EIGHTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO

Prepared for:

Chesapeake Energy Corporation

6100 North Western Avenue Oklahoma City, Oklahoma 73118 (405) 935-3938

Prepared by:

Equus Environmental, LLC

1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136 (918) 921-5331

May 24, 2022

TABLE OF CONTENTS

LIST	OF TAI	BLES	ii
LIST	OF FIG	URES	ii
LIST	OF AP	PENDICES	ii
1.0	INTR	ODUCTION	1
2.0	REMI	EDIATION	3
	2.1	SVE SYSTEM	3
	2.2	MW-1R LNAPL RECOVERY	5
3.0	QUA	RTERLY GROUNDWATER MONITORING	
	3.1	GROUNDWATER MONITORING METHODOLOGY	6
	3.2	TWENTY-FIFTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.3	TWENTY-SIXTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.4	TWENTY-SEVENTH QUARTERLY GROUNDWATER SAMPLING RESULTS	8
	3.5	TWENTY-EIGHTH QUARTERLY GROUNDWATER SAMPLING RESULTS	8
4.0	CON	CLUSIONS	9
5.0	RECO	DMMENDATIONS	10

LIST OF TABLES

- 1 Summary of SVE System Field Readings
- 2 Summary of Laboratory Analytical Results for Discharge Air Samples
- 3 Summary of Liquid Level Measurements
- 4 Summary of Laboratory Analytical Results for Groundwater Samples

LIST OF FIGURES

- 1 Site Location and Topographic Features
- 2 Site Base Map
- 3 SVE System VOC Discharge Concentrations Versus Time
- 4 Groundwater Potentiometric Surface, June 8, 2021
- 5 Groundwater Potentiometric Surface, September 8, 2021
- 6 Groundwater Potentiometric Surface, December 7, 2021
- 7 Groundwater Potentiometric Surface, March 8, 2022
- 8 Isopleth of Chloride Concentrations in Groundwater, March 8, 2022
- 9 Chloride Concentration Trend Graphs

LIST OF APPENDICES

(All Appendices on CD in bound copy)

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

EIGHTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO MAY 24, 2022

1.0 INTRODUCTION

Chesapeake Energy Corporation (Chesapeake) has retained Equus Environmental, LLC (Equus), to perform impacted groundwater monitoring and light non-aqueous phase liquid (LNAPL) hydrocarbon remediation at Chesapeake's former State M Lease site (Site) located in Lea County, New Mexico. The Site is located approximately 8 miles south-southwest of Lovington, New Mexico in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico (coordinates 32.828061° latitude, -103.391012° longitude). The Site location and topographic features are shown on **Figure 1**. A production tank battery for oil and gas was formerly located at the Site. Chesapeake purchased the Site in 2004, but never operated the tank battery. Chesapeake began abandonment and environmental investigation activities at the Site in 2007.

Initial Site investigation activities were conducted in May 2007. These investigation activities consisted of conducting EM-31 and EM-34 ground conductivity surveys, the collection of soil samples from nine boreholes, and the installation and sampling of seven groundwater monitoring wells. Following the investigation in August 2007, Chesapeake submitted to the New Mexico Oil Conservation Division (NMOCD) a Stage 1 Abatement Plan for the Site. In May 2010, the NMOCD responded to Chesapeake that the agency was not adequately staffed to review the abatement plan in a timely manner and advised Chesapeake that they could proceed with abatement operations at risk. In July 2010, Chesapeake notified the NMOCD of their intent to proceed with the Stage 1 Abatement activities. On March 20, 2012, following implementation of these activities, Chesapeake submitted the Stage 1 Abatement Report for the Site.

On March 27, 2012, Chesapeake submitted to the NMOCD the *Stage 2 Abatement Plan* (Plan) for the Site. A copy of the Plan is provided in **Appendix A**. In this Plan, Chesapeake proposed the following abatement activities at the Site:

 Excavate and remove the near-surface soils at the Site containing concentrations of chloride exceeding 1,000 milligrams per kilogram (mg/kg),

- Excavate and remove the near-surface soils at the Site containing concentrations of TPH exceeding 1,000 mg/kg,
- Install clay liners in areas where chloride and/or TPH concentrations exceed
 1,000 mg/kg at depths greater than five feet below ground level (bgl),
- Install one additional groundwater monitoring well downgradient of the Site,
- Monitor the groundwater at the Site until the concentrations of chloride and benzene are below the New Mexico Water Quality Control Commission standards.

On March 7, 2013, NMOCD notified Chesapeake that the Plan was administratively complete and that Chesapeake should proceed with public notice of the Plan. On March 30, 2013, Chesapeake published a notice of the proposed activities in the Albuquerque Journal, the Hobbs-Daily News Sun and the Lovington Leader. In addition, written notification of the Plan submittal was sent to all surface owners of record within a 1-mile radius of the Site. On June 27, 2013 upon completion of the notification activities, the NMOCD approved the Plan for the Site. A copy of the NMOCD correspondence approving the Plan is included in **Appendix B**.

The soil remediation activities outlined in the Plan were conducted at the Site during the period January 15, 2014 through March 27, 2014. The soil remediation activities were summarized in the document titled *Soil Remediation Summary Report*, submitted to the NMOCD on August 6, 2014.

This *Eighth Annual Groundwater Monitoring Report* (Report) summarizes the groundwater monitoring activities conducted at the Site during the following quarterly sampling events:

- Twenty-Ninth Event June 8, 2021,
- Thirtieth Event September 8-9, 2021,
- Thirty-First Event December 7, 2021,
- Thirty-Second Event March 8, 2022.

2.0 REMEDIATION

2.1 SVE SYSTEM

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, during the period May 12-14, 2014, a soil vapor extraction (SVE) remediation system (System) was installed and made operational at the Site. The System is comprised of 8 SVE wells connected through a manifold system constructed of two- and three-inch Schedule 80 PVC piping and plumbed to a 10-horsepower 3-phase SVE Regenerative Blower housed within the System Building. The location of the SVE wells and the System Building are shown on attached *Figure*2. Within the System, soil vapor from the SVE wells is drawn through a moisture knock out/separator and a particulate filter prior to reaching the blower. An air-flow meter is installed downstream of the blower in the air-exhaust line and an air sample port is located on the air-exhaust line at a location upstream of its exit from the System Building.

System start-up was conducted on June 6, 2014. Routine checks of the System are conducted to record the blower run times, discharge rate/ACFM and VOC concentration of the discharge-air stream. These field readings are used to calculate the approximate weight of VOCs extracted from the subsurface and discharged from the System. The field PID data are entered into to a spreadsheet to calculate the VOC discharge rate and approximate total pounds removed by the System. The approximate total VOC discharges for each quarter are then summed to provide a cumulative VOC discharge total. These data are summarized in **Table 1**. Through March 9, 2022, the field PID data suggest that approximately 8,903 pounds of VOCs have been removed from the subsurface and discharged from the System.

During this reporting period, discharge-air samples were collected quarterly in laboratory-provided Suma canisters, shipped under chain-of-custody control to Eurofins TestAmerica, Pittsburgh, Pennsylvania and analyzed for VOC compounds and total VOCs as hexane by Method TO-15.

During the twenty-ninth quarter, discharge-air sample 2021608 M-1 was collected on June 8, 2021. On this date, the System had been running for a total of 59,276 hours, was operating at 460 ACFM and had a field reading of 31 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 2,100 PPB V/V (2.1 PPM V/V).

During the thirtieth quarter, discharge-air sample 20210908 M-1was collected on September 9, 2021. On this date, the System had been running for a total of 56,128 hours, was operating at

422 ACFM and had a field reading of 92 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 140,000 PPB V/V (140 PPM V/V).

During the thirty-first quarter, discharge-air sample 20211207 M-1 was collected on December 7, 2022. On this date, the System had been running for approximately 58,266 hours, was operating at 250 ACFM and had a field reading of 6.0 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 1,600 PPB V/V (1.6 PPM V/V).

During the thirty-second quarter, discharge-air sample 20220308 M-1 was collected on March 8, 2022. On this date, the System had been running for a total of 60,449 hours, was operating at 383 ACFM and had a field reading of 16.7 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 24,000 PPB V/V (24 PPM V/V).

A summary of the laboratory analytical results for the discharge-air samples is presented in **Table 2**, and complete copies of the laboratory analytical reports and chain-of-custody documentation are provided in **Appendix C**. The discharge-air analytical data are used to compute a correlation factor for the field PID readings to more accurately calculate the total VOC discharged.

Field PID instrument readings are typically lower than laboratory analysis for total VOCs. To compensate for the low field PID readings, a correlation factor is calculated based upon the ratio of the laboratory analytical value versus the field PID value. The correlation factor is then used to multiply the field PID readings and calculate the total VOC discharge. To accurately reflect the total VOC discharge from the System during a given period, **Table 1** includes the calculated unique correlation factor for each quarterly air-discharge sampling event. This unique correlation factor is then utilized to calculate the total VOC discharge from the System for the period in which that particular air-discharge sample was collected. Utilizing the noted correlation factors, approximately 14,563 pounds of VOCs have been removed from the subsurface at the Site.

Figure 3 presents a graph of the VOC concentrations observed in the discharge air stream versus time. As can be seen on this figure, the levels of VOC observed in the air discharge stream have decreased dramatically since startup. These data indicate that the System is effective at removing the hydrocarbon vapors from the subsurface. Removal of hydrocarbon vapors coupled

with the influx of oxygen drawn into the impacted area by the System enhances biodegradation of the hydrocarbon impacts observed in this area.

2.2 MW-1R LNAPL RECOVERY

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, to enhance LNAPL recovery in the MW-1R area, 2-inch diameter monitoring well MW-1 was plugged and replaced with 4-inch diameter monitoring well MW-1R. On June 5, 2014, a QED Environmental Genie LNAPL recovery pump was placed and made operational in monitoring well MW-1R. The Genie LNAPL recovery pump is an air-actuated bladder pump with a floating intake (skimmer), set at a depth that produces the maximum amount of LNAPL recovery per cycle. Air is provided to the Genie LNAPL recovery pump from a compressor located within the System Building.

During the prior reporting period (2020), the LNAPL thicknesses observed in MW-1R ranged from 0.24-feet to 0.10-feet. LNAPL thicknesses this small are outside of the operating capabilities of the Genie LNAPL recovery pump. Therefore, the LNAPL recovery pump was turned off to see if LNAPL thicknesses would rebound in monitoring well MW-1R. The observed LNAPL thicknesses in MW-1R during this most recent reporting period ranged from 0.78-feet to 0.14-feet and exhibited a decreasing thickness trend during each quarterly monitoring period. At this time, LNAPL thicknesses are still outside of the recovery range for the LNAPL recovery pump.

Since start-up of the Genie LNAPL recovery pump, a total of approximately 15 drums (822.5 gallons) of LNAPL have been recovered from the Site. Chesapeake will deploy a hydrophobic LNAPL absorption sock within MW-1R to facilitate further removal of LNAPL from the well.

3.0 QUARTERLY GROUNDWATER MONITORING

This Report describes the findings from four quarterly groundwater sampling events conducted at the Site from June 8, 2021 through March 8, 2022.

3.1 GROUNDWATER MONITORING METHODOLOGY

Prior to collecting groundwater samples during each quarterly event, Equus gauged all 8 monitoring wells (MW-1R through MW-8) at the Site using an electronic interface probe to determine the depth-to-water (DTW) and LNAPL thickness within each well. The locations of these monitoring wells are shown on **Figure 2**. DTWs were measured from the surveyed top-of-casing (TOC) of each well and converted to elevations relative to mean sea level. These data are presented in **Table 3**. Potentiometric surface maps were constructed utilizing these data to illustrate the groundwater flow direction within the shallow groundwater system beneath the Site. These potentiometric surface maps are presented on **Figures 4** through **7**. It should be noted that DTW measurements collected from monitoring well MW-1R are not honored for generating potentiometric surfaces due to the influence of LNAPL present in the monitoring well and the potential influence of the SVE system on groundwater levels. As can be seen on the figures, groundwater flow at the Site is, in general, from the northwest to the southeast.

Upon completion of DTW measurement activities, Equus field personnel collected groundwater samples per the Plan. As specified in the Plan, chloride is the primary constituent of concern (COC) at the Site until the LNAPL has been adequately eliminated from monitoring well MW-1R. When the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well will be monitored for benzene, toluene, ethylbenzene and total xylenes (BTEX) until the levels of BTEX fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively.

The laboratory analytical results for chloride from these sampling events are screened against the **New Mexico Administrative Code 20.6.2, Standards for Groundwater of 10,000 mg/L TDS Concentration or Less** for chloride of 250 mg/L (Limit). According to the remediation goals set in the Plan, each monitoring well is required to exhibit eight consecutive monitoring events where chloride is below the Limit of 250 mg/L. When these remediation goals are met, Chesapeake will cease groundwater sampling activities for chloride.

As recommended in the *Fifth Annual Groundwater Monitoring Report*, dated May 20, 2019, during this reporting period groundwater samples were only collected from monitoring wells MW-4

and MW-8 for chloride analysis due to the remaining monitoring wells having already achieved the abatement goal of eight consecutive quarters of chloride concentrations below 250 mg/L.

The groundwater samples from monitoring wells MW-4 and MW-8 were collected utilizing EPA approved low-flow purging/sampling methodologies. Field parameters consisting of pH, specific conductivity, temperature, and dissolved oxygen (DO) were measured during field activities utilizing a multi-parameter meter and air-tight flow-through cell. Upon stabilization of the field parameters, groundwater samples were collected into laboratory prepared containers, labeled as to source and contents, placed on ice for preservation, placed under chain-of-custody control and shipped via overnight courier to the analytical laboratory (Eurofins TestAmerica, Edison, new Jersey). As per the Plan, groundwater samples collected from these monitoring wells were analyzed for chloride by EPA Method 300.0. A summary of the laboratory analytical results for chloride analyses is presented in **Table 4**, and complete copies of the laboratory analytical reports and chain-of-custody documentation is provided in **Appendix C**.

3.2 TWENTY-NINTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-ninth groundwater sampling event was conducted at the Site on June 8, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (528 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L. The chloride concentration reported in monitoring well MW-8 (92.5 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L.

During the twenty-ninth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.78 feet.

3.3 THIRTIETH QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirtieth quarterly groundwater sampling event was conducted at the Site from September 8-9, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (438 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L. The chloride concentration reported in monitoring well MW-8 (65.5 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L

During the thirtieth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.27 feet.

3.4 THIRTY-FIRST QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirty-first quarterly groundwater sampling event was conducted at the Site on December 7, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (404 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L. The chloride concentration reported in monitoring well MW-8 (56.2 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L

During the thirty-first quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.16 feet.

3.5 THIRTY-SECOND QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirty-second quarterly groundwater sampling event was conducted at the Site on March 2, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (387 mg/L) exhibited a chloride concentration that exceeds the Limit of 250 mg/L. The groundwater sample collected from monitoring well MW-8 (29.6 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L. **Figure 8** presents an isopleth of the chloride concentrations observed in the groundwater samples collected during this sampling event. As can be seen on this figure, the highest levels of chloride observed in Site groundwater are observed in monitoring wells MW-4 and MW-8, in the southeast portion of the Site. To complete the chloride isopleth, Equus used chloride concentrations detected in monitoring wells MW-1 through MW-3 and MW-5 through MW-7 during the March 2018 sampling event. It should be noted that concentrations of chloride in monitoring well MW-8 have been less than the Limit during the last eleven groundwater monitoring events.

Figure 9 presents chloride concentration trend graphs for each of the monitoring wells sampled at the Site. A review of this figure indicates that the chloride concentration trends observed in the groundwater samples are, in general, decreasing in monitoring wells MW-4 and MW-8. The soil remediation activities conducted in the first quarter of 2014 have removed the continuing source of chloride impacts to the groundwater at the Site. Source removal has facilitated the physical natural attenuation mechanisms of dispersion and dilution on remnant chloride concentrations present in Site groundwater.

During the thirty-second quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.14 feet.

4.0 CONCLUSIONS

Based upon the data presented herein, the following conclusions are presented:

- Groundwater beneath the Site is encountered at depths ranging from approximately 46 to 49 feet from the surveyed top-of-casing of the Site monitoring wells.
- The direction of groundwater flow at the Site is, in general, from the northwest to the southeast.
- During the reporting period, concentrations of chloride greater than the Limit of 250 mg/L were observed in the groundwater samples collected from monitoring wells MW-4, ranging from 387 mg/L to 528 mg/L. Concentrations of chloride less than the Limit of 250 mg/L were observed in MW-8 during all events, ranging from 29.6 mg/L to 92.5 mg/L. Concentrations of chloride less than the Limit have been observed in monitoring well MW-8 during the last eleven monitoring events.
- The SVE System is operating as designed and has removed approximately 14,563 pounds of VOCs since start-up on June 6, 2014.
- During the reporting period, a measurable quantity of LNAPL was not recovered from monitoring well MW-1R. The lack of recovery is attributed to the decreasing LNAPL thicknesses observed within MW-1R (0.14-feet to 0.78-feet) during the reporting period. LNAPL thicknesses this thin are outside the effective operating capabilities of the skimmer-pump technology deployed within monitoring well MW-1R.

5.0 RECOMMENDATIONS

Based upon a review of the data presented within this report, the following recommendations have been developed:

- Operation of the LNAPL skimmer-pump within monitoring well MW-1R has been stopped
 as the LNAPL thickness observed within this well is too thin to be recovered utilizing this
 technology. A hydrophobic LNAPL absorbent sock will be deployed within monitoring well
 MW-1R to continue LNAPL removal.
- As specified in the Plan, LNAPL recovery within monitoring well MW-1R should be continued until the LNAPL observed within this well has been adequately eliminated.
- As specified in the Plan, when the LNAPL has been adequately eliminated from monitoring
 well MW-1R, the groundwater within this well should be monitored for BTEX until the levels
 of these constituents fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62
 mg/L, respectively, for eight consecutive quarters.
- Concentrations of chloride in monitoring well MW-8 have exhibited levels below the New Mexico Water Quality Control Commission standard of 250 mg/l for eleven consecutive events. Based on this milestone and the NMOCD-approved Stage 2 Abatement Plan, chloride monitoring will no longer be conducted from monitoring well MW-8.
- The groundwater within monitoring well MW-4 should continue to be monitored on a
 quarterly basis for chloride until eight consecutive quarterly sampling events result in
 chloride levels less than the New Mexico Water Quality Control Commission standards.
 The next groundwater monitoring event at the Site is scheduled to be conducted in
 June 2022.

TABLES

Received by OCD: 6/9/2022 7:12:29 AM Table 1: Summary of SVE System Field Readings April 1: System Field Readings April 2: State M Lease (AP-7) Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disch	narge		Calculated
Date	Time	Time	since					lbs since last	Tot	al	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
06/07/14	8:00	4131.73	19.73	20	596	519	2.281	44.99	44.99	0.02	
06/08/14	7:10	4154.69	22.96	43	398	483	1.416	32.50	77.50	0.04	
06/08/14	9:15	4156.94	2.25	45	5000	489	18.021	40.55	118.05	0.06	
06/12/14	12:40	4256.45	99.51	144	1817	120	1.607	159.92	277.96	0.14	
06/12/14	12:43	4259.65	3.20	148	1561	117	1.346	4.31	282.27	0.14	
06/13/14	7:15	4274.90	18.45	163	1804	122	1.622	29.93	307.89	0.15	
06/13/14	7:17	4276.27	1.37	164	3390	121	3.023	4.14	312.03	0.16	
06/13/14	7:18	4277.08	0.81	165	2301	120	2.035	1.65	313.68	0.16	
06/19/14	12:05	4422.02	144.94	310	1153	120	1.020	147.81	461.49	0.23	
06/19/14	13:30	4423.74	1.72	312	1117	107	0.881	1.52	463.00	0.23	
06/19/14	16:00	4426.00	2.26	314	1448	121	1.291	2.92	465.92	0.23	0.00
06/24/14	12:05	4543.27	117.27	431	1440	120	1.274	149.36	615.28	0.31	0.98
06/26/14	12:40	4591.01	165.01	479	1970	127	1.844	304.28	919.56	0.46	
06/26/14	12:42	4593.20	2.19	481	1968	120	1.741	3.81	923.37	0.46	
07/03/14	9:35	4755.92	162.72	644	1650	126	1.532	249.34	1172.71	0.59	
07/03/14	9:37	4757.95	2.03	646	1318	126	1.224	2.48	1175.20	0.59	
07/09/14	11:40	4901.77	143.82	790	875	126	0.812	116.80	1292.00	0.65	
07/09/14	11:42	4903.69	1.92	792	795	124	0.727	1.40	1293.39	0.65	
07/17/14	12:33	5094.48	190.79	982	790	124	0.722	137.75	1431.15	0.72	
07/17/14	12:34	5095.13	0.65	983	790	127	0.739	0.48	1431.63	0.72	
07/17/14	12:36	5097.75	2.62	986	790	127	0.739	1.94	1433.56	0.72	
08/01/14	11:00	5452.10	354.35	1,340	1078	139	1.104		1824.91	0.91	
08/01/14	11:42	5454.03	1.93	1,342	938	150	1.037	2.00	1826.91	0.91	
08/01/14	11:44	5456.32	2.29	1,344	2314	14	0.239	0.55	1827.46	0.91	
10/10/14	13:00	7118.38	1662.06	3,006	130	51	0.049	81.70	1909.16	0.95	
10/10/14	13:02	7120.15	1.77	3,008	216	58	0.093	0.16	1909.32	0.95	1.86
10/31/14	13:00	7622.85	502.70	3,511	161	48	0.057	28.63	1937.95	0.97	
10/31/14	13:04	7624.49	1.64	3,512	78	54	0.031	0.05	1938.00	0.97	
12/11/14	13:50	8607.53	983.04	4,496	352	131	0.340	334.10	2272.11	1.14	
01/15/15	10:11	9441.32	833.79	5,329	47	131	0.045	37.60	2309.70	1.15	
01/15/15	10:12	9442.31	0.99	5,330	173	152	0.194		2309.89	1.15	
01/15/15	10:15	9445.26	2.95	5,333	388	136	0.389	1.15	2311.04	1.16	
01/29/15	11:50	9778.04	332.78	5,666	240	54	0.095	31.49	2342.53	1.17	
01/29/15	11:52	9780.13	2.09	5,668	239	50	0.088	0.18	2342.72	1.17	0.21
02/26/15	11:00	10448.98	668.85	6,337	72	137	0.073	48.63	2391.35	1.20	
02/26/15	11:02	10450.10	1.12	6,338	178	155	0.204		2391.57	1.20	
03/12/15	10:15	10780.66	330.56	6,669	483	155	0.552		2573.97	1.29	
04/28/15	8:30	11901.34	1120.68	7,789	126	114	0.106		2692.84	1.35	
04/28/15	8:36	11907.42	6.08	7,795	132	126	0.123		2693.58	1.35	
05/14/15	9:05	12285.12	377.70	8,173	96	55	0.039		2708.26	1.35	
05/14/15	9:10	12290.05	4.93	8,178	105	58	0.039		2708.48	1.35	1.10
05/28/15	11:30	12623.70	333.65	8,512	6	150	0.043		2710.55	1.36	
06/11/15	10:39	12650.70	27.00	8,539	318	172	0.403		2721.43	1.36	
07/02/15	11:00	13154.04		9,042	85	112	0.403		2756.75	1.38	
09/03/15	8:00	13154.04	1508.13	10,550	249	104	0.070		3044.60	1.58	U./b
12/10/15	13:00	17015.28	2353.11	12,903	162	95	0.191		3311.52	1.66	0.86

Received by OCD: 6/9/2022 7:12:29 AM Table 1: Summary of SVE System Field Readings April 1: System Field Readings April 2: State M Lease (AP-7) Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Discl	narge		Calculated
Date	Time	Time	since					lbs since last	Tot	al	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
03/10/16	12:00	17899.58	884.30	13,788	209	105	0.162	143.03	3454.55	1.73	1.78
06/29/16	8:00	20558.59	2659.01	16,447	156	101	0.116	309.58	3764.13	1.88	3.77
07/27/16	12:30	21232.43	673.84	17,120	126	103	0.095	64.20	3828.33	1.91	
08/25/16	11:00	21927.96	695.53	17,816	115	270	0.229	159.45	3987.78	1.99	1.55
09/22/16	10:20	22596.81	668.85	18,485	169	220	0.274	183.07	4170.85	2.09	
12/08/16	9:30	24443.73	1846.92	20,332	109	220	0.177	327.03	4497.88	2.25	6.59
01/10/17	12:23	24758.20	314.47	20,646	173	233	0.297	93.37	4591.25	2.30	
01/25/17	10:56	25115.43	357.23	21,003	206	179	0.271	96.95	4688.20	2.34	3.06
02/22/17	10:35	25786.27	670.84	21,674	248	214	0.391	262.30	4950.50	2.48	3.00
03/09/17	11:04	26146.82	360.55	22,035	321	209	0.495	178.51	5129.01	2.56	
04/05/17	11:55	26792.33	645.51	22,680	454	113	0.378	244.08	5373.09	2.69	
05/16/17	7:00	26967.77	175.44	22,856	61	198	0.089	15.69	5388.79	2.69	5.78
06/07/17	13:00	27495.83	528.06	23,384	54	221	0.087	46.02	5434.80	2.72	
09/07/17	11:36	29698.50	2202.67	25,587	62	200	0.091	201.31	5636.11	2.82	
09/22/17	11:30	30057.43	358.93	25,945	56	211	0.087	31.26	5667.37	2.83	
10/04/17	10:15	30344.40	286.97	26,232	57	198	0.083	23.87	5691.24	2.85	0.81
11/02/17	13:00	31042.78	698.38	26,931	58	185	0.079	55.23	5746.48	2.87	0.02
12/01/17	12:30	31739.31	696.53	27,627	59	192	0.083	58.16	5804.63	2.90	
12/06/17	12:40	31859.62	120.31	27,748	6	270	0.011	1.36	5806.00	2.90	
12/18/17	15:00	32149.36	289.74	28,037	60	208	0.092	26.65	5832.65	2.92	
01/09/18	10:00	32672.25	522.89	28,560	52	189	0.072	37.88	5870.52	2.94	
01/26/18	10:15	33080.48	408.23	28,968	48	172	0.061	24.84	5895.36	2.95	
02/09/18	13:10	33416.85	336.37	29,305	32	220	0.052	17.45	5912.82	2.96	0.19
02/23/18	11:15	33753.60	336.75	29,642	34	186	0.047	15.70	5928.51	2.96	
03/07/18	10:55	34040.75	287.15	29,929	52	227	0.087	24.98	5953.50	2.98	
03/16/18	13:03	34251.67	210.92	30,140	48	195	0.069	14.55	5968.05	2.98	
04/13/18	9:15	34970.90	719.23	30,859	46	200	0.068	48.77	6016.82	3.01	
04/30/18	13:16	35332.87	361.97	31,221	46	200	0.068	24.54	6041.36	3.02	
05/15/18	13:34	35692.17	359.30	31,580	48	200	0.071	25.42	6066.78	3.03	0.65
05/29/18	14:20	36028.04	335.87	31,916	48	200	0.071	23.77	6090.55	3.05	0.65
06/04/18	16:30	36169.50	141.46	32,058	71	200	0.105	14.81	6105.35	3.05	
06/20/18 07/03/18	14:30 10:30	36556.30 36865.13	386.80 308.83	32,444 32,753	48 56	200 520	0.071 0.215	27.37 66.28	6132.72 6199.01	3.07	
07/03/18	10:30	36865.13	308.83		46	486	0.215	63.30	6262.30		
08/09/18	12:30	37249.27	505.70	33,137 33,643	58	386	0.165	83.45	6345.75	3.13	
08/09/18	12.30	37734.97	303.70	33,043	36	300	0.105	65.45	0343.73	3.17	2.13
09/00/18	12:00	38730.31	975.34	34,618	46	405	0.137	133.93	6479.67	3.24	
10/04/18	15:30	39093.45	363.14	34,981	73	405	0.137	82.47	6562.14	3.24	
10/04/18	13:00	39428.14		35,316	42	261	0.227	27.04	6589.19	3.29	
10/13/18	13:40	39716.90		35,605	52	317	0.031	35.08	6624.27	3.31	
11/16/18	8:00	39983.80	266.90	35,872	68	156	0.121	20.87	6645.14	3.32	1.19
11/16/18	9:54	39985.70	1.90	35,872	77	264	0.078	0.28	6645.42	3.32	1.19
12/11/18	14:20	40585.95		36,474	90	150	0.149	59.53	6704.95	3.35	
12/11/18	13:40	40365.57		36,854	72	310	0.099	62.45	6767.40	3.38	
17/7/19	15.40	40905.57	3/9.02	30,834	12	310	0.105	02.45	0/0/.40	3.38	

Received by OCD: 6/9/2022 7:12:29 AM Table 1: Summary of SVE System Field Readings April 1: System Field Readings April 2: State M Lease (AP-7) Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disch	narge		Calculated
Date	Time	Time	since					lbs since last	Tot	al	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
01/24/19	14:58	41636.05	670.48	37,524	63	275	0.128	85.62	6853.01	3.43	
02/05/19	12:02	41919.95	283.90	37,808	48	251	0.088	25.08	6878.09	3.44	
02/21/19	12:00	42303.95	384.00	38,192	26	218	0.042	16.10	6894.20	3.45	
03/07/19	7:00	42632.85	328.90	38,521	80	208	0.122	40.29	6934.48	3.47	0.97
03/22/19	11:09	42986.51	353.66	38,875	47	177	0.062	21.78	6956.26	3.48	
04/03/19	15:00	43277.65	291.14	39,166	58	440	0.186	54.29	7010.55	3.51	
04/18/19	12:00	43634.32	356.67	39,522	105	450	0.348	124.21	7134.76	3.57	
05/17/19	13:30	44330.99	696.67	40,219	39	365	0.104	72.34	7207.11	3.60	
06/12/19	17:00	44952.75	621.76	40,841	6	170	0.008	4.67	7211.78	3.61	
06/25/19	11:00	45283.69	330.94	41,172	23	445	0.075	24.97	7236.75	3.62	
07/09/19	13:30	45573.87	290.18	41,462	27	360	0.072	20.79	7257.53	3.63	
07/22/19	14:00	45906.56	332.69	41,795	27	425	0.083	27.62	7285.15	3.64	0.87
08/05/19	11:30	46239.45	332.89	42,127	37	462	0.126	41.94	7327.09	3.66	
08/19/19	11:00	46575.01	335.56	42,463	23	533	0.090	30.32	7357.41	3.68	
09/03/19	15:15	46937.77	362.76	42,826	31	455	0.104	37.71	7395.12	3.70	
09/05/19	7:30	46980.41	42.64	42,868	79	227	0.133	5.65	7400.77	3.70	
09/16/19	11:30	47242.95	262.54	43,131	21	372	0.058	15.12	7415.89	3.71	
09/30/19	11:00	47576.43	333.48	43,464	24	355	0.063	20.94	7436.83	3.72	
10/16/19	12:00	47958.94	382.51	43,847	22	280	0.045	17.37	7454.20	3.73	
10/28/19	11:45	48246.61	287.67	44,135	16	326	0.038	11.06	7465.26	3.73	
11/11/19	11:00	48581.38	334.77	44,469	35	488	0.127	42.56	7507.82	3.75	
11/11/19	12:10	48582.46	1.08	44,470	27	188	0.037	0.04	7507.86	3.75	0.88
11/26/19	11:20	48916.78	334.32	44,805	16	284	0.033	10.95	7518.82	3.76	
11/26/19	11:50	48917.34	0.56	44,805	26	472	0.089	0.05	7518.87	3.76	
12/11/19	10:30	49294.17	376.83	45,182	30	214	0.047	17.79	7536.65	3.77	
12/22/19	11:00	49558.50	264.33	45,447	16	462	0.054	14.40	7551.05	3.78	
12/30/19	14:00	49631.20	72.70	45,519	30	462	0.102	7.43	7558.48	3.78	
01/12/20	13:00	49682.50	51.30	45,571	19	282	0.039	2.01	7560.49	3.78	
02/10/20	11:00	49806.20	123.70	45,694	19	145	0.021	2.55	7563.04	3.78	
03/05/20	12:40	50000.00	193.80	45,888	38	197	0.055	10.66	7573.71	3.79	0.69
03/09/20	12:10	50070.44	70.44	45,958	23	250	0.041	2.92	7576.62	3.79	
03/23/20	11:45	50083.25	12.81	45,971	25	323	0.060	0.76	7577.39	3.79	
04/06/20	10:30	50139.34	56.09	46,027	26	316	0.060	3.34	7580.73	3.79	
04/20/20	10:30	50225.20	85.86	46,113	19	408	0.056	4.84	7585.57	3.79	
05/05/20	11:00	50540.55	315.35	46,429	61	311	0.140	44.17	7629.74	3.81	1.06
05/18/20	12:30	50840.55	300.00	46,729	36	506	0.132	39.72	7669.46	3.83	
06/06/20	10:10	51279.56	439.01	47,168	47	340	0.118	51.71	7721.16	3.86	
06/20/20	13:20	51616.41	336.85	47,504	34	322	0.081	27.18	7748.35	3.87	
07/06/20	10:44	51998.22	381.81	47,886	0.5	425	0.002	0.60	7748.94	3.87	
07/19/20	11:10	52309.12	310.90	48,197	29	470	0.099	30.80	7779.75	3.89	0.54
08/09/20	17:30	52819.74		48,708	28	428	0.087	44.46	7824.20	3.91	0.51
09/14/20	18:30	53480.00	660.26	49,368	25	421	0.076	50.19	7874.40	3.94	
09/24/20	13:20	53703.31	223.31	49,591	47	410	0.143	31.85	7906.25	3.95	
11/15/20	13:00	54664.23	960.92	50,552	38	418	0.116	111.61	8017.86	4.01	
12/11/20	8:27	55250.13	585.90	51,138	67	380	0.187	109.62	8127.48	4.06	1.36

Table 1: Summary of SVE System Field Readings Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disc	harge		Calculated
Date	Time	Time	since					lbs since last	To	tal	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
02/28/21	10:00	56876.10	1625.97	52,764	37	410	0.112	181.80	8309.28	4.15	0.36
03/02/21	14:05	56926.31	50.21	52,814	6.4	355	0.017	0.84	8310.12	4.16	
04/21/21	14:11	58101.61	1175.30	53,990	2.9	391	0.008	9.82	8319.94	4.16	
05/13/21	13:42	58654.06	552.45	54,542	3.2	490	0.012	6.38	8326.32	4.16	0.07
06/08/21	12:30	59275.70	621.64	55,164	31.0	460	0.105	65.34	8391.66	4.20	
09/09/21	12:50	60240.17	964.47	56,128	91.7	422	0.285	275.08	8666.74	4.33	1.53
09/24/21	12:30	60600.84	360.67	56,489	28.4	415	0.087	31.33	8698.07	4.35	1.55
10/24/21	14:20	61323.92	723.08	57,212	23.7	312	0.055	39.41	8737.48	4.37	
11/19/21	14:11	61946.79	622.87	57,835	26.1	402	0.077	48.17	8785.65	4.39	0.27
12/07/21	12:30	62377.93	431.14	58,266	6.0	350	0.015	6.67	8792.32	4.40	
01/23/22	10:49	63503.18	1125.25	59,391	15.4	295	0.033	37.68	8830.00	4.42	
02/16/22	11:30	64080.45	577.27	59,968	17.2	396	0.050	28.98	8858.98	4.43	1.38
03/09/22	12:01	64561.31	480.86	60,449	16.7	383	0.047	22.67	8881.65	4.44	1.56
03/27/22	9:05	65012.44	451.13	60,900	17.4	372	0.048	21.52	8903.17	4.45	
							Correc	ted Total:	14,563.70	7.40	

Notes:

- 1. Color shading indicates air sampling period with a unique correlation factor.
- 2. During the June 24 & July 17, 2014 site visit the field readings were not recorded. The italicized values presented above for these dates are conservative estimated values based upon last known readings.

Received by OCD: 6/9/2022 7:12:29 AM

 Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples
 Chesapeake Energy Corporation, State M Lease (AP-72)

Lea County, New Mexico

Sample ID: cample Date: 2-15 ppb v/v ppb v/v ppb v/v ppb v/v	<pre>SVE 1-Aug-14 <2000 8,820 <320</pre>	Canister #34000823 Serial C8528 2014-12-11 11-Dec-14 <615 2,960	CANISTER #C8522 12-Mar-15	Canister #8408 2015-06-11 Air Sample 11-Jun-15	Canister #5451 Batch #320- 14155 9-3-15 3-Sep-15	#34000512 BATCH ID #320- 15930 10-Dec-15	STATE M-1 LEASE 10-Mar-16	20160629 M SVE 29-Jun-16	20160922 M SVE 22-Sep-16	20161208 M SVE 8-Dec-16	20170309 M SVE 9-Mar-17
ppb v/v ppb v/v ppb v/v ppb v/v	<2000 8,820	<615				10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	9 Dec 16	9 Mar 17
ppb v/v ppb v/v ppb v/v ppb v/v	8,820		<965						Cob-10	0-Dec-10	3-IVIAI - I /
ppb v/v ppb v/v ppb v/v ppb v/v	8,820		<965								
ppb v/v ppb v/v ppb v/v	8,820		<965								
ppb v/v ppb v/v	•	2 060		<860	<615	<370	<915	<280	<175	<106	<203
ppb v/v	<320	2,300	533	3,630	312	194	1,070	2,600	853	373	550
		<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	103.5	<6.33	<12.2
ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
ppb v/v	1,800	272	<154	<138	<98.4	<59.2	<146	177	<27.9	<16.9	<32.4
ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
	1,980	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
	•										<12.2
	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
											<32.4
	<160	<49.2	84.5	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
											<16.2
											<16.2
											<16.2
											<16.2
	<160										<16.2
											908
	•										263
											<81.0
											<16.2
											<16.2
											<16.2
											<16.2
	ppb v/v	ppb v/v <160	ppb v/v <160	ppb v/v <160	ppb v/v <160	ppb v/v <160 <49.2 <77.2 <68.8 <49.2 ppb v/v <320 <98.4 <154 <138 <98.4 ppb v/v <320 <98.4 <154 <138 <98.4 ppb v/v <4180 <272 <154 <138 <98.4 ppb v/v <320 <98.4 <154 <138 <98.4 ppb v/v <320 <98.4 <154 <138 <98.4 ppb v/v <120 <36.9 <57.9 <51.6 <36.9 ppb v/v <320 <98.4 <154 <138 <98.4 ppb v/v <160 <49.2 <77.2 <68.8 <49.2 ppb v/v <160 <49.2 <77.2 <68.8 <49.2	Ppb v/v <160	Ppb v/v <160 <49.2 <77.2 <68.8 <49.2 <29.6 <73.2 <146 <73.2 <146 <154 <138 <98.4 <59.2 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <146 <1	pb v/v < 160 <49.2 < 77.2 < 68.8 < 49.2 < 29.6 < 73.2 < 22.4 pb v/v < 320 < 98.4 < 154 < 138 < 98.4 < 59.2 < 146 < 44.8 pb v/v < 320 < 98.4 < 154 < 138 < 98.4 < 59.2 < 146 < 44.8 ppb v/v 1,800 272 < 154 < 138 < 98.4 < 59.2 < 146 < 44.8 ppb v/v < 320 < 98.4 < 154 < 138 < 98.4 < 59.2 < 146 < 44.8 ppb v/v < 120 < 36.9 < 57.9 < 51.6 < 36.9 < 22.2 < 54.9 < 16.8 ppb v/v < 320 < 98.4 < 154 < 138 < 98.4 < 59.2 < 146 < 44.8 ppb v/v < 320 < 98.4 < 154 < 138 < 98.4 < 59.2 < 146 < 44.8 ppb v/v < 320 < 98.4 < 154 < 138 < 98.4 < 59.2 <	Pipb v/V <160	Pyb V/V <160

 Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples
 Chesapeake Energy Corporation, State M Lease (AP-72)

Lea County, New Mexico

							CANISTER					
			Canister		Canister #8408	Canister #5451	#34000512					
		SVE	#34000823 Serial	CANISTER	2015-06-11 Air	Batch #320-	BATCH ID #320-	STATE M-1	20160629 M	20160922 M	20161208 M	20170309 M
	Sample ID:		C8528 2014-12-11	#C8522	Sample	14155 9-3-15	15930	LEASE	SVE	SVE	SVE	SVE
Parameters	Sample Date:	1-Aug-14	11-Dec-14	12-Mar-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17
1,1,2,2-Tetrachloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	41.1	<14.0	<8.44	20.0
Tetrachloroethene	ppb v/v	<160	71.9	<77.2	<68.8	<49.2	<29.6	92.9	<22.4	<14.0	<8.44	<16.2
Toluene	ppb v/v	4,020	1,040	228	1,480	<49.2	<29.6	120	975	380	164	193
1,2,4-Trichlorobenzene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0
1,1,1-Trichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
1,1,2-Trichloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Trichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Trichlorofluoromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2,4-Trimethylbenzene	ppb v/v	2,020	648	299	774	<98.4	355	<146	968	740	228	411
1,3,5-Trimethylbenzene	ppb v/v	821	385	172	353	73.0	247	<73.2	727	541	192	397
Vinyl acetate	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Vinyl chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.8	<14.0	<8.44	<16.2
m,p-Xylene	ppb v/v	12,700	4,680	1,110	3,920	1,140	1,380	609	5,050	2,550	870	1,510
o-Xylene	ppb v/v	4,520	1,190	286	1,120	164	194	107	720	419	177	337
Total VOC as Hexane (C6-C12)	ppb v/v	1,060,000	655,000	99,400	351,000	190,000	140,000	371,000	590,000	262,000	117,000	167,000

 Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples
 Chesapeake Energy Corporation, State M Lease (AP-72)

Lea County, New Mexico

		20170607M	20170907 M	20171206 -M-	20180307-M-	20180604-M-	20180906-M-	2018121-M-	20190307 M	20190905 M	20200122 M1-	20200305 M	20200606-M-	20200924M1S		
	Sample ID:	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	VE	20201211 M-1	20210302 M-1
Parameters	Sample Date:	7-Jun-17	7-Sep-17	6-Dec-17	7-Mar-18	4-Jun-18	6-Sep-18	11-Dec-18	7-Mar-19	5-Sep-19	22-Jan-20	5-Mar-20	6-Jun-20	24-Sep-20	11-Dec-20	2-Mar-21
Volatile Organic Compounds by	TO 45															
Acetone	ppb v/v	<76.0	<116	<20.0	5.67	<78.0	<124	<178	<22.3	<84	<17	<78	<34	<29	<110	<7.8
Benzene	ppb v/v	180	143	1.77	24.5	87.9	112	137	40.1	140	3.7	42	48	18	80	<0.78
Benzyl chloride	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromodichloromethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromoform	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromomethane	ppb v/v	<12.2	<18.5	<3.20	<0.400	<12.5	<19.8	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8
2-Butanone (MEK)	ppb v/v	<12.2	178	<3.20	<0.800	<12.5	<19.8	<28.4	5.97	<34	<6.7	<31	<34	<11	<43	<3.1
Carbon disulfide	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1
Carbon tetrachloride	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chlorobenzene	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Dibromochloromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chloroethane	ppb v/v	<12.2	<18.5	<3.20	<0.400	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1
Chloroform	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chloromethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8
1.2-Dibromoethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1.2-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,3-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1.4-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Dichlorodifluoromethane	 	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1-Dichloroethane	ppb v/v	<4.56	<6.93	<1.00	<0.400	<4.68	<7.43	<10.7	<1.76	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1.2-Dichloroethane		<12.2	<18.5	<3.20	0.881	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1-Dichloroethene	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
cis-1,2-Dichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
trans-1,2-Dichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichloropropane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
cis-1,3-Dichloropropene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
trans-1,3-Dichloropropene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichloro-1,1,2,2-tetrafluoroethane	+	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Ethylbenzene	ppb v/v	229	219	4.75	25.4	250	334	363	284	270	33	120	150	56	180	<0.78
4-Ethyltoluene		58.5	45.1	2.38	3.74	42.7	89.2	76.7	167	180	25	100	130	64	170	0.82
Hexachlorobutadiene	ppb v/v	<30.4	<46.2	< 8.00	<2.00	42.7 <31.2	<49.5	<71.0	<8.90	<34	< 6.7	<31	<34	<11	<43	<3.1
2-Hexanone		<6.08	<9.24	<1.60	<0.400	<4.68	<9.91	<14.2	<1.78	<34	<6.7	<31	<34	<11	<43	<3.1
	ppb v/v	<6.08	<9.2 4 <9.24	<1.60	0.540	<4.68 <6.24					<0.7 <17	<31 <78	<34	<29	<110	<3.1 <7.8
Methylene Chloride	ppb v/v	<6.08	<9.24 <9.24	<1.60	<0.400		<9.91	<14.2 <14.2	<1.78	<84		<7.8	<34 <8.4	<2.9	<11	<0.78
4-Methyl-2-pentanone	ppb v/v	<6.08	<9.24 <9.24	<1.60	<0.400	<6.24 <6.24	<9.91	<14.2	<1.78 <1.78	<8.4	<1.7 <1.7	<7.8	<8.4 <8.4			<0.78
Styrene	ppb v/v	₹0.08	<u>\ \9.24</u>	<u> </u>	<u> </u>	<0.24	<9.91	<u> </u>	<1./δ	<8.4	<u> </u>	<u> </u>	<u>\</u> \0.4	<2.9	<11	<u> </u>

Table 2 : Summary of Laboratory Analytical Results for Discharge Air Samples Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

	Sample ID:	20170607M SVE	20170907 M SVE	20171206 -M- SVE	20180307-M- SVE	20180604-M- SVE	20180906-M- SVE	2018121-M- SVE	20190307 M SVE	20190905 M SVE	20200122 M1- SVE	20200305 M SVE	20200606-M- SVE	20200924M1S VE	20201211 M-1	20210302 M-1
Parameters	Sample Date:	7-Jun-17	7-Sep-17	6-Dec-17	7-Mar-18	4-Jun-18	6-Sep-18	11-Dec-18	7-Mar-19	5-Sep-19	22-Jan-20	5-Mar-20	6-Jun-20	24-Sep-20	11-Dec-20	2-Mar-21
1,1,2,2-Tetrachloroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Tetrachloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Toluene	ppb v/v	68.4	49.2	<1.60	6.92	34.4	44.3	41.0	38.8	30	3.1	<7.8	11	3.1	<11	<0.78
1,2,4-Trichlorobenzene	ppb v/v	<30.4	<46.2	<8.00	<2.00	<31.2	<49.5	<71.0	<8.90	<34	<6.7	<31	<34	<11	<43	<3.1
1,1,1-Trichloroethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1,2-Trichloroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Trichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	20	<8.4	<2.9	<11	<0.78
Trichlorofluoromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2,4-Trimethylbenzene	ppb v/v	85.9	50.3	7.35	9.05	71.3	134	124	83.0	75	10	59	60	38	79	<0.78
1,3,5-Trimethylbenzene	ppb v/v	53.6	45.5	6.18	5.81	46.2	88.6	102	67.0	69	9.1	43	50	31	77	1.0
Vinyl acetate	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<6.7	<31	<34	<11	<43	<3.1
Vinyl chloride	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
m,p-Xylene	ppb v/v	322	330	10.3	48.7	376	501	544	442	440	66	210	280	110	380	<0.78
o-Xylene	ppb v/v	98.4	96.4	2.54	15.6	107	133	158	137	120	55	50	63	25	83	<0.78
Total VOC as Hexane (C6-C12)	ppb v/v	54,500	40,900	4,630	9,930	46,500	76,600	107,000	77,900	69,000	14,000	26,000	50,000	24,000	91,000	2,300

Table 2: Summary of Laboratory Analytical Results for Discharge Air Samples
Chesapeake Energy Corporation, State M Lease (AP-72)
Lea County, New Mexico

		20210608 M-1	20210908 M-1	20211207M-1	20220308 M-1
Parameters	Sample Date:	8-Jun-21	9-Sep-21	7-Dec-21	8-Mar-22
Volatile Organic Compounds by	1				
Acetone	ppb v/v	16	92	8.6	30
Benzene	ppb v/v	<0.71	71	<0.75	<1.6
Benzyl chloride	ppb v/v	<0.71	<0.80	<0.75	<1.6
Bromodichloromethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
Bromoform	ppb v/v	<0.71	<0.80	<0.75	<1.6
Bromomethane	ppb v/v	<7.1	<8.0	<7.5	<16
2-Butanone (MEK)	ppb v/v	<2.8	11	<3.0	<6.2
Carbon disulfide	ppb v/v	<2.8	11	<3.0	<6.2
Carbon tetrachloride	ppb v/v	<0.71	<0.80	<0.75	<1.6
Chlorobenzene	ppb v/v	<0.71	<0.80	<0.75	<1.6
Dibromochloromethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
Chloroethane	ppb v/v	<2.8	<3.2	<3.0	<6.2
Chloroform	ppb v/v	<0.71	<0.80	<0.75	<1.6
Chloromethane	ppb v/v	<7.1	<8.0	<7.5	<16
1,2-Dibromoethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2-Dichlorobenzene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,3-Dichlorobenzene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,4-Dichlorobenzene	ppb v/v	<0.71	<0.80	<0.75	<1.6
Dichlorodifluoromethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,1-Dichloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2-Dichloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,1-Dichloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
cis-1,2-Dichloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
trans-1,2-Dichloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2-Dichloropropane	ppb v/v	<0.71	<0.80	<0.75	<1.6
cis-1,3-Dichloropropene	ppb v/v	<0.71	<0.80	<0.75	<1.6
trans-1,3-Dichloropropene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
Ethylbenzene	ppb v/v	<0.71	88	<0.75	5.2
4-Ethyltoluene	ppb v/v	<0.71	140	<0.75	27
Hexachlorobutadiene	ppb v/v	<2.8	<3.2	<3.0	<6.2
2-Hexanone	ppb v/v	<2.8	<3.2	<3.0	<6.2
Methylene Chloride	ppb v/v	<7.1	<8.0	<7.5	<16
4-Methyl-2-pentanone	ppb v/v	<0.71	<0.80	<0.75	<1.6
Styrene	ppb v/v	<0.71	<0.80	<0.75	<1.6

Table 2: Summary of Laboratory Analytical Results for Discharge Air Samples
Chesapeake Energy Corporation, State M Lease (AP-72)
Lea County, New Mexico

	Sample ID:	20210608 M-1	20210908 M-1	20211207M-1	20220308 M-1
Parameters	Sample Date:	8-Jun-21	9-Sep-21	7-Dec-21	8-Mar-22
1,1,2,2-Tetrachloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
Tetrachloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
Toluene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2,4-Trichlorobenzene	ppb v/v	<2.8	<3.2	<3.0	<6.2
1,1,1-Trichloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,1,2-Trichloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
Trichloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
Trichlorofluoromethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2,4-Trimethylbenzene	ppb v/v	<0.71	100	0.80	9.7
1,3,5-Trimethylbenzene	ppb v/v	1.3	110	1.3	14
Vinyl acetate	ppb v/v	<2.8	<3.2	<3.0	<6.2
Vinyl chloride	ppb v/v	<0.71	<0.80	<0.75	<1.6
m,p-Xylene	ppb v/v	<0.71	260	<0.75	20
o-Xylene	ppb v/v	<0.71	55	<0.75	4.0
Total VOC as Hexane (C6-C12)	ppb v/v	2,100	140,000	1,600	24,000

	Top of Casing	Depth to Liquid	Depth to	Depth to	LNAPL	Groundwater
Monitoring	Elevation	Measurement	LNAPL	Groundwater	Thickness	Elevation
Well	(AMSL-Feet)	Date	(Feet-TOC)	(Feet-TOC)	(Feet)	(AMSL-Feet)
MW-1R	3888.97	06/03/14	44.57	49.89	5.32	3839.08
	3888.97	09/22/14	44.87	48.91	4.04	3840.06
	3888.97	12/10/14	45.80	46.30	0.50	3842.67
	3888.97	03/11/15	45.12	46.83	1.71	3842.14
	3888.97	06/10/15	45.54	46.31	0.77	3842.66
	3888.97	09/02/15	45.81	47.37	1.56	3841.60
	3888.97	12/09/15	45.22	49.07	3.85	3839.90
	3888.97	03/09/16	45.30	47.18	1.88	3841.79
	3888.97	06/28/16	45.75	47.02	1.27	3841.95
	3888.97	09/21/16	46.10	46.38	0.28	3842.59
	3888.97	12/07/16	46.13	46.88	0.75	3842.09
	3888.97	03/08/17	46.14	46.57	0.43	3842.40
	3888.97	06/06/17	45.82	48.86	3.04	3840.11
	3888.97	09/08/17	46.30	46.63	0.33	3842.34
	3888.97	12/04/17	46.36	46.77	0.41	3842.20
	3888.97	03/05/18	46.47	46.81	0.34	3842.16
	3888.97	06/05/18	46.56	46.93	0.37	3842.04
	3888.97	09/05/18	46.31	48.81	2.50	3840.16
	3888.97	12/11/18	46.34	49.11	2.77	3839.86
	3888.97	03/06/19	46.48	49.20	2.72	3839.77
	3888.97	06/04/19	46.58	48.84	2.26	3840.13
	3888.97	09/04/19	47.88	48.67	0.79	3840.30
	3888.97	12/06/19	47.13	47.43	0.30	3841.54
	3888.97	03/05/20	47.11	47.68	0.57	3841.29
	3888.97	06/06/20	47.11	47.45	0.24	3841.52
	3888.97	09/24/20	47.44	47.60	0.16	3841.37
	3888.97	12/10/20	47.51	47.69	0.18	3841.28
	3888.97	03/02/21	47.48	47.58	0.10	3841.39
	3888.97	06/08/21	47.52	48.30	0.78	3840.67
	3888.97	09/08/21	47.73	48.00	0.27	3840.97
	3888.97	12/07/21	47.73	48.03	0.27	3840.94
	3888.97	03/08/22	47.84	47.98	0.10	3840.99
MW-2	3890.51	06/03/14		47.23	0.14	3843.28
IVIVV-Z	3890.51	09/22/14		46.37		3844.14
				45.91		
	3890.51	12/10/14				3844.60
	3890.51	03/11/15		46.03		3844.48
	3890.51	06/10/15		46.38		3844.13
	3890.51	09/02/15		46.44		3844.07
	3890.51	12/09/15		46.51		3844.00
	3890.51	03/09/16		46.61		3843.90
	3890.51	06/28/16		46.70		3843.81
	3890.51	09/21/16		46.80		3843.71
	3890.51	12/07/16		46.82		3843.69
	3890.51	03/08/17		46.88		3843.63
	3890.51	06/06/17		46.98		3843.53
	3890.51	09/08/17		47.06		3843.45
	3890.51	12/04/17		47.11		3843.40
	3890.51	03/05/18		47.22		3843.2

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwate Elevation (AMSL-Feet
MW-2	3890.51	06/05/18		47.31		3843.20
(con't)	3890.51	09/05/18		47.36		3843.15
,	3890.51	12/11/18		47.46		3843.05
	3890.51	03/06/19		47.51		3843.00
	3890.51	06/04/19		47.61		3842.90
	3890.51	09/04/19		47.76		3842.75
	3890.51	12/06/19		47.81		3842.70
	3890.51	03/05/20		47.91		3842.60
	3890.51	06/06/20		49.98		3840.53
	3890.51	09/24/20		48.14		3842.37
	3890.51	12/10/20		48.21		3842.30
	3890.51	03/02/21		48.25		3842.26
	3890.51	06/08/21		48.31		3842.20
	3890.51	09/08/21		48.41		3842.10
	3890.51	12/07/21		48.51		3842.00
	3890.51	03/08/22		48.58		3841.93
MW-3	3889.34	06/03/14		46.35		3842.99
10100-5	3889.34	09/22/14		46.49		3842.85
	3889.34	12/10/14	_ 	46.08		3843.26
	3889.34	03/11/15		46.28		3843.06
	3889.34	06/10/15		46.51		3842.83
	3889.34	09/02/15		46.60		3842.74
	3889.34	12/09/15		46.68		3842.66
	3889.34	03/09/16		46.72		3842.62
	3889.34	06/28/16		46.85		3842.49
	3889.34	09/21/16		46.96		3842.38
	3889.34	12/07/16		47.02		3842.32
	3889.34	03/08/17		47.11		3842.23
	3889.34	06/06/17		47.13		3842.21
	3889.34	09/08/17		47.23		3842.11
	3889.34	12/04/17		47.28		3842.06
	3889.34	03/05/18		47.44		3841.90
	3889.34	06/05/18		47.48		3841.86
	3889.34	09/05/18		47.55		3841.79
	3889.34	12/11/18		47.60		3841.74
	3889.34	03/06/19		47.68		3841.66
	3889.34	06/04/19		47.80		3841.54
	3889.34	09/04/19		47.95		3841.39
	3889.34	12/06/19		48.00		3841.34
	3889.34	03/05/20		48.03		3841.31
	3889.34	06/06/20		48.16		3841.18
	3889.34	09/24/20		48.34		3841.00
	3889.34	12/10/20		48.42		3840.92
	3889.34	03/02/21		48.42		3840.92
	3889.34	06/08/21		48.50		3840.84
	3889.34	09/08/21		48.60		3840.74
	3889.34	12/07/21		48.71		3840.63
	3889.34	03/08/22		48.74		3840.60

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwate Elevation (AMSL-Feet	
MW-4	3888.90	06/03/14		46.38		3842.52	
	3888.90	09/22/14		46.50		3842.40	
	3888.90	12/10/14		46.14		3842.76	
	3888.90	03/11/15		46.35		3842.55	
	3888.90	06/10/15		46.49		3842.41	
	3888.90	09/02/15		46.57		3842.33	
	3888.90	12/09/15		46.68		3842.22	
	3888.90	03/09/16		46.75		3842.15	
	3888.90	06/28/16		46.87		3842.03	
	3888.90	09/21/16		46.94		3841.96	
	3888.90	12/07/16		47.03		3841.87	
	3888.90	03/08/17		47.08		3841.82	
	3888.90	06/06/17		47.15		3841.75	
	3888.90	09/08/17		47.24		3841.66	
	3888.90	12/04/17		47.29		3841.61	
	3888.90	03/05/18		47.38		3841.52	
	3888.90	06/05/18		47.50		3841.40	
	3888.90	09/05/18		47.53		3841.37	
	3888.90	12/11/18		47.62		3841.28	
	3888.90	03/06/19		47.72		3841.18	
	3888.90	06/04/19		47.80		3841.10	
	3888.90	09/04/19		47.98		3840.92	
	3888.90	12/06/19		48.00		3840.90	
	3888.90	03/05/20		48.07		3840.83	
	3888.90	06/06/20		48.20		3840.70	
	3888.90	09/24/20		48.32		3840.58	
	3888.90	12/10/20		48.39		3840.51	
	3888.90	03/02/21		48.44		3840.46	
	3888.90	06/08/21		48.55		3840.35	
	3888.90	09/08/21		48.60		3840.30	
	3888.90	12/07/21		48.72		3840.18	
	3888.90	03/08/22		48.80		3840.10	
MW-5	3890.41	06/03/14		46.56		3843.85	
11111 0	3890.41	09/22/14		46.70		3843.71	
	3890.41	12/10/14		46.29		3844.12	
	3890.41	03/11/15		46.44		3843.97	
	3890.41	06/10/15		46.69		3843.72	
	3890.41	09/02/15		46.79		3843.62	
	3890.41	12/09/15		46.85		3843.56	
	3890.41	03/09/16		46.90		3843.51	
	3890.41	06/28/16		47.08		3843.33	
	3890.41	09/21/16		47.13		3843.28	
	3890.41	12/07/16		47.13		3843.27	
	3890.41	03/08/17		47.14	_ -	3843.18	
	3890.41	06/06/17	_ 	47.23	_ 	3843.09	
							
	3890.41	09/08/17		47.40		3843.01	
	3890.41 3890.41	12/04/17 03/05/18		47.27 47.54		3843.14 3842.87	

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwate Elevation (AMSL-Feet
MW-5	3890.41	06/05/18		47.66		3842.75
(con't)	3890.41	09/05/18		47.72		3842.69
,	3890.41	12/11/18		47.80		3842.61
	3890.41	03/06/19		47.85		3842.56
	3890.41	06/04/19		47.98		3842.43
	3890.41	09/04/19		48.15		3842.26
	3890.41	12/06/19		48.17		3842.24
	3890.41	03/05/20		48.23		3842.18
	3890.41	06/06/20		48.33		3842.08
	3890.41	09/24/20		48.51		3841.90
	3890.41	12/10/20		48.60		3841.81
	3890.41	03/02/21		48.60		3841.81
	3890.41	06/08/21		48.66		3841.75
	3890.41	09/08/21		48.76		3841.65
	3890.41	12/07/21		48.90		3841.51
	3890.41	03/08/22		48.90		3841.51
MW-6	3888.25	06/03/14		46.25		3842.00
	3888.25	09/22/14		46.39		3841.86
	3888.25	12/10/14		46.09		3842.16
	3888.25	03/11/15		46.23		3842.02
	3888.25	06/10/15		46.32		3841.93
	3888.25	09/02/15		46.48		3841.77
	3888.25	12/09/15		46.57		3841.68
	3888.25	03/09/16		46.62		3841.63
	3888.25	06/28/16		46.74		3841.51
	3888.25	09/21/16		46.81		3841.44
	3888.25	12/07/16		46.90		3841.35
	3888.25	03/08/17		46.93		3841.32
	3888.25	06/06/17		47.08		3841.17
	3888.25	09/08/17		47.12		3841.13
	3888.25	12/04/17		47.21		3841.04
	3888.25	03/05/18		47.30		3840.95
	3888.25	06/05/18		47.36		3840.89
	3888.25	09/05/18		47.43		3840.82
	3888.25	12/11/18		47.52		3840.73
	3888.25	03/06/19		47.60		3840.65
	3888.25	06/04/19		47.71	<u></u>	3840.54
	3888.25	09/04/19		47.81		3840.44
	3888.25	12/06/19		47.90		3840.35
	3888.25	03/05/20		47.90		3840.27
	3888.25	06/06/20		48.08		3840.17
	3888.25	09/24/20		48.23	<u></u>	3840.02
	3888.25	12/10/20		48.28	<u></u>	3839.97
	3888.25	03/02/21		48.33	_ -	3839.92
	3888.25	06/08/21		48.48		3839.77
						
	3888.25	09/08/21		48.50		3839.75
	3888.25 3888.25	12/07/21 03/08/22		48.60 48.67		3839.65 3839.58

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwate Elevation (AMSL-Feet
MW-7	3889.23	06/03/14		45.94		3843.29
	3889.23	09/22/14		46.08		3843.15
	3889.23	12/10/14		45.70		3843.53
	3889.23	03/11/15		45.36		3843.87
	3889.23	06/10/15		46.08		3843.15
	3889.23	09/02/15		46.14		3843.09
	3889.23	12/09/15		46.24		3842.99
	3889.23	03/09/16		46.30		3842.93
	3889.23	06/28/16		46.42		3842.81
	3889.23	09/21/16		46.52		3842.71
	3889.23	12/07/16		46.59		3842.64
	3889.23	03/08/17		46.65		3842.58
	3889.23	06/06/17		46.73		3842.50
	3889.23	09/08/17		46.80		3842.43
	3889.23	12/04/17		46.88		3842.35
	3889.23	03/05/18		46.96		3842.27
	3889.23	06/05/18		47.04		3842.19
	3889.23	09/05/18		47.11		3842.12
	3889.23	12/11/18		47.20		3842.03
	3889.23	03/06/19		47.27		3841.96
	3889.23	06/04/19		47.37		3841.86
	3889.23	09/04/19		47.50		3841.73
	3889.23	12/06/19		47.58		3841.65
	3889.23	03/05/20		47.66		3841.57
	3889.23	06/06/20		47.72		3841.51
	3889.23	09/24/20		47.90		3841.33
	3889.23	12/10/20		47.96		3841.27
	3889.23	03/02/21		48.02		3841.21
	3889.23	06/08/21		48.06		3841.17
	3889.23	09/08/21		48.14		3841.09
	3889.23	12/07/21		48.26		3840.97
	3889.23	03/08/22		48.33		3840.90
MW-8	3887.06	06/03/14		44.94		3842.12
	3887.06	09/22/14		45.11		3841.95
	3887.06	12/10/14		44.79		3842.27
	3887.06	03/11/15		44.94		3842.12
	3887.06	06/10/15		45.22		3841.84
	3887.06	09/02/15		45.21		3841.85
	3887.06	12/09/15		45.29		3841.77
	3887.06	03/09/16		45.35		3841.71
	3887.06	06/28/16		45.56		3841.50
	3887.06	09/21/16		45.67		3841.39
	3887.06	12/07/16		45.64		3841.42
	3887.06	03/08/17		45.68		3841.38
	3887.06	06/06/17		45.78		3841.28
	3887.06	09/08/17		45.82	<u></u>	3841.24
	3887.06	12/04/17		45.82		3841.15
	3887.06	03/05/18		46.03		3841.03

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-8	3887.06	06/05/18		46.12		3840.94
(con't)	3887.06	09/05/18		46.16		3840.90
	3887.06	12/11/18		46.26		3840.80
	3887.06	03/06/19		46.33		3840.73
	3887.06	06/04/19		46.42		3840.64
	3887.06	09/04/19		46.53		3840.53
	3887.06	12/06/19		46.62		3840.44
	3887.06	03/05/20		46.71		3840.35
	3887.06	06/06/20		46.79		3840.27
	3887.06	09/24/20		46.95		3840.11
	3887.06	12/10/20		47.02		3840.04
	3887.06	03/02/21		47.06		3840.00
	3887.06	06/08/21		47.21		3839.85
	3887.06	09/08/21		47.25		3839.81
	3887.06	12/07/21		47.36		3839.70
	3887.06	03/08/22		47.41		3839.65

Notes:

- 1. TOC : Measured from top of casing. 2. LNAPL : Light non aqueous phase liquid.
- 3. --: Denotes Not Measured.
- 4. AMSL: Denotes above mean sea level (AMSL)

Table 4: Summary of Laboratory Analytical Results for Groundwater Samples **Chesapeake Energy Corporation, State M Lease (AP-72)** Lea County, New Mexico

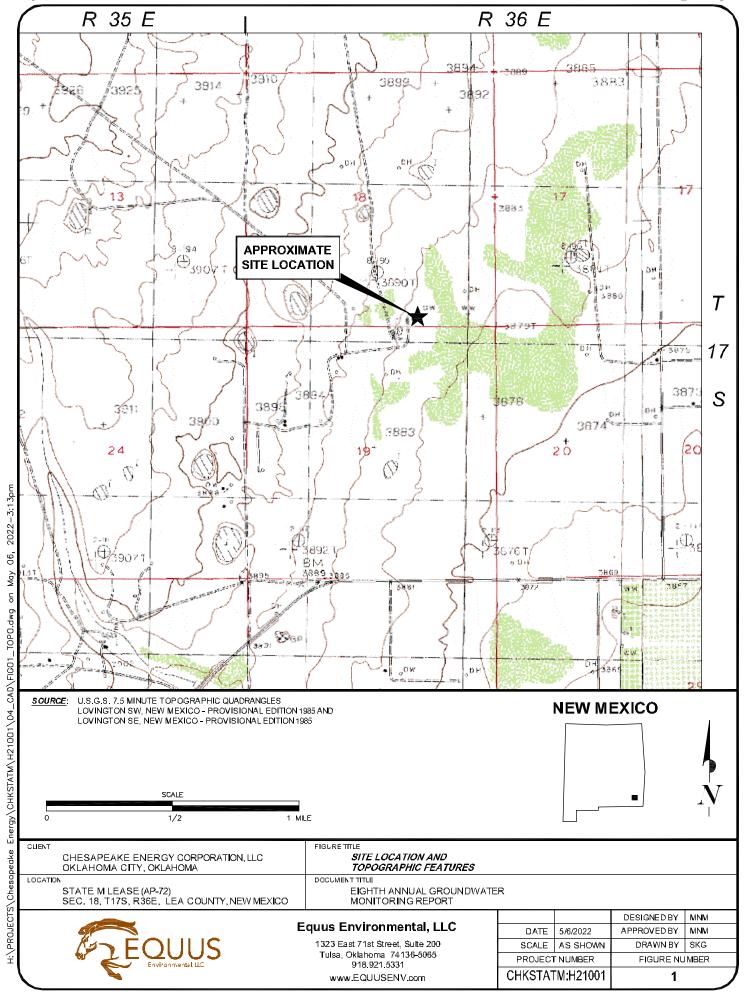
	Chloride (mg/L)															
	June 2014	Sept. 2014	Dec. 2014	March 2015	June 2015	Sept. 2015	Dec. 2015	March 2016	June 2016	Sept. 2016	Dec. 2016	March 2017	June 2017	Sept. 2017	Dec. 2017	March 2018
MW-1R		51.4	116	39.0	24.6	21.6	23.5	34.8	24.9	28.5	44.8	32.0	28.6	29.3	29.0	33.7
MW-2	17.7	17.4	18.3	16.6	16.8	16.6	15.4 *	13.5	18.9	17.6	18.2	15.0	15.9	15.2	16.2	16.6
MW-3	59.7	59.7	58.9	57.0	57.1	56.3	50.5 *	49.3	51.5	52.0	55.1	50.0	53.7	49.5	58.1	64.3
MW-4	586	534	535	543	556	567	546 *	525	527	569	605	500	493	465	492	484
MW-5	28.6	27.3	27.9	26.1	26.2	25.8	22.4 *	22.4	26.1	26.2	27.8	23.1	24.7	20.4	25.4	25.9
MW-6	282	263	268	261	253	277	197 *	150	128	128	125	94.4	86.3	79.3	71.8	64.7
MW-7	42.7	29.6	36.0	39.7	36.2	35.2	28.8 *	27.7	36.0	38.2	39.6	24.2	23.8	24.0	27.7	31.6
MW-8	409	442	463	485	558	327	499	504	539	490	768	489	531	573	570	587

Notes:

- 1. mg/L: milligrams per liter.
- 2. < : Analyte not detected at the laboratory reporting limit.
- 3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.
- 4. Cells shaded in blue indicate results that are above the laboratory reporting limit.
- 5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code 20.6.2.3103, Standards for Groundwater: chloride (250.0 mg/L).
- 6. --- : Analysis not performed.
- 7. * : Analysis performed outside of holding time.
- 8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.
- 9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.
- 10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

Received by OCD: 6/9/2022 7:12:29 AM

Table 4: Summary of Laboratory Analytical Results for Groundwater Samples **Chesapeake Energy Corporation, State M Lease (AP-72)** Lea County, New Mexico


	Chloride (mg/L)															
	June 2018	Sept. 2018	Dec. 2018	March 2019	June 2019	Sept. 2019	Dec. 2019	March 2020	June 2020	Sept. 2020	Dec. 2020	March 2021	June 2021	Sept. 2021	Dec. 2021	March 2022
MW-1R																
MW-2																
MW-3																
MW-4	413	387	373	617	392	404	421	443	429	430	475	437	528	438	404	387
MW-5																
MW-6																
MW-7																
MW-8	539	398	474	308	283	223	198	118	97.4	88.8	73.5	63.9	92.5	65.4	56.2	29.6

Notes:

- 1. mg/L: milligrams per liter.
- 2. < : Analyte not detected at the laboratory reporting limit.
- 3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.
- 4. Cells shaded in blue indicate results that are above the laboratory reporting limit.
- 5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code 20.6.2.3103, Standards for Groundwater: chloride (250.0 mg/L).
- 6. --- : Analysis not performed.
- 7. * : Analysis performed outside of holding time.
- 8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.
- 9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.
- 10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

Received by OCD: 6/9/2022 7:12:29 AM

FIGURES

CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA

LOCATION STATE M LEASE (AP-72) SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO

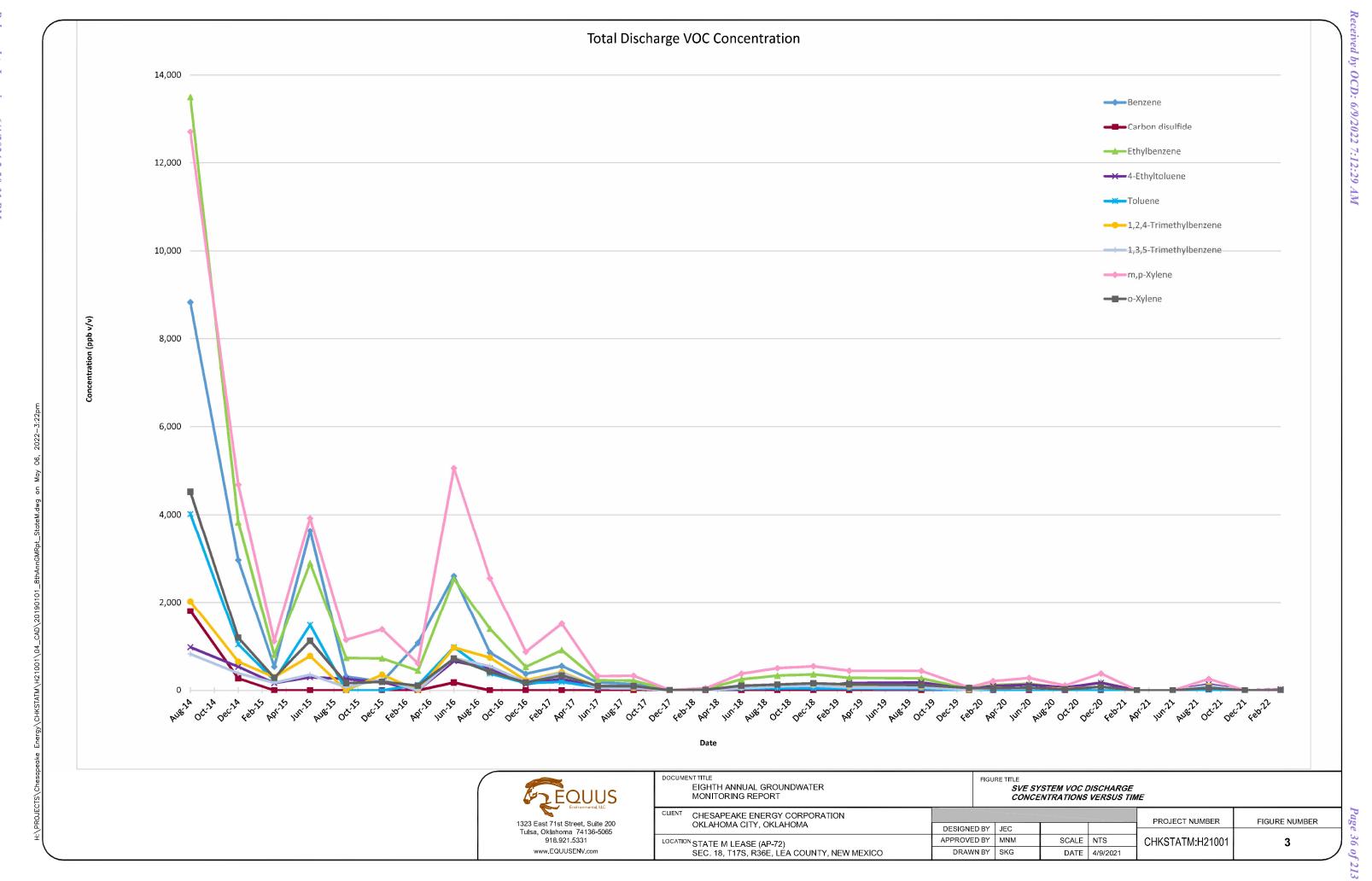
1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136-5065 918.921.5331

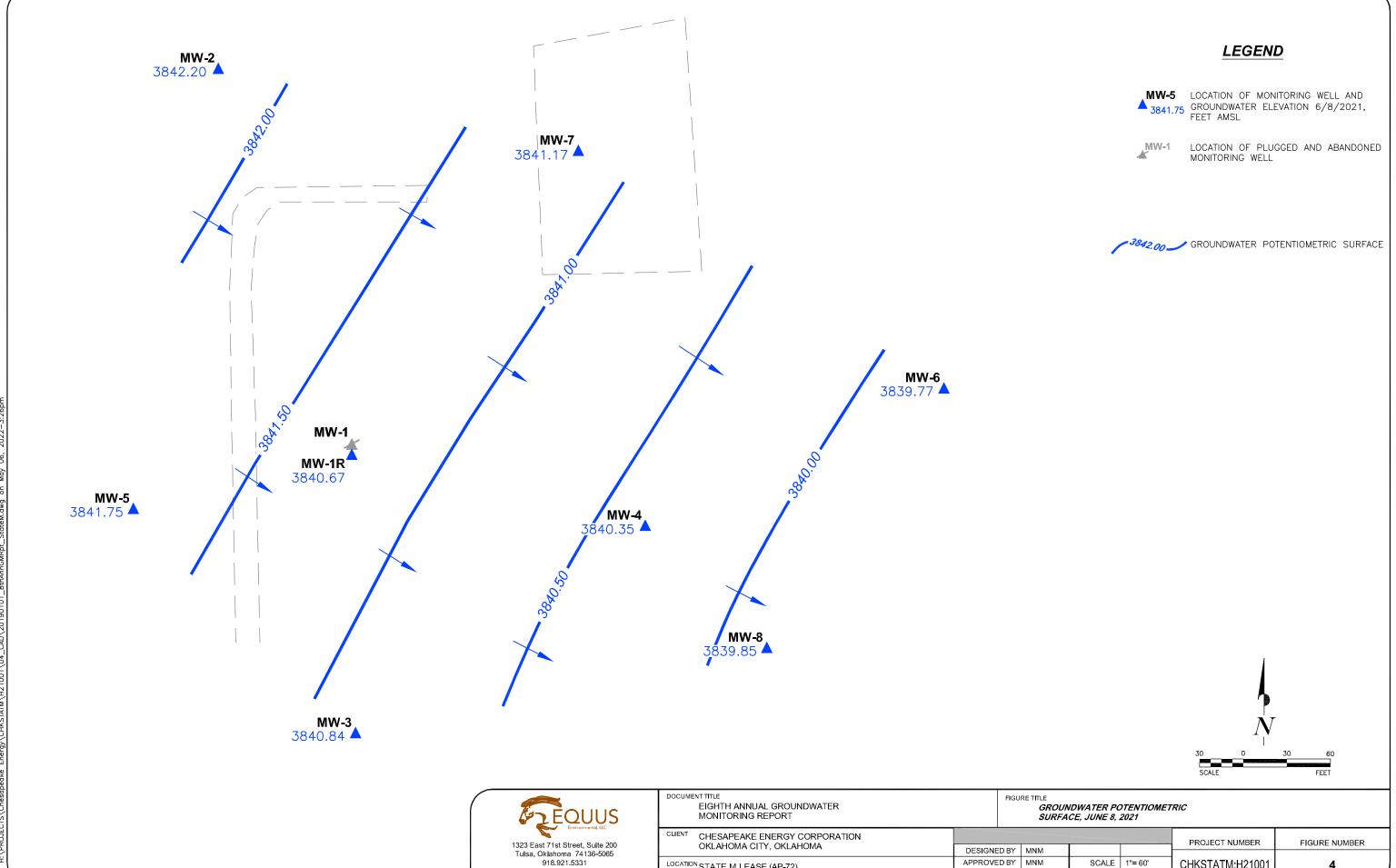
www.EQUUSENV.com

FIGURE NUMBER

PROJECT NUMBER

CHKSTATM:H21001

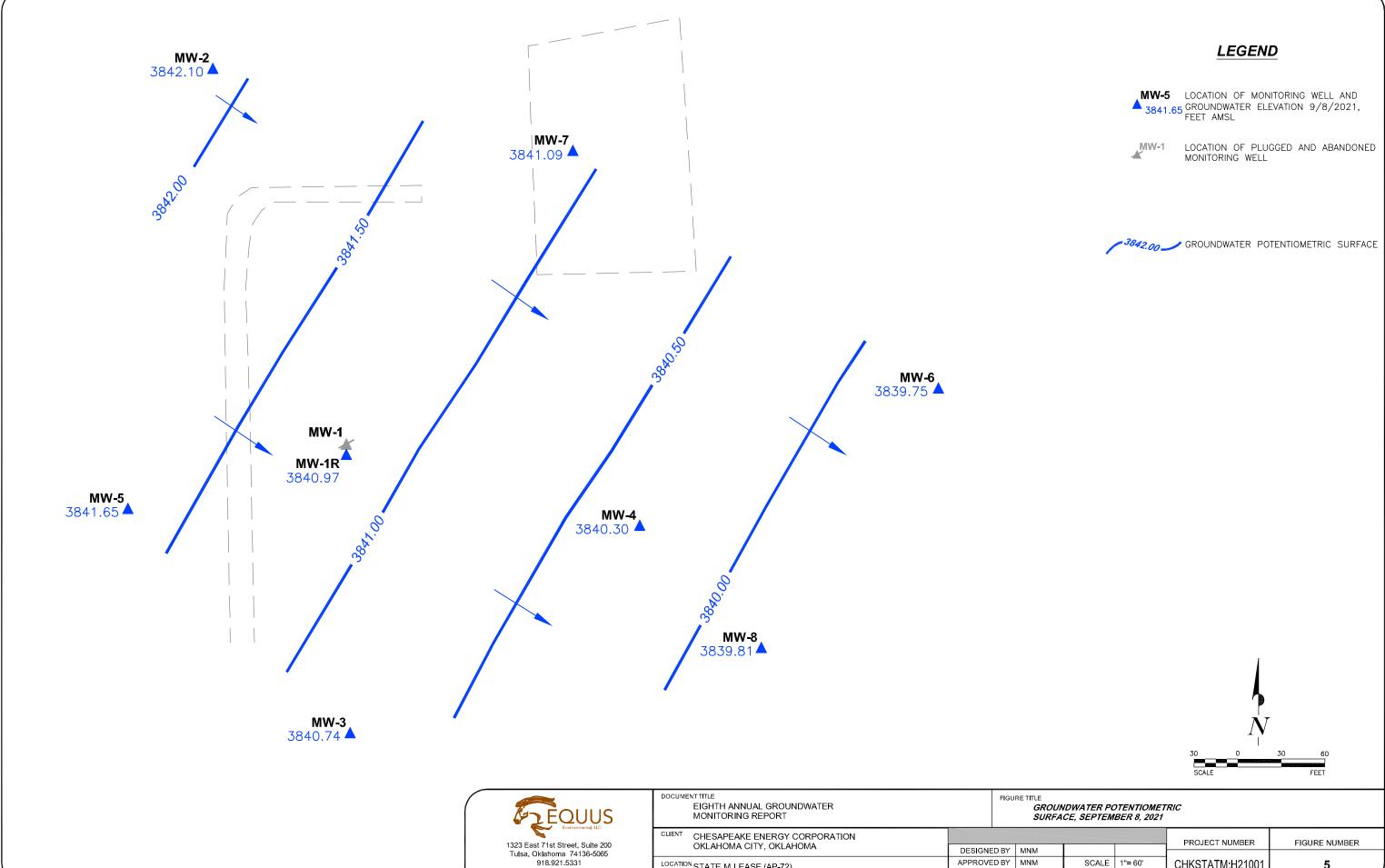

SCALE 1"= 60'


DATE 5/6/2022

DESIGNED BY MNM

APPROVED BY MNM

DRAWN BY SKG


www.EQUUSENV.com

APPROVED BY MNM

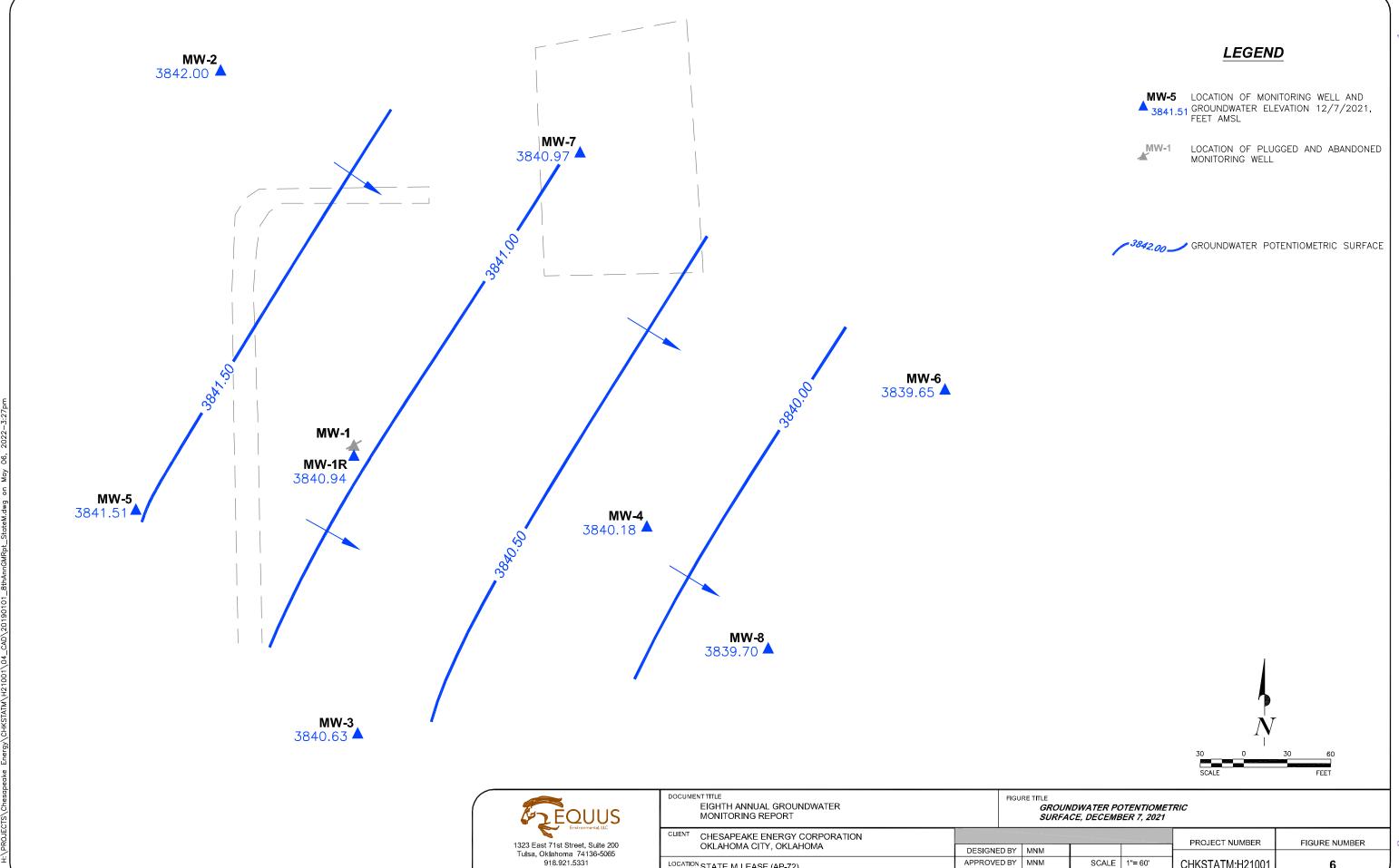
DRAWN BY SKG

SCALE 1"= 60'

DATE 5/6/2022

www.EQUUSENV.com

APPROVED BY MNM

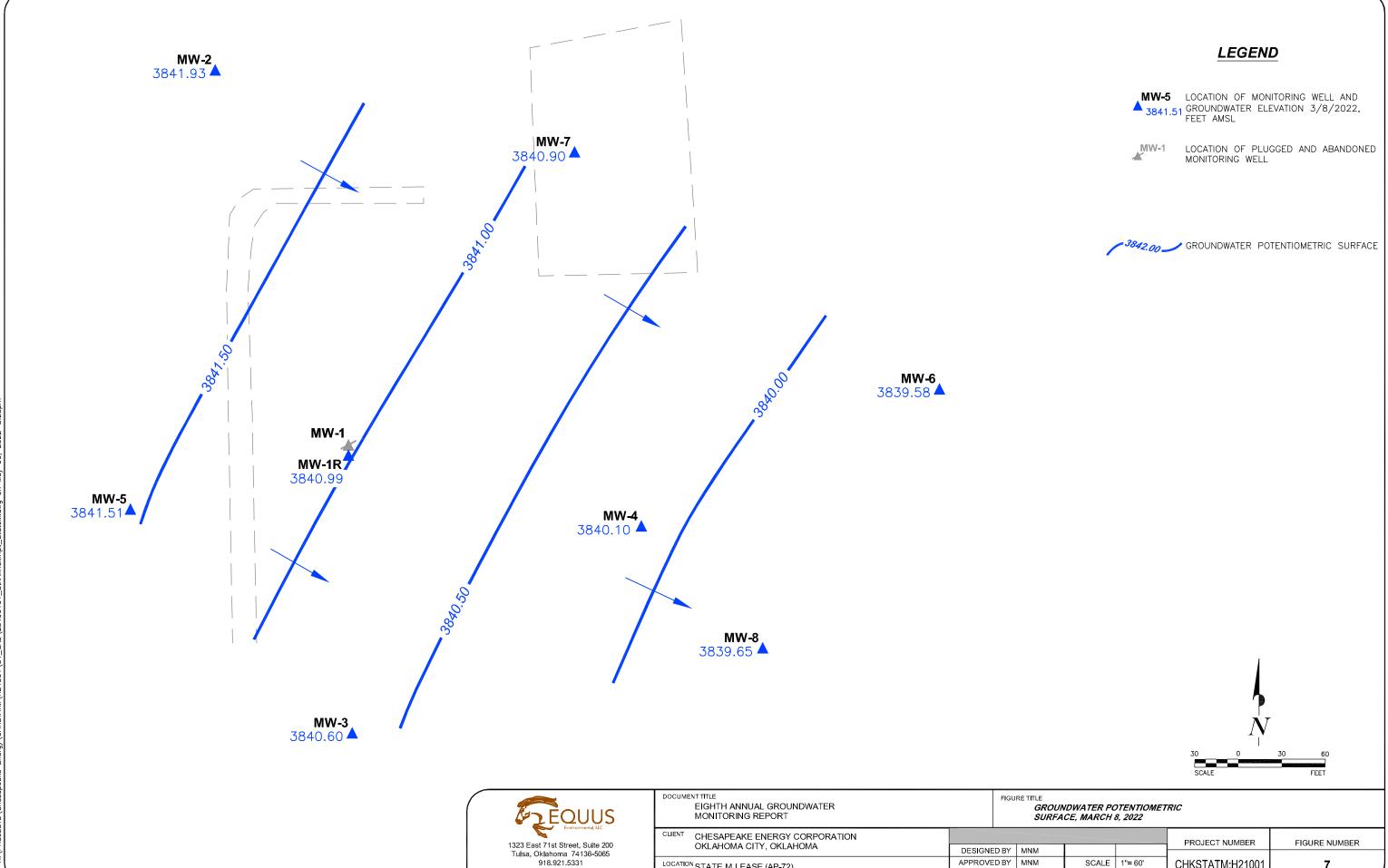

DRAWN BY SKG

SCALE 1"= 60'

DATE 5/6/2022

CHKSTATM:H21001

5

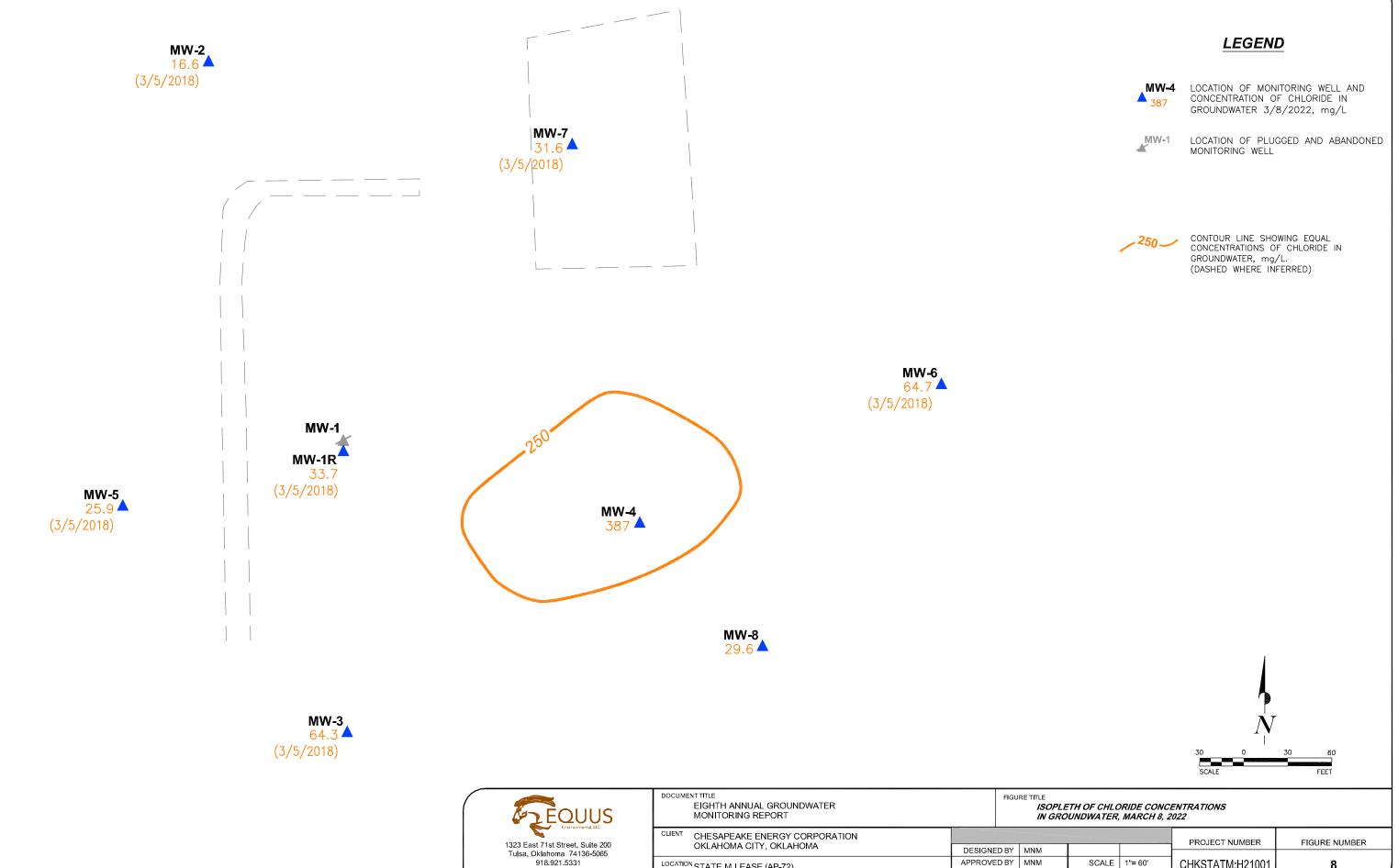

www.EQUUSENV.com

APPROVED BY MNM

DRAWN BY SKG

SCALE 1"= 60'

DATE 5/6/2022

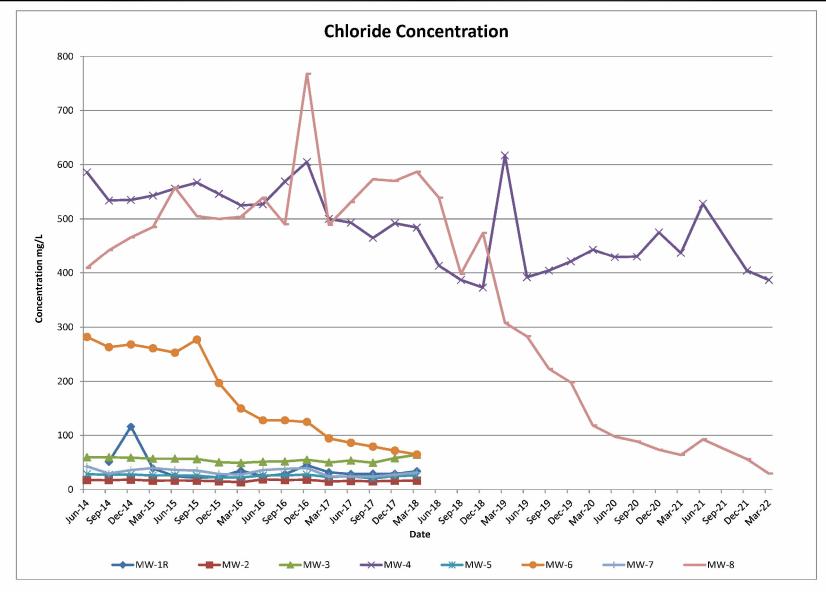

www.EQUUSENV.com

APPROVED BY MNM

DRAWN BY SKG

SCALE 1"= 60'

DATE 5/6/2022


www.EQUUSENV.com

APPROVED BY MNM

DRAWN BY SKG

SCALE 1"= 60'

DATE 5/6/2022

www.EQUUSENV.com

DOCUMENT TITLE

EIGHTH ANNUAL GROUNDWATER MONITORING REPORT			PIDE CONCEI GRAPHS	ITRATION	ATION				
CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA		my my			PROJECT NUMBER	FIGURE NUMBER			
	DESIGNED I	BY CNA							
LOCATION STATE M LEASE (AP-72)	APPROVED	BY MNM	SCALE	NTS	CHKSTATM:H21001	9			
SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN	BY SKG	DATE	5/6/2022		<i>)</i>			

FIGURE TITLE

CIA

Received by OCD: 6/9/2022 7:12:29 AM

APPENDICES

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

APPENDIX A STAGE 2 ABATEMENT PLAN

Mr. Glenn Von Gonten
New Mexico Oil Conservation Division
1220 South St. Francis Drive
Santa Fe, New Mexico 87505

Fax 432 687 5401 www.arcadis-us.com

ENVIRONMENT

ARCADIS U.S., Inc.

Suite 300 Midland Texas 79701 Tel 432 687 5400

1004 North Big Spring Street

Subject:

State M-1 AP-072 Stage 2 Abatement Plan

Dear Mr. Von Gonten:

On behalf of Chesapeake Energy Corporation, ARCCADIS U.S. Inc. respectfully submits the enclosed Stage 2 Abatement plan for the State M-1 site (AP-072). A Stage 1 Abatement Plan Report was submitted on March 20, 2012. Your review and approval of this Abatement Plan will be appreciated. The landowner, Darr Angell, is anxious for us to complete soil remediation at this site.

If you have any questions please do not hesitate to contact Bradley Blevins at (575) 391-1462 or via e-mail at bblevins@chkenergy or me at (432) 687-5400, e-mail address shall@aracdis-us.com.

Date:

March 27, 2012

Contact:

Sharon Hall

Phone:

432 687-5400

Email:

shall@aracdis-us.com

Our ref:

MT001088

ARCADIS U.S., Inc.

TX Engineering License # F-533

Sincerely,

ARCADIS U.S., Inc.

Sham E. Hall

Sharon E. Hall

Associate Vice President

Copies

Bradley Blevins- Chesapeake, Hobbs

Imagine the result

g:\aproject\chesapeake\m-1 stage 2 plan\transmitall letter.doc

Imagine the result

Chesapeake Energy Corporation

State M-1 AP-072 Stage 2 Abatement Plan Proposal

Hobbs, New Mexico

March 27, 2012

Sharon Hall Associate Vice President

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Prepared for: Chesapeake Energy Corporation Hobbs, New Mexico

Prepared by:
ARCADIS U.S., Inc.
1004 North Big Spring Street
Suite 300
Midland
Texas 79701
Tel 432 687 5400
Fax 432 687 5401

Our Ref.: MT001088.0001.00001

Date: March 27, 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1.	INTRO	DUCTIO	ON	1
2.	SUMM	ARY OF	F STAGE 1 ABATEMENT ACTIVITIES	1
3.	STAGE	2 ABA	ATEMENT PLAN PROPOSAL	2
	3.1	Soil Re	emediation	2
	3.2	Ground	dwater Remediation and Monitoring	3
		3.2.1	Chlorides	4
		3.2.2	Hydrocarbons	4
4.	PUBLI	C NOTII	FICATION	4
5.	REME	OITAIC	N WORK SCHEDULE	4
R	REFER	ENCES		5

Figures

Figure 1 Soil and Groundwater Analyte Concentrations

Figure 2 Proposed Excavation

Appendices

Appendix A Multi-Med Model Inputs and Outputs

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

1. INTRODUCTION

The subject site is a former tank battery site located east of Buckeye, New Mexico. The site was purchased by Chesapeake Energy Corporation (Chesapeake) in April 2004. Chesapeake did not operate the tank battery or the associated well field and began the process of facility abandonment in 2007.

Seven monitor wells and nine soil borings have been drilled at the site. Elevated chloride concentrations and limited hydrocarbon compounds were detected in soil samples collected from soil borings and monitoring wells. Elevated chlorides were detected in the down gradient monitor wells and light non-aqueous phase liquid (LNAPL) occurs in monitoring well MW-1. LNAPL recovery activities have been piloted at the site and will commence again upon completion of surface reclamation activities.

2. SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES

Initial site investigation activities were conducted in May of 2007 following abandonment of the tank battery. Stage 1 Abatement activities were conducted during the period of May 2007 through September 2011. Stage 1 Abatement activities included drilling and soil sampling of nine boreholes, drilling and sampling of seven monitor wells, EM 31 and EM 34 surveys, conversion of one monitoring well into a recovery well and recovery of phase-separated hydrocarbons from the recovery well.

New Mexico Oil Conservation Division (NMOCD) was notified of impacts to groundwater at the site via e-mail on May 30, 2007. NMOCD notified Chesapeake in a letter dated June 19, 2007 that a Stage 1 Abatement Plan was required for the site in accordance with Rule 19.

The Stage 1 Abatement Plan was submitted to NMOCD on August 22, 2007. The plan summarized site activities taken to date. The plan proposed the drilling and sampling of a minimum of three additional soil borings and installation and sampling of nine groundwater monitoring wells.

BBC contacted NMOCD via email on April 24, 2010 to inquire about the status of the Stage 1 Abatement Plan approval and Chesapeake's desire to conduct the proposed Stage 1 Abatement Plan activities. On May 27, 2010, NMOCD responded via email that the State was not staffed to review the Abatement Plans (APs) in a timely manner. On June 23, 2010, BBC contacted NMOCD via email to request a waiver of the Public Notice requirement and inform NMOCD that Chesapeake and the landowner were

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

anxious to move forward with the proposed AP activities. NMOCD replied via email on June 23, 2010 stating they were still understaffed to review the AP and could not waive the Public Notice requirement. They advised BBC that Chesapeake could proceed "at risk." On July 12, 2010 BBC informed NMOCD by registered letter that Chesapeake was planning to start the Stage 1 Assessment on or about August 23, 2010. They further informed NMOCD they would be submitting the required Public Notices, a copy of which was attached to the letter. NMOCD did not respond to the registered letter.

The public notices were published in the Hobbs News-Sun and Lovington Leader on July 22, 2010 and the Albuquerque Journal on July 24, 2010. No comments were received from the public or NMOCD during the 30-day comment period and Chesapeake proceeded with the proposed Stage 1 Abatement Plan activities on August 26, 2010. Copies of correspondence and Public Notice are included in Appendix A.

A detailed description of site activities and results can be found in the report submitted to NMOCD dated March 20, 2012 entitled State M-1 AP-072, Stage 1 Abatement Report (Site Assessment Investigation). Analytical results for soil and groundwater sampling are summarized on Figure 1.

3. STAGE 2 ABATEMENT PLAN PROPOSAL

After review of various remedial options, we propose the following Stage 2 Abatement Plan. The plan addresses soil and groundwater remediation.

3.1 Soil Remediation

The selected remedial option will be the excavation of near-surface soils and installation of clay liners. The anticipated extent and depth of excavation is based on assessment activities (laboratory analysis and visual observation) and is shown in Figure 2. Near surface soils (to a depth of 5 feet below ground surface) with chloride concentrations in excess of 1,000 milligrams per kilogram (mg/kg) and a Total Petroleum Hydrocarbons (TPH) concentration in excess of 1,000 mg/kg will be excavated and disposed. Excavated soils will be disposed at Lea Land Landfill.

Areas where chloride or TPH concentrations are expected to exceed 1,000 mg/kg at depths greater than 5 feet below ground surface soils will be excavated to a depth of 5

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

feet below ground surface. Soils will be screened in the field for chlorides using chloride field test kits and for TPH using a photoionization. Critical samples (samples used to delineate the excavations) will be submitted for laboratory analysis of chlorides and/or TPH. Following excavation, a 12-inch compacted clay layer that meets or exceeds a permeability of equal to or less than 1 x 10⁻⁸ centimeters per second will be installed in the excavations. The lined excavations will be backfilled with four feet of locally obtained native soil. All of the excavated areas will be re-seeded with native vegetation. Areas that are supporting vegetation will not be disturbed.

Use of the USEPA Multi-Med model demonstrates that the clay liners will mitigate the leaching of chlorides to groundwater. The model predicts that after 7000 years of infiltration through the liner the maximum concentration of chlorides in groundwater will be 221.8 milligrams per liter (mg/L). The Multi-Med inputs and outputs are included in Appendix A.

3.2 Groundwater Remediation and Monitoring

One additional groundwater monitoring well will be installed downgradient of the site. The monitoring well will be designated MW-8.

Groundwater samples will be collected from all of the monitoring wells and analyzed for chlorides using USEPA method 9056 for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling will be discontinued when eight quarters of sample results indicate chloride concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to the NMOCD annually on June 15.

Following removal of LNAPL from MW-1, groundwater samples will be collected from MW-1 and analyzed for benzene, toluene ethylbenzene and xylenes (BTEX) using USEPA method 8260B for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling of MW-1 for BTEX will be discontinued when eight quarters of sample results indicate BTEX concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

the NMOCD annually on June 15. Proposed groundwater remediation is presented in Sections 3.2.1 and 3.2.2.

3.2.1 Chlorides

Chloride concentrations in groundwater exceed New Mexico Water Quality Control Commission standards in two wells (MW-1 411mg/L and MW-4 472mg/L).

Removal of near-surface soils that are a potential source of chlorides and BTEX in groundwater and lining of excavations with chloride and TPH concentrations in excess of 1,000 mg/kg will mitigate leaching of chlorides to groundwater. Considering the relatively low concentrations of chlorides in groundwater and the fact that soil removal and clay liner infiltration barrier installation will be conducted at this site, we propose monitoring the site for a period of two years before considering pumping of groundwater at this site. With the proposed source removal and mitigation and the severe drought conditions being experienced in this area, we believe it prudent to evaluate if chloride mass removal by pumping is warranted at this site.

3.2.2 Hydrocarbons

A pilot LNAPL recovery test will take place over a three week period and will be used to develop long-term recovery procedures. LNAPL will be recovered from MW-1 and disposed in a NMOCD approved facility. Additionally, two soil vent borings equipped with wind turbines will be installed in the area near MW-1.

4. PUBLIC NOTIFICATION

Written notification of submittal of the Stage 2 Abatement Plan Proposal and site activities will be sent to all surface owners of record within a one-mile radius of the site. NMOCD will be supplied with a list of parties to be notified. Publication of notice of activities will be published in a state-wide circulated newspaper, the Albuquerque Journal, and two county newspapers, the Hobbs-Daily News Sun and the Lovington Leader.

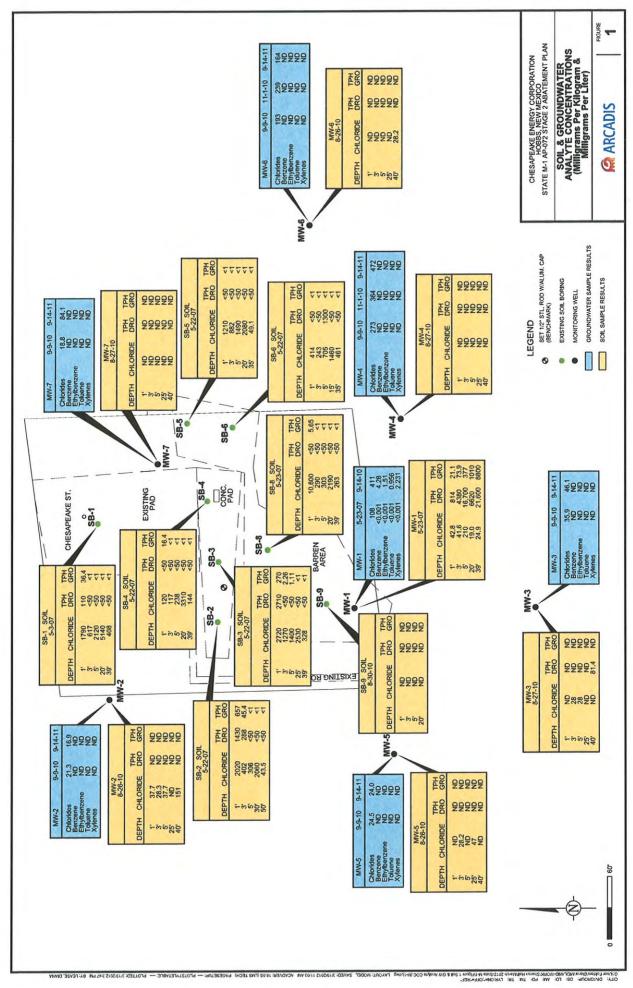
5. REMEDIATION WORK SCHEDULE

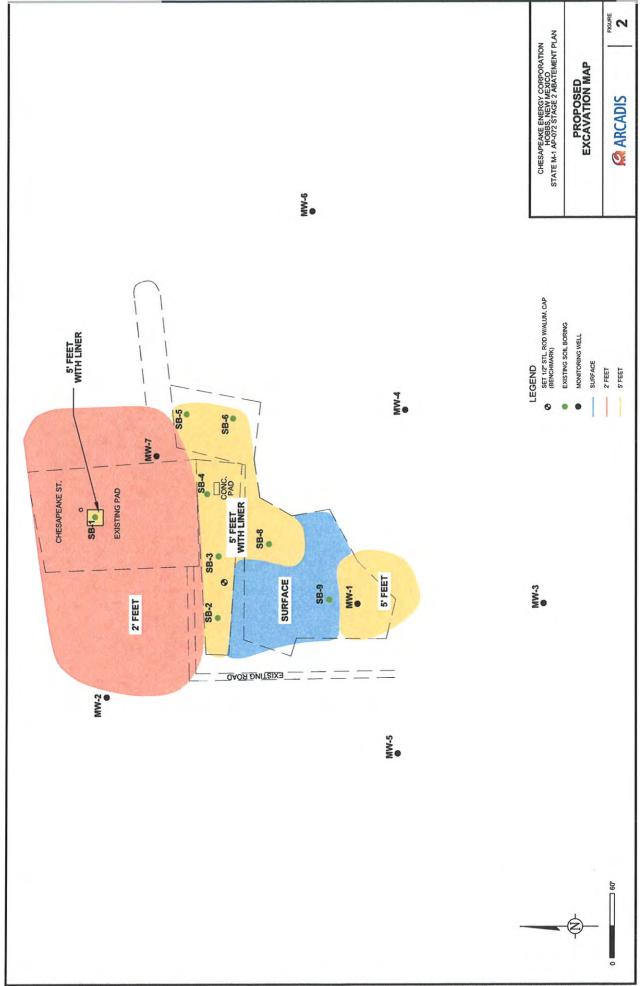
Soil remediation activities are expected to be completed in 15 working days (Monday through Friday). Groundwater remediation activities will be ongoing. An estimated completion date for groundwater remediation is not available.

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

6. REFERENCES


Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992


New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

State M-1 AP-072 Stage 1 Abatement Report (Site Assessment Investigation); ARCADIS; March 2012

State M-1Salt Water Disposal Tank Battery, Stage 1 Abatement Plan (Ap-072), BBC International; August 2007

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Appendix A

Multi-Med Model Inputs and Outputs

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico Multimed Model Input and Output (With Liner)

MOD	MODEL INPUT AND OUTPUT					
<i>I</i>	IPUT PAF	RAMETERS	3		Minimum	Maximum
	U	nsaturated	Zone Flo	w Parameters		
Depth of Unsaturated Zone	m	45	feet	13.7 m	0.000000001	None
Hydraulic Conductivity	cm/hr	2	ft/day	2.54 cm/hr	0.00000000001	10,000
Unsaturated Zone Porosity	fraction	0.05	fraction	0.05 fraction	0.000000001	0.99
Residual Water Content	fraction	0.01	fraction	0.010 fraction	0.000000001	1
	Uns	aturated Z	one Trans	port Parameters		
Thickness of Layer	m	45	feet	13.7 m	0.000000001	None
Percent of Organic Matter	%	2.6	%	2.6 %	0	100
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5
Biological Decay Coefficient	1/yr	0	1/yr	0 1/yr	0	None
		Aqu	ifer Paran	neters		
Aquifer Porosity	fraction	0.25	fraction	0.25 fraction	0.000000001	0.99
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5
Aguifer Thickness	m	50	ft	15.24 m	0.000000001	100,000
Hydraulic Conductivity	m/yr	2	ft/day	223 m/yr	0.0000001	100,000,000
Hydraulic Gradient	m/m	0.007	m/m	0.007 m/m	0.00000001	None
Organic Carbon Content	fraction	0.00315	fraction	0.00315 fraction	0.000001	1
Temperature of Aquifer	ů	14.4	°C	14.4 °C	0.00000001	None
рH		6.2		6.2	0.3	14
x-distance Radial Distance from						
Site to Receptor	m	1	m	1 m	11	None
			rce Param			
Infiltration Rate from the Facility	m/yr	0.124	in/yr	0.00315 m/yr	0.0000000001	10,000,000,000
Area of Waste Disposal Unit	m ²	46,800	ft ²	4348 m ²	0.01	None
Length Scale of Facility	m	240	feet	73.2 m	0.000000001	10,000,000,000
Width Scale of Facility	m	195	feet	59.4 m	0.000000001	10,000,000,000
Recharge Rate into the Plume	m/yr	16.71	in/yr	0.4244 m/yr	0	10,000,000,000
Duration of Pulse	yr	8,000	yr	8000 yr	0.000000001	None
Initial Concentration at Landfill	mg/L	6,000	mg/L	6,000 mg/L	0	None
		Addit	ional Para	meters		
Method				Gaussian	Gaussian	Patch
Name of Chemical Specified				Chloride		

MODEL	OUTPUT		
Final Concentration at Landfill	mg/L	221.8	mg/L

MODEL OUTPUT							
Concentration at Landfill	0.0 mg/L	Time	1 yr				
	0.0 mg/L		10 yr				
	0.0 mg/L		20 yr				
	18.9 mg/L		50 yr				
	36.6 mg/L		70 yr				
	45.4 mg/L		80 yr				
	61.8 mg/L		100 yr				
	123.4 mg/L		200 yr				
	154.1 mg/L		300 yr				
	166.3 mg/L		400 yr				
	178.5 mg/L		500 yr				
	190.7 mg/L		600 yr				
	204.8 mg/L		800 yr				
	211.1 mg/L		1,000 yr				
	220.4 mg/L		2,000 yr				
	221.6 mg/L		3,000 yr				
	221.8 mg/L		4,000 yr				
	221.8 mg/L		5,000 yr				
	221.8 mg/L		6,000 yr				
	221.8 mg/L		7,000 yr				

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico

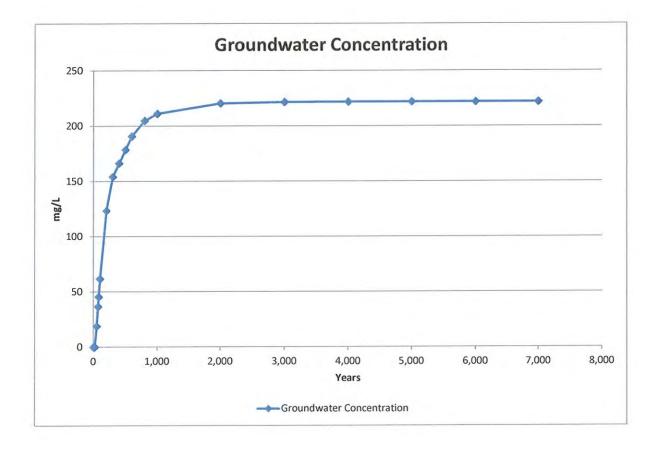


TABLE 6-3. TOTAL POROSITY OF VARIOUS MATERIALS

	No of		A wikh na atia
Material	No. of Analyses	Range	Arithmetic Mean
Igneous Rocks			
Weathered granite	8	0.34-0.57	0.45
Weathered gabbro	4	0.42-0.45	0.43
Basalt	94	0.03-0.35	0.17
Sedimentary Materials			
Sandstone	65	0.14-0.49	0.34
Siltstone	7	0.21-0.41	0.35
Sand (fine)	243	0.26-0.53	0.43
Sand (coarse)	26	0.31-0.46	0.39
Gravel (fine)	38	0.25-0.38	0.34
Gravel (coarse)	15	0.24-0.36	0.28
Silt	281	0.34-0.61	0.46
Clay	74	0.34-0.57	0.42
Limestone	74	0.07-0.56	0.3
Metamorphic Rocks			
Schist	18	0.04-0.49	0.38

Sources: From Mercer et al. (1982), McWhorter and Sunada (1977),

Original reference Morris and Johnson, (1967).

Texture	Bulk Density g/cm^3	Average Wilting Point	Plant Available Water Inches/Ft
Sandy loam	1.6	0.057	1.66
Silt Loam	1,45	0.119	2
Loam	1.5	0.097	2.4
Sandy clay loam	1.45	0.137	1.66
Clay loam	1.45	0.157	1.9

TABLE 6-8. MEAN BULK DENSITY (g/cm3) FOR FIVE SOIL TEXTURAL CLASSIFICATIONSa,b

Soil Texture	Mean Value	Range Reported	
Silt Loams	1.32	0.86 - 1.67	
Clay and Clay Loams	1.3	0.94 - 1.54	
Sandy Loams	1.49	1.25 - 1.76	
Gravelly Silt Loams	1.22	1.02 - 1.58	
Loams	1.42	1.16 - 1.58	
All Soils	1.35	0.86 - 1.76	

a Baes, C.F., III and R.D. Sharp. 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models. J. Environ. Qual. 12(1):17-28 (Original reference).

b From Dean et al. (1989)

TABLE 6-2. DESCRIPTIVE STATISTICS FOR SATURATED HYDRAULIC CONDUCTIVITY (cm hr-1)

	Hydraulic (Conductivity	/ (Ks)*			
Soil Type	×	S	CV	n		
Clay**	0.2	0.42	210.3	114	cm/hr	17.52
Clay Loam	0.26	0.7	267.2	345	cm/hr	22.776
Loam	1.04	1.82	174.6	735	cm/hr	91.104
Loamy Sand	14,59	11.36	77.9	315	cm/hr	1278.084
Silt	0.25	0.33	129.9	88	cm/hr	21.9
Silt Loam	0.45	1.23	275.1	1093	cm/hr	39,42
Silty Clay	0.02	0.11	453.3	126	cm/hr	1.752
Silty Clay Loam	0.07	0.19	288.7	592	cm/hr	6.132
Sand	29.7	15.6	52.4	246	cm/hr	2601.72
Sandy Clay	0.12	0.28	234.1	46	cm/hr	10.512
Sandy Clay Loam	1.31	2.74	208.6	214	cm/hr	114.756
Sandy Loam	4.42	5.63	127	1183	cm/hr	387.192

^{*} n = Sample size, = Mean, s = Standard deviation, CV = Coefficient of variation (percent)

Sources: From Dean et al. (1989),

Original reference Carsel and Parrish (1988).

^{**} Agricultural soil, less than 60 percent clay

Saturated water content is the maximum volumetric amount of water in the soil when all pores are filled with water. Very often it is assumed that saturated water content equals the porosity n. However, in many cases qS is smaller than n due to the fact that small amounts of air will be trapped in very small pores. Residual water content can be defined as the asymptote of the pF-curve when h gets very high negative values. Usually qR is very small - on the order of 0.001--0.02 for coarse soils but gets as high values as 0.15..0.25 for heavy clay soils. Air entry point ha is

Soil texture. Fine-textured soils can hold much more organic matter than sandy soils for two reasons. First, clay particles form electrochemical bonds that hold organic compounds. Second, decomposition occurs faster in well-aerated sandy soils. A sandy loam rarely holds more than 2% organic matter.

The recharge rate in this model is the net amount of water that percolates directly into the aquifer system outside of the land disposal facility. The recharge is assumed to have no contamination and hence dilutes the groundwater contaminant plume. The recharge rate into the plume can be calculated in a variety of ways. One possibility is to use a model, such as HELP (Hydrologic Evaluation of Landfill Performance) (Schroeder et al., 1984), without any engineering controls (leachate collection system or a liner) to simulate the water balance for natural conditions.

The infiltration rate is the net amount of leachate that percolates into the aquifer system from a land disposal facility. Because of the use of engineering controls and the presence of non-native porous materials in the landfill facility, the infiltration rate will typically be different than the recharge rate. However, it can be estimated by similar

Most soils contain 2-10 percent organic matter. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. http://www.fao.org

APPENDIX B

NMOCD APPROVAL OF STAGE 2 ABATEMENT PLAN

From: Chase Acker

To: Bruce McKenzie

Subject: FW: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section

18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Date: Monday, April 14, 2014 1:56:01 PM

From: Griswold, Jim, EMNRD [mailto:Jim.Griswold@state.nm.us]

Sent: Thursday, June 27, 2013 5:14 PM

To: Larry Wooten

Cc: Hall, Sharon; Chase Acker

Subject: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter

O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Mr. Wooten,

The Oil Conservation Division (OCD) has reviewed the Stage 2 Abatement Plan for the above-referenced site submitted on your behalf by Arcadis and dated 3/27/12. That plan has substantially met the requirements of 19.15.30 NMAC and is hereby approved. Please proceed with field activities.

Be advised this approval does not relieve Chesapeake of responsibility should the situation continue to pose a threat to groundwater, surface water, human health, or the environment. Furthermore, this approval does not relieve your responsibility for compliance with any federal, state, or local laws and/or regulations. Please retain a copy of this email for your files, as no hardcopy will be sent. If you have any questions, please feel free to contact me at any time.

Jim Griswold

Senior Hydrologist EMNRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505,476,3465

303.470.3403

email: jim.griswold@state.nm.us

This email (and attachments if any) is intended only for the use of the individual or entity to which it is addressed, and may contain information that is confidential or privileged and exempt from disclosure under applicable law. If the reader of this email is not the intended recipient, or the employee or agent responsible for delivering this message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by return email and destroy all copies of the email (and attachments if any).

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-123031-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

eurofins

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 7/9/2021 3:26:35 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:20:31 PM

PA Lab ID: 02-00416

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-123031-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Subcontract Data	6
Receipt Checklists	21

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-123031-1

SDG: Property ID: 891077

Job ID: 180-123031-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-123031-1

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation
Project/Site: State M-1

Job ID: 180-123031-1 SDG: Property ID: 891077

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins TestAmerica, Pittsburgh

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-123031-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
180-123031-1	20210608 M-1	Air	06/08/21 12:40	06/10/21 10:22	

6/23/2021

Ms. Cathy Gartner
Eurofins Test America
500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M
Project #: CHKSTATM:H20001

Workorder #: 2106254

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 6/10/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whittaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

Air Toxics

WORK ORDER #: 2106254

Work Order Summary

CLIENT: Ms. Cathy Gartner BILL TO: Accounts Payable

Eurofins Test America

Eurofins Test America 4104 Shuffel St NW

500 Wilson Pike Circle Suite 100

North Canton, OH 44720

Brentwood, TN 37027

P.O. # 180-123031

FAX:

PHONE:

800-765-0980 615-726-3404

CHKSTATM:H20001 CHK STATE M

DATE RECEIVED:

06/10/2021

CONTACT: Brian Whittaker

PROJECT#

DATE COMPLETED: 06/23/2021

ED A CELON #	NANGE	THECT	RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	<u>PRESSURE</u>
01A	20210608 M-1	TO-15	6.0 "Hg	2 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

06/23/21 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E87680, LA NELAP - 02089, NH NELAP - 209220, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-20-16, UT NELAP - CA009332020-12, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-014, Effective date: 10/18/2020, Expiration date: 10/17/2021.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

> Page 2 of 14 Page 7 of 21

LABORATORY NARRATIVE **EPA Method TO-15 Eurofins Test America** Workorder# 2106254

One 6 Liter Summa Canister sample was received on June 10, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Page 3 of 14 Page 8 of 21

2

3

4

6

eurofins | Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20210608 M-1

Lab ID#: 2106254-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	7.1	16	17	37
1,3,5-Trimethylbenzene	0.71	1.3	3.5	6.4
TVOC Ref. to Hexane	14	2100	50	7400

Client Sample ID: 20210608 M-1 Lab ID#: 2106254-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Date of Collection: 6/8/21 12:40:00 PM Date of Analysis: 6/21/21 05:32 PM		
_	Rpt. Limit	Amount	Rpt. Limit	Amount		
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)		
Acetone	7.1	16	17	37		
Benzene	0.71	Not Detected	2.3	Not Detected		
alpha-Chlorotoluene	0.71	Not Detected	3.7	Not Detected		
Bromodichloromethane	0.71	Not Detected	4.8	Not Detected		
Bromoform	0.71	Not Detected	7.3	Not Detected		
Bromomethane	7.1	Not Detected	28	Not Detected		
2-Butanone (Methyl Ethyl Ketone)	2.8	Not Detected	8.4	Not Detected		
Carbon Disulfide	2.8	Not Detected	8.8	Not Detected		
Carbon Tetrachloride	0.71	Not Detected	4.5	Not Detected		
Chlorobenzene	0.71	Not Detected	3.3	Not Detected		
Dibromochloromethane	0.71	Not Detected	6.0	Not Detected		
Chloroethane	2.8	Not Detected	7.5	Not Detected		
Chloroform	0.71	Not Detected	3.5	Not Detected		
Chloromethane	7.1	Not Detected	15	Not Detected		
1,2-Dibromoethane (EDB)	0.71	Not Detected	5.4	Not Detected		
1,2-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected		
1,3-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected		
1,4-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected		
1,1-Dichloroethane	0.71	Not Detected	2.9	Not Detected		
Freon 12	0.71	Not Detected	3.5	Not Detected		
1,2-Dichloroethane	0.71	Not Detected	2.9	Not Detected		
1,1-Dichloroethene	0.71	Not Detected	2.8	Not Detected		
cis-1,2-Dichloroethene	0.71	Not Detected	2.8	Not Detected		
trans-1,2-Dichloroethene	0.71	Not Detected	2.8	Not Detected		
1,2-Dichloropropane	0.71	Not Detected	3.3	Not Detected		
cis-1,3-Dichloropropene	 0.71	Not Detected	3.2	Not Detected		
trans-1,3-Dichloropropene	0.71	Not Detected	3.2	Not Detected		
Freon 114	0.71	Not Detected	5.0	Not Detected		
Ethyl Benzene	0.71	Not Detected	3.1	Not Detected		
4-Ethyltoluene	0.71	Not Detected	3.5	Not Detected		
Hexachlorobutadiene	 2.8	Not Detected	<u></u> 30	Not Detected		
	2.8	Not Detected	30 12	Not Detected		
2-Hexanone Methylene Chloride	2.6 7.1	Not Detected Not Detected	12 25	Not Detected		
Methyl-2-pentanone	0.71	Not Detected	2.9	Not Detected		
	0.71	Not Detected	3.0	Not Detected		
Styrene						
1,1,2,2-Tetrachloroethane	0.71 0.71	Not Detected	4.9	Not Detected		
Tetrachloroethene		Not Detected	4.8	Not Detected		
Toluene	0.71	Not Detected	2.7	Not Detected		
1,2,4-Trichlorobenzene	2.8	Not Detected UJ	21	Not Detected L		
1,1,1-Trichloroethane	0.71	Not Detected	3.9	Not Detected		
1,1,2-Trichloroethane	0.71	Not Detected	3.9	Not Detected		
Trichloroethene	0.71	Not Detected	3.8	Not Detected		

***** eurofins

Air Toxics

Client Sample ID: 20210608 M-1 Lab ID#: 2106254-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j062114 Dil. Factor: 1.42		Date of Collection: 6/8/21 12:40:00 PM Date of Analysis: 6/21/21 05:32 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.71	Not Detected	4.0	Not Detected
Freon 113	0.71	Not Detected	5.4	Not Detected
1,2,4-Trimethylbenzene	0.71	Not Detected	3.5	Not Detected
1,3,5-Trimethylbenzene	0.71	1.3	3.5	6.4
Vinyl Acetate	2.8	Not Detected	10	Not Detected
Vinyl Chloride	0.71	Not Detected	1.8	Not Detected
m,p-Xylene	0.71	Not Detected	3.1	Not Detected
o-Xylene	0.71	Not Detected	3.1	Not Detected
TVOC Ref. to Hexane	14	2100	50	7400

UJ = Analyte associated with low bias in the CCV.

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	120	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	101	70-130

eurofins | Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2106254-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j062108d 1.00		of Collection: NA of Analysis: 6/21	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
 1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
T, 1,2,2-Tetrachioroethane Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Tetrachioroethene Toluene	0.50	Not Detected	3. 4 1.9	Not Detected
	2.0	Not Detected UJ	1.9	Not Detected U
1,2,4-Trichlorobenzene				
1,1,1-Trichloroethane	0.50	Not Detected	2.7 	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

***** eurofins **Air Toxics**

Client Sample ID: Lab Blank Lab ID#: 2106254-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j062108d 1.00	Date of Collection: NA Date of Analysis: 6/21/21 01:42 PM		21 01:42 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

UJ = Analyte associated with low bias in the CCV.

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	105	70-130
1,2-Dichloroethane-d4	111	70-130
4-Bromofluorobenzene	87	70-130

Client Sample ID: CCV Lab ID#: 2106254-03A

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name: j062103 **Date of Collection: NA** Dil. Factor: 1.00 Date of Analysis: 6/21/21 10:14 AM

Compound	%Recovery	
Acetone	87	
Benzene	107	
alpha-Chlorotoluene	107	
Bromodichloromethane	112	
Bromoform	110	
Bromomethane	94	
2-Butanone (Methyl Ethyl Ketone)	92	
Carbon Disulfide	99	
Carbon Tetrachloride	103	
Chlorobenzene	101	
Dibromochloromethane	113	
Chloroethane	99	
Chloroform	102	
Chloromethane	98	
1,2-Dibromoethane (EDB)	111	
1,2-Dichlorobenzene	116	
1,3-Dichlorobenzene	117	
1,4-Dichlorobenzene	110	
1,1-Dichloroethane	97	
Freon 12	107	
1,2-Dichloroethane	117	
1,1-Dichloroethene	85	
cis-1,2-Dichloroethene	96	
trans-1,2-Dichloroethene	97	
1,2-Dichloropropane	118	
cis-1,3-Dichloropropene	95	
trans-1,3-Dichloropropene	105	
Freon 114	97	
Ethyl Benzene	100	
4-Ethyltoluene	115	
Hexachlorobutadiene	78	
2-Hexanone	108	
Methylene Chloride	103	
4-Methyl-2-pentanone	102	
Styrene	110	
1,1,2,2-Tetrachloroethane	124	
Tetrachloroethene	106	
Toluene	106	
1,2,4-Trichlorobenzene	66 Q	
1,1,1-Trichloroethane	101	
1,1,2-Trichloroethane	113	
Trichloroethene	109	

Client Sample ID: CCV Lab ID#: 2106254-03A

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name:	j062103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/21/21 10:14 AM

Compound	%Recovery	
Freon 11	102	_
Freon 113	92	
1,2,4-Trimethylbenzene	108	
1,3,5-Trimethylbenzene	121	
Vinyl Acetate	77	
Vinyl Chloride	94	
m,p-Xylene	106	
o-Xylene	99	
TVOC Ref. to Hexane	100	

Q = Exceeds Quality Control limits. **Container Type: NA - Not Applicable**

Surrogates	%Recovery	Method Limits
Toluene-d8	108	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	112	70-130

Client Sample ID: LCS Lab ID#: 2106254-04A

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j062104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 6/21/21 10:42 AM

DII. Factor.	Date of Affaiys	15. 0/21/21 10:42 AIVI
Compound	9/ Papayary	Method
Compound	%Recovery	Limits
Acetone	88	70-130
Benzene	104	70-130
alpha-Chlorotoluene	104	70-130
Bromodichloromethane	106	70-130
Bromoform	104	70-130
Bromomethane	96	70-130
2-Butanone (Methyl Ethyl Ketone)	95	70-130
Carbon Disulfide	100	70-130
Carbon Tetrachloride	102	70-130
Chlorobenzene	98	70-130
Dibromochloromethane	105	70-130
Chloroethane	100	70-130
Chloroform	102	70-130
Chloromethane	90	70-130
1,2-Dibromoethane (EDB)	106	70-130
1,2-Dichlorobenzene		70-130
1,3-Dichlorobenzene	112	70-130
1,4-Dichlorobenzene	106	70-130
1,1-Dichloroethane	99	70-130
Freon 12	106	70-130
1,2-Dichloroethane	110	70-130
1,1-Dichloroethene	90	70-130
cis-1,2-Dichloroethene	98	70-130
trans-1,2-Dichloroethene	100	70-130
1,2-Dichloropropane	112	70-130
cis-1,3-Dichloropropene	93	70-130
trans-1,3-Dichloropropene	102	70-130
Freon 114	99	70-130
Ethyl Benzene	98	70-130
4-Ethyltoluene	110	70-130
Hexachlorobutadiene	 118	70-130
2-Hexanone	101	70-130
Methylene Chloride	102	70-130
4-Methyl-2-pentanone	99	70-130
Styrene	105	70-130
1,1,2,2-Tetrachloroethane	 101	70-130
Tetrachloroethene	102	70-130
Toluene	100	70-130
1,2,4-Trichlorobenzene	105	70-130
1,1,1-Trichloroethane	101	70-130
1,1,2-Trichloroethane	107	70-130
Trichloroethene	121	70-130
11101110100110110	1=1	

***** eurofins

Client Sample ID: LCS Lab ID#: 2106254-04A

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name:	j062104	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/21/21 10:42 AM

		Method
Compound	%Recovery	Limits
Freon 11	103	70-130
Freon 113	93	70-130
1,2,4-Trimethylbenzene	107	70-130
1,3,5-Trimethylbenzene	114	70-130
Vinyl Acetate	84	70-130
Vinyl Chloride	96	70-130
m,p-Xylene	104	70-130
o-Xylene	96	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	106	70-130	
1,2-Dichloroethane-d4	105	70-130	
4-Bromofluorobenzene	112	70-130	

eurofins Air Toxics

Client Sample ID: LCSD Lab ID#: 2106254-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j062105	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/21/21 11:09 AM

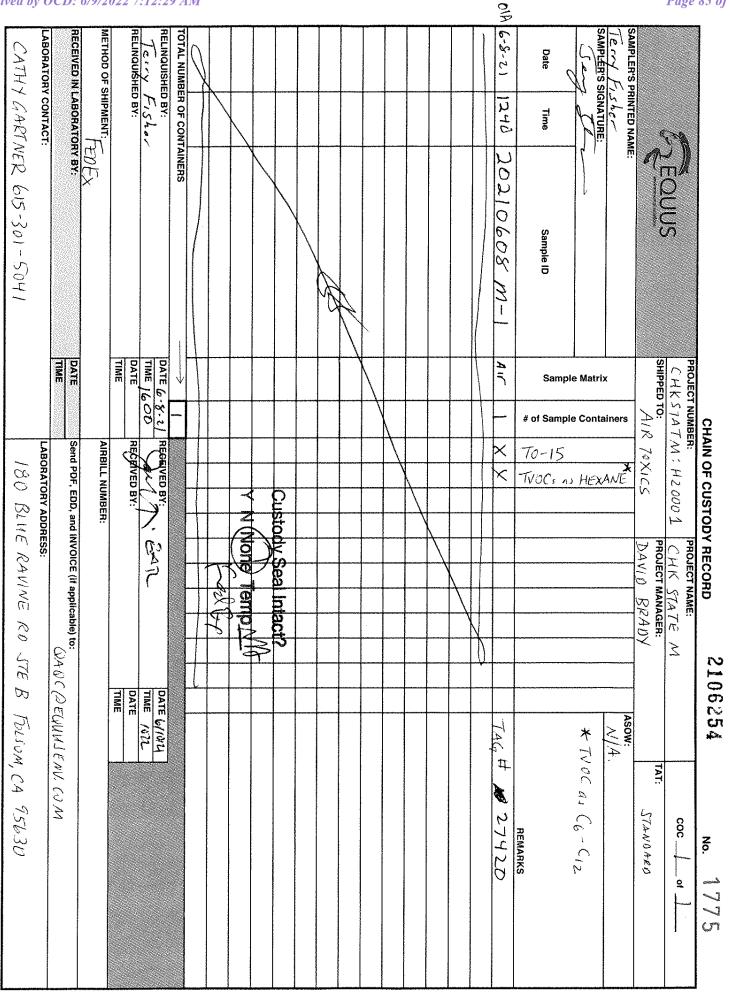
	Tion Date of Analysi	Method
Compound	%Recovery	Limits
Acetone	88	70-130
Benzene	103	70-130
alpha-Chlorotoluene	103	70-130
Bromodichloromethane	106	70-130
Bromoform	102	70-130
Bromomethane	96	70-130
2-Butanone (Methyl Ethyl Ketone)	96	70-130
Carbon Disulfide	100	70-130
Carbon Tetrachloride	102	70-130
Chlorobenzene	97	70-130
Dibromochloromethane	102	70-130
Chloroethane	100	70-130
Chloroform	103	70-130
Chloromethane	90	70-130
1,2-Dibromoethane (EDB)	103	70-130
1,2-Dichlorobenzene	108	70-130
1,3-Dichlorobenzene	108	70-130
1,4-Dichlorobenzene	104	70-130
1,1-Dichloroethane	98	70-130
Freon 12	107	70-130
1,2-Dichloroethane	109	70-130
1,1-Dichloroethene	91	70-130
cis-1,2-Dichloroethene	100	70-130
trans-1,2-Dichloroethene	99	70-130
1,2-Dichloropropane	113	70-130
cis-1,3-Dichloropropene	 94	70-130
trans-1,3-Dichloropropene	101	70-130
Freon 114	101	70-130
Ethyl Benzene	98	70-130
4-Ethyltoluene	106	70-130
Hexachlorobutadiene	<u>-</u>	70-130
2-Hexanone	100	70-130
Methylene Chloride	104	70-130
4-Methyl-2-pentanone	99	70-130
Styrene	103	70-130
1,1,2,2-Tetrachloroethane	 99	70-130
Tetrachloroethene	100	70-130
Toluene	100	70-130
1,2,4-Trichlorobenzene	108	70-130
1,1,1-Trichloroethane	101	70-130
1,1,2-Trichloroethane	103	70-130
Trichloroethene	119	70-130
Homoroediene	113	70-130

eurofins | Air Toxics

Client Sample ID: LCSD Lab ID#: 2106254-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j062105	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/21/21 11:09 AM


Compound	%Recovery	Method Limits
Freon 11	103	70-130
Freon 113	93	70-130
1,2,4-Trimethylbenzene	107	70-130
1,3,5-Trimethylbenzene	113	70-130
Vinyl Acetate	86	70-130
Vinyl Chloride	94	70-130
m,p-Xylene	102	70-130
o-Xylene	96	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	104	70-130	
1,2-Dichloroethane-d4	106	70-130	
4-Bromofluorobenzene	108	70-130	

POINT OF ORIGIN:

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-123031-1

SDG Number: Property ID: 891077

Login Number: 123031 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Gartner, Cathy

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-126970-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 9/24/2021 2:07:34 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:20:31 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

1

2

3

4

5

6

<u>გ</u>

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-126970-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Method Summary	6
Subcontract Data	7
Chain of Custody	21
Receipt Checklists	22

4

6

0

0

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-126970-1

SDG: Property ID: 891077

Job ID: 180-126970-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-126970-1

Comments

No additional comments.

Receipt

The sample was received on 9/10/2021 10:17 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-126970-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

MCL

MDA

MDC

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit NC Not Calculated ND

Not Detected at the reporting limit (or MDL or EDL if shown)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Minimum Detectable Activity (Radiochemistry)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-126970-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-126970-1	20210908 M-1	Air	09/09/21 15:25	09/10/21 10:17

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-126970-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Eurofins TestAmerica, Pittsburgh

9/23/2021

Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M Project #: CHKSTATM:H21001

Workorder #: 2109253

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 9/10/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whittaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

WORK ORDER #: 2109253

Work Order Summary

CLIENT: Ms. Cathy Gartner

BILL TO: Accounts Payable

Eurofins Test America

Eurofins Test America 4104 Shuffel St NW

500 Wilson Pike Circle Suite 100 Brentwood, TN 37027

North Canton, OH 44720

PHONE: 800-765-0980

LCSD

P.O. # 180-126970

FAX: 615-726-3404

PROJECT # CHKSTATM:H21001 CHK STATE M

NA

NA

DATE RECEIVED: 09/10/2021 **DATE COMPLETED:** 09/23/2021

CONTACT: Brian Whittaker

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20210908M-1	TO-15	9.4 "Hg	1.6 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA

TO-15

CERTIFIED BY:

04AA

DATE: 09/23/21

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209220, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-20-16, UT NELAP – CA009332020-12, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-014, Effective date: 10/18/2020, Expiration date: 10/17/2021.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

Page 2 of 14

2

-

6

Q

3

LABORATORY NARRATIVE **EPA Method TO-15 Eurofins Test America** Workorder# 2109253

One 6 Liter Summa Canister sample was received on September 10, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

The recovery of surrogate 1,2-Dichloroethane-d4 in sample 20210908M-1 was outside laboratory control limits due to high level hydrocarbon matrix interference. The surrogate recovery is flagged.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

2

3

4

6

8

eurofins | Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20210908M-1

Lab ID#: 2109253-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	8.0	92	19	220
Benzene	0.80	71	2.6	230
2-Butanone (Methyl Ethyl Ketone)	3.2	11	9.5	33
Carbon Disulfide	3.2	11	10	33
Ethyl Benzene	0.80	88	3.5	380
4-Ethyltoluene	0.80	140	4.0	700
Trichloroethene	0.80	1.2	4.3	6.6
1,2,4-Trimethylbenzene	0.80	100	4.0	500
1,3,5-Trimethylbenzene	0.80	110	4.0	560
m,p-Xylene	0.80	260	3.5	1100
o-Xylene	0.80	55	3.5	240
TVOC Ref. to Hexane	16	140000	57	490000

Client Sample ID: 20210908M-1 Lab ID#: 2109253-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092127 1.61	Date of Collection: 9/9/21 3:25:00 PM Date of Analysis: 9/22/21 01:26 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	8.0	92	19	220
Benzene	0.80	71	2.6	230
alpha-Chlorotoluene	0.80	Not Detected	4.2	Not Detected
Bromodichloromethane	0.80	Not Detected	5.4	Not Detected
Bromoform	0.80	Not Detected	8.3	Not Detected
Bromomethane	8.0	Not Detected	31	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.2	11	9.5	33
Carbon Disulfide	3.2	11	10	33
Carbon Tetrachloride	0.80	Not Detected	5.1	Not Detected
Chlorobenzene	0.80	Not Detected	3.7	Not Detected
Dibromochloromethane	0.80	Not Detected	6.8	Not Detected
Chloroethane	3.2	Not Detected	8.5	Not Detected
Chloroform	0.80	Not Detected	3.9	Not Detected
Chloromethane	8.0	Not Detected	17	Not Detected
1,2-Dibromoethane (EDB)	0.80	Not Detected	6.2	Not Detected
- ´	0.80	Not Detected	4.8	Not Detected
1,3-Dichlorobenzene	0.80	Not Detected	4.8	Not Detected
1,4-Dichlorobenzene	0.80	Not Detected	4.8	Not Detected
1.1-Dichloroethane	0.80	Not Detected	3.2	Not Detected
Freon 12	0.80	Not Detected	4.0	Not Detected
1,2-Dichloroethane	0.80	Not Detected	3.2	Not Detected
1,1-Dichloroethene	0.80	Not Detected	3.2	Not Detected
cis-1,2-Dichloroethene	0.80	Not Detected	3.2	Not Detected
trans-1,2-Dichloroethene	0.80	Not Detected	3.2	Not Detected
1,2-Dichloropropane	0.80	Not Detected	3.7	Not Detected
cis-1,3-Dichloropropene	0.80	Not Detected	3.6	Not Detected
trans-1,3-Dichloropropene	0.80	Not Detected	3.6	Not Detected
Freon 114	0.80	Not Detected	5.6	Not Detected
Ethyl Benzene	0.80	88	3.5	380
4-Ethyltoluene	0.80	140	4.0	700
Hexachlorobutadiene	3.2	Not Detected	34	Not Detected
2-Hexanone	3.2	Not Detected	13	Not Detected
Methylene Chloride	8.0	Not Detected	28	Not Detected
4-Methyl-2-pentanone	0.80	Not Detected	3.3	Not Detected
Styrene	0.80	Not Detected	3.4	Not Detected
1,1,2,2-Tetrachloroethane	0.80	Not Detected	5.5	Not Detected
Tetrachloroethene	0.80	Not Detected	5.5	Not Detected
Toluene	0.80	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	3.2	Not Detected	24	Not Detected
1,1,1-Trichloroethane	0.80	Not Detected	4.4	Not Detected
1,1,2-Trichloroethane	0.80	Not Detected	4.4	Not Detected
Trichloroethene	0.80	1.2	4.3	6.6

***** eurofins **Air Toxics**

> **Client Sample ID: 20210908M-1** Lab ID#: 2109253-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092127	Date of Collection: 9/9/21 3:25:00 PM
Dil. Factor:	1.61	Date of Analysis: 9/22/21 01:26 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.80	Not Detected	4.5	Not Detected
Freon 113	0.80	Not Detected	6.2	Not Detected
1,2,4-Trimethylbenzene	0.80	100	4.0	500
1,3,5-Trimethylbenzene	0.80	110	4.0	560
Vinyl Acetate	3.2	Not Detected	11	Not Detected
Vinyl Chloride	0.80	Not Detected	2.0	Not Detected
m,p-Xylene	0.80	260	3.5	1100
o-Xylene	0.80	55	3.5	240
TVOC Ref. to Hexane	16	140000	57	490000

Q = Exceeds Quality Control limits.

Container Type: 6 Liter Summa Canister

	0/5	Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	210 Q	70-130
4-Bromofluorobenzene	99	70-130

Client Sample ID: Lab Blank Lab ID#: 2109253-02A

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092107d 1.00		of Collection: NA of Analysis: 9/21/	21 01:28 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

Client Sample ID: Lab Blank Lab ID#: 2109253-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092107d 1.00	2 4.10	of Collection: NA of Analysis: 9/21/	21 01:28 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected

Container Type: NA - Not Applicable

TVOC Ref. to Hexane

21.		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	103	70-130	
4-Bromofluorobenzene	98	70-130	

Not Detected

35

Not Detected

10

Client Sample ID: CCV Lab ID#: 2109253-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3092102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/21 09:58 AM

Compound	%Recovery
Acetone	100
Benzene	100
alpha-Chlorotoluene	102
Bromodichloromethane	100
Bromoform	104
Bromomethane	99
2-Butanone (Methyl Ethyl Ketone)	104
Carbon Disulfide	101
Carbon Tetrachloride	102
Chlorobenzene	98
Dibromochloromethane	102
Chloroethane	104
Chloroform	97
Chloromethane	110
1,2-Dibromoethane (EDB)	98
1,2-Dichlorobenzene	98
1,3-Dichlorobenzene	100
1,4-Dichlorobenzene	99
1,1-Dichloroethane	98
Freon 12	102
1,2-Dichloroethane	102
1,1-Dichloroethene	97
cis-1,2-Dichloroethene	99
trans-1,2-Dichloroethene	97
1,2-Dichloropropane	98
cis-1,3-Dichloropropene	102
trans-1,3-Dichloropropene	103
Freon 114	103
Ethyl Benzene	101
4-Ethyltoluene	100
Hexachlorobutadiene	87
2-Hexanone	116
Methylene Chloride	100
4-Methyl-2-pentanone	103
Styrene	100
1,1,2,2-Tetrachloroethane	99
Tetrachloroethene	104
Toluene	100
1,2,4-Trichlorobenzene	87
1,1,1-Trichloroethane	98
1,1,2-Trichloroethane	100
Trichloroethene	100

Client Sample ID: CCV Lab ID#: 2109253-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3092102 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/21 09:58 AM

Compound	%Recovery	
Freon 11	104	
Freon 113	97	
1,2,4-Trimethylbenzene	100	
1,3,5-Trimethylbenzene	99	
Vinyl Acetate	103	
Vinyl Chloride	97	
m,p-Xylene	102	
o-Xylene	101	
TVOC Ref. to Hexane	100	

Container Type: NA - Not Applicable

	~-	Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	101	70-130

Client Sample ID: LCS Lab ID#: 2109253-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/21 10:25 AM

		Method
Compound	%Recovery	Limits
Acetone	98	70-130
Benzene	99	70-130
alpha-Chlorotoluene	102	70-130
Bromodichloromethane	100	70-130
Bromoform	103	70-130
Bromomethane	96	70-130
2-Butanone (Methyl Ethyl Ketone)	99	70-130
Carbon Disulfide	101	70-130
Carbon Tetrachloride	102	70-130
Chlorobenzene	98	70-130
Dibromochloromethane	102	70-130
Chloroethane	103	70-130
Chloroform	98	70-130
Chloromethane	106	70-130
1,2-Dibromoethane (EDB)	99	70-130
1,2-Dichlorobenzene	96	70-130
1,3-Dichlorobenzene	98	70-130
1,4-Dichlorobenzene	98	70-130
1,1-Dichloroethane	99	70-130
Freon 12	101	70-130
1,2-Dichloroethane	101	70-130
1,1-Dichloroethene	99	70-130
cis-1,2-Dichloroethene	101	70-130
trans-1,2-Dichloroethene	98	70-130
1,2-Dichloropropane	99	70-130
cis-1,3-Dichloropropene	102	70-130
trans-1,3-Dichloropropene	103	70-130
Freon 114	102	70-130
Ethyl Benzene	101	70-130
4-Ethyltoluene	101	70-130
Hexachlorobutadiene	102	70-130
2-Hexanone	97	70-130
Methylene Chloride	101	70-130
4-Methyl-2-pentanone	94	70-130
Styrene	99	70-130
1,1,2,2-Tetrachloroethane		70-130
Tetrachloroethene	104	70-130
Toluene	98	70-130
1,2,4-Trichlorobenzene	99	70-130
1,1,1-Trichloroethane	99	70-130
1,1,2-Trichloroethane	99	70-130
Trichloroethene	100	70-130

3

-

6

8

Ĝ

eurofins | Air Toxics

Client Sample ID: LCS Lab ID#: 2109253-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/21 10:25 AM

Compound	%Recovery	Method Limits
Freon 11	103	70-130
Freon 113	99	70-130
1,2,4-Trimethylbenzene	102	70-130
1,3,5-Trimethylbenzene	98	70-130
Vinyl Acetate	102	70-130
Vinyl Chloride	95	70-130
m,p-Xylene	104	70-130
o-Xylene	101	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	98	70-130	
4-Bromofluorobenzene	100	70-130	

Client Sample ID: LCSD Lab ID#: 2109253-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 3092104 Date of Collection: NA
Dil. Factor: 1.00 Date of Analysis: 9/21/21 10:53 AM

Dil. Factor:	1.00 Date of Analysi	s: 9/21/21 10:53 AM
		Method
Compound	%Recovery	Limits
Acetone	97	70-130
Benzene	98	70-130
alpha-Chlorotoluene	103	70-130
Bromodichloromethane	98	70-130
Bromoform	104	70-130
Bromomethane	96	70-130
2-Butanone (Methyl Ethyl Ketone)	99	70-130
Carbon Disulfide	100	70-130
Carbon Tetrachloride	101	70-130
Chlorobenzene	98	70-130
Dibromochloromethane	102	70-130
Chloroethane	104	70-130
Chloroform	97	70-130
Chloromethane	106	70-130
1,2-Dibromoethane (EDB)	98	70-130
1,2-Dichlorobenzene	97	70-130
1,3-Dichlorobenzene	99	70-130
1,4-Dichlorobenzene	99	70-130
1,1-Dichloroethane	98	70-130
Freon 12	99	70-130
1,2-Dichloroethane	99	70-130
1,1-Dichloroethene	97	70-130
cis-1,2-Dichloroethene	101	70-130
trans-1,2-Dichloroethene	97	70-130
1,2-Dichloropropane	98	70-130
cis-1,3-Dichloropropene	102	70-130
trans-1,3-Dichloropropene	102	70-130
Freon 114	101	70-130
Ethyl Benzene	101	70-130
4-Ethyltoluene	101	70-130
Hexachlorobutadiene	112	70-130
2-Hexanone	97	70-130
Methylene Chloride	98	70-130
4-Methyl-2-pentanone	94	70-130
Styrene	100	70-130
1,1,2,2-Tetrachloroethane	97	70-130
Tetrachloroethene	104	70-130
Toluene	99	70-130
1,2,4-Trichlorobenzene	110	70-130
1,1,1-Trichloroethane	97	70-130
1,1,2-Trichloroethane	99	70-130
Trichloroethene	100	70-130

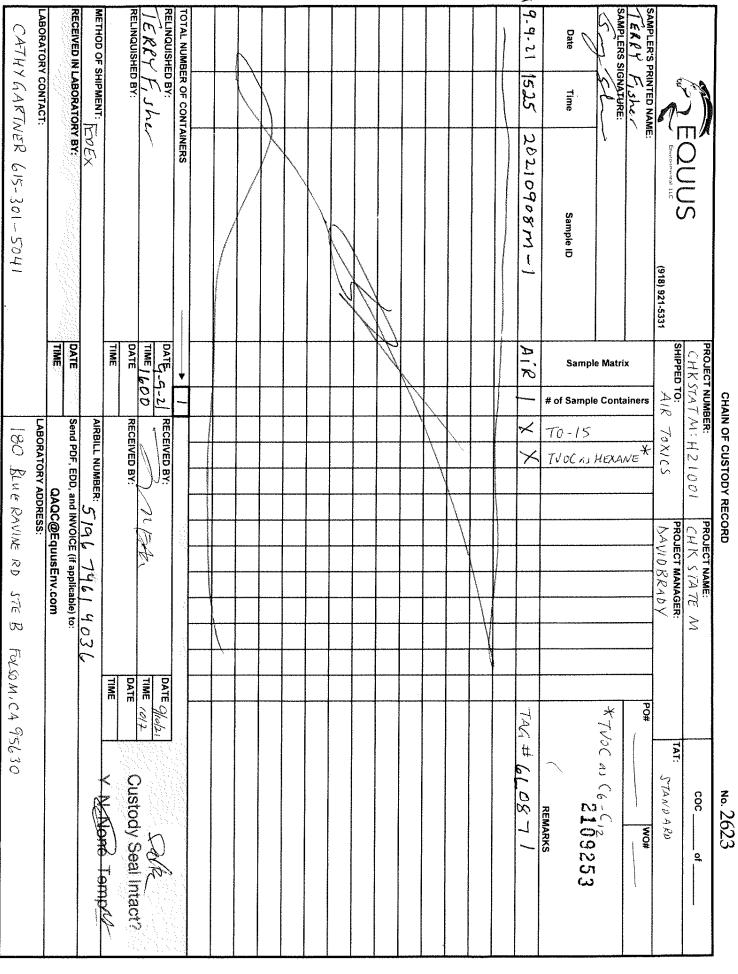
Client Sample ID: LCSD Lab ID#: 2109253-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092104	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 9/21/21 10:53 AM

Compound	%Recovery	Method Limits
Freon 11	102	70-130
Freon 113	98	70-130
1,2,4-Trimethylbenzene	102	70-130
1,3,5-Trimethylbenzene	99	70-130
Vinyl Acetate	105	70-130
Vinyl Chloride	97	70-130
m,p-Xylene	103	70-130
o-Xylene	101	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable


		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	100	70-130

White: Receiving Lab

Yellow: Equus Environmental Project File

Pink: Equus QA/QC

CHAIN OF CUSTODY RECORD

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-126970-1

SDG Number: Property ID: 891077

Login Number: 126970 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Gartner, Cathy

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey

meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-131325-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 12/21/2021 5:31:40 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:20:31 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

2

3

4

5

7

8

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-131325-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Method Summary	6
Chain of Custody	7
Receipt Checklists	22

1

__

- 5

6

8

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-131325-1 SDG: Property ID: 891077

Job ID: 180-131325-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-131325-1

Comments

No additional comments.

Receipt

The sample was received on 12/8/2021 12:09 PM. Unless otherwise noted below, the sample arrived in good condition.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-131325-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

LOQ

MCL MDA

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** Detection Limit (DoD/DOE) DL DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE)

MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Activity (Radiochemistry)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-131325-1 SDG: Property ID: 891077

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 180-131325-1
 20211207 M-1
 Air
 12/07/21 12:50
 12/08/21 12:09

3

J

5

6

ç

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-131325-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Eurofins TestAmerica, Pittsburgh

12/21/2021

Ms. Cathy Gartner
Eurofins Test America
500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M Project #: CHKSTATM:H21001

Workorder #: 2112234

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 12/8/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whittaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

WORK ORDER #: 2112234

Work Order Summary

CLIENT: Ms. Cathy Gartner BILL TO: Accounts Payable

Eurofins Test America

Eurofins Test America 4104 Shuffel St NW

500 Wilson Pike Circle Suite 100 Brentwood, TN 37027

12/08/2021

North Canton, OH 44720

PHONE: 800-765-0980 P.O. # 180-131325

FAX: 615-726-3404 **DATE RECEIVED:**

PROJECT# CHKSTATM:H21001 CHK STATE M

DECEIDT

DATE COMPLETED: 12/21/2021 **CONTACT:** Brian Whittaker

			KECEH I	LIMAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20211207M-1	TO-15	7.6 "Hg	1.8 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

12/21/21 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E87680, LA NELAP - 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP - CA009332021-13, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

> Page 2 of 14 Page 8 of 22

ETNIAT

LABORATORY NARRATIVE **EPA Method TO-15 Eurofins Test America** Workorder# 2112234

One 6 Liter Summa Canister sample was received on December 08, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

eurofins Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20211207M-1

Lab ID#: 2112234-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Acetone	7.5	8.6	18	20	
1,2,4-Trimethylbenzene	0.75	0.80	3.7	3.9	
1,3,5-Trimethylbenzene	0.75	1.3	3.7	6.6	
TVOC Ref. to Hexane	15	1600	53	5600	

Client Sample ID: 20211207M-1 Lab ID#: 2112234-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121623 Date of Collection: 12/7/21 12:50:00 PM
Dil. Factor: 1.50 Date of Analysis: 12/17/21 02:37 AM

Dil. Factor:	1.50	Date of Analysis: 12/17/21 02:37 AM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Acetone	7.5	8.6	18	20	
Benzene	0.75	Not Detected	2.4	Not Detected	
alpha-Chlorotoluene	0.75	Not Detected	3.9	Not Detected	
Bromodichloromethane	0.75	Not Detected	5.0	Not Detected	
Bromoform	0.75	Not Detected	7.8	Not Detected	
Bromomethane	7.5	Not Detected	29	Not Detected	
2-Butanone (Methyl Ethyl Ketone)	3.0	Not Detected	8.8	Not Detected	
Carbon Disulfide	3.0	Not Detected	9.3	Not Detected	
Carbon Tetrachloride	0.75	Not Detected	4.7	Not Detected	
Chlorobenzene	0.75	Not Detected	3.4	Not Detected	
Dibromochloromethane	0.75	Not Detected	6.4	Not Detected	
Chloroethane	3.0	Not Detected	7.9	Not Detected	
Chloroform	0.75	Not Detected	3.7	Not Detected	
Chloromethane	7.5	Not Detected	15	Not Detected	
1,2-Dibromoethane (EDB)	0.75	Not Detected	5.8	Not Detected	
1,2-Dichlorobenzene	0.75	Not Detected	4.5	Not Detected	
1,3-Dichlorobenzene	0.75	Not Detected	4.5	Not Detected	
1,4-Dichlorobenzene	0.75	Not Detected	4.5	Not Detected	
1,1-Dichloroethane	0.75	Not Detected	3.0	Not Detected	
Freon 12	0.75	Not Detected	3.7	Not Detected	
1,2-Dichloroethane	0.75	Not Detected	3.0	Not Detected	
1,1-Dichloroethene	0.75	Not Detected	3.0	Not Detected	
cis-1,2-Dichloroethene	0.75	Not Detected	3.0	Not Detected	
trans-1,2-Dichloroethene	0.75	Not Detected	3.0	Not Detected	
1,2-Dichloropropane	0.75	Not Detected	3.5	Not Detected	
cis-1,3-Dichloropropene	0.75	Not Detected	3.4	Not Detected	
trans-1,3-Dichloropropene	0.75	Not Detected	3.4	Not Detected	
Freon 114	0.75	Not Detected	5.2	Not Detected	
Ethyl Benzene	0.75	Not Detected	3.2	Not Detected	
4-Ethyltoluene	0.75	Not Detected	3.7	Not Detected	
Hexachlorobutadiene	3.0	Not Detected	32	Not Detected	
2-Hexanone	3.0	Not Detected	12	Not Detected	
Methylene Chloride	7.5	Not Detected	26	Not Detected	
4-Methyl-2-pentanone	0.75	Not Detected	3.1	Not Detected	
Styrene	0.75	Not Detected	3.2	Not Detected	
1,1,2,2-Tetrachloroethane	0.75	Not Detected	5.1	Not Detected	
Tetrachloroethene	0.75	Not Detected	5.1	Not Detected	
Toluene	0.75	Not Detected	2.8	Not Detected	
1,2,4-Trichlorobenzene	3.0	Not Detected	22	Not Detected	
1,1,1-Trichloroethane	0.75	Not Detected	4.1	Not Detected	
1,1,2-Trichloroethane	0.75	Not Detected	4.1	Not Detected	
Trichloroethene	0.75	Not Detected	4.0	Not Detected	

Client Sample ID: 20211207M-1 Lab ID#: 2112234-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121623	Date of Collection: 12/7/21 12:50:00 PM
Dil. Factor:	1.50	Date of Analysis: 12/17/21 02:37 AM

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.75	Not Detected	4.2	Not Detected
Freon 113	0.75	Not Detected	5.7	Not Detected
1,2,4-Trimethylbenzene	0.75	0.80	3.7	3.9
1,3,5-Trimethylbenzene	0.75	1.3	3.7	6.6
Vinyl Acetate	3.0	Not Detected	10	Not Detected
Vinyl Chloride	0.75	Not Detected	1.9	Not Detected
m,p-Xylene	0.75	Not Detected	3.2	Not Detected
o-Xylene	0.75	Not Detected	3.2	Not Detected
TVOC Ref. to Hexane	15	1600	53	5600

Container Type: 6 Liter Summa Canister

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	99	70-130	
4-Bromofluorobenzene	104	70-130	

Client Sample ID: Lab Blank Lab ID#: 2112234-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121607d	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/16/21 01:29 PM

Compound Rpt. Limit (ppbv) Amount (ppbv) Rpt. Limit (ug/m3) Amount (ug/m3) Acetone 5.0 Not Detected 12 Not Detected Benzene 0.50 Not Detected 1.6 Not Detected alpha-Chlorotoluene 0.50 Not Detected 2.6 Not Detected Bromodichioromethane 0.50 Not Detected 2.6 Not Detected Bromoform 0.50 Not Detected 5.2 Not Detected Bromomethane 5.0 Not Detected 5.9 Not Detected Carbon Tetrachloride 2.0 Not Detected 5.9 Not Detected Carbon Tetrachloride 0.50 Not Detected 6.2 Not Detected Chlorobenzene 0.50 Not Detected 2.3 Not Detected Chlorobenzene 0.50 Not Detected 4.2 Not Detected Chlorobenzene 0.50 Not Detected 4.2 Not Detected Chlorobenzene 0.50 Not Detected 3.8 Not Detected Ch	Dil. Factor:	1.00	Date of Analysis: 12/16/21 01:29 PM		
Acetone	-	Rpt. Limit	Amount	Rpt. Limit	Amount
Benzene	Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
alpha-Chlorotoluene	Acetone	5.0	Not Detected	12	Not Detected
Bromodichloromethane	Benzene	0.50	Not Detected	1.6	Not Detected
Bromoform	alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromomethane 5.0	Bromodichloromethane	0.50		3.4	Not Detected
2-Butanone (Methyl Ethyl Ketone) 2.0 Not Detected 5.9 Not Detected Carbon Disulfide 2.0 Not Detected 6.2 Not Detected Carbon Tetrachloride 0.50 Not Detected 2.3 Not Detected Chlorobenzene 0.50 Not Detected 2.3 Not Detected Dibromochloromethane 0.50 Not Detected 4.2 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 1.0 Not Detected Chloromethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,1-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected	Bromoform	0.50	Not Detected	5.2	Not Detected
Carbon Disulfide 2.0 Not Detected 6.2 Not Detected Carbon Tetrachloride 0.50 Not Detected 3.1 Not Detected Chlorobenzene 0.50 Not Detected 2.3 Not Detected Dibromochloromethane 0.50 Not Detected 4.2 Not Detected Chloroform 0.50 Not Detected 5.3 Not Detected Chloromethane 5.0 Not Detected 2.4 Not Detected Chloromethane 6.0 Not Detected 1.0 Not Detected 1,2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,1-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected	Bromomethane	5.0	Not Detected	19	Not Detected
Carbon Tetrachloride 0.50 Not Detected 3.1 Not Detected Chlorobenzene 0.50 Not Detected 2.3 Not Detected Dibromochloromethane 0.50 Not Detected 4.2 Not Detected Chloroftane 2.0 Not Detected 4.2 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 1.0 Not Detected Chloromethane 6.50 Not Detected 3.8 Not Detected 1,2-Dibriomoethane (EDB) 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichlorobentane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropethane 0.50 Not Detected 2.0 Not Detected <tr< td=""><td>2-Butanone (Methyl Ethyl Ketone)</td><td>2.0</td><td>Not Detected</td><td>5.9</td><td>Not Detected</td></tr<>	2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Chlorobenzene 0.50 Not Detected 2.3 Not Detected Dibromochloromethane 0.50 Not Detected 4.2 Not Detected Chloroethane 2.0 Not Detected 5.3 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 1.0 Not Detected 1.2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1.2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1.2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1.3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1.3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1.4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1.4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1.4-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1.1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1.1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1.2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1.2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1.2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1.2-Dichloroptopane 0.50 Not Detected 2.0 Not Detected 1.2-Dichloroptopane 0.50 Not Detected 2.3 Not Detected 1.2-Dichloroptopane 0.50 Not Detected 2.3 Not Detected 1.3-Dichloropropane 0.50 Not Detected 2.3 Not Detected 1.3-Dichloropropene 0.50 Not Detected 2.4 Not Detected 1.3-Dichlorobutadiene 2.0 Not Detected 2.4 Not Detected 1.3-Dichlorobutadiene 2.0 Not Detected 3.4 Not Detected 1.3-Dichlorobutadiene 2.0 Not Detected 3.4 Not	Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Dibromochloromethane	Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chloroethane 2.0 Not Detected 5.3 Not Detected Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 10 Not Detected 1,2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloropropene 0.50 Not Detected 2.0 Not Detected	Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Chloroform 0.50 Not Detected 2.4 Not Detected Chloromethane 5.0 Not Detected 10 Not Detected 1,2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroptehene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected	Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloromethane 5.0 Not Detected 1.0 Not Detected 1,2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected<	Chloroethane	2.0	Not Detected	5.3	Not Detected
1,2-Dibromoethane (EDB) 0.50 Not Detected 3.8 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroptoethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected 1,2-Dichloropropene 0.50 Not Detected 2.3 Not Detected </td <td>Chloroform</td> <td>0.50</td> <td>Not Detected</td> <td>2.4</td> <td>Not Detected</td>	Chloroform	0.50	Not Detected	2.4	Not Detected
1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloroptopane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected cis-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Freon 114 0.50 Not Detected 2.3 Not Detect	Chloromethane	5.0	Not Detected	10	Not Detected
1,3-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected trans-1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected cis-1,3-Dichloropropane 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected freon 114 0.50 Not Detected 2.3 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected Hexachlorobutadiene 2.0 Not Detected 2.4 Not Detected	1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected trans-1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected cis-1,3-Dichloropropane 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Ethyl Benzene 0.50 Not Detected 2.3 Not Detected Ethyl Benzene 0.50 Not Detected 2.4	1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane 0.50 Not Detected 2.0 Not Detected Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected trans-1,2-Dichloropropane 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected cis-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Ethyl Benzene 0.50 Not Detected 2.3 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.1 Not Detecte	1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
Freon 12 0.50 Not Detected 2.5 Not Detected 1,2-Dichloroethane 0.50 Not Detected 2.0 Not Detected 1,1-Dichloroethene 0.50 Not Detected 2.0 Not Detected cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected cis-1,3-Dichloropropane 0.50 Not Detected 2.3 Not Detected cis-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 3.5 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 3.5 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2<	1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.4Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected3.2Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichloroethane0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.5Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7 <td>1,1-Dichloroethane</td> <td>0.50</td> <td>Not Detected</td> <td>2.0</td> <td>Not Detected</td>	1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.4Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected8.2Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not Detected1,2,4-Trichloroethane0.50Not Detected1.9Not Detected1,2,4-Trichloroethane0.50Not Detected2.7Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7	Freon 12	0.50	Not Detected	2.5	Not Detected
cis-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected trans-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected cis-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Ethyl Benzene 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 2-Hexanone 2.0 Not Detected 3.2 Not Detected 2-Hexanone 0.50 Not Detected 3.2 Not Detected 3.4 Not Detected 3.5 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 3.0 Not Detected 3.1 Not Detected 3.1 Not Detected 3.1 Not Detected 3.1 Not Detected 3.4 Not Detected 3.2 Not Detected 3.2 Not Detected 3.2 Not Detected 3.3 Not Detected 3.4	1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene 0.50 Not Detected 2.0 Not Detected 1,2-Dichloropropane 0.50 Not Detected 2.3 Not Detected cis-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Ethyl Benzene 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 2.0 Not Detected 2.1 Not Detected 2.4 Not Detected 4-Methylene Chloride 5.0 Not Detected 8.2 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 17 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 2.0 Not Detected 3.4 Not Detected 5tyrene 0.50 Not Detected 3.4 Not Detected 1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected Toluene 0.50 Not Detected 1.9 Not Detected 1,2,4-Trichloroethane 0.50 Not Detected 1.5 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1	1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedToluene0.50Not Detected3.4Not Detected1,2,4-Trichloroebnzene2.0Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.5Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,3-Dichloropropene 0.50 Not Detected 2.3 Not Detected Freon 114 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected Hexachlorobutadiene 2.0 Not Detected 2.4 Not Detected 2-Hexanone 2.0 Not Detected 8.2 Not Detected 2-Hexanone 8.2 Not Detected Methylene Chloride 5.0 Not Detected 17 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 2.0 Not Detected 5-tyrene 0.50 Not Detected 2.1 Not Detected 3.4 Not Detected 1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected Toluene 0.50 Not Detected 1.9 Not Detected 1,2,4-Trichlorobenzene 2.0 Not Detected 1.5 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected 2.7 Not Detected 1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected	1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
Freon 114 0.50 Not Detected 3.5 Not Detected Ethyl Benzene 0.50 Not Detected 2.2 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected 4-Ethyltoluene 0.50 Not Detected 2.4 Not Detected Ethyltoluene 2.0 Not Detected 2.4 Not Detected 2-Hexanone 2.0 Not Detected 8.2 Not Detected Methylene Chloride 5.0 Not Detected 17 Not Detected 4-Methyl-2-pentanone 0.50 Not Detected 2.0 Not Detected 5tyrene 0.50 Not Detected 2.1 Not Detected 5tyrene 0.50 Not Detected 2.1 Not Detected 1,1,2,2-Tetrachloroethane 0.50 Not Detected 3.4 Not Detected Tetrachloroethene 0.50 Not Detected 3.4 Not Detected 1,2,4-Trichlorobenzene 2.0 Not Detected 1.9 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,1-Trichloroethane 0.50 Not Detected 2.7 Not Detected 1,1,2-Trichloroethane 0.50	cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Ethyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Freon 114	0.50	Not Detected	3.5	Not Detected
Hexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Methylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	2-Hexanone	2.0	Not Detected	8.2	Not Detected
Styrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Methylene Chloride	5.0	Not Detected	17	Not Detected
1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Tetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Styrene	0.50	Not Detected	2.1	Not Detected
Toluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Toluene	0.50	Not Detected	1.9	Not Detected
1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected	1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
, ,	1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
, ,	1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
			Not Detected	2.7	Not Detected

Client Sample ID: Lab Blank Lab ID#: 2112234-02A

EPA METHOD TO-15 GC/MS FULL SCAN

	Rpt. Limit	Amount	Rpt. Limit	Amount
Dil. Factor:	1.00	Da	te of Analysis: 12/16/	21 01:29 PM
File Name:	17121607d	Da	te of Collection: NA	

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	101	70-130

eurofins Air Toxics

Client Sample ID: CCV Lab ID#: 2112234-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121604 **Date of Collection: NA** Dil. Factor: Date of Analysis: 12/16/21 11:14 AM 1.00

Compound	%Recovery
Acetone	92
Benzene	97
alpha-Chlorotoluene	102
Bromodichloromethane	98
Bromoform	103
Bromomethane	88
2-Butanone (Methyl Ethyl Ketone)	97
Carbon Disulfide	96
Carbon Tetrachloride	96
Chlorobenzene	98
Dibromochloromethane	101
Chloroethane	96
Chloroform	94
Chloromethane	105
1,2-Dibromoethane (EDB)	100
1,2-Dichlorobenzene	98
1,3-Dichlorobenzene	98
1,4-Dichlorobenzene	99
1,1-Dichloroethane	95
Freon 12	96
1,2-Dichloroethane	96
1,1-Dichloroethene	100
cis-1,2-Dichloroethene	99
trans-1,2-Dichloroethene	98
1,2-Dichloropropane	98
cis-1,3-Dichloropropene	103
trans-1,3-Dichloropropene	104
Freon 114	98
Ethyl Benzene	101
4-Ethyltoluene	99
Hexachlorobutadiene	98
2-Hexanone	97
Methylene Chloride	97
4-Methyl-2-pentanone	97
Styrene	104
1,1,2,2-Tetrachloroethane	96
Tetrachloroethene	102
Toluene	98
1,2,4-Trichlorobenzene	103
1,1,1-Trichloroethane	96
1,1,2-Trichloroethane	99
Trichloroethene	101

eurofins | Air Toxics

Client Sample ID: CCV Lab ID#: 2112234-03A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121604	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/16/21 11:14 AM

Compound	%Recovery	
Freon 11	96	
Freon 113	97	
1,2,4-Trimethylbenzene	99	
1,3,5-Trimethylbenzene	98	
Vinyl Acetate	103	
Vinyl Chloride	97	
m,p-Xylene	102	
o-Xylene	104	
TVOC Ref. to Hexane	100	

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	102	70-130

Client Sample ID: LCS Lab ID#: 2112234-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121605 **Date of Collection: NA** Dil. Factor: Date of Analysis: 12/16/21 11:53 AM 1.00

DII. Factor.	Date of Affaiysi	5. 12/10/21 11:53 AW
Compound	9/ Panayary	Method Limits
Compound	%Recovery	
Acetone	90	70-130
Benzene	96	70-130
alpha-Chlorotoluene	99	70-130
Bromodichloromethane	95	70-130
Bromoform	102	70-130
Bromomethane	88	70-130
2-Butanone (Methyl Ethyl Ketone)	95	70-130
Carbon Disulfide	96	70-130
Carbon Tetrachloride	96	70-130
Chlorobenzene	97	70-130
Dibromochloromethane	100	70-130
Chloroethane	97	70-130
Chloroform	92	70-130
Chloromethane	104	70-130
1,2-Dibromoethane (EDB)	99	70-130
1,2-Dichlorobenzene	95	70-130
1,3-Dichlorobenzene	96	70-130
1,4-Dichlorobenzene	96	70-130
1,1-Dichloroethane	94	70-130
Freon 12	95	70-130
1,2-Dichloroethane	 94	70-130
1,1-Dichloroethene	98	70-130
cis-1,2-Dichloroethene	98	70-130
trans-1,2-Dichloroethene	99	70-130
1.2-Dichloropropane	96	70-130
cis-1,3-Dichloropropene	 102	70-130
trans-1,3-Dichloropropene	103	70-130
Freon 114	99	70-130
Ethyl Benzene	102	70-130
4-Ethyltoluene	98	70-130
Hexachlorobutadiene	94	70-130
2-Hexanone	98	70-130
Methylene Chloride	94	70-130
4-Methyl-2-pentanone	97	70-130
Styrene	104	70-130
1,1,2,2-Tetrachloroethane	97	70-130
Tetrachloroethene	103	70-130
Toluene	96	70-130
1,2,4-Trichlorobenzene	96	70-130
1,1,1-Trichloroethane	97	70-130
1,1,2-Trichloroethane	102	70-130
• •	101	70-130 70-130
Trichloroethene	101	70-130

Client Sample ID: LCS Lab ID#: 2112234-04A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121605	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/16/21 11:53 AM

Compound	%Recovery	Method Limits
Freon 11	95	70-130
Freon 113	98	70-130
1,2,4-Trimethylbenzene	98	70-130
1,3,5-Trimethylbenzene	99	70-130
Vinyl Acetate	120	70-130
Vinyl Chloride	97	- 70-130
m,p-Xylene	102	70-130
o-Xylene	103	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	95	70-130	
4-Bromofluorobenzene	102	70-130	

Client Sample ID: LCSD Lab ID#: 2112234-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17121606 **Date of Collection: NA** Dil. Factor: Date of Analysis: 12/16/21 12:31 PM 1.00

Compound %Recovery Limits Acctone 88 70-130 Benzene 95 70-130 alpha-Chlorotoluene 98 70-130 Bromodichloromethane 94 70-130 Bromomethane 87 70-130 Pommethane 87 70-130 Carbon Disulfide 95 70-130 Carbon Disulfide 95 70-130 Carbon Tetrachloride 95 70-130 Chlorobenzene 97 70-130 Chlorobersene 97 70-130 Chlorocethane 95 70-130 Chlorocethane 90 70-130 Chlorocethane 90 70-130 Chlorocethane 102 70-130 L'2-Diromothane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,1-Dichloroethane 93 70-130 1,2-D			Method
Benzene	Compound	%Recovery	Limits
alpha-Chlorotoluene 98 70-130 Bromodichloromethane 94 70-130 Bromoform 101 70-130 Bromomethane 87 70-130 2-Butanone (Methyl Ethyl Ketone) 94 70-130 Carbon Disulfide 95 70-130 Carbon Tetrachloride 95 70-130 Chlorobenzene 97 70-130 Chlorothare 95 70-130 Chlorothare 90 70-130 Chlorothare 90 70-130 1,2-Dichlorobenzene 96 70-130 1,2-Dichlorobenzene 96 70-130 1,2-Dichlorobenzene 96 70-130 1,2-Dichloroethane 92 70-130 1,2-Dichloroethane 93 70-130 1,2-Dichloroethane 97 70-130	Acetone	88	70-130
Bromodichloromethane 94 70-130 Bromoform 101 70-130 Bromomethane 87 70-130 2-Butanone (Methyl Ethyl Ketone) 94 70-130 Carbon Disulfide 95 70-130 Carbon Tetrachloride 95 70-130 Chlorobenzene 97 70-130 Chloromethane 100 70-130 Chlorotethane 95 70-130 Chlorotem 95 70-130 Chlorotethane 95 70-130 Chlorotemen 95 70-130 Chlorotethane 102 70-130 Chlorotethane (EDB) 99 70-130 1,2-Dischlorotehane (EDB) 99 70-130 1,2-Dischlorotehane (EDB) 99 70-130 1,3-Dischlorotehane (EDB) 99 70-130 1,4-Dischlorotehane 96 70-130 1,4-Dischlorotehane 92 70-130 1,5-Dischlorotehane 93 70-130 1,2-Dischlorotehane 97 <t< td=""><td>Benzene</td><td>95</td><td>70-130</td></t<>	Benzene	95	70-130
Bromoform 101 70-130 Bromomethane 87 70-130 2-Butanone (Methyl Ethyl Ketone) 94 70-130 Carbon Disulfide 95 70-130 Carbon Tetrachloride 95 70-130 Chloroberzene 97 70-130 Dibromochloromethane 100 70-130 Chlorotethane 95 70-130 Chlorotethane 90 70-130 Chloromethane (EDB) 99 70-130 1,2-Dibromoethane (EDB) 99 70-130 1,2-Dibriorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,2-Dichloroethane 92 70-130 1,2-Dichloroethane 93 70-130 1,2-Dichloroethane 97 70-130 trans-1,2-Dichloroethane 97 70-130 trans-1,2-Dichloroethane 97 70-130 trans-1,2-Dichloroethane	alpha-Chlorotoluene	98	70-130
Bromomethane 87 70-130 2-Butanone (Methyl Ethyl Ketone) 94 70-130 Carbon Disulfide 95 70-130 Carbon Tetrachloride 95 70-130 Chlorobenzene 97 70-130 Dibromochloromethane 100 70-130 Chlorothane 95 70-130 Chlorothane 90 70-130 Chloromethane 102 70-130 Chloromethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,1-Dichloroethane 92 70-130 1,2-Dichloroethane 93 70-130 1,2-Dichloroethane 97 70-130 1,1-Dichloroethene 97 70-130 1,1-Dichloroethene 97 70-130 1,2-Dichloropropane 97 70-130 trans-1,3-Dichloropropane 101 <td>Bromodichloromethane</td> <td>94</td> <td>70-130</td>	Bromodichloromethane	94	70-130
2-Butanone (Methyl Ethyl Ketone) 94 70-130 Carbon Disulfide 95 70-130 Carbon Tetrachloride 95 70-130 Chlorobenzene 97 70-130 Dibromochloromethane 100 70-130 Chloroethane 95 70-130 Chloroform 90 70-130 Chloromethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,1-Dichlorobenzene 96 70-130 1,1-Dichlorobenzene 97 70-130 1,2-Dichlorobenzene 97 70-130 1,2-Dichlorobenzene 97 70-130 1,2-Dichloroethane 97 70-130 1,2-Dichloroethene 97 70-130 trans-1,2-Dichloropropene 94 70-130 trans-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114	Bromoform	101	70-130
Carbon Disulfide 95 70-130 Carbon Tetrachloride 95 70-130 Chlorobenzene 97 70-130 Dibromochloromethane 100 70-130 Chloroferm 95 70-130 Chloroform 90 70-130 Chloromethane 102 70-130 1,2-Dichlorobenzene 96 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 92 70-130 1,4-Dichlorotenene 92 70-130 1,2-Dichlorotethane 93 70-130 1,2-Dichlorotethane 97 70-130 1,1-Dichlorotethene 97 70-130 1,2-Dichloropropane 94 70-130 1,2-Dichloropropane 101 70-130 1,2-Dichloropropane 102 70-130 Freon 114 97 70-130 Freon 114 97 70-130	Bromomethane	87	70-130
Carbon Tetrachloride 95 70-130 Chlorobenzene 97 70-130 Dibromochloromethane 100 70-130 Chloroform 90 70-130 Chloroform 90 70-130 Licoromoethane 102 70-130 1,2-Dibromoethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 92 70-130 1,4-Dichloroethane 92 70-130 1,2-Dichloroethane 93 70-130 1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 tethyl Benzene 101 70-130 Ethyl Benzene	2-Butanone (Methyl Ethyl Ketone)	94	70-130
Chlorobenzene 97 70-130 Dibromochloromethane 100 70-130 Chloroethane 95 70-130 Chloroform 90 70-130 Chloromethane 102 70-130 1,2-Dibromoethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 92 70-130 1,4-Dichloroethane 92 70-130 1,1-Dichloroethane 93 70-130 1,2-Dichloroethene 97 70-130 1,1-Dichloroethene 97 70-130 1,2-Dichloroethene 97 70-130 1,2-Dichloropropane 94 70-130 1,2-Dichloropropane 101 70-130 1,2-Dichloropropene 102 70-130 trans-1,3-Dichloropropene 102 70-130 trans-1,3-Dichloropropene 102 70-130 trans-1,3-Dichloropropene	Carbon Disulfide	95	70-130
Dibromochloromethane 100 70-130 Chloroethane 95 70-130 Chloroform 90 70-130 Chloromethane 102 70-130 1,2-Dibromoethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichloroethane 92 70-130 1,4-Dichloroethane 92 70-130 1,1-Dichloroethane 93 70-130 1,2-Dichloroethane 97 70-130 1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloropropene 94 70-130 trans-1,2-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 trans-1,3-Dichloropropene 102 70-130 trans-1,3-Dichloropropene 102 70-130 trans-1,3-Dichloropropene 102 70-130 texply learne 101 70-130 He	Carbon Tetrachloride	95	70-130
Chloroethane 95 70-130 Chloroform 90 70-130 Chloromethane 102 70-130 1,2-Dibromoethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,1-Dichloroethane 92 70-130 Freon 12 93 70-130 1,2-Dichloroethane 97 70-130 1,2-Dichloroethene 97 70-130 1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroptoethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropane 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-	Chlorobenzene	97	70-130
Chloroform 90 70-130 Chloromethane 102 70-130 1,2-Dibromoethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,1-Dichlorobenzene 92 70-130 Freon 12 93 70-130 1,2-Dichloroethane 93 70-130 1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloropropane 94 70-130 trans-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 trans-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 trans-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 101 70-130 <tr< td=""><td>Dibromochloromethane</td><td>100</td><td>70-130</td></tr<>	Dibromochloromethane	100	70-130
Chloromethane 102 70-130 1,2-Dibromoethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,4-Dichloroethane 92 70-130 1,1-Dichloroethane 93 70-130 1,2-Dichloroethene 97 70-130 1,1-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloropropane 94 70-130 trans-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methyl-2-pentanone 97 70-130 Styrene 103 <	Chloroethane	95	70-130
1,2-Dibromoethane (EDB) 99 70-130 1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,1-Dichloroethane 92 70-130 Freon 12 93 70-130 1,2-Dichloroethane 93 70-130 1,2-Dichloroethene 97 70-130 cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 trans-1,3-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2-Trichloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichloroethane 96	Chloroform	90	70-130
1,2-Dichlorobenzene 96 70-130 1,3-Dichlorobenzene 96 70-130 1,4-Dichlorobenzene 96 70-130 1,1-Dichloroethane 92 70-130 Freon 12 93 70-130 1,2-Dichloroethane 93 70-130 1,1-Dichloroethene 97 70-130 cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Fthyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 95 70-130 Toluene 95 70-130	Chloromethane	102	70-130
1,3-Dichlorobenzene 96 70-130 1,4-Dichloroethane 96 70-130 1,1-Dichloroethane 92 70-130 Freon 12 93 70-130 1,2-Dichloroethane 93 70-130 1,1-Dichloroethene 97 70-130 cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Wethylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130	1,2-Dibromoethane (EDB)	99	70-130
1,4-Dichlorobenzene 96 70-130 1,1-Dichloroethane 92 70-130 Freon 12 93 70-130 1,2-Dichloroethane 93 70-130 1,1-Dichloroethene 97 70-130 cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 4-Ethyltoluene 97 70-130 2-Hexanone 97 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichloroethane 96 70-130 1,1,1-Trichloroethane 96 70-130	1,2-Dichlorobenzene	96	70-130
1,1-Dichloroethane 92 70-130 Freon 12 93 70-130 1,2-Dichloroethane 93 70-130 1,1-Dichloroethene 97 70-130 cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 4-Ethyltoluene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130	1,3-Dichlorobenzene	96	70-130
Freon 12 93 70-130 1,2-Dichloroethane 93 70-130 1,1-Dichloroethene 97 70-130 cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroptethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichloroethane 96 70-130<	1,4-Dichlorobenzene	96	70-130
1,2-Dichloroethane 93 70-130 1,1-Dichloroethene 97 70-130 cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Totuene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-1	1,1-Dichloroethane	92	70-130
1,1-Dichloroethene 97 70-130 cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloroethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 4-Ethyltoluene 97 70-130 2-Hexanone 97 70-130 2-Hexanone 97 70-130 4-Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichloroethane 96 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 <td>Freon 12</td> <td>93</td> <td>70-130</td>	Freon 12	93	70-130
cis-1,2-Dichloroethene 97 70-130 trans-1,2-Dichloropethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 5tyrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichloroethane 96 70-130 1,1,1-Trichloroethane 96 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130	1,2-Dichloroethane	93	70-130
trans-1,2-Dichloroethene 97 70-130 1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Totluene 95 70-130 1,2,4-Trichloroethane 96 70-130 1,2,4-Trichloroethane 96 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130	1,1-Dichloroethene	97	70-130
1,2-Dichloropropane 94 70-130 cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Totuene 95 70-130 1,2,4-Trichloroethane 96 70-130 1,1,1-Trichloroethane 96 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	cis-1,2-Dichloroethene	97	70-130
cis-1,3-Dichloropropene 101 70-130 trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	trans-1,2-Dichloroethene	97	70-130
trans-1,3-Dichloropropene 102 70-130 Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichloroethane 96 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	1,2-Dichloropropane	94	70-130
Freon 114 97 70-130 Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130	cis-1,3-Dichloropropene	101	70-130
Ethyl Benzene 101 70-130 4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	trans-1,3-Dichloropropene	102	70-130
4-Ethyltoluene 97 70-130 Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	Freon 114	97	70-130
Hexachlorobutadiene 97 70-130 2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	Ethyl Benzene	101	70-130
2-Hexanone 97 70-130 Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	4-Ethyltoluene	97	
Methylene Chloride 92 70-130 4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	Hexachlorobutadiene		70-130
4-Methyl-2-pentanone 96 70-130 Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	2-Hexanone	97	70-130
Styrene 103 70-130 1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	Methylene Chloride		70-130
1,1,2,2-Tetrachloroethane 96 70-130 Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	4-Methyl-2-pentanone	96	70-130
Tetrachloroethene 102 70-130 Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	Styrene	103	70-130
Toluene 95 70-130 1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	1,1,2,2-Tetrachloroethane	96	
1,2,4-Trichlorobenzene 100 70-130 1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	Tetrachloroethene		
1,1,1-Trichloroethane 96 70-130 1,1,2-Trichloroethane 101 70-130	Toluene		
1,1,2-Trichloroethane 101 70-130	1,2,4-Trichlorobenzene	100	70-130
	1,1,1-Trichloroethane	96	70-130
Trichloroethene 100 70-120	1,1,2-Trichloroethane	101	70-130
Titalioroetiene 100 /0-130	Trichloroethene	100	70-130

Client Sample ID: LCSD Lab ID#: 2112234-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121606	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/16/21 12:31 PM

Compound	%Recovery	Method Limits
Freon 11	94	70-130
Freon 113	96	70-130
1,2,4-Trimethylbenzene	98	70-130
1,3,5-Trimethylbenzene	98	70-130
Vinyl Acetate	116	70-130
Vinyl Chloride	95	70-130
m,p-Xylene	101	70-130
o-Xylene	102	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	93	70-130	
4-Bromofluorobenzene	102	70-130	

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-131325-1

SDG Number: Property ID: 891077

Login Number: 131325 List Source: Eurofins TestAmerica, Pittsburgh

List Number: 1

Creator: Gartner, Cathy

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

ANALYTICAL REPORT

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-135471-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

eurofins

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 3/27/2022 5:08:36 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

LINKS

Review your project results through

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:20:31 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-135471-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Subcontract Data	6
Receipt Checklists	21

1

2

3

4

6

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-135471-1 SDG: Property ID: 891077

Job ID: 180-135471-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-135471-1

Comments

No additional comments.

Receipt

The sample was received on 3/14/2022 10:23 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Eurofins Pittsburgh 3/27/2022

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-135471-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossarv

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DI	Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Pittsburgh

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-135471-1

SDG: Property ID: 891077

Lab Sample ID Client Sample ID Received Matrix Collected 180-135471-1 20220308 M-1 Air 03/08/22 12:51 03/14/22 10:23

3/25/2022

Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHKSTATM
Project #: CHKSTATM
Workorder #: 2203521

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 3/14/2022 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Brian Whattaker

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whittaker

Project Manager

WORK ORDER #: 2203521

Work Order Summary

CLIENT: Ms. Cathy Gartner BILL TO:

Accounts Payable

Eurofins Test America

Eurofins Test America 4104 Shuffel St NW

500 Wilson Pike Circle Suite 100 Brentwood, TN 37027

North Canton, OH 44720

PHONE: 800-765-0980 P.O. # 180-135471

FAX:

615-726-3404

PROJECT# CHKSTATM CHKSTATM

DATE RECEIVED:

03/14/2022

CONTACT: Brian Whittaker

DATE COMPLETED: 03/25/2022

FRACTION#	NAME	<u>TEST</u>	RECEIPT VAC./PRES.	FINAL PRESSURE
01A	20220308M-1	TO-15	8 "Hg	2 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

03/25/22 DATE:

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP - E87680, LA NELAP - 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP - CA009332021-13, VA NELAP - 10615, WA NELAP - C935

Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022.

Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC.

180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

> Page 2 of 14 Page 7 of 21

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2203521

One 6 Liter Summa Canister sample was received on March 14, 2022. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Dilution was performed on sample 20220308M-1 due to the presence of high level non-target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

- B Compound present in laboratory blank greater than reporting limit (background subtraction not performed).
 - J Estimated value.
 - E Exceeds instrument calibration range.
 - S Saturated peak.
 - Q Exceeds quality control limits.
- U Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.
 - UJ- Non-detected compound associated with low bias in the CCV
 - N The identification is based on presumptive evidence.
 - M Reported value may be biased due to apparent matrix interferences.
 - CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector
- r1-File was requantified for the purpose of reissue

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20220308M-1

Lab ID#: 2203521-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	16	30	37	70
Ethyl Benzene	1.6	5.2	6.7	22
4-Ethyltoluene	1.6	27	7.6	130
1,2,4-Trimethylbenzene	1.6	9.7	7.6	48
1,3,5-Trimethylbenzene	1.6	14	7.6	70
m,p-Xylene	1.6	20	6.7	85
o-Xylene	1.6	4.0	6.7	18
TVOC Ref. to Hexane	31	24000	110	84000

eurofins Air Toxics

Client Sample ID: 20220308M-1 Lab ID#: 2203521-01A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a032506 3.10	Date of Collection: 3/8/22 12:51:00 PM Date of Analysis: 3/25/22 01:07 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	16	30	37	70
Benzene	1.6	Not Detected	5.0	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.0	Not Detected
Bromodichloromethane	1.6	Not Detected	10	Not Detected
Bromoform	1.6	Not Detected	16	Not Detected
Bromomethane	16	Not Detected	60	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.2	Not Detected	18	Not Detected
Carbon Disulfide	6.2	Not Detected	19	Not Detected
Carbon Tetrachloride	1.6	Not Detected	9.8	Not Detected
Chlorobenzene	1.6	Not Detected	7.1	Not Detected
Dibromochloromethane	1.6	Not Detected	13	Not Detected
Chloroethane	6.2	Not Detected	16	Not Detected
Chloroform	1.6	Not Detected	7.6	Not Detected
Chloromethane	16	Not Detected	32	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,3-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,1-Dichloroethane	1.6	Not Detected	6.3	Not Detected
Freon 12	1.6	Not Detected	7.7	Not Detected
1,2-Dichloroethane	1.6	Not Detected	6.3	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.1	Not Detected
cis-1,2-Dichloroethene	1.6	Not Detected	6.1	Not Detected
trans-1,2-Dichloroethene	1.6	Not Detected	6.1	Not Detected
1,2-Dichloropropane	1.6	Not Detected	7.2	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.0	Not Detected
trans-1,3-Dichloropropene	1.6	Not Detected	7.0	Not Detected
Freon 114	1.6	Not Detected	11	Not Detected
Ethyl Benzene	1.6	5.2	6.7	22
4-Ethyltoluene	1.6	27	7.6	130
Hexachlorobutadiene	6.2	Not Detected	66	Not Detected
2-Hexanone	6.2	Not Detected	25	Not Detected
Methylene Chloride	16	Not Detected	54	Not Detected
4-Methyl-2-pentanone	1.6	Not Detected	6.3	Not Detected
Styrene	1.6	Not Detected	6.6	Not Detected
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Tetrachloroethene	1.6	Not Detected	10	Not Detected
Toluene	1.6	Not Detected	5.8	Not Detected
1,2,4-Trichlorobenzene	6.2	Not Detected	46	Not Detected
1,1,1-Trichloroethane	1.6	Not Detected	8.4	Not Detected
1,1,2-Trichloroethane 1,1,2-Trichloroethane	 1.6	Not Detected	8.4	Not Detected
Trichloroethene	1.6	Not Detected	8.3	Not Detected

***** eurofins

Client Sample ID: 20220308M-1 Lab ID#: 2203521-01A

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN

	Dot Limit	Amount Pnt Limit Amoun	\ -	
Dil. Factor:	3.10	Date of Analysis: 3/25/22 01:07 PM		
File Name:	a032506	Date of Collection: 3/8/22 12:51:00 P	M	

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	1.6	Not Detected	8.7	Not Detected
Freon 113	1.6	Not Detected	12	Not Detected
1,2,4-Trimethylbenzene	1.6	9.7	7.6	48
1,3,5-Trimethylbenzene	1.6	14	7.6	70
Vinyl Acetate	6.2	Not Detected	22	Not Detected
Vinyl Chloride	1.6	Not Detected	4.0	Not Detected
m,p-Xylene	1.6	20	6.7	85
o-Xylene	1.6	4.0	6.7	18
TVOC Ref. to Hexane	31	24000	110	84000

Container Type: 6 Liter Summa Canister

		Wethod	
Surrogates	%Recovery	Limits	
Toluene-d8	108	70-130	
1,2-Dichloroethane-d4	99	70-130	
4-Bromofluorobenzene	96	70-130	

eurofins Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2203521-02A

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a032505c 1.00		of Collection: NA of Analysis: 3/25/	22 11:14 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

***** eurofins

File Name:

Client Sample ID: Lab Blank Lab ID#: 2203521-02A

Air Toxics

a032505c

EPA METHOD TO-15 GC/MS FULL SCAN

Date of Collection: NA

Dil. Factor:	1.00	Date of Analysis: 3/25/22 11:14 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	109	70-130	
1,2-Dichloroethane-d4	93	70-130	
4-Bromofluorobenzene	98	70-130	

eurofins

Client Sample ID: CCV Lab ID#: 2203521-03A

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name: a032502 **Date of Collection: NA** Dil. Factor: Date of Analysis: 3/25/22 09:18 AM 1.00

Compound	%Recovery
Acetone	92
Benzene	98
alpha-Chlorotoluene	109
Bromodichloromethane	102
Bromoform	107
Bromomethane	100
2-Butanone (Methyl Ethyl Ketone)	104
Carbon Disulfide	98
Carbon Tetrachloride	99
Chlorobenzene	101
Dibromochloromethane	99
Chloroethane	99
Chloroform	100
Chloromethane	96
1,2-Dibromoethane (EDB)	100
1,2-Dichlorobenzene	102
1,3-Dichlorobenzene	101
1,4-Dichlorobenzene	102
1,1-Dichloroethane	102
Freon 12	97
1,2-Dichloroethane	93
1,1-Dichloroethene	104
cis-1,2-Dichloroethene	107
trans-1,2-Dichloroethene	103
1,2-Dichloropropane	108
cis-1,3-Dichloropropene	110
trans-1,3-Dichloropropene	95
Freon 114	99
Ethyl Benzene	100
4-Ethyltoluene	106
Hexachlorobutadiene	96
2-Hexanone	95
Methylene Chloride	101
4-Methyl-2-pentanone	110
Styrene	111
1,1,2,2-Tetrachloroethane	102
Tetrachloroethene	94
Toluene	110
1,2,4-Trichlorobenzene	96
1,1,1-Trichloroethane	98
1,1,2-Trichloroethane	97
Trichloroethene	104

eurofins

Client Sample ID: CCV Lab ID#: 2203521-03A

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name:	a032502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/25/22 09:18 AM

Compound	%Recovery	
Freon 11	94	
Freon 113	101	
1,2,4-Trimethylbenzene	104	
1,3,5-Trimethylbenzene	105	
Vinyl Acetate	105	
Vinyl Chloride	99	
m,p-Xylene	104	
o-Xylene	105	
TVOC Ref. to Hexane	100	

Container Type: NA - Not Applicable

Surrogates	%Recovery	Method Limits
Toluene-d8	108	70-130
1,2-Dichloroethane-d4	96	70-130
4-Bromofluorobenzene	100	70-130

eurofins

Client Sample ID: LCS Lab ID#: 2203521-04A

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name:	a032503	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/25/22 09:41 AM

Dil. Factor:	1.00 Date of Analysi	s: 3/25/22 09:41 AM
		Method
Compound	%Recovery	Limits
Acetone	86	70-130
Benzene	98	70-130
alpha-Chlorotoluene	111	70-130
Bromodichloromethane	102	70-130
Bromoform	108	70-130
Bromomethane	94	70-130
2-Butanone (Methyl Ethyl Ketone)	99	70-130
Carbon Disulfide	97	70-130
Carbon Tetrachloride	98	70-130
Chlorobenzene	102	70-130
Dibromochloromethane	97	70-130
Chloroethane	99	70-130
Chloroform	97	70-130
Chloromethane	91	70-130
1,2-Dibromoethane (EDB)	99	70-130
1,2-Dichlorobenzene	104	70-130
1,3-Dichlorobenzene	101	70-130
1,4-Dichlorobenzene	102	70-130
1,1-Dichloroethane	100	70-130
Freon 12	94	70-130
1,2-Dichloroethane	93	70-130
1,1-Dichloroethene	102	70-130
cis-1,2-Dichloroethene	104	70-130
trans-1,2-Dichloroethene	102	70-130
1,2-Dichloropropane	108	70-130
cis-1,3-Dichloropropene	112	70-130
trans-1,3-Dichloropropene	96	70-130
Freon 114	96	70-130
Ethyl Benzene	100	70-130
4-Ethyltoluene	108	70-130
Hexachlorobutadiene	113	70-130
2-Hexanone	91	70-130
Methylene Chloride	94	70-130
4-Methyl-2-pentanone	109	70-130
Styrene	111	70-130
1,1,2,2-Tetrachloroethane	106	70-130
Tetrachloroethene	94	70-130
Toluene	111	70-130
1,2,4-Trichlorobenzene	113	70-130
1,1,1-Trichloroethane	99	70-130
1,1,2-Trichloroethane	101	70-130
Trichloroethene	103	70-130

***** eurofins

Client Sample ID: LCS Lab ID#: 2203521-04A

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name:	a032503	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/25/22 09:41 AM

Compound	%Recovery	Method Limits
Freon 11	93	70-130
Freon 113	97	70-130
1,2,4-Trimethylbenzene	106	70-130
1,3,5-Trimethylbenzene	106	70-130
Vinyl Acetate	120	70-130
Vinyl Chloride	94	70-130
m,p-Xylene	102	70-130
o-Xylene	103	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	109	70-130	
1,2-Dichloroethane-d4	97	70-130	
4-Bromofluorobenzene	100	70-130	

eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2203521-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

File Name: a032504 **Date of Collection: NA** Dil. Factor: Date of Analysis: 3/25/22 10:05 AM 1.00

		Method
Compound	%Recovery	Limits
Acetone	86	70-130
Benzene	100	70-130
alpha-Chlorotoluene	113	70-130
Bromodichloromethane	102	70-130
Bromoform	111	70-130
Bromomethane	93	70-130
2-Butanone (Methyl Ethyl Ketone)	99	70-130
Carbon Disulfide	95	70-130
Carbon Tetrachloride	97	70-130
Chlorobenzene	103	70-130
Dibromochloromethane	99	70-130
Chloroethane	96	70-130
Chloroform	96	70-130
Chloromethane	91	70-130
1,2-Dibromoethane (EDB)	100	70-130
1,2-Dichlorobenzene	106	70-130
1,3-Dichlorobenzene	104	70-130
1,4-Dichlorobenzene	104	70-130
1,1-Dichloroethane	99	70-130
Freon 12	94	70-130
1,2-Dichloroethane	93	70-130
1,1-Dichloroethene	99	70-130
cis-1,2-Dichloroethene	104	70-130
trans-1,2-Dichloroethene	100	70-130
1,2-Dichloropropane	107	70-130
cis-1,3-Dichloropropene	113	70-130
trans-1,3-Dichloropropene	97	70-130
Freon 114	95	70-130
Ethyl Benzene	103	70-130
4-Ethyltoluene	108	70-130
Hexachlorobutadiene	116	70-130
2-Hexanone	92	70-130
Methylene Chloride	94	70-130
4-Methyl-2-pentanone	113	70-130
Styrene	112	70-130
1,1,2,2-Tetrachloroethane	107	70-130
Tetrachloroethene	95	70-130
Toluene	112	70-130
1,2,4-Trichlorobenzene	116	70-130
1,1,1-Trichloroethane	98	70-130
1,1,2-Trichloroethane	101	70-130
Trichloroethene	103	70-130

***** eurofins

Client Sample ID: LCSD Lab ID#: 2203521-04AA

EPA METHOD TO-15 GC/MS FULL SCAN

Air Toxics

File Name:	a032504	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/25/22 10:05 AM

Compound	%Recovery	Method Limits
Freon 11	92	70-130
Freon 113	97	70-130
1,2,4-Trimethylbenzene	107	70-130
1,3,5-Trimethylbenzene	108	70-130
Vinyl Acetate	123	70-130
Vinyl Chloride	94	70-130
m,p-Xylene	107	70-130
o-Xylene	106	70-130
TVOC Ref. to Hexane	Not Spiked	

Container Type: NA - Not Applicable

		Method Limits	
Surrogates	%Recovery		
Toluene-d8	109	70-130	
1,2-Dichloroethane-d4	95	70-130	
4-Bromofluorobenzene	100	70-130	

CHAIN OF CUSTODY RECORD

	СНА	CHAIN OF CUSTODY RECORD	ECORD		No. 2/0/
	PROJECT NUMBER:	BER:	PROJECT NAME:		COCof
Page (918) 921-5331	SHIPPED TO:	TIR TOXICS	MANAGER RRA		TAT: STANJARD
SAMPLER'S PRINTED NAME: TERRY FISHER		WE		PO#	W0#
SAMPLERS SIGNATURE:		HÉX		*TVOCAS	1 C 43 CB - C12
Date Time Sample ID	Sample of Sample	0-15 10 C a		****	2203521
- 1	# (71			REMARKS
3-22-			and the second s	17AG#	+
ON 3-8-22 1251 20220308 M-1	4.5	XX		TAC#	0772
	And with the state of the state		Territor (Service (Se	- 1 C4+ 1 100	on #24142
				50014	#
	7			21	6
	,				Custody Seal Intact
					Mydue euon N
The state of the s	MAN ANNUAL PROPERTY OF THE PRO		And the second s		
	+				
2:29 RELINQUISHED BY:	DATES-10-22	RECEIVED BY:		30MB 22	
RELINQUISHED BY:	DATE	RECEIVED BY:	* ***	DATE	
	TIME			TIME	
METHOD OF SHIPMENT:		AIRBILL NUMBER:	AIRBILL NUMBER FEDER 519674	410 014	146
	TIME	Send PDF, EDD, and	I INVOICE (if applicable) to:		
LABORATORY CONTACT: *		LABORATORY ADDR	LABORATORY ADDRESS:		
CATHY 615-301-5041		1.80 BLNE	BLUE RAVINE RD STEB !	FOLLOM, CA	08956
White: Receiving Lab Yellow: Equus Environmental Project File	Pink: Equus QA/QC				

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 180-135471-1

SDG Number: Property ID: 891077

Login Number: 135471

List Number: 1

Creator: Gartner, Cathy

List Source: Eurofins Pittsburgh

Question Answer Comment

Radioactivity wasn't checked or is </= background as measured by a survey meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Eurofins Pittsburgh

Released to Imaging: 6/4/2024 2:20:31 PM

1

3

Δ

5

6

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-236444-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

Lathy Gartner

Authorized for release by: 6/22/2021 3:14:38 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

····· Links ·····

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:20:31 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

__

6

9

1 1

12

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 460-236444-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

2

3

4

6

8

10

13

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-236444-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

Ciocoary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit

ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Edison

Case Narrative

Client: Chesapeake Energy Corporation

Job ID: 460-236444-1 Project/Site: State M-1 SDG: Property ID: 891077

Job ID: 460-236444-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-236444-1

Comments

No additional comments.

Receipt

The samples were received on 6/12/2021 3:11 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.2° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Eurofins TestAmerica, Edison 6/22/2021

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

SDG: Property ID: 891077

Job ID: 460-236444-1

Client Sample ID: MW-4					Lab Sa	ample	; ID:	460-236444-1
Analyte	Result	Qualifier	RL	MDL Unit	Dil Fac	D Met	hod	Prep Type
Chloride	528		25.0	mg/L	25	300	.0	Total/NA

Client Sample ID: MW-8 Lab Sample ID: 460-236444-2

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Chloride	92.5	25.0	mg/L	25	300.0	Total/NA

Client Sample ID: Dup Lab Sample ID: 460-236444-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Chloride	524	25.0	mg/L	25 300.0	Total/NA

Lab Sample ID: 460-236444-4 Client Sample ID: EQ Blank

No Detections.

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: MW-4 Date Collected: 06/08/21 09:15 Lab Sample ID: 460-236444-1

Matrix: Water

Job ID: 460-236444-1

SDG: Property ID: 891077

Date Received: 06/12/21 15:11

Method: 300.0 - Anions, Ion Cl	nromatography					
Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Chloride	528	25.0	mg/L		06/21/21 15:38	25

Client Sample ID: MW-8 Lab Sample ID: 460-236444-2 Date Collected: 06/08/21 10:40 **Matrix: Water**

Date Received: 06/12/21 15:11

Method: 300.0 - Anions, Ion Ch	romatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	92.5	25.0	mg/L			06/21/21 15:58	25

Lab Sample ID: 460-236444-3 **Client Sample ID: Dup Matrix: Water**

Date Collected: 06/08/21 00:00 Date Received: 06/12/21 15:11

Method: 300.0 - Anions, Ion Ch	romatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	524	25.0	mg/L			06/21/21 16:13	25

Lab Sample ID: 460-236444-4 **Client Sample ID: EQ Blank Matrix: Water**

Date Collected: 06/08/21 00:00 Date Received: 06/12/21 15:11

Method: 300.0 - Anions, Ion C	hromatography						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND -	1.00	mg/L			06/21/21 16:28	1

Dil Fac

QC Sample Results

RL

1.00

Spike

Added

3.20

Client: Chesapeake Energy Corporation

Project/Site: State M-1

ND

Job ID: 460-236444-1 SDG: Property ID: 891077

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

%Rec.

Analyzed

06/21/21 12:15

RPD

Limit

15

Method:	300.0	- Anions,	lon	Chromatography	

Lab Sample ID: MB 460-785587/3

Matrix: Water

Chloride

Chloride

Chloride

Analysis Batch: 785587

MB MB Analyte Result Qualifier

Lab Sample ID: LCS 460-785587/5 **Matrix: Water**

Analysis Batch: 785587

Analyte

Lab Sample ID: LCSD 460-785587/6 **Matrix: Water**

Analyte

Analysis Batch: 785587

Added 3.20

Spike LCSD LCSD

Result Qualifier 3.063

LCS LCS

3.070

Result Qualifier

MDL Unit

mg/L

Unit

mg/L

Unit mg/L

D

Prepared

D %Rec

96

%Rec 96

Client Sample ID: Lab Control Sample Dup

Limits RPD 90 - 110

QC Association Summary

Client: Chesapeake Energy Corporation
Project/Site: State M-1

Job ID: 460-236444-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 785587

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-236444-1	MW-4	Total/NA	Water	300.0	
460-236444-2	MW-8	Total/NA	Water	300.0	
460-236444-3	Dup	Total/NA	Water	300.0	
460-236444-4	EQ Blank	Total/NA	Water	300.0	
MB 460-785587/3	Method Blank	Total/NA	Water	300.0	
LCS 460-785587/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-785587/6	Lab Control Sample Dup	Total/NA	Water	300.0	

3

4

5

9

1 1

12

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: MW-4

Date Collected: 06/08/21 09:15 Date Received: 06/12/21 15:11

Lab Sample ID: 460-236444-1

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 460-236444-1

SDG: Property ID: 891077

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		25	785587	06/21/21 15:38	VMI	TAL EDI

Client Sample ID: MW-8 Lab Sample ID: 460-236444-2 **Matrix: Water**

Date Collected: 06/08/21 10:40 Date Received: 06/12/21 15:11

Batch Batch Dilution Batch Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 25 785587 06/21/21 15:58 VMI TAL EDI

Client Sample ID: Dup Lab Sample ID: 460-236444-3

Date Collected: 06/08/21 00:00

Date Received: 06/12/21 15:11

Batch Batch Dilution Batch Prepared **Prep Type** Method **Factor** Number or Analyzed Type Run **Analyst** Lab TAL EDI Total/NA Analysis 300.0 25 785587 06/21/21 16:13 VMI

Client Sample ID: EQ Blank Lab Sample ID: 460-236444-4

Date Collected: 06/08/21 00:00

Date Received: 06/12/21 15:11

Batch Batch Dilution Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Analyst Type Lab Analysis 300.0 785587 06/21/21 16:28 VMI TAL EDI Total/NA

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 460-236444-1 Project/Site: State M-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	07-01-21
Massachusetts	State	M-NJ312	06-30-21
New Jersey	NELAP	12028	06-30-21
New York	NELAP	11452	04-01-22
Pennsylvania	NELAP	68-00522	02-28-22
Rhode Island	State	LAO00132	12-30-21
USDA	US Federal Programs	P330-20-00244	11-03-23

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-236444-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL EDI

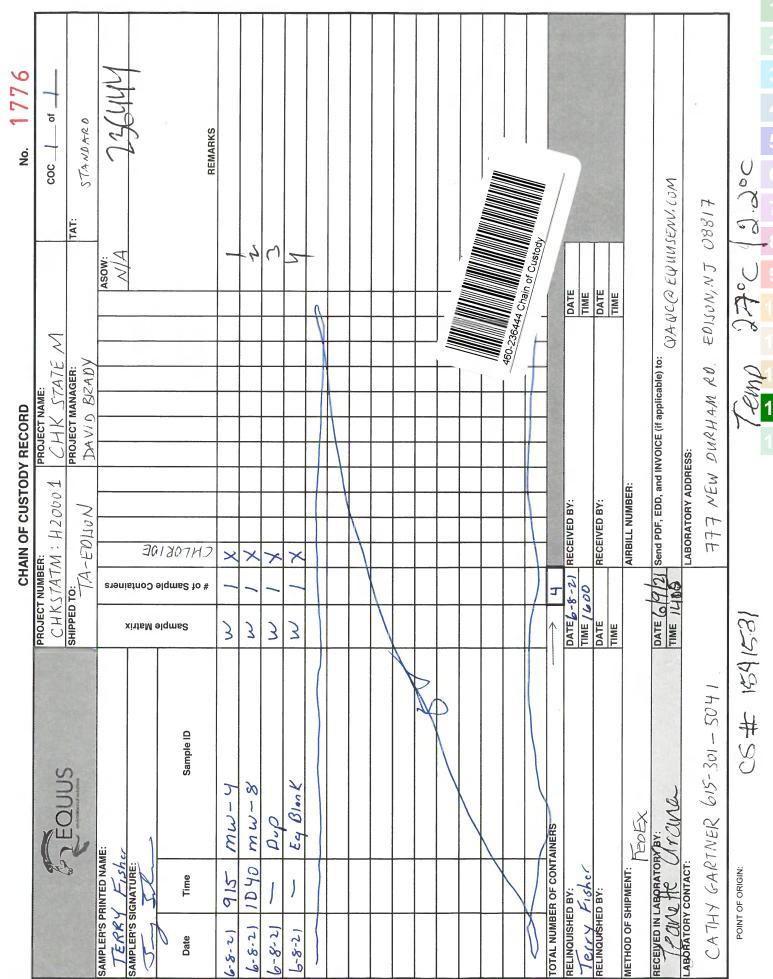
Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Sample Summary


Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-236444-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
460-236444-1	MW-4	Water	06/08/21 09:15	06/12/21 15:11	
460-236444-2	MW-8	Water	06/08/21 10:40	06/12/21 15:11	
460-236444-3	Dup	Water	06/08/21 00:00	06/12/21 15:11	
460-236444-4	EQ Blank	Water	06/08/21 00:00	06/12/21 15:11	

Released to Imaging: 6/4/2024 2:20:31 PM

Page 13 of 15

6/22/2021

Cooler #1: Cooler #4: Cooler #4: Cooler #4: Cooler #4: Cooler #5: Cooler #4: Cooler #4: Cooler #4: Cooler #4: Cooler #4: Cooler #6:	N House	25	3	_		Euro Receip	tins les t Tempe	tAmeric rature a	Eurofins TestAmerica Edison Receipt Temperature and pH Log	n go.					Page	5
THE COOLET ENDERGITIES Part Cooler #1. Cooler #1.	Number of Coolers:				# CE SE		5									
Cooler #1, 27 © 200 Cooler #1, 200							oler Te	empera	atures							
Cooler #2: © © Cooler #8: © © © © Cooler #8: © © © © Cooler #8: © © © Cooler #8: © © © © © © Cooler #8: © © © © © © © Cooler #8: © © © © © © © © © © © © © © © © © © ©	Cooler #		CORREC		0	ooler #4:	RAW	CORREC		Ŭ	ooler #7:	RAW C	CORRECTED			
Number Cooler #9: C Cooler #6: C Cooler #6: C Cooler #9: C C C C C C C C C C	Cooler #	1			0	ooler #5:				Ü	ooler #8:	S	S			
Number COD Nutrate Medias Hardness Pest COM Phenois Sulfide TKN TOC Cyanide Phess Other	Cooler #				J	ooler #6:		ပ္		Ü	ooler #9:	S.	υ Q			
Number (pH<2		Ammonia		Nitrate Nitrite	Metals	Hardness	Pest	EPH or QAM	Phenols	Sulfide	T N		Total Cyanide	Total Phos	Other	Other
If pH are ple No(s). adjuste:	TALS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(bH 2-9)	(pH<2)	(pH<2)	(6 <hd)< td=""><td>(pH<2)</td><td></td><td>(pH>12)</td><td>(pH<2)</td><td></td><td></td></hd)<>	(pH<2)		(pH>12)	(pH<2)		
ple No(s). adjustevative (s																
If pH and live Name/Condition of Preservative (s																
If pH an ple No(s). adjuste.																
If pH an ple No(s). adjuste: vative Name/Conc																
ple No(s). adjustevative (s																
If pH au lf																
If pH au lf pho(s). adjustervative Name/Conc																
If pH and ple No(s). adjustervative Name/Conc																
If pH and ple No(s). adjuste: vative Name/Conc																
If pH ar lf pH ar ple No(s). adjuste vative Name/Conc * of Preservative(s																
If pH and ple No(s). adjustervative Name/Conc																
If pH are the No(s). adjustervative Name/Conc																
If pH ar ple No(s). adjuste vative Name/Conc # of Preservative(s																
ple No(s). adjuste vative Name/Conc ‡ of Preservative(s		п рн аб	ustments	are requi	red recor	d the info	rmation b	elow:								
vative Name/Conc # of Preservative(s	Sample No(s)	. adjusted														
‡ of Preservative(s	Preservative Na	me/Conc.					Volu	me of Pre	servative u	sed (ml):						
	Lot # of Pres	ervative(s):							Expirat	ion Date:						
		7	he appropi Sam	iate Proje	ect Manage letal analv	er and Dep	artment M	lanager sh	ould be no	tified abou	ut the samu	oles which	were pH a	adjusted.		
			;		To a series of the series of t	200	5	3	2		5	louis princi	to analys	ó		

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 460-236444-1

SDG Number: Property ID: 891077

List Source: Eurofins TestAmerica, Edison Login Number: 236444

List Number: 1

Creator: Rivera, Kenneth

Creator. Rivera, Reillietti		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1541531
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-242638-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

Cathy Gartner

Authorized for release by: 9/22/2021 11:11:47 AM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

Review your project results through

·····LINKS ·······

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:20:31 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

__

3

4

6

0

9

1 1

12

Client: Chesapeake Energy Corporation
Project/Site: State M-1

Laboratory Job ID: 460-242638-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-242638-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

LOD

Ciossaiy	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Limit of Detection (DoD/DOE)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Eurofins TestAmerica, Edison

Case Narrative

Client: Chesapeake Energy Corporation

Job ID: 460-242638-1 Project/Site: State M-1 SDG: Property ID: 891077

Job ID: 460-242638-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-242638-1

Comments

No additional comments.

Receipt

The samples were received on 9/10/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.3° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Eurofins TestAmerica, Edison 9/22/2021

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-242638-1

SDG: Property ID: 891077

Client Sample ID: EQ Blan	k					Lab Sa	amp	ole ID: 4	60-242638-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Chloride	9.80		1.00		mg/L	1	_ 3	300.0	Total/NA
Client Sample ID: MW-4						Lab Sa	amp	ole ID: 4	60-242638-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Chloride	438		10.0		mg/L	10	_ 3	300.0	Total/NA
Client Sample ID: MW-8						Lab Sa	amp	ole ID: 4	60-242638-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Chloride	65.4		1.00		mg/L	1	_ 3	300.0	Total/NA
Client Sample ID: DUP						Lab Sa	amp	ole ID: 4	60-242638-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	Method	Prep Type
Chloride	65.4		1.00		mg/L	1	_ 3	300.0	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank Date Collected: 09/08/21 11:38

Lab Sample ID: 460-242638-1

Date Received: 09/10/21 10:00

Matrix: Water

Job ID: 460-242638-1

SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac 1.00 09/21/21 15:38 Chloride 9.80 mg/L

Client Sample ID: MW-4 Lab Sample ID: 460-242638-2

Date Collected: 09/08/21 14:55 **Matrix: Water**

Date Received: 09/10/21 10:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 438 10.0 mg/L 09/21/21 21:05

Client Sample ID: MW-8 Lab Sample ID: 460-242638-3

Date Collected: 09/08/21 16:45 **Matrix: Water** Date Received: 09/10/21 10:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit Prepared Dil Fac Analyzed Chloride 65.4 1.00 mg/L 09/21/21 16:10

Client Sample ID: DUP Lab Sample ID: 460-242638-4

Date Collected: 09/08/21 00:00 **Matrix: Water**

Date Received: 09/10/21 10:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 1.00 mg/L 09/21/21 16:26 65.4

Dil Fac

QC Sample Results

RL

1.00

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-242638-1 SDG: Property ID: 891077

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec.

Limits

90 - 110

%Rec.

Analyzed

09/21/21 12:14

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-802015/3

Matrix: Water

Analysis Batch: 802015

MB MB

Analyte Result Qualifier

Chloride ND

Lab Sample ID: LCS 460-802015/5 **Matrix: Water**

Analysis Batch: 802015

Analyte

Chloride

Lab Sample ID: LCSD 460-802015/6 **Matrix: Water**

Analysis Batch: 802015

Analyte Chloride

Spike Added 3.20

Spike

3.20

Added

2.963

LCSD LCSD Result Qualifier

LCS LCS

2.920

Result Qualifier

MDL Unit

mg/L

Unit mg/L

Unit

mg/L

D

Prepared

D %Rec

91

Client Sample ID: Lab Control Sample Dup

%Rec 93

Limits 90 - 110

RPD RPD Limit 15

QC Association Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-242638-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 802015

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-242638-1	EQ Blank	Total/NA	Water	300.0	
460-242638-2	MW-4	Total/NA	Water	300.0	
460-242638-3	MW-8	Total/NA	Water	300.0	
460-242638-4	DUP	Total/NA	Water	300.0	
MB 460-802015/3	Method Blank	Total/NA	Water	300.0	
LCS 460-802015/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-802015/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: EQ Blank

Date Collected: 09/08/21 11:38 Date Received: 09/10/21 10:00 Lab Sample ID: 460-242638-1

Matrix: Water

Matrix: Water

Job ID: 460-242638-1

SDG: Property ID: 891077

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0			802015	09/21/21 15:38	VMI	TAL EDI

Client Sample ID: MW-4 Lab Sample ID: 460-242638-2 **Matrix: Water**

Date Collected: 09/08/21 14:55 Date Received: 09/10/21 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	802015	09/21/21 21:05	VMI	TAL EDI

Client Sample ID: MW-8 Lab Sample ID: 460-242638-3

Date Collected: 09/08/21 16:45 Date Received: 09/10/21 10:00

Batch Batch Dilution Batch Prepared **Prep Type** Type Method **Factor** Number or Analyzed Run Analyst Lab TAL EDI Total/NA Analysis 300.0 802015 09/21/21 16:10 VMI

Client Sample ID: DUP Lab Sample ID: 460-242638-4

Date Collected: 09/08/21 00:00 **Matrix: Water**

Date Received: 09/10/21 10:00

Batch Batch Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 300.0 802015 09/21/21 16:26 VMI TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 460-242638-1 Project/Site: State M-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	06-30-22
Massachusetts	State	M-NJ312	06-30-22
New Jersey	NELAP	12028	06-30-22
New York	NELAP	11452	04-01-22
Pennsylvania	NELAP	68-00522	02-28-22
Rhode Island	State	LAO00132	12-30-21
USDA	US Federal Programs	P330-20-00244	11-03-23

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-242638-1

SDG: Property ID: 891077

Protocol	Laboratory

Method **Method Description** 300.0 Anions, Ion Chromatography MCAWW TAL EDI

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-242638-1

SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-242638-1	EQ Blank	Water		09/10/21 10:00
460-242638-2	MW-4	Water	09/08/21 14:55	09/10/21 10:00
460-242638-3	MW-8	Water	09/08/21 16:45	09/10/21 10:00
460-242638-4	DUP	Water	09/08/21 00:00	09/10/21 10:00

	CHAIN	CHAIN OF CUSTODY RECORD		NO. ZUZI
	PROJECT NUMBER: CHKSTATM: H21001	18: 421001	PROJECT NAME: CHK STATE M	ooo
Environmental, LLC (918) 921-5331	SHIPPED TO:	TA-EDISON	PROJECT MANAGER: DAVID BRADY	TAT: STANDARD
SAMPLER'S PRINTED NAME: TERRY FISH ER SAMPLERS SIGNATURE:	e Matrix	3 0		мо# У 1) С 2 С
Date Time Sample ID		CHrokl		REMARKS
9-8-21 1138 EQ Blank	_ ≥	×		
1455 mw-	3	*		TO .
1645		× ;		(1)
d~7 17-2-L	3	×		T
R)				
		460-242638 CF	450-242538 Chain of Custody	
TOTAL WILLIAMS OF CONTANTED				
RELINQUISHED BY:		RECEIVED BY:		DATE 9/10/6 1 20 20-10 - 8-30-8
Sylv	TIME/1000	* Via	tider / 129A	30
RELINQUISHED BY:		RECÉIVED BY:	A 0	DATE CONTACT OF THE
METHOD OF SHIPMENT: FareEx	a	AIRBILL NUMBER:	5049 4013 0470	
RECEIVED IN LABORATORY BY:	DATE S	end PDF, EDD, and	to:	
LABORATORY CONTACT:		LABORATORY ADDRESS:	RESS:	
CATHY GARTNER 615-301-5041		O WAN FFF	NEW DUPHAM PO FNIGNAT	F1880

Page 13 of 15

13 14

₽ Other Page___ Other The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. (pH<2) Total Phos Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. (pH>12) Total Cyanide (pH<2) **10**C Cooler #8: Cooler #9: (pH<2) ΙKΝ Expiration Date: Volume of Preservative used (ml): Sulfide (6<Hd) Receipt Temperature and pH Log **Eurofins TestAmerica Edison** Date: Phenols **Cooler Temperatures** (pH<2) ပ္ S EPH or QAM (pH<2) If pH adjustments are required record the information below: S (bH 2-9) Pest Cooler #4: Cooler #5: Cooler #6: Hardness (pH<2) IR Gun # Metals (pH<2) Nitrate Nitrite (pH<2) Initials: (pH<2) 000 24X 38 Preservative Name/Conc.: Lot # of Preservative(s): Sample No(s). adjusted: Ammonia (pH<2)

EDS-WI-038, Rev 4.1 10/22/2019

Number of Coolers:

Job Number:

Cooler #1: Cooler #2: Cooler #3:

TALS Sample Number

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 460-242638-1

SDG Number: Property ID: 891077

List Source: Eurofins TestAmerica, Edison

List Number: 1

Login Number: 242638

Creator: DiGuardia, Joseph L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Released to Imaging: 6/4/2024 2:20:31 PM

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-249019-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

Revision: 1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

CathyGartner

Authorized for release by: 12/20/2021 1:20:47 PM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:20:31 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

4

5

7

8

4.0

11

13

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 460-249019-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receint Checklists	15

2

3

6

8

10

11

13

14

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 460-249019-1 SDG: Property ID: 891077

Project/Site: State M-1

Qualifiers

HPLC/IC

Qualifier **Qualifier Description**

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DΙ Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

Not Calculated NC

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Eurofins TestAmerica, Edison

3

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-249019-1

SDG: Property ID: 891077

Job ID: 460-249019-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-249019-1

Revised report

Sample ID was updated.

This replaces the previously generated report.

Receipt

The samples were received on 12/8/2021 11:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.7° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-249019-1

SDG: Property ID: 891077

Client Sample ID: MW-4						Lab Sa	amp	le ID: 4	60-249019-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	lethod	Prep Type
Chloride	404		10.0		mg/L	10	_ 3	0.00	Total/NA
Client Sample ID: EQ Blan	k					Lab Sa	amp	ole ID: 4	60-249019-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	lethod	Prep Type
Chloride	13.9		1.00		mg/L	1	_ 3	0.00	Total/NA
Client Sample ID: MW-8						Lab Sa	amp	ole ID: 4	60-249019-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	lethod	Prep Type
Chloride	56.2		10.0		mg/L	10	_ 3	0.00	Total/NA
Client Sample ID: Dup						Lab Sa	amp	ole ID: 4	60-249019-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D N	lethod	Prep Type
Chloride	56.0		10.0		mg/L	10	_ 3	0.00	Total/NA

This Detection Summary does not include radiochemical test results.

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Lab Sample ID: 460-249019-1

Client Sample ID: MW-4 Date Collected: 12/07/21 09:55 Date Received: 12/08/21 11:00

Matrix: Water

Matrix: Water

Job ID: 460-249019-1

SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL **MDL** Unit D Dil Fac Prepared Analyzed 10.0 12/17/21 20:01 Chloride 404 mg/L

Lab Sample ID: 460-249019-2 Client Sample ID: EQ Blank **Matrix: Water**

Date Collected: 12/07/21 10:00 Date Received: 12/08/21 11:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 13.9 1.00 mg/L 12/17/21 20:15

Client Sample ID: MW-8 Lab Sample ID: 460-249019-3

Date Collected: 12/07/21 11:20

Date Received: 12/08/21 11:00

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier Dil Fac RL MDL Unit Prepared Analyzed 10.0 Chloride 56.2 mg/L 12/17/21 20:30 10

Client Sample ID: Dup Lab Sample ID: 460-249019-4 **Matrix: Water**

Date Collected: 12/07/21 00:00

Date Received: 12/08/21 11:00

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 10.0 mg/L 12/17/21 20:45 56.0 10

Dil Fac

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-249019-1 SDG: Property ID: 891077

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

%Rec.

Limits

90 - 110

%Rec.

Limits

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Analyzed

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-819446/3

Matrix: Water

Analysis Batch: 819446

MB MB

Analyte Result Qualifier

RL 1.00 Chloride ND

12/17/21 15:25 mg/L **Client Sample ID: Lab Control Sample**

Unit

mg/L

Unit

mg/L

D

Prepared

D %Rec

104

%Rec

MDL Unit

Lab Sample ID: LCS 460-819446/5

Matrix: Water

Analysis Batch: 819446

Spike LCS LCS Added Result Qualifier

Sample Sample

148

Analyte

3.20 Chloride

Lab Sample ID: 460-249111-C-6 MS

Matrix: Water

Analysis Batch: 819446

Analyte Result Qualifier Chloride

Lab Sample ID: 460-249111-C-6 MSD

Matrix: Water

Analysis Batch: 819446

Analyte

Result Qualifier Chloride 148

Spike Sample Sample Added 32.0

Spike

Added

32.0

MSD MSD Result Qualifier 149.0 4

3.331

MS MS

148.1 4

Result Qualifier

Unit mg/L %Rec

Limits 90 - 110

%Rec.

RPD Limit

RPD

Eurofins TestAmerica, Edison

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-249019-1

SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 819446

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-249019-1	MW-4	Total/NA	Water	300.0	
460-249019-2	EQ Blank	Total/NA	Water	300.0	
460-249019-3	MW-8	Total/NA	Water	300.0	
460-249019-4	Dup	Total/NA	Water	300.0	
MB 460-819446/3	Method Blank	Total/NA	Water	300.0	
LCS 460-819446/5	Lab Control Sample	Total/NA	Water	300.0	
460-249111-C-6 MS	Matrix Spike	Total/NA	Water	300.0	
460-249111-C-6 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Client Sample ID: MW-4

Date Collected: 12/07/21 09:55

Date Received: 12/08/21 11:00

Lab Sample ID: 460-249019-1

Matrix: Water

Job ID: 460-249019-1

SDG: Property ID: 891077

Batch Dilution Batch Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis 300.0 819446 12/17/21 20:01 VMI TAL EDI 10

Client Sample ID: EQ Blank Lab Sample ID: 460-249019-2

Date Received: 12/08/21 11:00

Date Collected: 12/07/21 10:00 **Matrix: Water**

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 819446 12/17/21 20:15 VMI TAL EDI

Client Sample ID: MW-8 Lab Sample ID: 460-249019-3

Date Collected: 12/07/21 11:20 **Matrix: Water**

Date Received: 12/08/21 11:00

Batch Batch Dilution Batch **Prepared Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab TAL EDI Total/NA Analysis 300.0 10 819446 12/17/21 20:30 VMI

Client Sample ID: Dup Lab Sample ID: 460-249019-4

Date Collected: 12/07/21 00:00 **Matrix: Water**

Date Received: 12/08/21 11:00

Batch Batch Dilution Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Type Analyst Lab Analysis 300.0 819446 12/17/21 20:45 VMI TAL EDI Total/NA 10

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 460-249019-1 Project/Site: State M-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	06-30-22
Massachusetts	State	M-NJ312	06-30-22
New Jersey	NELAP	12028	07-01-23
New York	NELAP	11452	04-01-23
Pennsylvania	NELAP	68-00522	02-28-22
Rhode Island	State	LAO00132	12-30-21
USDA	US Federal Programs	P330-20-00244	11-03-23

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-249019-1 SDG: Property ID: 891077

Protocol Laboratory

Method
300.0Method Description
Anions, Ion ChromatographyProtocol
MCAWWLaboratory
TAL EDI

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

3

4

6

8

10

12

13

| | 4

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 460-249019-1 SDG: Property ID: 891077

	•	,	
ed			
1.00			

Client Sample ID Lab Sample ID Matrix Collected Receive 460-249019-1 MW-4 Water 12/07/21 09:55 12/08/21 11:00 460-249019-2 EQ Blank Water 12/07/21 10:00 12/08/21 11:00 MW-8 460-249019-3 Water 12/07/21 11:20 12/08/21 11:00 460-249019-4 Dup Water 12/07/21 00:00 12/08/21 11:00

	CHAIN OF CUSTODY RECORD	ODY RECORD	No. 2703 249019
	PROJECT NUMBER:	PROJECT NAME:	coc 1 of 1
Environmental, LLC (918) 921-5331		PROJECT MANAGER	T: STANDARD
SAMPLER'S PRINTED NAME: JERRY FIShor SAMPLERS SIGNATURE:	Matrix Containers	#Od	#OM
Date Time Sample ID			REMARKS
12-7-2) 955 MW-4	Water 1 X		
12-7-21 1000 Eq Blank	water 1 X		
1120 mas	4 / / X		
12-7-21 - 000	who 1 X		
		460-249019 Chain of Custody	
	-		
TOTAL NUMBER OF CONTAINERS	1		
RELINQUISHED BY:	DATE-7-2/ RECEIVED BY:	Lega (E)	1510221+50
RELINGUISHED BY:		BY: DATE	
METHOD OF SHIPMENT:		AIRBILL NUMBER: <355 2981 0120	
RECEIVED IN LABORATORY BY:	DATE Send PDF, E	Send PDF, EDD, and INVOICE (if applicable) to: QAQC@EquusEnv.com	
LABORATORY CONTACT:		LABORATORY ADDRESS:	
CATHY 615-301-5041	N EEE	777 NEW DURHAM RD FOLLON, NJ OBBIT	

Page 13 of 15

Pink: Equus QA/QC

White: Receiving Lab Yellow: Equus Environmental Project File

ð

Page ___

Eurofins TestAmerica Edison Receipt Temperature and pH Log

Expiration Date: The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis. Initials:					
ne appropriate F Samples Initials:	Expiration Date:	ent Manager should be notified about the samples which were pH adjusted.	tt of compliance must be acidified at Jeast 24 hours prior to analysis.	Date: 148/2.	
	ot # of Preservative(s):	The appropriate Project Manager and Departme	* Samples for Metal analysis which are o		

Other Other (pH<2) Total Phos (pH>12) S Total Cyanide S S S (pH<2) **TOC** Cooler #8: Cooler #9: Cooler #7: (pH<2) TKN Volume of Preservative used (ml): (b<+Hd) Phenols Sulfide (pH<2) Cooler Temperatures 8 ç ပ္စ (pH<2) EPH or QAM If pH adjustments are required record the information below: S S ပ္ (pH 5-9) Pest Cooler #4: Cooler #5: Cooler #6: Hardness (pH<2) Metals IR Gun # (pH<2) Nitrate Nitrite (pH<2) ပ္ (pH<2) COD 249019 Sample No(s). adjusted: Cooler #1: 0/ /c Preservative Name/Conc.: ပ္စ S (pH<2) Ammonia Cooler #2: Cooler #3: TALS Sample Number Number of Coolers: Job Number:

EDS-WI-038, Rev 10/22/2019

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Job Number: 460-249019-1

SDG Number: Property ID: 891077

Login Number: 249019 List Source: Eurofins TestAmerica, Edison

List Number: 1

Creator: Sgro, Angela M

oroator. Ogro, Angola in		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1770151
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing America

ANALYTICAL REPORT

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-135251-1

Laboratory Sample Delivery Group: Property ID: 891077

Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

CathyGartner

Authorized for release by: 3/29/2022 9:48:49 AM

Cathy Gartner, Project Manager II (615)301-5041

Cathy.Gartner@Eurofinset.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

Released to Imaging: 6/4/2024 2:20:31 PM

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

1

3

5

6

R

9

1 1

12

10

Client: Chesapeake Energy Corporation Project/Site: State M-1

Laboratory Job ID: 180-135251-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	9
QC Sample Results	10
QC Association Summary	11
Chain of Custody	12
Receipt Checklists	14

1

2

3

-4

6

8

10

11

1:

Case Narrative

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-135251-1

SDG: Property ID: 891077

Job ID: 180-135251-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-135251-1

Receipt

The samples were received on 3/11/2022 10:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Definitions/Glossary

Client: Chesapeake Energy Corporation

Job ID: 180-135251-1 Project/Site: State M-1 SDG: Property ID: 891077

Glossary

EDL

J. J	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation

Job ID: 180-135251-1 Project/Site: State M-1 SDG: Property ID: 891077

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-01-23
Georgia	State	12028 (NJ)	06-30-22
Massachusetts	State	M-NJ312	06-30-22
New Jersey	NELAP	12028	06-30-22
New York	NELAP	11452	04-01-22
Pennsylvania	NELAP	68-00522	02-28-23
Rhode Island	State	LAO00376	12-31-22
USDA	US Federal Programs	P330-20-00244	11-03-23

Sample Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-135251-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-135251-1	EQ Blank	Water	03/08/22 08:25	03/11/22 10:40
180-135251-2	MW-4	Water	03/08/22 09:50	03/11/22 10:40
180-135251-3	MW-8	Water	03/08/22 11:30	03/11/22 10:40
180-135251-4	Dup	Water	03/08/22 00:00	03/11/22 10:40

3

4

6

_

9

10

12

13

Method Summary

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-135251-1

SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	MCAWW	TAL EDI

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Lab Chronicle

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Lab Sample ID: 180-135251-1

Client Sample ID: EQ Blank

Date Collected: 03/08/22 08:25 Date Received: 03/11/22 10:40

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 180-135251-1

SDG: Property ID: 891077

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0		1			836018	03/28/22 14:36	VMI	TAL EDI	
	Inatrumant	LID. IC 2									

Lab Sample ID: 180-135251-2 Client Sample ID: MW-4 Date Collected: 03/08/22 09:50 **Matrix: Water**

Date Received: 03/11/22 10:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10			836018	03/28/22 14:51	VMI	TAL EDI
	Instrumen	t ID: IC 2								

Client Sample ID: MW-8 Lab Sample ID: 180-135251-3

Date Collected: 03/08/22 11:30

Date Received: 03/11/22 10:40

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10			836018	03/28/22 15:20	VMI	TAL EDI
	Instrumen	t ID: IC 2								

Client Sample ID: Dup Lab Sample ID: 180-135251-4

Date Collected: 03/08/22 00:00

Date Received: 03/11/22 10:40

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10			836018	03/28/22 15:41	VMI	TAL EDI
	Instrumer	nt ID: IC 2								

Laboratory References:

TAL EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Analyst References:

Lab: TAL EDI

Batch Type: Analysis VMI = Warleny Infante

Client Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

SDG: Property ID: 891077

Job ID: 180-135251-1

Matrix: Water

Client Sample ID: EQ Blank

Date Collected: 03/08/22 08:25 Date Received: 03/11/22 10:40

Lab Sample ID: 180-135251-1

Matrix: Water

Method: 300.0 - Anions, Ion Chromatography

Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride ND 1.00 03/28/22 14:36 mg/L

Client Sample ID: MW-4 Lab Sample ID: 180-135251-2 Date Collected: 03/08/22 09:50 **Matrix: Water**

Date Received: 03/11/22 10:40

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL **MDL** Unit D Prepared Analyzed Dil Fac Chloride 387 10.0 mg/L 03/28/22 14:51 10

Client Sample ID: MW-8 Lab Sample ID: 180-135251-3

Date Collected: 03/08/22 11:30 **Matrix: Water**

Date Received: 03/11/22 10:40

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier Dil Fac RL MDL Unit Prepared Analyzed 10.0 Chloride 29.6 mg/L 03/28/22 15:20 10

Client Sample ID: Dup Lab Sample ID: 180-135251-4

Date Collected: 03/08/22 00:00

Date Received: 03/11/22 10:40

Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 10.0 mg/L 03/28/22 15:41 10 388

QC Sample Results

Client: Chesapeake Energy Corporation

Project/Site: State M-1

Job ID: 180-135251-1 SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-836018/3

Matrix: Water

Analysis Batch: 836018

MB MB

MDL Unit Dil Fac Analyte Result Qualifier RL Prepared Analyzed 03/28/22 12:47 Chloride 1.00 ND mg/L

Lab Sample ID: LCS 460-836018/5

Matrix: Water

Analysis Batch: 836018

	Spike	LCS	LUS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Chloride	3.20	3.498	ma/L	109	90 - 110

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-135251-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 836018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
180-135251-1	EQ Blank	Total/NA	Water	300.0	_ <u> </u>
180-135251-2	MW-4	Total/NA	Water	300.0	
180-135251-3	MW-8	Total/NA	Water	300.0	
180-135251-4	Dup	Total/NA	Water	300.0	
MB 460-836018/3	Method Blank	Total/NA	Water	300.0	
LCS 460-836018/5	Lab Control Sample	Total/NA	Water	300.0	

	CHAIN OF CUSTODY RECORD	CORD	No. 2706
	PROJECT NUMBER: CHKSTATM	PROJECT NAME: C⊢H K STATE M	COC of of
Environmental. LLC (918) 921-5331	SHIPPED TO: TA-EDIJON	PROJECT MANAGER: DAVID BRADY	TAT: STANDARD
SAMPLER'S PRINTED NAME: ERRY FLSHER SAMPLERS SIGNATURE:	entainers	#0d	#0M
Date Time Sample ID	Sample M		30-135251 REMARKS
3-8-22 0825 EQ Blank	アン 		
1130 MW-	× ×		2
3-8-22 - Org	X 1 3		5_
- Tong Olank	- 3		
		000 355	
		190-133231 Chain of Custody	
CONTAINERS			
	830	DATE	
		DATE	
METHOD OF SHIPMENT:	AIRBILL NUMBER: 77/52	2926 5007	
RECEIVED IN LABORATORY BY: VICE R.Y.	DATE 3, 11, 22 Send PDF, EDD, and TIME 1, US	E (if applicable) to:	
LABORATORY CONTACT:		LABORATORY ADDRESS: 777 NEW DURHAM ROAD EDISON, NJ O	£1880
mental Project File	Pink: Equus QA/QC	J.8°C/7,0°C	

Number (pH-2) (p	Ammoni Ammoni PH-2 % % % % % % % % % % % % % % % % % % %	ob Number	H	10400	12		Eurol Receipi	Eurofins TestAmerica Edison Receipt Temperature and pH Log	tAmerica rature a	a Edisor nd pH L	L GG					Page	Jo d
Cooler #1: Cooler #1: Cooler #2: Cooler #2: Cooler #3: Cooler #3: Cooler #3: Cooler #4:	Number of Cooler #1:					200000000000000000000000000000000000000		2	0.000								
Cooler #1:	Paramoni Ammoni (pH<2 %). (pH<2	ber of Coolers:	+	1		R Gun #		-	1								
Cooler #1 Cooler #1 Cooler #2 Cooler #2 Cooler #2 Cooler #3 Cool	#1: 2 % (pH<2 / Ch and the pH are if						ပိ	oler Te	mpera	tures							
Cooler #2: C COOLEr #5: C COOLEr #5: C COOLEr #6: C COOLEr #6: C COOLEr #9: C C COOLEr #9: C C COOLEr #9: C C COOLEr #9: C COOLEr #9: C C C C C C C C C C C C C C C C C C C	#3: (pH<2 Liph au Liph	Cooler #1:	S & C	CORREC		ŭ	ooler #4:		CORRECTED		Ö	ooler #7:		CORRECTED			
Number Cooler #9: C C C C C C C C C C	Ammoni (pH<2) (pH<2) If pH au If pH au If adjuste servative(s	Cooler #2:		S		ŭ	ooler #5:	ပ္	ပ္		Ö	ooler #8:	ပ	ပ္			
Number Announce COD Nutrate Nutrate Country	(pH<2	Cooler #3:	ပ	S		ŭ	ooler #6:	S)	Q		Ö	ooler #9:	ပွ	υ Q			
Number (pH<2	If pH au lime/Conc lame/Conc servative(s		Ammonia	COD	Nitrate Nitrite	* Metals	Hardness	Pest	EPH or QAM	Phenois	Sulfide	TKN	T0C	Total Cyanide	Total Phos	Other	Other
ple No(s). adjustev	Freservative Name/Conc.: Expiration Date: The appropriate Project Manager and Department Manager should be notified about the samples which were Samples for Malay analysis which are out of compliance must be acidified about the samples which were Samples for Malay analysis which are out of compliance must be acidified about the samples which were Samples for Malay analysis which are out of compliance must be acidified about the samples which were Samples for Malay analysis which are out of compliance must be acidified about the samples which were Samples for Malay analysis which are out of compliance must be acidified about the samples which were Samples for Malay analysis which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acidified about the samples which are out of compliance must be acid to sample which are out of compliance must be acid to sample which are out of compliance must be acid to sample which are out of compliance must be acid to sample wh		(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(bH 2-9)	(pH<2)	(pH<2)	(6 <hd)< td=""><td>(pH<2)</td><td>(pH<2)</td><td>(pH>12)</td><td>(pH<2)</td><td></td><td></td></hd)<>	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
ple No(s). adjuste: vative Name/Conc	Freservative Name/Conc.: The appropriate Project Manager and Department Manager should be notified about the samples which were Samples for Megal analysis which are out of compliance must be accidited at least \$4\$ hours prior to an																
If pH are ple No(s). adjuste:	Sample No(s). adjusted: Lot # of Preservative Name/Conc.: The appropriate Project Manager and Department Manager should be notified about the samples which were Samples for Megal analysis which are out of compliance must be acidified at least \$4\$ hours prior to an																
If pH an ple No(s). adjustervative Name/Conc	Freservative Nois). Expiration Date: The appropriate Project Manager and Department Manager should be notified about the samples which were Samples for Maja analysis which are out of compliance must be acidified at least \$4 hours prior to an																
ple No(s). adjustervative(s	Figure 1 Figure 1 Figure 1 Figure 2 Figure 2 Figure 3																ļ
ple No(s). adjustervative (s	Fight adjustments are required record the information below: Sample No(s). adjusted: Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were samples for Matal analysis which are out of compliance must be acidified at least \$4 hours prior to an incomplete the samples which are out of compliance must be acidified at least \$4 hours prior to an incomplete must be acided at least \$4 hours prior to an incomplete must be acided at lea																
If pH are ple No(s). adjuste:	Figure Name/Conc.: Expiration Date: Expiration Date: The appropriate Project Manager and Department Manager should be notified about the samples which were Samples for Mapal analysis which are out of compliance must be acidified at least \$4 hours prior to an incompliance must be acidified at least \$4 hours prior to an incompliance must be acidified at least \$2 hours prior to an incompliance must be acided at least \$2 hours prior to an incompliance must be acided at least \$2 hours prior to an incompliance must be acided at least \$2 hours prior to an incompliance must b																
If pH aunding the Notes adjuster Name/Conc. # of Preservative(s	Figure 1 Sample No(s). adjustments are required record the information below: Preservative Name/Conc.: Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were "Samples for Magal analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out of compliance must be acidified at least \$\frac{2}{3}\$ thours prior to an analysis which are out to an analysis																
If pH are ple No(s). adjustervative Name/Conc	Figure 1 Figure 1 Figure 2 Figure 2 Figure 3 Figure 3 Figure 4 Figure 5 Figure 6																
If pH and ple No(s). adjustervative Name/Conc	Figure 1																
ple No(s). adjustervative Name/Conc	Fight adjustments are required record the information below: Sample No(s). adjusted: Preservative Name/Conc.: Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were Samples for Metal analysis which are out of compliance must be acidified at least \$4 hours prior to an																
If pH au ple No(s). adjuste: vative Name/Conc	If pH adjustments are required record the information below: Sample No(s). adjusted:																
If pH au If pH au ple No(s). adjuster vative Name/Conc # of Preservative(s	If pH adjustments are required record the information below: Sample No(s). adjusted:																
ple No(s). adjuster vative Name/Conc # of Preservative(s	Sample No(s). adjusted: Volume of Preservative used (ml): Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were samples for Metal analysis which are out of compliance must be acidified at least \$4 hours prior to an	=	pH adju	stments	re requir	ed record	the infor	mation be	low:								
vative Name/Conc # of Preservative(s	Volume of Preservative used (ml):	Sample No(s). ad	ljusted:														
# of Preservative(s	Lot # of Preservative(s): The appropriate Project Manager and Department Manager should be notified about the samples which were Samples for Metal analysis which are out of compliance must be acidified at least 84 hours prior to an	Preservative Name	Conc.					Volun	ne of Pres	ervative u	sed (ml):						
	The appropriate Project Manager and Department Manager should be notified about the samples which were Samples for Metal analysis which are out of compliance must be acidified at least \$4 hours prior to an	Lot # of Preserva	tive(s):							Expirat	ion Date:						
	Samples for Metal analysis which are out of compliance must be acidified at least \$4 hours prior to an		Ţ	e appropri	ate Projec	Manager	r and Dep	artment Ma	anager sho	onld be no	tified abou	t the samp	les which	were pH	adjusted.		
	7			Sam	les for Me	tal analys	sis which a	re out of c	ompliance	must be	acidified a	t least 24 l	ours prio	to analys	.છું		

Page 13 of 15

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-135251-1

SDG Number: Property ID: 891077 List Source: Eurofins Pittsburgh

Login Number: 135251

List Number: 1

Creator: Gartner, Cathy

Answer Comment Question

Radioactivity wasn't checked or is </= background as measured by a survey

meter.

The cooler's custody seal, if present, is intact.

Sample custody seals, if present, are intact.

The cooler or samples do not appear to have been compromised or

tampered with.

Samples were received on ice.

Cooler Temperature is acceptable.

Cooler Temperature is recorded.

COC is present.

COC is filled out in ink and legible.

COC is filled out with all pertinent information.

Is the Field Sampler's name present on COC?

There are no discrepancies between the containers received and the COC.

Samples are received within Holding Time (excluding tests with immediate

HTs)

Sample containers have legible labels.

Containers are not broken or leaking.

Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested

MS/MSDs

Containers requiring zero headspace have no headspace or bubble is

<6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-135251-1

SDG Number: Property ID: 891077

Login Number: 135251 List Number: 2 Creator: Lysy, Susan List Source: Eurofins Edison List Creation: 03/16/22 04:25 PM

		Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.8/3.0°C IR#9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the ${\sf COC}.$	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Released to Imaging: 6/4/2024 2:20:31 PM

2

4

5

<u>'</u>

9

11

40

May 24, 2022

New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Eighth Annual Groundwater Monitoring Report

Incident No: NCS2215955789

State M Lease (AP-72) Lea County, New Mexico

Dear NM Oil Conservation Division

Equus Environmental, LLC (Equus), on behalf of our client Chesapeake Energy Corporation (Chesapeake), is pleased to submit to the New Mexico Oil Conservation Division (NMOCD) in electronic format the *Eighth Annual Groundwater Monitoring Report* (Report) detailing the eighth year of groundwater monitoring and remediation activities conducted at the State M Lease (AP-72) located in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico. These activities were conducted in accordance with the Stage 2 Abatement Plan for the Site approved by the NMOCD on June 27, 2013.

If you have any questions or comments regarding this Report, please do not hesitate to contact me at (918) 289-1405.

Sincerely,

Equus Environmental, LLC

Matthew N. Mugavero, P.G.

Senior Hydrogeologist

Enclosure: Eighth Annual Groundwater Monitoring Report

xc: Patrick McMahon - Heidel, Samberson, Newell, Cox & McMahon

Tim Graham - Chesapeake Energy Dana Drury - Chesapeake Energy

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 114496

CONDITIONS

Operator:	OGRID:
CHESAPEAKE OPERATING, INC.	147179
6100 NORTH WESTERN AVE	Action Number:
OKC, OK 73118	114496
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By		Condition Date
michael.buchanan	8th Annual Groundwater Monitoring Report for CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) has been accepted as part of the record.	6/4/2024