REVIEWED

Re

By Mike Buchanan at 1:36 pm, Jun 03, 2024

MAVERICK NATURAL RESOURCES

2022 Annual Report

MCA 357 (1RP-3025) Lea County, New Mexico Review of the 2022 Annual Report for MCA 357: Content Satisfactory 1. Proceed with plans to change groundwater sampling frequencies at the site from annual to semi-annual. 2. Please submit the 2023 annual report (if it hasn't already been submitted to OCD) 3. Submit the 2024 Annual Monitoring Report to OCD by April 1, 2025.

#212C-HN-02007 January 27, 2023

2022 Annual Report

MCA 357 (1RP-3025) Lea County, New Mexico

#212C-HN-02007 January 27, 2023

PRESENTED TO

Maverick Natural Resources, LLC 1410 NW County Road Hobbs, NM 88240

PRESENTED BY

Tetra Tech, Inc. 1500 CityWest Boulevard Suite 1000 Houston, TX 77042

P +1-832-251-5160 F +1-832-251-5170 tetratech.com

Prepared by:

Brody Saxe Environmental Scientist 01/27/2023

Reviewed by:

Charles H. Terhune IV, P.G. Program Manager

01/27/2023

•

MCA 357 (1RP-3025)	2022 Annual Report
Lea County, New Mexico	January 27, 2023

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 BACKGROUND AND PREVIOUS INVESTIGATIONS
3.0 HYDROGEOLOGY
3.1 Geology
3.2 Site Hydrogeology6
4.0 GROUNDWATER MONITORING7
4.1 Groundwater Level Measurements7
4.2 Groundwater Sampling7
4.3 Groundwater Analytical Results8
5.0 QUALITY ASSURANCE/QUALITY CONTROL9
5.1 Field and Laboratory Precision9
5.2 Laboratory Data Qualification9
5.3 Data Usability9
6.0 2023 WORKPLAN 10
7.0 REFERENCES
FIGURES1
TABLES2
APPENDIX A: LABORATORY ANALYTICAL DATA3
APPENDIX B: CHLORIDE CONCENTRATION GRAPHS
APPENDIX C: HISTORICAL GROUNDWATER GAUGING DATA
APPENDIX D: HISTORICAL GROUNDWATER ANALYTICAL DATA

LIST OF FIGURES

Figure 1: Site Location Map
Figure 2: Site Details Map
Figure 3: Groundwater Potentiometric Surface Map – January 2022
Figure 4: Groundwater Potentiometric Surface Map – April 2022
Figure 5: Groundwater Potentiometric Surface Map – October 2022
Figure 6: Chloride Concentration map – January 2022
Figure 7: Chloride Concentration map – April 2022
Figure 8: Chloride Concentration map – October 2022
Figure 9: TDS Concentration Map – January 2022
Figure 10: TDS Concentration Map – April 2022
Figure 11: TDS Concentration Map – October 2022

LIST OF TABLES

- **Table 1:** Groundwater Elevation Data
- Table 2: Groundwater Analytical Summary

Table 3: Quality Assurance/Quality Control Summary

APPENDICES

Appendix A: Laboratory Analytical Data

Appendix B: Chloride Concentration Trend Graphs

Appendix C: Historical Groundwater Gauging Data

Appendix D: Historical Groundwater Analytical Data

Released to Imaging: 6/3/2024 1:42:28 PM

MCA 357 (1RP-3025)

2022 Annual Report January 27, 2023

Lea County, New Mexico

1.0 INTRODUCTION

On behalf of Maverick Natural Resources, LLC (Maverick), this report details the continuing groundwater monitoring and remedial activities at the Maverick Natural Resources, LLC (Maverick) MCA 357 Site in Lea County, New Mexico (Site). The Site is located in Unit M, Section 28, T17S, R32E, approximately 3.7 miles south of Maljamar, New Mexico, as shown in **Figure 1**. Groundwater monitoring and remediation at the Site are conducted under New Mexico Oil Conservation District (NMOCD) Administrative/Environmental Order AP-115-1. The Site and surrounding areas are rural grasslands used primarily for oil and gas production.

2.0 BACKGROUND AND PREVIOUS INVESTIGATIONS

In December 2013, the Site operator submitted a Release Notification and Corrective Action Form C-141 to the NMOCD detailing a release with the source recorded as a flowline failure due to external corrosion. The release affected approximately 5,600 square feet of ground surface and pasture in the vicinity of the flowline failure. The Release Notification documents an estimated 24 barrels (bbls) of produced water was released and no fluids were subsequently recovered.

Previous environmental assessment activities include a drilling and soil sampling program, analytical laboratory analyses, and preliminary determinations of impacts to environmental media. Based on the preliminary determinations, a Corrective Action Plan (CAP) was submitted to the NMOCD in October 2014, approved in October 2014, and completed in December 2014.

Following the CAP approval, groundwater samples in the source area indicated the concentrations of chloride in groundwater (39,500 milligrams per liter [mg/L]) were reported at concentrations greater than the New Mexico Water Quality Control Commission (NMWQCC) guidance levels of 250 mg/L.

Four additional monitor wells (MW-2 through MW-5) were installed at the Site in September 2017, monitor wells MW-6 through MW-9 were installed in April 2019, monitor wells MW-10 through MW-12 were installed in April 2020, and monitor well MW-13 was installed in September 2020. Monitor wells MW-6, MW-11, MW-12, and MW-13 have been dry since installation. Phase-separated hydrocarbons (PSH) have not been historically measured at the Site.

Previously the Site was owned and operated by ConocoPhillips up until June 2022 when Maverick took over operation of the Site.

TETRA TECH

3.0 HYDROGEOLOGY

3.1 GEOLOGY

The Site is located in the Querecho Plains of southeastern New Mexico. This area generally consists of a thin cover of Quaternary sand dunes overlying the undivided Triassic Upper Chinle Group. The soil consists of welldrained sand and sandy clay loam. Typically, the surface layer is reddish-brown loamy fine sand. It is underlain by red light sandy clay. Below this is white moderately to well-indurated caliche. Underlying the caliche are dark reddish shales and thin sandstones of the undivided Triassic Upper Chinle Group. The Upper Chinle Group consists of silty shale, thin-bedded to massive, purplish red to reddish-brown with greenish reduction spots. The Upper Chinle Group is interbedded with thin beds of fine-grained sandstone with chert pebble gravel.

3.2 SITE HYDROGEOLOGY

The water-bearing zone consists of the Pliocene-age Ogallala aquifer under unconfined conditions at the Site. The Ogallala aquifer is located at the base of the Ogallala Formation. In general, the Ogallala Formation consists of quartz sand and gravel that is poorly to well-cemented with calcium carbonate and contains minor amounts of clay. The wells installed at the Site were drilled to depths of approximately 100 to 135 feet below ground surface (bgs) with static groundwater water levels at approximately 83 to 119 feet bgs.

Released to Imaging: 6/3/2024 1:42:28 PM

TŁ

Page 6 of 133

MCA 357 (1RP-3025) Lea County, New Mexico 2022 Annual Report January 27, 2023

4.0 GROUNDWATER MONITORING

The Site is currently the subject of quarterly groundwater monitoring under the NMOCD-approved abatement plan. The 2022 quarterly groundwater monitoring events were performed in January, April, and October of 2022. Due to the transition of operations between Maverick and ConocoPhillips in mid-2022, the 3rd quarter 2022 groundwater monitoring event was not performed.

As part of the ongoing groundwater monitoring program approved by the NMOCD, The groundwater monitor well network at the Site is comprised of monitor wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, MW-8, MW-9, MW-10, MW-11, MW-12, and MW-13, sampled on a quarterly basis, with samples submitted for analysis of bromide, chloride, sulfate, and total dissolved solids (TDS). Annual reports are prepared and submitted to the NMOCD before the end of the first quarter of the following year.

4.1 GROUNDWATER LEVEL MEASUREMENTS

Prior to purging and sampling the monitor well network, Tetra Tech personnel gauged each well to measure the depth to groundwater and the presence of PSH, if present. Groundwater level measurements are presented in **Table 1** along with calculated groundwater elevations. PSH was not identified in any of the Site wells in 2022. All of the monitoring wells in the Site monitoring well network were gauged during each groundwater monitoring event in 2022. Historical groundwater gauging data is presented in **Appendix C**.

Groundwater elevations ranged from 3,817.28 feet above mean sea level (AMSL) in MW-9 to 3,882.47 feet AMSL in MW-7 in 2022. Calculated groundwater elevations and the groundwater potentiometric surface maps for each groundwater monitoring event are presented in **Figures 3** through **5**. Groundwater flow at the Site is to the south with an average hydraulic gradient of 0.02436 feet per foot in 2022, generally consistent with historical groundwater flow at the Site.

4.2 GROUNDWATER SAMPLING

During the 2022 monitoring events, wells MW-1, MW-2, MW-3, MW-4, MW-5, MW-7, MW-8, and MW-9 were sampled. Low-flow sampling methodology was utilized to purge and sample each well using a bladder pump with dedicated disposable tubing and bladders in accordance with United States Environmental Protection Agency (EPA) guidance. The bladder pump intake was set to the approximate center of the screened interval for each monitor well prior to purging.

Groundwater quality parameters including temperature, pH, Specific Conductivity (SC), Dissolved Oxygen (DO), Oxygen Reduction Potential (ORP), and turbidity were recorded during purging in addition to well drawdown and flow rate to document monitor well stabilization. Once field parameters stabilized at each well, samples were collected into laboratory-provided pre-preserved sample containers, immediately placed on ice, and transported to Pace Analytical National in Mount Juliet, Tennessee, under chain-of-custody documentation for analysis of the following constituents of concern (COCs):

TE TETRA TECH

MCA 357 (1RP-3025) Lea County, New Mexico 2022 Annual Report January 27, 2023

- Bromide by EPA Method 9056A;
- Chloride by EPA Method 9056A
- Sulfate by EPA Method 9056A; and
- Total dissolved solids (TDS) by Method 2540 C-2011.

4.3 GROUNDWATER ANALYTICAL RESULTS

During the January 2022 sampling event, monitoring wells MW-1 through MW-4 and MW-5 through MW-9 were sampled. Wells MW-6 and MW-10 through MW-13 did not contain enough water to sample. Chloride and TDS concentrations for all wells sampled exceeded the applicable NMWQCC Groundwater Quality Standards of 250 mg/L and 1,000 mg/L, respectively. Additionally, the sulfate concentration for MW-1 exceeded the NMWQCC standard of 600 mg/L during the January monitoring event. Two duplicate samples were collected from MW-1 during this event, both of which exceeded the NMWQCC standards for chloride and TDS. No additional exceedances were reported.

During the January, April, and October 2022 sampling events, chloride was reported at concentrations greater than NMWQCC standards in all of the sampled monitoring wells and TDS was reported at concentrations greater than the NMWQCC standards in all sampled monitoring wells except for MW-7 during the March and October groundwater monitoring events. Sulfate was only reported at a concentration greater than the NMWQCC standard in MW-1 during the January groundwater monitoring event. One duplicate sample was collected from MW-1 during each of the three groundwater monitoring events. No additional regulatory exceedances were reported during 2022.

The highest concentrations of chloride and TDS were reported in MW-1. Concentrations of chloride in MW-1 ranged from 55,800 mg/L in January 2022 to 10,200 mg/L in October 2022. Concentrations in the majority of monitor wells appear to be relatively stable. Concentrations of TDS in MW-1 ranged from 21,300 in April 2022 to 83,200 in January 2022. The January analytical results reported for the samples collected from MW-1 are believed to be anomalous due to the disturbance of settled fines in the well during sampling, and the concentrations reported during the April and October groundwater monitoring events are believed to be representative of COC concentrations at this location.

Table 2 presents a summary of the groundwater analytical results screened against NMWQCC Groundwater Quality Standards. The laboratory analytical data packages including chain-of-custody documentation are provided in **Appendix A**, chloride, sulfate, and TDS concentration maps are provided in **Figures 6** through **11**, and chloride concentration trend graphs are presented in **Appendix B**.

5.0 QUALITY ASSURANCE/QUALITY CONTROL

A total of eight primary groundwater samples were collected and analyzed during each groundwater monitoring event in 2022. Additionally, two field duplicates in January and April and one field duplicate in October were collected and analyzed.

5.1 FIELD AND LABORATORY PRECISION

The project measurement quality objectives are 30 percent for relative-percent-difference (RPD) between primary and duplicate sample results for inorganic analytes including bromide, chloride, sulfate, and TDS. Where estimated concentrations are present and reported concentrations are J-flagged, the RPDs are elevated to 60 percent. **Table 3** presents primary and duplicate sample results and RPD calculations. Out of the 12 RPD calculations, the bromide, chloride, and TDS analytical results for the primary-duplicate sample pair for MW-1 during the January groundwater monitoring event were greater than the project data quality objectives of 30 percent.

During the January sampling event, Tetra Tech field staff experienced equipment problems with the bladder pump down the well during the sampling of MW-1. Consequently, settled fines from the bottom of this monitoring well are believed to have been disturbed, contributing to elevated COC concentrations in both the primary and duplicate samples and generating the disparity in reported concentrations between the primary and duplicate samples collected from MW-1 during this event. Additionally, reported COC concentrations at MW-1 were much higher than expected based on historical concentrations and concentrations reported in the April and October groundwater monitoring events at MW-1.

5.2 LABORATORY DATA QUALIFICATION

No laboratory analytical results were qualified in the three analytical data packages during the three 2022 groundwater monitoring events.

5.3 DATA USABILITY

Groundwater analytical data are deemed useable for the purpose of determining groundwater COC concentrations at the Site with the exception of primary and duplicate sample results collected from MW-1 during the January groundwater monitoring event. As discussed above, fines settled in MW-1 are believed to have been disturbed during sampling causing elevated analytical results of COCs analyzed. Otherwise, field duplicate samples reported results within Data quality objectives.

TE TETRA TECH

MCA 357 (1RP-3025) Lea County, New Mexico

6.0 2023 WORKPLAN

Based on the size of the monitor well network and data accumulated to date, Tetra Tech previously requested the groundwater sampling program be reduced to a semi-annual basis in the *2021 Annual Monitoring and Remedial Activities Report* for the Site dated March 24, 2022. As of the date of this report, no response to this request has been received and Tetra Tech respectfully reiterates the request to shift the annual program to a Semi-annual basis with annual reporting to the NMOCD.

MCA 357 (1RP-3025) Lea County, New Mexico

7.0 REFERENCES

Nicholson Jr., A. and Clebsch Jr., A. (1961). Geology and Ground-Water Conditions in Souther Lea County, New Mexico. Socorro, NM: State Bureau of Mines and Mineral Resources and New Mexico Institute of Mining & Technology Campus Stationuthor.

•

FIGURES

TETRA TECH Released to Imaging: 6/3/2024 1:42:28 PM

Report/Figures/Figure 5 MCA 357/07 - Reporting/2022 Annual Report/Figures/Figure 5 MCA 357.mxd By: troy.fegter

•

TABLES

Table 1 Groundwater Elevation Summary Maljamar E&P Lea County, New Mexico

Page	25	of	^c 1	33	3
------	----	----	----------------	----	---

Well ID	Gauging Date	Well Total Depth (feet)	Depth to Water (feet BTOC)	Top of Casing Elevation (feet AMSL)	Groundwater Elevation (feet)
	1/11/2022	102.70	84.31	3,956.78	3,872.47
MW-1	4/4/2022	102.70	84.46	3,956.78	3,872.32
	10/18/2022	102.70	84.50	3,956.78	3,872.28
	1/11/2022	107.80	83.30	3,963.58	3,880.28
MW-2	4/4/2022	107.80	83.37	3,963.58	3,880.21
	10/18/2022	107.80	83.44	3,963.58	3,880.14
	1/11/2022	117.30	88.26	3,951.34	3,863.08
MW-3	4/4/2022	117.30	88.45	3,951.34	3,862.89
	10/18/2022	117.30	88.51	3,951.34	3,862.83
	1/11/2022	103.20	94.30	3,945.39	3,851.09
MW-4	4/4/2022	103.20	94.51	3,945.39	3,850.88
	10/18/2022	103.20	94.58	3,945.39	3,850.81
	1/11/2022	113.00	89.73	3,950.37	3,860.64
MW-5	4/4/2022	113.00	89.94	3,950.37	3,860.43
	10/18/2022	113.00	90.03	3,950.37	3,860.34
	1/11/2022	128.10	Dry	3,952.96	Dry
MW-6	4/4/2022	128.10	Dry	3,952.96	Dry
	10/18/2022	128.10	Dry	3,952.96	Dry
	1/11/2022	127.30	89.64	3,972.11	3,882.47
MW-7	4/4/2022	127.30	89.72	3,972.11	3,882.39
	10/18/2022	127.30	89.80	3,972.11	3,882.31
	1/11/2022	118.00	95.27	3,956.83	3,861.56
MW-8	4/4/2022	118.00	95.38	3,956.83	3,861.45
	10/18/2022	118.00	95.44	3,956.83	3,861.39
	1/11/2022	133.50	118.64	3,936.53	3,817.89
MW-9	4/4/2022	133.50	119.18	3,936.53	3,817.35
	10/18/2022	133.50	119.25	3,936.53	3,817.28
	1/11/2022	132.51	Dry	3,963.20	Dry
MW-10	4/4/2022	132.51	Dry	3,963.20	Dry
-	10/18/2022	132.51	Dry	3,963.20	Dry
	1/11/2022	132.88	Dry	3,948.30	Dry
MW-11	4/4/2022	132.88	Dry	3,948.30	Dry
	10/18/2022	132.88	Dry	3,948.30	Dry
	1/11/2022	132.30	Dry	3,930.91	Dry
MW-12	4/4/2022	132.30	Dry	3,930.91	Dry
	10/18/2022	132.30	Dry	3,930.91	Dry
	1/11/2022	132.25	Dry	3,931.32	Dry
MW-13	4/4/2022	132.25	Dry	3,931.32	Dry
1/144-13	10/18/2022	132.25	Dry	3,931.32	Dry

Notes:

BTOC: Below Top of Casing AMSL: Above Mean Sea Level

NG: Not gauged

Table 2 Monitor Wells Groundwater Analytical Summary MCA 357 Lea County, New Mexico

Well ID	Well ID Sample Date		Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)	
IMWQCC Groundwat	er Quality Standards	NE	250	600	1,000	
	1/13/2022	167	55,800	756	83,200	
MW-1	4/7/2022	18.4	11,000	194	21,300	
	10/13/2022	21.7	12,400	222	27,500	
	1/12/2022	7.04 J	5,590	269	13,900	
MW-2	4/6/2022	10.2	6,010	306	7,460	
	10/13/2022	10.4	5,440	270	9,460	
	1/12/2022	8.81 J	4,300	180	8,380	
MW-3	4/5/2022	8.7	4,310	185	5,860	
	10/12/2022	11.5	3,870	159	7,080	
	1/12/2022	7.82 J	6,120	181	14,700	
MW-4	4/6/2022	8.35	6,730	(mg/L) 600 0 756 0 194 0 222 269 306 270 306 270 180 185 159 181 198 174 136 174 136 152 124 Dry 81.3 85.5 87.1 99.3 86.9 472 526 470 470 Dry 97.7	8,020	
	10/12/2022	11	6,370		13,800	
	1/12/2022	2.04	1,150	136	3,320	
MW-5	4/7/2022	4.49 J	1,040	152	3,530	
	10/13/2022	2.95	1,260	124	3,060	
MW-6			Not Sampled - Dry			
	1/11/2022	1.57	355	81.3	1,120	
MW-7	4/6/2022	1.58	291	85.5	976	
	10/13/2022	2.55	270	87.1	854	
	1/13/2022	4.8 J	2,250	95.7	4,740	
MW-8	4/5/2022	4/5/2022 5.18		99.3	3,420	
	10/12/2022	8.99	2,220	86.9	5,110	
	1/12/2022	8.85 J	6,170	472	16,200	
MW-9	4/6/2022	11.3	6,700	526	12,800	
	10/12/2022	11	· · · · · · · · · · · · · · · · · · ·		15,600	
MW-10			Not Sampled - Dry			
MW-11			Not Sampled - Dry			
MW-12			Not Sampled - Dry			
MW-13			Not Sampled - Dry			

Notes:

NMWQCC: New Mexico Water Quality Control Commission

Exceeds regulatory standards

NE: Not Established

TDS: Total Dissolved Solids

J: The identification of the analyte is acceptable; the reported value is an estimate

Table 3 Quality Assurance/Quality Control Summary MCA 357 Lea County, New Mexico

Well ID	Sample Date	Analyte	Primary Sample Result (mg/L)	Duplicate Sample Result (mg/L)	RPD	Within DQOs
		Bromide	167	91	58.8%	Yes*
MW-1	1/13/2022	Chloride	55,800	31,300	56.3%	No
	1/13/2022	Sulfate	756	435	53.9%	Yes*
		TDS	83,200	58,800	34.4%	No
		Bromide	18.4	20	8.3%	Yes
MW-1	4/7/2022	Chloride	11,000	11,000	0.0%	Yes
IVI VV - T		Sulfate	194	202	4.0%	Yes
		TDS	21,300	22,300	4.6%	Yes
		Bromide	21.7	17.7	20.3%	Yes
MW-1	10/12/2022	Chloride	12,400	10,200	19.5%	Yes
IVI VV - 1	10/13/2022	Sulfate	222	184	18.7%	Yes
		TDS	27,500	21,700	23.6%	Yes

Notes:

RPD: Relative Percent Difference calculated as = (SR-DR)*200/(SR+DR)

DQO: Data Quality Objectives

ND: Not Detected above the laboratory method detection limit

N/A: Not Applicable

* Analytical results are at an estimated concentration for the primary sample and DQOs are adjusted to reflect

.

APPENDIX A: LABORATORY ANALYTICAL DATA

Received by OCD: 2/24/2023 1:59:32 PM

Page 29 of 133

ConocoPhillips - TetraSample Delivery Group:L1451914Samples Received:01/17/2022Project Number:212C-MD-02396Description:Conoco MCA 357Report To:Julie Evans 901 West Wall			
Samples Received:01/17/2022Project Number:212C-MD-02396Description:Conoco MCA 357Report To:Julie Evans	ConocoPhillips - Te	tra Tech	
Project Number:212C-MD-02396Description:Conoco MCA 357Report To:Julie Evans	Sample Delivery Group:	L1451914	
Description: Conoco MCA 357 Report To: Julie Evans	Samples Received:	01/17/2022	
Report To: Julie Evans	Project Number:	212C-MD-02396	
	Description:	Conoco MCA 357	
901 West Wall	Report To:	Julie Evans	
		901 West Wall	
		Midland, TX 79701	

Entire Report Reviewed By: Chu, forman

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be Analytical National is performed per guidance provided in laboratory where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory where applicable, sampling conducted by Pace National Statement of the laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: %/372024 1:42:28 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02396

SDG: L1451914

DATE/TIME: 01/24/22 21:00

PAGE: 1 of 23

TABLE OF CONTENTS

Page	30	of	133

Cp: Cover Page	1					
Tc: Table of Contents						
Ss: Sample Summary	3					
Cn: Case Narrative	5					
Sr: Sample Results	6					
MW-7 L1451914-01	6					
MW-2 L1451914-02	7					
MW-5 L1451914-03	8					
MW-9 L1451914-04	9					
MW-4 L1451914-05	10					
MW-3 L1451914-06	11					
MW-8 L1451914-07	12					
MW-1 L1451914-08	13					
DUP-1 L1451914-09	14					
DUP-2 L1451914-10	15					
Qc: Quality Control Summary	16					
Gravimetric Analysis by Method 2540 C-2011	16					
Wet Chemistry by Method 9056A	19					
GI: Glossary of Terms	21					
Al: Accreditations & Locations	22					
Sc: Sample Chain of Custody	23					

SDG: L1451914 DATE/TIME:

01/24/22 21:00

PAGE: 2 of 23 Received by OCD: 2/24/2023 1:59:32 PM

SAMPLE SUMMARY

Page 31 of 133

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

	-		/IAR Y				
MW-7 L1451914-01 GW			Collected by Matthew Castrejan	Collected date/time 01/11/22 15:00	Received da 01/17/22 08:0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1803990	1	01/18/22 12:42	01/18/22 14:38	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	1	01/18/22 17:13	01/18/22 17:13	RAF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	10	01/18/22 17:26	01/18/22 17:26	RAF	Mt. Juliet, TN	
MW-2 L1451914-02 GW			Collected by Matthew Castrejan	Collected date/time 01/12/22 11:00	Received da 01/17/22 08:0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1803990	1	01/18/22 12:42	01/18/22 14:38	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	10	01/18/22 17:39	01/18/22 17:39	RAF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	100	01/18/22 17:52	01/18/22 17:52	RAF	Mt. Juliet, TN	
MW-5 L1451914-03 GW			Collected by Matthew Castrejan	Collected date/time 01/12/22 12:05	Received da 01/17/22 08:1		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1803990	1	01/18/22 12:42	01/18/22 14:38	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	1	01/18/22 18:31	01/18/22 18:31	RAF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	20	01/18/22 18:44	01/18/22 18:44	RAF	Mt. Juliet, TN	
MW-9 L1451914-04 GW			Collected by Matthew Castrejan	Collected date/time 01/12/22 13:15	Received da 01/17/22 08:0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1803990	1	01/18/22 12:42	01/18/22 14:38	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	10	01/18/22 18:57	01/18/22 18:57	RAF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	100	01/18/22 19:10	01/18/22 19:10	RAF	Mt. Juliet, TN	
MW-4 L1451914-05 GW			Collected by Matthew Castrejan	Collected date/time 01/12/22 14:25	Received da 01/17/22 08:0		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Gravimetric Analysis by Method 2540 C-2011	WG1803990	1	01/18/22 12:42	01/18/22 14:38	MMF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	10	01/18/22 19:23	01/18/22 19:23	RAF	Mt. Juliet, TN	
Wet Chemistry by Method 9056A	WG1803829	100	01/18/22 19:36	01/18/22 19:36	RAF	Mt. Juliet, TN	
MW-3 L1451914-06 GW			Collected by Matthew Castrejan	Collected date/time 01/12/22 15:30		RAF Mt. Juliet, TN Received date/time 01/17/22 08:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
	WG1804103	1	01/18/22 16:27	01/18/22 17:39	MMF	Mt. Juliet, TN	
Gravimetric Analysis by Method 2540 C-2011		10	01/18/22 19:49	01/18/22 19:49	RAF	Mt. Juliet, TN	
Gravimetric Analysis by Method 2540 C-2011 Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG1803829 WG1803829	100	01/18/22 20:02	01/18/22 20:02	RAF	Mt. Juliet, TN	

Released to Imaging: 0/3/2024 1:42:28 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02396

SDG: L1451914 DATE/TIME: 01/24/22 21:00

3

PAGE: 3 of 23 Received by OCD: 2/24/2023 1:59:32 PM

SAMPLE SUMMARY

Page 32 of 133

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

WW-8 L1451914-07 GW			Collected by Matthew Castrejan	Collected date/time 01/13/22 11:20	Received da 01/17/22 08:0	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1804103	1	01/18/22 16:27	01/18/22 17:39	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1803829	10	01/18/22 20:15	01/18/22 20:15	RAF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1803829	100	01/18/22 20:28	01/18/22 20:28	RAF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-1 L1451914-08 GW			Matthew Castrejan	01/13/22 14:55	01/17/22 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1805349	1	01/20/22 12:35	01/20/22 13:50	BRG	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1803829	100	01/18/22 21:07	01/18/22 21:07	RAF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1803829	1000	01/18/22 21:20	01/18/22 21:20	RAF	Mt. Juliet, TN
			Collected by	Collected date/time	Received date/time	
DUP-1 L1451914-09 GW			Matthew Castrejan	01/11/22 00:00	01/17/22 08:0	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1803990	1	01/18/22 12:42	01/18/22 14:38	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1803829	100	01/18/22 21:33	01/18/22 21:33	RAF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1803829	1000	01/18/22 21:46	01/18/22 21:46	RAF	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-2 L1451914-10 GW			Matthew Castrejan	01/11/22 00:00	01/17/22 08:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1803990	1	01/18/22 12:42	01/18/22 14:38	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1803829	100	01/18/22 21:59	01/18/22 21:59	RAF	Mt. Juliet, TN

SDG: L1451914 DATE/TIME: 01/24/22 21:00

PAGE: 4 of 23

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 0/372024 1:42:28 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02396

SDG: L1451914 DATE/TIME: 01/24/22 21:00

TIME: 2 21:00 **PAGE:** 5 of 23

SAMPLE RESULTS - 01 L1451914

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	1	· ·						Cn.
		Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte		mg/l		mg/l		date / time		2
Dissolved Solids		1120		20.0	1	01/18/2022 14:38	WG1803990	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A								³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	1.57		0.353	1.00	1	01/18/2022 17:13	WG1803829	
Chloride	355		3.79	10.0	10	01/18/2022 17:26	WG1803829	5
Sulfate	81.3		0.594	5.00	1	01/18/2022 17:13	WG1803829	Sr

SAMPLE RESULTS - 02 L1451914

Page 35 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	<u> </u>					 Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	
Analyte	mg/l	mg/l		date / time		 2
Dissolved Solids	13900	200	1	01/18/2022 14:38	<u>WG1803990</u>	⁻Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A								³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	7.04	J	3.53	10.0	10	01/18/2022 17:39	WG1803829	CII
Chloride	5590		37.9	100	100	01/18/2022 17:52	WG1803829	5
Sulfate	269		5.94	50.0	10	01/18/2022 17:39	WG1803829	Sr

SDG: L1451914 Collected date/time: 01/12/22 12:05

SAMPLE RESULTS - 03 L1451914

Page 36 of 133

. Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 'Ср
Analyte	mg/l	mg/l	2.101.011	date / time	<u></u>	2
Dissolved Solids	3320	50.0	1	01/18/2022 14:38	WG1803990	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A								³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	2.04		0.353	1.00	1	01/18/2022 18:31	WG1803829	CII
Chloride	1150		7.58	20.0	20	01/18/2022 18:44	WG1803829	5
Sulfate	136		11.9	100	20	01/18/2022 18:44	WG1803829	Sr
Collected date/time: 01/12/22 13:15

SAMPLE RESULTS - 04 L1451914

Page 37 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch		Ср
Analyte	mg/l	mg/l		date / time		L I	2
Dissolved Solids	16200	200	1	01/18/2022 14:38	<u>WG1803990</u>		Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									³Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn
Bromide	8.85	J	3.53	10.0	10	01/18/2022 18:57	WG1803829		CII
Chloride	6170		37.9	100	100	01/18/2022 19:10	WG1803829		5
Sulfate	472		5.94	50.0	10	01/18/2022 18:57	WG1803829		Sr

SDG: L1451914

DATE/TIME: 01/24/22 21:00 SAMPLE RESULTS - 05 L1451914

Page 38 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

						 Ср
	Result	Qualifier RDL	Dilution	Analysis	Batch	<u> </u>
Analyte	mg/l	mg/l		date / time		 2
Dissolved Solids	14700	200	1	01/18/2022 14:38	<u>WG1803990</u>	⁻Tc

Wet Chemistry by Method 9056A									³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn
Bromide	7.82	J	3.53	10.0	10	01/18/2022 19:23	WG1803829		CII
Chloride	6120		37.9	100	100	01/18/2022 19:36	WG1803829		5
Sulfate	181		5.94	50.0	10	01/18/2022 19:23	WG1803829		Sr

Collected date/time: 01/12/22 15:30

SAMPLE RESULTS - 06 L1451914

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	8380	200	1	01/18/2022 17:39	WG1804103	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									³Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			4 Cn
Bromide	8.81	J	3.53	10.0	10	01/18/2022 19:49	WG1803829		CII
Chloride	4300		37.9	100	100	01/18/2022 20:02	WG1803829		5
Sulfate	180		5.94	50.0	10	01/18/2022 19:49	WG1803829		Sr

SDG: L1451914 Collected date/time: 01/13/22 11:20

SAMPLE RESULTS - 07 L1451914

Page 40 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch		Ср
Analyte	mg/l	mg/l		date / time		L [2
Dissolved Solids	4740	100	1	01/18/2022 17:39	WG1804103		Tc

Wet Chemistry by Method 9056A									³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn
Bromide	4.80	J	3.53	10.0	10	01/18/2022 20:15	WG1803829		CII
Chloride	2250		37.9	100	100	01/18/2022 20:28	WG1803829		5
Sulfate	95.7		5.94	50.0	10	01/18/2022 20:15	WG1803829		Sr

SAMPLE RESULTS - 08 L1451914

ʹQc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Desult	Qualifian		Dilution	A	Detal	 Ср
Analista	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time	11104005040	2 Tc
Dissolved Solids	83200		1000	1	01/20/2022 13:50	WG1805349	

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									³Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn
Bromide	167		35.3	100	100	01/18/2022 21:07	WG1803829		CII
Chloride	55800		379	1000	1000	01/18/2022 21:20	WG1803829		5
Sulfate	756		59.4	500	100	01/18/2022 21:07	WG1803829		Sr

SDG: L1451914

PAGE: 13 of 23 SAMPLE RESULTS - 09 L1451914

Page 42 of 133

ʹQc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	58800	1000	1	01/18/2022 14:38	WG1803990	Tc

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn
Bromide	91.1	J	35.3	100	100	01/18/2022 21:33	WG1803829		CII
Chloride	31300		379	1000	1000	01/18/2022 21:46	WG1803829		5
Sulfate	435	J	59.4	500	100	01/18/2022 21:33	WG1803829		Sr

SAMPLE RESULTS - 10 L1451914

Page 43 of 133

ʹQc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	44000	1000	1	01/18/2022 14:38	WG1803990	Tc

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l		date / time				
Bromide	65.6	J	35.3	100	100	01/18/2022 21:59	WG1803829			
Chloride	19700		379	1000	1000	01/18/2022 22:12	<u>WG1803829</u>			
Sulfate	352	J	59.4	500	100	01/18/2022 21:59	WG1803829			

Regeire Bly 860 6/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1451914-01,02,03,04,05,09,10

Method Blank (MB)

(MB) R3752026-1 01/18/	22 14:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1450541-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1450541-01 01/18/		· · ·		,			
	Original Result			DUP RPD	DUP Qualifier	UP RPD imits	
Analyte	mg/l	mg/l		%			
Dissolved Solids	880	879	1	0.151			

L1450541-02 Original Sample (OS) • Duplicate (DUP)

L1450541-02 Ori	iginal Sample	(OS) • Du	plicate (DUP)			⁷ Gl
(OS) L1450541-02 01/1	18/22 14:38 • (DUP)	R3752026-4	01/18/22 1	4:38			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	919	921	1	0.289		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3752026-2 01/	/18/22 14:38				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8670	98.5	77.4-123	

DATE/TIME: 01/24/22 21:00

PAGE: 16 of 23 Τс

Reg @ q & D . 3/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1451914-06,07

Method Blank (MB)

(MB) R3752022-1 01/	/18/22 17:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1451612-01 Original Sample (OS) • Duplicate (DUP)

L1451612-01 Origin	hal Sample	(OS) • Dup	licate (L	JUP)			⁴ Cn
(OS) L1451612-01 01/18/2	22 17:39 • (DUP)	R3752022-3 (01/18/22 17	7:39			
	Original Resul	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ Sr
Analyte	mg/l	mg/l		%		%	5
Dissolved Solids	995	1000	1	0.534		5	6

L1451614-01 Original Sample (OS) • Duplicate (DUP)

L1451614-01 Origir	nal Sample (OS) • Dupl	icate (D	OUP)			⁷ Gl
(OS) L1451614-01 01/18/2	2 17:39 • (DUP) F	83752022-4 0	01/18/22 17	:39			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	795	798	1	0.377		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3752022-2 01/1	18/22 17:39				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8640	98.2	77.4-123	

DATE/TIME: 01/24/22 21:00

PAGE: 17 of 23 Τс

Regering BOD 2/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1451914-08

Method Blank (MB)

(MB) R3752589-1 01/	/20/22 13:50			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1451692-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1451692-01 01/2	<u> </u>	, ,		· ·				- 4
(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits		5
Analyte	mg/l	mg/l		%		%		
Dissolved Solids	1140	1140	1	0.175		5		6

L1451692-03 Original Sample (OS) • Duplicate (DUP)

L1451692-03 Orig	L1451692-03 Original Sample (OS) • Duplicate (DUP)							
(OS) L1451692-03 01/20/22 13:50 • (DUP) R3752589-4 01/20/22 13:50								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al	
Analyte	mg/l	mg/l		%		%		
Dissolved Solids	1080	1080	1	0.370		5	°Sc	

Laboratory Control Sample (LCS)

(LCS) R3752589-2 01/	LCS) R3752589-2 01/20/22 13:50								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/l	mg/l	%	%					
Dissolved Solids	8800	8430	95.8	77.4-123					

DATE/TIME: 01/24/22 21:00 Τс

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1451914-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3751707-1	01/18/22 11:46

(IMB) R3751707-1 01/	18/22 11:46				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	⁻Tc
Bromide	U		0.353	1.00	
Chloride	U		0.379	1.00	³ Ss
Sulfate	U		0.594	5.00	00

L1451696-04 Original Sample (OS) • Duplicate (DUP)

(OC) 14454000 0	1 01/10/00 10.10		01/10/00 11.01
(US) 1451696-0	4 01/18/2213.48	(DUP) R3751707-3	(1/18/2) 14.01

	· · · ·					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Bromide	U	U	5	0.000		15
Chloride	74.1	73.4	5	0.913		15
Sulfate	144	142	5	1.52		15

L1452247-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1452247-01 01/18/22 22:25 • (DUP) R3751707-6 01/18/22 22:38									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	mg/l	mg/l		%		%			
Bromide	U	U	100	0.000		15			
Sulfate	411	406	100	1.02	J	15			

L1452247-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1452247-01 01/18/2	OS) L1452247-01 01/18/22 23:04 • (DUP) R3751707-8 01/18/22 23:43							
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/l	mg/l		%		%		
Chloride	42500	42300	1000	0.535		15		

Laboratory Control Sample (LCS)

CS) R3751707-2 01/18/22 11:59							
Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
mg/l	mg/l	%	%				
40.0	41.0	102	80.0-120				
40.0	40.9	102	80.0-120				
40.0	41.4	104	80.0-120				
	Spike Amount mg/l 40.0 40.0	Spike Amount LCS Result mg/l 40.0 41.0 40.0 40.9	Spike Amount LCS Result LCS Rec. mg/l mg/l % 40.0 41.0 102 40.0 40.9 102	Spike Amount LCS Result LCS Rec. Rec. Limits mg/l mg/l % % 40.0 41.0 102 80.0-120 40.0 40.9 102 80.0-120			

Released to Imaging 86/9/2024 1:42:28 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02396

SDG: L1451914

DATE/TIME: 01/24/22 21:00

PAGE: 19 of 23

Page 47 of 133

_____ Ss Cn Sr *Q*c Gl Â Sc

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY <u>L1451914-01,02,03,04,05,06,07,08,09,10</u>

Page 48 of 133

L1451777-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1451777-21 01/18/22	16:07 • (MS) R3	3751707-4 01/18	3/22 16:21 • (MS	GD) R3751707-5	5 01/18/22 16:3	4						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	16.9	67.3	67.2	101	101	1	80.0-120			0.143	15
Sulfate	50.0	4.06	54.4	54.2	101	100	1	80.0-120			0.394	15

L1452247-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1452247-01 01/18/22	2 22:25 • (MS) F	23751707-7 01/	18/22 22:51				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Bromide	50.0	U	70.9	142	100	80.0-120	<u>J5</u>
Chloride	50.0	40700	37100	0.000	100	80.0-120	EV
Sulfate	50.0	411	419	16.8	100	80.0-120	V

	¹ Cp
	² Tc
	³ Ss
	⁴ Cn
	⁵Sr
	⁶ Qc
í	
	⁷ Gl
	⁸ Al

Sc

SDG: L1451914 DATE/TIME: 01/24/22 21:00

PAGE: 20 of 23

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section fo each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1451914

Received by OCD: 2/24/2023 1:59:32 PM CCREDITATIONS & LOCATIONS

Page 50	of 133	
---------	--------	--

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1451914 DATE/TIME: 01/24/22 21:00

ConocoPhillips - Tetra Tech			Billing Inf	ormation: est Wall St					Analysi	s / Conta	iner / Prese	rvative		Chain of Cust	tody para l
			Suite 10	00		Pres	and Carl							chain of cus	tody Page
			Midland	l, TX 79701		Chk	AND AND								ce Analytical
													Nation	Ce Analytical nal Center for Testing & In	
Report to: Julie Evans			Email To: Julie.eva	Email To: Julie.evans@tetratech.com										12065 Lebanor	
Project Conoco MCA 357 Description:				City/State Collected:			ores							Mount Juliet, T Phone: 615-758 Phone: 800-767 Fax: 615-758-56	8-5858 7-5859
Phone: 432-687-8137 Fax:	Client Project 212C-MD-0	t# 02396	đ	Lab Project # COPTETRA			125mIHDPE-NoPres	Pres							1115191 199
Collected by (print): Muthwaw Castry gon Collected by (signature):	Site/Facility I	D#	7	P.O. #			IHDF	E-NoP						-	COPTETRA
Collected by (signature): Multhew Costrejin	Same Da	Lab MUST Be ay Five [Day	Quote #			125m	IHDP						Template:	CODTETDA
Immediately Packed on Ice N Y	Next Da Two Day Three Day	y 5 Day y 10 Da ay	(Rad Only) y (Rad Only)	Date Res	ults Needed	No. of	,S04	250mIHDP						Prelogin: TSR:526 - 0 PB:	Chris McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Br,Cl,	TDS						Shipped Via	
MW-7	6	GW		01/11/22	1500	1	X	X						Remarks	Sample # (lab
MW-2	G	Gw		1/12/22		1	X	X							-01
MW-5	G	GW		1/12/22	and the second sec	1	x	x							02
MW-9	G	GW		1/12/22		1	X	X							63 04
MW-S	6	Gw		1/12/22	1425	1	x	X							
MW - 3	6	GW		1/12/22		1	X	X							05 76
MW-8	G	GW		1/13/22	1120		X	×						-	
MW-1	6	GW		1/13/22			X	×							07
Dup-1	G	GW		-	-		X	×							093
Dup-2	6	GW		-	~	1	x	X			1999 1998				09
Matrix: 5 - Soil AIR - Air F - Filter	Remarks:				1.847 1.1		1-1	/~	all		Terr		Sam	ple Receipt	Checkligt
W - Groundwater B - Bioassay /W - WasteWater									pH		Temp		COC Signed	Present/Intac I/Accurate: rive intact:	Y
W - Drinking Water T - Other	Samples return UPS Fed	ned via: dExCouri	er	Tra	icking #				Flow		Other		Correct bo	ttles used: volume sent <u>If Applica</u>	$= \frac{1}{T_Y}$
elinquished by : (Signature)		Date:			ved by: (Signa	ature)	an or state	A	Trip Blan	k Receiv	ed: Yes	No	VOA Zero H Preservati	leadspace: on Correct/C	Y
matthew (porter)		1/14/2		2:00 1	ist	IN	/	/	1.00	-		MeoH			
(Signature)	1	Date:	-		ceived by: (Signa	ature)			Nomp:	a Die	Bottles R	ceived:	If preservatio	on required by Le	ogin: Date/Time
elinquished by : (Signature)		Date:		me: Rec	eived for lab by	1			2.9F.	va-1	1				

Received by OCD: 2/24/2023 1:59:32 PM

Page 52 of 133

ConocoPhillips - T	etra Tech	
Sample Delivery Group:	L1480590	
Samples Received:	04/09/2022	
Project Number:	212C-MD-02396	
Description:	Conoco MCA 357	
Descert	Julie Evans	
Report To:	oune Evans	

Entire Report Reviewed By: Chu, faph J man

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: %/372024 1:42:28 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02396

SDG: L1480590

DATE/TIME: 04/21/22 22:38

1 of 25

PAGE:

TABLE OF CONTENTS

	Page	53	of	133
--	------	----	----	-----

1
2
3
5
6
6
7
8
9
10
11
12
13
14
15
16
16
20
23
24
25

SDG: L1480590

DA 04/2 Received by OCD: 2/24/2023 1:59:32 PM

SAMPLE SUMMARY

Page 54 of 133

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

MW-8 L1480590-01 GW			Collected by Matthew Castrejan	Collected date/time 04/05/22 13:55	Received dat 04/09/22 08	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	100	04/13/22 03:37	04/13/22 03:37	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	5	04/13/22 03:21	04/13/22 03:21	LBR	Mt. Juliet, TN
MW-3 L1480590-02 GW			Collected by Matthew Castrejan	Collected date/time 04/05/22 15:25	Received dat 04/09/22 08	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	100	04/13/22 04:43	04/13/22 04:43	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	5	04/13/22 04:26	04/13/22 04:26	LBR	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-9 L1480590-03 GW			Matthew Castrejan	04/06/22 10:55	04/09/22 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	10	04/13/22 04:59	04/13/22 04:59	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	100	04/13/22 05:16	04/13/22 05:16	LBR	Mt. Juliet, TN
			Collected by	Collected date/time		
MW-4 L1480590-04 GW			Matthew Castrejan	04/06/22 12:10	04/09/22 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	100	04/13/22 05:48	04/13/22 05:48	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	5	04/13/22 05:32	04/13/22 05:32	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
MW-7 L1480590-05 GW			Matthew Castrejan	04/06/22 13:20	04/09/22 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	1	04/13/22 06:05	04/13/22 06:05	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	5	04/13/22 06:54	04/13/22 06:54	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
MW-2 L1480590-06 GW			Matthew Castrejan	04/06/22 15:20	04/09/22 08	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	10	04/13/22 08:00	04/13/22 08:00	LBR	Mt. Juliet, TN
wet chemistry by method 5050A		100	04/13/22 08:16	04/13/22 08:16	LBR	Mt. Juliet, TN

Released to Imaging: 0/3/2024 1:42:28 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-02396

SDG: L1480590 DATE/TIME: 04/21/22 22:38

PAGE: 3 of 25 Received by OCD: 2/24/2023 1:59:32 PM

SAMPLE SUMMARY

Page 55 of 133

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time		
MW-5 L1480590-07 GW			Matthew Castrejan	04/07/22 11:00	04/09/22 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1847255	1	04/12/22 14:25	04/12/22 16:08	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	5	04/13/22 08:32	04/13/22 08:32	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	50	04/13/22 08:49	04/13/22 08:49	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
MW-1 L1480590-08 GW			Matthew Castrejan	04/07/22 14:10	04/09/22 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Cravimatric Analysis by Mathad 2540 C 2011	WIC10 47404	1	date/time	date/time		Mt. Juliet, TN
Gravimetric Analysis by Method 2540 C-2011	WG1847101 WG1847421	1	04/12/22 16:44 04/13/22 09:05	04/12/22 18:00 04/13/22 09:05	MMF LBR	Mt. Juliet, TN Mt. Juliet, TN
Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG1847421 WG1847421	5 500	04/13/22 09:05	04/13/22 09:05	LBR	Mt. Juliet, TN Mt. Juliet, TN
	1010 // 121			0 1, 10, 22 00.22	LUIT	int build, i
			Collected by	Collected date/time	Received dat	te/time
DUP-1 L1480590-09 GW			Matthew Castrejan	04/06/22 00:00	04/09/22 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1846183	1	04/10/22 16:52	04/10/22 17:49	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	5	04/13/22 09:38	04/13/22 09:38	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	500	04/13/22 09:55	04/13/22 09:55	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
DUP-2 L1480590-10 GW			Matthew Castrejan	04/06/22 00:00	04/09/22 08	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
0	W040 40474		date/time	date/time	14145	NAL 1 11 1 Th
Gravimetric Analysis by Method 2540 C-2011	WG1846171	1	04/10/22 15:44	04/10/22 16:48	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	1	04/13/22 10:11	04/13/22 10:11	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1847421	100	04/13/22 11:00	04/13/22 11:00	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1848158	20	04/14/22 04:39	04/14/22 04:39	LBR	Mt. Juliet, TN

PROJECT: 212C-MD-02396

SDG: L1480590

DATE/TIME: 04/21/22 22:38 PAGE: 4 of 25

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: %/372024 1:42:28 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-02396

SDG: L1480590 DATE/TIME:

04/21/22 22:38

PAGE: 5 of 25

SAMPLE RESULTS - 01 L1480590

Page 57 of 133

ʹQc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	, ,					Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	3420	100	1	04/10/2022 16:48	WG1846171	⁻Tc

Wet Chemist	ry by Method 9	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	5.18		1.76	5.00	5	04/13/2022 03:21	WG1847421	
Chloride	2340		37.9	100	100	04/13/2022 03:37	WG1847421	5
Sulfate	99.3		2.97	25.0	5	04/13/2022 03:21	WG1847421	Sr

SAMPLE RESULTS - 02 L1480590

Page 58 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch		Ср
Analyte	mg/l	mg/l	Dilution	date / time	Batch	Ĺ	2
Dissolved Solids	5860	200	1	04/10/2022 16:48	WG1846171		Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									³ Ss	
Result Qualifier MDL RDL Dilution Analysis Batch										
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn	
Bromide	8.70		1.76	5.00	5	04/13/2022 04:26	WG1847421		CII	
Chloride	4310		37.9	100	100	04/13/2022 04:43	WG1847421		5	
Sulfate	185		2.97	25.0	5	04/13/2022 04:26	WG1847421		Sr	

SDG: L1480590

SAMPLE RESULTS - 03 L1480590

Page 59 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	· · ·					Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	12800	200	1	04/10/2022 16:48	WG1846171	⁻Тс

Wet Chemistry by Method 9056A									³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			4 Cn
Bromide	11.3		3.53	10.0	10	04/13/2022 04:59	WG1847421		CII
Chloride	6700		37.9	100	100	04/13/2022 05:16	WG1847421		5
Sulfate	526		5.94	50.0	10	04/13/2022 04:59	WG1847421		Sr

SAMPLE RESULTS - 04 L1480590

Page 60 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	8020	200	1	04/10/2022 16:48	WG1846171	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									³ Ss	
	Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>									
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn	
Bromide	8.35		1.76	5.00	5	04/13/2022 05:32	WG1847421		CII	
Chloride	6730		37.9	100	100	04/13/2022 05:48	WG1847421		5	
Sulfate	198		2.97	25.0	5	04/13/2022 05:32	WG1847421		Sr	

SDG: L1480590

SAMPLE RESULTS - 05 L1480590

Page 61 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	<i>·</i>					1 Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	976	20.0	1	04/10/2022 16:48	WG1846171	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn
Bromide	1.58		0.353	1.00	1	04/13/2022 06:05	WG1847421		CII
Chloride	291		1.90	5.00	5	04/13/2022 06:54	WG1847421		5
Sulfate	85.5		0.594	5.00	1	04/13/2022 06:05	WG1847421		Sr

SDG: L1480590

SAMPLE RESULTS - 06 L1480590

Page 62 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	, ,					1 Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	7460	200	1	04/10/2022 16:48	WG1846171	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									³ Ss	
Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>										
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn	
Bromide	10.2		3.53	10.0	10	04/13/2022 08:00	WG1847421		CII	
Chloride	6010		37.9	100	100	04/13/2022 08:16	WG1847421		5	
Sulfate	306		5.94	50.0	10	04/13/2022 08:00	WG1847421		Sr	

SDG: L1480590

Collected date/time: 04/07/22 11:00

SAMPLE RESULTS - 07 L1480590

Page 63 of 133

ʹQc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

,							l'Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Dissolved Solids	3530		50.0	1	04/12/2022 16:08	WG1847255	Tc

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A									³ Ss	
	Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>									
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn	
Bromide	4.49	J	1.76	5.00	5	04/13/2022 08:32	WG1847421		CII	
Chloride	1040		19.0	50.0	50	04/13/2022 08:49	WG1847421		5	
Sulfate	152		2.97	25.0	5	04/13/2022 08:32	WG1847421		Sr	

L1480590

SDG:

SAMPLE RESULTS - 08 L1480590

Page 64 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	, ,					l'Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	21300	400	1	04/12/2022 18:00	WG1847101	Tc

Wet Chemistry by Method 9056A

Wet Chemist	try by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	18.4		1.76	5.00	5	04/13/2022 09:05	WG1847421	CII
Chloride	11000		190	500	500	04/13/2022 09:22	WG1847421	5
Sulfate	194		2.97	25.0	5	04/13/2022 09:05	WG1847421	Sr

SDG: L1480590

SAMPLE RESULTS - 09 L1480590

Page 65 of 133

. Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	22300	400	1	04/10/2022 17:49	WG1846183	Tc

Wet Chemistry by Method 9056A

Wet Chemist	try by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	20.0		1.76	5.00	5	04/13/2022 09:38	WG1847421	CII
Chloride	11000		190	500	500	04/13/2022 09:55	WG1847421	5
Sulfate	202		2.97	25.0	5	04/13/2022 09:38	WG1847421	Sr

SDG: L1480590

SAMPLE RESULTS - 10 L1480590

Page 66 of 133

. Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	, ,					Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l	mg/l		date / time		 2
Dissolved Solids	11900	200	1	04/10/2022 16:48	WG1846171	Tc

Wet Chemist	ry by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	11.1		0.353	1.00	1	04/13/2022 10:11	WG1847421	CII
Chloride	9620		37.9	100	100	04/13/2022 11:00	WG1847421	5
Sulfate	172		11.9	100	20	04/14/2022 04:39	WG1848158	Sr

Reg @ @ B & D 1 2/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1480590-01,02,03,04,05,06,10

Page 67 of 133

Method Blank (MB)

Method Didlik					1 Cp
(MB) R3780062-1 04	4/10/22 16:48				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Dissolved Solids	U		10.0	10.0	
					³ Ss

L1479870-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1479870-04 04/10/22 16:48 (DUP) R3780062-3 04/10/22 16:48 Original Result DUP Result Dilution DUP RPD DUP Qualifier Limits
Analyte mg/l mg/l % %

L1480590-05 Original Sample (OS) • Duplicate (DUP)

L1480590-05 O	riginal Sample	e (OS) • Du	uplicate	(DUP)			⁷ Gl
(OS) L1480590-05 04	1/10/22 16:48 • (DUI	P) R3780062-	4 04/10/22	2 16:48			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	976	940	1	3.76		5	⁹ So

Laboratory Control Sample (LCS)

(LCS) R3780062-2 04	4/10/22 16:48				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8330	94.7	77.4-123	

SDG: L1480590

DATE/TIME: 04/21/22 22:38

PAGE: 16 of 25

Reg @ q & B Q & 3/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1480590-09

Method Blank (MB)

(MB) R3780493-1 04	/10/22 17:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1478817-18 Original Sample (OS) • Duplicate (DUP)

L1478817-26 Original Sample (OS) • Duplicate (DUP)

L1478817-26 Or	riginal Sample	(OS) • Dup	olicate (DUP)		
(OS) L1478817-26 04	/10/22 17:49 • (DUP)) R3780493-4	04/10/22	17:49		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
analyte	mg/l	mg/l		%		%
Dissolved Solids	913	932	1	2.02		5

Laboratory Control Sample (LCS)

(LCS) R3780493-2 04	/10/22 17:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8250	93.8	77.4-123	

DATE/TIME: 04/21/22 22:38 Τс

Reg @ @ by @ CO: 2/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1480590-08

Method Blank (MB)

(MB) R3781192-1 04/12/22 18:00					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Dissolved Solids	U		10.0	10.0	

L1480147-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1480147-04 Orig	<u> </u>	· · ·		· · · ·			 ⁴ Cn
	Original Result		Dilution		DUP Qualifier	UP RPD imits	5
Analyte	mg/l	mg/l		%		,	 SI
Dissolved Solids	1000	1090	1	8.41	<u>J3</u>		⁶ Qc

L1480528-04 Original Sample (OS) • Duplicate (DUP)

L1480528-04 O	riginal Samp	le (OS) • Di	uplicate	(DUP)			⁷ Gl
(OS) L1480528-04 04	/12/22 18:00 • (DI	JP) R3781192-4	04/12/22	18:00			
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	572	579	1	1.16		5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3781192-2 04/12	2/22 18:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8320	94.5	77.4-123	

DATE/TIME: 04/21/22 22:38

PAGE: 18 of 25 Τс

Reg cive Bby \$ 2/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1480590-07

Method Blank (MB)

(MB) R3780743-1 04/12/22 16:08					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Dissolved Solids	U		10.0	10.0	

L1480147-09 Original Sample (OS) • Duplicate (DUP)

(OS) L1480147-09 04	4/12/22 16:08 • (DU	IP) R3780743-3	04/12/22	16:08		
	Original Resu	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	638	630	1	1.18		5

L1480221-03 Original Sample (OS) • Duplicate (DUP)

L1480221-03 Ori	iginal Sample	(OS) • Du	plicate	(DUP)			
(OS) L1480221-03 04/	(12/22 16:08 • (DUF	y) R3780743-4	04/12/22	16:08			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	711	705	1	0.754		5	

Laboratory Control Sample (LCS)

(LCS) R3780743-2 04/	/12/22 16:08				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8630	98.1	77.4-123	

DATE/TIME: 04/21/22 22:38

Ss ⁴Cn Sr Qc

Τс

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1480590-01,02,03,04,05,06,07,08,09,10

Method Blank (MB)

(MB) R3780732-1 04/12/22 21:52

(IVID) R5760752-1 04/	12/22 21.32				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Bromide	U		0.353	1.00	
Chloride	U		0.379	1.00	
Sulfate	U		0.594	5.00	

L1480557-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1480557-02 04/12/	/22 22:57 • (DU	P) R3780732-3	3 04/12/22	2 23:14		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	161	163	5	1.46		15

L1480590-05 Original Sample (OS) • Duplicate (DUP)

E1100000 00 0	ngina sampic	(00) - Du	pricate					8			
(OS) L1480590-05 04/13/22 06:05 • (DUP) R3780732-6 04/13/22 06:21											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		⁹ Sc			
Analyte	mg/l	mg/l		%		%		30			
Bromide	1.58	1.56	1	1.03		15					
Sulfate	85.5	84.9	1	0.717		15					

L1480590-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1480590-05 04/13/22 06:54 • (DUP) R3780732-8 04/13/22 07:43								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/l	mg/l		%		%		
Chloride	291	292	5	0.430		15		

L1480557-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1480557-02 04/13/2	(OS) L1480557-02 04/13/22 11:17 • (DUP) R3780732-9 04/13/22 11:33									
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits				
Analyte	mg/l	mg/l		%		%				
Bromide	U	U	1	0.000		15				
Sulfate	18.8	18.6	1	0.682		15				

DATE/TIME: 04/21/22 22:38 PAGE: 20 of 25

Cn

GI

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1480590-01,02,03,04,05,06,07,08,09,10

Page 72 of 133

Laboratory Control Sample (LCS)

(LCS) R3780732-2 04/12/22 22:08

(200) 1107 007 02 2	0 11 12/22 22:00				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Bromide	40.0	41.6	104	80.0-120	
Chloride	40.0	39.3	98.4	80.0-120	
Sulfate	40.0	42.0	105	80.0-120	

L1480557-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1480557-07 04/1	13/22 01:08 • (MS)	R3780732-4 0	4/13/22 01:25	• (MSD) R3780)732-5 04/13/	22 01:41						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Bromide	50.0	0.669	48.4	49.2	95.5	97.1	1	80.0-120			1.72	15
Chloride	50.0	110	152	153	85.5	85.9	1	80.0-120	E	E	0.105	15
Sulfate	50.0	26.0	74.7	75.7	97.4	99.4	1	80.0-120			1.33	15

L1480590-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1480590-05 04/13/	/22 06:05 • (MS) R3780732-7	04/13/22 06:3	8			
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Bromide	50.0	1.58	49.1	95.1	1	80.0-120	
Chloride	50.0	281	317	71.8	1	80.0-120	EV
Sulfate	50.0	85.5	131	90.4	1	80.0-120	E

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1480590-10

Method Blank (MB)

(MB) R3781235-1 04/	MB) R3781235-1 04/13/22 21:17					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Sulfate	U		0.594	5.00		

L1482080-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1482080-02 04/14/2	'22 00:38 • (DUI	P) R3781235-3	3 04/14/22	00:52		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Sulfate	U	U	1	0.000		15

L1479769-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1479769-01 04/14	4/22 02:52 • (DUP)	R3781235-5	04/14/22	03:06			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Sulfate	63.6	62.9	1	1.04		15	

Laboratory Control Sample (LCS)

(LCS) R378	31235-2 04/13/2	22 21:31				
		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte		mg/l	mg/l	%	%	
Sulfate		40.0	40.3	101	80.0-120	

L1482080-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L1482080-02 04/14/2	S) L1482080-02 04/14/22 00:38 • (MS) R3781235-4 04/14/22 01:05								
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier		
Analyte	mg/l	mg/l	mg/l	%		%			
Sulfate	50.0	U	48.7	97.5	1	80.0-120			

L1479769-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1479769-01	04/14/22 02:52 • (MS)	R3781235-6 04	4/14/22 03:19	• (MSD) R37812	235-7 04/14/2	22 03:32							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Sulfate	50.0	63.6	110	113	92.5	98.2	1	80.0-120	Ē	Ē	2.53	15	
Released to Im	aging?:6/3/2024 1:4	42:28 PM			DJECT:			SDG:		DATE			PAGE:
ConocoPhillips - Tetra Tech				212C-MD-02396			L1480590			04/21/22 22:38			22 of 25

Ss ⁴Cn ⁵Sr ⁶Qc ⁷GI ⁸AI ⁹Sc

Тс

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbieviations and	
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

PROJECT: 212C-MD-02396

SDG: L1480590 DATE/TIME: 04/21/22 22:38

F 23

Received by OCD: 2/24/2023 1:59:32 PM CCREDITATIONS & LOCATIONS

Page	75	of	133
------	----	----	-----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
colorado	TN00003	New York	11742
onnecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina ¹	DW21704
ieorgia	NELAP	North Carolina ³	41
ieorgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
linois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
lansas	E-10277	Rhode Island	LAO00356
entucky ¹⁶	KY90010	South Carolina	84004002
entucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
puisiana	LA018	Texas	T104704245-20-18
laine	TN00003	Texas ⁵	LAB0152
laryland	324	Utah	TN000032021-11
lassachusetts	M-TN003	Vermont	VT2006
lichigan	9958	Virginia	110033
linnesota	047-999-395	Washington	C847
lississippi	TN00003	West Virginia	233
lissouri	340	Wisconsin	998093910
ontana	CERT0086	Wyoming	A2LA
2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
PA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1480590 DATE/TIME: 04/21/22 22:38

PAGE: 24 of 25

ConocoPhillips - Tetra Tech		900 <u>.</u>	Billing Infor 901 Wes Suite 100 Midland,			Pres Chk			Analysis /	Containe	er / Preserv	vative		Chain of Custody	Page of Analytical * ther for Testing & Innove
			Email To: Julie.eva	ans@tetratech.com							- 3			12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585	
Project Maljana E&P-Groun Description: Consco	MIA 357	,	1	City/State Collected:		-0-2	Pres							Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859	
Phone: 432-687-8137 Fax:	Client Project 212C-MD-0	#		Lab Project # COPTETRA-M	MALJAMAR		25miHDPE-NoPres	E-NoPres							30590 68
Collected by (print): Matthew Castrijan	Site/Facility ID	#		P.O. #			mIHD	PE-N						Acctnum: : CC	PTETRA
Collected by (signature): Mutther putel	V A Charles A Country	ab MUST Be y Five I		Quote #			125	DHI						Template: Prelogin:	
Immediately Packed on Ice N Y	Next Day	5 Day 10 Da	(Rad Only)	Date Resu	lts Needed	No. of	:I,S04	3 250mIHDP						^{TSR:} 526 - Ch PB:	ris McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Br,CI	TDS				2		Shipped Via: Remarks	Sample # (lab o
MW-8	6	GW		41/5/22	1355	2	×	×		1	S				-01
MW-3	6	GW		41/5/22	1525	1					1			A States	-02
MW ~ 9	G	GW		4/6/22	1055							18 al		and a second	-03
Mw-4	G	GW		4/6/22	1210	11									-04
MW-7	6	ow	n saint prantin Shini Shini Shini Shini	4/6/22	1320									1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	-05
MW-2	6	GW		4/6/22	1520	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1					1.2			-04
MW-5	G	aw	Section #	4/7/22	1100	1									-0-
MW-1	G	GW		4/7/22	13010					1.00	2 7. E	and the	22.8	1 Million	-06
Dup-1	6	GW				1					1	0		-	-09
DURZ	6	GW				V	V	$ \Psi $	No.					A Carlos and	-0
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:								рН Flov				COC Seal 1 COC Signed Bottles at	ple Receipt Ch Present/Intact d/Accurate: crive intact: ottles used:	ecklist Y Y
DW - Drinking Water OT - Other	Samples retur UPSFe	ned via: edExCou	urier	Tr	acking #								Sufficient	t volume sent: <u>If Applicab</u> Headspace:	le Y
Relinquished by : (Signature)		Date:		Time:	ceived by: (Sign	ature)	,	1.3 1.3	Trip Bla	nk Receiv			Preservat.	ion Correct/Ch	ecked:
Matthew Carben		4/8/		4/6/22	n	THE	2			C	TBR	χ L	f press	on required but	in: Data /Ti-
Relinquished by : (Signature)		Date:		100	SWA			the and the second	Temp:	·(02.	3+0=	-2300		on required by Lop	
Relinquished by : (Signature) sed to Imaging: 6/3/2024 1:	·42·28 PM	Date:			eceived for lab b		iture)	mak	Date:	122	Time:	0830	Hold:		Conditio NCF / C

1 2

Received by OCD: 2/24/2023 1:59:32 PM

ace

Analytical $^{\circ}$ ANALY $_{_{\rm Nov}}$	FICAL REPORT ember 07, 2022	¹ Cp
		² Tc
Tetra Tech EMI - F	louston, TX	³ Ss
Sample Delivery Group:	L1547089	⁴ Cn
Samples Received:	10/15/2022	⁵ Sr
Project Number:		
Description:	Maverick MCA 357	⁶ Qc
Site:	LEA COUNTY, NEW MEXICO	7
Report To:	Chuck Terhune	GI
	1500 CityWest Boulevard	⁸ Al
	Suite 1000	
	Houston, TX 77042	Šc

Entire Report Reviewed By:

that tphat

Chad A Upchurch Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 0/3/2024 1:42:28 PM Tetra Tech EMI - Houston, TX PROJECT:

SDG: L1547089 DATE/TIME: 11/07/22 23:54

PAGE: 1 of 22

TABLE OF CONTENTS

Page	78 oj	f 133
-------------	-------	-------

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-8 L1547089-01	6
MW-3 L1547089-02	7
MW-9 L1547089-03	8
MW-4 L1547089-04	9
MW-7 L1547089-05	10
MW-2 L1547089-06	11
MW-5 L1547089-07	12
MW-1 L1547089-08	13
DUP L1547089-09	14
Qc: Quality Control Summary	15
Gravimetric Analysis by Method 2540 C-2011	15
Wet Chemistry by Method 9056A	18
GI: Glossary of Terms	20
Al: Accreditations & Locations	21
Sc: Sample Chain of Custody	22

SDG: L1547089

DATE/TIME: 11/07/22 23:54

PAGE: 2 of 22

79 of 133 Dag

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Received by OCD: 2/24/2023 1:59:32 PM	SAMPLE S	SUMN	/IARY			Pag
WW-8 L1547089-01 GW			Collected by MATTHEW CASTREJON	Collected date/time 10/12/22 11:35	Received da 10/15/22 09:	
/ ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1945498	1	10/19/22 15:38	10/19/22 16:54	SLP	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	10	10/21/22 01:34	10/21/22 01:34	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	100	10/21/22 01:48	10/21/22 01:48	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3 L1547089-02 GW			MATTHEW CASTREJON	10/12/22 12:50	10/15/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1945482	1	10/19/22 15:17	10/19/22 16:53	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	10	10/21/22 02:01	10/21/22 02:01	LBR	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1944567	100	10/21/22 02:15	10/21/22 02:15	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-9 L1547089-03 GW			MATTHEW CASTREJON	10/12/22 14:20	10/15/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1945489	1	10/19/22 17:09	10/20/22 11:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	10	10/21/22 02:28	10/21/22 02:28	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	100	10/21/22 03:09	10/21/22 03:09	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
MW-4 L1547089-04 GW			MATTHEW CASTREJON	10/12/22 15:35	10/15/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1945482	1	10/19/22 15:17	10/19/22 16:53	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	10	10/21/22 03:22	10/21/22 03:22	LBR	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1944567	100	10/21/22 03:36	10/21/22 03:36	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	ite/time
MW-7 L1547089-05 GW			MATTHEW CASTREJON	10/13/22 11:50	10/15/22 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1945498	1	10/19/22 15:38	10/19/22 16:54	SLP	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1944567	1	10/21/22 03:49	10/21/22 03:49	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	10	10/21/22 04:03	10/21/22 04:03	LBR	Mt. Juliet, TN
MW-2 L1547089-06 GW			Collected by MATTHEW	Collected date/time 10/13/22 13:10	Received da 10/15/22 09:	
		Dil .:	CASTREJON		• • •	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Gravimetric Analysis by Method 2540 C-2011	WG1945482	1	10/19/22 15:17	10/19/22 16:53	MMF	Mt. Juliet, TN
Net Chemistry by Method 9056A	WG1944567	10	10/21/22 04:16	10/21/22 04:16	LBR	Mt. Juliet, TN
	WG1944567	100	10/21/22 04:30	10/21/22 04:30	LBR	Mt. Juliet, TN

PROJECT:

SDG: L1547089

DATE/TIME: 11/07/22 23:54

PAGE: 3 of 22 Received by OCD: 2/24/2023 1:59:32 PM

Wet Chemistry by Method 9056A

SAMPLE SUMMARY

Page 80 of 133

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

			Collected by	Collected date/time	Received da	te/time
MW-5 L1547089-07 GW			MATTHEW CASTREJON	10/13/22 14:25	10/15/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1945489	1	10/19/22 17:09	10/20/22 11:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	1	10/21/22 04:43	10/21/22 04:43	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567 10 10/21/22 04:57		10/21/22 04:57	10/21/22 04:57	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-1 L1547089-08 GW			MATTHEW CASTREJON	10/13/22 15:50	10/15/22 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1945489	1	10/19/22 17:09	10/20/22 11:46	MMF	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	10	10/21/22 05:10	10/21/22 05:10	LBR	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	100	10/21/22 05:51	10/21/22 05:51	LBR	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP L1547089-09 GW			MATTHEW CASTREJON	10/12/22 00:00	10/15/22 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG1945489	1	10/19/22 17:09	10/20/22 11:46	JD	Mt. Juliet, TN
Wet Chemistry by Method 9056A	WG1944567	10	10/21/22 06:04	10/21/22 06:04	LBR	Mt. Juliet, TN

WG1944567

100

10/21/22 06:18

10/21/22 06:18

LBR

Mt. Juliet, TN

SDG: L1547089 DATE/TIME: 11/07/22 23:54

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Charliphal

Chad A Upchurch Project Manager

SAMPLE RESULTS - 01 L1547089

Page 82 of 133

. Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	5110	100	1	10/19/2022 16:54	WG1945498	ЪС

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn	
Bromide	8.99	J	3.53	10.0	10	10/21/2022 01:34	WG1944567			
Chloride	2220		37.9	100	100	10/21/2022 01:48	WG1944567		5	
Sulfate	86.9		5.94	50.0	10	10/21/2022 01:34	WG1944567		Sr	

SAMPLE RESULTS - 02 L1547089

Page 83 of 133

. Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	, , , , , , , , , , , , , , , , , , ,					Cn.
	Result	Qualifier RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	7080	200	1	10/19/2022 16:53	WG1945482	Tc

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn	
Bromide	11.5		3.53	10.0	10	10/21/2022 02:01	WG1944567		CII	
Chloride	3870		37.9	100	100	10/21/2022 02:15	WG1944567		5	
Sulfate	159		5.94	50.0	10	10/21/2022 02:01	WG1944567		Sr	

SAMPLE RESULTS - 03 L1547089

Page 84 of 133

ʹQc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	RDL	Dilution	Analysis	Batch		Cp	
Analyte	mg/l		mg/l		date / time			2	
Dissolved Solids	15600		400	1	10/20/2022 11:46	WG1945489		¯Тс	

Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l		date / time			⁴ Cn	
Bromide	11.0		3.53	10.0	10	10/21/2022 02:28	WG1944567		CII	
Chloride	6040		37.9	100	100	10/21/2022 03:09	WG1944567		5	
Sulfate	470		5.94	50.0	10	10/21/2022 02:28	WG1944567		Sr	

SAMPLE RESULTS - 04 L1547089

Page 85 of 133

. Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	-	,						Cn.
		Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte		mg/l		mg/l		date / time		2
Dissolved Solids		13800		400	1	10/19/2022 16:53	WG1945482	Tc

Wet Chemistry by Method 9056A											
Result <u>Qualifier</u> MDL RDL Dilution Analysis <u>Batch</u>											
Analyte	mg/l		mg/l	mg/l		date / time			4 Cn		
Bromide	11.0		3.53	10.0	10	10/21/2022 03:22	WG1944567		CII		
Chloride	6370		37.9	100	100	10/21/2022 03:36	WG1944567		5		
Sulfate	174		5.94	50.0	10	10/21/2022 03:22	WG1944567		Sr		

SAMPLE RESULTS - 05 L1547089

Page 86 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

							 Cn
	Result	Qualifier	RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l		mg/l		date / time		2
Dissolved Solids	854		20.0	1	10/19/2022 16:54	WG1945498	ЪŢС

Wet Chemist	try by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4 Cn
Bromide	2.55		0.353	1.00	1	10/21/2022 03:49	WG1944567	CII
Chloride	270		3.79	10.0	10	10/21/2022 04:03	WG1944567	5
Sulfate	87.1		0.594	5.00	1	10/21/2022 03:49	WG1944567	Sr

SAMPLE RESULTS - 06 L1547089

Page 87 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

						 Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	9460	200	1	10/19/2022 16:53	WG1945482	ЪŢС

Wet Chemist	try by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	10.4		3.53	10.0	10	10/21/2022 04:16	WG1944567	CII
Chloride	5440		37.9	100	100	10/21/2022 04:30	WG1944567	5
Sulfate	270		5.94	50.0	10	10/21/2022 04:16	WG1944567	Sr

SAMPLE RESULTS - 07 L1547089

Page 88 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	<u>, , , , , , , , , , , , , , , , , , , </u>					Cn
	Result	Qualifier RDL	Dilution	Analysis	Batch	Cp
Analyte	mg/l	mg/l		date / time		 2
Dissolved Solids	3060	50.0	1	10/20/2022 11:46	WG1945489	Tc

Wet Chemist	try by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4 Cn
Bromide	2.95		0.353	1.00	1	10/21/2022 04:43	WG1944567	СП
Chloride	1260		3.79	10.0	10	10/21/2022 04:57	WG1944567	5
Sulfate	124		0.594	5.00	1	10/21/2022 04:43	WG1944567	Sr

SAMPLE RESULTS - 08 L1547089

Page 89 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	27500	400	1	10/20/2022 11:46	WG1945489	Tc

Wet Chemist	try by Method S	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		⁴ Cn
Bromide	21.7		3.53	10.0	10	10/21/2022 05:10	WG1944567	
Chloride	12400		37.9	100	100	10/21/2022 05:51	WG1944567	5
Sulfate	222		5.94	50.0	10	10/21/2022 05:10	WG1944567	Sr

SAMPLE RESULTS - 09 L1547089

Page 90 of 133

Qc

Gl

Â

Sc

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l	mg/l		date / time		2
Dissolved Solids	21700	10.0	1	10/20/2022 11:46	WG1945489	Tc

Wet Chemist	try by Method §	9056A						³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4 Cn
Bromide	17.7		3.53	10.0	10	10/21/2022 06:04	WG1944567	CII
Chloride	10200		37.9	100	100	10/21/2022 06:18	WG1944567	5
Sulfate	184		5.94	50.0	10	10/21/2022 06:04	WG1944567	Sr

Reg cy q by B Q B 2/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1547089-02,04,06

Method Blank (MB)

(MB) R3855115-1 10/	/19/22 16:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1545556-02 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits
Analyte mg/l mg/l % %

L1545556-04 Original Sample (OS) • Duplicate (DUP)

L1545556-04 Ori	iginal Sample	e (OS) • Du	iplicate	(DUP)			⁷ Gl
(OS) L1545556-04 10/1	9/22 16:53 • (DUP) R3855115-4	10/19/22 1	6:53			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	1500	1680	1	11.7	<u>13</u>	5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3855115-2 10/19	9/22 16:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8420	95.7	77.3-123	

DATE/TIME: 11/07/22 23:54

PAGE: 15 of 22 Тс

Ss

Regeiredby Bab g/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1547089-03,07,08,09

Method Blank (MB)

(MB) R3853304-1 10/20	0/22 11:46			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1545556-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1545556-05 10	0	· · ·		× /			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	IP RPD hits	
Analyte	mg/l	mg/l 1640	1	% 5.47	12		
Dissolved Solids	1560	1640	I	5.47	<u> </u>		

L1545818-02 Original Sample (OS) • Duplicate (DUP)

L1545818-02 Orig	ginal Sample	(OS) • Dup	olicate (DUP)			⁷ Gl
(OS) L1545818-02 10/20	0/22 11:46 • (DUP)	R3853304-4	10/20/22	11:46			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁸ Al
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	1350	1480	1	9.56	<u>13</u>	5	⁹ Sc

Laboratory Control Sample (LCS)

(LCS) R3853304-2 10)/20/22 11:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	8480	96.4	77.3-123	

DATE/TIME: 11/07/22 23:54

PAGE: 16 of 22 Тс

Ss

Regeiredby Balo 8/24/2023 1:59:32 PM

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY L1547089-01,05

Method Blank (MB)

(MB) R3852938-1 10/	/19/22 16:54			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Dissolved Solids	U		10.0	10.0

L1545935-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1545935-01 0/1	· · ·			. ,			 	 4
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		5
Analyte	mg/l	mg/l		%		%		
Dissolved Solids	456	437	1	4.18		5		6

L1545935-02 Original Sample (OS) • Duplicate (DUP)

L1545935-02 Or	iginal Sample	e (OS) • Du	uplicate	(DUP)			
(OS) L1545935-02 10/1	19/22 16:54 • (DUF	P) R3852938-4	10/19/22	16:54			
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Dissolved Solids	618	602	1	2.62		5	

Laboratory Control Sample (LCS)

(LCS) R3852938-2 10/1	9/22 16:54				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Dissolved Solids	8800	7960	90.5	77.3-123	

SDG: L1547089

DATE/TIME: 11/07/22 23:54

PAGE: 17 of 22 Τс

Ss

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1547089-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3851693-1	10/20/22 21:44

(1010) 1(3031033-1-10)	20/22 21.44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Bromide	U		0.353	1.00
Chloride	0.384	J	0.379	1.00
Sulfate	U		0.594	5.00

L1547052-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1547052-01 10/21/2	22 00:40 • (DUP)) R3851693-3	10/21/22 (00:54		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Bromide	2.02	2.15	1	6.44		15
Chloride	94.4	94.4	1	0.0322		15
Sulfate	101	101	1	0.163		15

L1547316-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1547316-01 10/21/22	(OS) L1547316-01 10/21/22 06:31 • (DUP) R3851693-6 10/21/22 06:45											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Bromide	1.73	1.62	1	6.27		15						
Chloride	7.94	7.74	1	2.58		15						
Sulfate	1.52	1.49	1	1.42	J	15						

Laboratory Control Sample (LCS)

(LCS) R3851693-2 10/20/22 21:58											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/l	mg/l	%	%							
Bromide	40.0	39.9	99.7	80.0-120							
Chloride	40.0	40.5	101	80.0-120							
Sulfate	40.0	40.1	100	80.0-120							

DATE/TIME: 11/07/22 23:54

Fc Ss ⁺Cn Sr ີQc GI Â

Sc

Ср

QUALITY CONTROL SUMMARY <u>L1547089-01,02,03,04,05,06,07,08,09</u>

Page 95 of 133

Тс

Ss

Cn

Sr

Qc

GI

A

Sc

Wet Chemistry by Method 9056A

L1547052-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1547052-01 10/21/22	DS) L1547052-01 10/21/22 00:40 • (MS) R3851693-4 10/21/22 01:07 • (MSD) R3851693-5 10/21/22 01:21													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Bromide	50.0	2.02	49.8	50.3	95.6	96.6	1	80.0-120			0.985	15		
Chloride	50.0	94.4	140	139	92.1	89.8	1	80.0-120			0.807	15		
Sulfate	50.0	101	145	146	88.1	89.6	1	80.0-120			0.499	15		

L1547316-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1547316-01 10/21/2	DS) L1547316-01 10/21/22 06:31 • (MS) R3851693-7 10/21/22 06:58													
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier							
Analyte	mg/l	mg/l	mg/l	%		%								
Bromide	50.0	1.73	50.2	96.9	1	80.0-120								
Chloride	50.0	7.94	58.1	100	1	80.0-120								
Sulfate	50.0	1.52	51.4	99.7	1	80.0-120								

DATE/TIME: 11/07/22 23:54

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

SDG: L1547089

Received by OCD: 2/24/2023 1:59:32 PM CCREDITATIONS & LOCATIONS

Page 97 of 133	Page	97	of	133
----------------	------	----	----	-----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
laine	TN00003	Texas ⁵	LAB0152
flaryland	324	Utah	TN000032021-11
lassachusetts	M-TN003	Vermont	VT2006
/lichigan	9958	Virginia	110033
linnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Aissouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
PA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1547089 Received by OCD: 2/24/2023 1:59:32 PM

Company Name/Address:	pany Name/Address:			Billing Information:				Analysis / Container / Preservative					e Chain of Custody			Page of
1500 CityWest Boulevard Suite 1000 Houston. TX 77042			901 Wes Suite 10			Pres Chk									Pa	ADVANCING SCIENCE
Report to: Chuck Terhune			Email To: c	huck.terhune@te	etratech.com	- (1993)	Pres							12055 (a)		ILIET, TN
Project Description: City/State Maverick MCA 357 Collected:			Please C PT MT				E-No							Submittin constitute Pace Term	ng a sample via es acknowledge ms and Conditio	this chain of custody ment and acceptance of ons found at:
Phone: 832-251-5160 Collected:			Lab Project # TETRAHTX-MCA357				250mIHDPE-NoPres	Pres						terms.pdf	LISC	m/hubfs/pas-standard-
Collected by (print): Matthew Castreion	Site/Facility II		P.O. #					250mlHDPE-NoPres	es					Accta	G162	
Collected by (signature):	Same D	Lab MUST Be	Day	Quote #			CHLORIDE	OmiHD	E NoPres					Templa	ate: T217	7803
mmediately Packed on Ice N Y	Next Da Two Da Three D		y (Rad Only) ay (Rad Only)	Date Resul	ts Needed	No. of			1L-HDPE							d A Upchurch
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	BROMIDE,	SULFATE	TDS 1					Shippe	ed Via: marks	Sample # (lab or
Miv-8	G	GW		10/12/22	- 1135	5	Contraction of the local of the	X	X							-01
MW-3	1	GW		10/12/20	2 1250	1		11								-02
Mw-9		GW		10/12/22	- 1420											-03
MW-4		GW		10/12/22												-04
MW-7		GW		10/13/22	Contraction of the											-05
MW-2		GW		10/13/22	1.0											-04
MW-5		GW		10/13/2:		T								v		-07
MW-1		GW		10/13/22		15		11				Loss and a second				-08
Dup	V	GW	1	~	-	V	V	V	V							-09
		GW											The second			
S - Soil AIR - Air F - Filter W - Groundwater B - Bioassay W - WasteWater W - Diriking Water	marks:									pH Flow	Ten		COC Sea COC Sid Bottles Correct	Sample Rece al Present/I gned/Accurat s arrive int t bottles us	Intact: :e: :act: :ed:	Cklist NP Y
Sal Sal	UPS KedEx			Tracki	ng # 59	53	571	96	5177	877	?5		Contraction of the Contraction o	ient volume <u>If App</u> ro Headspace	blicable	
Matthew lostens		0/14/2	Time:	45 a	ved by: (Signat	2		_		ip Blank Red		HC HMO TBR	Preserv RAD Sci	vation Corre reen <0.5 mR	ct/Chec	ked: Y
Relinguished by : (Signature)		10/17/2		au F	ed by: (Signat	(0	670-	.5	tles Received		vation required	by Login	: Date/Time
Relinquished by : (Signature)	Da	te:	Time:	Receiv	red for lab by:	(Signatu	ure)			0/15/2		ne: 09000	Hold:			Conditions NCF / OK
sed to Imaging: 6/3/2024 1:42:	26 PM			and the second se	in the second	STRATE STRATE			TRANSPORT OF	11 110		-100			ACCORDING TO A DESCRIPTION OF	

5

T

.

APPENDIX B: CHLORIDE CONCENTRATION GRAPHS

.

•

APPENDIX C: HISTORICAL GROUNDWATER GAUGING DATA

APPENDIX C Historical Groundwater Gauging Data

MW-1

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)			Groundwater Elevation (feet AMSL)
10/4/2017	102.27	-	83.66	-	-	3,956.78	3,873.12
1/30/2018	-	-	83.81	-	-	3,956.78	3,872.97
4/10/2018	102.27	-	84.00	-	-	3,956.78	3,872.78
8/17/2018	-	-	84.05	-	-	3,956.78	3,872.73
10/18/2018	102.86	-	84.12	-	-	3,956.78	3,872.66
1/23/2019	103.05	-	83.96	-	-	3,956.78	3,872.82
4/25/2019	102.90	-	83.90	-	-	3,956.78	3,872.88
7/10/2019	102.90	-	84.17	-	-	3,956.78	3,872.61
10/9/2019	102.90	-	84.00	-	-	3,956.78	3,872.78
1/15/2020	102.90	-	84.15	-	-	3,956.78	3,872.63
4/28/2020	102.88	-	84.28	-	-	3,956.78	3,872.50
7/7/2020	102.70	-	84.07	-	-	3,956.78	3,872.71
10/1/2020	102.70	-	83.34	-	-	3,956.78	3,873.44
1/14/2021	102.70	-	83.30	-	-	3,956.78	3,873.48
4/6/2021	102.7	-	84.07	-	-	3,956.78	3,872.71
7/13/2021	102.7	-	83.81	-	-	3,956.78	3,872.97
10/8/2021	102.7	-	84.20	-	-	3,956.78	3,872.58
1/11/2022	102.7	-	84.31	-	-	3,956.78	3,872.47
4/4/2022	102.7	-	84.46	-	-	3,956.78	3,872.32
10/18/2022	102.7	-	84.50	-	-	3,956.78	3,872.28

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

No Measurement

APPENDIX C Historical Groundwater Gauging Data

MW-2

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)			Groundwater Elevation (feet AMSL)
10/4/2017	108.44	-	83.44	-	-	3,963.58	3,880.14
1/30/2018	-	-	83.39	-	-	3,963.58	3,880.19
4/10/2018	108.44	-	83.48	-	-	3,963.58	3,880.10
8/17/2018	-	-	83.50	-	-	3,963.58	3,880.08
10/18/2018	108.69	-	83.50	-	-	3,963.58	3,880.08
1/23/2019	108.76	-	83.20	-	-	3,963.58	3,880.38
4/25/2019	107.75	-	83.22	-	-	3,963.58	3,880.36
7/10/2019	107.75	-	83.40	-	-	3,963.58	3,880.18
10/9/2019	107.75	-	83.36	-	-	3,963.58	3,880.22
1/15/2020	107.75	-	83.31	-	-	3,963.58	3,880.27
4/28/2020	107.74	-	83.39	-	-	3,963.58	3,880.19
7/7/2020	107.80	-	83.18	-	-	3,963.58	3,880.40
10/1/2020	107.80	-	83.41	-	-	3,963.58	3,880.17
1/13/2021	107.80	-	83.38	-	-	3,963.58	3,880.20
4/6/2021	107.8	-	83.20	-	-	3,963.58	3,880.38
7/13/2021	107.8	-	83.05	-	-	3,963.58	3,880.53
10/7/2021	107.8	-	83.21	-	-	3,963.58	3,880.37
1/11/2022	107.8	-	83.30	-	-	3,963.58	3,880.28
4/4/2022	107.8	-	83.37	-	-	3,963.58	3,880.21
10/18/2022	107.8	-	83.44	-	-	3,963.58	3,880.14

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

No Measurement

Page 107 of 133

APPENDIX C Historical Groundwater Gauging Data

MW-3

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
10/4/2017	117.75	-	88.20	-	-	3,951.34	3,863.14
1/30/2018	-	-	89.16	-	-	3,951.34	3,862.18
4/10/2018	117.75	-	88.37	-	-	3,951.34	3,862.97
8/17/2018	-	-	88.31	-	-	3,951.34	3,863.03
10/18/2018	117.37	-	88.42	-	-	3,951.34	3,862.92
1/23/2019	117.29	-	88.08	-	-	3,951.34	3,863.26
4/24/2019	117.40	-	87.40	-	-	3,951.34	3,863.94
7/9/2019	117.40	-	88.28	-	-	3,951.34	3,863.06
10/8/2019	117.40	-	88.25	-	-	3,951.34	3,863.09
1/14/2020	117.40	-	88.23	-	-	3,951.34	3,863.11
4/28/2020	117.40	-	88.45	-	-	3,951.34	3,862.89
7/7/2020	117.30	-	88.01	-	-	3,951.34	3,863.33
10/1/2020	117.30	-	88.38	-	-	3,951.34	3,862.96
1/13/2021	117.30	-	88.34	-	-	3,951.34	3,863.00
4/6/2021	117.3	-	88.10	-	-	3,951.34	3,863.24
7/13/2021	117.3	-	87.70	-	-	3,951.34	3,863.64
10/7/2021	117.3	-	88.05	-	-	3,951.34	3,863.29
1/11/2022	117.3	-	88.26	-	-	3,951.34	3,863.08
4/4/2022	117.3	-	88.45	-	-	3,951.34	3,862.89
10/18/2022	117.3	-	88.51	-	-	3,951.34	3,862.83

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

No Measurement
MW-4

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
10/4/2017	104.22	-	95.11	-	-	3,945.39	3,850.28
1/30/2018	-	-	94.97	-	-	3,945.39	3,850.42
4/10/2018	104.22	-	95.11	-	-	3,945.39	3,850.28
8/17/2018	-	-	95.00	-	-	3,945.39	3,850.39
10/18/2018	103.30	-	95.00	-	-	3,945.39	3,850.39
1/23/2019	102.80	-	94.76	-	-	3,945.39	3,850.63
4/25/2019	103.32	-	94.80	-	-	3,945.39	3,850.59
7/10/2019	103.32	-	92.18	-	-	3,945.39	3,853.21
10/9/2019	103.32	-	94.70	-	-	3,945.39	3,850.69
1/14/2020	103.32	-	94.72	-	-	3,945.39	3,850.67
4/28/2020	103.30	-	94.74	-	-	3,945.39	3,850.65
7/7/2020	103.20	-	94.50	-	-	3,945.39	3,850.89
10/1/2020	103.20	-	94.70	-	-	3,945.39	3,850.69
1/14/2021	103.20	-	94.66	-	-	3,945.39	3,850.73
4/6/2021	103.2	-	94.41	-	-	3,945.39	3,850.98
7/14/2021	103.2	-	94.22	-	-	3,945.39	3,851.17
10/7/2021	103.2	-	94.26	-	-	3,945.39	3,851.13
1/11/2022	103.2	-	94.30	-	-	3,945.39	3,851.09
4/4/2022	103.2	-	94.51	-	-	3,945.39	3,850.88
10/18/2022	103.2	-	94.58	-	-	3,945.39	3,850.81

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
10/4/2017	113.65	-	89.68	-	-	3,950.37	3,860.69
1/30/2018	-	-	89.68	-	-	3,950.37	3,860.69
4/10/2018	113.65	-	89.94	-	-	3,950.37	3,860.43
8/17/2018	-	-	89.90	-	-	3,950.37	3,860.47
10/18/2018	113.05	-	90.02	-	-	3,950.37	3,860.35
1/23/2019	113.05	-	89.82	-	-	3,950.37	3,860.55
4/25/2019	113.00	-	89.70	-	-	3,950.37	3,860.67
7/10/2019	113.00	-	89.95	-	-	3,950.37	3,860.42
10/9/2019	113.00	-	89.74	-	-	3,950.37	3,860.63
1/15/2020	113.00	-	89.79	-	-	3,950.37	3,860.58
4/28/2020	112.98	-	90.04	-	-	3,950.37	3,860.33
7/7/2020	113.00	-	89.67	-	-	3,950.37	3,860.70
10/1/2020	113.00	-	89.93	-	-	3,950.37	3,860.44
1/14/2021	113.00	-	83.98	-	-	3,950.37	3,866.39
4/6/2021	113	-	89.71	-	-	3,950.37	3,860.66
7/14/2021	113	-	89.60	-	-	3,950.37	3,860.77
10/8/2021	113	-	89.62	-	-	3,950.37	3,860.75
1/11/2022	113	-	89.73	-	-	3,950.37	3,860.64
4/4/2022	113	-	89.94	-	-	3,950.37	3,860.43
10/18/2022	113	-	90.03	-	-	3,950.37	3,860.34

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

MW-6

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
4/24/2019	128.12	-	Dry	-	-	3,952.96	Dry
7/9/2019	128.12	-	Dry	-	-	3,952.96	Dry
10/8/2019	128.12	-	Dry	-	-	3,952.96	Dry
1/14/2020	128.12	-	Dry	-	-	3,952.96	Dry
4/28/2020	128.12	-	Dry	-	-	3,952.96	Dry
7/7/2020	128.10	-	Dry	-	-	3,952.96	Dry
9/30/2020	128.10	-	Dry	-	-	3,952.96	Dry
1/13/2021	128.10	-	Dry	-	-	3,952.96	Dry
4/6/2021	128.10	-	Dry	-	-	3,952.96	Dry
7/14/2021	128.10	-	Dry	-	-	3,952.96	Dry
10/8/2021	128.10	-	Dry	-	-	3,952.96	Dry
1/11/2022	128.10	-	Dry	-	-	3,952.96	Dry
4/4/2022	128.10	-	Dry	-	-	3,952.96	Dry
10/18/2022	128.10	-	Dry	-	-	3,952.96	Dry

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

MW-7

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
4/24/2019	127.40	-	89.30	-	-	3,972.11	3,882.81
7/9/2019	127.40	-	89.69	-	-	3,972.11	3,882.42
10/8/2019	127.40	-	89.64	-	-	3,972.11	3,882.47
1/14/2020	127.40	-	89.59	-	-	3,972.11	3,882.52
4/28/2020	127.38	-	89.67	-	-	3,972.11	3,882.44
7/7/2020	127.30	-	89.50	-	-	3,972.11	3,882.61
9/30/2020	127.30	-	89.74	-	-	3,972.11	3,882.37
1/13/2021	127.30	-	89.51	-	-	3,972.11	3,882.60
4/6/2021	127.30	-	89.93	-	-	3,972.11	3,882.18
7/15/2021	127.30	-	89.41	-	-	3,972.11	3,882.70
10/8/2021	127.30	-	89.55	-	-	3,972.11	3,882.56
1/11/2022	127.30	-	89.64	-	-	3,972.11	3,882.47
4/4/2022	127.30	-	89.72	-	-	3,972.11	3,882.39
10/18/2022	127.30	-	89.80	-	-	3,972.11	3,882.31

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

MW-8

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
4/24/2019	118.03	-	95.11	-	-	3,956.83	3,861.72
7/9/2019	118.03	-	95.20	-	-	3,956.83	3,861.63
10/8/2019	118.03	-	95.26	-	-	3,956.83	3,861.57
1/14/2020	118.03	-	95.21	-	-	3,956.83	3,861.62
4/28/2020	118.00	-	95.42	-	-	3,956.83	3,861.41
7/7/2020	118.02	-	95.05	-	-	3,956.83	3,861.78
9/30/2020	118.00	-	95.38	-	-	3,956.83	3,861.45
1/13/2021	118.00	-	95.44	-	-	3,956.83	3,861.39
4/6/2021	118.00	-	94.85	-	-	3,956.83	3,861.98
7/15/2021	118.00	-	94.90	-	-	3,956.83	3,861.93
10/8/2021	118.00	-	95.20	-	-	3,956.83	3,861.63
1/11/2022	118.00	-	95.27	-	-	3,956.83	3,861.56
4/4/2022	118.00	-	95.38	-	-	3,956.83	3,861.45
10/18/2022	118.00	-	95.44	-	-	3,956.83	3,861.39

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

MW-9

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
4/24/2019	133.10	-	118.86	-	-	3,936.53	3,817.67
7/9/2019	133.10	-	118.81	-	-	3,936.53	3,817.72
10/8/2019	133.10	-	118.88	-	-	3,936.53	3,817.65
1/14/2020	133.10	-	118.78	-	-	3,936.53	3,817.75
4/28/2020	133.06	-	118.88	-	-	3,936.53	3,817.65
7/7/2020	133.50	-	118.71	-	-	3,936.53	3,817.82
9/30/2020	133.50	-	118.76	-	-	3,936.53	3,817.77
1/12/2021	133.50	-	118.69	-	-	3,936.53	3,817.84
4/6/2021	133.50	-	118.73	-	-	3,936.53	3,817.80
7/15/2021	133.50	-	118.61	-	-	3,936.53	3,817.92
10/8/2021	133.50	-	118.68	-	-	3,936.53	3,817.85
1/11/2022	133.50	-	118.64	-	-	3,936.53	3,817.89
4/4/2022	133.50	-	119.18	-	-	3,936.53	3,817.35
10/18/2022	133.50	-	119.25	-	-	3,936.53	3,817.28

Notes:

-

TOC Top of Casing

AMSL Above Mean Sea Level

BTOC Below Top of Casing

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
4/28/2020	132.30	-	Dry	-	-	3,963.20	Dry
7/7/2020	132.53	-	126.70	-	-	3,963.20	3,836.50
9/30/2020	132.51	-	126.80	-	-	3,963.20	3,836.40
1/12/2021	132.51	-	126.76	-	-	3,963.20	3,836.44
4/6/2021	132.51	-	126.22	-	-	3,963.20	3,836.98
7/15/2021	132.51	-	Dry	-	-	3,963.20	Dry
10/8/2021	132.51	-	Dry	-	-	3,963.20	Dry
1/11/2022	132.51	-	Dry	-	-	3,963.20	Dry
4/4/2022	132.51	-	Dry	-	-	3,963.20	Dry
10/18/2022	132.51	-	Dry	-	-	3,963.20	Dry

<u>Notes</u>: TOC

AMSL

BTOC

-

Top of Casing Above Mean Sea Level Below Top of Casing No Measurement

Released to Imaging: 6/3/2024 1:42:28 PM

MW-11

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
4/28/2020	131.50	-	Dry	-	-	3,948.30	Dry
7/7/2020	132.88	-	Dry	-	-	3,948.30	Dry
9/30/2020	132.88	-	Dry	-	-	3,948.30	Dry
1/12/2021	132.88	-	Dry	-	-	3,948.30	Dry
4/6/2021	132.88	-	Dry	-	-	3,948.30	Dry
7/15/2021	132.88	-	Dry	-	-	3,948.30	Dry
10/8/2021	132.88	-	Dry	-	-	3,948.30	Dry
1/11/2022	132.88	-	Dry	-	-	3,948.30	Dry
4/4/2022	132.88	-	Dry	-	-	3,948.30	Dry
10/18/2022	132.88	-	Dry	-	-	3,948.30	Dry

<u>Notes</u>: TOC

AMSL

BTOC

-

Top of Casing Above Mean Sea Level Below Top of Casing No Measurement

Released to Imaging: 6/3/2024 1:42:28 PM

MW-12

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
4/28/2020	132.00	-	Dry	-	-	3,930.91	Dry
7/7/2020	132.03	-	Dry	-	-	3,930.91	Dry
9/30/2020	132.30	-	Dry	-	-	3,930.91	Dry
1/12/2021	132.30	-	Dry	-	-	3,930.91	Dry
4/6/2021	132.30	-	Dry	-	-	3,930.91	Dry
7/15/2021	132.30	-	Dry	-	-	3,930.91	Dry
10/8/2021	132.30	-	Dry	-	-	3,930.91	Dry
1/11/2022	132.30	-	Dry	-	-	3,930.91	Dry
4/4/2022	132.30	-	Dry	-	-	3,930.91	Dry
10/18/2022	132.30	-	Dry	-	-	3,930.91	Dry

<u>Notes</u>: TOC

AMSL

BTOC

-

Top of Casing Above Mean Sea Level Below Top of Casing No Measurement

Released to Imaging: 6/3/2024 1:42:28 PM

MW-13

MCA 357

Lea County, New Mexico

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
9/30/2020	133.25	-	Dry	-	-	3,931.32	Dry
1/12/2021	133.25	-	Dry	-	-	3,931.32	Dry
4/6/2021	133.25	-	Dry	-	-	3,931.32	Dry
7/15/2021	133.25	-	Dry	-	-	3,931.32	Dry
10/8/2021	132.25	-	Dry	-	-	3,931.32	Dry
1/11/2022	132.25	-	Dry	-	-	3,931.32	Dry
4/4/2022	132.25	-	Dry	-	-	3,931.32	Dry
10/18/2022	132.25	-	Dry	-	-	3,931.32	Dry

Notes:

TOC Top of Casing AMSL Above Mean Sea Level BTOC Below Top of Casing

-

.

APPENDIX D: HISTORICAL GROUNDWATER ANALYTICAL DATA

APPENDIX D Historical Groundwater Analytical Data MW-1 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
8/17/2018	27.1	22,100	211	27,400
10/18/2018	38.4	16,000	241	31,000
1/23/2019	65.8	26,900	404	47,500
4/25/2019	-	11,000	-	34,400
7/9/2019	79	30,200	459	78,900
10/9/2019	21.9	11,400	179	27,000
1/15/2020	37.3	16,400	283	29,200
5/1/2020	79.6	37,200	490	98,200
7/9/2020	26	13,200	232	30,600
10/1/2020	16.1	8,700	161	17,500
1/14/2021	23.8	12,300	221	28,100
4/8/2021	20.8	11,000	205	27,200
7/13/2021	14.5	8,050	138	19,600
7/13/2021	18.9	10,800	191	28,000
10/8/2021	40.1	18,800	305	37,000
1/13/2022	167	55,800	756	83,200
4/7/2022	18.4	11,000	194	21,300
10/13/2022	21.7	12,400	222	27,500

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-2 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
10/4/2017	4.6	4,620	198	7,080
1/30/2018	15.3	4,340	173	8,600
4/10/2018	16.3	4,940	227	12,100
8/17/2018	5.12	5,330	212	11,300
10/18/2018	5.13	5,160	213	10,500
1/23/2019	6.95	4,840	225	11,100
4/25/2019	-	4,870	-	14,800
7/9/2019	4.85 J	5,500	253	13,500 Q
10/9/2019	7.30 J	5,280	212	12,200
1/15/2020	9.76 J	5,120	243	9,300
4/30/2020	5.41	5,640	253	12,700
7/9/2020	8.24 J	5,610	252	13,600
10/1/2020	7.23 J	5,690	268	11,100
1/13/2021	7.42 J	5,870	263	11,900
4/7/2021	8.22 J	5,340	260	10,100
7/13/2021	8.52 J	5,300	242	13,600
10/7/2021	9.32 J	5,800	263	10,600
1/12/2022	7.04 J	5,590	269	13,900
4/6/2022	10.2	6,010	306	7,460
10/13/2022	10.4	5,440	270	9,460

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-3 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
10/4/2017	11.2	5,200	171	8,320
1/30/2018	19.6	4,210	171	8,800
4/10/2018	9.2	5,110	186	12,200
8/17/2018	9.4	4,360	170	10,400
10/18/2018	8.68	4,520	165	10,200
1/23/2019	10.3	4,560	175	11,000
4/24/2019	-	4,440	-	13,800
7/9/2019	8.42	4,740	183	12,800
10/8/2019	9.71 J	4,620	160	11,400
1/14/2020	11.9	4,340	172	9,200
4/30/2020	7.18	4,380	177	10,600
7/9/2020	10.3	4,540	178	11,000
10/1/2020	8.98 J	4,440	183	8,860
1/13/2021	9.20 J	4,550	182	9,320
4/7/2021	10.1	4,380	175	10,700
7/13/2021	10.2	4,190	162	11,100
10/7/2021	10.7	4,280	171	9,180
1/12/2022	8.81 J	4,300	180	8,380
4/5/2022	8.7	4,310	185	5,860
10/12/2022	11.5	3,870	159	7,080

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-4 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
10/4/2017	7.8	5,630	165	7,080
1/30/2018	<0.50	4,970	16	7,880
4/10/2018	2.52	5,490	187	12,100
8/17/2018	5.3	6,140	173	11,700
10/18/2018	4.55	5,850	171	11,600
1/23/2019	6.96	5,620	180	12,200
4/25/2019	-	5,600	-	15,700
7/9/2019	5.03	6,330	190	13,700 Q
10/9/2019	7.57 J	6,020	169	13,100
1/14/2020	9.70 J	5,530	176	9,040
4/30/2020	5.23	5,770	187	13,300
7/9/2020	8.55 J	6,170	184	13,700
10/1/2020	7.47 J	6,140	193	11,500
1/14/2021	7.42 J	6,630	195	12,900
4/8/2021	8.66 J	5,930	186	15,200
7/14/2021	8.93 J	5,880	163	15,200
10/7/2021	9.67 J	6,320	179	13,100
1/12/2022	7.82 J	6,120	181	14,700
4/6/2022	8.35	6,730	198	8,020
10/12/2022	11	6,370	174	13,800

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-5 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
10/4/2017	2.3	198	125	1,820
1/30/2018	2.3	767	136	1,640
4/10/2018	0.985 J	803	149	2,160
8/17/2018	2.29	766	142	2,240
10/18/2018	2.23	909	117	2,310
1/23/2019	2.28	909	114	2,470
4/25/2019	-	849	-	3,290
7/9/2019	1.82	1,040	138	3,000
10/9/2019	1.71	807	130	2,300 J3
1/15/2020	2.22	1,050	118	1,580 J3
5/1/2020	3.04 J	1,240	130	2,740
7/9/2020	3.63 J	953	142	3,260
10/1/2020	2.94 J	773	164	2,200
1/14/2021	2.05	1,090	133	2,700
4/8/2021	1.99	1,070	109	3,630
7/14/2021	2.19	1,220	101	3,530
10/8/2021	2.28	1,140	122	2,910
1/12/2022	2.04	1,150	136	3,320
4/7/2022	4.49	1,040	152	3,530
10/13/2022	2.95	1,260	124	3,060

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-6 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
4/24/2019		Not Sam	pled - Dry	
7/9/2019		Not Sam	pled - Dry	
10/8/2019		Not Sam	pled - Dry	
1/14/2020		Not Sam	pled - Dry	
4/28/2020		Not Sampled - Dry		
7/7/2020	Not Sampled - Dry			
9/30/2020	Not Sampled - Dry			
1/13/2021	Not Sampled - Dry			
4/6/2021		Not Sampled - Dry		
7/14/2021		Not Sampled - Dry		
10/7/2021	Not Sampled - Dry			
1/11/2022	Not Sampled - Dry			
4/7/2022		Not Sampled - Dry		
10/18/2022	Not Sampled - Dry			

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-7 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
4/24/2019	-	2,060	-	6,020
7/9/2019	2.60 J	1,740	211	4,630
10/8/2019	1.08	200	97	763
1/14/2020	1.62	246	97	853
4/30/2020	1.18	239	98	846
7/8/2020	1.47	289	95	880
9/30/2020	1.08	240	111	866
1/13/2021	1.23	270	97	834
4/7/2021	1.33	247	93	858
7/15/2021	1.38	253	90	902
10/8/2021	1.6	528	100	1,460
1/11/2022	1.57	355	81	1,120
4/6/2022	1.58	291	86	976
10/13/2022	2.55	270	87	854

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-8 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
4/24/2019	-	2,050	-	6,530
7/9/2019	2.74	2,270	104	6,620
10/8/2019	2.5	2,320	89	5,740
1/14/2020	2.95	2,180	100	4,870
4/30/2020	3.95 J	2,390	95	5,580
7/8/2020	6.43 J	2,330	99	5,750
9/30/2020	7.03 J	5,730	156	5,880
1/13/2021	4.05 J	2,160	93	4,890
4/7/2021	6.53 J	2,120	89	5,810 J3
7/15/2021	6.73 J	1,960	54	6,150
10/8/2021	7.59 J	2,320	93	5,100
1/13/2022	4.80 J	2,250	96	4,740
4/5/2022	5.18	2,340	99	3,420
10/12/2022	8.99	2,220	87	5,110

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-9 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
4/24/2019	-	5,100	-	15,800
7/9/2019	7.09	5,130	376	17,100
10/8/2019	9.26 J	5,660	353	13,200
1/14/2020	11.4	5,540	388	12,700
4/30/2020	8.51 J	6,030	423	14,500
7/8/2020	10.3	6,460	438	16,000
9/30/2020	9.03 J	6,400	461	16,900
1/12/2021	8.99 J	6,750	487	12,900
4/6/2021	9.70 J	6,540	477	14,100
7/15/2021	10.1	6,690	463	19,300
10/8/2021	11.4	6,580	495	14,300
1/12/2022	8.85 J	6,170	472	16,200
4/6/2022	11.3	6,700	526	12,800
10/12/2022	11	6,040	470	15,600

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

Historical Groundwater Analytical Data MW-10 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
4/28/2020		Not Sam	pled - Dry	
7/8/2020	7.09	5,130	376	17,100
9/30/2020	9.26 J	5,660	353	13,200
1/12/2021	11.4	5,540	388	12,700
4/6/2021	8.51 J	6,030	423	14,500
7/15/2021	Not Sampled - Dry			
10/8/2021	Not Sampled - Dry			
1/11/2022	Not Sampled - Dry			
4/6/2022	Not Sampled - Dry			
10/18/2022	Not Sampled - Dry			

Notes:

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D

APPENDIX D Historical Groundwater Analytical Data MW-11 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
4/28/2020		Not Sam	pled - Dry	
7/7/2020		Not Sam	pled - Dry	
9/30/2020		Not Sampled - Dry		
1/12/2021		Not Sampled - Dry		
4/6/2021	Not Sampled - Dry			
7/15/2021	Not Sampled - Dry			
10/8/2021		Not Sampled - Dry		
1/11/2022	Not Sampled - Dry			
4/6/2022		Not Sampled - Dry		
10/18/2022	Not Sampled - Dry			

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-12 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
4/28/2020		Not Sam	pled - Dry	
7/7/2020		Not Sampled - Dry		
9/30/2020	Not Sampled - Dry			
1/12/2021	Not Sampled - Dry			
7/15/2021	Not Sampled - Dry			
10/8/2021	Not Sampled - Dry			
1/11/2022	Not Sampled - Dry			
4/6/2022	Not Sampled - Dry			
10/18/2022	Not Sampled - Dry			

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

APPENDIX D Historical Groundwater Analytical Data MW-13 MCA-357 Lea County, New Mexico

Sample Date	Bromide (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	TDS (mg/L)
NMWQCC GQS	NE	250	600	1000
9/30/2020	Not Sampled - Dry			
1/12/2021	Not Sampled - Dry			
7/15/2021	Not Sampled - Dry			
10/8/2021	Not Sampled - Dry			
1/11/2022	Not Sampled - Dry			
4/6/2022	Not Sampled - Dry			
10/18/2022	Not Sampled - Dry			

TDS	Total Dissolved Solids
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
J3	The associated QC was outside the established quality control range for precision
NE	Regulatory Guideline Not Established
Q	Sample was prepared and/or analyzed past method holding time
-	Not Analyzed
	Result exceeds NMWQCC groundwater quality standards

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 190477

CONDITIONS		
Operator: Maverick Permian LLC	OGRID: 331199	
1000 Main Street, Suite 2900 Houston, TX 77002	Action Number: 190477	
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)	

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Review of the 2022 Annual Report for MCA 357: Content Satisfactory 1. Proceed with plans to change groundwater sampling frequencies at the site from annual to semi-annual. 2. Please submit the 2023 annual report (if it hasn't already been submitted to OCD) 3. Submit the 2024 Annual Monitoring Report to OCD by April 1, 2025.	6/3/2024