trichloroethane	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,1,2-Trichloroethane	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
Trichloroethene (TCE)	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
Trichlorofluoromethane	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
1,2,3-Trichloropropane	ND	0.20	μg/L	1	1/16/2024 11:25:09 AM
Vinyl chloride	ND	0.10	μg/L	1	1/16/2024 11:25:09 AM
Xylenes, Total	8.9	0.15	μg/L	1	1/16/2024 11:25:09 AM
Surr: Dibromofluoromethane	76.7	70-130	%Rec	1	1/16/2024 11:25:09 AM
Surr: 1,2-Dichloroethane-d4	82.9	70-130	%Rec	1	1/16/2024 11:25:09 AM
Surr: Toluene-d8	103	70-130	%Rec	1	1/16/2024 11:25:09 AM
Surr: 4-Bromofluorobenzene	121	70-130	%Rec	1	1/16/2024 11:25:09 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/24/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Project: Standard 1A

Collection Date: 1/3/2024 1:45:00 PM

Lab ID: 2401141-002

Matrix: AIR

Received Date: 1/4/2024 7:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	69	5.0	μg/L	1	1/5/2024 3:23:01 PM
Surr: BFB	252	15-412	%Rec	1	1/5/2024 3:23:01 PM
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	0.21	0.10	μg/L	1	1/16/2024 12:20:10 PM
Toluene	1.2	0.10	μg/L	1	1/16/2024 12:20:10 PM
Ethylbenzene	0.24	0.10	μg/L	1	1/16/2024 12:20:10 PM
Methyl tert-butyl ether (MTBE)	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,2,4-Trimethylbenzene	0.44	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,3,5-Trimethylbenzene	0.30	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,2-Dichloroethane (EDC)	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,2-Dibromoethane (EDB)	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Naphthalene	ND	0.20	μg/L	1	1/16/2024 12:20:10 PM
1-Methylnaphthalene	ND	0.40	μg/L	1	1/16/2024 12:20:10 PM
2-Methylnaphthalene	ND	0.40	μg/L	1	1/16/2024 12:20:10 PM
Acetone	ND	1.0	μg/L	1	1/16/2024 12:20:10 PM
Bromobenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Bromodichloromethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Bromoform	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Bromomethane	ND	0.20	μg/L	1	1/16/2024 12:20:10 PM
2-Butanone	ND	1.0	μg/L	1	1/16/2024 12:20:10 PM
Carbon disulfide	ND	1.0	μg/L	1	1/16/2024 12:20:10 PM
Carbon tetrachloride	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Chlorobenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Chloroethane	ND	0.20	μg/L	1	1/16/2024 12:20:10 PM
Chloroform	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Chloromethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
2-Chlorotoluene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
4-Chlorotoluene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
cis-1,2-DCE	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
cis-1,3-Dichloropropene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,2-Dibromo-3-chloropropane	ND	0.20	μg/L	1	1/16/2024 12:20:10 PM
Dibromochloromethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Dibromomethane	ND	0.20	μg/L	1	1/16/2024 12:20:10 PM
1,2-Dichlorobenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,3-Dichlorobenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,4-Dichlorobenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Dichlorodifluoromethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,1-Dichloroethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,1-Dichloroethene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/24/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-3-24

 Project:
 Standard 1A
 Collection Date: 1/3/2024 1:45:00 PM

 Lab ID:
 2401141-002
 Matrix: AIR
 Received Date: 1/4/2024 7:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
1,2-Dichloropropane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,3-Dichloropropane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
2,2-Dichloropropane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,1-Dichloropropene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Hexachlorobutadiene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
2-Hexanone	ND	1.0	μg/L	1	1/16/2024 12:20:10 PM
Isopropylbenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
4-Isopropyltoluene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
4-Methyl-2-pentanone	ND	1.0	μg/L	1	1/16/2024 12:20:10 PM
Methylene chloride	ND	0.30	μg/L	1	1/16/2024 12:20:10 PM
n-Butylbenzene	ND	0.30	μg/L	1	1/16/2024 12:20:10 PM
n-Propylbenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
sec-Butylbenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Styrene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
tert-Butylbenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,1,1,2-Tetrachloroethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,1,2,2-Tetrachloroethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Tetrachloroethene (PCE)	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
trans-1,2-DCE	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
trans-1,3-Dichloropropene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,2,3-Trichlorobenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,2,4-Trichlorobenzene	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,1,1-Trichloroethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,1,2-Trichloroethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Trichloroethene (TCE)	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Trichlorofluoromethane	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
1,2,3-Trichloropropane	ND	0.20	μg/L	1	1/16/2024 12:20:10 PM
Vinyl chloride	ND	0.10	μg/L	1	1/16/2024 12:20:10 PM
Xylenes, Total	5.0	0.15	μg/L	1	1/16/2024 12:20:10 PM
Surr: Dibromofluoromethane	81.1	70-130	%Rec	1	1/16/2024 12:20:10 PM
Surr: 1,2-Dichloroethane-d4	91.9	70-130	%Rec	1	1/16/2024 12:20:10 PM
Surr: Toluene-d8	106	70-130	%Rec	1	1/16/2024 12:20:10 PM
Surr: 4-Bromofluorobenzene	117	70-130	%Rec	1	1/16/2024 12:20:10 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

January 11, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: B24010337 Quote ID: B15626

Project Name: Tedlar Gas Analysis

Energy Laboratories Inc Billings MT received the following 2 samples for Hall Environmental on 1/5/2024 for analysis.

Lab ID	Client Sample ID	Collect Date	Receive Date	Matri x	Test
B24010337-001	24011141-001B, Influent 1-2-24	01/02/24 14:10	0 01/05/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60
B24010337-002	2401141-002B, Influent 1-3-24	01/03/24 13:45	5 01/05/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental **Report Date: 01/11/24 Project:** Tedlar Gas Analysis Collection Date: 01/02/24 14:10 Lab ID: B24010337-001 DateReceived: 01/05/24

Client Sample ID: 24011141-001B, Influent 1-2-24 Matrix: Air

Analyses	Result l	Units (Qualifiers		MCL/ QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT						
Oxygen	21.64 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
Nitrogen	78.26 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
Carbon Dioxide	0.09 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
Hydrogen Sulfide	<0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
Methane	0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
Ethane	<0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
Propane	<0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
sobutane	<0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
-Butane	<0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
sopentane	<0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
-Pentane	<0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
lexanes plus	<0.01 N	Mol %		0.01		GPA 2261-95	01/09/24 01:34 / jrj
Propane	< 0.001 g	gpm	(0.001		GPA 2261-95	01/09/24 01:34 / jrj
sobutane	< 0.001 g	gpm	(0.001		GPA 2261-95	01/09/24 01:34 / jrj
n-Butane	< 0.001 g	gpm	(0.001		GPA 2261-95	01/09/24 01:34 / jrj
sopentane	< 0.001 g	gpm	(0.001		GPA 2261-95	01/09/24 01:34 / jrj
-Pentane	< 0.001 g	gpm	(0.001		GPA 2261-95	01/09/24 01:34 / jrj
lexanes plus	< 0.001 g	gpm	(0.001		GPA 2261-95	01/09/24 01:34 / jrj
SPM Total	< 0.001 g	gpm	(0.001		GPA 2261-95	01/09/24 01:34 / jrj
GPM Pentanes plus	< 0.001 g	gpm	(0.001		GPA 2261-95	01/09/24 01:34 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	01/09/24 01:34 / jrj
let BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	01/09/24 01:34 / jrj
Pseudo-critical Pressure, psia	545			1		GPA 2261-95	01/09/24 01:34 / jrj
Pseudo-critical Temperature, deg R	239			1		GPA 2261-95	01/09/24 01:34 / jrj
Specific Gravity @ 60/60F	0.998		(0.001		D3588-81	01/09/24 01:34 / jrj
Air, %	98.86			0.01		GPA 2261-95	01/09/24 01:34 / jrj
- The analysis was not corrected for air.							
COMMENTS							

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

RL - Analyte Reporting Limit Report MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

01/09/24 01:34 / jrj

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825. - Standard conditions: 60 F & 14.73 psi on a dry basis.

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

 Client:
 Hall Environmental
 Report Date: 01/11/24

 Project:
 Tedlar Gas Analysis
 Collection Date: 01/03/24 13:45

 Lab ID:
 B24010337-002
 DateReceived: 01/05/24

 Client Sample ID:
 2401141-002B, Influent 1-3-24
 Matrix: Air

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS F	REPORT						
Oxygen	_	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Nitrogen	78.22	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Carbon Dioxide	0.06	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Methane	0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Ethane	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Propane	< 0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Isobutane	< 0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
n-Butane	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Isopentane	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
n-Pentane	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Hexanes plus	<0.01	Mol %		0.01		GPA 2261-95	01/09/24 02:31 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 02:31 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 02:31 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 02:31 / jrj
Isopentane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 02:31 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 02:31 / jrj
Hexanes plus	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 02:31 / jrj
GPM Total	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 02:31 / jrj
GPM Pentanes plus	< 0.001	gpm		0.001		GPA 2261-95	01/09/24 02:31 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-95	01/09/24 02:31 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-95	01/09/24 02:31 / jrj
Pseudo-critical Pressure, psia	545			1		GPA 2261-95	01/09/24 02:31 / jrj
Pseudo-critical Temperature, deg R	239			1		GPA 2261-95	01/09/24 02:31 / jrj
Specific Gravity @ 60/60F	0.998			0.001		D3588-81	01/09/24 02:31 / jrj
Air, %	99.18			0.01		GPA 2261-95	01/09/24 02:31 / jrj
- The analysis was not corrected for air.							
COMMENTS							

COMMENTS

- 01/09/24 02:31 / jrj

Report RL - Analyte Reporting Limit MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24010337 Report Date: 01/11/24

Onchi.	Tiali Environmental				Work Oraci.	D2-10 1	0007	itopoi	t Date.	01/11/24	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	: R41489
Lab ID:	LCS010924	11 Lab	oratory Co	ntrol Sample			Run: GCNG	A-B_240109A		01/09	/24 03:25
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			6.34	Mol %	0.01	106	70	130			
Carbon D	Dioxide		0.99	Mol %	0.01	100	70	130			
Methane			74.4	Mol %	0.01	100	70	130			
Ethane			6.02	Mol %	0.01	100	70	130			
Propane			5.00	Mol %	0.01	101	70	130			
Isobutane	е		1.77	Mol %	0.01	88	70	130			
n-Butane			1.99	Mol %	0.01	99	70	130			
Isopentar	ne		1.00	Mol %	0.01	100	70	130			
n-Pentan	е		1.00	Mol %	0.01	100	70	130			
Hexanes	plus		0.81	Mol %	0.01	101	70	130			
Lab ID:	B24010204-001ADUP	12 San	nple Duplic	ate			Run: GCNG	A-B_240109A		01/09	/24 10:44
Oxygen			21.7	Mol %	0.01				0.0	20	
Nitrogen			78.2	Mol %	0.01				0.0	20	
Carbon D	Dioxide		0.05	Mol %	0.01				0.0	20	
Hydroger	n Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane	е		< 0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
	ne		< 0.01	Mol %	0.01					20	
Isopentar											
n-Pentan			< 0.01	Mol %	0.01					20	

Qualifiers:

RL - Analyte Reporting Limit

 $\ensuremath{\mathsf{ND}}$ - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

B24010337

Login completed by:	Crystal M. Jones		Date	Received: 1/5/2024
Reviewed by:	dharris		Re	eceived by: cmj
Reviewed Date:	1/5/2024		Car	rrier name: FedEx
Shipping container/cooler in	good condition?	Yes 🗹	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes √	No 🗌	Not Present
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present 🗸
Chain of custody present?		Yes √	No 🗌	
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌	
Chain of custody agrees with	sample labels?	Yes √	No 🗌	
Samples in proper container	bottle?	Yes √	No 🗌	
Sample containers intact?		Yes √	No 🗌	
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌	
All samples received within h (Exclude analyses that are couch as pH, DO, Res Cl, Su	onsidered field parameters	Yes √	No 🗌	
Temp Blank received in all sl	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	12.0°C No Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes []	No 🗌	Not Applicable 🔽

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

FAX: 505-345-4107

Website: www.hallenvironmental.com

eurofins Environment Testing

CHAIN OF CUSTODY RECORD PAGE: 1 OFF. 1

Eurofins Environment Testing South Central, LLC 4901 Havkins NE Albuquerque, NM 87109

SUB CO	NITRATOR Energ	SUB CONTRATOR Energy Labs -Billings COMPANY.	Energy Laboratories	ies	PHONE	(406) 869-6253	FAX	(406) 252-6069
ADDRESS		1120 South 27th Street			ACCOUNT #:		EMAIL:	
CITY, S	TATE, ZIP. Billing	CITY, STATE, ZIP. Billings, MT 59107						
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE	MATRIX	COLLECTION	# CONTAINERS	NALYTICA	ANALYTICAL COMMENTS
	2401141-001B	2401141-001B Influent 1-2-24	TEDLAR	Air	1/2/2024 2:10:00 PM	1 Natural Gas Analysis- 02,CO2,CO	02,002,00	82401033
7	2401141-002B	2401141-002B Influent 1-3-24	TEDLAR	Air	1/3/2024 1:45:00 PM	1/3/2024 1:45:00 PM 1 Natural Gas Analysis- 02,CO2,CO	02,002,00	

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Thank you. ONLINE Attempt to Cool ? REPORT TRANSMITTAL DESIRED; EMAIL FOR LAB USE ONLY FAX HARDCOPY (extra cost) Temp of samples Comments Time Time: 3rd BD 13/24 Date Date: 2nd BD Next BD Received By Received By 8:57 AM Time Time: 1/4/2024 Date Date Date SPECIAL INSTRUCTIONS / COMMENTS: TAT: Relinquished By

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

8000

WO#: **2401141**

24-Jan-24

Client: HILCORP ENERGY

Project: Standard 1A

Surr: BFB

Sample ID: 2401141-001adup SampType: DUP TestCode: EPA Method 8015D: Gasoline Range

2000

Client ID: Influent 1-2-24 Batch ID: GA102272 RunNo: 102272

Prep Date: Analysis Date: 1/5/2024 SeqNo: 3775874 Units: μg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 170 5.0 3.36 20

398

15

412

0

0

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2401141**

24-Jan-24

Client: HILCORP ENERGY

Project: Standard 1A

Sample ID: 2401141-001adup	SampT	ype: DU	Р	Tes	tCode: EF	PA Method	8260B: Volati	es		
Client ID: Influent 1-2-24	Batch	n ID: R1 0	02470	F	RunNo: 10	02470				
Prep Date:	Analysis D)ate: 1 /	16/2024	5	SeqNo: 37	785172	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
enzene	0.61	0.10						6.21	20	
oluene	2.9	0.10						2.39	20	
thylbenzene	0.42	0.10						0.0576	20	
lethyl tert-butyl ether (MTBE)	ND	0.10						0	20	
,2,4-Trimethylbenzene	0.80	0.10						0.418	20	
,3,5-Trimethylbenzene	0.51	0.10						0.487	20	
,2-Dichloroethane (EDC)	ND	0.10						0	20	
,2-Dibromoethane (EDB)	ND	0.10						0	20	
laphthalene	ND	0.20						0	20	
-Methylnaphthalene	ND	0.40						0	20	
-Methylnaphthalene	ND	0.40						0	20	
cetone	ND	1.0						0	20	
romobenzene	ND	0.10						0	20	
romodichloromethane	ND	0.10						0	20	
romoform	ND	0.10						0	20	
romomethane	ND	0.20						0	20	
-Butanone	ND	1.0						0	20	
Carbon disulfide	ND	1.0						0	20	
Carbon tetrachloride	ND	0.10						0	20	
Chlorobenzene	ND	0.10						0	20	
Chloroethane	ND	0.20						0	20	
Chloroform	ND	0.10						0	20	
Chloromethane	ND	0.10						0	20	
-Chlorotoluene	ND	0.10						0	20	
-Chlorotoluene	ND	0.10						0	20	
is-1,2-DCE	ND	0.10						0	20	
is-1,3-Dichloropropene	ND	0.10						0	20	
,2-Dibromo-3-chloropropane	ND	0.20						0	20	
Dibromochloromethane	ND	0.10						0	20	
Dibromomethane	ND	0.20						0	20	
.2-Dichlorobenzene	ND	0.10						0	20	
,3-Dichlorobenzene	ND	0.10						0	20	
,4-Dichlorobenzene	ND	0.10						0	20	
pichlorodifluoromethane	ND	0.10						0	20	
.1-Dichloroethane	ND	0.10						0	20	
,1-Dichloroethane ,1-Dichloroethene	ND ND	0.10						0	20	
,2-Dichloropropane	ND ND	0.10							20	
,3-Dichloropropane		0.10						0	20	
, J-DICHIUHUDHUDAHE	ND	0.10						0	∠∪	

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2401141 24-Jan-24**

Client: HILCORP ENERGY

Project: Standard 1A

Sample ID: 2401141-001adup	Samp1	Гуре: DU	P	Tes	tCode: El	PA Method	8260B: Volati	les		
Client ID: Influent 1-2-24	Batcl	h ID: R1	02470	F	RunNo: 1	02470				
Prep Date:	Analysis [Date: 1 /	16/2024	5	SeqNo: 3	785172	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10						0	20	
Hexachlorobutadiene	ND	0.10						0	20	
2-Hexanone	ND	1.0						0	20	
Isopropylbenzene	0.11	0.10						0.983	20	
4-Isopropyltoluene	ND	0.10						0	20	
4-Methyl-2-pentanone	ND	1.0						0	20	
Methylene chloride	ND	0.30						0	20	
n-Butylbenzene	ND	0.30						0	20	
n-Propylbenzene	ND	0.10						0	20	
sec-Butylbenzene	ND	0.10						0	20	
Styrene	ND	0.10						0	20	
tert-Butylbenzene	ND	0.10						0	20	
1,1,1,2-Tetrachloroethane	ND	0.10						0	20	
1,1,2,2-Tetrachloroethane	ND	0.10						0	20	
Tetrachloroethene (PCE)	ND	0.10						0	20	
trans-1,2-DCE	ND	0.10						0	20	
trans-1,3-Dichloropropene	ND	0.10						0	20	
1,2,3-Trichlorobenzene	ND	0.10						0	20	
1,2,4-Trichlorobenzene	ND	0.10						0	20	
1,1,1-Trichloroethane	ND	0.10						0	20	
1,1,2-Trichloroethane	ND	0.10						0	20	
Trichloroethene (TCE)	ND	0.10						0	20	
Trichlorofluoromethane	ND	0.10						0	20	
1,2,3-Trichloropropane	ND	0.20						0	20	

Qualifiers:

Vinyl chloride

Xylenes, Total

Surr: Toluene-d8

Surr: Dibromofluoromethane

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- $S\ -\ \%$ Recovery outside of standard limits. If undiluted results may be estimated.

ND

9.0

0.77

0.87

1.1

1.1

0.10

0.15

1.000

1.000

1.000

1.000

B Analyte detected in the associated Method Blank

76.9

87.2

106

113

70

70

70

70

- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

0

0

0

0

0

1.73

130

130

130

130

20

20

0

0

0

0

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Released to Imaging: 6/3/2024 11:22:17 AM

			veosue, www.n	шенуноптег	nai.com		
Client Name: H	ILCORP ENERGY	Work	Order Number	: 2401141		RcptNo	1
Received By:	Fracy Casarrubias	1/4/202	4 7:00:00 AM				
Completed By:	Fracy Casarrubias	1/4/202	4 8:47:49 AM				
Reviewed By:	74/4/24						
Chain of Custo	<u>dy</u>						
1. Is Chain of Cust	ody complete?			Yes 🗌	No 🗸	Not Present	
2. How was the sai	mple delivered?			Courier			
<u>Log In</u>							
3. Was an attempt	made to cool the sam	ples?		Yes	No 🔽	NA 🗌	
4. Were all samples	s received at a temper	ature of >0° C	to 6.0°C	Yes 🗌	No 🗌	NA 🗸	
5. Sample(s) in pro	per container(s)?			Yes 🔽	No 🗌		
6. Sufficient sample	volume for indicated	test(s)?		Yes 🗸	No 🗌		
7. Are samples (exc	cept VOA and ONG) p	roperly preserve	ed?	Yes 🔽	No 🗌		
8. Was preservative	e added to bottles?			Yes	No 🗸	NA 🗌	
9. Received at least	t 1 vial with headspace	e <1/4" for AQ V	OA?	Yes	No 🗌	NA 🗹	,
10. Were any sampl	e containers received	broken?		Yes 🗌	No 🗹	# of preserved	
11. Does paperwork (Note discrepand	match bottle labels? ies on chain of custod	v)		Yes 🔽	No 🗌	bottles checked for pH:	>12 unless noted)
	rectly identified on Cha			Yes 🗸	No 🗆	Adjusted?	
13. Is it clear what ar	nalyses were requeste	d?		Yes 🗹	No 🗌		
_	times able to be met? omer for authorization.	.)		Yes 🗹	No 🗀	Checked by:	1/4/2
Special Handlin	g (if applicable)						
15. Was client notific	ed of all discrepancies	with this order?	>	Yes 🗌	No 🗌	NA 🗹	
Person No	tified:		Date:				
By Whom:			Via:	eMail	Phone Fax	☐ In Person	
Regarding							
Client Inst	ructions: Maiing addr	ess and phone	number are m	issina on CO	C- TMC 1/4/24		
16. Additional rema	rks:						
17. Cooler Informa		T.					
Cooler No	Temp °C Condition		Seal No	Seal Date	Signed By		
1 1	V/A Good	Yes	1				

gentle.	
a '	
1	
_ `	
0	
_	
3	
11.3	
5	
4.5	
2	
C	
•	
4	
4	
0	
0	
< 1	
4	
4	
(V	
2.4	
1	
Total	
4	
٠.	
-	
()	
$\overline{}$	
\circ	
-	
-	
-	
by	
lby	
d by	
Ag p	
d by	
Ag p	
ived by	
ived by	
ved by	
eived by	
ceived by	
eceived by	
eceived by	
ceived by	

Cha	in-ot-	Chain-ot-Custody Record		i urn-Around i ime:	:: EIII		3	差	-	HAII		Z	5	20	FNVTRONMENT	Z	P		
Client:	Hilrorp	P		以 Standard	□ Rush					Z	A	ANALYSIS	S	A	LABORATOR	A	ō	\ ≿	
Mitch	77	Killowah		Project Name:	25					*	.halle	www.hallenvironmental.com	nmer	ıtal.cc	E				
Mailing Address:				Sta	Standard 14			4901 Hawkins NE	Haw	kins N	1	Albuq	nergi	Je, N	Albuquerque, NM 87109	60			
	_			Project #:		= 2		Tel.	505-3	Tel. 505-345-3975		Fay	505	Fax 505-345-4107	4107				
Phone #:						10					A	Analysis Request	s Rec	anest					1000
email or Fa	W. MY W.	email or Fax#: mr illousin @ hil Corp. com	Wo	Project Manager:	ger:		(1					[†] O5		(ju					
QA/QC Package:	age:			5 +CROC+	HIGE	FN SOLW W	208)			SM		S '⊅C		esq/					
☐ Standard		☐ Level 4 (Full Validation)	/alidation)		- 1.) s,e			ISO2)d '		//ţu					
Accreditation:		□ Az Compliance		:	E. Carroll		3MT					ZON			C				
□ NELAC	- 1	□ Other		On Ice:	□ Yes	ON NO	13				_	3,	AC		00				
☐ EDD (Type)	pe)			# of Coolers:	1		38.				_)	_			
				Cooler Temp(Including CF):		(0°) A/N	TM								0)	_			
_		-			Preservative		LEX /	.08:H 99 186	M) ac	d sH∕	3 ARC	, F, E	S) 023) Isto	18				
Date Time	e Matrix	rix Sample Name	4)	Type and #	Туре	2401141	18	_	-		\rightarrow	_	_	!	0	-			
1-2-34 14:16	16 AIV	Influent 1	-3-34	2 Tedlar		100		×				×			X	1	1		
24:81 pc 8-1	45 F.Y	Influent	1-3-24	2 Tellas		200		\times				\times	_		×				
														Ţ					Г
		:		:						24		-		J		-3			Γ-
					- =			_	_										Г
									_							-			П
									_		-		H	-		18	_		Г
						The state of the s													
					-1.0						5.4								
T	一							_				13							\neg
E		Relinquished by:		Received by:	Via: Counce	Date Time	Remarks:	arks:	0	, , , , , , , , , , , , , , , , , , ,	3			1					
Date: Time:		Relinquished by:		Received by:	Via:	Date veveTime		;))	3	3) =	Comment of the comment of	300	5 r	<u> </u>				
2001	lumes viesas		odio od vom loto	I antroduct to other s	ovedited Jahoratori	This course as action as This course in Items	, noseihi		4	o do carto	40,00	1004	Any europartacted data will be clearly notated on the	to total	long odt	leoity.	1	ŀ	7

Released to Imaging: 6/3/2024 11:22:17 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 3/23/2024 9:56:53 AM

JOB DESCRIPTION

Standard #1

JOB NUMBER

885-779-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 3/23/2024 9:56:53 AM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975 5

2

5

6

8

9

12

1

Client: Hilcorp Energy

Laboratory Job ID: 885-779-1

Project/Site: Standard #1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Method Summary	16
Subcontract Data	17
Chain of Custody	23
Receipt Checklists	24

Definitions/Glossary

Client: Hilcorp Energy

Job ID: 885-779-1

Project/Site: Standard #1

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Albuquerque

Case Narrative

Client: Hilcorp Energy Job ID: 885-779-1 Project: Standard #1

Job ID: 885-779-1 Eurofins Albuquerque

Job Narrative 885-779-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/8/2024 7:00 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.6°C.

Subcontract Work

Method Fixed Gases: This method was subcontracted to Energy Laboratories, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

5

0

8

9

11

12

L

Client Sample Results

Client: Hilcorp Energy Job ID: 885-779-1

Project/Site: Standard #1

Client Sample ID: Influent 3-7-24

Date Collected: 03/07/24 14:45

Date Received: 03/08/24 07:00 Sample Container: Tedlar Bag 1L Lab Sample ID: 885-779-1

Matrix: Air

Method: SW846 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics) Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac 250 ug/L 03/13/24 13:51 Gasoline Range Organics [C6 -2100 50 C10] Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 99 70 - 130 03/13/24 13:51

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND	5.0	ug/L		03/13/24 13:51	5
1,1,1-Trichloroethane	ND	5.0	ug/L		03/13/24 13:51	5
1,1,2,2-Tetrachloroethane	ND	10	ug/L		03/13/24 13:51	5
1,1,2-Trichloroethane	ND	5.0	ug/L		03/13/24 13:51	5
1,1-Dichloroethane	ND	5.0	ug/L		03/13/24 13:51	5
1,1-Dichloroethene	ND	5.0	ug/L		03/13/24 13:51	5
1,1-Dichloropropene	ND	5.0	ug/L		03/13/24 13:51	5
1,2,3-Trichlorobenzene	ND	5.0	ug/L		03/13/24 13:51	5
1,2,3-Trichloropropane	ND	10	ug/L		03/13/24 13:51	5
1,2,4-Trichlorobenzene	ND	5.0	ug/L		03/13/24 13:51	5
1,2,4-Trimethylbenzene	ND	5.0	ug/L		03/13/24 13:51	5
1,2-Dibromo-3-Chloropropane	ND	10	ug/L		03/13/24 13:51	5
1,2-Dibromoethane (EDB)	ND	5.0	ug/L		03/13/24 13:51	5
1,2-Dichlorobenzene	ND	5.0	ug/L		03/13/24 13:51	5
1,2-Dichloroethane (EDC)	ND	5.0	ug/L		03/13/24 13:51	5
1,2-Dichloropropane	ND	5.0	ug/L		03/13/24 13:51	5
1,3,5-Trimethylbenzene	ND	5.0	ug/L		03/13/24 13:51	5
1,3-Dichlorobenzene	ND	5.0	ug/L		03/13/24 13:51	5
1,3-Dichloropropane	ND	5.0	ug/L		03/13/24 13:51	5
1,4-Dichlorobenzene	ND	5.0	ug/L		03/13/24 13:51	5
1-Methylnaphthalene	ND	20	ug/L		03/13/24 13:51	5
2,2-Dichloropropane	ND	10	ug/L		03/13/24 13:51	5
2-Butanone	ND	50	ug/L		03/13/24 13:51	5
2-Chlorotoluene	ND	5.0	ug/L		03/13/24 13:51	5
2-Hexanone	ND	50	ug/L		03/13/24 13:51	5
2-Methylnaphthalene	ND	20	ug/L		03/13/24 13:51	5
4-Chlorotoluene	ND	5.0	ug/L		03/13/24 13:51	5
1-Isopropyltoluene	ND	5.0	ug/L		03/13/24 13:51	5
4-Methyl-2-pentanone	ND	50	ug/L		03/13/24 13:51	5
Acetone	ND	50	ug/L		03/13/24 13:51	5
Benzene	14	5.0	ug/L		03/13/24 13:51	5
Bromobenzene	ND	5.0	ug/L		03/13/24 13:51	5
Bromodichloromethane	ND	5.0	ug/L		03/13/24 13:51	5
Dibromochloromethane	ND	5.0	ug/L		03/13/24 13:51	5
Bromoform	ND	5.0	ug/L		03/13/24 13:51	5
Bromomethane	ND	15	ug/L		03/13/24 13:51	5
Carbon disulfide	ND	50	ug/L		03/13/24 13:51	5
Carbon tetrachloride	ND	5.0	ug/L		03/13/24 13:51	5
Chlorobenzene	ND	5.0	ug/L		03/13/24 13:51	5
Chloroethane	ND	10	ug/L		03/13/24 13:51	5
Chloroform	ND	5.0	ug/L		03/13/24 13:51	5

Eurofins Albuquerque

Job ID: 885-779-1

Client: Hilcorp Energy Project/Site: Standard #1

Client Sample ID: Influent 3-7-24

Date Collected: 03/07/24 14:45

Date Received: 03/08/24 07:00 Sample Container: Tedlar Bag 1L Lab Sample ID: 885-779-1

Matrix: Air

п			
п	7		
п	L	Ξ	١
ш		т	П

	_
Fac	
50	
50	
50	
50	
50	8
50	
50	a
50	
50	
50	
50	

11

13

50

50

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloromethane	ND		15	ug/L			03/13/24 13:51	50
cis-1,2-Dichloroethene	ND		5.0	ug/L			03/13/24 13:51	50
cis-1,3-Dichloropropene	ND		5.0	ug/L			03/13/24 13:51	50
Dibromomethane	ND		5.0	ug/L			03/13/24 13:51	50
Dichlorodifluoromethane	ND		5.0	ug/L			03/13/24 13:51	50
Ethylbenzene	ND		5.0	ug/L			03/13/24 13:51	50
Hexachlorobutadiene	ND		5.0	ug/L			03/13/24 13:51	50
Isopropylbenzene	ND		5.0	ug/L			03/13/24 13:51	50
Methyl-tert-butyl Ether (MTBE)	ND		5.0	ug/L			03/13/24 13:51	50
Methylene Chloride	ND		15	ug/L			03/13/24 13:51	50
n-Butylbenzene	ND		15	ug/L			03/13/24 13:51	50
N-Propylbenzene	ND		5.0	ug/L			03/13/24 13:51	50
Naphthalene	ND		10	ug/L			03/13/24 13:51	50
sec-Butylbenzene	ND		5.0	ug/L			03/13/24 13:51	50
Styrene	ND		5.0	ug/L			03/13/24 13:51	50
tert-Butylbenzene	ND		5.0	ug/L			03/13/24 13:51	50
Tetrachloroethene (PCE)	ND		5.0	ug/L			03/13/24 13:51	50
Toluene	28		5.0	ug/L			03/13/24 13:51	50
trans-1,2-Dichloroethene	ND		5.0	ug/L			03/13/24 13:51	50
trans-1,3-Dichloropropene	ND		5.0	ug/L			03/13/24 13:51	50
Trichloroethene (TCE)	ND		5.0	ug/L			03/13/24 13:51	50
Trichlorofluoromethane	ND		5.0	ug/L			03/13/24 13:51	50
Vinyl chloride	ND		5.0	ug/L			03/13/24 13:51	50
Xylenes, Total	36		7.5	ug/L			03/13/24 13:51	50
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		70 - 130				03/13/24 13:51	50
Toluene-d8 (Surr)	104		70 - 130				03/13/24 13:51	50

70 - 130

70 - 130

102

98

03/13/24 13:51

03/13/24 13:51

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Job ID: 885-779-1 Client: Hilcorp Energy

Project/Site: Standard #1

Method: 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

Lab Sample ID: MB 885-1932/3

Matrix: Air

Analysis Batch: 1932

MB MB

Result Qualifier RL Unit Analyzed Dil Fac Analyte D **Prepared** 50 03/13/24 12:13 Gasoline Range Organics [C6 - C10] ND ug/L

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 70 - 130 03/13/24 12:13 95

Lab Sample ID: LCS 885-1932/2

Matrix: Air

Analysis Batch: 1932

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit D %Rec Limits 500 505 101

Gasoline Range Organics [C6 -

C10]

LCS LCS

Limits Surrogate %Recovery Qualifier

4-Bromofluorobenzene (Surr) 102 70 - 130

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-1708/3

Released to Imaging: 6/3/2024 11:22:17 AM

Matrix: Air

Analysis Batch: 1708

Client Sample ID: Method Blank Prep Type: Total/NA

ug/L

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			03/13/24 12:13	1
1,1,1-Trichloroethane	ND		1.0	ug/L			03/13/24 12:13	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			03/13/24 12:13	1
1,1,2-Trichloroethane	ND		1.0	ug/L			03/13/24 12:13	1
1,1-Dichloroethane	ND		1.0	ug/L			03/13/24 12:13	1
1,1-Dichloroethene	ND		1.0	ug/L			03/13/24 12:13	1
1,1-Dichloropropene	ND		1.0	ug/L			03/13/24 12:13	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			03/13/24 12:13	1
1,2,3-Trichloropropane	ND		2.0	ug/L			03/13/24 12:13	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			03/13/24 12:13	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			03/13/24 12:13	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			03/13/24 12:13	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			03/13/24 12:13	1
1,2-Dichlorobenzene	ND		1.0	ug/L			03/13/24 12:13	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			03/13/24 12:13	1
1,2-Dichloropropane	ND		1.0	ug/L			03/13/24 12:13	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			03/13/24 12:13	1
1,3-Dichlorobenzene	ND		1.0	ug/L			03/13/24 12:13	1
1,3-Dichloropropane	ND		1.0	ug/L			03/13/24 12:13	1
1,4-Dichlorobenzene	ND		1.0	ug/L			03/13/24 12:13	1
1-Methylnaphthalene	ND		4.0	ug/L			03/13/24 12:13	1
2,2-Dichloropropane	ND		2.0	ug/L			03/13/24 12:13	1
2-Butanone	ND		10	ug/L			03/13/24 12:13	1
2-Chlorotoluene	ND		1.0	ug/L			03/13/24 12:13	1
2-Hexanone	ND		10	ug/L			03/13/24 12:13	1

Eurofins Albuquerque

QC Sample Results

Client: Hilcorp Energy Job ID: 885-779-1 Project/Site: Standard #1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 885-1708/3

Matrix: Air

Analysis Batch: 1708

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	Unit	D Prepare	d Analyzed	Dil Fac
2-Methylnaphthalene	ND	4.0	ug/L		03/13/24 12:13	1
4-Chlorotoluene	ND	1.0	ug/L		03/13/24 12:13	1
4-Isopropyltoluene	ND	1.0	ug/L		03/13/24 12:13	1
4-Methyl-2-pentanone	ND	10	ug/L		03/13/24 12:13	1
Acetone	ND	10	ug/L		03/13/24 12:13	1
Benzene	ND	1.0	ug/L		03/13/24 12:13	1
Bromobenzene	ND	1.0	ug/L		03/13/24 12:13	1
Bromodichloromethane	ND	1.0	ug/L		03/13/24 12:13	1
Dibromochloromethane	ND	1.0	ug/L		03/13/24 12:13	1
Bromoform	ND	1.0	ug/L		03/13/24 12:13	1
Bromomethane	ND	3.0	ug/L		03/13/24 12:13	1
Carbon disulfide	ND	10	ug/L		03/13/24 12:13	1
Carbon tetrachloride	ND	1.0	ug/L		03/13/24 12:13	1
Chlorobenzene	ND	1.0	ug/L		03/13/24 12:13	1
Chloroethane	ND	2.0	ug/L		03/13/24 12:13	1
Chloroform	ND	1.0	ug/L		03/13/24 12:13	1
Chloromethane	ND	3.0	ug/L		03/13/24 12:13	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		03/13/24 12:13	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		03/13/24 12:13	1
Dibromomethane	ND	1.0	ug/L		03/13/24 12:13	1
Dichlorodifluoromethane	ND	1.0	ug/L		03/13/24 12:13	1
Ethylbenzene	ND	1.0	ug/L		03/13/24 12:13	1
Hexachlorobutadiene	ND	1.0	ug/L		03/13/24 12:13	1
Isopropylbenzene	ND	1.0	ug/L		03/13/24 12:13	1
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/L		03/13/24 12:13	1
Methylene Chloride	ND	3.0	ug/L		03/13/24 12:13	1
n-Butylbenzene	ND	3.0	ug/L		03/13/24 12:13	1
N-Propylbenzene	ND	1.0	ug/L		03/13/24 12:13	1
Naphthalene	ND	2.0	ug/L		03/13/24 12:13	1
sec-Butylbenzene	ND	1.0	ug/L		03/13/24 12:13	1
Styrene	ND	1.0	ug/L		03/13/24 12:13	1
tert-Butylbenzene	ND	1.0	ug/L		03/13/24 12:13	1
Tetrachloroethene (PCE)	ND	1.0	ug/L		03/13/24 12:13	1
Toluene	ND	1.0	ug/L		03/13/24 12:13	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		03/13/24 12:13	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		03/13/24 12:13	1
Trichloroethene (TCE)	ND	1.0	ug/L		03/13/24 12:13	1
Trichlorofluoromethane	ND	1.0	ug/L		03/13/24 12:13	1
Vinyl chloride	ND	1.0	ug/L		03/13/24 12:13	1
	ND	1.5	ug/L		03/13/24 12:13	1

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 130	_		03/13/24 12:13	1
Toluene-d8 (Surr)	95		70 - 130			03/13/24 12:13	1
4-Bromofluorobenzene (Surr)	99		70 - 130			03/13/24 12:13	1
Dibromofluoromethane (Surr)	103		70 - 130			03/13/24 12:13	1

Eurofins Albuquerque

QC Sample Results

Client: Hilcorp Energy Job ID: 885-779-1

Project/Site: Standard #1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Samp	le ID: LCS	885-1708/2
----------	------------	------------

Matrix: Air

Analysis Batch: 1708

Client Sample ID:	Lab Control Sample
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	17.7		ug/L		88		
Benzene	20.1	19.3		ug/L		96		
Chlorobenzene	20.1	20.1		ug/L		100		
Toluene	20.2	19.6		ug/L		97		
Trichloroethene (TCE)	20.2	18.7		ug/L		92		

100	LCS
LUS	LUS

	200	200	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		70 - 130
Toluene-d8 (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	100		70 - 130

QC Association Summary

Client: Hilcorp Energy

Job ID: 885-779-1

Project/Site: Standard #1

GC/MS VOA

Analysis Batch: 1708

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-779-1	Influent 3-7-24	Total/NA	Air	8260B	
MB 885-1708/3	Method Blank	Total/NA	Air	8260B	
LCS 885-1708/2	Lab Control Sample	Total/NA	Air	8260B	

Analysis Batch: 1932

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-779-1	Influent 3-7-24	Total/NA	Air	8015D	
MB 885-1932/3	Method Blank	Total/NA	Air	8015D	
LCS 885-1932/2	Lab Control Sample	Total/NA	Air	8015D	

_

5

_

Ω

9

11

12

1:

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-779-1

Project/Site: Standard #1

Client Sample ID: Influent 3-7-24 Lab Sample ID: 885-779-1

Date Collected: 03/07/24 14:45 Date Received: 03/08/24 07:00

Matrix: Air

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number /	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015D		50	1932	СМ	EET ALB	03/13/24 13:51
Total/NA	Analysis	8260B		50	1708 (СМ	EET ALB	03/13/24 13:51

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-779-1

Project/Site: Standard #1

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Program	Identification Number	Expiration Date
ew Mexico	State	NM9425, NM0901	02-26-25
The following analytes at for which the agency doe	re included in this report, but the laboratory is es not offer certification.	not certified by the governing author	ity. This list may include and
Analysis Method	Prep Method Matrix	Analyte	
8015D	Air	Gasoline Range Organic	s [C6 - C10]
8260B	Air	1,1,1,2-Tetrachloroethan	е
8260B	Air	1,1,1-Trichloroethane	
8260B	Air	1,1,2,2-Tetrachloroethan	е
8260B	Air	1,1,2-Trichloroethane	
8260B	Air	1,1-Dichloroethane	
8260B	Air	1,1-Dichloroethene	
8260B	Air	1,1-Dichloropropene	
8260B	Air	1,2,3-Trichlorobenzene	
8260B	Air	1,2,3-Trichloropropane	
8260B	Air	1,2,4-Trichlorobenzene	
8260B	Air	1,2,4-Trimethylbenzene	
8260B	Air	1,2-Dibromo-3-Chloropro	ppane
8260B	Air	1,2-Dibromoethane (EDE	•
8260B	Air	1,2-Dichlorobenzene	•)
8260B	Air	1,2-Dichloroethane (EDC	:)
8260B	Air	1,2-Dichloropropane	')
8260B	Air	1,3,5-Trimethylbenzene	
8260B	Air	1,3-Dichlorobenzene	
8260B			
8260B	Air	1,3-Dichloropropane	
	Air	1,4-Dichlorobenzene	
8260B	Air	1-Methylnaphthalene	
8260B	Air	2,2-Dichloropropane	
8260B	Air	2-Butanone	
8260B	Air	2-Chlorotoluene	
8260B	Air	2-Hexanone	
8260B	Air	2-Methylnaphthalene	
8260B	Air	4-Chlorotoluene	
8260B	Air	4-Isopropyltoluene	
8260B	Air	4-Methyl-2-pentanone	
8260B	Air	Acetone	
8260B	Air	Benzene	
8260B	Air	Bromobenzene	
8260B	Air	Bromodichloromethane	
8260B	Air	Bromoform	
8260B	Air	Bromomethane	
8260B	Air	Carbon disulfide	
8260B	Air	Carbon tetrachloride	
8260B	Air	Chlorobenzene	
8260B	Air	Chloroethane	
8260B	Air	Chloroform	
8260B	Air	Chloromethane	
8260B	Air	cis-1,2-Dichloroethene	
8260B	Air	cis-1,3-Dichloropropene	
8260B	Air	Dibromochloromethane	

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-779-1

Project/Site: Standard #1

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ıthority	Program	n	Identification Number Expiration Date
The following analytes	are included in this report,	, but the laboratory is r	not certified by the governing authority. This list may include analyte
for which the agency d	loes not offer certification.		
Analysis Method	Prep Method	Matrix	Analyte
8260B	<u> </u>	Air	Dibromomethane
8260B		Air	Dichlorodifluoromethane
8260B		Air	Ethylbenzene
8260B		Air	Hexachlorobutadiene
8260B		Air	Isopropylbenzene
8260B		Air	Methylene Chloride
8260B		Air	Methyl-tert-butyl Ether (MTBE)
8260B		Air	Naphthalene
8260B		Air	n-Butylbenzene
8260B		Air	N-Propylbenzene
8260B		Air	sec-Butylbenzene
8260B		Air	Styrene
8260B		Air	tert-Butylbenzene
8260B		Air	Tetrachloroethene (PCE)
8260B		Air	Toluene
8260B		Air	trans-1,2-Dichloroethene
8260B		Air	trans-1,3-Dichloropropene
8260B		Air	Trichloroethene (TCE)
8260B		Air	Trichlorofluoromethane
8260B		Air	Vinyl chloride
8260B		Air	Xylenes, Total
egon	NELAP		NM100001 02-26-25

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8015D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene

Eurofins Albuquerque

3

O

8

10

40

13

Released to Imaging: 6/3/2024 11:22:17 AM Page 14 of 24 3/

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-779-1

Project/Site: Standard #1

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Program		Identification Number Expiration Date			
• •	s are included in this repo does not offer certification	•	not certified by the governing authority. This list may include analy			
Analysis Method	Prep Method	Matrix	Analyte			
8260B		Air	1-Methylnaphthalene			
8260B		Air	2,2-Dichloropropane			
8260B		Air	2-Butanone			
8260B		Air	2-Chlorotoluene			
8260B		Air	2-Hexanone			
8260B		Air 2-Methylnaphthalene				
8260B		Air	4-Chlorotoluene			
8260B		Air 4-Isopropyltoluene				
8260B		Air	4-Methyl-2-pentanone			
8260B		Air	Acetone			
8260B		Air	Benzene			
8260B		Air	Bromobenzene			
8260B		Air	Bromodichloromethane			
8260B		Air	Bromoform			
8260B		Air	Bromomethane			
8260B		Air	Carbon disulfide			
8260B		Air	Carbon tetrachloride			
8260B	Air		Chlorobenzene			
8260B	Air		Chloroethane			
8260B	Air		Chloroform			
8260B	Air		Chloromethane			
8260B	Air		cis-1,2-Dichloroethene			
8260B	Air		cis-1,3-Dichloropropene			
8260B	Air		Dibromochloromethane			
8260B		Air	Dibromomethane			
8260B		Air	Dichlorodifluoromethane			
8260B		Air	Ethylbenzene			
8260B		Air	Hexachlorobutadiene			
8260B		Air	Isopropylbenzene			
8260B		Air	Methylene Chloride			
8260B		Air	Methyl-tert-butyl Ether (MTBE)			
8260B		Air	Naphthalene			
8260B		Air	n-Butylbenzene			
8260B		Air	N-Propylbenzene			
8260B		Air	sec-Butylbenzene			
8260B	Air		Styrene			
8260B		Air	tert-Butylbenzene			
8260B	Air		Tetrachloroethene (PCE)			
8260B	Air		Toluene			
8260B		Air	trans-1,2-Dichloroethene			
8260B		Air	trans-1,3-Dichloropropene			
8260B		Air	Trichloroethene (TCE)			
8260B		Air	Trichlorofluoromethane			
8260B		Air	Vinyl chloride			
8260B		Air	Xylenes, Total			

Eurofins Albuquerque

3

4

8

10

11

13

Method Summary

Client: Hilcorp Energy Project/Site: Standard #1 Job ID: 885-779-1

Method	Method Description	Protocol	Laboratory
8015D	Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)	SW846	EET ALB
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET ALB
Subcontract	Fixed Gases	None	
5030C	Collection/Prep Tedlar Bag (P&T)	SW846	EET ALB

4

Protocol References:

None = None

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Ş

10

11

12

1

3/23/2024

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

ANALYTICAL SUMMARY REPORT

March 21, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: B24030780 Quote ID: B15626

Project Name: Standard #1, 88500415

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 3/13/2024 for analysis.

Lab ID	Client Sample ID	Collect Date F	Receive Date	Matri x	Test
B24030780-001	Influent 3-7-24 (885-779- 1)	03/07/24 14:45	03/13/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

__

3

4

5

7

9

11

12

13

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental Project: Standard #1, 88500415 Lab ID: B24030780-001

Client Sample ID: Influent 3-7-24 (885-779-1)

Report Date: 03/21/24 Collection Date: 03/07/24 14:45 DateReceived: 03/13/24

Matrix: Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYS	SIS REPORT						
Oxygen	21.91	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
litrogen	77.75	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
Carbon Dioxide	0.30	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
lydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
/lethane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
thane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
Propane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
sobutane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
-Butane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
sopentane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
-Pentane	<0.01	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
lexanes plus	0.04	Mol %		0.01		GPA 2261-95	03/15/24 09:50 / jrj
ropane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 09:50 / jrj
sobutane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 09:50 / jrj
-Butane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 09:50 / jrj
sopentane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 09:50 / jrj
-Pentane	< 0.001	gpm		0.001		GPA 2261-95	03/15/24 09:50 / jrj
lexanes plus	0.017	gpm		0.001		GPA 2261-95	03/15/24 09:50 / jrj
SPM Total	0.017	gpm		0.001		GPA 2261-95	03/15/24 09:50 / jrj
SPM Pentanes plus	0.017	gpm		0.001		GPA 2261-95	03/15/24 09:50 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	2			1		GPA 2261-95	03/15/24 09:50 / jrj
let BTU per cu ft @ std cond. (LHV)	2			1		GPA 2261-95	03/15/24 09:50 / jrj
seudo-critical Pressure, psia	547			1		GPA 2261-95	03/15/24 09:50 / jrj
seudo-critical Temperature, deg R	240			1		GPA 2261-95	03/15/24 09:50 / jrj
Specific Gravity @ 60/60F	1.00			0.001		D3588-81	03/15/24 09:50 / jrj
ir, % - The analysis was not corrected for air.	100.12			0.01		GPA 2261-95	03/15/24 09:50 / jrj

COMMENTS

03/15/24 09:50 / jrj

BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.
GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.
To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.
Standard conditions: 60 F & 14.73 psi on a dry basis

RL - Analyte Reporting Limit MCL - Maximum Contaminant Level Report

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client:	Hall Environmental	Work Order: B24030780	Report Date: 03/21/24
---------	--------------------	-----------------------	-----------------------

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R418183
Lab ID:	B24030780-001ADUP	12 Sar	nple Duplic	ate		I	Run: GCNG	A-B_240315A		03/15/	24 10:40
Oxygen			21.8	Mol %	0.01				0.3	20	
Nitrogen			77.8	Mol %	0.01				0.1	20	
Carbon D	ioxide		0.30	Mol %	0.01				0.0	20	
Hydrogen	Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane			<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentan	е		<0.01	Mol %	0.01					20	
n-Pentane	e		<0.01	Mol %	0.01					20	
Hexanes	plus		0.04	Mol %	0.01				0.0	20	
Lab ID:	LCS031524	11 Lab	oratory Cor	ntrol Sample		ı	Run: GCNG	A-B_240315A		03/18/	24 02:59
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			5.90	Mol %	0.01	98	70	130			
Carbon D	ioxide		1.01	Mol %	0.01	102	70	130			
Methane			75.2	Mol %	0.01	101	70	130			
Ethane			5.84	Mol %	0.01	97	70	130			
Propane			5.03	Mol %	0.01	102	70	130			
Isobutane			1.66	Mol %	0.01	83	70	130			
n-Butane			2.00	Mol %	0.01	100	70	130			
Isopentan	е		0.99	Mol %	0.01	99	70	130			
n-Pentane	e		0.98	Mol %	0.01	98	70	130			
Hexanes	plus		0.77	Mol %	0.01	96	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Login completed by: Danielle N. Harris

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Date Received: 3/13/2024

Work Order Receipt Checklist

Hall Environmental B24030780

Login completed by. Danielle 14. Hams		Date	110001VCu. 0/10/2024
Reviewed by: Ileprowse		Re	ceived by: DNH
Reviewed Date: 3/18/2024		Car	rier name: FedEx
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all shipping container(s)/cooler(s)?	Yes 🔽	No 🗌	Not Present
Custody seals intact on all sample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?	Yes 🔽	No 🗌	
Chain of custody signed when relinquished and received?	Yes 🔽	No 🗌	
Chain of custody agrees with sample labels?	Yes 🔽	No 🗌	
Samples in proper container/bottle?	Yes 🔽	No 🗌	
Sample containers intact?	Yes 🔽	No 🗌	
Sufficient sample volume for indicated test?	Yes 🔽	No 🗌	
All samples received within holding time? (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.)	Yes √	No 🗌	
Temp Blank received in all shipping container(s)/cooler(s)?	Yes	No 🗸	Not Applicable
Container/Temp Blank temperature:	12.4°C No Ice		
Containers requiring zero headspace have no headspace or bubble that is <6mm (1/4").	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Environment Testing Note: Since laboratory accreditations are subject to change. Eurofins Environment Testing South Central, LLC places the ownership of method, analyte & accreditation compliance upon our subcontract laboratorys. This sample shade above for analysis/tests/marrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC laboratory or other instructions will be provided. Any changes to accreditation in the State of Origin listed above for analysis/tests/marrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC. Special Instructions/Note: 0 - AsNaO2 P - Na2O4S Q - Na2SO3 R - Na2SO3 S - 47SO4 U - Acetone V - MCAA W - pH 4-5 Y - Trizma Ver: 06/08/202 Months 82403078C Company Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon 💸 eurofins A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid Preservation Cod 300 Page: Page 1 of 1 Job #. 885-779-1 Ice DI Water - EDTA - EDA Total Number of containers Method of Shipment: State of Origin: New Mexico **Analysis Requested** Special Instructions/QC Requirements. Accreditations Required (See note):
NELAP - Oregon; State - New Mexico Lab PM: Freeman, Andy E-Mail: andy freeman@et. eurofinsus.com Received by: Received by: Chain of Custody Record SUB (Fixed Gases)/ Fixed Gases Perform MS/MSD (Yes or No) Time: Matrix Preservation Code ompany Air Type (C=comp, Sample G=grab) Primary Deliverable Rank: 2 Sample Mountain Date/Time: 3-12-24 (AT Requested (days): Due Date Requested: 3/15/2024 Sample Date 3/7/24 Project #: 88500415 SSOW#: Date/Time: Date/Time: Phone WO# Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Custody Seal No.: Sample Identification - Client ID (Lab ID) Phone: 505-345-3975 Fax: 505-345-4107 **Eurofins Albuquerque** Possible Hazard Identification Empty Kit Relinquished by: Influent 3-7-24 (885-779-1) Albuquerque, NM 87109 Custody Seals Intact:

△ Yes △ No Energy Laboratories, Inc. 1120 South 27th Street, Shipping/Receiving 4901 Hawkins NE elinquished by: telinquished by: Unconfirmed Standard #1 State, Zip: MT, 59107 Billings

> Page 5 of 6 3/23/2024

1

2

3

4

5

6

. .

11

12

Preservative None

Container Type Tedlar Bag 1L

ICOC No: 885-118 Containers Count

Received by OCD: 4/24/2024	3:25:30 PM		Page 114 of 314
HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	TPH:8016日(GR) DRO / MRO) B081 Pesticides/8082 PCB's EDB (Method 504.1) PAHs by 8310 or 8270SIMS CI, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ B260 (VOA) ドルル レルントントントントントントントントントントントントントントントントントントント		Date Time Remarks: dbucns 37/34 1546 2.c.; Swyde Cemsolum. com Signature of this possibility Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time: 文 Standard □ Rush Project Name: Standard Ħ	Project Manager: St wart Hyde Sampler: Danwy Burns On Ice: Dyes D No Walt Cooler Temp(Instuding CF): L. B. O. 25.1.6 (C) Container Preservative HEAL No. Type and # Type		
Chain-of-Custody Record Client: אין רפינף A איי: איליא איל אילא איין איין איל איליא איין איין	email or Fax#: QA/QC Package: Standard	15 Air Influent 3-7-24	Date Time Relinquished by Via. 3.74 15:40 Received by Via. Date Time. Relinquished by Received by Via. Received by Via.

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-779-1

List Source: Eurofins Albuquerque Login Number: 779

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 4/10/2024 5:50:14 PM

JOB DESCRIPTION

Standard 1

JOB NUMBER

885-1704-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 4/10/2024 5:50:14 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975

Client: Hilcorp Energy

Laboratory Job ID: 885-1704-1

Project/Site: Standard 1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	13
Lab Chronicle	14
Certification Summary	15
Subcontract Data	18
Chain of Custody	24
•	26

2

3

4

6

8

9

. .

Definitions/Glossary

Client: Hilcorp Energy Job ID: 885-1704-1
Project/Site: Standard 1

Glossary

EDL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Hilcorp Energy Job ID: 885-1704-1 Project: Standard 1

Job ID: 885-1704-1 **Eurofins Albuquerque**

Job Narrative 885-1704-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 3/23/2024 6:45 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 20.0°C.

Subcontract Work

Method Fixed Gases: This method was subcontracted to Energy Laboratories, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 885-1704-1

Client: Hilcorp Energy Project/Site: Standard 1

Client Sample ID: Influent 3-21 Lab Sample ID: 885-1704-1

Date Collected: 03/21/24 11:40 Matrix: Air

Date Received: 03/23/24 06:45 Sample Container: Tedlar Bag 1L

Released to Imaging: 6/3/2024 11:22:17 AM

Method: SW846 8015D -	Nonhalogenated Organics us	ing GC/MS -	-Modified (Gasoline	Range	Organics))
				_	_	

Analyte	Result Qua	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 -	2900	50	ug/L			03/28/24 12:59	10
0407							

C10]

Surrogate	%Recovery Qualifier	Limits	Prepared Analyze	ed Dil Fac
4-Bromofluorohenzene (Surr)	104	70 130	03/28/24 1	2.59 10

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	ND ND	1.0	ug/L		03/28/24 12:59	1
1,1,1-Trichloroethane	ND	1.0	ug/L		03/28/24 12:59	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		03/28/24 12:59	1
1,1,2-Trichloroethane	ND	1.0	ug/L		03/28/24 12:59	1
1,1-Dichloroethane	ND	1.0	ug/L		03/28/24 12:59	1
1,1-Dichloroethene	ND	1.0	ug/L		03/28/24 12:59	1
1,1-Dichloropropene	ND	1.0	ug/L		03/28/24 12:59	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		03/28/24 12:59	1
1,2,3-Trichloropropane	ND	2.0	ug/L		03/28/24 12:59	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		03/28/24 12:59	1
1,2,4-Trimethylbenzene	1.4	1.0	ug/L		03/28/24 12:59	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		03/28/24 12:59	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		03/28/24 12:59	1
1,2-Dichlorobenzene	ND	1.0	ug/L		03/28/24 12:59	1
1,2-Dichloroethane (EDC)	ND	1.0	ug/L		03/28/24 12:59	1
1,2-Dichloropropane	ND	1.0	ug/L		03/28/24 12:59	1
1,3,5-Trimethylbenzene	1.9	1.0	ug/L		03/28/24 12:59	1
1,3-Dichlorobenzene	ND	1.0	ug/L		03/28/24 12:59	1
1,3-Dichloropropane	ND	1.0	ug/L		03/28/24 12:59	1
1,4-Dichlorobenzene	ND	1.0	ug/L		03/28/24 12:59	1
1-Methylnaphthalene	ND	4.0	ug/L		03/28/24 12:59	1
2,2-Dichloropropane	ND	2.0	ug/L		03/28/24 12:59	1
2-Butanone	ND	10	ug/L		03/28/24 12:59	1
2-Chlorotoluene	ND	1.0	ug/L		03/28/24 12:59	1
2-Hexanone	ND	10	ug/L		03/28/24 12:59	1
2-Methylnaphthalene	ND	4.0	ug/L		03/28/24 12:59	1
4-Chlorotoluene	ND	1.0	ug/L		03/28/24 12:59	1
4-Isopropyltoluene	ND	1.0	ug/L		03/28/24 12:59	1
4-Methyl-2-pentanone	ND	10	ug/L		03/28/24 12:59	1
Acetone	ND	10	ug/L		03/28/24 12:59	1
Benzene	15	1.0	ug/L		03/28/24 12:59	1
Bromobenzene	ND	1.0	ug/L		03/28/24 12:59	1
Bromodichloromethane	ND	1.0	ug/L		03/28/24 12:59	1
Dibromochloromethane	ND	1.0	ug/L		03/28/24 12:59	1
Bromoform	ND	1.0	ug/L		03/28/24 12:59	1
Bromomethane	ND	3.0	ug/L		03/28/24 12:59	1
Carbon disulfide	ND	10	ug/L		03/28/24 12:59	
Carbon tetrachloride	ND	1.0	ug/L		03/28/24 12:59	1
Chlorobenzene	ND	1.0	ug/L		03/28/24 12:59	1
Chloroethane	ND	2.0	ug/L		03/28/24 12:59	
Chloroform	ND	1.0	ug/L		03/28/24 12:59	1

Job ID: 885-1704-1

Client: Hilcorp Energy Project/Site: Standard 1

Client Sample ID: Influent 3-21

Date Collected: 03/21/24 11:40

Date Received: 03/23/24 06:45 Sample Container: Tedlar Bag 1L Lab Sample ID: 885-1704-1

Matrix: Air

	ı	
	L	١

6

8

10

Analyte	Result Quali	ifier RL	Unit	D Prepared	Analyzed	Dil Fac
Chloromethane	ND ND	3.0	ug/L		03/28/24 12:59	10
cis-1,2-Dichloroethene	ND	1.0	ug/L		03/28/24 12:59	10
cis-1,3-Dichloropropene	ND	1.0	ug/L		03/28/24 12:59	10
Dibromomethane	ND	1.0	ug/L		03/28/24 12:59	10
Dichlorodifluoromethane	ND	1.0	ug/L		03/28/24 12:59	10
Ethylbenzene	1.1	1.0	ug/L		03/28/24 12:59	10
Hexachlorobutadiene	ND	1.0	ug/L		03/28/24 12:59	10
Isopropylbenzene	ND	1.0	ug/L		03/28/24 12:59	10
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/L		03/28/24 12:59	10
Methylene Chloride	ND	3.0	ug/L		03/28/24 12:59	10
n-Butylbenzene	ND	3.0	ug/L		03/28/24 12:59	10
N-Propylbenzene	ND	1.0	ug/L		03/28/24 12:59	10
Naphthalene	ND	2.0	ug/L		03/28/24 12:59	10
sec-Butylbenzene	ND	1.0	ug/L		03/28/24 12:59	10
Styrene	ND	1.0	ug/L		03/28/24 12:59	10
tert-Butylbenzene	ND	1.0	ug/L		03/28/24 12:59	10
Tetrachloroethene (PCE)	ND	1.0	ug/L		03/28/24 12:59	10
Toluene	27	1.0	ug/L		03/28/24 12:59	10
trans-1,2-Dichloroethene	ND	1.0	ug/L		03/28/24 12:59	10
trans-1,3-Dichloropropene	ND	1.0	ug/L		03/28/24 12:59	10
Trichloroethene (TCE)	ND	1.0	ug/L		03/28/24 12:59	10
Trichlorofluoromethane	ND	1.0	ug/L		03/28/24 12:59	10
Vinyl chloride	ND	1.0	ug/L		03/28/24 12:59	10
Xylenes, Total	34	1.5	ug/L		03/28/24 12:59	10
Surrogate	%Recovery Qual	ifier Limits		Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88		70 - 130		03/28/24 12:59	10
Toluene-d8 (Surr)	117		70 - 130		03/28/24 12:59	10
4-Bromofluorobenzene (Surr)	108		70 - 130		03/28/24 12:59	10
Dibromofluoromethane (Surr)	97		70 - 130		03/28/24 12:59	10

QC Sample Results

Client: Hilcorp Energy Job ID: 885-1704-1

Project/Site: Standard 1

Method: 8015D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

Lab Sample ID: MB 885-2497/3

Matrix: Air

Analysis Batch: 2497

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyzed Result Qualifier RL Unit Dil Fac Analyte D Prepared Gasoline Range Organics [C6 - C10] ND 50 ug/L 03/28/24 11:45

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 96 62 - 130 03/28/24 11:45

Lab Sample ID: LCS 885-2497/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Air

Analysis Batch: 2497

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits 500 510 ug/L 102

Gasoline Range Organics [C6 -C10]

LCS LCS

Limits Surrogate %Recovery Qualifier 4-Bromofluorobenzene (Surr) 103 70 - 130

Lab Sample ID: 885-1704-1 DU Client Sample ID: Influent 3-21 Prep Type: Total/NA

Matrix: Air

Analysis Batch: 2497

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit D **RPD** Limit 2830 Gasoline Range Organics [C6 -2900 20 ug/L

C10]

DU DU

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 104 70 - 130

Method: 8260B - Volatile Organic Compounds (GC/MS)

ND

ND

Lab Sample ID: MB 885-2498/3

Matrix: Air

Analysis Batch: 2498

1,2-Dibromoethane (EDB)

1,2-Dichlorobenzene

Client Sample ID: Method Blank Prep Type: Total/NA

MR MR Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 0.10 1,1,1,2-Tetrachloroethane 03/28/24 11:45 ND ug/L 1,1,1-Trichloroethane ND 0.10 ug/L 03/28/24 11:45 1,1,2,2-Tetrachloroethane 03/28/24 11:45 ND 0.20 ug/L 1.1.2-Trichloroethane ND 0.10 ug/L 03/28/24 11:45 ND 03/28/24 11:45 1.1-Dichloroethane 0.10 ug/L 1,1-Dichloroethene ND 0.10 ug/L 03/28/24 11:45 ND 0.10 03/28/24 11:45 1,1-Dichloropropene ug/L 1,2,3-Trichlorobenzene ND 0.10 ug/L 03/28/24 11:45 1,2,3-Trichloropropane ND 0.20 ug/L 03/28/24 11:45 ND 03/28/24 11:45 1,2,4-Trichlorobenzene 0.10 ug/L 1.2.4-Trimethylbenzene ND 0.10 ug/L 03/28/24 11:45 1,2-Dibromo-3-Chloropropane ND 0.20 ug/L 03/28/24 11:45

Eurofins Albuquerque

03/28/24 11:45

03/28/24 11:45

0.10

0.10

ug/L

ug/L

QC Sample Results

Client: Hilcorp Energy Job ID: 885-1704-1

Project/Site: Standard 1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-2498/3

Matrix: Air

Analysis Batch: 2498

Client Sample ID: Method Blank

Prep Type: Total/NA

							i
в мв							
t Ouglition	DI	l lmi4	D	Droporod	Analyzad	Dil Eco	

Analyto		MB Qualifier	RL	Unit	D	Dronarod	Analyzod	Dil Fac
Analyte 1,2-Dichloroethane (EDC)	ND	<u>uaiiier</u>	0.10 —	ug/L	U	Prepared	Analyzed 03/28/24 11:45	DII Fac
1,2-Dichloropropane	ND		0.10				03/28/24 11:45	
1,3,5-Trimethylbenzene	ND ND		0.10	ug/L			03/28/24 11:45	1
•	ND ND		0.10	ug/L			03/28/24 11:45	
1,3-Dichlorobenzene				ug/L				1
1,3-Dichloropropane	ND		0.10	ug/L			03/28/24 11:45	1
1,4-Dichlorobenzene	ND		0.10	ug/L			03/28/24 11:45	1
1-Methylnaphthalene	ND		0.40	ug/L			03/28/24 11:45	1
2,2-Dichloropropane	ND		0.20	ug/L			03/28/24 11:45	1
2-Butanone	ND		1.0	ug/L			03/28/24 11:45	1
2-Chlorotoluene	ND		0.10	ug/L			03/28/24 11:45	1
2-Hexanone	ND		1.0	ug/L			03/28/24 11:45	1
2-Methylnaphthalene	ND		0.40	ug/L			03/28/24 11:45	1
4-Chlorotoluene	ND		0.10	ug/L			03/28/24 11:45	1
4-Isopropyltoluene	ND		0.10	ug/L			03/28/24 11:45	1
4-Methyl-2-pentanone	ND		1.0	ug/L			03/28/24 11:45	1
Acetone	ND		1.0	ug/L			03/28/24 11:45	1
Benzene	ND		0.10	ug/L			03/28/24 11:45	1
Bromobenzene	ND		0.10	ug/L			03/28/24 11:45	1
Bromodichloromethane	ND		0.10	ug/L			03/28/24 11:45	1
Dibromochloromethane	ND		0.10	ug/L			03/28/24 11:45	1
Bromoform	ND		0.10	ug/L			03/28/24 11:45	1
Bromomethane	ND		0.30	ug/L			03/28/24 11:45	1
Carbon disulfide	ND		1.0	ug/L			03/28/24 11:45	1
Carbon tetrachloride	ND		0.10	ug/L			03/28/24 11:45	1
Chlorobenzene	ND		0.10	ug/L			03/28/24 11:45	1
Chloroethane	ND		0.20	ug/L			03/28/24 11:45	1
Chloroform	ND		0.10	ug/L			03/28/24 11:45	1
Chloromethane	ND		0.30	ug/L			03/28/24 11:45	1
cis-1,2-Dichloroethene	ND		0.10	ug/L			03/28/24 11:45	1
cis-1,3-Dichloropropene	ND		0.10	ug/L			03/28/24 11:45	1
Dibromomethane	ND		0.10	ug/L			03/28/24 11:45	1
Dichlorodifluoromethane	ND		0.10	ug/L			03/28/24 11:45	1
Ethylbenzene	ND		0.10	ug/L			03/28/24 11:45	1
Hexachlorobutadiene	ND		0.10	ug/L			03/28/24 11:45	1
Isopropylbenzene	ND		0.10	ug/L			03/28/24 11:45	1
Methyl-tert-butyl Ether (MTBE)	ND		0.10	ug/L			03/28/24 11:45	1
Methylene Chloride	ND		0.30	ug/L			03/28/24 11:45	1
n-Butylbenzene	ND		0.30	ug/L			03/28/24 11:45	1
N-Propylbenzene	ND		0.10	ug/L			03/28/24 11:45	1
Naphthalene	ND		0.20	ug/L			03/28/24 11:45	1
sec-Butylbenzene	ND		0.10	ug/L			03/28/24 11:45	1
Styrene	ND		0.10	ug/L			03/28/24 11:45	1
tert-Butylbenzene	ND		0.10	ug/L			03/28/24 11:45	1
Tetrachloroethene (PCE)	ND		0.10	ug/L			03/28/24 11:45	1
Toluene	ND		0.10	ug/L			03/28/24 11:45	1
trans-1,2-Dichloroethene	ND		0.10	ug/L			03/28/24 11:45	1
trans-1,3-Dichloropropene	ND		0.10	ug/L			03/28/24 11:45	· · · · · · · · · · · · · · · · · · ·
Trichloroethene (TCE)	ND		0.10	ug/L			03/28/24 11:45	1
Trichlorofluoromethane	ND		0.10	ug/L			03/28/24 11:45	1

Eurofins Albuquerque

4/10/2024

Page 9 of 26

Client: Hilcorp Energy Job ID: 885-1704-1

Project/Site: Standard 1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-2498/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Air

Analysis Batch: 2498

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		0.10	ug/L			03/28/24 11:45	1
Xylenes Total	ND		0.15	ua/l			03/28/24 11:45	1

	MB MB			
Surrogate	%Recovery Qualifier	Limits	Prepared Analy	zed Dil Fac
1,2-Dichloroethane-d4 (Surr)	106	70 - 130	03/28/24	11:45
Toluene-d8 (Surr)	98	70 - 130	03/28/24	1 11:45 1
4-Bromofluorobenzene (Surr)	102	70 - 130	03/28/24	1 11:45 1
Dibromofluoromethane (Surr)	102	70 - 130	03/28/24	11:45 1

Lab Sample ID: LCS 885-2498/2

Matrix: Air

Analysis Batch: 2498

Client Sample ID: Lab Control Sample Prep Type: Total/NA

%Rec D %Rec Limits Unit ug/L 98 ug/L 101 ug/L 102

Result Qualifier Analyte Added 1,1-Dichloroethene 20.1 19.8 Benzene 20.1 20.2 Chlorobenzene 20.1 20.4 Toluene 20.2 20.2 100 ug/L Trichloroethene (TCE) 20.2 19.6 ug/L 97 LCS LCS

LCS LCS

Spike

%Recovery Qualifier Limits Surrogate 1,2-Dichloroethane-d4 (Surr) 70 - 130 108 Toluene-d8 (Surr) 99 70 - 130 4-Bromofluorobenzene (Surr) 103 70 - 130 70 - 130 Dibromofluoromethane (Surr) 102

Lab Sample ID: 885-1704-1 DU

Matrix: Air

Analysis Batch: 2498

Client Sample ID: Influent 3-21
Prep Type: Total/NA

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
1,1,1,2-Tetrachloroethane	ND		ND		ug/L		NC NC	20
1,1,1-Trichloroethane	ND		ND		ug/L		NC	20
1,1,2,2-Tetrachloroethane	ND		ND		ug/L		NC	20
1,1,2-Trichloroethane	ND		ND		ug/L		NC	20
1,1-Dichloroethane	ND		ND		ug/L		NC	20
1,1-Dichloroethene	ND		ND		ug/L		NC	20
1,1-Dichloropropene	ND		ND		ug/L		NC	20
1,2,3-Trichlorobenzene	ND		ND		ug/L		NC	20
1,2,3-Trichloropropane	ND		ND		ug/L		NC	20
1,2,4-Trichlorobenzene	ND		ND		ug/L		NC	20
1,2,4-Trimethylbenzene	1.4		1.35		ug/L		4	20
1,2-Dibromo-3-Chloropropane	ND		ND		ug/L		NC	20
1,2-Dibromoethane (EDB)	ND		ND		ug/L		NC	20
1,2-Dichlorobenzene	ND		ND		ug/L		NC	20
1,2-Dichloroethane (EDC)	ND		ND		ug/L		NC	20
1,2-Dichloropropane	ND		ND		ug/L		NC	20
1,3,5-Trimethylbenzene	1.9		1.86		ug/L		3	20

Eurofins Albuquerque

Released to Imaging: 6/3/2024 11:22:17 AM

QC Sample Results

Client: Hilcorp Energy Job ID: 885-1704-1

Project/Site: Standard 1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 885-1704-1 DU

Matrix: Air

Analysis Batch: 2498

Client Sample ID: Influent 3-21 **Prep Type: Total/NA**

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
1,3-Dichlorobenzene	ND		ND		ug/L		 NC	20
1,3-Dichloropropane	ND		ND		ug/L		NC	20
1,4-Dichlorobenzene	ND		ND		ug/L		NC	20
1-Methylnaphthalene	ND		ND		ug/L		NC	20

1-Methylnaphthalene ND ND ug/L ug/L ND ND NC 2,2-Dichloropropane 2-Butanone ND ND ug/L NC ug/L 2-Chlorotoluene ND ND NC ND ND ug/L 2-Hexanone NC

ND ND 2-Methylnaphthalene ug/L NC 20 4-Chlorotoluene ND ND ug/L NC 20 ND ND ug/L NC 20 4-Isopropyltoluene ND ND NC 20 4-Methyl-2-pentanone ug/L Acetone ND ND ug/L NC 20 Benzene ug/L 6 20 15 15.9

Bromobenzene ND ND ug/L NC Bromodichloromethane ND ND ug/L NC Dibromochloromethane ND ND ug/L NC Bromoform ND ND ug/L NC ND NC Bromomethane ND ug/L Carbon disulfide ND ND ug/L NC Carbon tetrachloride ND ND ug/L NC Chlorobenzene ND ND ug/L NC

NC Chloroethane ND ND ug/L 20 Chloroform ND ND ug/L NC 20 ND ND ug/L NC 20 Chloromethane cis-1,2-Dichloroethene ND ND ug/L NC 20 ND cis-1,3-Dichloropropene ND NC 20 ug/L Dibromomethane ND ND ug/L NC 20 ug/L Dichlorodifluoromethane ND ND NC 20 Ethylbenzene 1.1 1.10 ug/L 0.9 20 Hexachlorobutadiene ND ND ug/L NC ND NC Isopropylbenzene ND ug/L Methyl-tert-butyl Ether (MTBE) ND ND ug/L NC

20 20 20 Methylene Chloride ND ND ug/L NC 20 ND n-Butylbenzene ND ug/L NC 20 N-Propylbenzene ND ND ug/L NC 20 Naphthalene ND ND ug/L NC 20 sec-Butylbenzene ND ND ug/L NC 20 Styrene ND ND ug/L NC 20 ND NC tert-Butylbenzene ND ug/L 20 Tetrachloroethene (PCE) ND ND ug/L NC 20 Toluene 27 28.4 20 4

ug/L trans-1,2-Dichloroethene ND ND ug/L NC 20 trans-1,3-Dichloropropene ND ND 20 ug/L NC. ND ND Trichloroethene (TCE) ug/L NC 20 Trichlorofluoromethane ND ND ug/L NC 20 Vinyl chloride ND ug/L ND NC 20 ug/L Xylenes, Total 34 33.8 8.0 20

Eurofins Albuquerque

20

20

20

20

20

20

20

20

20

20

20

QC Sample Results

Client: Hilcorp Energy Job ID: 885-1704-1 Project/Site: Standard 1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 885-1704-1 DU **Matrix: Air**

Analysis Batch: 2498

	DU DU					
Surrogate	%Recovery	Qualifier	Limits			
1,2-Dichloroethane-d4 (Surr)	93		70 - 130			
Toluene-d8 (Surr)	118		70 - 130			
4-Bromofluorobenzene (Surr)	105		70 - 130			
Dibromofluoromethane (Surr)	95		70 - 130			

Client Sample ID: Influent 3-21 Prep Type: Total/NA

QC Association Summary

Client: Hilcorp Energy

Job ID: 885-1704-1

Project/Site: Standard 1

GC/MS VOA

Analysis Batch: 2497

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-1704-1	Influent 3-21	Total/NA	Air	8015D	
MB 885-2497/3	Method Blank	Total/NA	Air	8015D	
LCS 885-2497/2	Lab Control Sample	Total/NA	Air	8015D	
885-1704-1 DU	Influent 3-21	Total/NA	Air	8015D	

Analysis Batch: 2498

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
885-1704-1	Influent 3-21	Total/NA	Air	8260B
MB 885-2498/3	Method Blank	Total/NA	Air	8260B
LCS 885-2498/2	Lab Control Sample	Total/NA	Air	8260B
885-1704-1 DU	Influent 3-21	Total/NA	Air	8260B

_1

A

7

8

4.0

11

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-1704-1

Project/Site: Standard 1

Client Sample ID: Influent 3-21 Lab Sample ID: 885-1704-1

Date Collected: 03/21/24 11:40 Matrix: Air Date Received: 03/23/24 06:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015D		10	2497	СМ	EET ALB	03/28/24 12:59
Total/NA	Analysis	8260B		10	2498	CM	EET ALB	03/28/24 12:59

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59107

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

3

5

7

9

10

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-1704-1

Project/Site: Standard 1

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date
New Mexico	State	NM9425, NM0901	02-26-25
The following analytes are	e included in this report, but the laborato	ry is not certified by the governing authori	ty. This list may include anal

alytes

Analysis Method	Prep Method	Matrix	Analyte
8015D		Air	Gasoline Range Organics [C6 - C10]
3260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene
8260B		Air	1-Methylnaphthalene
8260B		Air	2,2-Dichloropropane
8260B		Air	2-Butanone
8260B		Air	2-Chlorotoluene
8260B		Air	2-Hexanone
8260B		Air	2-Methylnaphthalene
8260B		Air	4-Chlorotoluene
8260B		Air	4-Isopropyltoluene
3260B		Air	4-Methyl-2-pentanone
8260B		Air	Acetone
8260B		Air	Benzene
8260B		Air	Bromobenzene
8260B		Air	Bromodichloromethane
8260B		Air	Bromoform
8260B		Air	Bromomethane
8260B		Air	Carbon disulfide
8260B		Air	Carbon tetrachloride
3260B		Air	Chlorobenzene
8260B		Air	Chloroethane
8260B		Air	Chloroform
8260B		Air	Chloromethane
8260B		Air	cis-1,2-Dichloroethene
8260B		Air	cis-1,3-Dichloropropene
JZUUD		All	Gis-1,3-Dichioloproperie

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-1704-1

Project/Site: Standard 1

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	ım	Identification Number	Expiration Date					
• •	·	· · · · · · · · · · · · · · · · · · ·	not certified by the governing auth	certified by the governing authority. This list may include analyt					
,	does not offer certification.								
Analysis Method	Prep Method	Matrix	Analyte						
8260B		Air Dibromomethane							
8260B		Air	Dichlorodifluorometha	ine					
8260B		Air	Ethylbenzene						
8260B		Air	Hexachlorobutadiene						
8260B		Air	Isopropylbenzene						
8260B		Air	Methylene Chloride						
8260B		Air Methyl-tert-butyl Ether (MTBE)							
8260B		Air	Naphthalene						
8260B		Air	n-Butylbenzene						
8260B		Air	N-Propylbenzene						
8260B		Air	sec-Butylbenzene						
8260B		Air	Styrene						
8260B		Air	tert-Butylbenzene						
8260B		Air	Tetrachloroethene (PC	CE)					
8260B		Air	Toluene						
8260B		Air	trans-1,2-Dichloroethe	ene					
8260B		Air	trans-1,3-Dichloroprop	pene					
8260B		Air	Trichloroethene (TCE)						
8260B		Air	Trichlorofluoromethan	,					
8260B		Air	Vinyl chloride	-					
8260B		Air	Xylenes, Total	•					
02000		All	Aylettes, Total						
Oregon	NELAF)	NM100001	02-26-25					

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8015D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene

Eurofins Albuquerque

2

3

6

10

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-1704-1

Client: Hilcorp Energy
Project/Site: Standard 1

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progra	am	Identification Number Expiration Date
The following analyte:	s are included in this repo	rt. but the laboratory is i	not certified by the governing authority. This list may include anal
	does not offer certification	•	, 3 3 , , ,
Analysis Method	Prep Method	Matrix	Analyte
8260B		Air	1-Methylnaphthalene
8260B		Air	2,2-Dichloropropane
8260B		Air	2-Butanone
8260B		Air	2-Chlorotoluene
8260B		Air	2-Hexanone
8260B		Air	2-Methylnaphthalene
8260B		Air	4-Chlorotoluene
8260B		Air	4-Isopropyltoluene
8260B		Air	4-Methyl-2-pentanone
8260B		Air	Acetone
8260B		Air	Benzene
8260B		Air	Bromobenzene
8260B		Air	Bromodichloromethane
8260B		Air	Bromoform
8260B		Air	Bromomethane
8260B		Air	Carbon disulfide
8260B		Air	Carbon tetrachloride
8260B		Air	Chlorobenzene
8260B		Air	Chloroethane
8260B		Air	Chloroform
8260B		Air	Chloromethane
8260B		Air	cis-1,2-Dichloroethene
8260B		Air	cis-1,3-Dichloropropene
8260B		Air	Dibromochloromethane
8260B		Air	Dibromomethane
8260B		Air	Dichlorodifluoromethane
8260B		Air	Ethylbenzene
8260B		Air	Hexachlorobutadiene
8260B		Air	Isopropylbenzene
8260B		Air	Methylene Chloride
8260B		Air	Methyl-tert-butyl Ether (MTBE)
8260B		Air	Naphthalene
8260B		Air	n-Butylbenzene
8260B		Air	N-Propylbenzene
8260B		Air	sec-Butylbenzene
8260B		Air	Styrene
8260B		Air	tert-Butylbenzene
8260B		Air	Tetrachloroethene (PCE)
8260B		Air	Toluene
8260B		Air	trans-1,2-Dichloroethene
8260B		Air	trans-1,3-Dichloropropene
8260B		Air	Trichloroethene (TCE)
8260B		Air	Trichlorofluoromethane
8260B		Air	Vinyl chloride
8260B		Air	Xylenes, Total

Eurofins Albuquerque

2

3

4

6

8

10

11

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

ANALYTICAL SUMMARY REPORT

April 09, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Quote ID: B15626 Work Order: B24031582

Project Name: Standard 1, 88500531

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 3/26/2024 for analysis.

	-	= :		
Lab ID	Client Sample ID	Collect Date Receive Date	Matri x	Test
B24031582-001	Influent 3-21 (885-1704- 1)	03/21/24 11:40 03/26/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

Report Date: 04/09/24

Matrix: Air

Collection Date: 03/21/24 11:40 DateReceived: 03/26/24

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Hall Environmental Client: Project: Standard 1, 88500531 B24031582-001 Lab ID:

Client Sample ID: Influent 3-21 (885-1704-1)

MCL/ RLQCL Result Units Qualifiers Method Analysis Date / By Analyses GAS CHROMATOGRAPHY ANALYSIS REPORT Oxygen 21.57 Mol % 0.01GPA 2261-95 03/28/24 10:13 / jrj Nitrogen 78.10 Mol % 0.01 GPA 2261-95 03/28/24 10:13 / jrj Carbon Dioxide 0.29 Mol % 0.01 GPA 2261-95 03/28/24 10:13 / jrj Hydrogen Sulfide < 0.01 Mol % 0.01 GPA 2261-95 03/28/24 10:13 / jrj Methane GPA 2261-95 03/28/24 10:13 / jrj <0.01 Mol % 0.01 Ethane <0.01 Mol % 0.01 GPA 2261-95 03/28/24 10:13 / jrj Propane <0.01 Mol % 0.01GPA 2261-95 03/28/24 10:13 / jrj Isobutane < 0.01 Mol % 0.01 GPA 2261-95 03/28/24 10:13 / jrj n-Butane <0.01 Mol % 0.01 GPA 2261-95 03/28/24 10:13 / jrj Isopentane <0.01 Mol % 0.01 GPA 2261-95 03/28/24 10:13 / jrj <0.01 Mol % n-Pentane 0.01GPA 2261-95 03/28/24 10:13 / jrj Hexanes plus 0.04 Mol % 0.01 GPA 2261-95 03/28/24 10:13 / jrj Propane < 0.001 gpm 0.001 GPA 2261-95 03/28/24 10:13 / jrj Isobutane < 0.001 gpm 0.001 GPA 2261-95 03/28/24 10:13 / jrj n-Butane < 0.001 gpm 0.001 GPA 2261-95 03/28/24 10:13 / jrj Isopentane < 0.001 gpm 0.001 GPA 2261-95 03/28/24 10:13 / jrj n-Pentane < 0.001 gpm 0.001 GPA 2261-95 03/28/24 10:13 / jrj Hexanes plus 0.017 gpm 0.001 GPA 2261-95 03/28/24 10:13 / jrj **GPM Total** 0.017 gpm 0.001 GPA 2261-95 03/28/24 10:13 / jrj **GPM Pentanes plus** 0.017 gpm 0.001 GPA 2261-95 03/28/24 10:13 / jrj **CALCULATED PROPERTIES** 2 Gross BTU per cu ft @ Std Cond. (HHV) 1 GPA 2261-95 03/28/24 10:13 / jrj Net BTU per cu ft @ std cond. (LHV) 2 GPA 2261-95 1 03/28/24 10:13 / jrj Pseudo-critical Pressure, psia 546 1 GPA 2261-95 03/28/24 10:13 / jrj GPA 2261-95 Pseudo-critical Temperature, deg R 240 1 03/28/24 10:13 / jrj Specific Gravity @ 60/60F 1.00 0.001 D3588-81 03/28/24 10:13 / jrj

- The analysis was corrected for air contamination.

Air, %

COMMENTS

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

- GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

98.56

- To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

- Standard conditions: 60 F & 14.73 psi on a dry basis

RL - Analyte Reporting Limit Report **Definitions:** QCL - Quality Control Limit

MCL - Maximum Contaminant Level

0.01

ND - Not detected at the Reporting Limit (RL)

GPA 2261-95

03/28/24 10:13 / jrj

03/28/24 10:13 / jrj

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24031582 Report Date: 04/09/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R418861
Lab ID:	B24031582-001ADUP	12 Sa	mple Duplic	ate			Run: GCNG	A-B_240328A		03/28/	/24 11:03
Oxygen			21.7	Mol %	0.01				0.4	20	
Nitrogen			78.0	Mol %	0.01				0.1	20	
Carbon D	ioxide		0.29	Mol %	0.01				0.0	20	
Hydrogen	s Sulfide		< 0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane	e		<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentar	ne		<0.01	Mol %	0.01					20	
n-Pentane	е		<0.01	Mol %	0.01					20	
Hexanes	plus		0.04	Mol %	0.01				0.0	20	
Lab ID:	LCS032824	11 Lal	boratory Co	ntrol Sample	•		Run: GCNG	A-B_240328A		03/28/	/24 01:28
Oxygen			0.65	Mol %	0.01	130	70	130			
Nitrogen			6.09	Mol %	0.01	101	70	130			
Carbon D	ioxide		0.99	Mol %	0.01	100	70	130			
Methane			74.5	Mol %	0.01	100	70	130			
Ethane			6.05	Mol %	0.01	101	70	130			
Propane			5.00	Mol %	0.01	101	70	130			
Isobutane	•		1.93	Mol %	0.01	96	70	130			
n-Butane			2.00	Mol %	0.01	100	70	130			
Isopentar	ne		1.01	Mol %	0.01	101	70	130			
n-Pentane	е		1.00	Mol %	0.01	100	70	130			
Hexanes	plus		0.79	Mol %	0.01	99	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Trust our People. Trust our Data. www.energylab.com

Hall Environmental

Work Order Receipt Checklist

Login completed by: Crystal M. Jones Date Received: 3/26/2024 Reviewed by: Received by: AAG agilbert Reviewed Date: 3/27/2024 Carrier name: FedEx Not Present ☐ Shipping container/cooler in good condition? Yes √ No 🗌 Custody seals intact on all shipping container(s)/cooler(s)? No □ Not Present Yes √ Custody seals intact on all sample bottles? Yes No 🗌 Not Present ✓ Chain of custody present? Yes √ No 🗌 Chain of custody signed when relinquished and received? Yes √ No 🗌 Chain of custody agrees with sample labels? Yes √ No 🖂 Samples in proper container/bottle? Yes √ No 🗌 Sample containers intact? Yes √ No 🗌 Sufficient sample volume for indicated test? Yes √ No 🗌 All samples received within holding time? Yes √ No 🖂 (Exclude analyses that are considered field parameters such as pH, DO, Res CI, Sulfite, Ferrous Iron, etc.) Temp Blank received in all shipping container(s)/cooler(s)? Yes No ✓ Not Applicable Container/Temp Blank temperature: 12.8°C No Ice

B24031582

Standard Reporting Procedures:

Containers requiring zero headspace have no headspace or

bubble that is <6mm (1/4").

Water - pH acceptable upon receipt?

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

No 🗌

No 🗌

No VOA vials submitted

Not Applicable

Yes

Yes

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Environment Testing 0 - AsNaO2
P - Na2O4S
Q - Na2SQ3
R - Na2S2Q3
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
V - MCAA
W - pH 4-5
Y - Trizma
Z - other (specify) Value Since alporations are subject to change, Eurofins Environment Testing South Central, LLC places the ownership of method, analyse & accreditation compliance upon our subcontract laboratories. This samples must be single-for an anisative statement of the single-forest the provided Any changes to the contract of mainstance of or analysis/lessinative being analyzed, the as amples must be single-forest be single-forest as amples or the sample survey. If all dependent in the provided Any changes to accreditation state of original includes a provided and the second survey of their includes a provided and the second survey of their includes a provided and the second survey of their includes a provided and the second survey of their includes a provided and their survey of their survey. The survey of their includes a provided and their survey of their survey. The survey of their survey. The survey of their survey Special Instructions/Note: Ver: 06/08/202 Months 824051582 Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon 💸 eurofins A - HCL
B - NaOH
C - Zn Acetate
D - Nitra Acid
E - NaHSO4
F - MeOH
G - Amchlor
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 885-1704-1 COC No: 885-197.1 - Ice J - DI Water Total Number of containers Method of Shipment State of Origin: New Mexico **Analysis Requested** Freeman, Andy
E-Main
andy freeman@et.eurofinsus.com
Nandy freemanRequired (See note):
NELAP - Oregon; State - New Mexico Special Instructions/QC Requirements Sooler Temperature(s) °C and Other Received by: eceived by: Chain of Custody Record SUB (Fixed Gases)/ Fixed Gases Perform MS/MSD (Yes or No) Matrix ion Code Air Type (C=comp, G=grab) Sample Primary Deliverable Rank: 2 11:40 Mountain Sample 3/25/24 'AT Requested (days) Due Date Requested: 4/1/2024 Sample Date 3/21/24 Project #: 88500531 SSOW#: ate/Time Phone: Client Information (Sub Contract Lab) eliverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Sample Identification - Client ID (Lab ID) Phone: 505-345-3975 Fax: 505-345-4107 Possible Hazard Identification

Page 5 of 6 4/10/2024

Custody Seals Intact

Δ Yes Δ No

linquished by:

Empty Kit Relinquished by

Inconfirmed

inquished by:

Influent 3-21 (885-1704-1)

Energy Laboratories, Inc.

Shipping/Receiving

1120 South 27th Street

State, Zip. MT, 59107

City: Billings

Project Name: Standard 1

Eurofins Albuquerque

Albuquerque, NM 87109

4901 Hawkins NE

1

2

3

4

5

7

8

9

10

a a

4 6

12

Preservative None

Container Type Tedlar Bag 1L

ICOC No: 885-197 Containers Count

Date Page 24 of 26

Matrix

Time

イグ

04:11

16-5

375

전 EDD (Type)

Accreditation:

□ NELAC

Time.

3-32

Phone #:

QA/QC Package:

X Standard

Hilcorp

Client:

M, tch

Mailing Address:

sary,	Time. Relinguished by			n re Arri wanta	OAIT	Time Matrix Sample Name		疑 EDD (Type) <u>;</u> なび		Accreditation: Az Compliance	QA/QC Package: ☑ Standard □ Level 4 (Full Validation)	email or Fax#: Mkillesyh @ h. Icorp - com	Phone #:			Mitch Killoganh	Client: Hilcorp	Chain-of-Custody Record	1
This serves a	Received by Via Date Time					Container Preservative HEAL No.	Cooler Temp(including CF): N/A (°C)	olers; \		Sampler: F. Carroll	SELLAST HYDIC- ENSOIUM	Project Manager:		Project #:	Standard 1	Project Name:	啓 Standard □ Rush	Turn-Around Time:	1 1
CC: CCA FOILE ENSOLUM. COM Shyde & en Solum. com this possibility Any sub-contracted data will be clearly notated on the analytical report				;	×	BTEX / TPH:80 8081 Paris by the second control of the second contr	MT 115D estice lethouse 33 Me WOA	(GF cide od (3310 etal: NO ₃	80 / s/80 or 8 s s, N	DR 082 1) 327(O ₂ ,	PCB's	RO)	Anal	5 Fax 505-345-4107	4901 Hawkins NE - Albuquerque, NM 871	www.hallenvironmental.com	_d	HAIL ENVIRONMENTAL	

4/10/2024

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-1704-1

Login Number: 1704 List Source: Eurofins Albuquerque

List Number: 1

Creator: Casarrubias, Tracy

orcator. Gasarrabias, macy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 13, 2024

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Standard 1 OrderNo.: 2401A25

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 1/25/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **2401A25**

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-24-24

 Project:
 Standard 1
 Collection Date: 1/24/2024 1:40:00 PM

 Lab ID:
 2401A25-001
 Matrix: AIR
 Received Date: 1/25/2024 7:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	4400	250	μg/L	50	2/2/2024 3:36:35 PM
Surr: BFB	130	15-412	%Rec	50	2/2/2024 3:36:35 PM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	22	5.0	μg/L	50	2/7/2024 4:54:00 PM
Toluene	40	5.0	μg/L	50	2/7/2024 4:54:00 PM
Ethylbenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Naphthalene	ND	10	μg/L	50	2/7/2024 4:54:00 PM
1-Methylnaphthalene	ND	20	μg/L	50	2/7/2024 4:54:00 PM
2-Methylnaphthalene	ND	20	μg/L	50	2/7/2024 4:54:00 PM
Acetone	ND	50	μg/L	50	2/7/2024 4:54:00 PM
Bromobenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Bromodichloromethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Bromoform	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Bromomethane	ND	10	μg/L	50	2/7/2024 4:54:00 PM
2-Butanone	ND	50	μg/L	50	2/7/2024 4:54:00 PM
Carbon disulfide	ND	50	μg/L	50	2/7/2024 4:54:00 PM
Carbon tetrachloride	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Chlorobenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Chloroethane	ND	10	μg/L	50	2/7/2024 4:54:00 PM
Chloroform	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Chloromethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
2-Chlorotoluene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
4-Chlorotoluene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
cis-1,2-DCE	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,2-Dibromo-3-chloropropane	ND	10	μg/L	50	2/7/2024 4:54:00 PM
Dibromochloromethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Dibromomethane	ND	10	μg/L	50	2/7/2024 4:54:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 4

Analytical ReportLab Order **2401A25**

Date Reported: 2/13/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-24-24

 Project:
 Standard 1
 Collection Date: 1/24/2024 1:40:00 PM

 Lab ID:
 2401A25-001
 Matrix: AIR
 Received Date: 1/25/2024 7:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,3-Dichloropropane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
2,2-Dichloropropane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,1-Dichloropropene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
2-Hexanone	ND	50	μg/L	50	2/7/2024 4:54:00 PM
Isopropylbenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
4-Isopropyltoluene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
4-Methyl-2-pentanone	ND	50	μg/L	50	2/7/2024 4:54:00 PM
Methylene chloride	ND	15	μg/L	50	2/7/2024 4:54:00 PM
n-Butylbenzene	ND	15	μg/L	50	2/7/2024 4:54:00 PM
n-Propylbenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
sec-Butylbenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Styrene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
tert-Butylbenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Tetrachloroethene (PCE)	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
trans-1,2-DCE	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,2,3-Trichlorobenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Trichloroethene (TCE)	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
1,2,3-Trichloropropane	ND	10	μg/L	50	2/7/2024 4:54:00 PM
Vinyl chloride	ND	5.0	μg/L	50	2/7/2024 4:54:00 PM
Xylenes, Total	30	7.5	μg/L	50	2/7/2024 4:54:00 PM
Surr: Dibromofluoromethane	95.4	70-130	%Rec	50	2/7/2024 4:54:00 PM
Surr: 1,2-Dichloroethane-d4	89.7	70-130	%Rec	50	2/7/2024 4:54:00 PM
Surr: Toluene-d8	108	70-130	%Rec	50	2/7/2024 4:54:00 PM
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	50	2/7/2024 4:54:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 4

ANALYTICAL SUMMARY REPORT

February 01, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B24011306

Quote ID: B15626

Project Name:

Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 1/26/2024 for analysis.

Lab ID	Client Sample ID	Collect Date R	deceive Date	Matri x	Test
B24011306-001	2401A25-001B, Influent 1-24-24	01/24/24 13:40	01/26/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental **Project:** Not Indicated Lab ID: B24011306-001

Client Sample ID: 2401A25-001B, Influent 1-24-24

Report Date: 02/01/24 Collection Date: 01/24/24 13:40 DateReceived: 01/26/24

Matrix: Air

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT						
Oxygen	21.19	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Nitrogen	78.18	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Carbon Dioxide	0.57	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Methane	<0.01	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Ethane	<0.01	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Propane	<0.01	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Isobutane	<0.01	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
n-Butane	<0.01	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Isopentane	<0.01	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
n-Pentane	<0.01			0.01		GPA 2261-95	01/29/24 11:32 / jrj
Hexanes plus	0.06	Mol %		0.01		GPA 2261-95	01/29/24 11:32 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	01/29/24 11:32 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-95	01/29/24 11:32 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	01/29/24 11:32 / jrj
Isopentane	< 0.001	gpm		0.001		GPA 2261-95	01/29/24 11:32 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	01/29/24 11:32 / jrj
Hexanes plus	0.025	gpm		0.001		GPA 2261-95	01/29/24 11:32 / jrj
GPM Total	0.025	gpm		0.001		GPA 2261-95	01/29/24 11:32 / jrj
GPM Pentanes plus	0.025	gpm		0.001		GPA 2261-95	01/29/24 11:32 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	3			1		GPA 2261-95	01/29/24 11:32 / jrj
Net BTU per cu ft @ std cond. (LHV)	3			1		GPA 2261-95	01/29/24 11:32 / jrj
Pseudo-critical Pressure, psia	546			1		GPA 2261-95	01/29/24 11:32 / jrj
Pseudo-critical Temperature, deg R	241			1		GPA 2261-95	01/29/24 11:32 / jrj
Specific Gravity @ 60/60F	1.00			0.001		D3588-81	01/29/24 11:32 / jrj
Air, %	96.81			0.01		GPA 2261-95	01/29/24 11:32 / jrj
- The analysis was not corrected for air.							
COMMENTS							

COMMENTS

Definitions:

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

RL - Analyte Reporting Limit Report

MCL - Maximum Contaminant Level

QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

01/29/24 11:32 / jrj

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.
- To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24011306 Report Date: 02/01/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R415794
Lab ID:	B24011306-001ADUP	12 Sai	mple Duplic	ate			Run: GCNG	GA-B_240129A		01/29/	24 12:22
Oxygen			21.2	Mol %	0.01				0	20	
Nitrogen			78.2	Mol %	0.01				0	20	
Carbon D	Dioxide		0.57	Mol %	0.01				0.0	20	
Hydrogen	n Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane	e		<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentar	ne		<0.01	Mol %	0.01					20	
n-Pentan	е		<0.01	Mol %	0.01					20	
Hexanes	plus		0.05	Mol %	0.01				18	20	
Lab ID:	LCS012924	11 Lat	ooratory Co	ntrol Sample			Run: GCNG	SA-B_240129A		01/29/	24 01:18
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			6.22	Mol %	0.01	104	70	130			
Carbon D	ioxide		0.99	Mol %	0.01	100	70	130			
Methane			75.1	Mol %	0.01	101	70	130			
Ethane			5.87	Mol %	0.01	98	70	130			
Propane			4.79	Mol %	0.01	97	70	130			
Isobutane	e		1.69	Mol %	0.01	84	70	130			
n-Butane			2.01	Mol %	0.01	100	70	130			
Isopentar	ne		0.98	Mol %	0.01	98	70	130			
n-Pentan	е		0.91	Mol %	0.01	91	70	130			
Hexanes	plus		0.78	Mol %	0.01	98	70	130			
	•										

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

Login completed by: Crystal M. Jones

B24011306

Date Received: 1/26/2024

gp	or your nin control			
Reviewed by:	dharris		Red	ceived by: LEL
Reviewed Date:	1/26/2024		Car	rier name: FedEx
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes 🗸	No 🗌	Not Present
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present 🗹
Chain of custody present?		Yes √	No 🗌	
Chain of custody signed who	en relinquished and received?	Yes √	No 🗌	
Chain of custody agrees with	h sample labels?	Yes √	No 🗌	
Samples in proper container	/bottle?	Yes √	No 🗌	
Sample containers intact?		Yes √	No 🗌	
Sufficient sample volume for	r indicated test?	Yes 🔽	No 🗌	
All samples received within I (Exclude analyses that are c such as pH, DO, Res Cl, Su	onsidered field parameters	Yes √	No 🗌	
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank temp	erature:	7.4°C No Ice		
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Website: www.hallenvironmental.com

TO THE	COST
	5
	A
-	
	ting
	t Tes
	nmen
	nviro
-	111
Fins	
Irol	
)

ODY RECORD	PAGE: 1	OF: 1	Eurofins Environment Testing South Central, LLC
			4901 Hawkins NE
			Albuquerque, NM 87109
			TEL: 505-345-3975
			FAX: 505-345-4107

SUB CONTI	RATOR Energy 1120 Sou	SUB CONTRATOR Energy Labs -Billings COMPANY ADDRESS: 1120 South 27th Street	Energy Laboratories	ries	PHONE. ACCOUNT #	(406) 869-6253	FAX	(406) 252-6069	
CITY, STAI	CITY, STATE, ZIP. Billings, MT 59107	MT 59107							
ITEM	SAMPLE	CLIENT SAMPLE ID	BOTTLE TYPE	BOTTLE MATRIX	COLLECTION	# CONTAINERS	VALYTICA	ANALYTICAL COMMENTS	
1 24	01A25-001B Ir	1 2401A25-001B Influent 1-24-24	TEDLAR	Air	1/24/2024 1:40:00 PM	1/24/2024 1:40:00 PM 1 Natural Gas Analysis.			
147)	10/25	305110428							

	. Please return all coolers and blue ice.	
SPECIAL INSTRUCTIONS COMMENTS:	Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Thank von	

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

2401A25 13-Feb-24

WO#:

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 2401A25-001adup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Influent 1-24-24 Batch ID: R102941 RunNo: 102941

Prep Date:	Analysis D)ate: 2/ 3	7/2024	9	SeqNo: 3	3804542	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	5.0						0.320	20	
Toluene	40	5.0						0.152	20	
Ethylbenzene	ND	5.0						0	20	
Methyl tert-butyl ether (MTBE)	ND	5.0						0	20	
1,2,4-Trimethylbenzene	ND	5.0						0	20	
1,3,5-Trimethylbenzene	ND	5.0						0	20	
1,2-Dichloroethane (EDC)	ND	5.0						0	20	
1,2-Dibromoethane (EDB)	ND	5.0						0	20	
Naphthalene	ND	10						0	20	
1-Methylnaphthalene	ND	20						0	20	
2-Methylnaphthalene	ND	20						0	20	
Acetone	ND	50						0	20	
Bromobenzene	ND	5.0						0	20	
Bromodichloromethane	ND	5.0						0	20	
Bromoform	ND	5.0						0	20	
Bromomethane	ND	10						0	20	
2-Butanone	ND	50						0	20	
Carbon disulfide	ND	50						0	20	
Carbon tetrachloride	ND	5.0						0	20	
Chlorobenzene	ND	5.0						0	20	
Chloroethane	ND	10						0	20	
Chloroform	ND	5.0						0	20	
Chloromethane	ND	5.0						0	20	
2-Chlorotoluene	ND	5.0						0	20	
4-Chlorotoluene	ND	5.0						0	20	
cis-1,2-DCE	ND	5.0						0	20	
cis-1,3-Dichloropropene	ND	5.0						0	20	
1,2-Dibromo-3-chloropropane	ND	10						0	20	
Dibromochloromethane	ND	5.0						0	20	
Dibromomethane	ND	10						0	20	
1,2-Dichlorobenzene	ND	5.0						0	20	
1,3-Dichlorobenzene	ND	5.0						0	20	
1,4-Dichlorobenzene	ND	5.0						0	20	
Dichlorodifluoromethane	ND	5.0						0	20	
1,1-Dichloroethane	ND	5.0						0	20	
1,1-Dichloroethene	ND	5.0						0	20	
1,2-Dichloropropane	ND	5.0						0	20	
1,3-Dichloropropane	ND	5.0						0	20	
2,2-Dichloropropane	ND	5.0						0	20	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 4

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

2401A25 13-Feb-24

WO#:

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 2401A25-001adup SampType: DUP TestCode: EPA Method 8260B: Volatiles Client ID: Influent 1-24-24 Batch ID: R102941 RunNo: 102941 Units: µg/L Prep Date: Analysis Date: 2/7/2024 SeqNo: 3804542 PQL SPK value SPK Ref Val HighLimit %RPD **RPDLimit** Qual Analyte Result %REC LowLimit 1,1-Dichloropropene ND 5.0 0 20 Hexachlorobutadiene ND 5.0 0 20 ND 2-Hexanone 50 0 20 5.0 Isopropylbenzene ND 0 20 4-Isopropyltoluene ND 5.0 0 20 ND 0 20 4-Methyl-2-pentanone 50 Methylene chloride ND 15 0 20 n-Butylbenzene ND 15 0 20 n-Propylbenzene ND 5.0 0 20 sec-Butylbenzene ND 0 5.0 20 0 Styrene ND 5.0 20 0 tert-Butylbenzene ND 5.0 20 1,1,1,2-Tetrachloroethane ND 5.0 0 20 1,1,2,2-Tetrachloroethane ND 5.0 0 20 Tetrachloroethene (PCE) ND 0 20 5.0 trans-1,2-DCE ND 5.0 0 20 ND 0 20 trans-1,3-Dichloropropene 5.0 1,2,3-Trichlorobenzene ND 5.0 0 20 1,2,4-Trichlorobenzene ND 5.0 0 20 1,1,1-Trichloroethane ND 5.0 0 20 ND 0 1,1,2-Trichloroethane 5.0 20 0 Trichloroethene (TCE) ND 5.0 20 Trichlorofluoromethane ND 5.0 0 20 1,2,3-Trichloropropane ND 10 0 20 Vinyl chloride ND 5.0 0 20 29 7.5 4.95 20 Xylenes, Total Surr: Dibromofluoromethane 46 50.00 92.9 70 130 0 0 0 0 Surr: 1,2-Dichloroethane-d4 46 50.00 92.5 70 130 Surr: Toluene-d8 55 50.00 70 130 0 0 110 0 0 Surr: 4-Bromofluorobenzene 52 50.00 104 70 130

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 4

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 6/3/2024 11:22:17 AM

Client Name:	HILCORP ENERGY	Work Order Number	2401A25		RcptNo	: 1
Received By:	Cheyenne Cason	1/25/2024 7:45:00 AM		Chul		
Completed By:	Tracy Casarrubias	1/25/2024 9:21:06 AM				
Reviewed By:	74/25/24					
Chain of Cu	stody					
1. Is Chain of 0	Custody complete?		Yes	No 🗹	Not Present	
2. How was the	e sample delivered?		Courier			
Log In						
Was an atte	mpt made to cool the sample	s?	Yes	No 🗸	NA 🗌	
4. Were all san	nples received at a temperatu	ure of >0° C to 6.0°C	Yes 🗌	E No □	NA 🗹	
5. Sample(s) in	n proper container(s)?		Yes 🗹	No 🗆		
6. Sufficient sa	mple volume for indicated tes	et(s)?	Yes 🗹	No 🗌		
7. Are samples	(except VOA and ONG) prop	perly preserved?	Yes 🗹	No 🗌		
8. Was preserv	vative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
9. Received at	least 1 vial with headspace <	1/4" for AQ VOA?	Yes \square	No 🗌	NA 🗹	
10. Were any sa	ample containers received bro	oken?	Yes	No 🗹	# of preserved	
	work match bottle labels? pancies on chain of custody)		Yes 🗹	No 🗆	bottles checked for pH:	r >12 unless noted)
	correctly identified on Chain	of Custody?	Yes 🗸	No 🗆	Adjusted?	
13. Is it clear wh	at analyses were requested?		Yes 🗸	No 🗌		
	ding times able to be met? customer for authorization.)		Yes 🗹	No 🗌	Checked by:	21/2
	dling (if applicable)			i		
	notified of all discrepancies w	ith this order?	Yes 🗌	No 🗌	NA 🗹	
Perso	n Notified:	Date:				
By Wi	hom:	Via: [eMail	Phone Fax	In Person	
Regar	rding:					
Client	Instructions: Mailing address	ss, phone number, and Ema	il/Fax are n	nissing on COC - T	MC 1/25/24	
16. Additional r	remarks:					
17. Cooler Info	<u>ormation</u>					
Cooler N	lo Temp °C Condition	Seal Intact Seal No S	Seal Date	Signed By		
1	N/A Good	Yes				

Marrie .	
2	
0	
0	
3	
10	
· 10	
0	
1,1	
\sim	
100	
O	
-	
0	
0	
-	
4	
0	
4	
4	
£.	
0	
0	
0	
0	
0	
, OCD:	
v OCD:	
w OCD:	
by OCD:	
I by OCD:	
d by OCD:	
I by OCD:	
d by OCD:	
d by OCD:	
ved by OCD:	
eived by OCD:	
ceived by OCD:	
ceived by OCD:	
eceived by OCD:	
eceived by OCD:	
ceived by OCD:	
eceived by OCD:	
Received by OCD:	
eceived by OCD:	

Chain	-of-Cu	Chain-of-Custody Record	i urn-Around i ime.					Ī	HAII	Z	ENVIRONMENTAL	ON	M	Z	AL	
Client:	COLD		Z Standard	□ Rush			П	A	ANALYSIS	YSI	SL	AB	OR	LABORATORY	RY	
Mitch	تذ	1 longh	Project Name:	()	THE THE			>	www.hallenvironmental.com	enviro	nment	al.com	_			
Mailing Address:)	Stantandi	Las C	1 1	4	901 H	4901 Hawkins NE	- - - -	Albuc	Albuquerque, NM 87109	S, NM	87109			
		10.	Project #:			·	rel. 50	Tel. 505-345-3975	3975	Fa)	Fax 505-345-4107	345-4	107			
Phone #:									۷	nalysi	Analysis Request	nest				
email or Fax#:			Project Manag							†OS		(jue			_	
QA/QC Package:	7		Straft	+ Myd	2			-	CIAII	7° °	L.<	sq√				
□ Standard		☐ Level 4 (Full Validation)	ĺ						00	ار ار	11	_	.5			
Accreditation:	☐ Az Co	mpliance	Sampler:	DANNY B	SH (M)	-				ON ')(A(20			
□ EDD (Tvpe)			# of Coolers:			Carlo .	$\overline{}$					Lm (\ <u></u>			
			Cooler Temp(Including CF).	Iduding CF):	(°C)		300						<u>) </u>			
				ervative	HEAL No.	XEX /	08:Hq ⁻ 역 1808	N) BO	SAHs b	3), F, 15	7) 0928 S) 0728	Cotal C	<u>KIJ</u>			
12.4 13.4	Air	Influent 1-24-24	2 Tedles		100		<u> </u>			' }		4				
+-		1								-						
												- 1				
							_	ļ			1	\				
											1			Z		
													1	4		
							/								Ta.	
						\				=	- 1		_			
A															_	\Box
									3 1							
						_	_				_	1 21			-	
Date: Time:	Relinduished by:	hed by:	Received by:	Via:	Date Time	Remarks:	rks:	de.	phrns		(ro			
- -	Relinquished by:	hed by:	Réceived by:	Via:	7	CC		_	renemann	W.	8	2	Sola	& ensoland on	3	
124/24 1728	_	JAN. 41 JCA		1 3000	(25/W 0745			SWY	OE				=			
January 1		males submitted to Hall Environmental may be subcontracted to other acc	contracted to other ac	credited laboratories.	is. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	ilidissod s	ty. Any s	ub-contr	cted data	will be c	early not	ated on t	he analyt	ical repor	نب	

Released to Imaging: 6/3/2024 11:22:17 AM

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 04, 2024

Mitch Killough
HILCORP ENERGY
PO Box 4700
Farmington, NM 87499

TEL: (505) 564-0733

FAX

RE: Standard 1 OrderNo.: 2402A63

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 2/22/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Andel

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2402A63

Date Reported: 3/4/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent

Project: Standard 1 Collection Date: 2/21/2024 12:05:00 PM Lab ID: 2402A63-001 Matrix: AIR **Received Date: 2/22/2024 7:00:00 AM**

Analyses	Result	RL Qua	Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	2900	250	μg/L	50	2/23/2024 12:46:22 PM
Surr: BFB	108	15-412	%Rec	50	2/23/2024 12:46:22 PM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	13	2.0	μg/L	20	2/29/2024 12:58:00 PM
Toluene	18	2.0	μg/L	20	2/29/2024 12:58:00 PM
Ethylbenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Methyl tert-butyl ether (MTBE)	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,2,4-Trimethylbenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,3,5-Trimethylbenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,2-Dichloroethane (EDC)	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,2-Dibromoethane (EDB)	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Naphthalene	ND	4.0	μg/L	20	2/29/2024 12:58:00 PM
1-Methylnaphthalene	ND	8.0	μg/L	20	2/29/2024 12:58:00 PM
2-Methylnaphthalene	ND	8.0	μg/L	20	2/29/2024 12:58:00 PM
Acetone	ND	20	μg/L	20	2/29/2024 12:58:00 PM
Bromobenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Bromodichloromethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Bromoform	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Bromomethane	ND	4.0	μg/L	20	2/29/2024 12:58:00 PM
2-Butanone	ND	20	μg/L	20	2/29/2024 12:58:00 PM
Carbon disulfide	ND	20	μg/L	20	2/29/2024 12:58:00 PM
Carbon tetrachloride	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Chlorobenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Chloroethane	ND	4.0	μg/L	20	2/29/2024 12:58:00 PM
Chloroform	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Chloromethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
2-Chlorotoluene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
4-Chlorotoluene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
cis-1,2-DCE	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
cis-1,3-Dichloropropene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,2-Dibromo-3-chloropropane	ND	4.0	μg/L	20	2/29/2024 12:58:00 PM
Dibromochloromethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Dibromomethane	ND	4.0	μg/L	20	2/29/2024 12:58:00 PM
1,2-Dichlorobenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,3-Dichlorobenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,4-Dichlorobenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Dichlorodifluoromethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,1-Dichloroethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,1-Dichloroethene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 1 of 2

Analytical Report Lab Order 2402A63

Date Reported: 3/4/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent

 Project:
 Standard 1
 Collection Date: 2/21/2024 12:05:00 PM

 Lab ID:
 2402A63-001
 Matrix: AIR
 Received Date: 2/22/2024 7:00:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,3-Dichloropropane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
2,2-Dichloropropane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,1-Dichloropropene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Hexachlorobutadiene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
2-Hexanone	ND	20	μg/L	20	2/29/2024 12:58:00 PM
Isopropylbenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
4-Isopropyltoluene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
4-Methyl-2-pentanone	ND	20	μg/L	20	2/29/2024 12:58:00 PM
Methylene chloride	ND	6.0	μg/L	20	2/29/2024 12:58:00 PM
n-Butylbenzene	ND	6.0	μg/L	20	2/29/2024 12:58:00 PM
n-Propylbenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
sec-Butylbenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Styrene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
tert-Butylbenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,1,1,2-Tetrachloroethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Tetrachloroethene (PCE)	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
trans-1,2-DCE	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
trans-1,3-Dichloropropene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,2,3-Trichlorobenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,2,4-Trichlorobenzene	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,1,1-Trichloroethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,1,2-Trichloroethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Trichloroethene (TCE)	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Trichlorofluoromethane	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
1,2,3-Trichloropropane	ND	4.0	μg/L	20	2/29/2024 12:58:00 PM
Vinyl chloride	ND	2.0	μg/L	20	2/29/2024 12:58:00 PM
Xylenes, Total	18	3.0	μg/L	20	2/29/2024 12:58:00 PM
Surr: Dibromofluoromethane	96.7	70-130	%Rec	20	2/29/2024 12:58:00 PM
Surr: 1,2-Dichloroethane-d4	87.2	70-130	%Rec	20	2/29/2024 12:58:00 PM
Surr: Toluene-d8	111	70-130	%Rec	20	2/29/2024 12:58:00 PM
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	20	2/29/2024 12:58:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 2

Trust our People. Trust our Data. www.energylab.com

Billings, MT 406.252.6325 . Casper, WY 307.235.0515 Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

ANALYTICAL SUMMARY REPORT

March 01, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B24021412

Quote ID: B15626

Project Name:

Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 2/23/2024 for analysis.

Lab ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
B24021412-001	2402A63-001B, Influent	02/21/24 12:05 02/23/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Digitally signed by Ladonna Weis Date: 2024.03.01 14:05:34 -07:00

Billings, MT 406.252.6325 * Casper, WY 307.235.0515 Gillette, WY 307.686.7175 . Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental **Report Date: 03/01/24** Project: Not Indicated Collection Date: 02/21/24 12:05 Lab ID: B24021412-001 DateReceived: 02/23/24 Client Sample ID: 2402A63-001B, Influent Matrix: Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT						
Oxygen	19.74	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Nitrogen	79.83	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Carbon Dioxide	0.40	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Methane	<0.01	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Ethane	<0.01	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Propane	<0.01	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Isobutane	<0.01	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
n-Butane	<0.01	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Isopentane	<0.01	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
n-Pentane	<0.01	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Hexanes plus	0.03	Mol %		0.01		GPA 2261-95	02/26/24 10:04 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	02/26/24 10:04 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-95	02/26/24 10:04 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	02/26/24 10:04 / jrj
Isopentane	< 0.001	gpm		0.001		GPA 2261-95	02/26/24 10:04 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	02/26/24 10:04 / jrj
Hexanes plus	0.013	gpm		0.001		GPA 2261-95	02/26/24 10:04 / jrj
GPM Total	0.013	gpm		0.001		GPA 2261-95	02/26/24 10:04 / jrj
GPM Pentanes plus	0.013	gpm		0.001		GPA 2261-95	02/26/24 10:04 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	1			1		GPA 2261-95	02/26/24 10:04 / jrj
Net BTU per cu ft @ std cond. (LHV)	1			1		GPA 2261-95	02/26/24 10:04 / jrj
Pseudo-critical Pressure, psia	542			1		GPA 2261-95	02/26/24 10:04 / jrj
Pseudo-critical Temperature, deg R	239			1		GPA 2261-95	02/26/24 10:04 / jrj
Specific Gravity @ 60/60F	0.998			0.001		D3588-81	02/26/24 10:04 / jrj
Air, % - The analysis was not corrected for air.	90.19			0.01		GPA 2261-95	02/26/24 10:04 / jrj

COMMENTS

02/26/24 10:04 / jrj

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.
- GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

 To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.
- Standard conditions: 60 F & 14.73 psi on a dry basis.

Report RL - Analyte Reporting Limit Definitions: QCL - Quality Control Limit

MCL - Maximum Contaminant Level

ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 + Casper, WY 307.235.0515 Gillette, WY 307.686.7175 + Helena, MT 406.442.0711

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24021412 Report Date: 03/01/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R417194
Lab ID:	B24021103-001ADUP	12 Sar	mple Duplic	ate			Run: GCNC	GA-B_240226A		02/26	/24 01:17
Oxygen			0.84	Mol %	0.01				1.2	20	
Nitrogen			83.3	Mol %	0.01				0.2	20	
Carbon D	ioxide		11.0	Mol %	0.01				0.9	20	
Hydrogen	Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			0.02	Mol %	0.01				0.0	20	
Propane			<0.01	Mol %	0.01					20	
Isobutane	ı		<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentan	е		<0.01	Mol %	0.01					20	
n-Pentane	e		<0.01	Mol %	0.01					20	
Hexanes	plus		0.04	Mol %	0.01				0.0	20	
Lab ID:	LCS022624	11 Lab	oratory Co	ntrol Sample	•		Run: GCNC	GA-B_240226A		02/26	/24 02:11
Oxygen			0.61	Mol %	0.01	122	70	130			
Nitrogen			6.37	Mol %	0.01	106	70	130			
Carbon D	ioxide		1.02	Mol %	0.01	103	70	130			
Methane			74.3	Mol %	0.01	99	70	130			
Ethane			5.99	Mol %	0.01	100	70	130			
Propane			5.02	Mol %	0.01	102	70	130			
Isobutane	ı		1.82	Mol %	0.01	91	70	130			
n-Butane			1.99	Mol %	0.01	99	70	130			
Isopentan	е		1.02	Mol %	0.01	102	70	130			
n-Pentane	e		1.03	Mol %	0.01	103	70	130			
Hexanes	plus		0.81	Mol %	0.01	101	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Work Order Receipt Checklist

Hall Environmental

B24021412

Login completed by:	Danielle N. Harris	Date Received: 2/23/2024						
Reviewed by:	gmccartney	Received by: DNH						
Reviewed Date:	2/28/2024	Carrier name: FedEx						
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present				
Custody seals intact on all sl	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present				
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓				
Chain of custody present?		Yes ✓	No 🗌					
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌					
Chain of custody agrees with	n sample labels?	Yes ✓	No 🗌					
Samples in proper container	/bottle?	Yes ✓	No 🗌					
Sample containers intact?		Yes ✓	No 🗌					
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌					
All samples received within h (Exclude analyses that are c such as pH, DO, Res Cl, Su	onsidered field parameters	Yes √	No 🗌					
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Applicable				
Container/Temp Blank tempe	erature:	15.0°C No Ice						
Containers requiring zero her bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted				
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗹				

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Eurofins Environment Testing South Central, LLC. 4901 Hawkins NE Albuquerque, NM 87109 TEL. 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com	(406) 252-6069			ANALYTICAL COMMENTS	
1 OF 1 Eurofin	(406) 869-6253 FAX.	EMAIL.			2/21/2024 12:05:00 PM 1 Natural Gas Analysis.
ECORD PAGE:	PHONE	ACCOUNT #:		COLLECTION PROPERTY DATE	21/2024 12:05:00 PM 1
CODY R	se			MATRIX	Air 2/
CHAIN OF CUSTODY RECORD PAGE	Energy Laboratories			ВОТПЕ	TEDLAR
	COMPANY			LE ID	
Environment Testing	Labs -Billings	1120 South 27th Street	MT 59107	CLIENT SAMPLE ID	ıfluent
s eurofins	SUB CONTRATOR Energy Labs -Billings		CITY, STATE, ZIP. Billings, MT 59107	SAMPLE	1 2402A63-001B Influent
nə «	SUB CON	ADDRESS	CITY, ST.	TEM	1

Relinquished By: Trine Trine P.27 AM Received By Time.	REPORT TRANSMITTAL DESIRED:
Relinquished By: Date: Time. Received By: Date: Time.	HARDCOPY (extra cost) FAX ONLINE
1	FOR LAB USE ONLY
	Temp of samples C Attempt to Cool?

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

	nber: 2402A63		RcptNo: 1	
2/22/2024 7:00:00	АМ			
2/22/2024 9:22:57	AM			
2/22/24				
			_	
	Yes	No 🗹	Not Present	
	Courier			
mples?	Yes 🗌	No 🗸	NA \square	
erature of >0° C to 6.0°C	Yes 🗌	No 🗌	na 🗹	
	Yes 🗸	No 🗆		
d test(s)?	Yes 🗹	No 🗌		
properly preserved?	Yes 🗸	No 🗌		
	Yes	No 🗹	NA 🗆	
ace <1/4" for AQ VOA?	Yes 🗌	No 🗆	NA 🗹	
ed broken?	Yes	No 🔽	# of preserved	
ody)	Yes 🗹	No 🗆	bottles checked for pH:	upless noted)
hain of Custody?	Yes 🗹	No 🗆	Adjusted?	
ited?	Yes 🗹	No 🗆	/	26.1.
t? on.)	Yes 🗹	No 🗆	Checked by:	-122/24
!				
es with this order?	Yes 🗌	No 🗆	NA 🗹	
Date				
Via:	eMail F	Phone Fax	In Person	
ddress and phone number a	re missing on COC	- TMC 2/22/24		
on Cool intert Cool No	Cool Data	Signed By		
	Seal Date	olduea By		
on	Seal Intact Seal No Yes			

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107	Analysis Requestive the Process of t	
Turn-Around Time: Standard □ Rush Project Name: Standard # Project #:	Project Manager: Sampler: Peter Andron Sampler: Peter Andro On Ice: Dives Who # of Coolers: Cooler Tempinatuding cp; Type and # Type 2 tolid Mis: Date Time Collid Time All July 1465 Received by: Via:Counce Date Time Contracted to other accrefither 1806miories. This serves as notice of the same of the serves as notice of the same	
Client: HEC Although Mitch Killough Mailing Address:	Phone #: email or Fax#: m-th killoush OAGC Package: Standard Accreditation: Date Date Time Matrix Sample Name Type and # Container Container Container Type and # Coloier Ten Container Type and # Coloier Ten Container Container Type and # Coloier Ten Container Container Coloier Ten Container Container Type and # Coloier Ten Container Coloier Ten Coloier Ten Coloier Ten Container Type and # Coloier Ten Container Type and # Coloier Ten Container Type and # Coloier Ten Container Container Container Type and # Coloier Ten Container Container Type and # Coloier Ten Container Container Container Type and # Coloier Ten Container Container Container Container Container Container Type and # Coloier Ten Container	ון הפספטפון, אפוונוסיס אינייויים ווייניים וויייים איניייים איניייים איניייים איניייים איניייים איניייים אינייי

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 24, 2024

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Standard 1A OrderNo.: 2401263

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 2 sample(s) on 1/6/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 1/24/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT:HILCORP ENERGYClient Sample ID:Influent 1-4-24Project:Standard 1ACollection Date: 1/4/2024 2:30:00 PM

Lab ID: 2401263-001 **Matrix:** AIR **Received Date:** 1/6/2024 8:35:00 AM

Analyses	Result	RL Q	ual Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	3400	250	μg/L	50	1/8/2024 5:19:46 PM
Surr: BFB	108	15-412	%Rec	50	1/8/2024 5:19:46 PM
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	29	5.0	μg/L	50	1/16/2024 12:47:39 PM
Toluene	40	5.0	μg/L	50	1/16/2024 12:47:39 PM
Ethylbenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Naphthalene	ND	10	μg/L	50	1/16/2024 12:47:39 PM
1-Methylnaphthalene	ND	20	μg/L	50	1/16/2024 12:47:39 PM
2-Methylnaphthalene	ND	20	μg/L	50	1/16/2024 12:47:39 PM
Acetone	ND	50	μg/L	50	1/16/2024 12:47:39 PM
Bromobenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Bromodichloromethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Bromoform	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Bromomethane	ND	10	μg/L	50	1/16/2024 12:47:39 PM
2-Butanone	ND	50	μg/L	50	1/16/2024 12:47:39 PM
Carbon disulfide	ND	50	μg/L	50	1/16/2024 12:47:39 PM
Carbon tetrachloride	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Chlorobenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Chloroethane	ND	10	μg/L	50	1/16/2024 12:47:39 PM
Chloroform	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Chloromethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
2-Chlorotoluene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
4-Chlorotoluene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
cis-1,2-DCE	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,2-Dibromo-3-chloropropane	ND	10	μg/L	50	1/16/2024 12:47:39 PM
Dibromochloromethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Dibromomethane	ND	10	μg/L	50	1/16/2024 12:47:39 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Dichlorodifluoromethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,1-Dichloroethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,1-Dichloroethene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/24/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-4-24

 Project:
 Standard 1A
 Collection Date: 1/4/2024 2:30:00 PM

 Lab ID:
 2401263-001
 Matrix: AIR
 Received Date: 1/6/2024 8:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
1,2-Dichloropropane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,3-Dichloropropane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
2,2-Dichloropropane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,1-Dichloropropene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Hexachlorobutadiene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
2-Hexanone	ND	50	μg/L	50	1/16/2024 12:47:39 PM
Isopropylbenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
4-Isopropyltoluene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
4-Methyl-2-pentanone	ND	50	μg/L	50	1/16/2024 12:47:39 PM
Methylene chloride	ND	15	μg/L	50	1/16/2024 12:47:39 PM
n-Butylbenzene	ND	15	μg/L	50	1/16/2024 12:47:39 PM
n-Propylbenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
sec-Butylbenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Styrene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
tert-Butylbenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Tetrachloroethene (PCE)	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
trans-1,2-DCE	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,2,3-Trichlorobenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Trichloroethene (TCE)	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Trichlorofluoromethane	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
1,2,3-Trichloropropane	ND	10	μg/L	50	1/16/2024 12:47:39 PM
Vinyl chloride	ND	5.0	μg/L	50	1/16/2024 12:47:39 PM
Xylenes, Total	18	7.5	μg/L	50	1/16/2024 12:47:39 PM
Surr: Dibromofluoromethane	75.3	70-130	%Rec	50	1/16/2024 12:47:39 PM
Surr: 1,2-Dichloroethane-d4	84.7	70-130	%Rec	50	1/16/2024 12:47:39 PM
Surr: Toluene-d8	105	70-130	%Rec	50	1/16/2024 12:47:39 PM
Surr: 4-Bromofluorobenzene	111	70-130	%Rec	50	1/16/2024 12:47:39 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/24/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-5-24

 Project:
 Standard 1A
 Collection Date: 1/5/2024 2:00:00 PM

 Lab ID:
 2401263-002
 Matrix: AIR
 Received Date: 1/6/2024 8:35:00 AM

Analyses	Result	RL Qua	d Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: JJP
Gasoline Range Organics (GRO)	2300	250	μg/L	50	1/8/2024 6:07:26 PM
Surr: BFB	99.4	15-412	%Rec	50	1/8/2024 6:07:26 PM
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	18	5.0	μg/L	50	1/16/2024 1:15:08 PM
Toluene	26	5.0	μg/L	50	1/16/2024 1:15:08 PM
Ethylbenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Naphthalene	ND	10	μg/L	50	1/16/2024 1:15:08 PM
1-Methylnaphthalene	ND	20	μg/L	50	1/16/2024 1:15:08 PM
2-Methylnaphthalene	ND	20	μg/L	50	1/16/2024 1:15:08 PM
Acetone	ND	50	μg/L	50	1/16/2024 1:15:08 PM
Bromobenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Bromodichloromethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Bromoform	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Bromomethane	ND	10	μg/L	50	1/16/2024 1:15:08 PM
2-Butanone	ND	50	μg/L	50	1/16/2024 1:15:08 PM
Carbon disulfide	ND	50	μg/L	50	1/16/2024 1:15:08 PM
Carbon tetrachloride	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Chlorobenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Chloroethane	ND	10	μg/L	50	1/16/2024 1:15:08 PM
Chloroform	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Chloromethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
2-Chlorotoluene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
4-Chlorotoluene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
cis-1,2-DCE	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,2-Dibromo-3-chloropropane	ND	10	μg/L	50	1/16/2024 1:15:08 PM
Dibromochloromethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Dibromomethane	ND	10	μg/L	50	1/16/2024 1:15:08 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Dichlorodifluoromethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,1-Dichloroethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,1-Dichloroethene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 1/24/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-5-24

 Project:
 Standard 1A
 Collection Date: 1/5/2024 2:00:00 PM

 Lab ID:
 2401263-002
 Matrix: AIR
 Received Date: 1/6/2024 8:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
1,2-Dichloropropane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,3-Dichloropropane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
2,2-Dichloropropane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,1-Dichloropropene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Hexachlorobutadiene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
2-Hexanone	ND	50	μg/L	50	1/16/2024 1:15:08 PM
Isopropylbenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
4-Isopropyltoluene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
4-Methyl-2-pentanone	ND	50	μg/L	50	1/16/2024 1:15:08 PM
Methylene chloride	ND	15	μg/L	50	1/16/2024 1:15:08 PM
n-Butylbenzene	ND	15	μg/L	50	1/16/2024 1:15:08 PM
n-Propylbenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
sec-Butylbenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Styrene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
tert-Butylbenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Tetrachloroethene (PCE)	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
trans-1,2-DCE	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,2,3-Trichlorobenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Trichloroethene (TCE)	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Trichlorofluoromethane	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
1,2,3-Trichloropropane	ND	10	μg/L	50	1/16/2024 1:15:08 PM
Vinyl chloride	ND	5.0	μg/L	50	1/16/2024 1:15:08 PM
Xylenes, Total	8.7	7.5	μg/L	50	1/16/2024 1:15:08 PM
Surr: Dibromofluoromethane	76.6	70-130	%Rec	50	1/16/2024 1:15:08 PM
Surr: 1,2-Dichloroethane-d4	87.6	70-130	%Rec	50	1/16/2024 1:15:08 PM
Surr: Toluene-d8	104	70-130	%Rec	50	1/16/2024 1:15:08 PM
Surr: 4-Bromofluorobenzene	111	70-130	%Rec	50	1/16/2024 1:15:08 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

January 18, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: B24010462 Quote ID: B15626

Project Name: Tedlar Gas Analysis

Energy Laboratories Inc Billings MT received the following 2 samples for Hall Environmental on 1/9/2024 for analysis.

Lab ID	Client Sample ID	Collect Date R	eceive Date	Matri x	Test
B24010462-001	2401263-001B Influent 1-4-24	01/04/24 14:30	01/09/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60
B24010462-002	2401263-002B Influent 1-5-24	01/05/24 14:00	01/09/24	Air	Same As Above

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Client Sample ID: 2401263-001B Influent 1-4-24

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental
Project: Tedlar Gas Analysis
Lab ID: B24010462-001

Report Date: 01/18/24
Collection Date: 01/04/24 14:30
DateReceived: 01/09/24
Matrix: Air

Analyses	Result U	nits Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
,	1100411 01					
GAS CHROMATOGRAPHY ANALYSIS	REPORT					
Oxygen	17.40 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
Nitrogen	77.76 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
Carbon Dioxide	4.80 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
Hydrogen Sulfide	<0.01 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
Methane	<0.01 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
Ethane	<0.01 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
Propane	<0.01 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
sobutane	<0.01 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
n-Butane	<0.01 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
sopentane	<0.01 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
n-Pentane	<0.01 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
lexanes plus	0.04 M	ol %	0.01		GPA 2261-95	01/12/24 10:33 / jrj
Propane	< 0.001 gp		0.001		GPA 2261-95	01/12/24 10:33 / jrj
sobutane	< 0.001 gp	om	0.001		GPA 2261-95	01/12/24 10:33 / jrj
n-Butane	< 0.001 gp	om	0.001		GPA 2261-95	01/12/24 10:33 / jrj
sopentane	< 0.001 gp	om	0.001		GPA 2261-95	01/12/24 10:33 / jrj
n-Pentane	< 0.001 gp	om	0.001		GPA 2261-95	01/12/24 10:33 / jrj
Hexanes plus	0.017 gp	om	0.001		GPA 2261-95	01/12/24 10:33 / jrj
GPM Total	0.017 gp	om	0.001		GPA 2261-95	01/12/24 10:33 / jrj
GPM Pentanes plus	0.017 gp	om	0.001		GPA 2261-95	01/12/24 10:33 / jrj
CALCULATED PROPERTIES						
Gross BTU per cu ft @ Std Cond. (HHV)	2		1		GPA 2261-95	01/12/24 10:33 / jrj
Net BTU per cu ft @ std cond. (LHV)	2		1		GPA 2261-95	01/12/24 10:33 / jrj
Pseudo-critical Pressure, psia	562		1		GPA 2261-95	01/12/24 10:33 / jrj
Pseudo-critical Temperature, deg R	252		1		GPA 2261-95	01/12/24 10:33 / jrj
Specific Gravity @ 60/60F	1.02		0.001		D3588-81	01/12/24 10:33 / jrj
Air, %	79.49		0.01		GPA 2261-95	01/12/24 10:33 / jrj
- The analysis was not corrected for air.						,,
COMMENTS						

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

Report RL - Analyte Reporting Limit MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

01/12/24 10:33 / jrj

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental
Project: Tedlar Gas Analysis
Lab ID: B24010462-002

Client Sample ID: 2401263-002B Influent 1-5-24

Report Date: 01/18/24
Collection Date: 01/05/24 14:00
DateReceived: 01/09/24

Matrix: Air

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS I	REPORT						
Oxygen	20.83	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Nitrogen	77.88	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Carbon Dioxide	1.26	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Methane	<0.01	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Ethane	< 0.01	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Propane	<0.01	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Isobutane	<0.01	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
n-Butane	<0.01	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Isopentane	<0.01	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
n-Pentane	<0.01	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Hexanes plus	0.03	Mol %		0.01		GPA 2261-95	01/12/24 12:33 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-95	01/12/24 12:33 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-95	01/12/24 12:33 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-95	01/12/24 12:33 / jrj
Isopentane	< 0.001	01		0.001		GPA 2261-95	01/12/24 12:33 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	01/12/24 12:33 / jrj
Hexanes plus	0.013			0.001		GPA 2261-95	01/12/24 12:33 / jrj
GPM Total	0.013			0.001		GPA 2261-95	01/12/24 12:33 / jrj
GPM Pentanes plus	0.013	gpm		0.001		GPA 2261-95	01/12/24 12:33 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	1			1		GPA 2261-95	01/12/24 12:33 / jrj
Net BTU per cu ft @ std cond. (LHV)	1			1		GPA 2261-95	01/12/24 12:33 / jrj
Pseudo-critical Pressure, psia	550			1		GPA 2261-95	01/12/24 12:33 / jrj
Pseudo-critical Temperature, deg R	242			1		GPA 2261-95	01/12/24 12:33 / jrj
Specific Gravity @ 60/60F	1.00			0.001		D3588-81	01/12/24 12:33 / jrj
Air, %	95.17			0.01		GPA 2261-95	01/12/24 12:33 / jrj
- The analysis was not corrected for air.							
COMMENTS							

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

Report RL - Analyte Reporting Limit MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

01/12/24 12:33 / jrj

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24010462 Report Date: 01/18/24

Analyte		Count	Result	Units	ΡI	%RFC	Low Limit	High Limit	Bbu	RPDLimit	Qual
Method:	GPA 2261-95	Journ	Nesun	Onits	IXL	/01 \L O	LOW LIMIT	Ingii Lilliit	INFU		R415281
Lab ID:	B24010462-001ADUP	12 Sai	mple Duplic	ate			Run: GCNG	A-B 240112A			/24 11:25
Oxygen		- 	16.5	Mol %	0.01		110111 00110	,,	5.6	20	21 11.20
Nitrogen			79.0	Mol %	0.01				1.6	20	
Carbon Di	oxide		4.53	Mol %	0.01				5.8	20	
Hydrogen			<0.01	Mol %	0.01				0.0	20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane			<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentane	e		<0.01	Mol %	0.01					20	
n-Pentane			<0.01	Mol %	0.01					20	
Hexanes p			0.03	Mol %	0.01				29	20	R
Lab ID:	B24010462-002ADUP	12 Saı	mple Duplic	ate			Run: GCNG	A-B_240112A		01/12	/24 01:29
Oxygen			20.8	Mol %	0.01			_	0.1	20	
Nitrogen			77.9	Mol %	0.01				0	20	
Carbon Di	oxide		1.25	Mol %	0.01				0.8	20	
Hydrogen	Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane			<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentane	е		<0.01	Mol %	0.01					20	
n-Pentane)		<0.01	Mol %	0.01					20	
Hexanes p	olus		0.03	Mol %	0.01				0.0	20	
Lab ID:	LCS011224	11 Lat	ooratory Cor	ntrol Sample	e		Run: GCNG	A-B_240112A		01/12	/24 02:31
Oxygen			0.65	Mol %	0.01	130	70	130			
Nitrogen			6.51	Mol %	0.01	108	70	130			
Carbon Di	oxide		1.00	Mol %	0.01	101	70	130			
Methane			74.3	Mol %	0.01	99	70	130			
Ethane			6.07	Mol %	0.01	101	70	130			
Propane			5.01	Mol %	0.01	101	70	130			
Isobutane			1.80	Mol %	0.01	90	70	130			
n-Butane			1.99	Mol %	0.01	99	70	130			
Isopentane	е		0.97	Mol %	0.01	97	70	130			
n-Pentane)		0.94	Mol %	0.01	94	70	130			
	olus		0.78	Mol %	0.01	98	70	130			

Qualifiers:

RL - Analyte Reporting Limit

R - Relative Percent Difference (RPD) exceeds advisory limit

ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

B24010462

Login completed by:	Crystal M. Jones	Date Received: 1/9/2024						
Reviewed by:	agilbert		Re	ceived by: DNH				
Reviewed Date:	1/11/2024		Car	rier name: FedEx				
Shipping container/cooler in	good condition?	Yes 🔽	No 🗌	Not Present				
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes 🔽	No 🗌	Not Present				
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓				
Chain of custody present?		Yes √	No 🗌					
Chain of custody signed whe	en relinquished and received?	Yes ✓	No 🗌					
Chain of custody agrees with	sample labels?	Yes ✓	No 🗌					
Samples in proper container/	/bottle?	Yes ✓	No 🗌					
Sample containers intact?		Yes ✓	No 🗌					
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌					
All samples received within h (Exclude analyses that are co such as pH, DO, Res Cl, Su	onsidered field parameters	Yes 🗹	No 🗌					
Temp Blank received in all sh	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable				
Container/Temp Blank tempe	erature:	12.8°C No Ice						
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted	\checkmark			
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable ✓				

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Website: www.hallenvironmental.com

Environment Testing 💸 eurofins

CHAIN OF CUSTODY RECORD PAGE: 1

OF:

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

ANALYTICAL COMMENTS (400) 252-6069 EMAIL. 1 Natural Gas Analysis- 02,CO2,CO FAX. 1 Natural Gas Analysis- 02,CO2,CO (406) 869-6253 # CONTAINER ACCOUNT# 1/4/2024 2:30:00 PM 1/5/2024 2:00:00 PM COLLECTION PHONE MATRIX Air Air **Energy Laboratories** BOTTLE TEDLAR TEDLAR COMPANY CLIENT SAMPLE ID 1120 South 27th Street SUB CONTRATOR Energy Labs -Billings 2401263-002B Influent 1-5-24 Billings, MT 59107 2401263-001B Influent 1-4-24 SAMPLE CITY, STATE, ZIP. ADDRESS ITEM 7

824010462

Include the LAB ID and C you.	CLIENT SAMPLE I	D on final rep	orts. Email results to Hall.Lab@et.eu	ofinsus.com. F	or Questions email	Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Than you.	ll coolers and blue ice. That
Relinquished By CMC	Date: 1/8/2024	Time: 8:42 AM	Received By:	Date:	Time:	ORT TRANSMITTAL I	
Relinquished By:	Date:	Тте.	Received By:	Date	Time:	☐ HARDCOPY (extra cost) ☐ FAX ☐ EM	☐ EMAIL ☐ ONLINE
						FOR LAB USE ONLY	
Relinquished By:	Date:	Time.	Brend Bull	Jaled	Taled Time	Ç	
	ļ					lemp of samples	Cool 7
TAI:	Standard	RUSH	Next BD Znd BD	3rd BD		t	
						Comments	

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

110000

WO#: **2401263**

24-Jan-24

Client: HILCORP ENERGY

Project: Standard 1A

Surr: BFB

Sample ID: 2401263-001adup SampType: DUP TestCode: EPA Method 8015D: Gasoline Range

Client ID: Influent 1-4-24 Batch ID: GA102299 RunNo: 102299

Prep Date: Analysis Date: 1/8/2024 SeqNo: 3778216 Units: μg/L

100000

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Gasoline Range Organics (GRO) 3600 250 5.52 20

109

15

412

0

0

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109

Sample Log-In Check List

Released to Imaging: 6/3/2024 11:22:17 AM

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: HILCORP El	NERGY Work	Order Number: 2	2401263		RcptNo:	
Received By: Cheyenne (Cason 1/6/202	4 8:35:00 AM		Chenl		
Completed By: Cheyenne (Cason 1/6/202	4 9:06:08 AM		Cleul		
Reviewed By:	= 1/8/24					
rtononou by.	1/0/21					
Chain of Custody						
Is Chain of Custody comple	ete?	Y	res 🗸	No 🗌	Not Present	
2. How was the sample delive	ered?	9	Courier		OV.	
					NA N	
<u>Log In</u>				No V	NA TO	
3. Was an attempt made to co	ool the samples?	Y	res 🗌	NO 🗀	PAPK 💌	
4. Were all samples received a	at a temperature of >0° C	to 6.0°C Y	res 🗌	No 🗌	NA 🗸	
,,						
5. Sample(s) in proper contain	ner(s)?	Y	res 🗹	No 🗀		
6. Sufficient sample volume fo	r indicated test(s)?	Y	es 🗹	No 🗌		
7. Are samples (except VOA a			'es 🗸	No 🗌		
8. Was preservative added to l			es 🗌	No 🗹	NA 🗆	
					_	
9. Received at least 1 vial with	headspace <1/4" for AQ \	/OA? Y	es 🗌	No 🗌	NA 🗹	
10. Were any sample container	rs received broken?	Y	res 🗀	No 🗸	# of preserved	
44				No 🗆	bottles checked for pH:	
11. Does paperwork match bott (Note discrepancies on chair		Y	es 🗸	No 🗔		12 unless noted)
12. Are matrices correctly identi		Υ	es 🗸	No 🗆	Adjusted?	
13. Is it clear what analyses wer	re requested?	Y	es 🗸	No 🗌		1/8/-11
14. Were all holding times able		Y	es 🗸	No 🗆	Checked by: M	1924
(If no, notify customer for au	uthorization.)			_		
Special Handling (if appl	<u>licable)</u>					
15. Was client notified of all dis	screpancies with this order	?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:		Date:				
By Whom:		Via:	eMail [] Phone [] Fax	☐ In Person	
Regarding:						
Client Instructions:	Maiing address and phone	number are missi	ing on CO	C- TMC 1/4/24		
16. Additional remarks:						
17. Cooler Information						
Cooler No Temp °C	Condition Seal Intact		al Date	Signed By		
1 N/A	Good Yes	NA				

Received by OCD: 4/24/2024 3:25:30 PM

O	hain-	of-C	Chain-of-Custody Record	Turn-Around Time:	: : :				I	IVI	u		Da	ENVIRONMENTA	F	E	_	
Client:	Hil	Hilcord		X Standard	□ Rush			V	₹	Z	Υ.	IS	3	ANALYSIS LABORATOR	\$	<u> </u>	. ₹	
	Mitch	1	Monall	Project Name:		=			>	ww.hg	Ilenvi	ronme	www.hallenvironmental.com	mog				
Mailing	Address			Stan	reland 11	4-	4	4901 Hawkins NE	awkin	s NE	- Alb	ndner	que, N	Albuquerque, NM 87109	60			
				Project #:		1		[el. 50	5-345	Tel. 505-345-3975		Fax 5(5-345	505-345-4107				
Phone #:	#:										Analy	sis R	Analysis Request	,				100
email or	r Fax#: n	nkillous	email or Fax#: m kill ough of hillorg. con	Project Manag	ger:					_	†OS		(Jue		-	-		
QA/QC Packa 区 Standard	QA/QC Package: 区 Standard	•	□ Level 4 (Full Validation)	Stuart	t Hyde-	Ensolum				SWIS0	, PO4,		edA\tn					
Accreditation:	itation: AC	□ Az Co □ Other	mpliance	Sampler: On Ice:	E corroll	// No												
	EDD (Type)_			# of Coolers:										ZC.		_		
				Cooler Temp(Including CF):	Including CF); //	(0,0)								0				
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO.	BTEX /	08:H9T 9 1808	EDB (V	PAHs I	Cl, F, 1	9260 (/	3) 07S8 O lstoT	(60				
ht-h-1	W30	411	INFluent 1-4-74	2 redun		901	×					×		Я				
66-5-1	1400	7.7	Influent 1-5-34	Tredlor		200	×			-		×		×	e [_		
															- I			
								_		1								
										7	चेत्र					12		
															7			
						0.00				×	1		-					$\neg \neg$
						1 N									18 1			
													*					
					*							-	3 -	7	7 7 8 8			
													-	1.		-		
Date:	Time:	Relinquished by:	hed by:	Received by:	Via:	Date in Time	Remarks:	rks:										
1-533	1-5-33 14:30	1	H	Care	Emr 1	0	_	CC	0	200	9 110	3	21051	Corroll & ensolum-Com	Co			
Date:	Time:	Relinquished by:	hed by:	Received by:	Si	Date Ime		.)									
																		1

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 01, 2024

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Standard 1 OrderNo.: 2401653

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 1/17/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 2/1/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-12-24

 Project:
 Standard 1
 Collection Date: 1/12/2024 5:00:00 PM

 Lab ID:
 2401653-001
 Matrix: AIR
 Received Date: 1/17/2024 7:00:00 AM

Analyses	Result	RL Qua	l Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	6500	500	μg/L	100	1/25/2024 1:49:00 PM
Surr: BFB	116	15-412	%Rec	100	1/25/2024 1:49:00 PM
EPA METHOD 8260B: VOLATILES					Analyst: JR
Benzene	22	5.0	μg/L	50	1/25/2024 10:32:49 AM
Toluene	42	5.0	μg/L	50	1/25/2024 10:32:49 AM
Ethylbenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Naphthalene	ND	10	μg/L	50	1/25/2024 10:32:49 AM
1-Methylnaphthalene	ND	20	μg/L	50	1/25/2024 10:32:49 AM
2-Methylnaphthalene	ND	20	μg/L	50	1/25/2024 10:32:49 AM
Acetone	ND	50	μg/L	50	1/25/2024 10:32:49 AM
Bromobenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Bromodichloromethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Bromoform	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Bromomethane	ND	10	μg/L	50	1/25/2024 10:32:49 AM
2-Butanone	ND	50	μg/L	50	1/25/2024 10:32:49 AM
Carbon disulfide	ND	50	μg/L	50	1/25/2024 10:32:49 AM
Carbon tetrachloride	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Chlorobenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Chloroethane	ND	10	μg/L	50	1/25/2024 10:32:49 AM
Chloroform	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Chloromethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
2-Chlorotoluene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
4-Chlorotoluene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
cis-1,2-DCE	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
cis-1,3-Dichloropropene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,2-Dibromo-3-chloropropane	ND	10	μg/L	50	1/25/2024 10:32:49 AM
Dibromochloromethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Dibromomethane	ND	10	μg/L	50	1/25/2024 10:32:49 AM
1,2-Dichlorobenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,3-Dichlorobenzene	ND	5.0	µg/L	50	1/25/2024 10:32:49 AM
1,4-Dichlorobenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Dichlorodifluoromethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,1-Dichloroethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,1-Dichloroethene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 2/1/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-12-24

 Project:
 Standard 1
 Collection Date: 1/12/2024 5:00:00 PM

 Lab ID:
 2401653-001
 Matrix: AIR
 Received Date: 1/17/2024 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: JR
1,2-Dichloropropane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,3-Dichloropropane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
2,2-Dichloropropane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,1-Dichloropropene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Hexachlorobutadiene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
2-Hexanone	ND	50	μg/L	50	1/25/2024 10:32:49 AM
Isopropylbenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
4-Isopropyltoluene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
4-Methyl-2-pentanone	ND	50	μg/L	50	1/25/2024 10:32:49 AM
Methylene chloride	ND	15	μg/L	50	1/25/2024 10:32:49 AM
n-Butylbenzene	ND	15	μg/L	50	1/25/2024 10:32:49 AM
n-Propylbenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
sec-Butylbenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Styrene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
tert-Butylbenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Tetrachloroethene (PCE)	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
trans-1,2-DCE	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
trans-1,3-Dichloropropene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,2,3-Trichlorobenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,1,1-Trichloroethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,1,2-Trichloroethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Trichloroethene (TCE)	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Trichlorofluoromethane	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
1,2,3-Trichloropropane	ND	10	μg/L	50	1/25/2024 10:32:49 AM
Vinyl chloride	ND	5.0	μg/L	50	1/25/2024 10:32:49 AM
Xylenes, Total	56	7.5	μg/L	50	1/25/2024 10:32:49 AM
Surr: Dibromofluoromethane	71.8	70-130	%Rec	50	1/25/2024 10:32:49 AM
Surr: 1,2-Dichloroethane-d4	83.0	70-130	%Rec	50	1/25/2024 10:32:49 AM
Surr: Toluene-d8	107	70-130	%Rec	50	1/25/2024 10:32:49 AM
Surr: 4-Bromofluorobenzene	112	70-130	%Rec	50	1/25/2024 10:32:49 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

January 23, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B24010962

Quote ID: B15626

Project Name:

Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 1/19/2024 for analysis.

Lab ID	Client Sample ID	Collect Date Re	eceive Date	Matri x	Test
B24010962-001	2401653-001B, Influent 1-12-24	01/12/24 17:00	01/19/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental **Project:** Not Indicated Lab ID: B24010962-001

Client Sample ID: 2401653-001B, Influent 1-12-24

Report Date: 01/23/24 Collection Date: 01/12/24 17:00 DateReceived: 01/19/24

Matrix: Air

GAS CHROMATOGRAPHY ANALYSIS REPORT Oxygen						MCL/		
Oxygen 20.53 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Nitrogen 77.88 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Carbon Dioxide 1.49 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Methane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Methane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Ethane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Propane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Isobutane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Isopentane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ N-Pentane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Hexanes plus 0.10 Mol % 0.01 GPA 2261-95 01/19/24 01:14/ Isopentane <0.001 gpm 0.001 <	Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
Nitrogen 77.88 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide 1.49 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Hydrogen Sulfide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide < 0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide Dioxide < 0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Carbon Dioxide Diox	GAS CHROMATOGRAPHY ANALYSI	S REPORT						
Carbon Dioxide 1.49 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Hydrogen Sulfide <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Methane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Propane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Propane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Propane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Butane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Sopentane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Sopentane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Sopentane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Propane <0.001 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Propane <0.001 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Propane <0.001 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / Propane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / Propantane Splus 0.042 gpm	Oxygen	20.53	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Apylorogen Sulfide	Nitrogen	77.88	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Methane < 0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / 0:14 /	Carbon Dioxide	1.49	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Ethane	Hydrogen Sulfide	<0.01	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Propane	Methane	<0.01	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Separation	Ethane	<0.01	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Pebutane	Propane	<0.01	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Sepentane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.01 Mol % 0.01 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane <0.001 GPA 2261-95 01/19/24 01:14 / P-Pentane CPA	sobutane	<0.01	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Pentane	-Butane	<0.01	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Rexames plus	sopentane	<0.01	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Propane	-Pentane	<0.01	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
Sobutane < 0.001 gpm 0.001 GPA 2261-95 01/19/24 01:14 / 01	lexanes plus	0.10	Mol %		0.01		GPA 2261-95	01/19/24 01:14 / jrj
-Butane	ropane	< 0.001	gpm		0.001		GPA 2261-95	01/19/24 01:14 / jrj
Sepentane Country Co	sobutane	< 0.001	gpm		0.001		GPA 2261-95	01/19/24 01:14 / jrj
Perentane	-Butane	< 0.001	gpm		0.001		GPA 2261-95	01/19/24 01:14 / jrj
Separation Sep	sopentane	< 0.001	gpm		0.001		GPA 2261-95	01/19/24 01:14 / jrj
GPM Total 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / 0.011 GPM Pentanes plus 0.042 gpm 0.001 GPA 2261-95 01/19/24 01:14 / 0.011 CALCULATED PROPERTIES Gross BTU per cu ft @ Std Cond. (HHV) 5 1 GPA 2261-95 01/19/24 01:14 / 0.011 See BTU per cu ft @ std cond. (LHV) 4 1 GPA 2261-95 01/19/24 01:14 / 0.011 Pseudo-critical Pressure, psia 550 1 GPA 2261-95 01/19/24 01:14 / 0.011 Specific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 0.011	-Pentane	< 0.001	gpm		0.001		GPA 2261-95	01/19/24 01:14 / jrj
ALCULATED PROPERTIES Foross BTU per cu ft @ Std Cond. (HHV) 5 1 GPA 2261-95 01/19/24 01:14 / 9. Seeudo-critical Pressure, psia 550 1 GPA 2261-95 01/19/24 01:14 / 9. Seeudo-critical Temperature, deg R 243 1 GPA 2261-95 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.01 0.01 D3588-81 01/19/24 01:14 / 9. Seeific Gravity @ 60/60F 1.01 0.01 0.01 0.01 0.01 0.01 0.01 0.	lexanes plus	0.042	gpm		0.001		GPA 2261-95	01/19/24 01:14 / jrj
CALCULATED PROPERTIES Gross BTU per cu ft @ Std Cond. (HHV) 5 1 GPA 2261-95 01/19/24 01:14 / Net BTU per cu ft @ std cond. (LHV) 4 1 GPA 2261-95 01/19/24 01:14 / Pseudo-critical Pressure, psia 550 1 GPA 2261-95 01/19/24 01:14 / Pseudo-critical Temperature, deg R 243 1 GPA 2261-95 01/19/24 01:14 / Specific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 /	SPM Total	0.042	gpm		0.001		GPA 2261-95	01/19/24 01:14 / jrj
Fross BTU per cu ft @ Std Cond. (HHV) 5 1 GPA 2261-95 01/19/24 01:14 / 1 GPA 2261-95 01/19/24	PM Pentanes plus	0.042	gpm		0.001		GPA 2261-95	01/19/24 01:14 / jrj
Specific Gravity @ 60/60F 4 1 GPA 2261-95 01/19/24 01:14 / 1 GPA 2261-95 01/19/24 01:14 / 01/19/24 01:14 / 2 1 GPA 2261-95 01/19/24 01:14 / 3 1 GPA 2261-95 01/19/24 01:14 / 4 1 GPA 2261-95 01/19/24 01:14 / 5 0 0 0 0 6 0 0 0 0 7 0 0 0 0 8 0 0 0 0 9 0 0 0 0 0	CALCULATED PROPERTIES							
2 seudo-critical Pressure, psia 550 1 GPA 2261-95 01/19/24 01:14 / 2 seudo-critical Temperature, deg R 243 1 GPA 2261-95 01/19/24 01:14 / 3 specific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 /	Gross BTU per cu ft @ Std Cond. (HHV)	5			1		GPA 2261-95	01/19/24 01:14 / jrj
Pseudo-critical Temperature, deg R 243 1 GPA 2261-95 01/19/24 01:14 / Specific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 /	let BTU per cu ft @ std cond. (LHV)	4			1		GPA 2261-95	01/19/24 01:14 / jrj
Specific Gravity @ 60/60F 1.01 0.001 D3588-81 01/19/24 01:14 /	Pseudo-critical Pressure, psia	550			1		GPA 2261-95	01/19/24 01:14 / jrj
	Pseudo-critical Temperature, deg R	243			1		GPA 2261-95	01/19/24 01:14 / jrj
	Specific Gravity @ 60/60F	1.01			0.001		D3588-81	01/19/24 01:14 / jrj
vir, % 93.81 0.01 GPA 2261-95 01/19/24 01:14 /	Air, %	93.81			0.01		GPA 2261-95	01/19/24 01:14 / jrj
- The analysis was not corrected for air.	- The analysis was not corrected for air.							
COMMENTS	COMMENTS							

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

RL - Analyte Reporting Limit Report MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

01/19/24 01:14 / jrj

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions. - To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24010962 Report Date: 01/23/24

Analyte		Count	Result	Units	RL	%REC L	ow Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R415411
Lab ID:	B24010962-001ADUP	12 Sa	mple Duplic	ate		F	Run: GCNG	A-B_240119A		01/19/	/24 02:11
Oxygen			20.6	Mol %	0.01			_	0.2	20	
Nitrogen			77.8	Mol %	0.01				0	20	
Carbon D	ioxide		1.49	Mol %	0.01				0.0	20	
Hydrogen	n Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			< 0.01	Mol %	0.01					20	
Isobutane	e		<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentar	ne		<0.01	Mol %	0.01					20	
n-Pentan	е		< 0.01	Mol %	0.01					20	
Hexanes	plus		0.09	Mol %	0.01				11	20	
Lab ID:	LCS011924	11 Lai	boratory Co	ntrol Sample		F	Run: GCNG	A-B_240119A		01/19/	/24 03:01
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			5.93	Mol %	0.01	99	70	130			
Carbon D	ioxide		0.99	Mol %	0.01	100	70	130			
Methane			74.9	Mol %	0.01	100	70	130			
Ethane			6.05	Mol %	0.01	101	70	130			
Propane			4.96	Mol %	0.01	100	70	130			
Isobutane	e		1.91	Mol %	0.01	95	70	130			
n-Butane			1.98	Mol %	0.01	99	70	130			
Isopentar	ne		0.97	Mol %	0.01	97	70	130			
n-Pentan	е		0.95	Mol %	0.01	95	70	130			
Hexanes	plus		0.76	Mol %	0.01	95	70	130			

Qualifiers:

RL - Analyte Reporting Limit

 $\ensuremath{\mathsf{ND}}$ - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

B24010962

Login completed by:	Danielle N. Harris		Date	Received: 1/19/2024	
Reviewed by:	gmccartney		Re	eceived by: DNH	
Reviewed Date:	1/19/2024		Ca	rrier name: FedEx	
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all s	hipping container(s)/cooler(s)?	Yes ✓	No 🗌	Not Present	
Custody seals intact on all s	ample bottles?	Yes	No 🗌	Not Present ✓	
Chain of custody present?		Yes ✓	No 🗌		
Chain of custody signed who	en relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with	n sample labels?	Yes ✓	No 🗌		
Samples in proper container	/bottle?	Yes 🔽	No 🗌		
Sample containers intact?		Yes 🔽	No 🗌		
Sufficient sample volume for	indicated test?	Yes ✓	No 🗌		
All samples received within I (Exclude analyses that are c such as pH, DO, Res CI, Su	onsidered field parameters	Yes ✓	No 🗌		
Temp Blank received in all s	hipping container(s)/cooler(s)?	Yes	No 🗸	Not Applicable	
Container/Temp Blank temp	erature:	6.0°C No Ice			
Containers requiring zero he bubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted	\square
Water - pH acceptable upon	receipt?	Yes 🗌	No 🗌	Not Applicable ☑	

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

seurofins Environment Testing

CHAIN OF CUSTODY RECORD PAGE

Y RECORD PAGE: 1 OFF: 1 Eurofins

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

SUB CONTRATOR Ener	SUB CONTRATOR Energy Labs -Billings COMPANY:	Energy Laboratories	ies	PHONE	(406) 869-6253	FAX: (406) 252-6069	
ADDRESS 1120	1120 South 27th Street			ACCOUNT #		EMAU.	
CITY, STATE, ZIP. Billings, MT 59107	gs, MT 59107						
ITEM SAMPLE	CLIENT SAMPLE ID	BOTTLE	MATRIX	COLLECTION	# CONTAINERS	ANALYTICAL COMMENTS	
1 2401653-001B Influent 1-12-24	3 Influent 1-12-24	TEDLAR Air		/12/2024 5:00:00 PM	1/12/2024 5:00:00 PM 1 Natural Gas Analysis. CO2+02.	02.	

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com. For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. ONLINE Attempt to Cool ? REPORT TRANSMITTAL DESIRED: EMAIL FOR LAB USE ONLY FAX HARDCOPY (extra cost) Temp of samples SIQUE MIDIS Time. 3rd BD Date; Date: 2nd BD Next BD Received By: Received By 8:25 AM RUSH Time: Time 1/17/2024 Standard Date: Date SPECIAL INSTRUCTIONS / COMMENTS: TAT: Thank you. dinquished By Relinquished By

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2401653** *01-Feb-24*

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 2401653-001adup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Influent 1-12-24 Batch ID: R102691 RunNo: 102691

Prep Date:	Analysis D)ate: 1/2	25/2024	\$	SeqNo: 37	793891	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	24	5.0						9.43	20	
Toluene	46	5.0						9.10	20	
Ethylbenzene	ND	5.0						0	20	
Methyl tert-butyl ether (MTBE)	ND	5.0						0	20	
1,2,4-Trimethylbenzene	ND	5.0						0	20	
1,3,5-Trimethylbenzene	ND	5.0						0	20	
1,2-Dichloroethane (EDC)	ND	5.0						0	20	
1,2-Dibromoethane (EDB)	ND	5.0						0	20	
Naphthalene	ND	10						0	20	
1-Methylnaphthalene	ND	20						0	20	
2-Methylnaphthalene	ND	20						0	20	
Acetone	ND	50						0	20	
Bromobenzene	ND	5.0						0	20	
Bromodichloromethane	ND	5.0						0	20	
Bromoform	ND	5.0						0	20	
Bromomethane	ND	10						0	20	
2-Butanone	ND	50						0	20	
Carbon disulfide	ND	50						0	20	
Carbon tetrachloride	ND	5.0						0	20	
Chlorobenzene	ND	5.0						0	20	
Chloroethane	ND	10						0	20	
Chloroform	ND	5.0						0	20	
Chloromethane	ND	5.0						0	20	
2-Chlorotoluene	ND	5.0						0	20	
4-Chlorotoluene	ND	5.0						0	20	
cis-1,2-DCE	ND	5.0						0	20	
cis-1,3-Dichloropropene	ND	5.0						0	20	
1,2-Dibromo-3-chloropropane	ND	10						0	20	
Dibromochloromethane	ND	5.0						0	20	
Dibromomethane	ND	10						0	20	
1,2-Dichlorobenzene	ND	5.0						0	20	
1,3-Dichlorobenzene	ND	5.0						0	20	
1,4-Dichlorobenzene	ND	5.0						0	20	
Dichlorodifluoromethane	ND	5.0						0	20	
1,1-Dichloroethane	ND	5.0						0	20	
1,1-Dichloroethene	ND	5.0						0	20	
1,2-Dichloropropane	ND	5.0						0	20	
1,3-Dichloropropane	ND	5.0						0	20	
2,2-Dichloropropane	ND	5.0						0	20	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2401653** *01-Feb-24*

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 2401653-001adup	Samp	Гуре: DU	P	Tes	tCode: El	PA Method	8260B: Volati	les		
Client ID: Influent 1-12-24	Batcl	h ID: R1	02691	F	RunNo: 1	02691				
Prep Date:	Analysis [Date: 1/2	25/2024		SeqNo: 3	793891	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
,1-Dichloropropene	ND	5.0						0	20	
Hexachlorobutadiene	ND	5.0						0	20	
?-Hexanone	ND	50						0	20	
sopropylbenzene	ND	5.0						0	20	
-Isopropyltoluene	ND	5.0						0	20	
-Methyl-2-pentanone	ND	50						0	20	
Methylene chloride	ND	15						0	20	
-Butylbenzene	ND	15						0	20	
-Propylbenzene	ND	5.0						0	20	
ec-Butylbenzene	ND	5.0						0	20	
ityrene	ND	5.0						0	20	
ert-Butylbenzene	ND	5.0						0	20	
,1,1,2-Tetrachloroethane	ND	5.0						0	20	
,1,2,2-Tetrachloroethane	ND	5.0						0	20	
etrachloroethene (PCE)	ND	5.0						0	20	
rans-1,2-DCE	ND	5.0						0	20	
ans-1,3-Dichloropropene	ND	5.0						0	20	
,2,3-Trichlorobenzene	ND	5.0						0	20	
,2,4-Trichlorobenzene	ND	5.0						0	20	
,1,1-Trichloroethane	ND	5.0						0	20	
,1,2-Trichloroethane	ND	5.0						0	20	
richloroethene (TCE)	ND	5.0						0	20	
richlorofluoromethane	ND	5.0						0	20	
,2,3-Trichloropropane	ND	10						0	20	
inyl chloride	ND	5.0						0	20	
ylenes, Total	64	7.5						12.8	20	
Surr: Dibromofluoromethane	36		50.00		72.2	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	41		50.00		82.4	70	130	0	0	
Surr: Toluene-d8	51		50.00		102	70	130	0	0	
								-		

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix

Surr: 4-Bromofluorobenzene

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

56

50.00

B Analyte detected in the associated Method Blank

112

70

130

- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC

4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Released to Imaging: 6/3/2024 11:22:17 AM

	7
F	2
- 6	-
9	
	7
	٠,
1	
	?
- 6	7
	4
	V
٥,	
	N
-	S
	4
- 5	V
- 3	\
	4
	٠,
- 6	
- 5	-
1	۷
d	
	_
	2
	5
į,	
	7
	Ó
	ecerve
•	-
	a
	9
	ē
- 6	8
	7

Client Name: HILCORP ENERGY	Work Order Nur	mber: 2401653		RcptNo: 1	
Received By: Tracy Casarrubias	1/17/2024 7:00:00) AM			
Completed By: Tracy Casarrubias	1/17/2024 7:49:50) AM			
Reviewed By: SCM 1/17/	24				
Chain of Custody					
1. Is Chain of Custody complete?		Yes	No 🗸	Not Present 🗌	
2. How was the sample delivered?		Courier			
Log In		Ves	No 🗹	NA 🗌	
Was an attempt made to cool the s	ampies?	Yes 🗌	NO I	NA L	
4. Were all samples received at a tem	perature of >0° C to 6.0°C	Yes 🗌	No 🗆	NA 🗸	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volume for indicat	ed test(s)?	Yes 🗸	No 🗌		
7. Are samples (except VOA and ONG	b) properly preserved?	Yes 🗸	No 🗌		
8. Was preservative added to bottles?		Yes	No 🗸	NA 🗌	
9. Received at least 1 vial with headsp	ace <1/4" for AQ VOA?	Yes	No 🗌	NA 🗹	
10. Were any sample containers receiv	ed broken?	Yes 🗌	No ✓	f of preserved	
11. Does paperwork match bottle labels (Note discrepancies on chain of cus		Yes 🗸		oottles checked or pH: (<2 or >1	2 unless noted)
12. Are matrices correctly identified on	Chain of Custody?	Yes 🗸	No 🗆	Adjusted?	
13. Is it clear what analyses were reque	sted?	Yes 🗹	No 🗌		1-1-1
 Were all holding times able to be m (If no, notify customer for authorizat 		Yes 🗹	No 🗌	enecked by:	~ 1/11/24
Special Handling (if applicable	<u>)</u>				
15. Was client notified of all discrepand	cies with this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified:	Dat	te:			
By Whom:	Via	: eMail l	Phone 🗌 Fax 📗	In Person	
Regarding:					
Client Instructions: Mailing	address, phone number and l	Email/Fax are missi	ng on COC-TMC	1/17/24	
16. Additional remarks:					
17. Cooler Information	y 2				
Cooler No Temp °C Condi		Seal Date	Signed By		
1 N/A Good	Yes				

	~
•	\neg
- 4	١,
- 6	۹.
	-
-	-
- 7	0
-	_
- •	Υ.
	٠,
	٠.
1	
	•
	٠.
	1
	• 4
- e	M
	- 4
-	Md.
	4
	м.
•	73
- 2	
- 0	
	-
- 3	. 74
	`
	_
	7
	۸.
- 3	- 74
	< '
	_
٠,	(may
	4
	٠.
,	∹
6	1
6	3
6	1
6	1
4	1
Carlo Carlo	1
Carry Co	1
Carried Co.	1
Carried Co.	1
000	22
000	
000	v CC
acco.	v CC
1000	
200	v CC
470 11	UDO AG
41	UDO AG
41	d by OCD
11	ed by OCD
11	ed by OCD
11	ed by OCD
	ed by OCD
. 11	ed by OCD
	ed by OCD
400 11 .	ed by OCD
400	ed by OCD
	ecerved by OCD
470 41	Received by OCD
W	ecerved by OCD
W	Received by OCD
400 11 . 4	Received by OCD
	Received by OCD
n 11 000	Received by OCD
n	Received by OCD
n 11 00m	Received by OCD

Chain-of-Custody Record	Turn-Around Time:	HAII ENVIDONMENTAL
Client: Hill Poch	Standard □ Rush	ANALYSIS LABORATORY
Ath Mitch Killongh	100	www.hallenvironmental.com
Mailing Address:	in man ar	4901 Hawkins NE - Albuquerque, NM 87109
	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #:		Analysis Request
email or Fax#:	Project Manager:	[†] 09
age:	Sturt Hyde	SIMS SIMS
	N. T.	82 F F S S S S S S S S S S S S S S S S S
Accreditation:	Sampler: Samme No Di No	508/80 504.1 504.1 504.1 500.3
□ EDD (Type)	# of Coolers:	od :
	Cooler Temp(including CF): N/A (°C)	estideth Meth by 83 8 Ma 8r, 1 8r, 1
,	Container Preservative HEAL No.	301 PH:80 3081 P 3081 P 308 (A 308 (A)
0	2- Teda NA	
Date: Time: Relinquished by:	Received by: Via: COUNCY Date Time	Remarks: dburns
<u> </u>	Received by: Via: Date Time	chi diveniemann (com solum
and your leaves and lead of the state of the	Inis serves as notice of this	_

Released to Imaging: 0/3/2024 11:22:17 AM

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 08, 2024

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499 TEL: (505) 564-0733

FAX:

RE: Standard 1 OrderNo.: 2401822

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 1/19/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **2401822**

Date Reported: 2/8/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY

Client Sample ID: Influent 1-18-24

Project: Standard 1

Collection Date: 1/18/2024 3:15:00 PM

Lab ID: 2401822-001 **Matrix:** AIR **Received Date:** 1/19/2024 8:00:00 AM

Analyses	Result	RL Qua	d Units	DF	Date Analyzed
EPA METHOD 8015D: GASOLINE RANGE					Analyst: CCM
Gasoline Range Organics (GRO)	2700	500	μg/L	100	1/26/2024 2:22:00 PM
Surr: BFB	114	15-412	%Rec	100	1/26/2024 2:22:00 PM
EPA METHOD 8260B: VOLATILES					Analyst: CCM
Benzene	21	5.0	μg/L	50	2/1/2024 12:01:00 PM
Toluene	28	5.0	μg/L	50	2/1/2024 12:01:00 PM
Ethylbenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,2,4-Trimethylbenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,3,5-Trimethylbenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Naphthalene	ND	10	μg/L	50	2/1/2024 12:01:00 PM
1-Methylnaphthalene	ND	20	μg/L	50	2/1/2024 12:01:00 PM
2-Methylnaphthalene	ND	20	μg/L	50	2/1/2024 12:01:00 PM
Acetone	ND	50	μg/L	50	2/1/2024 12:01:00 PM
Bromobenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Bromodichloromethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Bromoform	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Bromomethane	ND	10	μg/L	50	2/1/2024 12:01:00 PM
2-Butanone	ND	50	μg/L	50	2/1/2024 12:01:00 PM
Carbon disulfide	ND	50	μg/L	50	2/1/2024 12:01:00 PM
Carbon tetrachloride	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Chlorobenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Chloroethane	ND	10	μg/L	50	2/1/2024 12:01:00 PM
Chloroform	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Chloromethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
2-Chlorotoluene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
4-Chlorotoluene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
cis-1,2-DCE	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
cis-1,3-Dichloropropene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,2-Dibromo-3-chloropropane	ND	10	μg/L	50	2/1/2024 12:01:00 PM
Dibromochloromethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Dibromomethane	ND	10	μg/L	50	2/1/2024 12:01:00 PM
1,2-Dichlorobenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,3-Dichlorobenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,4-Dichlorobenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Dichlorodifluoromethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,1-Dichloroethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,1-Dichloroethene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical ReportLab Order **2401822**

Date Reported: 2/8/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: Influent 1-18-24

 Project:
 Standard 1
 Collection Date: 1/18/2024 3:15:00 PM

 Lab ID:
 2401822-001
 Matrix: AIR
 Received Date: 1/19/2024 8:00:00 AM

Analyses	Result	RL (Qual Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES					Analyst: CCM
1,2-Dichloropropane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,3-Dichloropropane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
2,2-Dichloropropane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,1-Dichloropropene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Hexachlorobutadiene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
2-Hexanone	ND	50	μg/L	50	2/1/2024 12:01:00 PM
Isopropylbenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
4-Isopropyltoluene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
4-Methyl-2-pentanone	ND	50	μg/L	50	2/1/2024 12:01:00 PM
Methylene chloride	ND	15	μg/L	50	2/1/2024 12:01:00 PM
n-Butylbenzene	ND	15	μg/L	50	2/1/2024 12:01:00 PM
n-Propylbenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
sec-Butylbenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Styrene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
tert-Butylbenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Tetrachloroethene (PCE)	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
trans-1,2-DCE	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
trans-1,3-Dichloropropene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,2,3-Trichlorobenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,2,4-Trichlorobenzene	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,1,1-Trichloroethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,1,2-Trichloroethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Trichloroethene (TCE)	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Trichlorofluoromethane	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
1,2,3-Trichloropropane	ND	10	μg/L	50	2/1/2024 12:01:00 PM
Vinyl chloride	ND	5.0	μg/L	50	2/1/2024 12:01:00 PM
Xylenes, Total	10	7.5	μg/L	50	2/1/2024 12:01:00 PM
Surr: Dibromofluoromethane	101	70-130	%Rec	50	2/1/2024 12:01:00 PM
Surr: 1,2-Dichloroethane-d4	99.9	70-130	%Rec	50	2/1/2024 12:01:00 PM
Surr: Toluene-d8	108	70-130	%Rec	50	2/1/2024 12:01:00 PM
Surr: 4-Bromofluorobenzene	135	70-130	S %Rec	50	2/1/2024 12:01:00 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

January 30, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B24011068

Quote ID: B15626

Project Name:

Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 1/23/2024 for analysis.

Lab ID	Client Sample ID	Collect Date Receive	Date Matrix	Test
B24011068-001	2401822-001B, Influent 1-18-24	01/18/24 15:15 01/2	3/24 Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

GAS CHROMATOGRAPHY ANALYSIS REPORT

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Qualifiers

Result Units

21.30 Mol %

78.23 Mol %

0.42 Mol %

<0.01 Mol %

0.04 Mol %

< 0.001 gpm

0.017 gpm

0.017 gpm

0.017 gpm

2

2

546

240

1.00

97.31

Client: Hall Environmental
Project: Not Indicated
Lab ID: B24011068-001

Analyses

Nitrogen

Methane

Ethane

Propane

Isobutane

n-Butane

Propane

Isobutane

n-Butane

Isopentane

n-Pentane

GPM Total

Hexanes plus

GPM Pentanes plus

Isopentane n-Pentane

Hexanes plus

Carbon Dioxide

Hydrogen Sulfide

Client Sample ID: 2401822-001B, Influent 1-18-24

Report Date: 01/30/24

Collection Date: 01/18/24 15:15

DateReceived: 01/23/24

Matrix: Air

MCL/ RL QCL Method Analysis Date / By 0.01 GPA 2261-95 01/26/24 11:35 / jrj 0.01 GPA 2261-95 01/26/24 11:35 / jrj 0.0101/26/24 11:35 / jrj GPA 2261-95 0.01 GPA 2261-95 01/26/24 11:35 / jrj 0.01 GPA 2261-95 01/26/24 11:35 / jrj 0.01 01/26/24 11:35 / jrj GPA 2261-95 01/26/24 11:35 / jrj 0.01 GPA 2261-95 0.01 GPA 2261-95 01/26/24 11:35 / jrj 0.001 GPA 2261-95 01/26/24 11:35 / jrj 0.001 GPA 2261-95 01/26/24 11:35 / jrj 0.001 GPA 2261-95 01/26/24 11:35 / iri 0.001 GPA 2261-95 01/26/24 11:35 / jrj 0.001 GPA 2261-95 01/26/24 11:35 / jrj 01/26/24 11:35 / jrj 0.001 GPA 2261-95 0.001 GPA 2261-95 01/26/24 11:35 / jrj 0.001 GPA 2261-95 01/26/24 11:35 / jrj GPA 2261-95 01/26/24 11:35 / jrj 1 GPA 2261-95 01/26/24 11:35 / jrj 1

GPA 2261-95

GPA 2261-95

GPA 2261-95

D3588-81

01/26/24 11:35 / jrj

01/26/24 11:35 / jrj

01/26/24 11:35 / jrj

01/26/24 11:35 / jrj

The analysis was not corrected for air.

CALCULATED PROPERTIES
Gross BTU per cu ft @ Std Cond. (HHV)

Net BTU per cu ft @ std cond. (LHV)

Pseudo-critical Temperature, deg R

Pseudo-critical Pressure, psia

Specific Gravity @ 60/60F

COMMENTS

Air. %

- 01/26/24 11:35 / jrj

1

1

0.001

0.01

Report RL - Analyte Reporting Limit MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24011068 Report Date: 01/30/24

Onchi. i	ian Environmental				WOIR OIGCI.	DZ-70 I	1000	itopoi	t Date.	01/00/2-	
Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	: R41572
Lab ID:	LCS012624	11 Lab	oratory Cor	ntrol Sample			Run: GCNG	A-B_240126A		01/26	/24 02:28
Oxygen			0.64	Mol %	0.01	128	70	130			
Nitrogen			6.37	Mol %	0.01	106	70	130			
Carbon Dio	xide		0.99	Mol %	0.01	100	70	130			
Methane			75.2	Mol %	0.01	101	70	130			
Ethane			6.08	Mol %	0.01	101	70	130			
Propane			4.48	Mol %	0.01	91	70	130			
Isobutane			1.60	Mol %	0.01	80	70	130			
n-Butane			2.03	Mol %	0.01	101	70	130			
Isopentane			0.97	Mol %	0.01	97	70	130			
n-Pentane			0.85	Mol %	0.01	85	70	130			
Hexanes pl	us		0.81	Mol %	0.01	101	70	130			
Lab ID:	B24011070-001ADUP	12 Sar	nple Duplic	ate			Run: GCNG	A-B_240126A		01/26	/24 01:16
Oxygen			21.8	Mol %	0.01				0.1	20	
Nitrogen			78.0	Mol %	0.01				0	20	
Carbon Dio	xide		0.17	Mol %	0.01				0.0	20	
Hydrogen S	Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane			<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentane			<0.01	Mol %	0.01					20	
			<0.01	Mol %	0.01					20	
n-Pentane			\0.01	IVIOI 70	0.01						

Qualifiers:

RL - Analyte Reporting Limit

 $\ensuremath{\mathsf{ND}}$ - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

B24011068

Login completed by:	Addison A. Gilbert		Date F	Received: 1/23/2024
Reviewed by:	ysmith		Red	eived by: CMJ
Reviewed Date:	1/23/2024		Carr	ier name: FedEx
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all sh	nipping container(s)/cooler(s)?	Yes 🔽	No 🗌	Not Present
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🔽	No 🗌	
Chain of custody signed whe	n relinquished and received?	Yes 🔽	No 🗌	
Chain of custody agrees with	sample labels?	Yes 🔽	No 🗌	
Samples in proper container/	bottle?	Yes 🔽	No 🗌	
Sample containers intact?		Yes 🔽	No 🗌	
Sufficient sample volume for	indicated test?	Yes 🔽	No 🗌	
All samples received within h (Exclude analyses that are co such as pH, DO, Res Cl, Sul	onsidered field parameters	Yes 🗸	No 🗌	
Temp Blank received in all sh	nipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempe	erature:	11.2°C No Ice		
Containers requiring zero heabubble that is <6mm (1/4").	adspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable 🗸

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

Environment Testing 💸 eurofins

CHAIN OF CUSTODY RECORD PAGE:

OF:

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

(406) 252-6069			ANALYTICAL COMMENTS	
FAX.	EMAIL.		NALYTICA	02+02
(406) 869-6253			4	1 Natual Gas Analysis CO2+02
PHONE	ACCOUNT#		COLLECTION PRINCES	/18/2024 3:15:00 PM
Sea			MATRIX	Air 1/
Energy Laboratories			BOITLE	TEDLAR
SUB CONTRATOR. Energy Labs -Billings COMPANY:	1120 South 27th Street	s, MT 59107	CLIENT SAMPLE ID	influent 1-18-24
NTRATOR Energy		CITY, STATE, ZIP. Billings, MT 59107	SAMPLE	1 2401822-001B Influent 1-18-24
SUBCO	ADDRESS	CITY, ST	ITEM	н

854011008

ONLINE

☐ EMAIL

☐ HARDCOPY (extra cost)

FOR LAB USE ONLY □ FAX

Attempt to Cool ?

Temp of samples

Date 777 18950

3rd BD

2nd BD

Next BD

RUSH

Standard |

TAT:

Time.

Date.

Received By

Time

Date. Date

Relinquished By. Relinquished By.

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

2401822 08-Feb-24

WO#:

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 2401822-001adup SampType: DUP TestCode: EPA Method 8260B: Volatiles

Client ID: Influent 1-18-24 Batch ID: R102809 RunNo: 102809

Prep Date:	Analysis [Date: 2 /	1/2024	5	SeqNo: 37	799708	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	5.0						1.57	20	
Toluene	28	5.0						2.82	20	
Ethylbenzene	ND	5.0						0	20	
Methyl tert-butyl ether (MTBE)	ND	5.0						0	20	
1,2,4-Trimethylbenzene	ND	5.0						0	20	
1,3,5-Trimethylbenzene	ND	5.0						0	20	
1,2-Dichloroethane (EDC)	ND	5.0						0	20	
1,2-Dibromoethane (EDB)	ND	5.0						0	20	
Naphthalene	ND	10						0	20	
1-Methylnaphthalene	ND	20						0	20	
2-Methylnaphthalene	ND	20						0	20	
Acetone	ND	50						0	20	
Bromobenzene	ND	5.0						0	20	
Bromodichloromethane	ND	5.0						0	20	
Bromoform	ND	5.0						0	20	
Bromomethane	ND	10						0	20	
2-Butanone	ND	50						0	20	
Carbon disulfide	ND	50						0	20	
Carbon tetrachloride	ND	5.0						0	20	
Chlorobenzene	ND	5.0						0	20	
Chloroethane	ND	10						0	20	
Chloroform	ND	5.0						0	20	
Chloromethane	ND	5.0						0	20	
2-Chlorotoluene	ND	5.0						0	20	
4-Chlorotoluene	ND	5.0						0	20	
cis-1,2-DCE	ND	5.0						0	20	
cis-1,3-Dichloropropene	ND	5.0						0	20	
1,2-Dibromo-3-chloropropane	ND	10						0	20	
Dibromochloromethane	ND	5.0						0	20	
Dibromomethane	ND	10						0	20	
1,2-Dichlorobenzene	ND	5.0						0	20	
1,3-Dichlorobenzene	ND	5.0						0	20	
1,4-Dichlorobenzene	ND	5.0						0	20	
Dichlorodifluoromethane	ND	5.0						0	20	
1,1-Dichloroethane	ND	5.0						0	20	
1,1-Dichloroethene	ND	5.0						0	20	
1,2-Dichloropropane	ND	5.0						0	20	
1,3-Dichloropropane	ND	5.0						0	20	
2,2-Dichloropropane	ND	5.0						0	20	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2401822 08-Feb-24**

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 2401822-001adu	Samn	Гуре: DU	D	Tac	tCode: Er	DA Mothed	8260B: Volati	loc		
•							ozoub: voiati	ies		
Client ID: Influent 1-18-24		h ID: R1			RunNo: 10					
Prep Date:	Analysis [Date: 2 /	1/2024	\$	SeqNo: 3	799708	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	5.0						0	20	
Hexachlorobutadiene	ND	5.0						0	20	
2-Hexanone	ND	50						0	20	
sopropylbenzene	ND	5.0						0	20	
4-Isopropyltoluene	ND	5.0						0	20	
1-Methyl-2-pentanone	ND	50						0	20	
Methylene chloride	ND	15						0	20	
n-Butylbenzene	ND	15						0	20	
n-Propylbenzene	ND	5.0						0	20	
sec-Butylbenzene	ND	5.0						0	20	
Styrene	ND	5.0						0	20	
ert-Butylbenzene	ND	5.0						0	20	
,1,1,2-Tetrachloroethane	ND	5.0						0	20	
,1,2,2-Tetrachloroethane	ND	5.0						0	20	
Tetrachloroethene (PCE)	ND	5.0						0	20	
rans-1,2-DCE	ND	5.0						0	20	
rans-1,3-Dichloropropene	ND	5.0						0	20	
1,2,3-Trichlorobenzene	ND	5.0						0	20	
1,2,4-Trichlorobenzene	ND	5.0						0	20	
1,1,1-Trichloroethane	ND	5.0						0	20	
1,1,2-Trichloroethane	ND	5.0						0	20	
Trichloroethene (TCE)	ND	5.0						0	20	
Trichlorofluoromethane	ND	5.0						0	20	
1,2,3-Trichloropropane	ND	10						0	20	
/inyl chloride	ND	5.0						0	20	
(ylenes, Total	9.9	7.5						5.61	20	
Surr: Dibromofluoromethane	52		50.00		103	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	51		50.00		102	70	130	0	0	
Surr: Toluene-d8	53		50.00		106	70	130	0	0	
Surr: 4-Bromofluorobenzene	67		50.00		133	70	130	0	0	S

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109

Sample Log-In Check List

Released to Imaging: 6/3/2024 11:22:17 AM

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name:	: HILCORP	ENERGY	Work	Order Numl	ber: 2401822		RcptNo	: 1
Received By	: Cheyenne	e Cason	1/19/20	24 8:00:00	AM	Chul		
Completed B	y: Cheyenne	e Cason	1/19/20	24 11:54:00	AM	Chul		
Reviewed By	: 1/1 1-19	7-24						
Chain of C	ustodv							
	f Custody comp	elete?			Yes 🗹	No 🗌	Not Present	
2. How was t	he sample deliv	vered?			Courier	or con /	phy	
Log In					18	υ·		4
3. Was an at	tempt made to	cool the samp	es?		Yes 🗸	No 🗔	NA	
4. Were all sa	amples received	d at a tempera	ture of >0° C t	o 6.0°C	Yes	No 🗌	NA 🗹	
5. Sample(s)	in proper conta	iner(s)?			Yes 🔽	No 🗌		
6. Sufficient s	sample volume	for indicated te	est(s)?		Yes 🗹	No 🗌		
	es (except VOA			d?	Yes 🗸	No 🗆		
8. Was prese	rvative added to	o bottles?			Yes	No 🗹	NA 🗆	
0					\Box	N- []	NA 🗹	
	at least 1 vial wi			OA?	Yes 🗌	No 🗔	NA 💌	
10. Were any	sample contain	ers received b	roken?		Yes 🗔	No 🗹	# of preserved	
	rwork match bo)		Yes 🗹	No 🗆	bottles checked for pH:	r >12 unless noted)
12. Are matrice	es correctly ider	ntified on Chai	n of Custody?		Yes 🔽	No 🗌	Adjusted?	
13. Is it clear w	vhat analyses w	ere requested	?		Yes 🗸	No 🗌	/	777 110/201
	olding times abl y customer for				Yes 🗹	No 🗔	Checked by:	2 1/19/24
Special Har	ndling (if ap	plicable)						
15. Was clien	t notified of all o	liscrepancies v	vith this order?		Yes 🗌	No 🗌	NA 🗹	
Pers	son Notified:			Date				
By V	Vhom:	·		Via:	eMail	Phone Fax	In Person	
Reg	arding:							
Clier	nt Instructions:	J						
16. Additional	I remarks:							
17. Cooler In	formation							
Cooler	No Temp °C		Seal Intact	Seal No	Seal Date	Signed By		
1	NA	Good	Yes	NA				

1
-
-
~
10
- 2.5
CA
- 4.2
-
α
Trade.
4
0
0
_
\ \ '
-
4
0
₹.4
_
4
4
4
4
D: 4
D: 4
CD: 4
CD: 4
CD.
OCD: 4
OCD
OCD.
v OCD.
v OCD.
OCD.
by OCD.
by OCD.
I by OCD.
by OCD.
by OCD.
by OCD.
by OCD.
eived by OCD.
ived by OCD.
eived by OCD.
eived by OCD.
eceived by OCD.
eived by OCD.
eceived by OCD.
eceived by OCD.
eceived by OCD.

Chain-of-Custody Record	Turn-Around Time:	INTERNATION INTERNATION
Client: Hilcon	Standard 🗆 Rush	ANALYSTS LABORATORY
Athr. Mitch Killough		www.hallenvironmental.com
	Standard # 1	4901 Hawkins NE - Albuquerque, NM 87109
	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #:		Analysis Request
email or Fax#:	Project Manager:	(O)
QA/QC Package:	Stuart High	Apsection of the second of the
☐ Standard ☐ Level 4 (Full Validation)	4	. 150д Од 7
on: 🗆 Az Compliance	D. During	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
□ Other	On Ice: BY Yes DNO MAN	OS 3/26 3/26 10 (2/09 10 (3/26 10 (4/20 10
□ EDD (Type)	# of Coolers: (a. NA	bodelside
	Cooler Temp(Including CF): 8.5 - C:	15E estice Meth yy 8: 8 MM 8 MM 7E, 75
	Containor Processive HEAL NO	1:80 1 P-3 3 (M-45 b 3 (M-45 b 1:80 0 (V-6) 1:80 1:80 1:80 1:80 1:80 1:80 1:80 1:80
Date Time Matrix Sample Name	Type and # Type	TPH 808 ED# 826 104, 1 826 104, 1 104 104 104 104 104 104 104 104 104 10
4 15-15 Arr	NA VA	X
Date: Reinquished by:	Received by: Via: Date Time	Remarks: Whencemann
Date: Time: A Relinquished by:	Via: Date	co: shy de PASOLUM. COM!
TELEVISION LEVEL IN THE REAL PRINCES	Courses 119/24	Lourns
semples submitted to Hall Environme	tories.	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Released to Imaging: 63/2024 11:22:17 AM

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 22, 2024

Mitch Killough Hilcorp Energy PO Box 61529 Houston, TX 77208-1529

TEL: (337) 276-7676

FAX:

RE: Standard OrderNo.: 2402485

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 1 sample(s) on 2/9/2024 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report Lab Order 2402485

Date Reported: 2/22/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: Influent 2-8-24

 Project:
 Standard
 Collection Date: 2/8/2024 12:00:00 PM

 Lab ID:
 2402485-001
 Matrix: AIR
 Received Date: 2/9/2024 6:35:00 AM

Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: JJP
Gasoline Range Organics (GRO)	2200	250	μg/L	50	2/15/2024 11:45:49 AM	GW 1031
Surr: BFB	113	15-412	%Rec	50	2/15/2024 11:45:49 AM	GW 1031
EPA METHOD 8260B: VOLATILES					Analyst	ССМ
Benzene	19	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Toluene	31	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Ethylbenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,2,4-Trimethylbenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,3,5-Trimethylbenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,2-Dibromoethane (EDB)	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Naphthalene	ND	10	μg/L	50	2/12/2024 2:40:00 PM	R103021
1-Methylnaphthalene	ND	20	μg/L	50	2/12/2024 2:40:00 PM	R103021
2-Methylnaphthalene	ND	20	μg/L	50	2/12/2024 2:40:00 PM	R103021
Acetone	ND	50	μg/L	50	2/12/2024 2:40:00 PM	R103021
Bromobenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Bromodichloromethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Bromoform	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Bromomethane	ND	10	μg/L	50	2/12/2024 2:40:00 PM	R103021
2-Butanone	ND	50	μg/L	50	2/12/2024 2:40:00 PM	R103021
Carbon disulfide	ND	50	μg/L	50	2/12/2024 2:40:00 PM	R103021
Carbon tetrachloride	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Chlorobenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Chloroethane	ND	10	μg/L	50	2/12/2024 2:40:00 PM	R103021
Chloroform	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Chloromethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
2-Chlorotoluene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
4-Chlorotoluene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
cis-1,2-DCE	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
cis-1,3-Dichloropropene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,2-Dibromo-3-chloropropane	ND	10	μg/L	50	2/12/2024 2:40:00 PM	R103021
Dibromochloromethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Dibromomethane	ND	10	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,2-Dichlorobenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,3-Dichlorobenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,4-Dichlorobenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Dichlorodifluoromethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,1-Dichloroethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,1-Dichloroethene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical ReportLab Order **2402485**

Date Reported: 2/22/2024

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: Influent 2-8-24

 Project:
 Standard
 Collection Date: 2/8/2024 12:00:00 PM

 Lab ID:
 2402485-001
 Matrix: AIR
 Received Date: 2/9/2024 6:35:00 AM

EPA METHOD 8260B: VOLATILES 1,2-Dichloropropane 1,3-Dichloropropane	ND ND ND ND	5.0 5.0 5.0 5.0	μg/L μg/L μg/L	50 50	Analys: 2/12/2024 2:40:00 PM	t: CCM R103021
	ND ND ND	5.0 5.0	μg/L	50		R103021
1,3-Dichloropropane	ND ND	5.0			0/40/0004 0 40 00 DM	
	ND		ua/L		2/12/2024 2:40:00 PM	R103021
2,2-Dichloropropane		5.0	J	50	2/12/2024 2:40:00 PM	R103021
1,1-Dichloropropene	ND		μg/L	50	2/12/2024 2:40:00 PM	R103021
Hexachlorobutadiene		5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
2-Hexanone	ND	50	μg/L	50	2/12/2024 2:40:00 PM	R103021
Isopropylbenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
4-Isopropyltoluene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
4-Methyl-2-pentanone	ND	50	μg/L	50	2/12/2024 2:40:00 PM	R103021
Methylene chloride	ND	15	μg/L	50	2/12/2024 2:40:00 PM	R103021
n-Butylbenzene	ND	15	μg/L	50	2/12/2024 2:40:00 PM	R103021
n-Propylbenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
sec-Butylbenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Styrene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
tert-Butylbenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,1,2,2-Tetrachloroethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Tetrachloroethene (PCE)	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
trans-1,2-DCE	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
trans-1,3-Dichloropropene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,2,3-Trichlorobenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,2,4-Trichlorobenzene	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,1,1-Trichloroethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,1,2-Trichloroethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Trichloroethene (TCE)	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Trichlorofluoromethane	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
1,2,3-Trichloropropane	ND	10	μg/L	50	2/12/2024 2:40:00 PM	R103021
Vinyl chloride	ND	5.0	μg/L	50	2/12/2024 2:40:00 PM	R103021
Xylenes, Total	34	7.5	μg/L	50	2/12/2024 2:40:00 PM	R103021
Surr: Dibromofluoromethane	93.1	70-130	%Rec	50	2/12/2024 2:40:00 PM	R103021
Surr: 1,2-Dichloroethane-d4	84.7	70-130	%Rec	50	2/12/2024 2:40:00 PM	R103021
Surr: Toluene-d8	109	70-130	%Rec	50	2/12/2024 2:40:00 PM	R103021
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	50	2/12/2024 2:40:00 PM	R103021

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

ANALYTICAL SUMMARY REPORT

February 21, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order:

B24020812

Quote ID: B15626

Project Name: Not Indicated

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 2/13/2024 for analysis.

Lab ID	Client Sample ID	Collect Date Receive	e Date Matrix	Test
B24020812-001	2402485-001B, Influent 2-8-24	02/08/24 12:00 02/	13/24 Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 S 27th St., Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

If you have any questions regarding these test results, please contact your Project Manager.

Report Approved By:

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Qualifiers

Result Units

21.33 Mol %

78.12 Mol %

0.51 Mol %

<0.01 Mol %

0.04 Mol %

< 0.001 gpm

0.017 gpm

0.017 gpm

0.017 gpm

2

2

546

240

1.00

97.47

RL

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

1

1

1

1

0.001

0.01

Client: Hall Environmental
Project: Not Indicated
Lab ID: B24020812-001

Analyses

Nitrogen

Methane

Ethane

Propane

Isobutane

n-Butane

Propane

Isobutane

n-Butane

Isopentane

n-Pentane

GPM Total

Hexanes plus

GPM Pentanes plus

Isopentane n-Pentane

Hexanes plus

Carbon Dioxide

Hydrogen Sulfide

Client Sample ID: 2402485-001B, Influent 2-8-24

GAS CHROMATOGRAPHY ANALYSIS REPORT

Report Date: 02/21/24

Collection Date: 02/08/24 12:00

DateReceived: 02/13/24

Matrix: Air MCL/ QCL Method Analysis Date / By GPA 2261-95 02/15/24 10:04 / jrj GPA 2261-95 02/15/24 10:04 / iri 02/15/24 10:04 / jrj GPA 2261-95 GPA 2261-95 02/15/24 10:04 / jrj GPA 2261-95 02/15/24 10:04 / jrj 02/15/24 10:04 / jrj GPA 2261-95 02/15/24 10:04 / jrj GPA 2261-95 GPA 2261-95 02/15/24 10:04 / jrj GPA 2261-95 02/15/24 10:04 / iri GPA 2261-95 02/15/24 10:04 / jrj GPA 2261-95 02/15/24 10:04 / jrj

GPA 2261-95

GPA 2261-95

GPA 2261-95

GPA 2261-95

D3588-81

The analysis was not corrected for air.

CALCULATED PROPERTIES
Gross BTU per cu ft @ Std Cond. (HHV)

Net BTU per cu ft @ std cond. (LHV)

Pseudo-critical Temperature, deg R

Pseudo-critical Pressure, psia

Specific Gravity @ 60/60F

COMMENTS

Air. %

- 02/15/24 10:04 / jrj

Report RL - Analyte Reporting Limit MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24020812 Report Date: 02/21/24

Analyte		Count	Result	Units	RL	%REC L	ow Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R416751
Lab ID:	B24020812-001ADUP	12 San	nple Duplic	ate		R	un: GCNG	A-B_240215A		02/15/	24 11:43
Oxygen			19.6	Mol %	0.01				8.4	20	
Nitrogen			79.9	Mol %	0.01				2.2	20	
Carbon D	ioxide		0.47	Mol %	0.01				8.2	20	
Hydroger	Sulfide		<0.01	Mol %	0.01					20	
Methane			<0.01	Mol %	0.01					20	
Ethane			<0.01	Mol %	0.01					20	
Propane			<0.01	Mol %	0.01					20	
Isobutane	e		<0.01	Mol %	0.01					20	
n-Butane			<0.01	Mol %	0.01					20	
Isopentar	ne		<0.01	Mol %	0.01					20	
n-Pentan	е		<0.01	Mol %	0.01					20	
Hexanes	plus		0.04	Mol %	0.01				0.0	20	
Lab ID:	LCS021524	11 Lab	oratory Cor	ntrol Sample		R	un: GCNG	A-B_240215A		02/15/	24 01:23
Oxygen			0.65	Mol %	0.01	130	70	130			
Nitrogen			6.34	Mol %	0.01	106	70	130			
Carbon D	ioxide		1.01	Mol %	0.01	102	70	130			
Methane			74.4	Mol %	0.01	100	70	130			
Ethane			6.05	Mol %	0.01	101	70	130			
Propane			5.02	Mol %	0.01	102	70	130			
Isobutane	e		1.77	Mol %	0.01	88	70	130			
n-Butane			2.00	Mol %	0.01	100	70	130			
Isopentar	ne		0.99	Mol %	0.01	99	70	130			
n-Pentan	е		0.95	Mol %	0.01	95	70	130			
Hexanes	plus		0.78	Mol %	0.01	98	70	130			

Qualifiers:

RL - Analyte Reporting Limit

 $\ensuremath{\mathsf{ND}}$ - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Hall Environmental

Login completed by: Danielle N. Harris

B24020812

Date Received: 2/13/2024

				. 1000.1 041/ 10/202 .
Reviewed by:	ysmith		Re	ceived by: CMJ
Reviewed Date:	2/16/2024		Car	rier name: FedEx
Shipping container/cooler in	good condition?	Yes ✓	No 🗌	Not Present
Custody seals intact on all s	shipping container(s)/cooler(s)?	Yes √	No 🗌	Not Present
Custody seals intact on all s	sample bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🗸	No 🗌	
Chain of custody signed wh	en relinquished and received?	Yes 🗸	No 🗌	
Chain of custody agrees wit	h sample labels?	Yes 🔽	No 🗌	
Samples in proper container	r/bottle?	Yes 🔽	No 🗌	
Sample containers intact?		Yes 🔽	No 🗌	
Sufficient sample volume fo	r indicated test?	Yes 🔽	No 🗌	
All samples received within (Exclude analyses that are c such as pH, DO, Res Cl, Sc	considered field parameters	Yes 🗸	No 🗌	
Temp Blank received in all s	shipping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank temp	erature:	14.4°C No Ice		
Containers requiring zero he bubble that is <6mm (1/4").	eadspace have no headspace or	Yes	No 🗌	No VOA vials submitted ✓
Water - pH acceptable upon	receipt?	Yes	No 🗌	Not Applicable ✓

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Contact and Corrective Action Comments:

None

ONLINE

EMAIL

HARDCOPY (extra cost)

FOR LAB USE ONLY FAX

REPORT TRANSMITTAL DESIRED:

Attempt to Cool?

Temp of samples

1415124 Time 700

3rd BD

2nd BD

Next BD

Time:

Date: Date

Received By Received By

Time

Date

Standard

7:52 AM

2/9/2024

Date. Date

nquished By Relinquished By Relinquished By

Y

4901 Havkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com	B Influent 2-8-24
	BOTTLE CLIENT SAMPLE ID TYPE MATRIX DATE ANALYTICAL COMMENTS
SUB CONTRATOR Energy Labs -Billings COMPANY: Energy Laboratories PHONE: (406) 869-6253 FAX: (406) 252-6069 ADDRESS: 1120 South 27th Street CITY, STATE, ZIP Billings MT 50107	

Include the LAB ID and CLIENT SAMPLE ID on final reports. Email results to Hall.Lab@et.eurofinsus.com, For Questions email Hall.samplecontrol@et.eurofinsus.com. Please return all coolers and blue ice. Thank you. SPECIAL INSTRUCTIONS / COMMENTS:

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2402485**

22-Feb-24

Client: Hilcorp Energy

Project: Standard

Sample ID: 2402485-001adup	SampType: DUP	TestCode: EPA Method	8260B: Volatiles
Client ID: Influent 2-8-24	Batch ID: R103021	RunNo: 103021	
Prep Date:	Analysis Date: 2/12/2024	SeqNo: 3808533	Units: µg/L
Analyte	Result PQL SPK	lue SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual

							Pg/=			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	5.0						5.84	20	
Toluene	28	5.0						11.3	20	
Ethylbenzene	ND	5.0						0	20	
Methyl tert-butyl ether (MTBE)	ND	5.0						0	20	
1,2,4-Trimethylbenzene	ND	5.0						0	20	
1,3,5-Trimethylbenzene	ND	5.0						0	20	
1,2-Dichloroethane (EDC)	ND	5.0						0	20	
1,2-Dibromoethane (EDB)	ND	5.0						0	20	
Naphthalene	ND	10						0	20	
1-Methylnaphthalene	ND	20						0	20	
2-Methylnaphthalene	ND	20						0	20	
Acetone	ND	50						0	20	
Bromobenzene	ND	5.0						0	20	
Bromodichloromethane	ND	5.0						0	20	
Bromoform	ND	5.0						0	20	
Bromomethane	ND	10						0	20	
2-Butanone	ND	50						0	20	
Carbon disulfide	ND	50						0	20	
Carbon tetrachloride	ND	5.0						0	20	
Chlorobenzene	ND	5.0						0	20	
Chloroethane	ND	10						0	20	
Chloroform	ND	5.0						0	20	
Chloromethane	ND	5.0						0	20	
2-Chlorotoluene	ND	5.0						0	20	
4-Chlorotoluene	ND	5.0						0	20	
cis-1,2-DCE	ND	5.0						0	20	
cis-1,3-Dichloropropene	ND	5.0						0	20	
1,2-Dibromo-3-chloropropane	ND	10						0	20	
Dibromochloromethane	ND	5.0						0	20	
Dibromomethane	ND	10						0	20	
1,2-Dichlorobenzene	ND	5.0						0	20	
1,3-Dichlorobenzene	ND	5.0						0	20	
1,4-Dichlorobenzene	ND	5.0						0	20	
Dichlorodifluoromethane	ND	5.0						0	20	
1,1-Dichloroethane	ND	5.0						0	20	
1,1-Dichloroethene	ND	5.0						0	20	
1,2-Dichloropropane	ND	5.0						0	20	
1,3-Dichloropropane	ND	5.0						0	20	
2,2-Dichloropropane	ND	5.0						0	20	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

ND

ND

ND

ND

ND

ND

29

48

46

54

51

5.0

5.0

5.0

5.0

10

5.0

7.5

50.00

50.00

50.00

50.00

SampType: DUP

WO#: **2402485 22-Feb-24**

0

0

0

0

0

0

0

0

0

0

16.4

130

130

130

130

20

20

20

20

20

20

20

0

0

0

0

Client: Hilcorp Energy

Project: Standard

Sample ID: 2402485-001adup

Client ID: Influent 2-8-24	Batc	h ID: R1	03021	F	RunNo: 10	03021				
Prep Date:	Analysis [Date: 2 /	12/2024	\$	SeqNo: 38	308533	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	5.0						0	20	
Hexachlorobutadiene	ND	5.0						0	20	
2-Hexanone	ND	50						0	20	
Isopropylbenzene	ND	5.0						0	20	
4-Isopropyltoluene	ND	5.0						0	20	
4-Methyl-2-pentanone	ND	50						0	20	
Methylene chloride	ND	15						0	20	
n-Butylbenzene	ND	15						0	20	
n-Propylbenzene	ND	5.0						0	20	
sec-Butylbenzene	ND	5.0						0	20	
Styrene	ND	5.0						0	20	
tert-Butylbenzene	ND	5.0						0	20	
1,1,1,2-Tetrachloroethane	ND	5.0						0	20	
1,1,2,2-Tetrachloroethane	ND	5.0						0	20	
Tetrachloroethene (PCE)	ND	5.0						0	20	
trans-1,2-DCE	ND	5.0						0	20	
trans-1,3-Dichloropropene	ND	5.0						0	20	
1,2,3-Trichlorobenzene	ND	5.0						0	20	
1,2,4-Trichlorobenzene	ND	5.0						0	20	

TestCode: EPA Method 8260B: Volatiles

Qualifiers:

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

Surr: Toluene-d8

Surr: Dibromofluoromethane

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Vinyl chloride

Xylenes, Total

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank

95.2

92.8

107

101

70

70

70

70

- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109

Sample Log-In Check List

Released to Imaging: 6/3/2024 11:22:17 AM

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: Hilcorp Energy	Work Order Numb	per: 2402485		RcptNo:	1
Received By: Tracy Casarrubias	2/9/2024 6:35:00 Al	М			
Completed By: Tracy Casarrubias	2/9/2024 7:45:41 Al	VI			
Reviewed By: 72/9/24					
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗌	No 🔽	Not Present	
2. How was the sample delivered?		Courier			
Log In 3. Was an attempt made to cool the sample	es?	Yes 🗌	No 🗹	NA 🗆	
4. Were all samples received at a temperate	ture of >0° C to 6.0°C	Yes 🗌	No 🗌	NA 🗹	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volume for indicated to	est(s)?	Yes 🔽	No 🗌		
7. Are samples (except VOA and ONG) pro	perly preserved?	Yes 🗹	No 🗆		
8. Was preservative added to bottles?		Yes	No 🗹	NA 🗆	
9. Received at least 1 vial with headspace	<1/4" for AQ VOA?	Yes	No 🗌	NA 🗹	
10. Were any sample containers received b	roken?	Yes 🗌	No 🗹	# of preserved bottles checked	
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody))	Yes 🗸	No 🗌	for pH: (<2 or	>12 unless noted)
12. Are matrices correctly identified on Chair	of Custody?	Yes 🗸	No 🔲	Adjusted?	
13. Is it clear what analyses were requested	?	Yes 🗹	No 🔲	/	o/
14. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗔	Checked by:	2/9 2/9
Special Handling (if applicable)					
15. Was client notified of all discrepancies v	vith this order?	Yes	No 🗆	NA 🗸	
Person Notified:	Date:	Γ			
By Whom:	Via:	eMail F	Phone Fax	In Person	
Regarding:					
Client Instructions:					
16. Additional remarks:					
Mailing address and phone number	er are missing on COC- T	MC 2/9/24			
17. Cooler Information	Cool Intent Cool No	Sool Data	Signed By		
Cooler No Temp °C Condition 1 N/A Good	Seal Intact Seal No	Seal Date	Signed By		

Received by OCD: 4/24/2024 3:25:30 PM

O	hain	of-Cr	Chain-of-Custody Record	Turn-Around Time:	Time:				_		-	1	LAIL ENVIDONMENTA	ć	2	Ž	× L	1	
Client:	H	Hilcorp		⊠ Standard	□ Rush		Л		- 9	Ž		SI	ANALYSIS LABORATORY	AB	OR	A	OR	, >	
	Mitch		KINOVAN	Project Name:						www.	haller	nviron	www.hallenvironmental.com	al.con	_				
Mailing	Mailing Address:		7	Stand	ward	1. F.	•	4901 Hawkins NE	lawk	IN SI		Ibndr	Albuquerque, NM 87109	N N M	8710	တ			
				Project #:				Tel. 505-345-3975	05-34	5-39	5	Fax	505-345-4107	345-4	107				1
Phone #:	#:										Ans	llysis	Analysis Request	est					1
email o	r Fax#: №	Teinouist	email or Fax#: ทุ _{ระไนยนรูม ® Ailtoy3. Com}	Project Manager:	ger:						-08	***		(tue				-	
QA/QC	QA/QC Package:			Stuart	Hyde-	ENSOLUM				SWI	O _{4,} S	- 170		əsdA					
以 Standard	ldard		☐ Level 4 (Full Validation)							S02	<u> </u>	. (7		/Jue				,	
Accreditation:	itation:	□ Az Co	☐ Az Compliance	Sampler: £ C	Carroll	ON PA				.Z8 J	ON	·	(/	Searc					
	7. (T. mo.)	B 0		# Of Colore:	Mind Salan	ON X				0 0		***	/O/	յ) ա	C				
ן ר ק	(adki)			# of Coolers.		(00)				158				no.	0				
				COOIET 1 emp(including CF):		3				ρλ _{				ilo() ′	-			
Date	<u>8</u>	M pt	Same Name S	Container Type and #	Preservative Type	HEAL No.	X∃TE	8:H91 1 1808	1) 8d3	sHAc	SCRA CI, F,) 0928) 0728	Total C	10				
2 6	200	VIII V			246	120,000	10		-	1	+-	1		1	1	\downarrow		<u> </u>	T
8-7	10-00	217	Influent 2-8-74	710M1	None	100	7	_	\prod	†	+	<u> </u>		+	2	-		+	Т
	į.					1)	TI .					7				-			
											1			P					
													3.4						
							t	\vdash										╁	Т
							\dagger	+	$oxed{\bot}$	T	+	+	I	\dagger	+	\downarrow		\dagger	Т
							1	\downarrow	\rfloor	1	+	-		1	\dashv			\dashv	
					Ξ			_		\dashv			<u>.</u>		_				
											¥			-					
										3.5		-		-					
											_							1	
												-							
			\																
Date:	Time:	Relinquished by:	ned by:	Received by:	Via:	Date Time	Remarks	ırks:											
<i>K</i> 8	25	1		100	1/10	×8/24 1343		O	3	yde	S)	Solui	CC: Shyde @ Ensalum, com	M					
Date:		<u> </u>	hed by:	Received by:	Via: ceurc	Date Time			9)	arrol	8	S 0/4	ecarrolle ensolum, com	Z.					
75%	(71.1	/	Investing agree			~ r r7/L/2		1									İ		
	200000000000000000000000000000000000000				perodited leboratori	side to seiten an octave side and	willidianon .		4	Annah de	date.	1	American contracted data will be elected and the englished	4 40 60	Acres of	tion land	1		

Released to Imaging: 6/3/2024 11:22:17 AM

APPENDIX D

Groundwater Laboratory Analytical Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 22, 2022

Stuart Hyde Hilcorp Energy PO Box 61529 Houston, TX 77208-1529

TEL: (337) 276-7676

FAX:

RE: Standard 1 OrderNo.: 2212578

Dear Stuart Hyde:

Hall Environmental Analysis Laboratory received 13 sample(s) on 12/9/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 2212578

Hall Environmental Analysis Laboratory, Inc. Date Reported: 12/22/2022

CLIENT: Hilcorp Energy Client Sample ID: MW-02

Project: Standard 1 Collection Date: 12/8/2022 3:33:00 PM Lab ID: 2212578-001 Matrix: GROUNDWA Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qu	ıal Units	DF Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST				Analys	:: JR
Benzene	16000	200	μg/L	200 12/15/2022 1:58:57 PM	SL93331
Toluene	2500	200	μg/L	200 12/15/2022 1:58:57 PM	SL93331
Ethylbenzene	1900	200	μg/L	200 12/15/2022 1:58:57 PM	SL93331
Xylenes, Total	18000	300	μg/L	200 12/15/2022 1:58:57 PM	SL93331
Surr: 1,2-Dichloroethane-d4	94.7	70-130	%Rec	200 12/15/2022 1:58:57 PM	SL93331
Surr: Dibromofluoromethane	93.5	70-130	%Rec	200 12/15/2022 1:58:57 PM	SL93331
Surr: Toluene-d8	106	70-130	%Rec	200 12/15/2022 1:58:57 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 1 of 15

Lab Order 2212578

Date Reported: 12/22/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: MW-03

Project: Standard 1 Collection Date: 12/8/2022 3:18:00 PM Lab ID: 2212578-002 Matrix: GROUNDWA Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qua	l Units	DF Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST				Analyst:	JR
Benzene	17000	200	μg/L	200 12/15/2022 2:27:38 PM	SL93331
Toluene	1000	200	μg/L	200 12/15/2022 2:27:38 PM	SL93331
Ethylbenzene	730	200	μg/L	200 12/15/2022 2:27:38 PM	SL93331
Xylenes, Total	6800	300	μg/L	200 12/15/2022 2:27:38 PM	SL93331
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	200 12/15/2022 2:27:38 PM	SL93331
Surr: Dibromofluoromethane	92.5	70-130	%Rec	200 12/15/2022 2:27:38 PM	SL93331
Surr: Toluene-d8	107	70-130	%Rec	200 12/15/2022 2:27:38 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- RL Reporting Limit

Sample pH Not In Range Page 2 of 15

Lab Order 2212578

Hall Environmental Analysis Laboratory, Inc. Date Reported: 12/22/2022

CLIENT: Hilcorp Energy Client Sample ID: MW-08

 Project:
 Standard 1
 Collection Date: 12/8/2022 1:04:00 PM

 Lab ID:
 2212578-003
 Matrix: GROUNDWA
 Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JR
Benzene	ND	1.0	μg/L	1	12/15/2022 2:56:22 PM	SL93331
Toluene	ND	1.0	μg/L	1	12/15/2022 2:56:22 PM	SL93331
Ethylbenzene	ND	1.0	μg/L	1	12/15/2022 2:56:22 PM	SL93331
Xylenes, Total	ND	1.5	μg/L	1	12/15/2022 2:56:22 PM	SL93331
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	1	12/15/2022 2:56:22 PM	SL93331
Surr: Dibromofluoromethane	104	70-130	%Rec	1	12/15/2022 2:56:22 PM	SL93331
Surr: Toluene-d8	109	70-130	%Rec	1	12/15/2022 2:56:22 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 15

CLIENT: Hilcorp Energy

Analytical Report

Lab Order **2212578**Date Reported: **12/22/2022**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-11

Project: Standard 1 Collection Date: 12/8/2022 12:00:00 PM

Lab ID: 2212578-004 **Matrix:** GROUNDWA **Received Date:** 12/9/2022 7:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JR
Benzene	ND	1.0	μg/L	1	12/15/2022 3:25:01 PM	SL93331
Toluene	ND	1.0	μg/L	1	12/15/2022 3:25:01 PM	SL93331
Ethylbenzene	ND	1.0	μg/L	1	12/15/2022 3:25:01 PM	SL93331
Xylenes, Total	ND	1.5	μg/L	1	12/15/2022 3:25:01 PM	SL93331
Surr: 1,2-Dichloroethane-d4	105	70-130	%Rec	1	12/15/2022 3:25:01 PM	SL93331
Surr: Dibromofluoromethane	100	70-130	%Rec	1	12/15/2022 3:25:01 PM	SL93331
Surr: Toluene-d8	107	70-130	%Rec	1	12/15/2022 3:25:01 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 15

Lab Order 2212578

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/22/2022

CLIENT: Hilcorp Energy Client Sample ID: MW-12

Project: Standard 1 Collection Date: 12/8/2022 2:02:00 PM Lab ID: 2212578-005 Matrix: GROUNDWA Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JR
Benzene	41	20	μg/L	20	12/15/2022 3:53:44 PM	SL93331
Toluene	ND	20	μg/L	20	12/15/2022 3:53:44 PM	SL93331
Ethylbenzene	ND	20	μg/L	20	12/15/2022 3:53:44 PM	SL93331
Xylenes, Total	ND	30	μg/L	20	12/15/2022 3:53:44 PM	SL93331
Surr: 1,2-Dichloroethane-d4	111	70-130	%Rec	20	12/15/2022 3:53:44 PM	SL93331
Surr: Dibromofluoromethane	98.3	70-130	%Rec	20	12/15/2022 3:53:44 PM	SL93331
Surr: Toluene-d8	106	70-130	%Rec	20	12/15/2022 3:53:44 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- RL Reporting Limit

Sample pH Not In Range Page 5 of 15

Lab Order 2212578

Hall Environmental Analysis Laboratory, Inc. Date Reported: 12/22/2022

CLIENT: Hilcorp Energy Client Sample ID: MW-14

 Project:
 Standard 1
 Collection Date: 12/8/2022 2:41:00 PM

 Lab ID:
 2212578-006
 Matrix: GROUNDWA
 Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL (Qual Units	DF Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST				Analyst	:: JR
Benzene	3800	200	μg/L	200 12/15/2022 4:22:24 PM	SL93331
Toluene	1800	200	μg/L	200 12/15/2022 4:22:24 PM	SL93331
Ethylbenzene	1600	200	μg/L	200 12/15/2022 4:22:24 PM	SL93331
Xylenes, Total	9500	300	μg/L	200 12/15/2022 4:22:24 PM	SL93331
Surr: 1,2-Dichloroethane-d4	94.8	70-130	%Rec	200 12/15/2022 4:22:24 PM	SL93331
Surr: Dibromofluoromethane	90.7	70-130	%Rec	200 12/15/2022 4:22:24 PM	SL93331
Surr: Toluene-d8	107	70-130	%Rec	200 12/15/2022 4:22:24 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 15

Lab Order **2212578**

Date Reported: 12/22/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: MW-15

 Project:
 Standard 1
 Collection Date: 12/8/2022 3:00:00 PM

 Lab ID:
 2212578-007
 Matrix: GROUNDWA
 Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST				Analys	:: JR
Benzene	25000	500	μg/L	500 12/15/2022 4:51:00 PM	SL93331
Toluene	4900	500	μg/L	500 12/15/2022 4:51:00 PM	SL93331
Ethylbenzene	540	500	μg/L	500 12/15/2022 4:51:00 PM	SL93331
Xylenes, Total	4800	750	μg/L	500 12/15/2022 4:51:00 PM	SL93331
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	500 12/15/2022 4:51:00 PM	SL93331
Surr: Dibromofluoromethane	96.2	70-130	%Rec	500 12/15/2022 4:51:00 PM	SL93331
Surr: Toluene-d8	110	70-130	%Rec	500 12/15/2022 4:51:00 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 15

Lab Order **2212578**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 12/22/2022

CLIENT: Hilcorp Energy Client Sample ID: MW-16

 Project:
 Standard 1
 Collection Date: 12/8/2022 2:22:00 PM

 Lab ID:
 2212578-008
 Matrix: GROUNDWA
 Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qu	ial Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JR
Benzene	150	50	μg/L	50	12/15/2022 5:19:37 PM	SL93331
Toluene	ND	50	μg/L	50	12/15/2022 5:19:37 PM	SL93331
Ethylbenzene	380	50	μg/L	50	12/15/2022 5:19:37 PM	SL93331
Xylenes, Total	2100	75	μg/L	50	12/15/2022 5:19:37 PM	SL93331
Surr: 1,2-Dichloroethane-d4	118	70-130	%Rec	50	12/15/2022 5:19:37 PM	SL93331
Surr: Dibromofluoromethane	99.7	70-130	%Rec	50	12/15/2022 5:19:37 PM	SL93331
Surr: Toluene-d8	106	70-130	%Rec	50	12/15/2022 5:19:37 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 15

Lab Order 2212578

Date Reported: 12/22/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Hilcorp Energy Client Sample ID: MW-18

 Project:
 Standard 1
 Collection Date: 12/8/2022 12:27:00 PM

 Lab ID:
 2212578-009
 Matrix: GROUNDWA
 Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JR
Benzene	6700	500	μg/L	500	12/16/2022 2:43:11 PM	SL93377
Toluene	ND	50	μg/L	50	12/15/2022 5:48:17 PM	SL93331
Ethylbenzene	360	50	μg/L	50	12/15/2022 5:48:17 PM	SL93331
Xylenes, Total	ND	75	μg/L	50	12/15/2022 5:48:17 PM	SL93331
Surr: 1,2-Dichloroethane-d4	110	70-130	%Rec	50	12/15/2022 5:48:17 PM	SL93331
Surr: Dibromofluoromethane	104	70-130	%Rec	50	12/15/2022 5:48:17 PM	SL93331
Surr: Toluene-d8	105	70-130	%Rec	50	12/15/2022 5:48:17 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 15

Lab Order **2212578**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 12/22/2022

CLIENT: Hilcorp Energy Client Sample ID: MW-19

 Project:
 Standard 1
 Collection Date: 12/8/2022 1:47:00 PM

 Lab ID:
 2212578-010
 Matrix: GROUNDWA
 Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qua	al Units	DF Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST				Analys	t: JR
Benzene	12000	200	μg/L	200 12/15/2022 6:16:57 PM	SL93331
Toluene	14000	200	μg/L	200 12/15/2022 6:16:57 PM	SL93331
Ethylbenzene	1300	200	μg/L	200 12/15/2022 6:16:57 PM	SL93331
Xylenes, Total	7800	300	μg/L	200 12/15/2022 6:16:57 PM	SL93331
Surr: 1,2-Dichloroethane-d4	98.4	70-130	%Rec	200 12/15/2022 6:16:57 PM	SL93331
Surr: Dibromofluoromethane	89.2	70-130	%Rec	200 12/15/2022 6:16:57 PM	SL93331
Surr: Toluene-d8	109	70-130	%Rec	200 12/15/2022 6:16:57 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 15

Lab Order **2212578**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 12/22/2022

CLIENT: Hilcorp Energy Client Sample ID: MW-22

 Project:
 Standard 1
 Collection Date: 12/8/2022 12:13:00 PM

 Lab ID:
 2212578-011
 Matrix: GROUNDWA
 Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JR
Benzene	ND	2.0	μg/L	2	12/15/2022 6:45:28 PM	SL93331
Toluene	ND	2.0	μg/L	2	12/15/2022 6:45:28 PM	SL93331
Ethylbenzene	ND	2.0	μg/L	2	12/15/2022 6:45:28 PM	SL93331
Xylenes, Total	ND	3.0	μg/L	2	12/15/2022 6:45:28 PM	SL93331
Surr: 1,2-Dichloroethane-d4	109	70-130	%Rec	2	12/15/2022 6:45:28 PM	SL93331
Surr: Dibromofluoromethane	96.7	70-130	%Rec	2	12/15/2022 6:45:28 PM	SL93331
Surr: Toluene-d8	107	70-130	%Rec	2	12/15/2022 6:45:28 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 15

CLIENT: Hilcorp Energy

Analytical Report

Lab Order **2212578**Date Reported: **12/22/2022**

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: MW-23

Project: Standard 1 Collection Date: 12/8/2022 1:26:00 PM

Lab ID: 2212578-012 **Matrix:** GROUNDWA **Received Date:** 12/9/2022 7:35:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JR
Benzene	ND	2.0	μg/L	2	12/15/2022 7:14:02 PM	SL93331
Toluene	ND	2.0	μg/L	2	12/15/2022 7:14:02 PM	SL93331
Ethylbenzene	ND	2.0	μg/L	2	12/15/2022 7:14:02 PM	SL93331
Xylenes, Total	ND	3.0	μg/L	2	12/15/2022 7:14:02 PM	SL93331
Surr: 1,2-Dichloroethane-d4	114	70-130	%Rec	2	12/15/2022 7:14:02 PM	SL93331
Surr: Dibromofluoromethane	104	70-130	%Rec	2	12/15/2022 7:14:02 PM	SL93331
Surr: Toluene-d8	106	70-130	%Rec	2	12/15/2022 7:14:02 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
 J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 15

Lab Order **2212578**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 12/22/2022

CLIENT: Hilcorp Energy Client Sample ID: MW-26

 Project:
 Standard 1
 Collection Date: 12/8/2022 12:53:00 PM

 Lab ID:
 2212578-013
 Matrix: GROUNDWA
 Received Date: 12/9/2022 7:35:00 AM

Analyses	Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	: JR
Benzene	ND	1.0	μg/L	1	12/15/2022 7:42:35 PM	SL93331
Toluene	ND	1.0	μg/L	1	12/15/2022 7:42:35 PM	SL93331
Ethylbenzene	ND	1.0	μg/L	1	12/15/2022 7:42:35 PM	SL93331
Xylenes, Total	ND	1.5	μg/L	1	12/15/2022 7:42:35 PM	SL93331
Surr: 1,2-Dichloroethane-d4	104	70-130	%Rec	1	12/15/2022 7:42:35 PM	SL93331
Surr: Dibromofluoromethane	99.5	70-130	%Rec	1	12/15/2022 7:42:35 PM	SL93331
Surr: Toluene-d8	105	70-130	%Rec	1	12/15/2022 7:42:35 PM	SL93331

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 15

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2212578 22-Dec-22**

Client: Hilcorp Energy
Project: Standard 1

Sample ID: 100ng Ics	SampT	ype: LC	S	TestCode: EPA Method 8260: Volatiles Short List								
Client ID: LCSW	Batch	ID: SL	93331	F	RunNo: 93	3331						
Prep Date:	Analysis D	ate: 12	/15/2022	5	SeqNo: 33	364580	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	23	1.0	20.00	0	116	70	130					
Toluene	22	1.0	20.00	0	111	70	130					
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.1	70	130					
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130					
Surr: Dibromofluoromethane	9.6				95.5 70							
Surr: Toluene-d8	10		10.00	103 70			130					

Sample ID: mb	Samp	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List							
Client ID: PBW	Batcl	h ID: SL	93331	F	RunNo: 9	3331					
Prep Date:	Analysis [Date: 12	/15/2022	5	SeqNo: 3;	364602	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	11		10.00		115	70	130				
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130				
Surr: Dibromofluoromethane	10		10.00		103	70	130				
Surr: Toluene-d8	11		10.00		107	70	130				

Sample ID: 100ng lcs4	SampT	SampType: LCS TestCode: EPA Method 8						s Short Li	st		
Client ID: LCSW	Batch	n ID: SL	93377	RunNo: 93377							
Prep Date:	Analysis D)ate: 12	/17/2022	5	SeqNo: 3	367222					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	22	1.0	20.00	0	111	70	130				
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.9	70	130				
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130				
Surr: Dibromofluoromethane	9.4		10.00		93.7	70	130				
Surr: Toluene-d8	10		10.00		104	70	130				

Sample ID: mb	SampT	уре: МВ	LK	TestCode: EPA Method 8260: Volatiles Short List								
Client ID: PBW	Batch	ID: SL	93377	F	RunNo: 93	377						
Prep Date:	Analysis D	oate: 12	/17/2022	5	SeqNo: 33	867236	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	K Ref Val %REC LowLimit			%RPD	RPDLimit	Qual		
Benzene	ND	1.0										
Surr: 1,2-Dichloroethane-d4	10		10.00		105	70	130					
Surr: 4-Bromofluorobenzene	11	11 10.00			110 70							

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 15

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

2212578 22-Dec-22

WO#:

Client: Hilcorp Energy
Project: Standard 1

Sample ID: mb	Samp1	Гуре: МЕ	BLK	TestCode: EPA Method 8260: Volatiles Short List								
Client ID: PBW	Batcl	h ID: SL	93377	F	RunNo: 93	3377						
Prep Date:	Analysis [Date: 12	/17/2022	9	SeqNo: 33	367236	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Surr: Dibromofluoromethane	9.2		10.00		92.2	70	130					
Surr: Toluene-d8	11				106 70 130							

Sample ID: 100ng lcs3	SampT	ype: LC	S	Tes	PA Method	8260: Volatile	s Short Li	st		
Client ID: LCSW	Batcl	n ID: SL	93377	F	RunNo: 93	3377				
Prep Date:	Analysis D	Date: 12	/16/2022	9	SeqNo: 33	367237				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	110	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.8	70	130			
Surr: Dibromofluoromethane	11	11 10.00			106	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			

Sample ID: mb	SampT	ype: ME	BLK	TestCode: EPA Method 8260: Volatiles Short List								
Client ID: PBW	Batch	ID: SL	93377	F								
Prep Date:	Analysis D	ate: 12	/16/2022	9	SeqNo: 3	367238						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	1.0										
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130					
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130					
Surr: Dibromofluoromethane	11		10.00		110	70	130					
Surr: Toluene-d8	10		10.00		104	70	130					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 15

Hilcorp Energy

Client Name:

4901 Hawkins NE Sample Log-In Check List Albuquerque, NM 87109

RcptNo: 1

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Work Order Number: 2212578

Hall Environmental Analysis Laboratory

Re	ceived By:	Tracy Cas	sarrubias	12/9/20	022 7:35:0	MA 0					
Co	mpleted By:	Sean Livi	_	12/9/20	022 9:58:3	9 AM		5	5_6	not-	
Re	viewed By:	ff 12.	9-22								
<u>Ch</u>	ain of Cust	tody									
1.	Is Chain of Cι	istody comp	lete?			Yes	V	N	lo 🗌	Not Present	
2.	How was the	sample deliv	vered?			Cou	<u>ırier</u>				
Lo	og In										
3.	Was an attem	pt made to	cool the samp	les?		Yes	✓	N	o 🗆	NA 🗌	
4. \	Nere all samp	les received	l at a tempera	ture of >0° C	to 6.0°C	Yes	V	N	。	na 🗆	
5.	Sample(s) in p	roper conta	iner(s)?			Yes	✓	N	• 		
6. \$	Sufficient samp	ole volume f	or indicated to	est(s)?		Yes	V	No	D		
7. /	Are samples (e	except VOA	and ONG) pro	perly preserv	ed?	Yes	V	No			
8. \	Vas preservat	ive added to	bottles?			Yes		No	V	NA 🗌	
9. F	Received at lea	ast 1 vial wit	h headspace	<1/4" for AQ \	VOA?	Yes		No		NA 🗹	
10.	Were any sam	ple containe	ers received b	roken?		Yes		No	o 🗹	# of preserved	
	Does paperwoi					Yes	V	No	· 🗆	bottles checked for pH:	
	Note discrepa		-								>12 unless noted)
	re matrices co			-		Yes		No		Adjusted?	
	s it clear what Vere all holdin			ŗ		Yes Yes	V	No No	_	Checked by:	11/2/9/22
	If no, notify cu					res	•	IVO		Officered by.	100 01 1100
Spe	cial Handli	ng (if app	olicable)								
15.	Nas client not	ified of all di	screpancies v	vith this order	?	Yes		No	o 🗆	NA 🗹	
	Person N	Notified:			Date	e:	Selvanius		- Andrews		
	By Whor	n:			Via:	□ еМа	ail 🗌] Phone [Fax	☐ In Person	
	Regardin	- 1					-				
		structions:									
16.	Additional rem	narks:									
17.	Cooler Inform	9	*								
	Cooler No	Temp ⁰C 0.7	Condition	Seal Intact	Seal No	Seal Da	ate	Signed	Ву		
	-	0.7	Good	Yes	e e						
	Page 1 of 1										

Released to Imaging: 6/3/2024 11:22:17 AM

Dage 10P2

L .
~
Married Printers
\sim
Q
9
00
10
43
0
. 4
On.
CL)
Total .
~
0
7.4
_
0
£ 4
-
The same of
-A.
0
/
/
4
Α-
. 4
Α-
D: 4
D: 4
v OCD: 4
y OCD: 4
y OCD: 4
y OCD: 4
l by OCD: 4
d by OCD: 4
d by OCD: 4
d by OCD: 4
l by OCD: 4
ved by OCD: 4
ived by OCD: 4
ved by OCD: 4
eived by OCD: 4
eived by OCD: 4
ived by OCD: 4
eived by OCD: 4
eived by OCD: 4
eceived by OCD: 4
eceived by OCD: 4

HALL ENVIRONMENTAL	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	*O9	PO₄, S	S808\ (1.40) (1.40) 7S8 10 ,sON	GEG des des des co co co co co co co co co co co co co	etho y 83 Met h Met t, N	37EX) 3081 Pe 3081 Pe 5081 Pe 3CRA 8 3CRA 8		X	\times		X	X		X	×	××	X	×		2 myers of existing	
Time	X Standard / □ Rush	Project Name: <ナセンプレン 井)		Project #: 6 + 4 988 6 H	100011110	Project Manager: < + , + , + , + , , ,	43	Sampler: Tell Huson Zach Myers	olers:	(Including CF): 0[0 to./c0.7 (°C)	Container Preservative HEAL No.	146/ 001	700	003	h00	500	0)00	£00	00%	000	016	110	710	Received by: Via: Date Time	Via: Court	15/2/2 1:8
ustody Record	Hilcorp	th Killongh	Mailing Address:	the control of the co	Phone #:	email or Fax#: mkillough @Wicser com	QA/QC Package:	☐ Az Compliance			Time Matrix Sample Name	21523 CV MWOZ	17/8	1304 MM-08	1200 NW-11	21-72	h1-MW 11hm	S1-MW 0051	11-NM-16	1227 MW-18	1347 F251	1213 NW-22	V 1326 V MW -23	Relinquished by:	ime: Relinquished by:	121 1010 1111 105

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

ı		
1	7	۴
7	-	۲
•	٧	5
ς	i.	
	ς	5
	٧	5
	Y	5
•		1
	0	۵
	Ċ	ú
	Ĉ	ŝ
ķ	3	
	ſ	٦

Received by OCD: 4/24/2024 3:25:30 PM

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	BTEX / MTBE / TMB's (8021) TPH:8015D(GRO / DRO / MRO) 8081 Pesticides/8082 PCB's EDB (Method 504.1) PAHs by 8310 or 8270SIMS CI, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8260 (VOA) 8270 (Semi-VOA) Total Coliform (Present/Absent)	X Wemarks:	The second secon
Turn-Around Time: デールップ Standard □ Rush Project Name: Showlood Hill	Sampler: A to	Time Time	12/9/27
Client: אין	email or Fax#: QA/QC Package: Standard	Date: Time: Relinquished by: 12 12 12 12 12 12 12 1	1/8/12 [6] Monthly Whomitted to Holl Environmental

Released to Imaging: 6/3/2024 11:22:17 AM

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 10, 2023

Danny Burns HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX

RE: Standard 1 OrderNo.: 2303170

Dear Danny Burns:

Hall Environmental Analysis Laboratory received 13 sample(s) on 3/3/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indes

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order: **2303170**Date Reported: **3/10/2023**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2303170

Project: Standard 1

Lab ID: 2303170-001 **Collection Date:** 3/2/2023 3:06:00 PM

Client Sample ID: MW-03 Matrix: GROUNDWATER

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene 17000 200 200 3/7/2023 11:33:00 AM R95078 μg/L Toluene 1100 200 μg/L 200 3/7/2023 11:33:00 AM R95078 Ethylbenzene 650 200 μg/L 200 3/7/2023 11:33:00 AM R95078 Xylenes, Total 5600 400 200 3/7/2023 11:33:00 AM R95078 μg/L Surr: 4-Bromofluorobenzene 70-130 200 3/7/2023 11:33:00 AM 104 %Rec R95078

Lab ID: 2303170-002 **Collection Date:** 3/2/2023 2:40:00 PM

Client Sample ID: MW-04 Matrix: GROUNDWATER

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene 320 8.0 μg/L 20 3/7/2023 11:54:00 AM R95078 Toluene ND 8.0 μg/L 3/7/2023 11:54:00 AM R95078 ND Ethylbenzene 8.0 3/7/2023 11:54:00 AM R95078 μg/L Xylenes, Total ND 16 μg/L 3/7/2023 11:54:00 AM R95078 Surr: 4-Bromofluorobenzene 103 70-130 %Rec 3/7/2023 11:54:00 AM R95078

 Lab ID:
 2303170-003
 Collection Date:
 3/2/2023 11:44:00 AM

 Client Sample ID:
 MW-08
 Matrix:
 GROUNDWATER

RL Qual Units DF Date Analyzed Analyses Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene ND 1.0 μg/L 3/7/2023 12:16:00 PM R95078 1 Toluene ND 1.0 μg/L 3/7/2023 12:16:00 PM R95078 Ethylbenzene ND 1.0 R95078 μg/L 1 3/7/2023 12:16:00 PM Xylenes, Total ND 3/7/2023 12:16:00 PM R95078 2.0 µg/L Surr: 4-Bromofluorobenzene 104 70-130 %Rec 3/7/2023 12:16:00 PM R95078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 6

Lab Order: **2303170**Date Reported: **3/10/2023**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2303170

Project: Standard 1

Lab ID: 2303170-004 Collection Date: 3/2/2023 12:52:00 PM

Client Sample ID: MW-11 Matrix: GROUNDWATER

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene ND 1.0 3/7/2023 12:38:00 PM R95078 μg/L 1 Toluene ND 1.0 μg/L 3/7/2023 12:38:00 PM R95078 ND Ethylbenzene 1.0 μg/L 1 3/7/2023 12:38:00 PM R95078 Xylenes, Total ND 2.0 3/7/2023 12:38:00 PM R95078 μg/L Surr: 4-Bromofluorobenzene 103 70-130 %Rec 3/7/2023 12:38:00 PM R95078

 Lab ID:
 2303170-005
 Collection Date:
 3/2/2023 1:47:00 PM

 Client Sample ID:
 MW-12
 Matrix:
 GROUNDWATER

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene 43 1.0 μg/L 3/7/2023 6:01:00 PM R95078 1 Toluene 1.0 1.0 μg/L 1 3/7/2023 6:01:00 PM R95078 Ethylbenzene 3.6 1.0 3/7/2023 6:01:00 PM R95078 μg/L 1 Xylenes, Total 3.2 2.0 μg/L 1 3/7/2023 6:01:00 PM R95078 Surr: 4-Bromofluorobenzene 70-130 %Rec 3/7/2023 6:01:00 PM R95078 111

 Lab ID:
 2303170-006
 Collection Date:
 3/2/2023 2:05:00 PM

 Client Sample ID:
 MW-15
 Matrix:
 GROUNDWATER

RL Qual Units DF Date Analyzed Analyses Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene 21000 500 μg/L 500 3/7/2023 1:21:00 PM R95078 Toluene 6000 500 μg/L 500 3/7/2023 1:21:00 PM R95078 Ethylbenzene 610 500 500 3/7/2023 1:21:00 PM R95078 μg/L Xylenes, Total 4600 1000 500 3/7/2023 1:21:00 PM R95078 μg/L Surr: 4-Bromofluorobenzene 99.2 70-130 %Rec 500 3/7/2023 1:21:00 PM R95078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 6

Lab Order: **2303170**Date Reported: **3/10/2023**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2303170

Project: Standard 1

Lab ID: 2303170-007 **Collection Date:** 3/2/2023 1:25:00 PM

Client Sample ID: MW-16 Matrix: GROUNDWATER

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene 110 20 3/7/2023 1:42:00 PM R95078 μg/L 50 Toluene ND 20 μg/L 3/7/2023 1:42:00 PM R95078 Ethylbenzene 320 20 μg/L 50 3/7/2023 1:42:00 PM R95078 Xylenes, Total 1800 40 3/7/2023 1:42:00 PM R95078 μg/L Surr: 4-Bromofluorobenzene 104 70-130 3/7/2023 1:42:00 PM %Rec R95078

Lab ID: 2303170-008 **Collection Date:** 3/2/2023 1:07:00 PM

Client Sample ID: MW-17 Matrix: GROUNDWATER

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene ND 2.0 μg/L 2 3/7/2023 2:04:00 PM R95078 Toluene ND 2.0 μg/L 2 3/7/2023 2:04:00 PM R95078 ND Ethylbenzene 2.0 2 3/7/2023 2:04:00 PM R95078 μg/L Xylenes, Total ND 4.0 μg/L 2 3/7/2023 2:04:00 PM R95078 Surr: 4-Bromofluorobenzene 97.1 70-130 %Rec 3/7/2023 2:04:00 PM R95078

 Lab ID:
 2303170-009
 Collection Date:
 3/2/2023 12:20:00 PM

 Client Sample ID:
 MW-18
 Matrix:
 GROUNDWATER

RL Qual Units DF Date Analyzed Analyses Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM R95078 Benzene 4200 20 μg/L 50 3/7/2023 2:47:00 PM Toluene ND 20 μg/L 3/7/2023 2:47:00 PM R95078 Ethylbenzene 190 20 3/7/2023 2:47:00 PM R95078 μg/L 50 Xylenes, Total ND 40 3/7/2023 2:47:00 PM R95078 μg/L Surr: 4-Bromofluorobenzene 103 70-130 %Rec 3/7/2023 2:47:00 PM R95078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 6

Lab Order: **2303170**Date Reported: **3/10/2023**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2303170 **Project:** Standard 1 Lab ID: 2303170-010 **Collection Date:** 3/2/2023 11:05:00 AM **Client Sample ID:** MW-19 Matrix: GROUNDWATER **Analyses** Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene 10000 200 200 3/7/2023 3:52:00 PM R95078 μg/L Toluene 12000 200 μg/L 200 3/7/2023 3:52:00 PM R95078 Ethylbenzene 1000 200 μg/L 200 3/7/2023 3:52:00 PM R95078 Xylenes, Total 6100 400 200 3/7/2023 3:52:00 PM R95078 μg/L Surr: 4-Bromofluorobenzene 70-130 200 3/7/2023 3:52:00 PM 103 %Rec R95078 Lab ID: 2303170-011 **Collection Date:** 3/2/2023 12:36:00 PM Client Sample ID: **Matrix:** GROUNDWATER Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: CCM Benzene ND 2.0 μg/L 2 3/7/2023 4:14:00 PM R95078 Toluene ND 2.0 μg/L 2 3/7/2023 4:14:00 PM R95078 ND Ethylbenzene 2.0 2 3/7/2023 4:14:00 PM R95078 μg/L Xylenes, Total ND 4.0 μg/L 2 3/7/2023 4:14:00 PM R95078 Surr: 4-Bromofluorobenzene 103 70-130 %Rec 3/7/2023 4:14:00 PM R95078 Lab ID: 2303170-012 **Collection Date:** 3/2/2023 11:30:00 AM **Matrix:** GROUNDWATER Client Sample ID: RL Qual Units DF Date Analyzed Analyses Result **Batch ID**

EPA METHOD 8021B: VOLATILES Analyst: CCM Benzene ND 2.0 μg/L 2 3/7/2023 4:35:00 PM R95078 Toluene ND 2.0 μg/L 2 3/7/2023 4:35:00 PM R95078

Ethylbenzene ND 2.0 2 R95078 μg/L 3/7/2023 4:35:00 PM Xylenes, Total ND 2 3/7/2023 4:35:00 PM R95078 μg/L Surr: 4-Bromofluorobenzene 98.0 70-130 %Rec 3/7/2023 4:35:00 PM R95078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 6

Lab Order: 2303170

Date Reported: 3/10/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2303170

Project: Standard 1

Lab ID: 2303170-013 **Collection Date:** 3/2/2023 12:05:00 PM

Client Sample ID: MW-26 Matrix: GROUNDWATER

Analyses	Result	RL Qu	ual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8021B: VOLATILES					Anal	yst: CCM
Benzene	ND	1.0	μg/L	1	3/7/2023 4:57:00 PM	И R95078
Toluene	ND	1.0	μg/L	1	3/7/2023 4:57:00 PM	И R95078
Ethylbenzene	ND	1.0	μg/L	1	3/7/2023 4:57:00 PM	И R95078
Xylenes, Total	ND	2.0	μg/L	1	3/7/2023 4:57:00 PM	И R95078
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	1	3/7/2023 4:57:00 PM	И R95078

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 6

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2303170** *10-Mar-23*

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 100 ng btex lcs	SampT	ype: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batch	ID: R9	5078	F	RunNo: 9	5078				
Prep Date:	Analysis D	ate: 3/	7/2023	9	SeqNo: 3	438296	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	90.2	70	130			
Toluene	18	1.0	20.00	0	91.6	70	130			
Ethylbenzene	19	1.0	20.00	0	93.0	70	130			
Xylenes, Total	56	2.0	60.00	0	92.6	70	130			
Surr: 4-Bromofluorobenzene	21		20.00		105	70	130			

Sample ID: mb	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volati	les		
Client ID: PBW	Batch	ID: R9	5078	F	RunNo: 9	5078				
Prep Date:	Analysis D	ate: 3/	7/2023	8	SeqNo: 3	438298	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	19		20.00		95.8	70	130			

Sample ID: 2303170-013ams	SampT	ype: MS	3	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: MW-26	Batch	n ID: R9	5078	F	RunNo: 9	5078				
Prep Date:	Analysis D	ate: 3/	7/2023	S	SeqNo: 3	439132	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	97.5	70	130			
Toluene	20	1.0	20.00	0	98.9	70	130			
Ethylbenzene	20	1.0	20.00	0	99.2	70	130			
Xylenes, Total	59	2.0	60.00	0	98.5	70	130			
Surr: 4-Bromofluorobenzene	20		20.00		97.5	70	130			

Sample ID: 2303170-013amsd	SampT	ype: MS	SD	Tes	tCode: El	PA Method	8021B: Volati	les		
Client ID: MW-26	Batch	ID: R9	5078	F	RunNo: 9	5078				
Prep Date:	Analysis D	ate: 3/	7/2023	S	SeqNo: 3	439133	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	91.5	70	130	6.31	20	
Toluene	19	1.0	20.00	0	92.8	70	130	6.38	20	
Ethylbenzene	19	1.0	20.00	0	93.3	70	130	6.11	20	
Xylenes, Total	56	2.0	60.00	0	93.5	70	130	5.26	20	
Surr: 4-Bromofluorobenzene	19		20.00		97.4	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 6

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Released to Imaging: 6/3/2024 11:22:17 AM

	RcptNo: 1	
No 🗹	Not Present	
No 🗌	na 🗆	
No 🗆	na 🗆	
No 🗌		
No 🗆		
No 🗌		
No 🗹	NA 🗆	
No 🗆	NA 🗆	
	# of preserved	
	or pH: (<2 or >12	unless noted)
No 🗆	Adjusted?	1196 7
No 🗆	1,00	KPa 3-8
No 🗆	Checked by: KXU	0
<i>V</i> —		3.3.23
No 🗌	na 🗹	
INU L	IAW 🖭	
Fax [In Person	
[Fax [Fax In Person

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.8	Good	Yes	Morty		

page 1047

Received by OCD: 4/24/2024 3:25:30 PM

Client: 13 5	n-of-C	Chain-of-Custody Record	Time.			I	ALL	ENV	IR	MNC	HALL ENVIRONMENTA	ز بـ
	4:10200		X Standard ☐ Rush		6	⋖	NAL	YSIS	2	BOR	ANALYSIS LABORATORY	7
Athi. N	M - tch	k:1/ough		- 4		,	www.hallenvironmental.com	environr	nental	COM.		
Mailing Address:	SS:		710000/00	- +	490	4901 Hawkins NE	s NE -	Albuque	erque,	Albuquerque, NM 87109	60	
			Project #:		Те∏	Tel. 505-345-3975	5-3975	Fax	505-34	505-345-4107	The second secon	
Phone #:				4			₹	Analysis	Request	st		
email or Fax#	# 87 Kil	email or Fax#: M Killongh @ bolcom. com	Project Manager:	200				[†] OS	G	(iue		
QA/QC Package: □ Standard	ge:	/ □ Level 4 (Full Validation)	dburns a en	ensolum com	208) 2 29	bCB. ²	SWIS0	, PO₄, <u>9</u>	10//-	esdA\tn		
Accreditation:		mpliance	Sampler: Keler Hanson / Call	Cak Aduns		H-SWS-FC-R		ZON "		Prese		
□ EDD (Type)			olers:							ııı		
			(Including CF): 1.8 -	(°C)						Ofilo		
			Preservative	HEAL No.		7 180 N) 80	AHS b	3, F, E 7) 08S	S) 07S	Otal C		
Date - Ime	-	7	1, you	01/00		-		-	_			
-	3	3	+/^^		4	1		1		+		1
01,71	0	MU-04	1+C1 002									
hhll	7	Mw-08	5003						N. Carlot	Maria Maria	- Xe.f	
2521	7	11-mW	P00	1								
1347	7+	11-MW	500					The party				
500)	1,5	MW-15	900	0						9 3 7 3 8 3 8 3		1
1325	15.	MW-16	F00	Q 1951 HEAD 175								
4051	4	T1-MW	300 J	ď			1			1	111	
0721	9	MW-18	500	5								
1/8/	/c	p1. wh	010	0				1				
1521	7.	NU-22	110 1		7	-	3,3				New Man, July The Hagillon	
V 1170	9	MW-23	V OI		>							
Date: Time: ストルカムダ		Relinquished by:	Received by: Via: 3	30/13 ISUS	Remarks:	: 77:	rhanson	1537	3	~ sol~	7.6	<i>(</i>
Date: Time:	1	Relinquished by:	Received by: Via: CELLON	0			ンとくれ					
3/2/25 1800		Unida Walle		215/23								
1	†				7.11		1 - 4 -	and the second	ototo - de	out odt ac b	hating report	

Released to Imaging: 628/2024 II:22:17 AM

		۲
7		۲
	٧	5
ς	٠	
		5
•	٧	5
		۲
•		4
	¢	۵
	¢	Ų
	ξ	3
		-
	1	٦

Received by OCD: 4/24/2024 3:25:30 PM

Page 243.

Page 243.

HALL ENVIRONMENTAL

		110 10 017 2801
Chain-of-Custody Record	Turn-Around Time:	HALL FNVTRONMFNTAL
Client: 1+:1 (27)	ĭ¥ Standard □ Rush	ANALYSIS LABORATORY
4th: Mitch Kilongs	Project Name:	www.hallenvironmental.com
Mailing Address:	7 Parker of	4901 Hawkins NE - Albuquerque, NM 87109
	Project #:	Tel. 505-345-3975 Fax 505-345-4107
Phone #:	A CONTRACTOR OF THE CONTRACTOR	Analysis Request
email or Fax#: MK: Il ough @ しい しのゆってのて	Project Manager: Dann Buns	sO ⁴
QA/QC Package: Call Validation Call Valida	3	PCB's
Accreditation: Az Compliance	Sampler: 121+/CA	S808\; (1.40) (1.40) (1.40) (1.40) (1.40) (1.40)
□ EDD (Type)	olers: 1	(GK) iqesiqesiqqes
	Cooler Temp(including cF): 1.8 - 0 - 1.8 - (°C)	15D lethory y 83 yr, 1 3r, 1 VOA
Date Time Matrix Sample Name	Container Preservative HEAL No.	BTEX) 8081 P6 8081 P6 PPHs b RCRA 8 8250 (V 8270 (S Total C
31725 QW	1	
	And the second of the second o	
	The second secon	
	The state of the s	
	5.00	
	A CONTRACTOR OF THE CONTRACTOR	
	The second secon	
	The second secon	
	And the second s	
10	$3\mu/2$	Remarks:
Date: Time: Rehinquished by:	Received by: Via: Countre Date Time 6: 45	
	A STATE OF THE PERSON OF THE P	

Released to Imaging: 03/2024 11:22:17 AM

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 26, 2023

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Standard 1 OrderNo.: 2306949

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 13 sample(s) on 6/17/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order: 2306949

Date Reported: 6/26/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2306949 Standard 1

Project:

Lab ID: 2306949-001 Collection Date: 6/16/2023 11:30:00 AM

Matrix: AQUEOUS Client Sample ID: MW-3

Result RL Qual Units DF Date Analyzed **Batch ID Analyses EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene 16000 200 μg/L 200 6/21/2023 9:55:00 PM R97604 Toluene 1800 200 μg/L 200 6/21/2023 9:55:00 PM R97604 Ethylbenzene 680 200 µg/L 200 6/21/2023 9:55:00 PM R97604 Xylenes, Total 6200 400 μg/L 200 6/21/2023 9:55:00 PM R97604 Surr: 4-Bromofluorobenzene 98.9 52.4-148 %Rec 200 6/21/2023 9:55:00 PM R97604

Lab ID: 2306949-002 **Collection Date:** 6/16/2023 12:20:00 PM

Matrix: AQUEOUS Client Sample ID: MW-8

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene ND 1.0 µg/L 6/21/2023 10:17:00 PM R97604 Toluene ND R97604 1.0 μg/L 6/21/2023 10:17:00 PM ND 6/21/2023 10:17:00 PM Ethylbenzene 1.0 μg/L 1 2.0 Xylenes, Total ND 6/21/2023 10:17:00 PM R97604 μg/L 1 Surr: 4-Bromofluorobenzene 98.4 52.4-148 %Rec 6/21/2023 10:17:00 PM R97604

Collection Date: 6/16/2023 2:10:00 PM Lab ID: 2306949-003

Client Sample ID: MW-9 Matrix: AQUEOUS

Result RL Qual Units DF Date Analyzed **Batch ID Analyses EPA METHOD 8021B: VOLATILES** Analyst: KMN 21 Benzene 1.0 µg/L 6/21/2023 11:23:00 PM R97604 Toluene 27 6/21/2023 11:23:00 PM R97604 1 0 μg/L 1 Ethylbenzene 1.9 1.0 μg/L 1 6/21/2023 11:23:00 PM R97604 Xylenes, Total 15 2.0 1 6/21/2023 11:23:00 PM R97604 μg/L Surr: 4-Bromofluorobenzene 107 52.4-148 %Rec 6/21/2023 11:23:00 PM R97604

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated

- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 1 of 7

Lab Order: 2306949

Date Reported: 6/26/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2306949

Project: Standard 1

Lab ID: 2306949-004 **Collection Date:** 6/16/2023 10:40:00 AM

Client Sample ID: MW-11 Matrix: AQUEOUS

Result RL Qual Units DF Date Analyzed **Batch ID Analyses EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene ND 1.0 μg/L 1 6/21/2023 11:45:00 PM R97604 Toluene ND 1.0 μg/L 6/21/2023 11:45:00 PM R97604 Ethylbenzene ND 1.0 µg/L 1 6/21/2023 11:45:00 PM R97604 Xylenes, Total ND 2.0 μg/L 1 6/21/2023 11:45:00 PM R97604 Surr: 4-Bromofluorobenzene 97.6 52.4-148 %Rec 6/21/2023 11:45:00 PM R97604

Lab ID: 2306949-005 **Collection Date:** 6/16/2023 9:55:00 AM

Client Sample ID: MW-12 Matrix: AQUEOUS

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene 52 1.0 µg/L 6/22/2023 12:07:00 AM R97604 Toluene ND 6/22/2023 12:07:00 AM R97604 1.0 μg/L 6/22/2023 12:07:00 AM Ethylbenzene 5.7 1.0 μg/L 1 2.0 Xylenes, Total 6/22/2023 12:07:00 AM R97604 2.9 μg/L 1 Surr: 4-Bromofluorobenzene 117 52.4-148 %Rec 6/22/2023 12:07:00 AM R97604

Lab ID: 2306949-006 **Collection Date:** 6/16/2023 10:04:00 AM

Client Sample ID: MW-15 Matrix: AQUEOUS

Result RL Qual Units DF Date Analyzed **Batch ID Analyses EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene 21000 500 µg/L 500 6/22/2023 9:02:00 PM R97645 Toluene 7600 200 200 6/22/2023 12:29:00 AM R97604 μg/L Ethylbenzene 470 200 μg/L 200 6/22/2023 12:29:00 AM R97604 Xylenes, Total 3500 400 200 6/22/2023 12:29:00 AM R97604 μg/L Surr: 4-Bromofluorobenzene 97.2 52.4-148 %Rec 200 6/22/2023 12:29:00 AM R97604

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D. Sample Diluted Due to Matrix

D Sample Diluted Due to Matrix
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quantitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 7

Lab Order: 2306949

Date Reported: 6/26/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2306949 **Project:** Standard 1 Lab ID: 2306949-007 Collection Date: 6/16/2023 2:30:00 PM Matrix: AQUEOUS Client Sample ID: MW-16 Result RL Qual Units DF Date Analyzed **Batch ID Analyses EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene 100 50 μg/L 50 6/22/2023 9:24:00 PM R97645 Toluene ND 50 μg/L 50 6/22/2023 9:24:00 PM R97645 Ethylbenzene 340 50 6/22/2023 9:24:00 PM R97645 μg/L Xylenes, Total 1100 100 μg/L 50 6/22/2023 9:24:00 PM R97645 Surr: 4-Bromofluorobenzene 102 52.4-148 %Rec 6/22/2023 9:24:00 PM R97645 Lab ID: 2306949-008 **Collection Date:** 6/16/2023 1:30:00 PM Matrix: AQUEOUS Client Sample ID: MW-17 **Analyses** Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene ND 1.0 µg/L 6/22/2023 1:12:00 AM R97604 Toluene ND R97604 1.0 μg/L 6/22/2023 1:12:00 AM ND 6/22/2023 1:12:00 AM Ethylbenzene 1.0 μg/L 1 R97604 2.0 Xylenes, Total ND 6/22/2023 1:12:00 AM R97604 μg/L 1 Surr: 4-Bromofluorobenzene 93.3 52.4-148 %Rec 6/22/2023 1:12:00 AM R97604 **Collection Date:** 6/16/2023 11:45:00 AM Lab ID: 2306949-009 Client Sample ID: MW-18 Matrix: AQUEOUS Result **RL Qual Units** DF Date Analyzed **Batch ID Analyses EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene 1500 20 µg/L 20 6/22/2023 1:34:00 AM R97604 Toluene ND 20 20 6/22/2023 1:34:00 AM R97604 μg/L Ethylbenzene 52 20 μg/L 20 6/22/2023 1:34:00 AM R97604 Xylenes, Total ND 40 20 6/22/2023 1:34:00 AM R97604

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

93.2

52.4-148

Qualifiers:

- Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated
- Analyte detected in the associated Method Blank
- Е Above Quantitation Range/Estimated Value

μg/L

%Rec

20

6/22/2023 1:34:00 AM

- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 3 of 7

R97604

Surr: 4-Bromofluorobenzene

Lab Order: 2306949

Date Reported: 6/26/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2306949

Project: Standard 1

Lab ID: 2306949-010 **Collection Date:** 6/16/2023 1:45:00 PM

Client Sample ID: MW-19 Matrix: AQUEOUS

Result RL Qual Units DF Date Analyzed **Batch ID Analyses EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene 10000 200 μg/L 200 6/22/2023 1:56:00 AM R97604 Toluene 14000 200 μg/L 200 6/22/2023 1:56:00 AM R97604 Ethylbenzene 1200 200 µg/L 200 6/22/2023 1:56:00 AM R97604 Xylenes, Total 7200 400 μg/L 200 6/22/2023 1:56:00 AM R97604 Surr: 4-Bromofluorobenzene 95.5 52.4-148 %Rec 200 6/22/2023 1:56:00 AM R97604

Lab ID: 2306949-011 **Collection Date:** 6/16/2023 11:10:00 AM

Client Sample ID: MW-22 Matrix: AQUEOUS

Analyses Result RL Qual Units DF Date Analyzed **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene ND 2.0 μg/L 2 6/22/2023 2:40:00 AM R97604 Toluene ND 2.0 2 R97604 μg/L 6/22/2023 2:40:00 AM ND 2 6/22/2023 2:40:00 AM Ethylbenzene 2.0 μg/L R97604 Xylenes, Total ND 4.0 2 6/22/2023 2:40:00 AM R97604 μg/L Surr: 4-Bromofluorobenzene 94.6 52.4-148 %Rec 6/22/2023 2:40:00 AM R97604

Lab ID: 2306949-012 **Collection Date:** 6/16/2023 1:10:00 PM

Client Sample ID: MW-23 Matrix: AQUEOUS

Result **RL Qual Units** DF Date Analyzed **Batch ID Analyses EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene ND 2.0 µg/L 2 6/22/2023 3:02:00 AM R97604 Toluene ND 2.0 2 6/22/2023 3:02:00 AM R97604 μg/L Ethylbenzene ND 2.0 μg/L 2 6/22/2023 3:02:00 AM R97604 Xylenes, Total ND 4.0 2 6/22/2023 3:02:00 AM R97604 μg/L Surr: 4-Bromofluorobenzene 92.4 52.4-148 %Rec 2 6/22/2023 3:02:00 AM R97604

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D. Sample Diluted Due to Matrix

D Sample Diluted Due to Matrix
 H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 7

Lab Order: 2306949

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/26/2023

CLIENT: HILCORP ENERGY Lab Order: 2306949

Project: Standard 1

Lab ID: 2306949-013 **Collection Date:** 6/16/2023 1:00:00 PM

Client Sample ID: MW-26 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed **Analyses** Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: KMN Benzene ND 6/22/2023 3:23:00 AM R97604 1.0 μg/L 1 Toluene ND R97604 1.0 μg/L 1 6/22/2023 3:23:00 AM Ethylbenzene ND 1.0 μg/L 1 6/22/2023 3:23:00 AM R97604 Xylenes, Total ND 2.0 μg/L 1 6/22/2023 3:23:00 AM R97604 Surr: 4-Bromofluorobenzene 91.5 52.4-148 %Rec 1 6/22/2023 3:23:00 AM R97604

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 7

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306949**

26-Jun-23

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 2306949-002AMS	Samp	Гуре: МЅ	3	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: MW-8	Batcl	h ID: R9	7604	F	RunNo: 97	7604				
Prep Date:	Analysis [Date: 6/2	21/2023	9	SeqNo: 3	550128	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	92.6	70	130			
Toluene	19	1.0	20.00	0	94.9	70	130			
Ethylbenzene	19	1.0	20.00	0	95.8	70	130			
Xylenes, Total	58	2.0	60.00	0	96.3	70	130			
Surr: 4-Bromofluorobenzene	20		20.00		102	52.4	148			

Sample ID: 2306949-002AMSD	SampT	ype: MS	D	Tes	tCode: EF	PA Method	8021B: Volati	es		
Client ID: MW-8	Batch	1D: R9	7604	F	RunNo: 97	7604				
Prep Date:	Analysis D	ate: 6/2	21/2023	5	SeqNo: 3	550129	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	17	1.0	20.00	0	86.2	70	130	7.13	20	
Toluene	18	1.0	20.00	0	88.5	70	130	6.94	20	
Ethylbenzene	18	1.0	20.00	0	90.5	70	130	5.64	20	
Xylenes, Total	55	2.0	60.00	0	91.0	70	130	5.63	20	
Surr: 4-Bromofluorobenzene	20		20.00		97.7	52.4	148	0	0	

Sample ID: 100ng btex lcs	TestCode: EPA Method 8021B: Volatiles									
Client ID: LCSW	7604	RunNo: 97604								
Prep Date:	Analysis D	oate: 6/2	21/2023	5	SeqNo: 3	550141	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	87.8	70	130			
Toluene	18	1.0	20.00	0	90.2	70	130			
Ethylbenzene	18	1.0	20.00	0	91.2	70	130			
Xylenes, Total	55	2.0	60.00	0	91.3	70	130			
Surr: 4-Bromofluorobenzene	20		20.00		98.2	52.4	148			

Sample ID: mb	SampType: MBLK TestCode: EPA Met					PA Method	od 8021B: Volatiles					
Client ID: PBW	Batch	1D: R9	7604	RunNo: 97604								
Prep Date:	Analysis D	ate: 6/ 2	21/2023	5	SeqNo: 3	550142	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	1.0										
Toluene	ND	1.0										
Ethylbenzene	ND	1.0										
Xylenes, Total	ND	2.0										
Surr: 4-Bromofluorobenzene	20		20.00		99.2	52.4	148					

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 7

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2306949**

26-Jun-23

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 100ng btex Ics	SampT	Гуре: LC	S	TestCode: EPA Method 8021B: Volatiles						
Client ID: LCSW	Batcl	h ID: R9	7645	F	7645					
Prep Date:	Analysis D	Date: 6/2	22/2023	9	SeqNo: 3	551414	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	16	1.0	20.00	0	80.9	70	130			
Toluene	17	1.0	20.00	0	83.8	70	130			
Ethylbenzene	17	1.0	20.00	0	85.4	70	130			
Xylenes, Total	52	2.0	60.00	0	86.2	70	130			
Surr: 4-Bromofluorobenzene	21		20.00		105	52.4	148			

Sample ID: mb	SampT	уре: МЕ	BLK	TestCode: EPA Method 8021B: Volatiles						
Client ID: PBW	Batch ID: R97645			F	RunNo: 97	7645				
Prep Date:	Analysis D	ate: 6/ 2	22/2023	9	SeqNo: 3	551415	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	21		20.00		107	52.4	148			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 7

Hall Environmental Analysis Laboratory
4901 Hawkins NE

Albuquerque. NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

L: 303-343-39/3 FAX: 303-343-410/ Website: www.ballenvironmental.com

Sample Log-In Check List

Released to Imaging: 6/3/2024 11:22:17 AM

	weosne. ww	w.natienvironmental	.com		
Client Name: Hilcorp Energy	Work Order Num	nber: 2306949		RcptNo: 1	
Received By: Tracy Casarrub	ias 6/17/2023 7:50:00	АМ			
Completed By: Tracy Casarrub		4 AM			
Reviewed By: Hacy Casalina Reviewed By: 6-19-2		- A VIAI			
Reviewed By.					
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗌	No 🗸	Not Present	
2. How was the sample delivered?		<u>Courier</u>			
<u>Log In</u>			🗂		
3. Was an attempt made to cool th	e samples?	Yes 🗹	No 🗌	na 🗆	
4. Were all samples received at a t	emperature of >0° C to 6.0°C	Yes 🗹	No 🗆	NA 🗌	
5. Sample(s) in proper container(s)?	Yes 🗸	No 🗌		
6. Sufficient sample volume for ind	icated test(s)?	Yes 🗹	No 🗀		
7. Are samples (except VOA and C	NG) properly preserved?	Yes 🗹	No 🗌		
8. Was preservative added to bottle	es?	Yes	No 🗹	NA 🗆	
9. Received at least 1 vial with hea	dspace <1/4" for AQ VOA?	Yes 🗹	No 🗆	NA \square	
10. Were any sample containers red	ceived broken?	Yes	No 🗹	# of preserved	
		_		bottles checked	
11. Does paperwork match bottle lal		Yes 🗹	No ∐	for pH: (<2 or >1	12 unless noted)
(Note discrepancies on chain of 2 Are matrices correctly identified		Yes 🗹	No 🗆	Adjusted?	iz dineso jipico)
3. Is it clear what analyses were re	•	Yes ✓	No 🗌		-
14. Were all holding times able to be		Yes ✓	No 🗆	enecked by: 30	16/1al
(If no, notify customer for author		100 🖭	4		11 1
Special Handling (if applica	<u>ble)</u>				
15. Was client notified of all discrep	ancies with this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date	e:			
By Whom:	Via:	☐ eMail ☐ F	hone 🗌 Fax	☐ In Person	
Regarding:					
Client Instructions: Mailin	ng address and phone number ar	e missing on COC-	TMC 6/17/23		
16. Additional remarks:					
17. Cooler Information					
	ndition Seal Intact Seal No	Seal Date	Signed By		
1 2.5 Goo	d Yes Yogi				

_
4
-
3
9
0.
3
5
ci.
1.4
6
2
0.0
8
P

Received by OCD: 4/24/2024 3:25:30 PM

Chain-of-Custody Record	Turn-Around Time:	HALL ENVIRONMENTAL
Client: []: [☑ Standard □ Rush	
	Project Name:	www.hallenvironmental.com
Mailing Address:	Stangard	4901 Hawkins NE - Albuquerque, NM 87109
	#	Tel. 505-345-3975 Fax 505-345-4107
Phone #:	300	sis Requ
email or Fax#: brandon, Sinclair Ohiloorp.com Project Manager:	Project Manager:	SO ₄
QA/QC Package:	Mitch Killowah	.0SIW3
□ Az Cor	Sampler: Brandon Sinclair	S/808/s (1.407) 728 10 8 8 8 8
NELAC Ottler FDD (Type)	Ch.	Sebio boo 310 310 Hetals NO (A
	Cooler Temp(Including CF): 2.6-0.1-2.5 (°C)	orsti Meth by 8 Br, VOA Sem
j	Container Preservative HEAL No.	BTEX TPH:86 8081 F PAHs RCRA 8260 (8270 (8270 (
e Time Matrix	DH #	
	200	
1 - MW - 01.0	hw.	
	300	
750	700	
	68	
71-MW 0881	goo	
	POOL	
	CIO	
1110 MW-22	010	
1310 MW-23	SIL	
Time:	Received by: Via: Date Time	Kemarks:
6 - 10 Date: Time: Relinquished by:	Via: Caunt Date	
7500		a galang manada at 1,500 million of 1,50
	in the serves as notice of this	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Released to Imaging: 6/3/2024 11:22:17 AM

iaboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report. Released to Imaging: 6/3/2024 11:22:17 AM

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 21, 2023

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Standard 1 OrderNo.: 2309934

Dear Mitch Killough:

Hall Environmental Analysis Laboratory received 13 sample(s) on 9/16/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-3

 Project:
 Standard 1
 Collection Date: 9/15/2023 12:45:00 PM

 Lab ID:
 2309934-001
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	18000	200	μg/L	200	9/19/2023 1:43:13 AM
Toluene	1000	200	μg/L	200	9/19/2023 1:43:13 AM
Ethylbenzene	650	200	μg/L	200	9/19/2023 1:43:13 AM
Xylenes, Total	5800	400	μg/L	200	9/19/2023 1:43:13 AM
Surr: 4-Bromofluorobenzene	105	52.4-148	%Rec	200	9/19/2023 1:43:13 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 1 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-8

 Project:
 Standard 1
 Collection Date: 9/14/2023 12:15:00 PM

 Lab ID:
 2309934-002
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	1.0	μg/L	1	9/19/2023 2:06:42 AM
Toluene	ND	1.0	μg/L	1	9/19/2023 2:06:42 AM
Ethylbenzene	ND	1.0	μg/L	1	9/19/2023 2:06:42 AM
Xylenes, Total	ND	2.0	μg/L	1	9/19/2023 2:06:42 AM
Surr: 4-Bromofluorobenzene	103	52.4-148	%Rec	1	9/19/2023 2:06:42 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 2 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-9

 Project:
 Standard 1
 Collection Date: 9/15/2023 11:50:00 AM

 Lab ID:
 2309934-003
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	1100	20	μg/L	20	9/19/2023 10:53:19 AM
Toluene	3.6	1.0	μg/L	1	9/19/2023 2:30:21 AM
Ethylbenzene	78	1.0	μg/L	1	9/19/2023 2:30:21 AM
Xylenes, Total	1400	40	μg/L	20	9/19/2023 10:53:19 AM
Surr: 4-Bromofluorobenzene	104	52.4-148	%Rec	20	9/19/2023 10:53:19 AM
Surr: 4-Bromofluorobenzene	106	52.4-148	%Rec	1	9/19/2023 2:30:21 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 3 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-11

 Project:
 Standard 1
 Collection Date: 9/14/2023 10:50:00 AM

 Lab ID:
 2309934-004
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	1.0	μg/L	1	9/19/2023 2:53:55 AM
Toluene	ND	1.0	μg/L	1	9/19/2023 2:53:55 AM
Ethylbenzene	ND	1.0	μg/L	1	9/19/2023 2:53:55 AM
Xylenes, Total	ND	2.0	μg/L	1	9/19/2023 2:53:55 AM
Surr: 4-Bromofluorobenzene	99.0	52.4-148	%Rec	1	9/19/2023 2:53:55 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

opering Limit Page 4 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-12

 Project:
 Standard 1
 Collection Date: 9/14/2023 10:25:00 AM

 Lab ID:
 2309934-005
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	48	1.0	μg/L	1	9/19/2023 3:17:32 AM
Toluene	ND	1.0	μg/L	1	9/19/2023 3:17:32 AM
Ethylbenzene	5.6	1.0	μg/L	1	9/19/2023 3:17:32 AM
Xylenes, Total	ND	2.0	μg/L	1	9/19/2023 3:17:32 AM
Surr: 4-Bromofluorobenzene	114	52.4-148	%Rec	1	9/19/2023 3:17:32 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-15

 Project:
 Standard 1
 Collection Date: 9/14/2023 1:05:00 PM

 Lab ID:
 2309934-006
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	29000	500	μg/L	500	9/19/2023 3:41:10 AM
Toluene	10000	500	μg/L	500	9/19/2023 3:41:10 AM
Ethylbenzene	590	500	μg/L	500	9/19/2023 3:41:10 AM
Xylenes, Total	4300	1000	μg/L	500	9/19/2023 3:41:10 AM
Surr: 4-Bromofluorobenzene	104	52.4-148	%Rec	500	9/19/2023 3:41:10 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

QL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 6 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-16

 Project:
 Standard 1
 Collection Date: 9/14/2023 1:25:00 PM

 Lab ID:
 2309934-007
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	130	50	μg/L	50	9/19/2023 4:51:44 AM
Toluene	ND	50	μg/L	50	9/19/2023 4:51:44 AM
Ethylbenzene	410	50	μg/L	50	9/19/2023 4:51:44 AM
Xylenes, Total	1200	100	μg/L	50	9/19/2023 4:51:44 AM
Surr: 4-Bromofluorobenzene	107	52.4-148	%Rec	50	9/19/2023 4:51:44 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 7 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-17

 Project:
 Standard 1
 Collection Date: 9/14/2023 2:15:00 PM

 Lab ID:
 2309934-008
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	1.0	μg/L	1	9/19/2023 5:15:12 AM
Toluene	ND	1.0	μg/L	1	9/19/2023 5:15:12 AM
Ethylbenzene	ND	1.0	μg/L	1	9/19/2023 5:15:12 AM
Xylenes, Total	ND	2.0	μg/L	1	9/19/2023 5:15:12 AM
Surr: 4-Bromofluorobenzene	104	52.4-148	%Rec	1	9/19/2023 5:15:12 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-18

Project: Standard 1 **Collection Date:** 9/14/2023 11:45:00 AM 2309934-009 Lab ID: Matrix: AQUEOUS Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	5900	100	μg/L	100	9/19/2023 12:03:52 PM
Toluene	ND	50	μg/L	50	9/19/2023 4:28:16 AM
Ethylbenzene	280	50	μg/L	50	9/19/2023 4:28:16 AM
Xylenes, Total	ND	100	μg/L	50	9/19/2023 4:28:16 AM
Surr: 4-Bromofluorobenzene	106	52.4-148	%Rec	50	9/19/2023 4:28:16 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Е
- J Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 9 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-19

 Project:
 Standard 1
 Collection Date: 9/14/2023 2:50:00 PM

 Lab ID:
 2309934-010
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	9700	200	μg/L	200	9/19/2023 4:04:43 AM
Toluene	15000	200	μg/L	200	9/19/2023 4:04:43 AM
Ethylbenzene	1200	200	μg/L	200	9/19/2023 4:04:43 AM
Xylenes, Total	8200	400	μg/L	200	9/19/2023 4:04:43 AM
Surr: 4-Bromofluorobenzene	105	52.4-148	%Rec	200	9/19/2023 4:04:43 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-22

 Project:
 Standard 1
 Collection Date: 9/14/2023 11:15:00 AM

 Lab ID:
 2309934-011
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	1.0	μg/L	1	9/19/2023 6:02:10 AM
Toluene	ND	1.0	μg/L	1	9/19/2023 6:02:10 AM
Ethylbenzene	ND	1.0	μg/L	1	9/19/2023 6:02:10 AM
Xylenes, Total	ND	2.0	μg/L	1	9/19/2023 6:02:10 AM
Surr: 4-Bromofluorobenzene	102	52.4-148	%Rec	1	9/19/2023 6:02:10 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-23

 Project:
 Standard 1
 Collection Date: 9/15/2023 2:30:00 PM

 Lab ID:
 2309934-012
 Matrix: AQUEOUS
 Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	1.0	μg/L	1	9/19/2023 6:25:40 AM
Toluene	ND	1.0	μg/L	1	9/19/2023 6:25:40 AM
Ethylbenzene	ND	1.0	μg/L	1	9/19/2023 6:25:40 AM
Xylenes, Total	ND	2.0	μg/L	1	9/19/2023 6:25:40 AM
Surr: 4-Bromofluorobenzene	98.6	52.4-148	%Rec	1	9/19/2023 6:25:40 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 14

Date Reported: 9/21/2023

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Client Sample ID: MW-26

Project: Standard 1 Collection Date: 9/14/2023 12:55:00 PM 2309934-013 Matrix: AQUEOUS Lab ID: Received Date: 9/16/2023 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: JJP
Benzene	ND	1.0	μg/L	1	9/19/2023 6:49:04 AM
Toluene	ND	1.0	μg/L	1	9/19/2023 6:49:04 AM
Ethylbenzene	ND	1.0	μg/L	1	9/19/2023 6:49:04 AM
Xylenes, Total	ND	2.0	μg/L	1	9/19/2023 6:49:04 AM
Surr: 4-Bromofluorobenzene	102	52.4-148	%Rec	1	9/19/2023 6:49:04 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated.
- Analyte detected in the associated Method Blank
- Above Quantitation Range/Estimated Value Ε
- J Analyte detected below quantitation limits
- RL Reporting Limit

Sample pH Not In Range Page 13 of 14

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2309934**

21-Sep-23

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 100ng btex lcs	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8021B: Volatil	es		
Client ID: LCSW	Batch	n ID: BW	/99776	F	RunNo: 9	9776				
Prep Date:	Analysis D	Date: 9/	18/2023	5	SeqNo: 30	647541	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	100	70	130			
Toluene	20	1.0	20.00	0	99.9	70	130			
Ethylbenzene	20	1.0	20.00	0	99.7	70	130			
Xylenes, Total	61	2.0	60.00	0	101	70	130			
Surr: 4-Bromofluorobenzene	20		20.00		102	52.4	148			

Sample ID: mb	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volatil	es		
Client ID: PBW	Batch	ID: BW	/99776	F	RunNo: 99	9776				
Prep Date:	Analysis D	ate: 9/	18/2023	5	SeqNo: 36	647548	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	21		20.00		103	52.4	148			

Sample ID: 2309934-013ams	SampT	ype: MS	;	Tes	tCode: EF	PA Method	8021B: Volatil	es		
Client ID: MW-26	Batch	ID: BW	/99776	F	RunNo: 99	9776				
Prep Date:	Analysis D	ate: 9/ 1	19/2023	5	SeqNo: 36	647562	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	100	70	130			
Toluene	20	1.0	20.00	0	101	70	130			
Ethylbenzene	20	1.0	20.00	0	101	70	130			
Xylenes, Total	61	2.0	60.00	0	102	70	130			
Surr: 4-Bromofluorobenzene	21		20.00		107	52.4	148			

Sample ID: 2309934-013amsd	SampT	ype: MS	D	Tes	tCode: EF	PA Method	8021B: Volatil	les		
Client ID: MW-26	Batch	ı ID: BW	/99776	F	RunNo: 99	9776				
Prep Date:	Analysis D	ate: 9/	19/2023	5	SeqNo: 36	647563	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.4	70	130	3.93	20	
Toluene	19	1.0	20.00	0	97.3	70	130	3.98	20	
Ethylbenzene	20	1.0	20.00	0	98.3	70	130	2.23	20	
Xylenes, Total	59	2.0	60.00	0	99.0	70	130	2.61	20	
Surr: 4-Bromofluorobenzene	21		20.00		107	52.4	148	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 14

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name:	HILCORP ENERGY	Work Order Num	nber: 2309934		RcptNo: 1	
Received By:	Juan Rojas	9/16/2023 7:00:00	АМ	Juan Engl		
Completed By:	Desiree Dominguez	9/18/2023 10:14:3	3 AM	T		
Reviewed By:	-	9/18/23				
Chain of Cust	tody					
1. Is Chain of Cu	stody complete?		Yes 🗌	No 🗹	Not Present	
2. How was the	sample delivered?		Courier			
Log In						
	pt made to cool the samp	les?	Yes 🗹	No 🗌	NA \square	
4. Were all samp	les received at a tempera	ture of >0° C to 6.0°C	Yes 🗹	No 🗌	na 🗆	
5. Sample(s) in p	proper container(s)?		Yes 🗹	No 🗌		
6. Sufficient sam	ple volume for indicated to	est(s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) pro	operly preserved?	Yes 🗹	No 🗌		
8. Was preserval	tive added to bottles?		Yes 🗌	No 🗹	NA 🗌	
9. Received at le	ast 1 vial with headspace	<1/4" for AQ VOA?	Yes 🗹	No 🗌	NA 🗌	
10. Were any san	nple containers received b	roken?	Yes 🗌	No 🗹	# of preserved	
	ork match bottle labels?)	Yes 🗹	No 🗆	bottles checked for pH: (<2 or >12	unless noted)
12. Are matrices of	correctly identified on Chai	n of Custody?	Yes 🗹	No 🗌	Adjusted?	
13. Is it clear what	analyses were requested	?	Yes 🗹	No 🗌	ICIN	1 alab
	ng times able to be met? ustomer for authorization.)		Yes 🗹	No 🗆	Checked by: U	1 4/18/0
Special Handl	ing (if applicable)					
15. Was client no	tified of all discrepancies	with this order?	Yes 🗌	No 🗆	NA 🗹	
Person	Notified:	Date	e: [
By Who	om:	Via:	eMail	Phone 🗌 Fax	☐ In Person	
Regard	ing:					
Client In	nstructions:					
16. Additional re	marks:					
Client d	id not provide address or	phone number on COC	DAD 9/18/23			
17. Cooler Infor						
Cooler No		Seal Intact Seal No	Seal Date	Signed By		
1	0.4 Good	Not Present Yogi				

Received by OCD: 4/24/2024 3:25:30 PM

Section 1
4
3
5
0,
1
7
6
00
2
₽.

Received by OCD: 4/24/2024 3:25:30 PM

Chain-of-Custody Record	Turn-Around Time:	-
Client: 1, /	也 Standard	ANALYSIS LABORALORI
111606	Project Name:	www.hallenvironmental.com
Mailing Address:	5 + 2 1 2 2 2 3	4901 Hawkins NE - Albuquerque, NM 87109
	Project #:	Tel. 505-345-3975 Fax 505-345-4107 Analysis Request
	Project Manager:	†OS
email or Fax#: brandon, Sinchitelalleorp. Colo		8'8: SM 8,₄C
QA/QC Package: Call Validation)	Mitch Killongh	\ OS(2) OS(2) OS(3) OS(2) OS(2
r: ☐ Az Compliance	Sampler: Brandon Sinclair On Ice: Ares Do	on ' ^e C
	# of Coolers:	D(Cethologian) thoologian th
	Cooler Temp(including CF):	(Nest pay 1975)
	Preservative	3081 3081 30
Date Time Matrix Sample Name	Type and # Type	3 3 3
9-15 1700 44 / 1/1/1-3	3 40m L VOA HC/ -001	
7 7 7 7	6007	
NAW 5 17)	5007	
1150	h90 -	
0501 YI-P	500.	According to the Control of the Cont
9-14 1025 MW-12	900-	
9-14 1305 MW-15	+62,	
9-14 132 S MW-16	500-	The second secon
	600	
1195	010	
7,50	110	
11/5 MWC4	610,	
9-[5 430 MW-23	Received by: Via: Date Time	Remarks:
SILLIP	M Lord	7
Date: Time: Relinquished by:		
15/2/1754 10 mag 1 00 ex	OUND WELLS THE STORE OF THE SAVOICE OF IT	COUNTY WELLS A possibility. Any sub-contracted data will be clearly notated on the analytical report.
	Construction to primary and international processing to the primary and the pr	

Released 10 processary, samples submitted to Hall Environmental may be subcontracted to other

	7
	_
	_
_	
9	
-	
^	
1	•
-1	•
V	_
- 7	
~	VI.
•	4
	٠
_	٠.
0	^
	•
_	٧-
-	ò
1	4
0	٠.
-	ಎ
_	_
•	VIII.
4	•
	\
-	a.
-	₫"
-	ă.
3	VI.
	٠.
1	*
	w"
	٠
~	
	_
F	7
C	- 1
	_
_	_
~	
_	_
- 3	
	_
Z.	5
1.	5
1 1.	0 1
1 1	0 0
1 1	0 0
and he	in na
and har	ea n
and hou	rea us
and house	thea n
in all his	inea n
Samo A ho	erveu vy
Samo A ho	erveu vy
and house	cervea vy
and house	cervea
La bourse	ecernea ni
Daniel h.	eceived by
Daniel h.	eceived by
La bourse	eceived by
Daniel h.	eceived by
Daniel h.	eceived by
Daniel h.	eceived by

Chain-of-Custody Record	Turn-Around Time:	HALL ENVIRONMENTAL
Client: Hilcorp	☑ Standard □ Rush	ANALYSIS LABORATORY
	Project Name:	www.hallenvironmental.com
Mailing Address:	Standard	4901 Hawkins NE - Albuquerque, NM 87109
		Tel. 505-345-3975 Fax 505-345-4107
Phone #:		Analysis Request
email or Fax#: brandon. S; nclair) hillorprono	Project Manager:	*OS
AA/QC Package: □ Standard □ Level 4 (Full Validation)	Mitch Killangh	3O / MF 1904, 3 1904, 3
Accreditation: ☐ Az Compliance ☐ Other	Sampler: Brandon Sinclair	S/808/s/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/
(pd)	olers:	(GR 310 310 310 310 310 310
	Cooler Temp(including cF): (05:6-1.70-4 (°C)	15D detho by 83 8 Me 3r, 1 3r, 1
Date Time Matrix Sample Name	Container Preservative ASOGGSU	ETEX 8081 P EDB (N PPHs b RCRA 6 CI, F, E 8260 (N 8260 (N
1705 40	6.	
	12	
Date: Time: Relinquished by:	Received by: Via: Oliste Time	Remarks:
Date: Time: Relinquished by:	Received by: Via: Date Time	
1/5/23/1754/chrust Wave	1 Mount apple 37:00	
	of this source of the source o	e acceptability. Any earh-contracted data will be clearly notated on the analytical renort

Released to Imaging: 0/3/2024 17.22; If AM and be subcontracted to the accredited laborator

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 03, 2024

Mitch Killough HILCORP ENERGY PO Box 4700 Farmington, NM 87499

TEL: (505) 564-0733

FAX:

RE: Standard 1 OrderNo.: 2312989

Dear Mitch Killough:

Eurofins Environment Testing South Central, LLC received 11 sample(s) on 12/16/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andy

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order: **2312989**Date Reported: **1/3/2024**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2312989

Project: Standard 1

Lab ID: 2312989-001 **Collection Date:** 12/14/2023 1:15:00 PM

Client Sample ID: MW-8 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed **Analyses** Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: RAA ND 12/22/2023 7:13:00 PM BW 102 Renzene 1.0 µg/L 1 Toluene ND 12/22/2023 7:13:00 PM BW 102 1.0 µg/L Ethylbenzene ND 1 0 μg/L 1 12/22/2023 7:13:00 PM BW 102 12/22/2023 7:13:00 PM BW 102 Xylenes, Total ND 20 μg/L 1 Surr: 4-Bromofluorobenzene 102 52.4-148 %Rec 12/22/2023 7:13:00 PM BW 102

Lab ID: 2312989-002 **Collection Date:** 12/15/2023 1:40:00 PM

Client Sample ID: MW-9 Matrix: AQUEOUS

Result RL Qual Units DF Date Analyzed Analyses Batch ID **EPA METHOD 8021B: VOLATILES** Analyst: RAA Benzene 1100 100 100 12/24/2023 4:50:00 PM BW 102 μg/L Toluene ND 10 12/24/2023 5:12:00 PM BW 102 µg/L Ethylbenzene 10 12/24/2023 5:12:00 PM BW 102 96 µg/L 10 Xylenes, Total 290 20 µg/L 12/24/2023 5:12:00 PM BW 102 Surr: 4-Bromofluorobenzene 104 52.4-148 %Rec 12/24/2023 5:12:00 PM BW 102

Lab ID: 2312989-003 **Collection Date:** 12/14/2023 11:40:00 AM

Client Sample ID: MW-11 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed **Analyses** Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: RAA 12/22/2023 8:18:00 PM Benzene ND 1.0 μg/L 1 BW 102 Toluene ND 1.0 µg/L 1 12/22/2023 8:18:00 PM BW 102 Ethylbenzene ND 1.0 1 BW 102 µg/L 12/22/2023 8:18:00 PM Xylenes, Total ND 2.0 12/22/2023 8:18:00 PM BW 102 µg/L 1 Surr: 4-Bromofluorobenzene 101 %Rec 52.4-148 12/22/2023 8:18:00 PM BW 102

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Lim
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: **2312989**Date Reported: **1/3/2024**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2312989

Project: Standard 1

Lab ID: 2312989-004 **Collection Date:** 12/14/2023 11:00:00 AM

Client Sample ID: MW-12 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed **Analyses** Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: RAA 12/22/2023 8:40:00 PM BW 102 Renzene 5.3 1.0 µg/L 1 Toluene ND 12/22/2023 8:40:00 PM BW 102 1.0 µg/L Ethylbenzene 1 1 1 0 µg/L 1 12/22/2023 8:40:00 PM BW 102 BW 102 Xylenes, Total NΠ 20 µg/L 1 12/22/2023 8:40:00 PM Surr: 4-Bromofluorobenzene 109 52.4-148 %Rec 12/22/2023 8:40:00 PM BW 102

Lab ID: 2312989-005 **Collection Date:** 12/15/2023 12:25:00 PM

Client Sample ID: MW-16 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed Analyses Result Batch ID **EPA METHOD 8021B: VOLATILES** Analyst: RAA Benzene 20 12/24/2023 5:34:00 PM BW 102 89 μg/L 20 Toluene ND 20 12/24/2023 5:34:00 PM BW 102 µg/L Ethylbenzene 380 20 BW 102 µg/L 20 12/24/2023 5:34:00 PM Xylenes, Total 490 40 µg/L 20 12/24/2023 5:34:00 PM BW 102 Surr: 4-Bromofluorobenzene 52.4-148 %Rec 12/24/2023 5:34:00 PM BW 102 116

Lab ID: 2312989-006 **Collection Date:** 12/15/2023 11:30:00 AM

Client Sample ID: MW-17 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed **Analyses** Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: RAA Benzene ND 1.0 μg/L 1 12/24/2023 5:55:00 PM BW 102 Toluene ND 1.0 µg/L 1 12/24/2023 5:55:00 PM BW 102 Ethylbenzene ND 1.0 1 BW 102 µg/L 12/24/2023 5:55:00 PM Xylenes, Total ND 2.0 12/24/2023 5:55:00 PM BW 102 µg/L 1 Surr: 4-Bromofluorobenzene 101 %Rec 52.4-148 12/24/2023 5:55:00 PM BW 102

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Lis
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: **2312989**Date Reported: **1/3/2024**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2312989

Project: Standard 1

Lab ID: 2312989-007 **Collection Date:** 12/14/2023 12:45:00 PM

Client Sample ID: MW-18 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed **Analyses** Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: RAA 200 200 12/24/2023 6:17:00 PM BW 102 Renzene 5500 µg/L Toluene ND 20 12/24/2023 6:39:00 PM BW 102 µg/L Ethylbenzene 330 20 µg/L 12/24/2023 6:39:00 PM BW 102 40 BW 102 Xylenes, Total ND µg/L 20 12/24/2023 6:39:00 PM Surr: 4-Bromofluorobenzene 112 52.4-148 %Rec 20 12/24/2023 6:39:00 PM BW 102

Lab ID: 2312989-008 **Collection Date:** 12/15/2023 1:05:00 PM

Client Sample ID: MW-19 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed Analyses Result Batch ID **EPA METHOD 8021B: VOLATILES** Analyst: RAA Benzene 7700 200 200 12/24/2023 7:01:00 PM BW 102 μg/L Toluene 14000 200 200 12/24/2023 7:01:00 PM BW 102 µg/L Ethylbenzene 1300 200 200 12/24/2023 7:01:00 PM BW 102 µg/L Xylenes, Total 8100 400 µg/L 200 12/24/2023 7:01:00 PM BW 102 Surr: 4-Bromofluorobenzene 102 52.4-148 %Rec 200 12/24/2023 7:01:00 PM BW102

Lab ID: 2312989-009 **Collection Date:** 12/14/2023 12:15:00 PM

Client Sample ID: MW-22 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed Analyses Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: RAA Benzene ND 1.0 μg/L 1 12/22/2023 9:02:00 PM BW 102 Toluene ND 1.0 μg/L 1 12/22/2023 9:02:00 PM BW 102 Ethylbenzene ND 1.0 1 BW 102 µg/L 12/22/2023 9:02:00 PM Xylenes, Total ND 2.0 12/22/2023 9:02:00 PM BW 102 µg/L 1 Surr: 4-Bromofluorobenzene 101 %Rec 52.4-148 12/22/2023 9:02:00 PM BW 102

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Li
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order: **2312989**Date Reported: **1/3/2024**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: HILCORP ENERGY Lab Order: 2312989

Project: Standard 1

Lab ID: 2312989-010 **Collection Date:** 12/14/2023 2:55:00 PM

Client Sample ID: MW-23 Matrix: AQUEOUS

RL Qual Units DF Date Analyzed **Analyses** Result **Batch ID EPA METHOD 8021B: VOLATILES** Analyst: RAA ND 12/22/2023 9:24:00 PM BW 102 Renzene 1.0 µg/L 1 Toluene ND 1.0 12/22/2023 9:24:00 PM µg/L Ethylbenzene ND 1.0 μg/L 1 12/22/2023 9:24:00 PM BW 102 Xylenes, Total ND 2.0 12/22/2023 9:24:00 PM BW102 μg/L 1 Surr: 4-Bromofluorobenzene 100 52.4-148 %Rec 12/22/2023 9:24:00 PM BW 102

Lab ID: 2312989-011 **Collection Date:** 12/14/2023 2:05:00 PM

Client Sample ID: MW-26 Matrix: AQUEOUS

Result RL Qual Units DF Date Analyzed **Batch ID** Analyses **EPA METHOD 8021B: VOLATILES** Analyst: RAA Benzene ND 12/22/2023 9:46:00 PM BW 102 1.0 μg/L 1 Toluene ND 1.0 12/22/2023 9:46:00 PM BW 102 µg/L ND Ethylbenzene 1.0 1 BW 102 µg/L 12/22/2023 9:46:00 PM Xylenes, Total ND 2.0 µg/L 1 12/22/2023 9:46:00 PM BW 102 Surr: 4-Bromofluorobenzene 102 52.4-148 %Rec 12/22/2023 9:46:00 PM BW 102

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **2312989**

03-Jan-24

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 100ng btex Ics	Samp	Type: LC	S	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: LCSW	Batcl	h ID: BW	/102049	F	RunNo: 10	02049				
Prep Date:	Analysis [Date: 12	2/22/2023	5	SeqNo: 3	766006	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	101	70	130			
Toluene	21	1.0	20.00	0	103	70	130			
Ethylbenzene	21	1.0	20.00	0	106	70	130			
Xylenes, Total	64	2.0	60.00	0	107	70	130			
Surr: 4-Bromofluorobenzene	21		20.00		104	52.4	148			

Sample ID: mb	SampT	уре: МВ	BLK	Tes	tCode: EF	PA Method	8021B: Volatil	es		
Client ID: PBW	Batch	ID: BW	/102049	F	RunNo: 10	2049				
Prep Date:	Analysis D	ate: 12	/22/2023	5	SeqNo: 37	766007	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	20		20.00		101	52.4	148			

Sample ID: 2312989-001ams	SampT	ype: MS	;	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: MW-8	Batcl	n ID: BW	/102049	F	RunNo: 10	02049				
Prep Date:	Analysis D)ate: 12	/22/2023	5	SeqNo: 3	768238	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	21	1.0	20.00	0	103	70	130			
Ethylbenzene	21	1.0	20.00	0.3680	102	70	130			
Xylenes, Total	62	2.0	60.00	0	104	70	130			
Surr: 4-Bromofluorobenzene	21		20.00		103	52.4	148			

Sample ID: 2312989-001amsd	SampT	ype: MS	D	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: MW-8	Batch	ı ID: BW	/102049	F	RunNo: 10	02049				
Prep Date:	Analysis D	ate: 12	/22/2023	5	SeqNo: 3	768239	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.9	70	130	2.02	20	
Toluene	20	1.0	20.00	0	100	70	130	2.19	20	
Ethylbenzene	20	1.0	20.00	0.3680	99.8	70	130	2.06	20	
Xylenes, Total	61	2.0	60.00	0	102	70	130	2.01	20	
Surr: 4-Bromofluorobenzene	20		20.00		100	52.4	148	0	0	

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

2312989 03-Jan-24

WO#:

Client: HILCORP ENERGY

Project: Standard 1

Sample ID: 100ng btex lcs	Samp1	Гуре: LC	S	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: LCSW	Batcl	h ID: BW	/102094	F	RunNo: 10	02094				
Prep Date:	Analysis D	Date: 12	2/24/2023	5	SeqNo: 37	768318	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	97.5	70	130			
Toluene	20	1.0	20.00	0	99.1	70	130			
Ethylbenzene	20	1.0	20.00	0	102	70	130			
Xylenes, Total	62	2.0	60.00	0	103	70	130			
Surr: 4-Bromofluorobenzene	21		20.00		105	52.4	148			

Sample ID: mb	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volati	les		
Client ID: PBW	Batcl	n ID: BW	V102094	F	RunNo: 10	02094				
Prep Date:	Analysis D	Date: 12	2/24/2023	(SeqNo: 3	768319	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	21		20.00		103	52.4	148			

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Environment Testin

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE

Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Sample Log-In Check List

Website: wv	vw.hallenvironmental	.com	
Client Name: HILCORP ENERGY Work Order Nur	mber: 2312989		RcptNo: 1
Received By: Tracy Casarrubias 12/16/2023 7:35:0	00 AM		
Completed By: Tracy Casarrubias 12/16/2023 9:05:	59 AM		
Reviewed By: July 18123			
Chain of Custody			
1. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present 🗔
2. How was the sample delivered?	<u>Courier</u>		
Log In 3. Was an attempt made to cool the samples?	Yes 🗹	No 🗆	NA \square
4. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	NA \square
5. Sample(s) in proper container(s)?	Yes 🗹	No 🗌	
6. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗆	
7. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗌	
8. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆
9. Received at least 1 vial with headspace <1/4" for AQ VOA?	Yes 🗹	No 🗆	NA 🗆
10. Were any sample containers received broken?	Yes 🗌	No 🗹	# of preserved bottles checked
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No 🗆	for pH: (\$\frac{1}{2}\$ or >12 unless noted)
2. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	Adjusted?
3. Is it clear what analyses were requested?	Yes 🗸	No 🗌	
14. Were all holding times able to be met?	Yes 🗹	No 🗆	Checked by: 12
(If no, notify customer for authorization.)			
Special Handling (if applicable)	Yes 🗌	No 🗌	NA ✓
15. Was client notified of all discrepancies with this order?		NO	IVA EL
	te:		□ L. B
By Whom: Via	a: eMail f	Phone Fax	In Person
Regarding:			
Client Instructions:			

16. Additional remarks:

17. Cooler Information

Received by OCD: 4/24/2024 3:25:30 PM

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.9	Good	Yes	Morty		

3	nain-or	Chain-or-Custody Record		<u>i</u>		LAI ENVIDONMENTAL
Client: Hilo	Hilcorp Farmington NM		X Standard	□ Rush		ANALYSIS LABORATORY
			Project Name:			www.hallenvironmental.com
Mailing Add	ress: 382 R	Mailing Address: 382 Road 3100 Aztec, NM 87410		Standard #1		4901 Hawkins NE - Albuquerque, NM 87109
Billing Addre	ess: PO Bo	Billing Address: PO Box 61529 Houston, TX 77208	Project #:			Tel. 505-345-3975 Fax 505-345-4107
Phone #:	505-48	505-486-9543				Analysis Request
email or Fax#:		Brandon.Sinclair@hilcorp.com	Project Manager:			
QA/QC Package: □ Standard	age:	☐ Level 4 (Full Validation)	Mitch	Killonah		
Accreditation:		☐ Az Compliance ☐ Other	Sampler: On Ice:	Brandon Sinclair ☑ Yes □ □	lair □ No Morts	
□ EDD (Type)	1 1		# of Coolers:			
			Cooler Temp(including CF): \ J. 9 ±		2-1,9.0	551
Date Time	ne Matrix	Sample Name	Container Type and #	Preservativ e Type	HEAL No.	BTEX 80.
	H20	\sqcap	(3) 40ml VOA	HCL/Cool		3
12-14 131	13/5 H20	MW-8	(3) 40ml VOA	HCL/Cool	100	×
12-15 1340	10 H20	9-WM	(3) 40ml VOA	HCL/Cool	200	×
12-14 1140	10 H20	MW-11	(3) 40ml VOA	HCL/Cool	003	×
12-14 1100	, O H2O	MW-12	(3) 40ml VOA	HCL/Cool	HOO	×
	H20	MW-15	(3) 40ml VOA	HCL/Ceel		*
5-15/1225	N20	MW-16	(3) 40ml VOA	HCL/Cool	500	×
12-15/1130	3.0 H20	MW-17	(3) 40ml VOA	HCL/Cool	200	×
542141-21	15 H20	MW-18	(3) 40ml VOA	HCL/Cool	500	×
2051151-21	25 H20	MW-19	(3) 40ml VOA	HCL/Cool	900	×
12-14 121	215 H20) MW-22	(3) 40ml VOA	HCL/Cool	500	×
2541 41-21	25 H20	MW-23	(3) 40ml VOA	HCL/Cool	010	×
504141-21	0S H2O	MW-26	(3) 40ml VOA	HCL/Cool	011	×
Date: Time:		Relinquished by:	_	Via: D	Date Time 2] - - - - -	Remarks: Special Pricing, See Andy.
21		Dr. Small		ر عسالہ آ	13/13	
Date: Time:	لم	ished by:	Received by:	Via:Counter D	late lime	
115/21	<u> </u>			12/10/13	-	

If hecessary, samples submitted to Hall Environmental may be authorntracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 4/10/2024 5:35:58 PM

JOB DESCRIPTION

Standard #1

JOB NUMBER

885-2070-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 4/10/2024 5:35:58 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975 4

5

6

_

0

1 N

4 4

Client: Hilcorp Energy

Laboratory Job ID: 885-2070-1

Project/Site: Standard #1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	23
QC Association Summary	25
Lab Chronicle	26
Certification Summary	29
Chain of Custody	30
Receipt Checklists	32

3

6

8

9

10

Definitions/Glossary

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

P2 The sample was received with pH>2

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Eurofins Albuquerque

Case Narrative

Client: Hilcorp Energy Job ID: 885-2070-1 Project: Standard #1

Job ID: 885-2070-1 Eurofins Albuquerque

Job Narrative 885-2070-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to
 demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
 method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/30/2024 8:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

3

4

6

7

8

IU

11

Client Sample Results

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-3 Lab Sample ID: 885-2070-1

Date Collected: 03/27/24 13:15 Matrix: Water

Date Received: 03/30/24 08:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	9200		200	ug/L			04/05/24 18:10	200
Ethylbenzene	ND		200	ug/L			04/05/24 18:10	200
Toluene	5500		200	ug/L			04/05/24 18:10	200
Xylenes, Total	4300		300	ug/L			04/05/24 18:10	200
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 130				04/05/24 18:10	200
4-Bromofluorobenzene (Surr)	102		70 - 130				04/05/24 18:10	200
Dibromofluoromethane (Surr)	107		70 - 130				04/05/24 18:10	200
Toluene-d8 (Surr)	95		70 - 130				04/05/24 18:10	200

6

8

9

10

Eurofins Albuquerque

Client Sample Results

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-8 Lab Sample ID: 885-2070-2

Date Collected: 03/27/24 16:30 Matrix: Water

Date Received: 03/30/24 08:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			04/04/24 20:29	1
Ethylbenzene	ND		1.0	ug/L			04/04/24 20:29	1
Toluene	ND		1.0	ug/L			04/04/24 20:29	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 20:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 130				04/04/24 20:29	1
4-Bromofluorobenzene (Surr)	97		70 - 130				04/04/24 20:29	1
Dibromofluoromethane (Surr)	102		70 - 130				04/04/24 20:29	1
Toluene-d8 (Surr)	97		70 - 130				04/04/24 20:29	1

9

10

4/10/2024

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Client Sample ID: MW-9 Lab Sample ID: 885-2070-3

Date Collected: 03/28/24 11:30 Matrix: Water
Date Received: 03/30/24 08:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1000		100	ug/L			04/05/24 18:35	100
Ethylbenzene	87		10	ug/L			04/05/24 18:59	10
Toluene	ND		10	ug/L			04/05/24 18:59	10
Xylenes, Total	ND		15	ug/L			04/05/24 18:59	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70 - 130				04/05/24 18:35	100
1,2-Dichloroethane-d4 (Surr)	100		70 - 130				04/05/24 18:59	10
4-Bromofluorobenzene (Surr)	98		70 - 130				04/05/24 18:59	10
Dibromofluoromethane (Surr)	103		70 - 130				04/05/24 18:35	100

70 - 130

70 - 130

103

98

3

5

8

9

10

4

04/05/24 18:59

04/05/24 18:59

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-11 Lab Sample ID: 885-2070-4

Date Collected: 03/28/24 13:45

Date Received: 03/30/24 08:30

Matrix: Water

Method: SW846 8260B - Vo	olatile Organic (Compoun	ds (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			04/04/24 20:54	1
Ethylbenzene	ND		1.0	ug/L			04/04/24 20:54	1
Toluene	ND		1.0	ug/L			04/04/24 20:54	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 20:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 130				04/04/24 20:54	1
4-Bromofluorobenzene (Surr)	99		70 - 130				04/04/24 20:54	1
Dibromofluoromethane (Surr)	107		70 - 130				04/04/24 20:54	1
Toluene-d8 (Surr)	95		70 - 130				04/04/24 20:54	1

9

3

6

8

9

Job ID: 885-2070-1

Client: Hilcorp Energy Project/Site: Standard #1

Client Sample ID: MW-12

Lab Sample ID: 885-2070-5

Matrix: Water

Date Collected: 03/28/24 13:20 Date Received: 03/30/24 08:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	36		1.0	ug/L			04/04/24 21:18	1
Ethylbenzene	ND		1.0	ug/L			04/04/24 21:18	1
Toluene	ND		1.0	ug/L			04/04/24 21:18	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 21:18	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70 - 130				04/04/24 21:18	1
4-Bromofluorobenzene (Surr)	107		70 - 130				04/04/24 21:18	1
Dibromofluoromethane (Surr)	101		70 - 130				04/04/24 21:18	1
Toluene-d8 (Surr)	100		70 - 130				04/04/24 21:18	

5

8

9

10

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-15 Lab Sample ID: 885-2070-6

Date Collected: 03/27/24 13:55 Matrix: Water

Date Received: 03/30/24 08:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	14000		500	ug/L			04/05/24 19:24	500
Ethylbenzene	ND		500	ug/L			04/05/24 19:24	500
Toluene	1000		500	ug/L			04/05/24 19:24	500
Xylenes, Total	1800		750	ug/L			04/05/24 19:24	500
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		70 - 130				04/05/24 19:24	500
4-Bromofluorobenzene (Surr)	102		70 - 130				04/05/24 19:24	500
Dibromofluoromethane (Surr)	106		70 - 130				04/05/24 19:24	500
Toluene-d8 (Surr)	98		70 - 130				04/05/24 19:24	500

Eurofins Albuquerque

3

3

5

9

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-16 Lab Sample ID: 885-2070-7

Date Collected: 03/28/24 12:50 Matrix: Water Date Received: 03/30/24 08:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	77		20	ug/L			04/05/24 19:48	20
Ethylbenzene	340		20	ug/L			04/05/24 19:48	20
Toluene	ND		20	ug/L			04/05/24 19:48	20
Xylenes, Total	310		30	ug/L			04/05/24 19:48	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70 - 130				04/05/24 19:48	20
4-Bromofluorobenzene (Surr)	101		70 - 130				04/05/24 19:48	20
Dibromofluoromethane (Surr)	104		70 - 130				04/05/24 19:48	20
Toluene-d8 (Surr)	103		70 - 130				04/05/24 19:48	20

3

3

5

7

8

10

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-17 Lab Sample ID: 885-2070-8

Date Collected: 03/28/24 12:00 Matrix: Water Date Received: 03/30/24 08:30

Method: SW846 8260B - Vo	latile Organic (Compoun	ds (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			04/04/24 21:43	1
Ethylbenzene	ND		1.0	ug/L			04/04/24 21:43	1
Toluene	ND		1.0	ug/L			04/04/24 21:43	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 21:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 130				04/04/24 21:43	1
4-Bromofluorobenzene (Surr)	97		70 - 130				04/04/24 21:43	1
Dibromofluoromethane (Surr)	104		70 - 130				04/04/24 21:43	1
Toluene-d8 (Surr)	96		70 - 130				04/04/24 21:43	1

9

3

-

6

8

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-18 Lab Sample ID: 885-2070-9

Date Collected: 03/27/24 17:55

Date Received: 03/30/24 08:30

Matrix: Water

Method: SW846 8260B - Vo		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	67	<u> </u>		ug/L		· · · · · · · · · · · · · · · · · · ·	04/05/24 20:37	20
Ethylbenzene	150		20	ug/L			04/05/24 20:37	20
Toluene	ND		20	ug/L			04/05/24 20:37	20
Xylenes, Total	ND		30	ug/L			04/05/24 20:37	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 130		•		04/05/24 20:37	20
4-Bromofluorobenzene (Surr)	102		70 - 130				04/05/24 20:37	20
Dibromofluoromethane (Surr)	103		70 - 130				04/05/24 20:37	20
Toluene-d8 (Surr)	96		70 - 130				04/05/24 20:37	20

-

3

6

8

9

10

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-19 Lab Sample ID: 885-2070-10

Date Collected: 03/28/24 11:00 Matrix: Water Date Received: 03/30/24 08:30

Method: SW846 8260B - Vo	latile Organic	Compoun	ds (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	6700	P2	200	ug/L			04/05/24 21:01	200
Ethylbenzene	1100	P2	200	ug/L			04/05/24 21:01	200
Toluene	17000	P2	200	ug/L			04/05/24 21:01	200
Xylenes, Total	9200	P2	300	ug/L			04/05/24 21:01	200
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	P2	70 - 130				04/05/24 21:01	200
4-Bromofluorobenzene (Surr)	103	P2	70 - 130				04/05/24 21:01	200
Dibromofluoromethane (Surr)	97	P2	70 - 130				04/05/24 21:01	200
Toluene-d8 (Surr)	98	P2	70 - 130				04/05/24 21:01	200

3

5

7

8

40

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Lab Sample ID: 885-2070-11 Client Sample ID: MW-22

Date Collected: 03/28/24 14:20 **Matrix: Water**

Date Received: 03/30/24 08:30

Method: SW846 8260B - Vo	olatile Organic	Compoun	ds (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			04/04/24 22:07	1
Ethylbenzene	ND		1.0	ug/L			04/04/24 22:07	1
Toluene	ND		1.0	ug/L			04/04/24 22:07	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 22:07	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		70 - 130				04/04/24 22:07	1
4-Bromofluorobenzene (Surr)	100		70 - 130				04/04/24 22:07	1
Dibromofluoromethane (Surr)	104		70 - 130				04/04/24 22:07	1
Toluene-d8 (Surr)	94		70 - 130				04/04/24 22:07	1

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-23 Lab Sample ID: 885-2070-12

Date Collected: 03/27/24 16:00 Matrix: Water

Date Received: 03/30/24 08:30

Method: SW846 8260B - Vo	olatile Organic	Compoun	ds (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			04/04/24 22:32	1
Ethylbenzene	ND		1.0	ug/L			04/04/24 22:32	1
Toluene	ND		1.0	ug/L			04/04/24 22:32	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 22:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		70 - 130				04/04/24 22:32	1
4-Bromofluorobenzene (Surr)	98		70 - 130				04/04/24 22:32	1
Dibromofluoromethane (Surr)	106		70 - 130				04/04/24 22:32	1
Toluene-d8 (Surr)	96		70 130				04/04/24 22:32	1

8

3

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-26 Lab Sample ID: 885-2070-13

Date Collected: 03/27/24 17:15 Matrix: Water Date Received: 03/30/24 08:30

Method: SW846 8260B - Vo	olatile Organic (Compound	ds (GC/MS)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			04/05/24 16:57	1
Ethylbenzene	ND		1.0	ug/L			04/05/24 16:57	1
Toluene	ND		1.0	ug/L			04/05/24 16:57	1
Xylenes, Total	ND		1.5	ug/L			04/05/24 16:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		70 - 130				04/05/24 16:57	1
4-Bromofluorobenzene (Surr)	95		70 - 130				04/05/24 16:57	1
Dibromofluoromethane (Surr)	104		70 - 130				04/05/24 16:57	1
Toluene-d8 (Surr)	94		70 - 130				04/05/24 16:57	1

3

3

5

6

8

9

Job ID: 885-2070-1

Client: Hilcorp Energy Project/Site: Standard #1

Client Sample ID: MW-6 Lab Sample ID: 885-2070-14 Date Collected: 03/27/24 14:30

Matrix: Water

Date Received: 03/30/24 08:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2900		500	ug/L			04/05/24 21:26	500
Ethylbenzene	590		500	ug/L			04/05/24 21:26	500
Toluene	3100		500	ug/L			04/05/24 21:26	500
Xylenes, Total	8700		750	ug/L			04/05/24 21:26	500
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70 - 130				04/05/24 21:26	500
4-Bromofluorobenzene (Surr)	102		70 - 130				04/05/24 21:26	500
Dibromofluoromethane (Surr)	101		70 - 130				04/05/24 21:26	500
Toluene-d8 (Surr)	98		70 - 130				04/05/24 21:26	500

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Lab Sample ID: 885-2070-15 Client Sample ID: MW-1

Date Collected: 03/27/24 11:45 **Matrix: Water**

Date Received: 03/30/24 08:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	24000		1000	ug/L			04/05/24 21:50	1000
Ethylbenzene	1500		100	ug/L			04/05/24 22:15	100
Toluene	34000		1000	ug/L			04/05/24 21:50	1000
Xylenes, Total	17000		150	ug/L			04/05/24 22:15	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		70 - 130				04/05/24 21:50	1000
1,2-Dichloroethane-d4 (Surr)	93		70 - 130				04/05/24 22:15	100
4-Bromofluorobenzene (Surr)	102		70 - 130				04/05/24 22:15	100
Dibromofluoromethane (Surr)	100		70 - 130				04/05/24 21:50	1000
Dibromofluoromethane (Surr)	98		70 - 130				04/05/24 22:15	100
Toluene-d8 (Surr)	99		70 - 130				04/05/24 21:50	1000
Toluene-d8 (Surr)	107		70 - 130				04/05/24 22:15	100

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Client Sample ID: MW-2 Lab Sample ID: 885-2070-16

Date Collected: 03/27/24 12:40 Matrix: Water

Date Received: 03/30/24 08:30

100

97

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	14000		200	ug/L			04/05/24 22:39	200
Ethylbenzene	330		200	ug/L			04/05/24 22:39	200
Toluene	3600		200	ug/L			04/05/24 22:39	200
Xylenes, Total	6800		300	ug/L			04/05/24 22:39	200
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		70 - 130				04/05/24 22:39	200
4-Bromofluorobenzene (Surr)	102		70 - 130				04/05/24 22:39	200

70 - 130

70 - 130

5

7

8

200

200

04/05/24 22:39

04/05/24 22:39

Client: Hilcorp Energy Job ID: 885-2070-1

Project/Site: Standard #1

Client Sample ID: MW-10 Lab Sample ID: 885-2070-17

Date Collected: 03/27/24 10:45

Date Received: 03/30/24 08:30

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	13000		500	ug/L			04/05/24 23:03	500
Ethylbenzene	1400		500	ug/L			04/05/24 23:03	500
Toluene	ND		500	ug/L			04/05/24 23:03	500
Xylenes, Total	7800		750	ug/L			04/05/24 23:03	500
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		70 - 130				04/05/24 23:03	500
4-Bromofluorobenzene (Surr)	103		70 - 130				04/05/24 23:03	500
Dibromofluoromethane (Surr)	102		70 - 130				04/05/24 23:03	500
Toluene-d8 (Surr)	99		70 - 130				04/05/24 23:03	500

6

8

9

QC Sample Results

Client: Hilcorp Energy Job ID: 885-2070-1 Project/Site: Standard #1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-2836/4

Matrix: Water

Analysis Batch: 2836

Client Sample ID: Method Blank
Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			04/04/24 11:57	1
Ethylbenzene	ND		1.0	ug/L			04/04/24 11:57	1
Toluene	ND		1.0	ug/L			04/04/24 11:57	1
Xylenes, Total	ND		1.5	ug/L			04/04/24 11:57	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Dil Fac Analyzed 1,2-Dichloroethane-d4 (Surr) 70 - 130 04/04/24 11:57 100 4-Bromofluorobenzene (Surr) 96 70 - 130 04/04/24 11:57 101 Dibromofluoromethane (Surr) 70 - 130 04/04/24 11:57 Toluene-d8 (Surr) 97 70 - 130 04/04/24 11:57

Lab Sample ID: LCS 885-2836/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 2836

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	20.1	21.1		ug/L		105	70 - 130	
Toluene	20.2	21.4		ug/L		106	70 - 130	
Trichloroethene (TCE)	20.2	20.2		ug/L		100	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	100		70 - 130
Dibromofluoromethane (Surr)	99		70 - 130
Toluene-d8 (Surr)	99		70 - 130

Lab Sample ID: MB 885-2952/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 2952

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		1.0	ug/L			04/05/24 14:07	1
Ethylbenzene	ND		1.0	ug/L			04/05/24 14:07	1
Toluene	ND		1.0	ug/L			04/05/24 14:07	1
Xylenes, Total	ND		1.5	ug/L			04/05/24 14:07	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		70 - 130		04/05/24 14:07	1
4-Bromofluorobenzene (Surr)	99		70 - 130		04/05/24 14:07	1
Dibromofluoromethane (Surr)	102		70 - 130		04/05/24 14:07	1
Toluene-d8 (Surr)	98		70 - 130		04/05/24 14:07	1

Lab Sample ID: LCS 885-2952/2 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 2952

Analysis Baton. 2002							
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	20.1	20.5		ug/L		102	70 - 130

Eurofins Albuquerque

Job ID: 885-2070-1

Client: Hilcorp Energy Project/Site: Standard #1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 885-2952/2

Matrix: Water

Analysis Batch: 2952

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Toluene 20.2 20.7 ug/L 102 70 - 130 Trichloroethene (TCE) 20.2 19.4 ug/L 96 70 - 130

LCS LCS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 99 70 - 130 4-Bromofluorobenzene (Surr) 102 70 - 130 Dibromofluoromethane (Surr) 101 70 - 130 Toluene-d8 (Surr) 97 70 - 130

Lab Sample ID: 885-2070-13 MS

Matrix: Water

Analysis Batch: 2952

Client Sample ID: MW-26

Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	ND		20.1	20.4		ug/L		101	70 - 130	
Toluene	ND		20.2	20.0		ug/L		99	70 - 130	
Trichloroethene (TCE)	ND		20.2	19.6		ug/L		97	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 103 70 - 130 4-Bromofluorobenzene (Surr) 100 70 - 130 Dibromofluoromethane (Surr) 101 70 - 130 Toluene-d8 (Surr) 96 70 - 130

Lab Sample ID: 885-2070-13 MSD

Released to Imaging: 6/3/2024 11:22:17 AM

Matrix: Water

Analysis Batch: 2952

Client Sample ID: MW-26 **Prep Type: Total/NA**

Spike MSD MSD %Rec **RPD** Sample Sample Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit Benzene ND 20.1 20.0 ug/L 99 70 - 130 20 Toluene ND 20.2 19.7 ug/L 98 70 - 130 2 20 Trichloroethene (TCE) ND 20.2 18.8 ug/L 93 70 - 130 20

MSD MSD Surrogate %Recovery Qualifier Limits 1,2-Dichloroethane-d4 (Surr) 70 - 130 100 4-Bromofluorobenzene (Surr) 105 70 - 130 Dibromofluoromethane (Surr) 101 70 - 130 Toluene-d8 (Surr) 96 70 - 130

Eurofins Albuquerque

QC Association Summary

Client: Hilcorp Energy

Job ID: 885-2070-1

Project/Site: Standard #1

GC/MS VOA

Analysis Batch: 2836

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2070-2	MW-8	Total/NA	Water	8260B	
885-2070-4	MW-11	Total/NA	Water	8260B	
885-2070-5	MW-12	Total/NA	Water	8260B	
885-2070-8	MW-17	Total/NA	Water	8260B	
885-2070-11	MW-22	Total/NA	Water	8260B	
885-2070-12	MW-23	Total/NA	Water	8260B	
MB 885-2836/4	Method Blank	Total/NA	Water	8260B	
LCS 885-2836/3	Lab Control Sample	Total/NA	Water	8260B	

Analysis Batch: 2952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-2070-1	MW-3	Total/NA	Water	8260B	
885-2070-3	MW-9	Total/NA	Water	8260B	
885-2070-3	MW-9	Total/NA	Water	8260B	
885-2070-6	MW-15	Total/NA	Water	8260B	
885-2070-7	MW-16	Total/NA	Water	8260B	
885-2070-9	MW-18	Total/NA	Water	8260B	
885-2070-10	MW-19	Total/NA	Water	8260B	
885-2070-13	MW-26	Total/NA	Water	8260B	
885-2070-14	MW-6	Total/NA	Water	8260B	
885-2070-15	MW-1	Total/NA	Water	8260B	
885-2070-15	MVV-1	Total/NA	Water	8260B	
885-2070-16	MW-2	Total/NA	Water	8260B	
885-2070-17	MW-10	Total/NA	Water	8260B	
MB 885-2952/3	Method Blank	Total/NA	Water	8260B	
LCS 885-2952/2	Lab Control Sample	Total/NA	Water	8260B	
885-2070-13 MS	MW-26	Total/NA	Water	8260B	
885-2070-13 MSD	MW-26	Total/NA	Water	8260B	

Eurofins Albuquerque

1

5

7

8

9

10

Client: Hilcorp Energy Project/Site: Standard #1

Client Sample ID: MW-3 Date Collected: 03/27/24 13:15 Lab Sample ID: 885-2070-1

Matrix: Water

Date Received: 03/30/24 08:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		200	2952	СМ	EET ALB	04/05/24 18:10

Lab Sample ID: 885-2070-2

Matrix: Water

Date Collected: 03/27/24 16:30 Date Received: 03/30/24 08:30

Client Sample ID: MW-8

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run **Factor Number Analyst** Lab or Analyzed 8260B 2836 СМ EET ALB

Total/NA Analysis 04/04/24 20:29

Client Sample ID: MW-9 Lab Sample ID: 885-2070-3

Date Collected: 03/28/24 11:30 **Matrix: Water**

Date Received: 03/30/24 08:30

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Method **Factor Number Analyst** Type Run Lab 04/05/24 18:35 Total/NA Analysis 8260B 100 2952 CM **EET ALB** Total/NA Analysis 8260B 10 2952 CM **EET ALB** 04/05/24 18:59

Client Sample ID: MW-11 Lab Sample ID: 885-2070-4 **Matrix: Water**

Date Collected: 03/28/24 13:45 Date Received: 03/30/24 08:30

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor Number Analyst** Lab

Total/NA Analysis 8260B 2836 CM EET ALB 04/04/24 20:54

Client Sample ID: MW-12 Lab Sample ID: 885-2070-5

Date Collected: 03/28/24 13:20 **Matrix: Water** Date Received: 03/30/24 08:30

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run **Factor** Number Analyst Lab or Analyzed 04/04/24 21:18 Total/NA Analysis 8260B 2836 СМ **EET ALB**

Client Sample ID: MW-15 Lab Sample ID: 885-2070-6

Date Collected: 03/27/24 13:55 **Matrix: Water** Date Received: 03/30/24 08:30

Batch Batch Dilution Batch Prepared Туре Method Run Factor **Number Analyst** or Analyzed **Prep Type** Lab 8260B 2952 CM EET ALB 04/05/24 19:24 Total/NA Analysis 500

Lab Sample ID: 885-2070-7 Client Sample ID: MW-16

Date Collected: 03/28/24 12:50 **Matrix: Water**

Date Received: 03/30/24 08:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		20	2952	CM	EET ALB	04/05/24 19:48

Eurofins Albuquerque

Client: Hilcorp Energy Project/Site: Standard #1

Client Sample ID: MW-17

Date Received: 03/30/24 08:30

Lab Sample ID: 885-2070-8 Date Collected: 03/28/24 12:00

Matrix: Water

Batch Dilution Batch Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number **Analyst** Lab 04/04/24 21:43 Total/NA 2836 CM **EET ALB** Analysis 8260B

Client Sample ID: MW-18 Lab Sample ID: 885-2070-9

Date Collected: 03/27/24 17:55 **Matrix: Water**

Date Received: 03/30/24 08:30

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor Number Analyst** Lab or Analyzed Total/NA Analysis 8260B 20 2952 СМ EET ALB 04/05/24 20:37

Client Sample ID: MW-19 Lab Sample ID: 885-2070-10

Date Collected: 03/28/24 11:00 **Matrix: Water**

Date Received: 03/30/24 08:30

Batch Batch Dilution Batch Prepared or Analyzed **Prep Type** Method **Factor Number Analyst** Type Run Lab 04/05/24 21:01 Total/NA Analysis 8260B 200 2952 CM **EET ALB**

Lab Sample ID: 885-2070-11 Client Sample ID: MW-22

Date Collected: 03/28/24 14:20 **Matrix: Water**

Date Received: 03/30/24 08:30

Batch Batch Dilution Batch Prepared **Prep Type** Method Run Factor Number Analyst or Analyzed Type Lab Total/NA Analysis 8260B 2836 СМ EET ALB 04/04/24 22:07

Client Sample ID: MW-23 Lab Sample ID: 885-2070-12

Date Collected: 03/27/24 16:00

Date Received: 03/30/24 08:30

Batch Batch Dilution Batch Prepared Method Run Factor Number Analyst or Analyzed **Prep Type** Type Lab 04/04/24 22:32 CM Total/NA Analysis 8260B 2836 **EET ALB**

Client Sample ID: MW-26 Lab Sample ID: 885-2070-13

Date Collected: 03/27/24 17:15

Date Received: 03/30/24 08:30

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number **Analyst** or Analyzed Lab EET ALB 04/05/24 16:57 Total/NA Analysis 8260B 2952 СМ

Lab Sample ID: 885-2070-14 Client Sample ID: MW-6

Date Collected: 03/27/24 14:30

Date Received: 03/30/24 08:30

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor Number Analyst** Lab 04/05/24 21:26 8260B СМ EET ALB Total/NA Analysis 500 2952

Eurofins Albuquerque

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 885-2070-1

Client: Hilcorp Energy

Project/Site: Standard #1

Lab Sample ID: 885-2070-15 Client Sample ID: MW-1 Date Collected: 03/27/24 11:45 **Matrix: Water**

Date Received: 03/30/24 08:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1000	2952	СМ	EET ALB	04/05/24 21:50
Total/NA	Analysis	8260B		100	2952	CM	EET ALB	04/05/24 22:15

Lab Sample ID: 885-2070-16 Client Sample ID: MW-2

Date Collected: 03/27/24 12:40 **Matrix: Water**

Date Received: 03/30/24 08:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		200	2952	СМ	EET ALB	04/05/24 22:39

Client Sample ID: MW-10 Lab Sample ID: 885-2070-17

Date Collected: 03/27/24 10:45 **Matrix: Water**

Date Received: 03/30/24 08:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		500	2952	CM	EET ALB	04/05/24 23:03

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy

Job ID: 885-2070-1

Project/Site: Standard #1

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Prograr	n	Identification Number	Expiration Date
New Mexico	State		NM9425, NM0901	02-26-25
		, but the laboratory is r	ot certified by the governing authori	ity. This list may include analytes
for which the agency Analysis Method	does not offer certification. Prep Method	Matrix	Analyte	
	Prep Metriod			
8260B		Water	Benzene	
8260B		Water	Ethylbenzene	
8260B		Water	Toluene	
8260B 8260B		Water Water	Toluene Xylenes, Total	

Eurofins Albuquerque

3

5

4

5

7

Q

10

	ANALYSIS I ABORAT	www hallenvironmental com	4901 Hawkins NE - Albuaueraue, NM 87109	Tel 505-345-3975 Fax 505-345-4107	le d							0:0	BIEX 826	×	×	×	×	×	×	×	×	×	×	×	×	×	Remarks: Special Pricing, See Andy.		ps 1 of 2
									clair	□ No Yoa	,	-0230	HEAL No.	-1	2-	2-	5-	15.	91	7-	8	6-	01-	-(-	-12	-13	Date Time 52	Date Time	124 0830
ie:	□ Rush		Standard #1					X: 10 x 8	Brandon Sinclair	Ø Yes		0	Preservativ e Type	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	HCL/Cool	ars		2/20
Turn-Around Time:	X Standard	Project Name:		Project #:	T	Project Manager:		Mitch	Sampler:	On Ice:	# of Coolers: /	Cooler Temp(including CF): 3	Container Type and #	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	(3) 40ml VOA	Received by: Via:	Received by: Via:	du lus
Chain-of-Custody Record	NN u		Mailing Address: 382 Road 3100 Aztec, NM 87410	Billing Address: PO Box 61529 Houston, TX 77208	1543	Brandon Sinclair@hilcom com		☐ Level 4 (Full Validation)					Sample Name	MW-3	MW-8	MW-9	MW-11	MW-12	MW-15	MW-16	MW-17	MW-18	MW-19	MW-22	MW-23	MW-26	Jan.	d by:	-
in-of-C	Hilcorp Farmington NM		s: 382 Road	PO Box 6	505-486-9543	Brandon			☐ Az Compliance	□ Other			Matrix	H20	H20	H20	H20	H20	H20	H20	H20	H20	H20	H20	H20	H20	Relinquished by	Relinquished by:	\$ -
Cha	Client: Hilcorp		Mailing Addres:	Billing Address:	Phone #	email or Fax#:	QA/QC Package:	□ Standard	Accreditation:	□ NELAC	□ EDD (Type)		Date Time	3-27 1315	age 3-27 1630	08.1130	5 3-28 1345	3-28 1320	3-27 1355	3-28 1250	3-28 1200	3-27 1755	3-28 1100	3-28 1420	3-27 1600	7	Jate: Time: 3/28/24 1521	<u> </u>	1) [1] 12/82/ 4

MW-10 MW-2

120

5401

- M W

430

Page 31

Matrix

Time

MW-

H20 H,O

1340 145

3-27

□ Az Compliance

Accreditation:

□ Standard

QA/QC Package:

email or Fax#:

Phone #:

□ Other_

EDD (Type)

□ NELAC

If necessary, satoples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Relinquished by:

ine.

4/10/2024

Released to Imaging: 6/3/2024 11:22:17 AM

Mailing Address:

1a

HI COND

Client:

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-2070-1

Login Number: 2070 List Source: Eurofins Albuquerque

List Number: 1

Creator: Proctor, Nancy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ge 313 0j 314

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 337364

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	337364
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Review of the 2024 First Quarter Remediation System Operation and Monitoring Report for Standard #1: Content Satisfactory 1. Continue as planned to conduct biweekly or bimonthly sampling events to ensure the DPE system is functioning normally. 2. Note any deviations as stated in report. 3. Submit next quarterly report to OCD 15 to 30 days after the end of each quarter.	6/3/2024