

May 5, 2020

Dylan Rose-Coss Hydrologist New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Sixth Annual Groundwater Monitoring Report State M Lease (AP-72) Lea County, New Mexico

Dear Mr. Rose-Coss:

Equus Environmental, LLC (Equus), on behalf of our client Chesapeake Energy Corporation (Chesapeake), is pleased to submit to the New Mexico Oil Conservation Division (NMOCD) in electronic format the *Sixth Annual Groundwater Monitoring Report* (Report) detailing the sixth year of groundwater monitoring and remediation activities conducted at the State M Lease (AP-72) located in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico. These activities were conducted in accordance with the Stage 2 Abatement Plan for the Site approved by the NMOCD on June 27, 2013.

If you have any questions or comments regarding this Report, please do not hesitate to contact me at (918) 906-6780.

Sincerely, *Equus Environmental, LLC*

Bruce E. McKenzie, P.G. Senior Principal

Enclosure: Sixth Annual Groundwater Monitoring Report

xc: Patrick McMahon - Heidel, Samberson, Newell, Cox & McMahon Chase Acker - Chesapeake Energy

SIXTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO

Prepared for:

Chesapeake Energy Corporation

6100 North Western Avenue Oklahoma City, Oklahoma 73118 (405) 935-3938

Prepared by:

Equus Environmental, LLC

1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136 (918) 921-5331

May 5, 2020

TABLE OF CONTENTS

LIST O	OF TAB	LES	.ii
LIST O	F FIGU	IRES	.ii
LIST O	F APP	ENDICES	.ii
1.0	INTRO	DUCTION	.1
2.0	REME	DIATION	.3
	2.1	SVE SYSTEM	.3
	2.2	MW-1R LNAPL RECOVERY	.5
3.0	QUAR	TERLY GROUNDWATER MONITORING	.6
	3.1	GROUNDWATER MONITORING METHODOLOGY	.6
	3.2	TWENTY-FIRST QUARTERLY GROUNDWATER SAMPLING RESULTS	.7
	3.3	TWENTY-SECOND QUARTERLY GROUNDWATER SAMPLING RESULTS	.7
	3.4	TWENTY-THIRD QUARTERLY GROUNDWATER SAMPLING RESULTS	.8
	3.5	TWENTY-FOURTH QUARTERLY GROUNDWATER SAMPLING RESULTS	.8
4.0	CONC	LUSIONS	.9
5.0	RECO	MMENDATIONS1	0

Page 4 of 193

LIST OF TABLES

- 1 Summary of SVE System Field Readings
- 2 Summary of Laboratory Analytical Results for Discharge Air Samples
- 3 Summary of Liquid Level Measurements
- 4 Summary of Laboratory Analytical Results for Groundwater Samples

LIST OF FIGURES

- 1 Site Location and Topographic Features
- 2 Site Base Map
- 3 SVE System VOC Discharge Concentrations Versus Time
- 4 Groundwater Potentiometric Surface, June 4, 2019
- 5 Groundwater Potentiometric Surface, September 4, 2019
- 6 Groundwater Potentiometric Surface, December 6, 2019
- 7 Groundwater Potentiometric Surface, March 5, 2020
- 8 Isopleth of Chloride Concentrations in Groundwater, March 5, 2020
- 9 Chloride Concentration Trend Graphs

LIST OF APPENDICES

(All Appendices on CD in bound copy)

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

SIXTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO MAY 5, 2020

1.0 INTRODUCTION

Chesapeake Energy Corporation (Chesapeake) has retained Equus Environmental, LLC (Equus), to perform impacted groundwater monitoring and light non-aqueous phase liquid (LNAPL) hydrocarbon remediation at Chesapeake's former State M Lease site (Site) located in Lea County, New Mexico. The Site is located approximately 8 miles south-southwest of Lovington, New Mexico in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico (coordinates 32.828061° latitude, -103.391012° longitude). The Site location and topographic features are shown on **Figure 1**. An oil and gas production tank battery was formerly located at the Site. Chesapeake purchased the Site in 2004, but never operated the tank battery. Chesapeake began abandonment and environmental investigation activities at the Site in 2007.

Initial Site investigation activities were conducted in May 2007. These investigation activities consisted of conducting EM-31 and EM-34 ground conductivity surveys, the collection of soil samples from nine boreholes, and the installation and sampling of seven groundwater monitoring wells. Following the investigation in August 2007, Chesapeake submitted to the New Mexico Oil Conservation Division (NMOCD) a Stage 1 Abatement Plan for the Site. In May 2010, the NMOCD responded to Chesapeake that the agency was not adequately staffed to review the abatement plan in a timely manner and advised Chesapeake that they could proceed with abatement operations at risk. In July 2010, Chesapeake notified the NMOCD of their intent to proceed with the Stage 1 Abatement activities. On March 20, 2012, following implementation of these activities, Chesapeake submitted the Stage 1 Abatement Report for the Site.

On March 27, 2012, Chesapeake submitted to the NMOCD the *Stage 2 Abatement Plan* (Plan) for the Site. A copy of the Plan is provided in **Appendix A**. In this Plan, Chesapeake proposed the following abatement activities at the Site:

- Excavate and remove the near-surface soils at the Site containing concentrations of chloride exceeding 1,000 milligrams per kilogram (mg/kg),
- Excavate and remove the near-surface soils at the Site containing concentrations of TPH exceeding 1,000 mg/kg,
- Install clay liners in areas where chloride and/or TPH concentrations exceed 1,000 mg/kg at depths greater than five feet below ground level (bgl),
- Install one additional groundwater monitoring well downgradient of the Site,
- Monitor the groundwater at the Site until the concentrations of chloride and benzene are below the New Mexico Water Quality Control Commission standards.

On March 7, 2013, NMOCD notified Chesapeake that the Plan was administratively complete and that Chesapeake should proceed with public notice of the Plan. On March 30, 2013, Chesapeake published a notice of the proposed activities in the Albuquerque Journal, the Hobbs-Daily News Sun and the Lovington Leader. In addition, written notification of the Plan submittal was sent to all surface owners of record within a 1-mile radius of the Site. On June 27, 2013 upon completion of the notification activities, the NMOCD approved the Plan for the Site. A copy of the NMOCD correspondence approving the Plan is included in **Appendix B**.

The soil remediation activities outlined in the Plan were conducted at the Site during the period January 15, 2014 through March 27, 2014. The soil remediation activities were summarized in the document titled **Soil Remediation Summary Report**, submitted to the NMOCD on August 6, 2014.

This *Sixth Annual Groundwater Monitoring Report* (Report) summarizes the groundwater monitoring activities conducted at the Site during the following quarterly sampling events:

- Twenty-First Event June 4-5, 2019,
- Twenty-Second Event September 4-5, 2019,
- Twenty-Third Event December 6, 2019,
- Twenty-Fourth Event March 5, 2020.

2.0 **REMEDIATION**

2.1 SVE SYSTEM

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, during the period May 12-14, 2014, a soil vapor extraction (SVE) remediation system (System) was installed and made operational at the Site. The System is comprised of 8 SVE wells connected through a manifold system constructed of two- and three-inch Schedule 80 PVC piping and plumbed to a 10-horsepower 3-phase SVE Regenerative Blower housed within the System Building. The location of the System Building is shown on attached **Figure 2**. Within the System, soil vapor from the SVE wells is drawn through a moisture knock out/separator and a particulate filter prior to reaching the blower. An air-flow meter is installed downstream of the blower in the air-exhaust line and an air sample port is located on the air-exhaust line at a location upstream of its exit from the System Building.

System start-up was conducted on June 6, 2014. Routine checks of the System are conducted to record the blower run times, discharge rate/ACFM and VOC concentration of the dischargeair stream. These field readings are used to calculate the approximate weight of VOCs extracted from the subsurface and discharged from the System. The field PID data are entered into to a spreadsheet to calculate the VOC discharge rate and approximate total pounds removed by the System. The approximate total VOC discharges for each quarter are then summed to provide a cumulative VOC discharge total. These data are summarized in **Table 1**. Through March 23, 2020, the field PID data suggest that approximately 7,577 pounds of VOCs have been removed from the subsurface and discharged from the System.

During the reporting period, discharge-air samples were collected quarterly in laboratoryprovided Suma canisters, shipped under chain-of-custody control to TestAmerica Laboratories, Inc. (West Sacramento, California) and analyzed for VOC compounds and total VOCs as hexane by Method TO-15.

During the twenty-first quarter, no discharge-air sample was collected due to laboratory container shipping issues.

During the twenty-second quarter, discharge-air sample 20190905-M-SVE was collected on September 5, 2019. On this date, the System had been running for a total of 46,980 hours, was operating at 227 ACFM and had a field reading of 79 PPM from the discharge air stream.

Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 69,000 PPB V/V (69.0 PPM V/V).

During the twenty-third quarter, discharge-air sample 20200122-M1-SVE was collected on January 22, 2020. On this date, the System had been running for approximately 49,722 hours. No field data is available for the date on which this discharge-air sample was taken. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 14,000 PPB V/V (14.0 PPM V/V).

During the twenty-fourth quarter, discharge-air sample 20200305-M-SVE was collected on March 5, 2020. On this date, the System had been running for a total of 50,000 hours, was operating at 194 ACFM and had a field reading of 38 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 26,000 PPB V/V (26.0 PPM V/V).

A summary of the laboratory analytical results for the discharge-air samples is presented in **Table 2**, and complete copies of the laboratory analytical reports and chain-of-custody documentation are provided in **Appendix C**. The discharge-air analytical data are used to compute a correlation factor for the field PID readings to more accurately calculate the total VOC discharged.

Field PID instrument readings are typically lower than laboratory analysis for total VOCs. To compensate for the low field PID readings, a correlation factor is calculated based upon the ratio of the laboratory analytical value versus the field PID value. The correlation factor is then used to multiply the field PID readings and calculate the total VOC discharge. To accurately reflect the total VOC discharge from the System during a given period, **Table 1** includes the calculated unique correlation factor for each quarterly air-discharge sampling event. This unique correlation factor is then utilized to calculate the total VOC discharge from the System for the period in which that particular air-discharge sample was collected. Utilizing the noted correlation factors, approximately 13,401 pounds of VOCs have been removed from the subsurface at the Site.

Figure 3 presents a graph of the VOC concentrations observed in the discharge air stream versus time. As can be seen on this figure, the levels of VOC observed in the air discharge stream have decreased dramatically since startup. These data indicate that the System is effective at removing the hydrocarbon vapors from the subsurface. Removal of hydrocarbon

vapors coupled with the influx of oxygen drawn into the impacted area by the System enhances biodegradation of the hydrocarbon impacts observed in this area.

2.2 MW-1R LNAPL RECOVERY

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, to enhance LNAPL recovery in the MW-1R area, 2-inch diameter monitoring well MW-1 was plugged and replaced with 4-inch diameter monitoring well MW-1R. On June 5, 2014, a QED Environmental Genie LNAPL recovery pump was placed and made operational in monitoring well MW-1R. The Genie LNAPL recovery pump is an air-actuated bladder pump with a floating intake (skimmer), set at a depth that produces the maximum amount of LNAPL recovery per cycle. Air is provided to the Genie LNAPL recovery pump from a compressor located within the System Building.

During the reporting period, approximately 0.5 drums (25 gallons) of LNAPL were recovered from monitoring well MW-1R. Since start-up of the Genie LNAPL recovery pump, a total of approximately 15 drums (822.5 gallons) of LNAPL have been recovered from the Site. During each quarterly monitoring event, the recovery pump and controller is inspected, cleaned and adjusted to maximize LNAPL recovery.

3.0 QUARTERLY GROUNDWATER MONITORING

This Report describes the findings from four quarterly groundwater sampling events conducted at the Site from June 4, 2019 through March 5, 2020.

3.1 GROUNDWATER MONITORING METHODOLOGY

Prior to collecting groundwater samples during each quarterly event, EQUUS gauged all 8 monitoring wells (MW-1R through MW-8) at the Site using an electronic interface probe to determine the depth-to-water (DTW) and LNAPL thickness within each well. The locations of these monitoring wells are shown on **Figure 2**. DTWs were measured from the surveyed top-of-casing (TOC) of each well and converted to elevations relative to mean sea level. These data are presented in **Table 3**. Potentiometric surface maps were constructed utilizing these data to illustrate the groundwater flow direction within the shallow groundwater system beneath the Site. These potentiometric surface maps are presented on **Figures 4** through **7**. It should be noted that DTW measurements collected from monitoring well MW-1R are not honored for generating potentiometric surfaces due to the influence of LNAPL present in the monitoring well and the potential influence of the SVE system on groundwater levels. As can be seen on the figures, groundwater flow at the Site is, in general, from the northwest to the southeast.

Upon completion of DTW measurement activities, Equus field personnel collected groundwater samples per the Plan. As specified in the Plan, chloride is the primary constituent of concern (COC) at the Site until the LNAPL has been adequately eliminated from monitoring well MW-1R. When the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well will be monitored for benzene, toluene, ethylbenzene and total xylenes (BTEX) until the levels of BTEX fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively.

The laboratory analytical results for chloride from these sampling events are screened against *the New Mexico Administrative Code 20.6.2, Standards for Groundwater of 10,000 mg/L TDS Concentration or Less* for chloride of 250 mg/L (Limit). According to the remediation goals set in the Plan, each monitoring well is required to exhibit eight consecutive monitoring events where chloride is below the Limit of 250 mg/L. When these remediation goals are met, Chesapeake will cease groundwater sampling activities for chloride.

As recommended in the *Fifth Annual Groundwater Monitoring Report*, dated May 20, 2019, during this reporting period groundwater samples were only collected from monitoring wells

Page 11 of 193

MW-4 and MW-8 for chloride analysis due to the remaining monitoring wells having already achieved the abatement goal of eight consecutive quarters of chloride concentrations below 250 mg/L.

The groundwater samples from monitoring wells MW-4 and MW-8 were collected utilizing EPA approved low-flow purging/sampling methodologies. Field parameters consisting of pH, specific conductivity, temperature, and dissolved oxygen (DO) were measured during field activities utilizing a multi-parameter meter and air-tight flow-through cell. Upon stabilization of the field parameters, groundwater samples were collected into laboratory prepared containers, labeled as to source and contents, placed on ice for preservation, placed under chain-of-custody control and shipped via overnight courier to the analytical laboratory (TestAmerica Inc., Nashville, Tennessee). As per the Plan, groundwater samples collected from these monitoring wells were analyzed for chloride by EPA Method 300.0. A summary of the laboratory analytical results for chloride analyses is presented in **Table 4**, and complete copies of the laboratory analytical reports and chain-of-custody documentation is provided in **Appendix C**.

3.2 TWENTY-FIRST QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-first groundwater sampling event was conducted at the Site during the period June 4-5, 2019. As can be seen in **Table 4**, the groundwater samples collected from monitoring wells MW-4 (392 mg/L) and MW-8 (283 mg/L) during this sampling event exhibited concentrations of chloride that exceed the Limit of 250 mg/L.

During the twenty-first quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 2.26 feet. During this monitoring event, the LNAPL skimmer pump within monitoring well MW-1R was re-installed with a rebuilt pump and adjusted after sampling to maximize the efficiency of LNAPL removal.

3.3 TWENTY-SECOND QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-second quarterly groundwater sampling event was conducted at the Site during the period September 4-5, 2018. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (404 mg/L) exhibited a chloride concentration that exceeds the Limit of 250 mg/L. The groundwater sample collected from monitoring well MW-8 (223 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L.

During the twenty-second quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.79 feet.

H:\PROJECTS\Chesapeake Energy\CHKSTATM\H19001\03_Report\6thAnnGWMrpt\20200505_6thAnnGMRpt_StateM.docx

3.4 TWENTY-THIRD QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-third quarterly groundwater sampling event was conducted at the Site on December 6, 2019. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (421 mg/L) exhibited a chloride concentration that exceeds the Limit of 250 mg/L. The groundwater sample collected from monitoring well MW-8 (198 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L.

During the twenty-third quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.30 feet.

3.5 TWENTY-FOURTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-fourth quarterly groundwater sampling event was conducted at the Site on March 5, 2020. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (443 mg/L) exhibited a chloride concentration that exceeds the Limit of 250 mg/L. The groundwater sample collected from monitoring well MW-8 (118 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L. **Figure 8** presents an isopleth of the chloride concentrations observed in the groundwater samples collected during this sampling event. As can be seen on this figure, the highest levels of chloride observed in Site groundwater are observed in monitoring wells MW-4 and MW-8, in the southeast portion of the Site. To complete the chloride isopleth, Equus utilized the chloride concentrations detected in the groundwater samples collected from monitoring wells MW-1 through MW-3 and MW-5 through MW-7 during the March 2018 sampling event. It should be noted that concentrations of chloride in monitoring well MW-8 have been less than the Limit during the last three groundwater monitoring events.

Figure 9 presents chloride concentration trend graphs for each of the monitoring wells sampled at the Site. A review of this figure indicates that the chloride concentration trends observed in the groundwater samples are, in general, decreasing in monitoring wells MW-4 and MW-8. The soil remediation activities conducted at the Site in the first quarter of 2014 have removed the continuing source of chloride impacts to the groundwater at the Site. Source removal has facilitated the physical natural attenuation mechanisms of dispersion and dilution on remnant chloride concentrations present in Site groundwater.

During the twenty-fourth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.57 feet.

H:\PROJECTS\Chesapeake Energy\CHKSTATM\H19001\03_Report\6thAnnGWMrpt\20200505_6thAnnGMRpt_StateM.docx

4.0 CONCLUSIONS

Based upon the data presented herein, the following conclusions are presented:

- Groundwater beneath the Site is encountered at depths ranging from approximately 46 to 49 feet from the surveyed tops-of-casing of the Site monitoring wells.
- The direction of groundwater flow at the Site is, in general, from the northwest to the southeast.
- During the reporting period, concentrations of chloride greater than the Limit of 250 mg/L were observed in the groundwater samples collected from monitoring wells MW-4 (ranging from 392 mg/L to 443 mg/L) and MW-8 (ranging from 118 mg/L to 283 mg/L). Concentrations of chloride less than the Limit have been observed in monitoring well MW-8 during the last three monitoring events/
- The SVE System is operating as designed and has removed approximately 13,401 pounds of VOCs since start-up on June 6, 2014.
- During the reporting period, approximately 0.5 drums (25 gallons) of LNAPL were recovered from monitoring well MW-1R.

5.0 **RECOMMENDATIONS**

Based upon a review of the data presented within this report, the following recommendations have been developed:

- Operation of the SVE System at the Site should continue until the LNAPL observed on the groundwater in the monitoring well MW-1R area has been adequately eliminated.
- As specified in the Plan, LNAPL recovery within monitoring well MW-1R should be continued until the LNAPL observed within this well has been adequately eliminated. Efforts to optimize LNAPL recovery while minimizing pump down-time should be implemented.
- As specified in the Plan, when the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well should be monitored for BTEX until the levels of these constituents fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively, for eight quarters.
- The groundwater within monitoring wells MW-4 and MW-8 should continue to be monitored on a quarterly basis for chloride until eight quarterly sampling events result in chloride levels less than the New Mexico Water Quality Control Commission standards. The next groundwater monitoring event at the Site is scheduled to be conducted in June 2020.

•

TABLES

Released to Imaging: 6/4/2024 2:38:02 PM

Received by OCD: 4/25/2024 8:53:21 Apple 1 : Summary of SVE System Field Readings Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disch	arge		Calculated
Date	Time	Time	since					lbs since last	Tot	al	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
06/07/14	8:00	4131.73	19.73	20	596	519	2.281	44.99	44.99	0.02	
06/08/14	7:10	4154.69	22.96	43	398	483	1.416	32.50	77.50	0.04	
06/08/14	9:15	4156.94	2.25	45	5000	489	18.021	40.55	118.05	0.06	
06/12/14	12:40	4256.45	99.51	144	1817	120	1.607	159.92	277.96	0.14	
06/12/14	12:43	4259.65	3.20	148	1561	117	1.346	4.31	282.27	0.14	
06/13/14	7:15	4274.90	18.45	163	1804	122	1.622	29.93	307.89	0.15	
06/13/14	7:17	4276.27	1.37	164	3390	121	3.023	4.14	312.03	0.16	
06/13/14	7:18	4277.08	0.81	165	2301	120	2.035	1.65	313.68	0.16	
06/19/14	12:05	4422.02	144.94	310	1153	120	1.020	147.81	461.49	0.23	
06/19/14	13:30	4423.74	1.72	312	1117	107	0.881	1.52	463.00	0.23	
06/19/14	16:00	4426.00	2.26	314	1448	121	1.291	2.92	465.92	0.23	0.98
06/24/14	12:05	4543.27	117.27	431	1440	120	1.274	149.36	615.28	0.31	0.98
06/26/14	12:40	4591.01	165.01	479	1970	127	1.844	304.28	919.56	0.46	
06/26/14	12:42	4593.20	2.19	481	1968	120	1.741	3.81	923.37	0.46	
07/03/14	9:35	4755.92	162.72	644	1650	126	1.532	249.34	1172.71	0.59	
07/03/14	9:37	4757.95	2.03	646	1318	126	1.224	2.48	1175.20	0.59	
07/09/14	11:40	4901.77	143.82	790	875	126	0.812	116.80	1292.00	0.65	
07/09/14	11:42	4903.69	1.92	792	795	124	0.727	1.40	1293.39	0.65	
07/17/14	12:33	5094.48	190.79	982	790	124	0.722	137.75	1431.15	0.72	
07/17/14	12:34	5095.13	0.65	983	790	127	0.739	0.48	1431.63	0.72	
07/17/14	12:36	5097.75	2.62	986	790	127	0.739	1.94	1433.56	0.72	
08/01/14	11:00	5452.10	354.35	1,340	1078	139	1.104	391.35	1824.91	0.91	
08/01/14	11:42	5454.03	1.93	1,342	938	150	1.037	2.00	1826.91	0.91	
08/01/14	11:44	5456.32	2.29	1,344	2314	14	0.239	0.55	1827.46	0.91	
10/10/14	13:00	7118.38	1662.06	3,006	130	51	0.049	81.70	1909.16	0.95	
10/10/14	13:02	7120.15	1.77	3,008	216	58	0.093	0.16	1909.32	0.95	1.86
10/31/14	13:00	7622.85	502.70	3,511	161	48	0.057	28.63	1937.95	0.97	
10/31/14	13:04	7624.49	1.64	3,512	78	54	0.031	0.05	1938.00	0.97	
12/11/14	13:50	8607.53	983.04	4,496	352	131	0.340	334.10	2272.11	1.14	
01/15/15	10:11	9441.32	833.79	5,329	47	131	0.045	37.60	2309.70	1.15	
01/15/15	10:12	9442.31	0.99	5,330	173	152	0.194	0.19	2309.89	1.15	
01/15/15	10:15	9445.26	2.95	5,333	388	136	0.389	1.15	2311.04	1.16	
01/29/15	11:50	9778.04	332.78	5,666	240	54	0.095	31.49	2342.53	1.17	0.21
01/29/15	11:52	9780.13	2.09	5,668	239	50	0.088	0.18	2342.72	1.17	0.21
02/26/15	11:00	10448.98	668.85	6,337	72	137	0.073	48.63	2391.35	1.20	
02/26/15	11:02	10450.10	1.12	6,338	178	155	0.204	0.23	2391.57	1.20	
03/12/15	10:15	10780.66	330.56	6,669	483	155	0.552	182.40	2573.97	1.29	
04/28/15	8:30	11901.34	1120.68	7,789	126	114	0.106	118.86	2692.84	1.35	
04/28/15	8:36	11907.42	6.08	7,795	132	126	0.123	0.75	2693.58	1.35	
05/14/15	9:05	12285.12	377.70	8,173	96	55	0.039	14.68	2708.26	1.35	1.10
05/14/15	9:10	12290.05	4.93	8,178	105	58	0.045	0.22	2708.48	1.35	1.10
05/28/15	11:30	12623.70	333.65	8,512	6	150	0.006	2.07	2710.55	1.36	
06/11/15	10:39	12650.70	27.00	8,539	318	172	0.403	10.88	2721.43	1.36	
07/02/15	11:00	13154.04	503.34	9,042	85	112	0.070	35.32	2756.75	1.38	0.76
09/03/15	8:00	14662.17	1508.13	10,550	249	104	0.191	287.85	3044.60	1.52	0.70
12/10/15	13:00	17015.28	2353.11	12,903	162	95	0.113	266.92	3311.52	1.66	0.86

Received by OCD: 4/25/2024 8:53:21 Table 1 : Summary of SVE System Field Readings Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disch	narge		Calculated
Date	Time	Time	since					lbs since last	Tot	al	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
03/10/16	12:00	17899.58	884.30	13,788	209	105	0.162	143.03	3454.55	1.73	1.78
06/29/16	8:00	20558.59	2659.01	16,447	156	101	0.116	309.58	3764.13	1.88	3.77
07/27/16	12:30	21232.43	673.84	17,120	126	103	0.095	64.20	3828.33	1.91	
08/25/16	11:00	21927.96	695.53	17,816	115	270	0.229	159.45	3987.78	1.99	1.55
09/22/16	10:20	22596.81	668.85	18,485	169	220	0.274	183.07	4170.85	2.09	
12/08/16	9:30	24443.73	1846.92	20,332	109	220	0.177	327.03	4497.88	2.25	6.59
01/10/17	12:23	24758.20	314.47	20,646	173	233	0.297	93.37	4591.25	2.30	
01/25/17	10:56	25115.43	357.23	21,003	206	179	0.271	96.95	4688.20	2.34	3.06
02/22/17	10:35	25786.27	670.84	21,674	248	214	0.391	262.30	4950.50	2.48	5.00
03/09/17	11:04	26146.82	360.55	22,035	321	209	0.495	178.51	5129.01	2.56	
04/05/17	11:55	26792.33	645.51	22,680	454	113	0.378	244.08	5373.09	2.69	
05/16/17	7:00	26967.77	175.44	22,856	61	198	0.089	15.69	5388.79	2.69	5.78
06/07/17	13:00	27495.83	528.06	23,384	54	221	0.087	46.02	5434.80	2.72	
09/07/17	11:36	29698.50	2202.67	25,587	62	200	0.091	201.31	5636.11	2.82	
09/22/17	11:30	30057.43	358.93	25,945	56	211	0.087	31.26	5667.37	2.83	
10/04/17	10:15	30344.40	286.97	26,232	57	198	0.083	23.87	5691.24	2.85	0.81
11/02/17	13:00	31042.78	698.38	26,931	58	185	0.079	55.23	5746.48	2.87	
12/01/17	12:30	31739.31	696.53	27,627	59	192	0.083	58.16	5804.63	2.90	
12/06/17	12:40	31859.62	120.31	27,748	6	270	0.011	1.36	5806.00	2.90	
12/18/17	15:00	32149.36	289.74	28,037	60	208	0.092	26.65	5832.65	2.92	
01/09/18	10:00	32672.25	522.89	28,560	52	189	0.072	37.88	5870.52	2.94	
01/26/18	10:15	33080.48	408.23	28,968	48	172	0.061	24.84	5895.36	2.95	
02/09/18	13:10	33416.85	336.37	29,305	32	220	0.052	17.45	5912.82	2.96	0.19
02/23/18	11:15	33753.60	336.75	29,642	34	186	0.047	15.70	5928.51	2.96	
03/07/18	10:55	34040.75	287.15	29,929	52	227	0.087	24.98	5953.50	2.98	
03/16/18	13:03	34251.67	210.92	30,140	48	195	0.069	14.55	5968.05	2.98	
04/13/18	9:15	34970.90	719.23	30,859	46	200	0.068	48.77	6016.82	3.01	
04/30/18	13:16	35332.87	361.97	31,221	46	200	0.068	24.54	6041.36	3.02	
05/15/18	13:34	35692.17	359.30	31,580	48	200	0.071	25.42	6066.78	3.03	0.65
05/29/18	14:20	36028.04	335.87	31,916	48	200	0.071	23.77	6090.55	3.05	0.65
06/04/18	16:30	36169.50	141.46	32,058	71	200	0.105	14.81	6105.35	3.05	
06/20/18	14:30	36556.30	386.80 308.83	32,444	48 56	200	0.071	27.37	6132.72	3.07	
07/03/18	10:30	36865.13		32,753	46	520	0.215	66.28	6199.01	3.10	
07/19/18 08/09/18	10:40 12:30	37249.27 37754.97	384.14	33,137 33,643	46 58	486 386	0.165	63.30 83.45	6262.30 6345.75	3.13 3.17	
08/09/18	12:30	57754.97	505.70	35,043	36	380	0.105	83.45	0545.75	3.17	2.13
09/08/18	12:00	38730.31	975.34	34,618	46	405	0.137	133.93	6479.67	3.24	
10/04/18	15:30	39093.45	363.14	34,981	73	405	0.137	82.47	6562.14	3.24	
10/04/18	13:00	39428.14	334.69	35,316	42	261	0.227	27.04	6589.19	3.28	
10/18/18	13:40	39716.90	288.76	35,605	52	317	0.081	35.08	6624.27	3.29	
11/16/18	8:00	39983.80	266.90	35,872	68	156	0.121	20.87	6645.14	3.31	1.19
11/16/18	9:54	39985.70	1.90	35,872	77	264	0.149	0.28	6645.42	3.32	1.15
12/11/18	9:54 14:20	40585.95	600.25	35,874	90	150	0.149	59.53	6704.95	3.32	
12/11/18	14:20	40585.95	379.62	36,854	90 72	310	0.099	62.45	6767.40	3.35	

Received by OCD: 4/25/2024 8:53:21 Table 1 : Summary of SVE System Field Readings Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disc	harge		Calculated
Date	Time	Time	since					lbs since last	Tot	al	Correlatio
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
01/24/19	14:58	41636.05	670.48	37,524	63	275	0.128	85.62	6853.01	3.43	
02/05/19	12:02	41919.95	283.90	37,808	48	251	0.088	25.08	6878.09	3.44	
02/21/19	12:00	42303.95	384.00	38,192	26	218	0.042	16.10	6894.20	3.45	
03/07/19	7:00	42632.85	328.90	38,521	80	208	0.122	40.29	6934.48	3.47	0.97
03/22/19	11:09	42986.51	353.66	38,875	47	177	0.062	21.78	6956.26	3.48	
04/03/19	15:00	43277.65	291.14	39,166	58	440	0.186	54.29	7010.55	3.51	
04/18/19	12:00	43634.32	356.67	39,522	105	450	0.348	124.21	7134.76	3.57	
05/17/19	13:30	44330.99	696.67	40,219	39	365	0.104	72.34	7207.11	3.60	
06/12/19	17:00	44952.75	621.76	40,841	6	170	0.008	4.67	7211.78	3.61	
06/25/19	11:00	45283.69	330.94	41,172	23	445	0.075	24.97	7236.75	3.62	
07/09/19	13:30	45573.87	290.18	41,462	27	360	0.072	20.79	7257.53	3.63	
07/22/19	14:00	45906.56	332.69	41,795	27	425	0.083	27.62	7285.15	3.64	0.87
08/05/19	11:30	46239.45	332.89	42,127	37	462	0.126	41.94	7327.09	3.66	
08/19/19	11:00	46575.01	335.56	42,463	23	533	0.090	30.32	7357.41	3.68	
09/03/19	15:15	46937.77	362.76	42,826	31	455	0.104	37.71	7395.12	3.70	
09/05/19	7:30	46980.41	42.64	42,868	79	227	0.133	5.65	7400.77	3.70	
09/16/19	11:30	47242.95	262.54	43,131	21	372	0.058	15.12	7415.89	3.71	
09/30/19	11:00	47576.43	333.48	43,464	24	355	0.063	20.94	7436.83	3.72	
10/16/19	12:00	47958.94	382.51	43,847	22	280	0.045	17.37	7454.20	3.73	
10/28/19	11:45	48246.61	287.67	44,135	16	326	0.038	11.06	7465.26	3.73	
11/11/19	11:00	48581.38	334.77	44,469	35	488	0.127	42.56	7507.82	3.75	
11/11/19	12:10	48582.46	1.08	44,470	27	188	0.037	0.04	7507.86	3.75	0.88
11/26/19	11:20	48916.78	334.32	44,805	16	284	0.033	10.95	7518.82	3.76	
11/26/19	11:50	48917.34	0.56	44,805	26	472	0.089	0.05	7518.87	3.76	
12/11/19	10:30	49294.17	376.83	45,182	30	214	0.047	17.79	7536.65	3.77	
12/22/19	11:00	49558.50	264.33	45,447	16	462	0.054	14.40	7551.05	3.78	
12/30/19	14:00	49631.20	72.70	45,519	30	462	0.102	7.43	7558.48	3.78	
01/12/20	13:00	49682.50	51.30	45,571	19	282	0.039	2.01	7560.49	3.78	
02/10/20	11:00	49806.20	123.70	45,694	19	145	0.021	2.55	7563.04	3.78	
03/05/20	12:40	50000.00	193.80	45,888	38	197	0.055	10.66	7573.71	3.79	0.69
03/09/20	12:10	50070.44	70.44	45,958	23	250	0.041	2.92	7576.62	3.79	
03/23/20	11:45	50083.25	12.81	45,971	25	323	0.060	0.76	7577.39	3.79	
								ted Total:	13,401.38	6.79	

Notes:

1. Color shading indicates air sampling period with a unique correlation factor.

2. During the June 24 & July 17, 2014 site visit the field readings were not recorded. The italicized values presented above for these dates are conservative estimated values based upon last known readings.

	Some la ID.	SVE	Canister #34000823 Serial C8528 2014-12-11	CANISTER #C8522	Canister #8408 2015-06-11 Air Sample	Canister #5451 Batch #320-14155 9-3-15	CANISTER #34000512 BATCH ID #320-15930	STATE M-1 LEASE	20160629 M SVE	20160922 M SVE	20161208 M SVE	20170309 M SVE
Parameters	Sample ID: Sample Date:	4 4 4 4 4	11-Dec-14	#00522 12-Mar-15	Air Sample 11-Jun-15		10-Dec-15	10-Mar-16	29-Jun-16		8-Dec-16	
raiameters	Sample Date:	1-Aug-14	11-Dec-14	12-War-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17
Volatile Organic Compounds by	TO-15											
Acetone	ppb v/v	<2000	<615	<965	<860	<615	<370	<915	<280	<175	<106	<203
Benzene	ppb v/v	8,820	2,960	533	3,630	312	194	1,070	2,600	853	373	550
Benzyl chloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Bromodichloromethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	103.5	<6.33	<12.2
Bromoform	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Bromomethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
2-Butanone (MEK)	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Carbon disulfide	ppb v/v	1,800	272	<154	<138	<98.4	<59.2	<146	177	<27.9	<16.9	<32.4
Carbon tetrachloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Chlorobenzene	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
Dibromochloromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Chloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Chloroform	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
Chloromethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,2-Dibromoethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,2-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,3-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,4-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Dichlorodifluoromethane	ppb v/v	1,980	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1-Dichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
1,2-Dichloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,1-Dichloroethene	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
cis-1,2-Dichloroethene	ppb v/v	<160	<49.2	84.5	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
trans-1,2-Dichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2-Dichloropropane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
cis-1,3-Dichloropropene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
trans-1,3-Dichloropropene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Ethylbenzene	ppb v/v	13,500	3,830	799	2,890	731	723	446	2,530	1,390	531	908
4-Ethyltoluene	ppb v/v	974	533	164	299	256	186	<73.2	660	497	135	263
Hexachlorobutadiene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0
2-Hexanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Methylene Chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
4-Methyl-2-pentanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Styrene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1,2,2-Tetrachloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	41.1	<14.0	<8.44	20.0
Tetrachloroethene	ppb v/v	<160	71.9	<77.2	<68.8	<49.2	<29.6	92.9	<22.4	<14.0	<8.44	<16.2
Toluene	ppb v/v	4,020	1,040	228	1,480	<49.2	<29.6	120	975	380	164	193

	Sample ID:	SVE	Canister #34000823 Serial C8528 2014-12-11	CANISTER #C8522	Canister #8408 2015-06-11 Air Sample	9-3-15	ID #320-15930	STATE M-1 LEASE	20160629 M SVE	20160922 M SVE	20161208 M SVE	20170309 M SVE
Parameters	Sample Date:	1-Aug-14	11-Dec-14	12-Mar-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17
1,2,4-Trichlorobenzene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0
1,1,1-Trichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
1,1,2-Trichloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Trichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Trichlorofluoromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2,4-Trimethylbenzene	ppb v/v	2,020	648	299	774	<98.4	355	<146	968	740	228	411
1,3,5-Trimethylbenzene	ppb v/v	821	385	172	353	73.0	247	<73.2	727	541	192	397
Vinyl acetate	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Vinyl chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.8	<14.0	<8.44	<16.2
m,p-Xylene	ppb v/v	12,700	4,680	1,110	3,920	1,140	1,380	609	5,050	2,550	870	1,510
o-Xylene	ppb v/v	4,520	1,190	286	1,120	164	194	107	720	419	177	337
Total VOC as Hexane (C6-C12)	ppb v/v	1,060,000	655,000	99,400	351,000	190,000	140,000	371,000	590,000	262,000	117,000	167,000

		20170607	20170907	20171206	20180307	20180604	20180906	20181211	20190307	20190905	20200122	20200305
De me ma e ferme	Sample ID:	M SVE	M SVE	-M-SVE	-M-SVE	-M-SVE	-M-SVE	-M-SVE	M SVE	M SVE	M1-SVE	M SVE
Parameters	Sample Date:	7-Jun-17	7-Sep-17	6-Dec-17	7-Mar-18	4-Jun-18	6-Sep-18	11-Dec-18	7-Mar-19	5-Sep-19	22-Jan-20	5-Mar-20
Volatile Organic Compounds by	TO-15											
Acetone	ppb v/v	<76.0	<116	<20.0	5.67	<78.0	<124	<178	<22.3	<84	<17	<78
Benzene	ppb v/v	180	143	1.77	24.5	87.9	112	137	40.1	140	3.7	42
Benzyl chloride	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8
Bromodichloromethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8
Bromoform	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
Bromomethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<84	<17	<78
2-Butanone (MEK)	ppb v/v	<12.2	178	<3.20	<0.800	<12.5	<19.8	<28.4	5.97	<34	<6.7	<31
Carbon disulfide	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31
Carbon tetrachloride	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8
Chlorobenzene	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8
Dibromochloromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
Chloroethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31
Chloroform	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8
Chloromethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<84	<17	<78
1,2-Dibromoethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8
1,2-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
1,3-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
1,4-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
Dichlorodifluoromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
1,1-Dichloroethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8
1,2-Dichloroethane	ppb v/v	<12.2	<18.5	<3.20	0.881	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8
1,1-Dichloroethene	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8
cis-1,2-Dichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
trans-1,2-Dichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
1,2-Dichloropropane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
cis-1,3-Dichloropropene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
trans-1,3-Dichloropropene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
Ethylbenzene	ppb v/v	229	219	4.75	25.4	250	334	363	284	270	33	120
4-Ethyltoluene	ppb v/v	58.5	45.1	2.38	3.74	42.7	89.2	76.7	167	180	25	100
Hexachlorobutadiene	ppb v/v	<30.4	<46.2	<8.00	<2.00	<31.2	<49.5	<71.0	<8.90	<34	<6.7	<31
2-Hexanone	ppb v/v	<6.08	<9.24	<1.60	<0.400	<4.68	<9.91	<14.2	<1.78	<34	<6.7	<31
Methylene Chloride	ppb v/v	<6.08	<9.24	<1.60	0.540	<6.24	<9.91	<14.2	<1.78	<84	<17	<78
4-Methyl-2-pentanone	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
Styrene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
1,1,2,2-Tetrachloroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
Tetrachloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
Toluene	ppb v/v	68.4	49.2	<1.60	6.92	34.4	44.3	41.0	38.8	30	3.1	<7.8

Received by OCD: 4/25/2024 8:53:21 AM

Parameters	Sample ID: Sample Date:	20170607 M SVE 7-Jun-17	20170907 M SVE 7-Sep-17	20171206 -M-SVE 6-Dec-17	20180307 -M-SVE 7-Mar-18	20180604 -M-SVE 4-Jun-18	20180906 -M-SVE 6-Sep-18	20181211 -M-SVE 11-Dec-18	20190307 M SVE 7-Mar-19	20190905 M SVE 5-Sep-19	20200122 M1-SVE 22-Jan-20	20200305 M SVE 5-Mar-20
1,2,4-Trichlorobenzene	ppb v/v	<30.4	<46.2	<8.00	<2.00	<31.2	<49.5	<71.0	<8.90	<34	<6.7	<31
1,1,1-Trichloroethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8
1,1,2-Trichloroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
Trichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	20
Trichlorofluoromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
1,2,4-Trimethylbenzene	ppb v/v	85.9	50.3	7.35	9.05	71.3	134	124	83.0	75	10	59
1,3,5-Trimethylbenzene	ppb v/v	53.6	45.5	6.18	5.81	46.2	88.6	102	67.0	69	9.1	43
Vinyl acetate	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<6.7	<31
Vinyl chloride	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8
m,p-Xylene	ppb v/v	322	330	10.3	48.7	376	501	544	442	440	66	210
o-Xylene	ppb v/v	98.4	96.4	2.54	15.6	107	133	158	137	120	55	50
Total VOC as Hexane (C6-C12)	ppb v/v	54,500	40,900	4,630	9,930	46,500	76,600	107,000	77,900	69,000	14,000	26,000

Received by OCD: 4/25/2024 8:53:21 AM

M Table 3 : Summary of Liquid Level Measurements Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-1R	3888.97	06/03/14	44.57	49.89	5.32	3839.08
	3888.97	09/22/14	44.87	48.91	4.04	3840.06
	3888.97	12/10/14	45.80	46.30	0.50	3842.67
	3888.97	03/11/15	45.12	46.83	1.71	3842.14
	3888.97	06/10/15	45.54	46.31	0.77	3842.66
	3888.97	09/02/15	45.81	47.37	1.56	3841.60
	3888.97	12/09/15	45.22	49.07	3.85	3839.90
	3888.97	03/09/16	45.30	47.18	1.88	3841.79
	3888.97	06/28/16	45.75	47.02	1.27	3841.95
	3888.97	09/21/16	46.10	46.38	0.28	3842.59
	3888.97	12/07/16	46.13	46.88	0.75	3842.09
	3888.97	03/08/17	46.14	46.57	0.43	3842.40
	3888.97	06/06/17	45.82	48.86	3.04	3840.11
	3888.97	09/08/17	46.30	46.63	0.33	3842.34
	3888.97	12/04/17	46.36	46.77	0.41	3842.20
	3888.97	03/05/18	46.47	46.81	0.34	3842.16
	3888.97	06/05/18	46.56	46.93	0.37	3842.04
	3888.97	09/05/18	46.31	48.81	2.50	3840.16
	3888.97	12/11/18	46.34	49.11	2.77	3839.86
	3888.97	03/06/19	46.48	49.20	2.72	3839.77
	3888.97	06/04/19	46.58	48.84	2.26	3840.13
	3888.97	09/04/19	47.88	48.67	0.79	3840.30
	3888.97	12/06/19	47.13	47.43	0.30	3841.54
	3888.97	03/05/20	47.11	47.68	0.57	3841.29
MW-2	3890.51	06/03/14		47.23		3843.28
	3890.51	09/22/14		46.37		3844.14
	3890.51	12/10/14		45.91		3844.60
	3890.51	03/11/15		46.03		3844.48
	3890.51	06/10/15		46.38		3844.13
	3890.51	09/02/15		46.44		3844.07
	3890.51	12/09/15		46.51		3844.00
	3890.51	03/09/16		46.61		3843.90
	3890.51	06/28/16		46.70		3843.81
	3890.51	09/21/16		46.80		3843.71
	3890.51	12/07/16		46.82		3843.69
	3890.51	03/08/17		46.88		3843.63
	3890.51	06/06/17		46.98		3843.53
	3890.51	09/08/17		47.06		3843.45
	3890.51	12/04/17		47.11		3843.40
	3890.51	03/05/18		47.22		3843.29
	3890.51	06/05/18		47.31		3843.20
	3890.51	09/05/18		47.36		3843.15
	3890.51	12/11/18		47.46		3843.05
	3890.51	03/06/19		47.51		3843.00
	3890.51	06/04/19		47.61		3842.90
	3890.51	09/04/19		47.76		3842.75
	3890.51	12/06/19		47.81		3842.70
	3890.51	03/05/20		47.91		3842.60

M Table 3 : Summary of Liquid Level Measurements Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
	. ,		. ,		(1 661)	
MW-3	3889.34	06/03/14		46.35		3842.99
	3889.34	09/22/14		46.49		3842.85
	3889.34	12/10/14		46.08		3843.26
	3889.34	03/11/15		46.28		3843.06
	3889.34	06/10/15		46.51		3842.83
	3889.34	09/02/15		46.60		3842.74
	3889.34	12/09/15		46.68		3842.66
	3889.34	03/09/16		46.72		3842.62
	3889.34	06/28/16		46.85		3842.49
	3889.34	09/21/16		46.96		3842.38
	3889.34	12/07/16		47.02		3842.32
	3889.34	03/08/17		47.11		3842.23
	3889.34	06/06/17		47.13		3842.21
	3889.34	09/08/17		47.23		3842.11
	3889.34	12/04/17		47.28		3842.06
	3889.34	03/05/18		47.44		3841.90
	3889.34	06/05/18		47.48		3841.86
	3889.34	09/05/18		47.55		3841.79
	3889.34	12/11/18		47.60		3841.74
	3889.34	03/06/19		47.68		3841.66
	3889.34	06/04/19		47.80		3841.54
	3889.34	09/04/19		47.95		3841.39
	3889.34	12/06/19		48.00		3841.34
	3889.34	03/05/20		48.03		3841.31
MW-4	3888.90	06/03/14		46.38		3842.52
	3888.90	09/22/14		46.50		3842.40
	3888.90	12/10/14		46.14		3842.76
	3888.90	03/11/15		46.35		3842.55
	3888.90	06/10/15		46.49		3842.41
	3888.90	09/02/15		46.57		3842.33
	3888.90	12/09/15		46.68		3842.22
	3888.90	03/09/16		46.75		3842.15
	3888.90	06/28/16		46.87		3842.03
	3888.90	09/21/16		46.94		3841.96
	3888.90	12/07/16		47.03		3841.87
	3888.90	03/08/17		47.08		3841.82
	3888.90	06/06/17		47.15		3841.75
	3888.90	09/08/17		47.15		3841.66
	3888.90	12/04/17		47.24		3841.61
				47.29		
	3888.90	03/05/18				3841.52
	3888.90	06/05/18		47.50		3841.40
	3888.90	09/05/18		47.53		3841.37
	3888.90	12/11/18		47.62		3841.28
	3888.90	03/06/19		47.72		3841.18
	3888.90	06/04/19		47.80		3841.10
	3888.90	09/04/19		47.98		3840.92
	3888.90	12/06/19		48.00		3840.90
	3888.90	03/05/20		48.07		3840.83

Received by OCD: 4/25/2024 8:53:21 AM Table 3 : Summary of Liquid Level Measurements Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-5	3890.41	06/03/14		46.56		3843.85
	3890.41	09/22/14		46.70		3843.71
	3890.41	12/10/14		46.29		3844.12
	3890.41	03/11/15		46.44		3843.97
	3890.41	06/10/15		46.69		3843.72
	3890.41	09/02/15		46.79		3843.62
	3890.41	12/09/15		46.85		3843.56
	3890.41	03/09/16		46.90		3843.51
	3890.41	06/28/16		47.08		3843.33
	3890.41	09/21/16		47.13		3843.28
	3890.41	12/07/16		47.14		3843.27
	3890.41	03/08/17		47.23		3843.18
	3890.41	06/06/17		47.32		3843.09
	3890.41	09/08/17		47.40		3843.01
	3890.41	12/04/17		47.27		3843.14
	3890.41	03/05/18		47.54		3842.87
	3890.41	06/05/18		47.66		3842.75
	3890.41	09/05/18		47.72		3842.69
	3890.41	12/11/18		47.80		3842.61
	3890.41	03/06/19		47.85		3842.56
	3890.41	06/04/19		47.98		3842.43
	3890.41	09/04/19		48.15		3842.26
	3890.41	12/06/19		48.17		3842.24
	3890.41	03/05/20		48.23		3842.18
MW-6	3888.25	06/03/14		46.25		3842.00
	3888.25	09/22/14		46.39		3841.86
	3888.25	12/10/14		46.09		3842.16
	3888.25	03/11/15		46.23		3842.02
	3888.25	06/10/15		46.32		3841.93
	3888.25	09/02/15		46.48		3841.77
	3888.25	12/09/15		46.57		3841.68
	3888.25	03/09/16		46.62		3841.63
	3888.25	06/28/16		46.74		3841.51
	3888.25	09/21/16		46.81		3841.44
	3888.25	12/07/16		46.90		3841.35
	3888.25	03/08/17		46.93		3841.32
	3888.25	06/06/17		47.08		3841.17
	3888.25	09/08/17		47.12		3841.13
	3888.25	12/04/17		47.21		3841.04
	3888.25	03/05/18		47.30		3840.95
	3888.25	06/05/18		47.36		3840.89
	3888.25	09/05/18		47.43		3840.82
	3888.25	12/11/18		47.52		3840.73
	3888.25	03/06/19		47.60		3840.65
	3888.25	06/04/19		47.71		3840.54
	3888.25	09/04/19		47.81		3840.44
	3888.25	12/06/19		47.81		3840.35
	3888.25	03/05/20		47.98		3840.35

Table 3 : Summary of Liquid Level Measurements Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-7	3889.23	06/03/14		45.94		3843.29
	3889.23	09/22/14		46.08		3843.15
	3889.23	12/10/14		45.70		3843.53
	3889.23	03/11/15		45.36		3843.87
	3889.23	06/10/15		46.08		3843.15
	3889.23	09/02/15		46.14		3843.09
	3889.23	12/09/15		46.24		3842.99
	3889.23	03/09/16		46.30		3842.93
	3889.23	06/28/16		46.42		3842.81
	3889.23	09/21/16		46.52		3842.71
	3889.23	12/07/16		46.59		3842.64
	3889.23	03/08/17		46.65		3842.58
	3889.23	06/06/17		46.73		3842.50
	3889.23	09/08/17		46.80		3842.43
	3889.23	12/04/17		46.88		3842.35
	3889.23	03/05/18		46.96		3842.27
	3889.23	06/05/18		47.04		3842.19
	3889.23	09/05/18		47.11		3842.12
	3889.23	12/11/18		47.20		3842.03
	3889.23	03/06/19		47.27		3841.96
	3889.23	06/04/19		47.37		3841.86
	3889.23	09/04/19		47.50		3841.73
	3889.23	12/06/19		47.58		3841.65
	3889.23	03/05/20		47.66		3841.57
MW-8	3887.06	06/03/14		44.94		3842.12
	3887.06	09/22/14		45.11		3841.95
	3887.06	12/10/14		44.79		3842.27
	3887.06	03/11/15		44.94		3842.12
	3887.06	06/10/15		45.22		3841.84
	3887.06	09/02/15		45.21		3841.85
	3887.06	12/09/15		45.29		3841.77
	3887.06	03/09/16		45.35		3841.71
	3887.06	06/28/16		45.56		3841.50
	3887.06	09/21/16		45.67		3841.39
	3887.06	12/07/16		45.64		3841.42
	3887.06	03/08/17		45.68		3841.38
	3887.06	06/06/17		45.78		3841.28
	3887.06	09/08/17		45.82		3841.24
	3887.06	12/04/17		45.91		3841.15
	3887.06	03/05/18		46.03		3841.03
	3887.06	06/05/18		46.03		3840.94
	3887.00	09/05/18		46.12		3840.90
	1	12/11/18		46.16		
	3887.06					3840.80
	3887.06	03/06/19		46.33		3840.73
	3887.06	06/04/19		46.42		3840.64
	3887.06	09/04/19		46.53		3840.53
	3887.06	12/06/19 03/05/20		46.62		3840.44 3840.35
	3887.06	03/03/20		46.71		3040.33

Notes:

1. TOC : Measured from top of casing.

LNAPL : Light non aqueous phase liquid.
-- : Denotes Not Measured.

4. AMSL: Denotes above mean sea level (AMSL)

		Chloride (mg/L)														
	June 2014	Sept. 2014	Dec. 2014	March 2015	June 2015	Sept. 2015	Dec. 2015	March 2016	June 2016	Sept. 2016	Dec. 2016	March 2017	June 2017	Sept. 2017	Dec. 2017	March 2018
MW-1R		51.4	116	39.0	24.6	21.6	23.5	34.8	24.9	28.5	44.8	32.0	28.6	29.3	29.0	33.7
MW-2	17.7	17.4	18.3	16.6	16.8	16.6	15.4 *	13.5	18.9	17.6	18.2	15.0	15.9	15.2	16.2	16.6
MW-3	59.7	59.7	58.9	57.0	57.1	56.3	50.5 *	49.3	51.5	52.0	55.1	50.0	53.7	49.5	58.1	64.3
MW-4	586	534	535	543	556	567	546 *	525	527	569	605	500	493	465	492	484
MW-5	28.6	27.3	27.9	26.1	26.2	25.8	22.4 *	22.4	26.1	26.2	27.8	23.1	24.7	20.4	25.4	25.9
MW-6	282	263	268	261	253	277	197 *	150	128	128	125	94.4	86.3	79.3	71.8	64.7
MW-7	42.7	29.6	36.0	39.7	36.2	35.2	28.8 *	27.7	36.0	38.2	39.6	24.2	23.8	24.0	27.7	31.6
MW-8	409	442	463	485	558	327	499	504	539	490	768	489	531	573	570	587

Notes:

1. mg/L : milligrams per liter.

2. < : Analyte not detected at the laboratory reporting limit.

3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.

4. Cells shaded in blue indicate results that are above the laboratory reporting limit.

5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code 20.6.2.3103, Standards for Groundwater: chloride (250.0 mg/L).

6. --- : Analysis not performed.

7. * : Analysis performed outside of holding time.

8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.

9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.

10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

	Rec
	Received by OCD: 4/25/2024 8:53:21 AM
	by (
)CD:
	4/25,
	2024
	8:53:
	21
	4M

		Chloride (mg/L)								
	June 2018	Sept. 2018	Dec. 2018	March 2019	June 2019	Sept. 2019	Dec. 2019	March 2020		
MW-1R										
MW-2										
MW-3										
MW-4	413	387	373	617	392	404	421	443		
MW-5										
MW-6										
MW-7										
MW-8	539	398	474	308	283	223	198	118		

Notes:

1. mg/L : milligrams per liter.

2. < : Analyte not detected at the laboratory reporting limit.

3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.

4. Cells shaded in blue indicate results that are above the laboratory reporting limit.

- 5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code
- 20.6.2.3103, Standards for Groundwater: chloride (250.0 mg/L).
- 6. --- : Analysis not performed.
- 7. * : Analysis performed outside of holding time.
- 8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.
- 9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.
- 10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

•

FIGURES

Released to Imaging: 6/4/2024 2:38:02 PM

Released to Imaging: 6/4/2024 2:38:02 PM

PR0.JECTS\Chessneetke Enerov\CHKSTATW\H19001\04 CAD\20190101 6HhAnnGWBpt StoteM.dwa on Mav 05. 2020-2:4

LEGEND

LOCATION OF MONITORING WELL

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

SVE-1 LOCATION OF SVE SYSTEM WELL

FIGURE TITLE SITE BASE MAP

			PROJECT NUMBER	FIGURE NUMBER	Pag
MNM				THOUSE HUMBER	e
MNM	SCALE	1"= 60'	CHKSTATM:H19001	2	31
SKG	DATE	5/5/2020			of
					61.
					U

DOCUMENT TITLE SIXTH ANNUAL GROUNDWATER MONITORING REPORT	FIG	FIGURE TITLE SVE SYSTEM VOC DISCHARGE CONCENTRATIONS VERSUS TIME					
CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA	DESIGNED BY				PROJECT NUMBER	FIGURE NUMBER	
LOCATION STATE M LEASE (AP-72)	APPROVED BY	MNM			CHKSTATM:H19001	3	
	SIXTH ANNUAL GROUNDWATER MONITORING REPORT CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA	SIXTH ANNUAL GROUNDWATER MONITORING REPORT Item CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA DESIGNED BY LOCATION STATE M LEASE (AP-72) APPROVED BY	SIXTH ANNUAL GROUNDWATER MONITORING REPORT SVE SI CONCL CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA DESIGNED BY LOCATION STATE M LEASE (AP-72) APPROVED BY MNM	SIXTH ANNUAL GROUNDWATER MONITORING REPORT SVE SYSTEM VOC L CONCENTRATIONS CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA DESIGNED BY JEC LOCATION STATE M LEASE (AP-72) APPROVED BY	SIXTH ANNUAL GROUNDWATER MONITORING REPORT SVE SYSTEM VOC DISCHARGE CONCENTRATIONS VERSUS TIME CONCENTRATIONS VERSUS TIME CONC	SIXTH ANNUAL GROUNDWATER MONITORING REPORT SVE SYSTEM VOC DISCHARGE CONCENTRATIONS VERSUS TIME CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA PROJECT NUMBER LOCATION STATE M LEASE (AP-72) APPROVED BY MNM SCALE NTS CHKSTATM:H19001	

Received by OCD: 4/25/2024 8:53:21 AM

LEGEND

MW-5 3842.43 LOCATION OF MONITORING WELL AND GROUNDWATER ELEVATION 6/4/2019, FEET AMSL

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

/ 3842.00 / GROUNDWATER POTENTIOMETRIC SURFACE

ITLE	
GROUNDWATER POTENTIOMETRIC	
SURFACE, JUNE 4, 2019	

					1
			PROJECT NUMBER	FIGURE NUMBER	
MNM				TIGORE NOMBER	
MNM	SCALE	1"= 60'	CHKSTATM:H19001	4	
SKG	DATE	5/5/2020			

LEGEND

MW-5 LOCATION OF MONITORING WELL AND 3842.26 GROUNDWATER ELEVATION 9/4/2019, FEET AMSL

MW-1 LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

/ 3842.00 / GROUNDWATER POTENTIOMETRIC SURFACE

TITLE	
GROUNDWATER POTENTIOMETRIC	
SURFACE, SEPTEMBER 4, 2019	

			PROJECT NUMBER	FIGURE NUMBER	Pag
MNM				TIGORE NOMBER	e e
MNM	SCALE	1"= 60'	CHKSTATM:H19001	5	34
SKG	DATE	5/5/2020			e
					-19
					Ω.

LEGEND

MW-5 LOCATION OF MONITORING WELL AND 3842.24 GROUNDWATER ELEVATION 12/6/2019, FEET AMSL

MW-1

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

/ 3842.00 / GROUNDWATER POTENTIOMETRIC SURFACE

TITLE	
GROUNDWATER POTENTIOMETRIC	
SURFACE, DECEMBER 6, 2019	

			PROJECT NUMBER	FIGURE NUMBER	
MNM					Č
MNM	SCALE	1"= 60'	CHKSTATM:H19001	6	2
SKG	DATE	5/5/2020			3

LEGEND

MW-5 LOCATION OF MONITORING WELL AND 3842.18 GROUNDWATER ELEVATION 3/5/2020, FEET AMSL

MW-1

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

/ 3842.00 / GROUNDWATER POTENTIOMETRIC SURFACE

GROUNDWATER POTENTIOMETRIC SURFACE, MARCH 5, 2020

			PROJECT NUMBER	FIGURE NUMBER	Pag
MNM				HOOKE NOMBER	e.
MNM	SCALE	1"= 60'	CHKSTATM:H19001	7	36
SKG	DATE	5/5/2020			e l
					21.
					$\overline{\omega}$

LEGEND

LOCATION OF MONITORING WELL AND CONCENTRATION OF CHLORIDE IN GROUNDWATER 3/5/2020, mg/L

WW-1 LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

CONTOUR LINE SHOWING EQUAL CONCENTRATIONS OF CHLORIDE IN GROUNDWATER, mg/L. (DASHED WHERE INFERRED)

ISOPLETH OF CHLORIDE CONCENTRATIONS IN GROUNDWATER, MARCH 5, 2020

	·		PROJECT NUMBER	FIGURE NUMBER	
MNM				TIGORE NOMBER	
MNM	SCALE	1"= 60'	CHKSTATM:H19001	8	
SKG	DATE	5/5/2020			1

Received by OCD: 4/25/2024 8:53:21 AM

EQUUS	DOCUMENT TITLE SIXTH ANNUAL GROUNDWATER MONITORING REPORT			FIGURE TITLE CHLORIDE CONCENTRATION TREND GRAPHS				
1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136-5065 918.921.5331	CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA	DESIGNED BY CNA		PROJECT NUMBER	FIGURE NUMBER			
	LOCATION STATE M LEASE (AP-72)	APPROVED	BY MNM	SCALE	NTS	CHKSTATM:H19001	9 🍷	
www.EQUUSENV.com	SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN	BY SKG	DATE	5/5/2020		8	
		-					193	

APPENDICES

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

.

APPENDIX A

STAGE 2 ABATEMENT PLAN

Released to Imaging: 6/4/2024 2:38:02 PM

Mr. Glenn Von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Subject: State M-1 AP-072 Stage 2 Abatement Plan

Dear Mr. Von Gonten:

On behalf of Chesapeake Energy Corporation, ARCCADIS U.S. Inc. respectfully submits the enclosed Stage 2 Abatement plan for the State M-1 site (AP-072). A Stage 1 Abatement Plan Report was submitted on March 20, 2012. Your review and approval of this Abatement Plan will be appreciated. The landowner, Darr Angell, is anxious for us to complete soil remediation at this site.

If you have any questions please do not hesitate to contact Bradley Blevins at (575) 391-1462 or via e-mail at bblevins@chkenergy or me at (432) 687-5400, e-mail address shall@aracdis-us.com.

ARCADIS U.S., Inc. 1004 North Big Spring Street Suite 300 Midland Texas 79701 Tel 432 687 5400 Fax 432 687 5401 www.arcadis-us.com

ENVIRONMENT

Date: March 27, 2012

Contact: Sharon Hall

Phone: 432 687-5400

Email: shall@aracdis-us.com

Our ref: MT001088

ARCADIS U.S., Inc. TX Engineering License # F-533

Sincerely,

ARCADIS U.S., Inc.

Sham E. Hael

Sharon E. Hall Associate Vice President

^{Copies:} <mark>Bradley Blevins- C</mark>hesapeake, Hobbs

Imagine the result

g:\aproject\chesapeake\m-1 stage 2 plan\transmitall letter.doc

Received by OCD: 4/25/2024 8:53:21 AM

Imagine the result

Chesapeake Energy Corporation

State M-1 AP-072 Stage 2 Abatement Plan Proposal

Hobbs, New Mexico

March 27, 2012

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Prepared for: Chesapeake Energy Corporation Hobbs, New Mexico

Prepared by: ARCADIS U.S., Inc. 1004 North Big Spring Street Suite 300 Midland Texas 79701 Tel 432 687 5400 Fax 432 687 5401

Our Ref.: MT001088.0001.00001

Date: March 27, 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Sharon Hall Associate Vice President

i

Table of Contents

1.	INTRO	ουστια	DN	1		
2.	SUMM	SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES				
3.	STAGE 2 ABATEMENT PLAN PROPOSAL					
	3.1	Soil Re	mediation	2		
	3.2	Ground	water Remediation and Monitoring	3		
		3.2.1	Chlorides	4		
		3.2.2	Hydrocarbons	4		
4.	PUBLIC		ICATION	4		
5.	REMED	IATION	I WORK SCHEDULE	4		
6.	REFER	REFERENCES				

Figures

Figure 1 Soil and Groundwater Analyte Concentrations

Figure 2 Proposed Excavation

Appendices

Appendix A Multi-Med Model Inputs and Outputs

ARCADIS

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

1. INTRODUCTION

The subject site is a former tank battery site located east of Buckeye, New Mexico. The site was purchased by Chesapeake Energy Corporation (Chesapeake) in April 2004. Chesapeake did not operate the tank battery or the associated well field and began the process of facility abandonment in 2007.

Seven monitor wells and nine soil borings have been drilled at the site. Elevated chloride concentrations and limited hydrocarbon compounds were detected in soil samples collected from soil borings and monitoring wells. Elevated chlorides were detected in the down gradient monitor wells and light non-aqueous phase liquid (LNAPL) occurs in monitoring well MW-1. LNAPL recovery activities have been piloted at the site and will commence again upon completion of surface reclamation activities.

2. SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES

Initial site investigation activities were conducted in May of 2007 following abandonment of the tank battery. Stage 1 Abatement activities were conducted during the period of May 2007 through September 2011. Stage 1 Abatement activities included drilling and soil sampling of nine boreholes, drilling and sampling of seven monitor wells, EM 31 and EM 34 surveys, conversion of one monitoring well into a recovery well and recovery of phase-separated hydrocarbons from the recovery well.

New Mexico Oil Conservation Division (NMOCD) was notified of impacts to groundwater at the site via e-mail on May 30, 2007. NMOCD notified Chesapeake in a letter dated June 19, 2007 that a Stage 1 Abatement Plan was required for the site in accordance with Rule 19.

The Stage 1 Abatement Plan was submitted to NMOCD on August 22, 2007. The plan summarized site activities taken to date. The plan proposed the drilling and sampling of a minimum of three additional soil borings and installation and sampling of nine groundwater monitoring wells.

BBC contacted NMOCD via email on April 24, 2010 to inquire about the status of the Stage 1 Abatement Plan approval and Chesapeake's desire to conduct the proposed Stage 1 Abatement Plan activities. On May 27, 2010, NMOCD responded via email that the State was not staffed to review the Abatement Plans (APs) in a timely manner. On June 23, 2010, BBC contacted NMOCD via email to request a waiver of the Public Notice requirement and inform NMOCD that Chesapeake and the landowner were

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

ARCADIS

anxious to move forward with the proposed AP activities. NMOCD replied via email on June 23, 2010 stating they were still understaffed to review the AP and could not waive the Public Notice requirement. They advised BBC that Chesapeake could proceed "at risk." On July 12, 2010 BBC informed NMOCD by registered letter that Chesapeake was planning to start the Stage 1 Assessment on or about August 23, 2010. They further informed NMOCD they would be submitting the required Public Notices, a copy of which was attached to the letter. NMOCD did not respond to the registered letter.

The public notices were published in the Hobbs News-Sun and Lovington Leader on July 22, 2010 and the Albuquerque Journal on July 24, 2010. No comments were received from the public or NMOCD during the 30-day comment period and Chesapeake proceeded with the proposed Stage 1 Abatement Plan activities on August 26, 2010. Copies of correspondence and Public Notice are included in Appendix A.

A detailed description of site activities and results can be found in the report submitted to NMOCD dated March 20, 2012 entitled State M-1 AP-072, Stage 1 Abatement Report (Site Assessment Investigation). Analytical results for soil and groundwater sampling are summarized on Figure 1.

3. STAGE 2 ABATEMENT PLAN PROPOSAL

After review of various remedial options, we propose the following Stage 2 Abatement Plan. The plan addresses soil and groundwater remediation.

3.1 Soil Remediation

The selected remedial option will be the excavation of near-surface soils and installation of clay liners. The anticipated extent and depth of excavation is based on assessment activities (laboratory analysis and visual observation) and is shown in Figure 2. Near surface soils (to a depth of 5 feet below ground surface) with chloride concentrations in excess of 1,000 milligrams per kilogram (mg/kg) and a Total Petroleum Hydrocarbons (TPH) concentration in excess of 1,000 mg/kg will be excavated and disposed. Excavated soils will be disposed at Lea Land Landfill.

Areas where chloride or TPH concentrations are expected to exceed 1,000 mg/kg at depths greater than 5 feet below ground surface soils will be excavated to a depth of 5

g:\aproject\chesapeake\m-1 stage 2 plan\m-1 stage 2 abatement plan final report.doc

ARCADIS

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

feet below ground surface. Soils will be screened in the field for chlorides using chloride field test kits and for TPH using a photoionization. Critical samples (samples used to delineate the excavations) will be submitted for laboratory analysis of chlorides and/or TPH. Following excavation, a 12-inch compacted clay layer that meets or exceeds a permeability of equal to or less than 1×10^{-8} centimeters per second will be installed in the excavations. The lined excavations will be backfilled with four feet of locally obtained native soil. All of the excavated areas will be re-seeded with native vegetation. Areas that are supporting vegetation will not be disturbed.

Use of the USEPA Multi-Med model demonstrates that the clay liners will mitigate the leaching of chlorides to groundwater. The model predicts that after 7000 years of infiltration through the liner the maximum concentration of chlorides in groundwater will be 221.8 milligrams per liter (mg/L). The Multi-Med inputs and outputs are included in Appendix A.

3.2 Groundwater Remediation and Monitoring

One additional groundwater monitoring well will be installed downgradient of the site. The monitoring well will be designated MW-8.

Groundwater samples will be collected from all of the monitoring wells and analyzed for chlorides using USEPA method 9056 for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling will be discontinued when eight quarters of sample results indicate chloride concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to the NMOCD annually on June 15.

Following removal of LNAPL from MW-1, groundwater samples will be collected from MW-1 and analyzed for benzene, toluene ethylbenzene and xylenes (BTEX) using USEPA method 8260B for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling of MW-1 for BTEX will be discontinued when eight quarters of sample results indicate BTEX concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to

g:\aproject\chesapeake\m-1 stage 2 plan\m-1 stage 2 abatement plan final report.doc

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

ARCADIS

the NMOCD annually on June 15. Proposed groundwater remediation is presented in Sections 3.2.1 and 3.2.2.

3.2.1 Chlorides

Chloride concentrations in groundwater exceed New Mexico Water Quality Control Commission standards in two wells (MW-1 411mg/L and MW-4 472mg/L).

Removal of near-surface soils that are a potential source of chlorides and BTEX in groundwater and lining of excavations with chloride and TPH concentrations in excess of 1,000 mg/kg will mitigate leaching of chlorides to groundwater. Considering the relatively low concentrations of chlorides in groundwater and the fact that soil removal and clay liner infiltration barrier installation will be conducted at this site, we propose monitoring the site for a period of two years before considering pumping of groundwater at this site. With the proposed source removal and mitigation and the severe drought conditions being experienced in this area, we believe it prudent to evaluate if chloride mass removal by pumping is warranted at this site.

3.2.2 Hydrocarbons

A pilot LNAPL recovery test will take place over a three week period and will be used to develop long-term recovery procedures. LNAPL will be recovered from MW-1 and disposed in a NMOCD approved facility. Additionally, two soil vent borings equipped with wind turbines will be installed in the area near MW-1.

4. PUBLIC NOTIFICATION

Written notification of submittal of the Stage 2 Abatement Plan Proposal and site activities will be sent to all surface owners of record within a one-mile radius of the site. NMOCD will be supplied with a list of parties to be notified. Publication of notice of activities will be published in a state-wide circulated newspaper, the Albuquerque Journal, and two county newspapers, the Hobbs-Daily News Sun and the Lovington Leader.

5. REMEDIATION WORK SCHEDULE

Soil remediation activities are expected to be completed in 15 working days (Monday through Friday). Groundwater remediation activities will be ongoing. An estimated completion date for groundwater remediation is not available.

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

6. REFERENCES

Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

State M-1 AP-072 Stage 1 Abatement Report (Site Assessment Investigation); ARCADIS; March 2012

State M-1Salt Water Disposal Tank Battery, Stage 1 Abatement Plan (Ap-072), BBC International; August 2007

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Page 50 of 193

Released to Imaging: 6/4/2024 2:38:02 PM

.

Appendix A

Multi-Med Model Inputs and Outputs

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico Multimed Model Input and Output (With Liner)

MOD	EL INPUT	AND OUT	PUT			MODEL	RANGE	
	VPUT PAF	RAMETERS	S			Minimum	Maximum	
Unsaturated Zone Flow Parameters								
Depth of Unsaturated Zone	m	45	feet	13.7 m		0.000000001	None	
Hydraulic Conductivity	cm/hr	2	ft/day	2.54 cm	i/hr 👘	0.00000000001	10,000	
Unsaturated Zone Porosity	fraction	0.05	fraction	0.05 frac	ction	0.000000001	0.99	
Residual Water Content	fraction	0.01	fraction		ction	0.000000001	1	
	Uns	aturated Z	one Trans	port Parameters	\$			
Thickness of Layer	m	45	feet	13.7 m		0.000000001	None	
Percent of Organic Matter	%	2.6	%	2.6 %	197	0	100	
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/ci	m ³	0.01	5	
Biological Decay Coefficient	1/yr	0	1/yr	0 1/yı		0	None	
		Aqu	lifer Paran	ieters				
Aquifer Porosity	fraction	0.25	fraction		ction	0.000000001	0.99	
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/ci	m ³	0.01	5	
Aquifer Thickness	m	50	ft	15.24 m		0.000000001	100,000	
Hydraulic Conductivity	m/yr	2	ft/day	223 m/y	yr	0.0000001	100,000,000	
Hydraulic Gradient	m/m	0.007	m/m	0.007 m/n	m	0.00000001	None	
Organic Carbon Content	fraction	0.00315	fraction	0.00315 frac	ction	0.000001	1	
Temperature of Aquifer	°C	14.4	°C	14.4 °C	99 - 99 L	0.00000001	None	
рН		6.2		6.2	en Neels	0.3	14	
x-distance Radial Distance from								
Site to Receptor	m	1	m	1 1	m	1	None	
		Sou	rce Param	eters				
Infiltration Rate from the Facility	m/yr	0.124	in/yr	0.00315 m/y		0.0000000001	10,000,000,000	
Area of Waste Disposal Unit	m ²	46,800	ft ²	4348 m ²		0.01	None	
Length Scale of Facility	m	240	feet	73:2 m		0.000000001	10,000,000,000	
Width Scale of Facility	m	195	feet	59.4 m		0.000000001	10,000,000,000	
Recharge Rate into the Plume	m/yr	16.71	in/yr	0.4244 m/y	/1	0	10,000,000,000	
Duration of Pulse	yr	8,000	yr	8000 yr	1.1.1	0.00000001	None	
Initial Concentration at Landfill	mg/L_	6,000	mg/L	6,000 mg/	/L	0	None	
		Addit	ional Para	meters				
Method				Gaussian		Gaussian	Patch	
Name of Chemical Specified				Chloride				

MODEL OUTPUT Final Concentration at Landfill mg/L 221.8 mg/L

	MODEL OUTPUT		
Concentration at Landfill	0.0 mg/L	Time	1 yr
	0.0 mg/L		10 yr
	0.0 mg/L		20 yr
	18.9 mg/L		50 yr
	36.6 mg/L		70 yr
	45.4 mg/L		80 yr
	61.8 mg/L		100 yr
	123.4 mg/L		200 yr
	154.1 mg/L		300 yr
	166.3 mg/L		400 yr
	178.5 mg/L		500 yr
	190.7 mg/L		600 yr
	204.8 mg/L		800 yr
	211.1 mg/L		1,000 yr
	220.4 mg/L		2,000 yr
	221.6 mg/L		3,000 yr
	221.8 mg/L		4,000 yr
	221.8 mg/L		5,000 yr
	221.8 mg/L		6,000 yr
	221.8 mg/L		7,000 yr

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico

TABLE 6-3. TOTAL POROSITY OF VARIOUS MATERIALS

	No. of		Arithmetic	
Material	Analyses	Range	Mean	
Igneous Rocks				
Weathered granite	8	0.34-0.57	0.45	
Weathered gabbro	4	0.42-0.45	0.43	
Basalt	94	0.03-0.35	0.17	
Sedimentary Materials				
Sandstone	65	0.14-0.49	0.34	
Siltstone	7	0.21-0.41	0.35	
Sand (fine)	243	0.26-0.53	0.43	
Sand (coarse)	26	0.31-0.46	0.39	
Gravel (fine)	38	0.25-0.38	0.34	
Gravel (coarse)	15	0.24-0.36	0.28	
Silt	281	0.34-0.61	0.46	
Clay	74	0.34-0.57	0.42	
Limestone	74	0.07-0.56	0.3	
Metamorphic Rocks				
Schist	18	0.04-0.49	0.38	

Sources: From Mercer et al. (1982),

McWhorter and Sunada (1977),

Original reference Morris and Johnson, (1967).

Texture	Bulk Density g/cm^3	Average Wilting Point	Plant Available Water Inches/Ft
Sandy loam	1.6	0.057	1.66
Silt Loam	1.45	0.119	2
Loam	1.5	0.097	2.4
Sandy clay loam	1.45	0.137	1.66
Clay loam	1.45	0.157	1.9

TABLE 6-8. MEAN BULK DENSITY (g/cm3) FOR FIVE SOIL TEXTURAL CLASSIFICATIONSa,b

Soil Texture	Mean Value	Range Reported	
Silt Loams	1.32	0.86 - 1.67	
Clay and Clay Loams	1.3	0.94 - 1.54	
Sandy Loams	1.49	1.25 - 1.76	
Gravelly Silt Loams	1.22	1.02 - 1.58	
Loams	1.42	1.16 - 1.58	
All Soils	1.35	0.86 - 1.76	

a Baes, C.F., III and R.D. Sharp. 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models. J. Environ. Qual. 12(1):17-28 (Original reference).

b From Dean et al. (1989)

TABLE 6-2.	ESCRIPTIVE STATISTICS FOR SATURATED HYDRAULIC CONDUCTIVIT)	(
(cm hr	-1)	

	Hydraulic (Conductivity	/ (Ks)*			
Soil Type	x	s	CV	n		
Clay**	0.2	0.42	210.3	114	cm/hr	17.52
Clay Loam	0.26	0.7	267.2	345	cm/hr	22.776
Loam	1.04	1.82	174.6	735	cm/hr	91.104
Loamy Sand	14.59	11.36	77.9	315	cm/hr	1278.084
Silt	0.25	0.33	129.9	88	cm/hr	21.9
Silt Loam	0.45	1.23	275.1	1093	cm/hr	39.42
Silty Clay	0.02	0.11	453.3	126	cm/hr	1.752
Silty Clay Loam	0.07	0.19	288.7	592	cm/hr	6.132
Sand	29.7	15.6	52.4	246	cm/hr	2601.72
Sandy Clay	0.12	0.28	234.1	46	cm/hr	10.512
Sandy Clay Loam	1.31	2.74	208.6	214	cm/hr	114.756
Sandy Loam	4.42	5.63	127	1183	cm/hr	387.192

* n = Sample size, = Mean, s = Standard deviation, CV = Coefficient of variation (percent)

** Agricultural soil, less than 60 percent clay

Sources: From Dean et al. (1989), Original reference Carsel and Parrish (1988).

Saturated water content is the maximum volumetric amount of water in the soil when all pores are filled with water. Very often it is assumed that saturated water content equals the porosity n. However, in many cases qS is smaller than n due to the fact that small amounts of air will be trapped in very small pores. Residual water content can be defined as the asymptote of the pF-curve when h gets very high negative values. Usually qR is very small - on the order of 0.001--0.02 for coarse soils but gets as high values as 0.15..0.25 for heavy clay soils. Air entry point ha is

Soil texture. Fine-textured soils can hold much more organic matter than sandy soils for two reasons. First, clay particles form electrochemical bonds that hold organic compounds. Second, decomposition occurs faster in well-aerated sandy soils. A sandy loam rarely holds more than 2% organic matter.

The recharge rate in this model is the net amount of water that percolates directly into the aquifer system outside of the land disposal facility. The recharge is assumed to have no contamination and hence dilutes the groundwater contaminant plume. The recharge rate into the plume can be calculated in a variety of ways. One possibility is to use a model, such as HELP (Hydrologic Evaluation of Landfill Performance) (Schroeder et al., 1984), without any engineering controls (leachate collection system or a liner) to simulate the water balance for natural conditions.

The infiltration rate is the net amount of leachate that percolates into the aquifer system from a land disposal facility. Because of the use of engineering controls and the presence of non-native porous materials in the landfill facility, the infiltration rate will typically be different than the recharge rate. However, it can be estimated by similar

Most soils contain 2-10 percent organic matter. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. http://www.fao.org

APPENDIX B

NMOCD APPROVAL OF STAGE 2 ABATEMENT PLAN

From:	Chase Acker
То:	Bruce McKenzie
Subject:	FW: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM
Date:	Monday, April 14, 2014 1:56:01 PM

From: Griswold, Jim, EMNRD [mailto:Jim.Griswold@state.nm.us]
Sent: Thursday, June 27, 2013 5:14 PM
To: Larry Wooten
Cc: Hall, Sharon; Chase Acker
Subject: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Mr. Wooten,

The Oil Conservation Division (OCD) has reviewed the Stage 2 Abatement Plan for the abovereferenced site submitted on your behalf by Arcadis and dated 3/27/12. That plan has substantially met the requirements of 19.15.30 NMAC and is hereby approved. Please proceed with field activities.

Be advised this approval does not relieve Chesapeake of responsibility should the situation continue to pose a threat to groundwater, surface water, human health, or the environment. Furthermore, this approval does not relieve your responsibility for compliance with any federal, state, or local laws and/or regulations. Please retain a copy of this email for your files, as no hardcopy will be sent. If you have any questions, please feel free to contact me at any time.

Jim Griswold

Senior Hydrologist EMNRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505.476.3465 email: jim.griswold@state.nm.us

This email (and attachments if any) is intended only for the use of the individual or entity to which it is addressed, and may contain information that is confidential or privileged and exempt from disclosure under applicable law. If the reader of this email is not the intended recipient, or the employee or agent responsible for delivering this message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by return email and destroy all copies of the email (and attachments if any).

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Received by OCD: 4/25/2024 8:53:21 AM

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-96065-1

Laboratory Sample Delivery Group: Well Pad 908106 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

-athy Gartner

Authorized for release by: 9/23/2019 11:17:00 AM

Cathy Gartner, Project Manager II (615)301-5041 cathy.gartner@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

www.testamericainc.com
Released to Imaging: 6/4/2024 2:38:02 PM

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

Visit us at:

Expert

Laboratory Job ID: 180-96065-1 SDG: Well Pad 908106

2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Subcontract Data	7
Chain of Custody	21
Receipt Checklists	22

Job ID: 180-96065-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-96065-1

Comments

No additional comments.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-96065-1 SDG: Well Pad 908106

T TOJECT/OILE.		
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	

- Reporting Limit or Requested Limit (Radiochemistry) RL
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-96065-1 SDG: Well Pad 908106

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-20
Arkansas DEQ	State Program	88-0690	06-27-20
California	State	2891	04-30-20
California	State Program	2891	04-30-20
Connecticut	State	PH-0688	09-30-20
Connecticut	State Program	PH-0688	09-30-20
lorida	NELAP	E871008	06-30-20
lorida	NELAP	E871008	06-30-20
inois	NELAP	200005	06-30-20
linois	NELAP	004375	06-30-20
ansas	NELAP	E-10350	01-31-20
ansas	NELAP	E-10350	03-31-20
entucky (UST)	State Program	162013	04-30-20
entucky (WW)	State	KY98043	12-31-19
entucky (WW)	State Program	KY98043	12-31-19
ouisiana	NELAP	04041	06-30-20
ouisiana	NELAP	04041	06-30-20
linnesota	NELAP	042-999-482	12-31-19
linnesota	NELAP	042-999-482	12-31-19
evada	State	PA00164	07-31-20
evada	State Program	PA00164	07-31-20
	NELAP	2030	04-04-20
ew Hampshire	NELAP	2030 PA005	06-30-20
ew Jersey	NELAP	PA005 PA005	06-30-20
ew Jersey			
ew York	NELAP	11182	03-31-20
w York	NELAP	11182	04-01-20
rth Carolina (WW/SW)	State Program	434	12-31-19
orth Dakota	State	R-227	04-30-20
orth Dakota	State Program	R-227	04-30-20
egon	NELAP	PA-2151	02-06-20
regon	NELAP	PA-2151	02-06-20
ennsylvania	NELAP	02-00416	04-30-20
ennsylvania	NELAP	02-00416	04-30-20
node Island	State	LAO00362	12-30-19
node Island	State Program	LAO00362	12-30-19
outh Carolina	State Program	89014	04-30-20
exas	NELAP	T104704528-15-2	03-31-20
exas	NELAP	T104704528	03-31-20
S Fish & Wildlife	US Federal Programs	058448	07-31-20
SDA	Federal	P-Soil-01	06-26-22
SDA	US Federal Programs	P330-16-00211	06-26-22
ah	NELAP	PA001462015-4	05-31-20
ah	NELAP	PA001462019-8	05-31-20
rginia	NELAP	460189	09-14-20
rginia	NELAP	10043	09-15-20
/est Virginia DEP	State	142	01-31-20
Vest Virginia DEP	State Program	142	01-31-20
Visconsin	State	998027800	08-31-20
Visconsin	State Program	998027800	08-31-20

5

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 180-96065-1 SDG: Well Pad 908106

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	Asset ID	
180-96065-1	20190905MSVE	Air	09/05/19 07:40	09/23/19 12:02		4
						Ļ

Received by OCD: 4/25/2024 8:53:21 AM

6 7 8

Air Toxics

9/20/2019 Ms. Cathy Gartner Eurofins Test America 2960 Foster Creighton Dr.

Nashville TN 37204

Project Name: CHK STATE M Project #: CHKSTATM:H19001 Workorder #: 1909142

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 9/9/2019 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettaker

Brian Whittaker Project Manager

A Eurofins Lancaster Laboratories Company

Eurofins Air Toxics, Inc.

180 Blue Ravine Road, Suite B Folsom, CA 95630

Released to Imaging: 6/4/2024 2:38:02 PM

Page 1 of 14 Page 7 of 22 🛟 eurofins

1 2 3 4 5 6 7 8

Air Toxics

WORK ORDER #: 1909142

Work Order Summary

CLIENT:	Ms. Cathy Gartner Eurofins Test America 2960 Foster Creighton Dr. Nashville, TN 37204	BILL TO:	Accounts Payable Eurofins Test America 4104 Shuffel St NW North Canton, OH 44720
PHONE:	800-765-0980	P.O. #	
FAX:	615-726-3404	PROJECT #	CHKSTATM:H19001 CHK STATE M
DATE RECEIVED:	09/09/2019	CONTACT:	Brian Whittaker
DATE COMPLETED:	09/20/2019	continent	brian windaker

			RECEIPT	FINAL
FRACTION #	<u>NAME</u>	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20190905MSVE	TO-15	5.9 "Hg	5.3 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

layes terde

DATE: <u>09/20/19</u>

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2018, Expiration date: 10/17/2019. Eurofins Air Toxics Inc.. certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, Inc. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 985-1020

> > Page 2 of 14 Page 8 of 22

🔅 eurofins

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 1909142

One 6 Liter Summa Canister sample was received on September 09, 2019. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

This workorder was independently validated prior to submittal using 'USEPA National Functional Guidelines' as generally applied to the analysis of volatile organic compounds in air. A rules-based, logic driven, independent validation engine was employed to assess completeness, evaluate pass/fail of relevant project quality control requirements and verification of all quantified amounts.

Receiving Notes

Sample identification for sample 20190905MSVE was not provided on the sample tag. Therefore the information on the Chain of Custody was used to process and report the sample.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page.

Dilution was performed on sample 20190905MSVE due to the presence of high level non-target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

- N The identification is based on presumptive evidence.
- M Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20190905MSVE

Lab ID#: 1909142-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	8.4	140	27	450
Ethyl Benzene	8.4	270	37	1200
4-Ethyltoluene	8.4	180	42	880
Toluene	8.4	30	32	110
1,2,4-Trimethylbenzene	8.4	75	42	370
1,3,5-Trimethylbenzene	8.4	69	42	340
m,p-Xylene	8.4	440	37	1900
o-Xylene	8.4	120	37	510
TVOC Ref. to Hexane	170	69000	600	240000

eurofins Air Toxics

Client Sample ID: 20190905MSVE Lab ID#: 1909142-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p091818 16.9	Date of Collection: 9/5/19 7:40:00 AM Date of Analysis: 9/19/19 01:05 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	84	Not Detected	200	Not Detected
Benzene	8.4	140	27	450
alpha-Chlorotoluene	8.4	Not Detected	44	Not Detected
Bromodichloromethane	8.4	Not Detected	57	Not Detected
Bromoform	8.4	Not Detected	87	Not Detected
Bromomethane		Not Detected	330	Not Detected
2-Butanone (Methyl Ethyl Ketone)	34	Not Detected	100	Not Detected
Carbon Disulfide	34	Not Detected	100	Not Detected
Carbon Tetrachloride	8.4	Not Detected	53	Not Detected
Chlorobenzene	8.4	Not Detected	39	Not Detected
Dibromochloromethane	8.4	Not Detected	72	Not Detected
Chloroethane	34	Not Detected	89	Not Detected
Chloroform	8.4	Not Detected	41	Not Detected
Chloromethane	84	Not Detected	170	Not Detected
1,2-Dibromoethane (EDB)	8.4	Not Detected	65	Not Detected
		Not Detected	51	Not Detected
1,2-Dichlorobenzene	8.4 8.4	Not Detected	51	Not Detected
1,3-Dichlorobenzene	8.4 8.4	Not Detected	51	Not Detected
1,4-Dichlorobenzene	8.4 8.4	Not Detected	34	Not Detected
1,1-Dichloroethane				
Freon 12	8.4	Not Detected	42	Not Detected
1,2-Dichloroethane	8.4	Not Detected	34	Not Detected
1,1-Dichloroethene	8.4	Not Detected	34	Not Detected
cis-1,2-Dichloroethene	8.4	Not Detected	34	Not Detected
trans-1,2-Dichloroethene	8.4	Not Detected	34	Not Detected
1,2-Dichloropropane	8.4	Not Detected	39	Not Detected
cis-1,3-Dichloropropene	8.4	Not Detected	38	Not Detected
trans-1,3-Dichloropropene	8.4	Not Detected	38	Not Detected
Freon 114	8.4	Not Detected	59	Not Detected
Ethyl Benzene	8.4	270	37	1200
4-Ethyltoluene	8.4	180	42	880
Hexachlorobutadiene	34	Not Detected	360	Not Detected
2-Hexanone	34	Not Detected	140	Not Detected
Methylene Chloride	84	Not Detected	290	Not Detected
4-Methyl-2-pentanone	8.4	Not Detected	35	Not Detected
Styrene	8.4	Not Detected	36	Not Detected
1,1,2,2-Tetrachloroethane	8.4	Not Detected	58	Not Detected
Tetrachloroethene	8.4	Not Detected	57	Not Detected
Toluene	8.4	30	32	110
1,2,4-Trichlorobenzene	34	Not Detected	250	Not Detected
1,1,1-Trichloroethane	8.4	Not Detected	46	Not Detected
1,1,2-Trichloroethane	8.4	Not Detected	46	Not Detected
Trichloroethene	8.4	Not Detected	45	Not Detected
eurofins

Air Toxics

Client Sample ID: 20190905MSVE Lab ID#: 1909142-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p091818 16.9	Date of Collection: 9/5/19 7:40:00 Date of Analysis: 9/19/19 01:05 A		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	8.4	Not Detected	47	Not Detected
Freon 113	8.4	Not Detected	65	Not Detected
1,2,4-Trimethylbenzene	8.4	75	42	370
1,3,5-Trimethylbenzene	8.4	69	42	340
Vinyl Acetate	34	Not Detected	120	Not Detected
Vinyl Chloride	8.4	Not Detected	22	Not Detected
m,p-Xylene	8.4	440	37	1900
o-Xylene	8.4	120	37	510
TVOC Ref. to Hexane	170	69000	600	240000

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	112	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	107	70-130

🛟 eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 1909142-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p091805 1.00		of Collection: NA of Analysis: 9/18/	19 11:50 AM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 1909142-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p091805 1.00	Date of Collection: NA Date of Analysis: 9/18/19 11:50 A		′19 11:50 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	105	70-130
1,2-Dichloroethane-d4	91	70-130
4-Bromofluorobenzene	103	70-130

Air Toxics

Client Sample ID: CCV Lab ID#: 1909142-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: p031802 Date of Collection: NA Dil, Factor: 1.00 Date of Analysis: 9/18/19 10:10 AM Compound %Recovery Acetone 86 Benzene 100 alpha-Chiorotoluene 94 Bromodichioromethane 105 Bromodichioromethane 105 Bromodichioromethane 88 -Subtanone (Methyl Ethyl Ketone) 84 Carbon Tetracholinde 103 Chlorobenzene 99 Dibromochioromethane 104 Chlorobenzene 99 Dibromochioromethane 104 Chlorobenzene 99 Dibromochioromethane 104 1.20birobenzene 105 1.3Dichiorobenzene 106 1.4Dichiorobenzene 106 1.4Dichiorobenzene 106 1.4Dichiorobenzene 104 1.1Dichioroethane 74 cis-1.2Dichioroethane 104 1.2Dichioroethane 95 1.2Dichioroethane 91		ETA METHOD TO-	
Compound %Recovery Acetone 86 Benzene 100 alpha-Chiorobulene 94 Bromodichioromethane 105 Bromodichioromethane 108 Bromodichioromethane 88 - Subtanone (Methyl Ethyl Ketone) 84 Carbon Disulfide 78 Carbon Disulfide 103 Chiorobenzene 99 Dibromochioromethane 104 Chiorobenzene 99 Dibromochioromethane 104 Chiorobenzene 99 Dibromochioromethane 104 Chiorobenzene 105 1,2-Dichiorobenzene 106 1,4-Dichiorobenzene 106 1,4-Dichiorobenzene 106 1,1-Dichioroethane 104 cis-1,2-Dichioroethene 74 cis-1,2-Dichioropethene 79 1,2-Dichioropethene 91 trans-1,3-Dichioropethene 91 trans-1,3-Dichioropethene 91 tras-1,2-Dichioropethene 95 </th <th></th> <th>•</th> <th></th>		•	
Acetone 86 Benzene 100 alpha-Chlorotoluene 94 Bromodichloromethane 105 Bromodichloromethane 108 Bromordim 108 Bromordihane 88 2-Butanone (Methyl Ethyl Ketone) 84 Carbon Terachloride 103 Chorobenzene 99 Dibromochloromethane 104 Chloroethane 88 Chloroethane 88 Chloroethane 80 Chloroethane 92 Chloroethane 88 1,2-Dichorobenzene 106 1,3-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 74 cis-1,2-Dichloroethene 74 cis-1,2-Dichloroethene 79 1,2-Dichloroethene 79 1,2-Dichloroethene 91 Trans-1,3-Dichloropropene 91 Freon 14 92 Ethyl Benzene 95 </th <th>Dil. Factor:</th> <th>1.00</th> <th>Date of Analysis: 9/18/19 10:10 AM</th>	Dil. Factor:	1.00	Date of Analysis: 9/18/19 10:10 AM
Benzene 100 alpha-Chloroblene 94 Bromodichloromethane 105 Bromodichloromethane 108 Bromodichloromethane 88 -S-Butanone (Methyl Ethyl Ketone) 84 Carbon Disulfide 78 Carbon Tetrachloride 103 Chlorobenzene 99 Dibromochloromethane 104 Chlorobenzene 99 Dibromochloromethane 104 Chlorobenzene 99 Dibromochloromethane 104 Chlorobenzene 99 1,2-Dichorobenzene 105 1,3-Dichlorobenzene 105 1,3-Dichlorobenzene 106 1,1-Dichloroethane 89 Freen 12 95 1,2-Dichloroethane 74 cis-1,2-Dichloroethene 79 1,2-Dichloroethene 79 1,2-Dichloroethene 91 Freen 14 92 Ethyl Benzene 95 4-Ethyltoluene 98 Heszachlorobutad	Compound		%Recovery
alpha-Chlorotoluene 94 Bromodichloromethane 105 Bromodom 108 Bromomethane 88 2-Butanone (Methyl Ethyl Ketone) 84 Carbon Disulfide 78 Carbon Disulfide 78 Carbon Disulfide 78 Carbon Tetrachloride 103 Chlorobenzene 99 Dibromochhoromethane 104 Chloroethane 88 Chloroethane 124 1.2-Dibromoethane (EDB) 97 1.2-Dichlorobenzene 106 1.3-Dichlorobenzene 106 1.4-Dichlorobenzene 106 1.1-Dichloroethane 89 Freon 12 95 1.2-Dichloroethane 104 1.1-Dichloroethane 74 cis-1.2-Dichloroethene 79 1.2-Dichloroptopane 104 cis-1.3-Dichloroptopane 91 freen 114 92 Ethyl Benzene 95 4-Ethyltoluene 96 Hexachlorobutadi	Acetone		86
Bromodichiloromethane 105 Bromotorm 108 Bromotorm 108 Bromotorm 88 2-Butanone (Methyl Ethyl Ketone) 84 Carbon Disulfide 78 Carbon Disulfide 103 Chorobenzene 99 Dibromochloromethane 104 Chlorobenzene 92 Chlorobenzene 92 Chlorobenzene 105 1,2-Dichlorobenzene 106 1,2-Dichlorobenzene 106 1,2-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethene 74 cis-1,2-Dichloroethene 79 1,2-Dichloroptenee 91 trans-1,2-Dichloroptenee 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 91	Benzene		100
Bromoform 108 Bromomethane 88 2-Butanone (Methyl Ethyl Ketone) 84 Carbon Disulfide 78 Carbon Disulfide 78 Carbon Disulfide 78 Carbon Disulfide 78 Carbon Disulfide 103 Chloroberzene 99 Dibromochloromethane 104 Chloroberzene 104 Chloroberzene 105 1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 104 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethane 104 1,1-Dichloroethane 104 cis-1,2-Dichloroethane 104 cis-1,2-Dichloroptopae 104 cis-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 92 Ethyl Benzene 95 4-Ethyltoluene 98 <t< td=""><td></td><td></td><td>-</td></t<>			-
Bromomethane 88 2-Butanone (Methyl Ethyl Ketone) 84 Carbon Disulfide 78 Carbon Disulfide 103 Chlorobenzene 99 Dibromochloromethane 104 Chloroethane 88 Chloroothane 22 Chloroothane 124 1,2-Dichorobenzene 106 1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 104 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethene 74 cis-1,2-Dichloroethene 79 1,2-Dichloroethene 79 1,2-Dichloroethene 79 1,2-Dichloroethene 79 1,2-Dichloroptene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloroporpene 91	Bromodichloromethane		
2-Butanone (Methyl Ethyl Ketone) 84 Carbon Disulfide 78 Carbon Tetrachloride 103 Chlorobenzene 99 Dibromochloromethane 104 Chlorobenzene 88 Chlorobertane 124 1,2-Dichlorobenzene 105 1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,1-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 74 cis-1,2-Dichloroethene 79 1,2-Dichloroptene 91 trans-1,2-Dichloroptene 91 trans-1,3-Dichloroptene 91 trans-1,3-Dichloroptene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Lexanone 101 Methylez-pentanone 103	Bromoform		108
Carbon Disulfide 78 Carbon Tetrachloride 103 Chlorobenzene 99 Dibromochloromethane 104 Chlorobenzene 88 Chlorobethane 88 Chlorobethane 124 1.2-Dibromoethane (EDB) 97 1.2-Dichlorobenzene 106 1.3-Dichlorobenzene 106 1.4-Dichlorobenzene 106 1.4-Dichlorobenzene 106 1.4-Dichlorobenzene 106 1.4-Dichlorobenzene 104 1.1-Dichloroethane 89 Freon 12 95 1.2-Dichloroethane 104 1.1-Dichloroethane 74 cis-1.2-Dichloroptene 91 1.2-Dichloroptene 91 Freon 114 92 Ethyl Benzene	Bromomethane		88
Carbon Tetrachloride 103 Chlorobenzene 99 Dibromochloromethane 104 Chloroethane 88 Chloroothane 92 Chloroothane 124 1,2-Dibromethane [EDB) 97 1,2-Dibromethane [EDB) 97 1,2-Dibromethane [EDB] 97 1,2-Dibromethane [EDB] 96 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorothane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethene 74 cis-1,2-Dichloroethene 79 1,2-Dichloroethene 91 trans-1,2-Dichloroethene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloroethene 92 thyle bargene 95 +Ethyltoluene 98	2-Butanone (Methyl Ethyl Ketone)		84
Chlorobenzene 99 Dibromochloromethane 104 Chloroothane 88 Chloroothane 88 Chloroothane 124 1,2-Dibromoethane (EDB) 97 1,2-Dichlorobenzene 105 1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethane 95 1,2-Dichloroethane 104 1,1-Dichloroethane 95 trans-1,2-Dichloropthene 74 cis-1,3-Dichloropthene 79 1,2-Dichloropthene 91 trans-1,3-Dichloropropene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 103 Styrene 95 1,1,2-Zirtachloroethane 104 1,2,4-Trichloroethane <td></td> <td></td> <td>-</td>			-
Dibromochloromethane 104 Chloroethane 88 Chloroofm 92 Chloromethane 124 1,2-Dibromoethane (EDB) 97 1,2-Dibromoethane (EDB) 97 1,2-Dibromoethane (EDB) 97 1,2-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethene 95 1,2-Dichloroethene 74 cis-1,2-Dichloroethene 95 trans-1,2-Dichloroethene 91 trans-1,2-Dichloropropane 104 cis-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 101 Methyle-2-pentanone 101 Methylene Chloride 96 4-Methyl-2-pentanone 103 Styrene 95	Carbon Tetrachloride		
Chloroethane 88 Chlorooform 92 Chloroomethane 124 1,2-Dibromoethane (EDB) 97 1,2-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethane 74 cis-1,2-Dichloroethene 79 1,2-Dichloroethene 79 1,2-Dichloroppopane 104 cis-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 103 Styrene 98 Tetrachloroethane 109 Toluene 104 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 93	Chlorobenzene		99
Chloroform 92 Chloromethane 124 1,2-Dibromoethane (EDB) 97 1,2-Dichlorobenzene 105 1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethene 74 cis-1,2-Dichloroethene 95 trans-1,2-Dichloroethene 91 trans-1,2-Dichloroethene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 Freon 114 92 Ethyl Benzene 95 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 93 Tetrachloroethane 98 Tetrachloroethane 98 Tetrachloroethane 98	Dibromochloromethane		104
Chloromethane 124 1,2-Dibromoethane (EDB) 97 1,2-Dichlorobenzene 105 1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethene 74 cis-1,2-Dichloroethene 95 trans-1,2-Dichloroethene 91 trans-1,2-Dichloroethene 91 trans-1,3-Dichloropropane 104 cis-1,3-Dichloropropane 91 trans-1,3-Dichloropropane 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 95 1,1,2,2-Tetrachloroethane 98 Tetrachloroethane 103 Styrene 95 1,1,2,2-Tetrachloroethane 98 Tetrachloroethane 103	Chloroethane		88
1,2-Dibromoethane (EDB) 97 1,2-Dichlorobenzene 105 1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethane 74 cis-1,2-Dichloroethene 75 1,2-Dichloroethene 79 1,2-Dichloropthene 95 1,2-Dichloropthene 91 trans-1,2-Dichloropthene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethane 98 Tetrachloroethane 109 Toluene 104 1,2,4-Trichloroethane 98 Tetrachloroethane 103 1,1,2-Trichloroethane 98	Chloroform		92
1,2-Dichlorobenzene 105 1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,1-Dichlorobenzene 106 1,1-Dichlorobenane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethane 74 cis-1,2-Dichloroethene 79 1,2-Dichloropthene 79 1,2-Dichloroptopane 104 cis-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethane 108 Tetrachlorobutadiene 104 1,1,2,2-Tetrachloroethane 98 Tetrachlorobethane 109 Toluene 104 1,1,2,2-Trichloroethane 98 1,1,2,2-Trichloroethane 98	Chloromethane		124
1,3-Dichlorobenzene 106 1,4-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethane 74 cis-1,2-Dichloroethene 79 1,2-Dichloroethene 79 1,2-Dichloropthene 91 trans-1,2-Dichloropthene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 101 Methylene Chloride 96 4-Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethene 109 Toluene 104 1,2,4-Trichlorobenzene 103 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92	1,2-Dibromoethane (EDB)		97
1,4-Dichlorobenzene 106 1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethane 104 1,1-Dichloroethane 74 cis-1,2-Dichloroethene 75 trans-1,2-Dichloroethene 79 1,2-Dichloroethene 79 1,2-Dichloropropane 104 cis-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 101 Methylene Chloride 96 4-Methyl-2-pentanone 103 Styrene 95 1,1,2-Z-Tetrachloroethane 98 Tetrachloroethane 109 Toluene 104 1,2,4-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 98	1,2-Dichlorobenzene		105
1,1-Dichloroethane 89 Freon 12 95 1,2-Dichloroethane 104 1,1-Dichloroethene 74 cis-1,2-Dichloroethene 95 trans-1,2-Dichloroethene 79 1,2-Dichloroethene 91 trans-1,2-Dichloroptopane 91 trans-1,3-Dichloroptopene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 101 Methyle- Chloride 96 4-Methyl-2-pentanone 103 Styrene 95 1,1,2.2-Tetrachloroethane 109 Toluene 104 1,2,2.4-Trichloroethane 92 1,1,2-Trichloroethane 92	1,3-Dichlorobenzene		106
Freen 12 95 1,2-Dichloroethane 104 1,1-Dichloroethene 74 cis-1,2-Dichloroethene 95 trans-1,2-Dichloroethene 79 1,2-Dichloropthene 79 1,2-Dichloropthene 91 trans-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 101 Methylene Chloride 96 4-Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethane 109 Toluene 104 1,2,4-Trichlorobenzene 103 1,1,1-Trichoroethane 92 1,1,2-Trichloroethane 98	1,4-Dichlorobenzene		106
1,2-Dichloroethane 104 1,1-Dichloroethene 74 cis-1,2-Dichloroethene 95 trans-1,2-Dichloroethene 79 1,2-Dichloropropane 104 cis-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethane 109 Toluene 104 1,2,4-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92	1,1-Dichloroethane		89
1,1-Dichloroethene 74 cis-1,2-Dichloroethene 95 trans-1,2-Dichloroethene 79 1,2-Dichloropropane 104 cis-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methylene Chloride 96 4-Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethane 109 Toluene 104 1,2,4-Trichlorobenzene 103 1,1,1-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92	Freon 12		95
cis-1,2-Dichloroethene 95 trans-1,2-Dichloropthene 79 1,2-Dichloroptopane 104 cis-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 91 trans-1,3-Dichloroptopene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethane 98 Tetachloroethane 109 Toluene 104 1,2,4-Trichloroethane 92 1,1,2-Trichloroethane 92 1,1,2-Trichloroethane 92	1,2-Dichloroethane		104
trans-1,2-Dichloroethene 79 1,2-Dichloropropane 104 cis-1,3-Dichloropropene 91 trans-1,3-Dichloropropene 91 freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethane 98 Tetrachloroethane 109 Toluene 103 1,1,2-Trichlorobenzene 103 1,1,1-Trichloroethane 92 1,1,2-Trichloroethane 98	1,1-Dichloroethene		74
1,2-Dichloropropane104cis-1,3-Dichloropropene91trans-1,3-Dichloropropene91Freon 11492Ethyl Benzene954-Ethyltoluene98Hexachlorobutadiene1162-Hexanone101Methylene Chloride964-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethane109Toluene1041,2,4-Trichloroethane921,1,2-Trichloroethane98	cis-1,2-Dichloroethene		95
cis-1,3-Dichloropropene91trans-1,3-Dichloropropene91Freon 11492Ethyl Benzene954-Ethyltoluene98Hexachlorobutadiene1162-Hexanone101Methylene Chloride964-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachlorobenzene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98	trans-1,2-Dichloroethene		79
trans-1,3-Dichloropropene 91 Freon 114 92 Ethyl Benzene 95 4-Ethyltoluene 98 Hexachlorobutadiene 116 2-Hexanone 101 Methylene Chloride 96 4-Methyl-2-pentanone 103 Styrene 95 1,1,2,2-Tetrachloroethane 98 Tetrachloroethene 109 Toluene 104 1,2,4-Trichloroethane 92 1,1,2-Trichloroethane 98	1,2-Dichloropropane		104
Freen 11492Ethyl Benzene954-Ethyltoluene98Hexachlorobutadiene1162-Hexanone101Methylene Chloride964-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichloroethane921,1,2-Trichloroethane98	cis-1,3-Dichloropropene		91
Ethyl Benzene954-Ethyltoluene98Hexachlorobutadiene1162-Hexanone101Methylene Chloride964-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98	trans-1,3-Dichloropropene		91
4-Ethyltoluene98Hexachlorobutadiene1162-Hexanone101Methylene Chloride964-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichloroethane921,1,2-Trichloroethane98	Freon 114		92
Hexachlorobutadiene1162-Hexanone101Methylene Chloride964-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichloroethane921,1,2-Trichloroethane98	Ethyl Benzene		95
2-Hexanone101Methylene Chloride964-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98	4-Ethyltoluene		98
Methylene Chloride964-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98	Hexachlorobutadiene		116
4-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichloroethane921,1,1-Trichloroethane98	2-Hexanone		101
4-Methyl-2-pentanone103Styrene951,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98	Methylene Chloride		96
1,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98			103
1,1,2,2-Tetrachloroethane98Tetrachloroethene109Toluene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98	Styrene		95
Tetrachloroethene109Toluene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98	-		98
Toluene1041,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98			109
1,2,4-Trichlorobenzene1031,1,1-Trichloroethane921,1,2-Trichloroethane98			
1,1,1-Trichloroethane921,1,2-Trichloroethane98			103
1,1,2-Trichloroethane 98			92
			98

Air Toxics

Client Sample ID: CCV Lab ID#: 1909142-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p091802 1.00	Date of Collection: NA Date of Analysis: 9/18/19 10:10 AM
Compound		%Recovery
Freon 11		96
Freon 113		93
1,2,4-Trimethylbenzene		95
1,3,5-Trimethylbenzene		99
Vinyl Acetate		83
Vinyl Chloride		96
m,p-Xylene		94
o-Xylene		94
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	108	70-130
1,2-Dichloroethane-d4	92	70-130
4-Bromofluorobenzene	108	70-130

٦

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 1909142-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091803 Date of Collection		
Dil. Factor:	1.00 Date of Analysis	: 9/18/19 10:57 AM	
Compound	%Recovery	Method Limits	
Acetone	89	70-130	
Benzene	102	70-130	
alpha-Chlorotoluene	93	70-130	
Bromodichloromethane	110	70-130	
Bromoform	113	70-130	
Bromomethane	91	70-130	
2-Butanone (Methyl Ethyl Ketone)	85	70-130	
Carbon Disulfide	74	70-130	
Carbon Tetrachloride	101	70-130	
Chlorobenzene	102	70-130	
Dibromochloromethane	102	70-130	
Chloroethane	96	70-130	
Chloroform	92	70-130	
Chloromethane	87	70-130	
1,2-Dibromoethane (EDB)	99	70-130	
	112	70-130	
1,2-Dichlorobenzene	112	70-130	
1,3-Dichlorobenzene	112	70-130	
1,4-Dichlorobenzene 1,1-Dichloroethane	92	70-130	
Freon 12	98	70-130	
		70-130	
1,2-Dichloroethane	104 80	70-130	
1,1-Dichloroethene	100	70-130	
cis-1,2-Dichloroethene	74	70-130	
trans-1,2-Dichloroethene	107	70-130	
		70-130	
cis-1,3-Dichloropropene	94		
trans-1,3-Dichloropropene	89	70-130 70-130	
Freon 114 Ethyl Bonzono	98 96	70-130	
Ethyl Benzene	99	70-130	
4-Ethyltoluene			
Hexachlorobutadiene	134 Q 00	70-130 70-130	
2-Hexanone	99		
Methylene Chloride	99	70-130	
4-Methyl-2-pentanone	102	70-130	
Styrene	95	70-130	
1,1,2,2-Tetrachloroethane	103	70-130	
Tetrachloroethene	114	70-130	
	106	70-130	
1,2,4-Trichlorobenzene	120	70-130	
1,1,1-Trichloroethane	95	70-130	
1,1,2-Trichloroethane	100	70-130	
Trichloroethene	100	70-130	

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 1909142-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p091803 1.00	Date of Collect Date of Analys	tion: NA is: 9/18/19 10:57 AM
Compound		%Recovery	
Freon 11		102	70-130
Freon 113		94	70-130
1,2,4-Trimethylbenzene		99	70-130
1,3,5-Trimethylbenzene		105	70-130
Vinyl Acetate		71	70-130
Vinyl Chloride		92	70-130
m,p-Xylene		97	70-130
o-Xylene		97	70-130
TVOC Ref. to Hexane		Not Spiked	

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	107	70-130	
1,2-Dichloroethane-d4	94	70-130	
4-Bromofluorobenzene	110	70-130	

eurofins Air Toxics

Client Sample ID: LCSD Lab ID#: 1909142-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	p091804 Date of Col	
Dil. Factor:	1.00 Date of Ana	alysis: 9/18/19 11:24 AM
Compound	%Recovery	Method Limits
Acetone	89	70-130
Benzene	102	70-130
alpha-Chlorotoluene	93	70-130
Bromodichloromethane	110	70-130
Bromoform	112	70-130
Bromomethane	90	70-130
2-Butanone (Methyl Ethyl Ketone)	84	70-130
Carbon Disulfide	73	70-130
Carbon Tetrachloride	101	70-130
Chlorobenzene	101	70-130
Dibromochloromethane	106	70-130
Chloroethane	93	70-130
Chloroform	93	70-130
Chloromethane	93 84	70-130
1,2-Dibromoethane (EDB)	99	70-130
		70-130
1,2-Dichlorobenzene 1,3-Dichlorobenzene	111	70-130
1,4-Dichlorobenzene	110	70-130
	91	70-130
1,1-Dichloroethane Freon 12	96	70-130
		70-130
1,2-Dichloroethane	101 78	
1,1-Dichloroethene	100	70-130 70-130
cis-1,2-Dichloroethene	75	70-130
trans-1,2-Dichloroethene	107	70-130
1,2-Dichloropropane		
cis-1,3-Dichloropropene	93	70-130
trans-1,3-Dichloropropene	90	70-130
Freon 114 Ethyl Bonzono	99 96	70-130 70-130
Ethyl Benzene 4-Ethyltoluene	96 103	70-130
-	 131 Q	70-130
Hexachlorobutadiene		70-130 70-130
2-Hexanone	98	
Methylene Chloride	98	70-130
4-Methyl-2-pentanone	102	70-130 70-130
Styrene	94	70-130
1,1,2,2-Tetrachloroethane	102	70-130
Tetrachloroethene	111	70-130
Toluene	105	70-130
1,2,4-Trichlorobenzene	120	70-130
	93	70-130
1,1,2-Trichloroethane	100	70-130
Trichloroethene	100	70-130

eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 1909142-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	p091804 1.00		Date of Collection: NA Date of Analysis: 9/18/19 11:24 AM	
Compound	%Recovery		Methoc ry Limits	
Freon 11		100	70-130	
Freon 113		94	70-130	
1,2,4-Trimethylbenzene		98	70-130	
1,3,5-Trimethylbenzene		99	70-130	
Vinyl Acetate		72	70-130	
Vinyl Chloride		97	70-130	
m,p-Xylene		96	70-130	
o-Xylene		96	70-130	
TVOC Ref. to Hexane		Not Spiked		

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	106	70-130	
1,2-Dichloroethane-d4	93	70-130	
4-Bromofluorobenzene	107	70-130	

Page 82 of 193

4 5 6

7 8 9

Released to Imaging: 6/4/2024 2:38:02 PM

Login Sample Receipt Checklist

Job Number: 180-96065-1 Client: Chesapeake Energy Corporation SDG Number: Well Pad 908106 Login Number: 96065 List Source: Eurofins TestAmerica, Pittsburgh 5 List Number: 1 Creator: Gartner, Cathy Answer Comment Question Radioactivity wasn't checked or is </= background as measured by a survey meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). Multiphasic samples are not present. Samples do not require splitting or compositing. Residual Chlorine Checked.

Received by OCD: 4/25/2024 8:53:21 AM

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Released to Imaging: 6/4/2024 2:38:02 PM

1 2 3 4 5 6 7 8 9

🔅 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-102436-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1 Revision: 1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

athy Gartner

Authorized for release by: 2/18/2020 6:33:05 PM

Cathy Gartner, Project Manager II (615)301-5041 cathy.gartner@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Laboratory Job ID: 180-102436-1 SDG: Property ID: 891077

2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Subcontract Data	8
Chain of Custody	22
Receipt Checklists	23

.

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-102436-1 SDG: Property ID: 891077

Job ID: 180-102436-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-102436-1

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

3

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 180-102436-1 SDG: Property ID: 891077

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CNF	Contains No Free Liquid	5
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	8
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	9
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	

RPD Relative Percent Difference, a measure of the relative difference between two points

- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-102436-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-20
California	State	2891	04-30-20
Connecticut	State	PH-0688	09-30-20
Florida	NELAP	E871008	06-30-20
Georgia	State	PA 02-00416	04-30-20
Illinois	NELAP	004375	06-30-20
Kansas	NELAP	E-10350	03-31-20
Kentucky (UST)	State	162013	04-30-20
Kentucky (WW)	State	KY98043	12-31-20
Louisiana	NELAP	04041	06-30-20
Minnesota	NELAP	042-999-482	12-31-20
Nevada	State	PA00164	07-31-20
New Hampshire	NELAP	2030	04-04-20
New Jersey	NELAP	PA005	06-30-20
New York	NELAP	11182	04-01-20
North Carolina (WW/SW)	State	434	01-01-21
North Dakota	State	R-227	04-30-20
Oregon	NELAP	PA-2151	02-06-20 *
Pennsylvania	NELAP	02-00416	04-30-20
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-20
Texas	NELAP	T104704528	03-31-20
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-20
Virginia	NELAP	10043	09-15-20
West Virginia DEP	State	142	02-01-21
Wisconsin	State	998027800	08-31-20

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Sample Summary

Job ID: 180-102436-1

Client: Chesapeake Energy Corporation Project/Site: State M-1

JUD ID. 100-102-JU-1
SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected Received Asset ID	
180-102436-1	20200122 M1-SVE	Air	01/22/20 15:56 01/24/20 09:52	4
				5
				6
				8
				9

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-102436-1 SDG: Property ID: 891077

Page 90 of 193

Method	Method Description	Protocol	Laboratory	
TO-15	TO-15	EPA	Eurofins	-

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Eurofins TestAmerica, Pittsburgh

Received by OCD: 4/25/2024 8:53:21 AM

Page 91 of 193

8 9

Air Toxics

2/7/2020 Ms. Cathy Gartner Eurofins Test America 2960 Foster Creighton Dr.

Nashville TN 37204

Project Name: CHK STATE M Project #: CHKSTATM:H19001 Workorder #: 2001613

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 1/24/2020 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettaker

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-351-8279 www.airtoxics.com 🛟 eurofins

8

Air Toxics		
WORK (ORDER #:	2001613
Wor	k Order Sum	mary

CLIENT:	Ms. Cathy Gartner	BILL TO:	Accounts Payable
	Eurofins Test America		Eurofins Test America
	2960 Foster Creighton Dr.		4104 Shuffel St NW
	Nashville, TN 37204		North Canton, OH 44720
PHONE:	800-765-0980	P.O. #	CHKSTATM:H19001
FAX:	615-726-3404	PROJECT #	CHKSTATM:H19001 CHK STATE M
DATE RECEIVED:	01/24/2020	CONTACT:	Brian Whittaker
DATE COMPLETED:	02/06/2020	001111011	
			RECEIPT FINAL

FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20200122.M-1-SVE	TO-15	6.0 "Hg	5 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

layes Terde

DATE: <u>02/06/20</u>

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2019, Expiration date: 10/17/2020. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

> > Page 2 of 14 Page 9 of 23

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2001613

One 6 Liter Summa Canister sample was received on January 24, 2020. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Dilution was performed on sample 20200122.M-1-SVE due to the presence of high level non-target species.

The recovery of surrogate 1,2-Dichloroethane-d4 in sample 20200122.M-1-SVE was outside laboratory control limits due to high level hydrocarbon matrix interference. The surrogate recovery is flagged.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

M - Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

🛟 eurofins

1 2 3 4 5 6 7 8 9

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20200122.M-1-SVE

Lab ID#: 2001613-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	1.7	3.7	5.4	12
Ethyl Benzene	1.7	33	7.3	140
4-Ethyltoluene	1.7	25	8.2	120
Toluene	1.7	3.1	6.3	12
1,2,4-Trimethylbenzene	1.7	10	8.2	51
1,3,5-Trimethylbenzene	1.7	9.1	8.2	45
m,p-Xylene	1.7	66	7.3	290
o-Xylene	1.7	15	7.3	66
TVOC Ref. to Hexane	34	14000	120	49000

Released to Imaging: 6/4/2024 2:38:02 PM

🛟 eurofins

Air Toxics

Client Sample ID: 20200122.M-1-SVE Lab ID#: 2001613-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17012930 3.35		of Collection: 1/2 of Analysis: 1/30/	
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	17	Not Detected	40	Not Detected
Benzene	1.7	3.7	5.4	12
alpha-Chlorotoluene	1.7	Not Detected	8.7	Not Detected
Bromodichloromethane	1.7	Not Detected	11	Not Detected
Bromoform	1.7	Not Detected	17	Not Detected
Bromomethane	17	Not Detected	65	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.7	Not Detected	20	Not Detected
Carbon Disulfide	6.7	Not Detected	21	Not Detected
Carbon Tetrachloride	1.7	Not Detected	10	Not Detected
Chlorobenzene	1.7	Not Detected	7.7	Not Detected
Dibromochloromethane	1.7	Not Detected	14	Not Detected
Chloroethane	6.7	Not Detected	18	Not Detected
Chloroform	1.7	Not Detected	8.2	Not Detected
Chloromethane	17	Not Detected	34	Not Detected
1,2-Dibromoethane (EDB)	1.7	Not Detected	13	Not Detected
1,2-Dichlorobenzene	1.7	Not Detected	10	Not Detected
1,3-Dichlorobenzene	1.7	Not Detected	10	Not Detected
1,4-Dichlorobenzene	1.7	Not Detected	10	Not Detected
1,1-Dichloroethane	1.7	Not Detected	6.8	Not Detected
Freon 12	1.7	Not Detected	8.3	Not Detected
1,2-Dichloroethane	1.7	Not Detected	6.8	Not Detected
1,1-Dichloroethene	1.7	Not Detected	6.6	Not Detected
cis-1,2-Dichloroethene	1.7	Not Detected	6.6	Not Detected
trans-1,2-Dichloroethene	1.7	Not Detected	6.6	Not Detected
1,2-Dichloropropane	1.7	Not Detected	7.7	Not Detected
cis-1,3-Dichloropropene	1.7	Not Detected	7.6	Not Detected
trans-1,3-Dichloropropene	1.7	Not Detected	7.6	Not Detected
Freon 114	1.7	Not Detected	12	Not Detected
Ethyl Benzene	1.7	33	7.3	140
4-Ethyltoluene	1.7	25	8.2	120
Hexachlorobutadiene	6.7	Not Detected	71	Not Detected
2-Hexanone	6.7	Not Detected	27	Not Detected
Methylene Chloride	17	Not Detected	58	Not Detected
4-Methyl-2-pentanone	1.7	Not Detected	6.9	Not Detected
Styrene	1.7	Not Detected	7.1	Not Detected
1,1,2,2-Tetrachloroethane	1.7	Not Detected	11	Not Detected
Tetrachloroethene	1.7	Not Detected	11	Not Detected
Toluene	1.7	3.1	6.3	12
1,2,4-Trichlorobenzene	6.7	Not Detected	50	Not Detected
1,1,1-Trichloroethane	1.7	Not Detected	9.1	Not Detected
		Not Detected		
1,1,2-Trichloroethane	1.7		9.1	Not Detected
Trichloroethene	1.7	Not Detected	9.0	Not Detected

🔅 eurofins

...

Air Toxics

Client Sample ID: 20200122.M-1-SVE Lab ID#: 2001613-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17012930 3.35		of Collection: 1/2 of Analysis: 1/30/	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	1.7	Not Detected	9.4	Not Detected
Freon 113	1.7	Not Detected	13	Not Detected
1,2,4-Trimethylbenzene	1.7	10	8.2	51
1,3,5-Trimethylbenzene	1.7	9.1	8.2	45
Vinyl Acetate	6.7	Not Detected	24	Not Detected
Vinyl Chloride	1.7	Not Detected	4.3	Not Detected
m,p-Xylene	1.7	66	7.3	290
o-Xylene	1.7	15	7.3	66
TVOC Ref. to Hexane	34	14000	120	49000

 Q = Exceeds Quality Control limits of 70% to 130%, due to matrix effects.

Container Type: 6 Liter Summa Canister

	Method
%Recovery	Limits
103	70-130
134 Q	70-130
102	70-130
	103 134 Q

🛟 eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2001613-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17012906 1.00		of Collection: NA of Analysis: 1/29/	20 11:53 AM
Compound	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
	2.0	Not Detected	8.2	Not Detected
2-Hexanone		Not Detected		Not Detected
Methylene Chloride 4-Methyl-2-pentanone	5.0 0.50	Not Detected	17 2.0	Not Detected
	0.50	Not Detected	2.0	Not Detected
Styrene				
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

🔅 eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2001613-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17012906 1.00		of Collection: NA of Analysis: 1/29/	20 11:53 AM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	97	70-130	
1,2-Dichloroethane-d4	116	70-130	
4-Bromofluorobenzene	103	70-130	

٦

Air Toxics

Client Sample ID: CCV Lab ID#: 2001613-03A EPA METHOD TO-15 GC/MS FULL SCAN

Compound %Recovery Acetone 95 Benzene 92 alpha-Chlorotoluene 98 Bromodichloromethane 110 Bromodorm 100 Bromodorm 96 2-Butanone (Methyl Ethyl Ketone) 88 Carbon Disulfide 93 Carbon Disulfide 93 Carbon Disulfide 93 Carbon Tetrachloride 123 Chlorobenzene 91 Dibromochloromethane 103 Chlorobenzene 93 Chlorobenzene 94 1,2-Dichlorobenzene 94 1,2-Dichlorobenzene 94 1,3-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichlorobenzene 92 1,1-Dichlorobenzene 92 1,1-Dichlorobenzene 100 Freon 12 116 1,2-Dichloroethane 100 r.2-Dichloroethene 104 1,2-Dichloroethene <td< th=""><th>File Name:</th><th>17012902</th><th>Date of Collection: NA</th></td<>	File Name:	17012902	Date of Collection: NA
Actione 95 Benzene 92 alpha-Chlorotoluene 98 Bromodichloromethane 110 Bromodichloromethane 100 Bromodichloromethane 96 2-Butanone (Methyl Ethyl Ketone) 88 Carbon Tetrachloride 123 Chlorobenzene 91 Dibromochloromethane 103 Chlorobenzene 91 Dibromochloromethane 73 Chlorobenzene 94 1.2-Dichlorobenzene 94 1.2-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.1-Dichloroethane 106 1.2-Dichloroethane 100 Freon 12 116 1.2-Dichloroethane 104 1.2-Dichloroethane 107 1.2-Dichloroethane 107 1.2-Dichloroethane 104 1.1-Dichloroethane 104 1.2-Dichloroethane 104	Dil. Factor:	1.00	Date of Analysis: 1/29/20 09:51 AM
Benzene 92 ajha-Chlorotoluene 98 Bromodichloromethane 110 Bromodichloromethane 100 Bromodichloromethane 96 Sutanone (Methyl Ethyl Ketone) 88 Carbon Disulfide 93 Carbon Optimum 103 Chlorobenzene 91 Dibromochloromethane 83 Chlorobethane 73 1.2-Dichlorobenzene 94 1.3-Dichlorobenzene 92 1.1-Dichlorobethane 100 Freen 12 116 1.2-Dichloroethane 104 1.2-Dichloroethane 104 1.2-Dichloroethane 104 1.2-Dichloroethane 104 1.2-Dichloroethane 104 1.3-Dichloroprop	Compound	%	Recovery
alpha-Chlorotoluene 98 Bromodichloromethane 110 Bromomethane 96 2-Butanone (Methyl Ethyl Ketone) 88 Carbon Disulfide 93 Carbon Disulfide 93 Carbon Disulfide 93 Carbon Disulfide 123 Chlorobenzene 91 Dibromochloromethane 103 Chlorobethane 83 Chlorobenzene 94 1,2-Dichlorobenzene 94 1,2-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichloroethane 100 Freen 12 116 1,2-Dichloroethane 104 1,2-Dichloroethane 104 1,1-Dichloroethane 104 1,2-Dichloroptene 104 1,2-Dichloroptene 104 1,1-Dichloroptene 104 1,1-Dichloroptene 104 1,1-Dichloroptene 104 1,2-Dichloroptene 104 1,2-Di	Acetone		
Bromodichloromethane 110 Bromoditane 100 Bromomethane 96 2-Butanone (Methyl Ethyl Ketone) 88 Carbon Tetrachloride 123 Chlorobenzene 91 Dibromochloromethane 103 Chlorobenzene 91 Dibromochloromethane 103 Chlorobenzene 83 Chloromethane 83 Chlorobenzene 94 1.2-Dibromoethane (EDB) 94 1.2-Dibromoethane (EDB) 94 1.3-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.1-Dichlorobenzene 100 Freen 12 116 1.2-Dibromothane 100 Freen 12 116 1.2-Dichloroethane 104 trans-1,2-Dichloroptene 104 trans-1,2-Dichloroptene 104 trans-1,3-Dichloropropene 101 trans-1,3-Dichloropropene 94 4-Ethyltotuene 94 4-Ethyltotuene 94			
Bronotorm 100 Bromomethane 96 2-Butanone (Methyl Ethyl Ketone) 88 Carbon Disulfide 93 Carbon Tetrachloride 123 Chlorobenzene 91 Dibromochloromethane 103 Chlorobenzene 91 Dibromochloromethane 73 Chlorobenzene 94 1.2-Dichlorobenzene 94 1.2-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.4-Dichlorobenzene 100 Freen 12 116 1.1-Dichloroethane 100 Freen 12 116 1.2-Dichloroethane 104 trans-1,2-Dichloroethane 104 trans-1,2-Dichloroethane 104 trans-1,2-Dichloroethane 101 trans-1,2-Dichloroethane 102 1.2-Dichloropropane 83 cis-1,3-Dichloropropane 101 trans-1,3-Dichloropropene 94 Hexachlorobutadiene 72 <			98
Bromomethane 96 2-Butanone (Methyl Ethyl Ketone) 88 Carbon Disulfide 93 Carbon Disulfide 123 Chlorobenzene 91 Dibromochloromethane 103 Chlorobenzene 91 Dibromochloromethane 103 Chlorothane 83 Chlorobenzene 94 1,2-Dibromoethane (EDB) 94 1,2-Dichorobenzene 92 1,4-Dichorobenzene 92 1,4-Dichorobenzene 92 1,4-Dichorobenzene 92 1,4-Dichorobenzene 92 1,4-Dichoroethane 100 Freen 12 116 1,1-Dichoroethane 104 1,2-Dichloroethene 104 trans-1,2-Dichloroptene 99 Freen 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 </td <td></td> <td></td> <td>-</td>			-
2-Butanone (Methyl Ethyl Ketone) 88 Carbon Disulfide 93 Carbon Tetrachloride 123 Chlorobenzene 91 Dibromochloromethane 103 Chlorobenzene 93 Chlorobertane 83 Chloroform 115 Chloroform 115 Chlorobenzene 94 1,2-Diblorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichloroethane 100 Freen 12 116 1,2-Dichloroethane 104 trans-1,2-Dichloroethene 104 trans-1,2-Dichloroptene 104 trans-1,2-Dichloroptene 104 trans-1,2-Dichloroptene 101 trans-1,3-Dichloroptene 101 trans-1,3-Dichloroptopene 99 Freen 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 4-Ethyltoluene 87 4	Bromoform		100
Carbon Disulfide 93 Carbon Tetrachloride 123 Chlorobenzene 91 Dibromochioromethane 103 Chlorobertane 83 Chlorobertane 83 Chlorobethane 73 1.2-Dibromoethane (EDB) 94 1.2-Dibromoethane (EDB) 94 1.3-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.4-Dichlorobenzene 92 1.4-Dichloroethane 100 Freon 12 116 1.2-Dichloroethane 104 1.2-Dichloroethane 107 1.2-Dichloroptpene 107 1.2-Dichloroptpene 101 1.2-Dichloroptpene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 4-Ethyltoluene			
Carbon Tetrachloride 123 Chlorobenzene 91 Dibromochloromethane 103 Ohlorotomethane 103 Chlorothane 83 Chlorothane 73 1,2-Dibromethane (EDB) 94 1,2-Dibromethane (EDB) 94 1,2-Dichorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichlorobenzene 92 1,1-Dichloroethane 116 1,2-Dichoroethane 100 Freen 12 116 1,2-Dichloroethane 104 trans-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloroptopane 83 cis-1,3-Dichloropropene 101 trans-1,3-Dichloropropene 99 Freen 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 4-Ethyltoluene 82 Styrene 90 1,1,2-Tetrachloroethane 10 Tetrachloroethane 81 Tetrachloroethane 81 <td></td> <td></td> <td></td>			
Chlorobenzene 91 Dibromochloromethane 103 Chlorotorm 83 Chloroform 115 Chloromethane 73 1,2-Dibromoethane (EDB) 94 1,2-Dichlorobenzene 94 1,3-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichloroethane 100 Freen 12 116 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 104 trans-1,3-Dichloroptene 93 cis-1,3-Dichloroptene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Teitrachloroethane 81 1,1,2,2-Teitrachloroethane			
Dibromochloromethane 103 Chloroethane 83 Chloroethane 83 Chloroethane 115 Chloromethane 73 1,2-Dibromoethane (EDB) 94 1,2-Dichlorobenzene 94 1,3-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 100 Freen 12 116 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloropropane 83 cis-1,3-Dichloropropene 101 trans-1,3-Dichloropropene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene			
Chloroethane 83 Chloroform 115 Chloromethane (EDB) 73 1,2-Dibromoethane (EDB) 94 1,2-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichloroethane 100 Freon 12 116 1,2-Dichloroethane 100 Freon 12 106 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroptene 101 trans-1,2-Dichloroptene 101 trans-1,3-Dichloropropene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 4-Ethyltoluene 94 4-Ethyltoluene 92 Styrene 90 1,1,2,2-Teitrachloroethane 81 Tetrachloroethane 81 Tetrachloroethane 81 Tetrachloroethane 95 1,2,4-Trichloroethane			
Chloroform 115 Chloromethane 73 1,2-Dichorobetaene (EDB) 94 1,3-Dichlorobenzene 92 1,3-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichloroethane 100 Freon 12 116 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloroptopane 83 cis-1,3-Dichloroptopane 99 Freon 114 110 Ethyl Benzene 94 +Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 100 Toluene 95 1,2,4-Trichloroethane 88 1,1,1,2-Trichloroethane 88 <td></td> <td></td> <td></td>			
Chloromethane 73 1,2-Dibromoethane (EDB) 94 1,3-Dichlorobenzene 94 1,3-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichloroethane 100 Freon 12 116 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloroethene 107 1,2-Dichloroethene 101 trans-1,3-Dichloroppene 83 cis-1,3-Dichloroppene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachloroethane 100 Toluene 95 1,2,4-Trichloroethane 88 1,1,2-Trichl			
1,2-Dibromoethane (EDB) 94 1,2-Dichlorobenzene 92 1,3-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichloroethane 100 Freon 12 116 1,2-Dichloroethane 106 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloroptopane 83 cis-1,3-Dichloropropene 101 trans-1,3-Dichloropropene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachloroethane 81 Tetrachloroethane 88 1,1,2-Trichloroethane 88			
1,2-Dichlorobenzene 94 1,3-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichlorobenzene 92 1,1-Dichlorobenzene 92 1,1-Dichlorobenzene 92 1,1-Dichlorobenzene 100 Freon 12 116 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloropropane 83 cis-1,3-Dichloropropene 101 trans-1,3-Dichloropropene 99 Freon 114 110 Ethyl Benzene 94 -4-Ethylfoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethene 100 Toluene 95 1,2,4-Trichloroethane 88			-
1,3-Dichlorobenzene 92 1,4-Dichlorobenzene 92 1,1-Dichloroethane 100 Freon 12 116 1,2-Dichloroethane 116 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloropthene 107 1,2-Dichloropthene 107 1,2-Dichloropthene 101 trans-1,3-Dichloropthene 101 trans-1,3-Dichloropthene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachloroethane 81 Tetrachloroethane 85 1,2,4-Trichlorobenzene 88 1,1,1-Trichloroethane 88	1,2-Dibromoethane (EDB)		
1,4-Dichlorobenzene 92 1,1-Dichloroethane 100 Freon 12 116 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloroethene 107 1,2-Dichloropthene 107 1,2-Dichloropthene 107 1,2-Dichloroptopane 83 cis-1,3-Dichloroptopene 101 trans-1,3-Dichloroptopene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachloroethane 81 Tetrachloroethene 100 Toluene 95 1,2,4-Trichloroethane 88			
1,1-Dichloroethane 100 Freon 12 116 1,2-Dichloroethane 116 1,1-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloropthene 101 trans-1,2-Dichloroptopane 83 cis-1,3-Dichloropropane 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2-Z-Tetrachloroethane 81 Tetrachloroethane 95 1,2,4-Trichlorobenzene 88 1,1,1-Trichloroethane 88			
Freen 12 116 1,2-Dichloroethane 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloropthene 107 1,2-Dichloropthene 107 1,2-Dichloropthene 101 trans-1,2-Dichloroptopene 101 trans-1,3-Dichloroptopene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachloroethane 95 1,2,4-Trichloroethane 88			
1,2-Dichloroethane 116 1,1-Dichloroethene 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloroptopane 83 cis-1,3-Dichloroptopene 101 trans-1,3-Dichloroptopene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachloroethane 100 toluene 95 1,2,4-Trichlorobenzene 88	•		
1,1-Dichloroethene 109 cis-1,2-Dichloroethene 104 trans-1,2-Dichloroethene 107 1,2-Dichloropropane 83 cis-1,3-Dichloropropene 101 trans-1,3-Dichloropropene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 100 Toluene 95 1,2,4-Trichlorobenzene 88 1,1,1-Trichoroethane 118 1,1,2-Trichloroethane 88			116
cis-1,2-Dichloroethene 104 trans-1,2-Dichloroptopene 107 1,2-Dichloroptopene 83 cis-1,3-Dichloroptopene 101 trans-1,3-Dichloroptopene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachloroethane 100 Toluene 95 1,2,4-Trichloroethane 88 1,1,1-Trichloroethane 118 1,1,2-Trichloroethane 88			
In a second se			
1,2-Dichloropropane 83 cis-1,3-Dichloropropene 101 trans-1,3-Dichloropropene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachlorobenzene 95 1,2,4-Trichloroethane 88 1,1,1-Trichloroethane 118 1,1,2-Trichloroethane 88			-
cis-1,3-Dichloropropene 101 trans-1,3-Dichloropropene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 100 Toluene 95 1,2,4-Trichloroethane 88 1,1,1-Trichloroethane 118 1,1,2-Trichloroethane 88	trans-1,2-Dichloroethene		
trans-1,3-Dichloropropene 99 Freon 114 110 Ethyl Benzene 94 4-Ethyltoluene 94 Hexachlorobutadiene 102 2-Hexanone 72 Methylene Chloride 87 4-Methyl-2-pentanone 82 Styrene 90 1,1,2,2-Tetrachloroethane 81 Tetrachloroethane 100 Toluene 95 1,2,4-Trichloroethane 88 1,1,1-Trichloroethane 118 1,1,2-Trichloroethane 88			
Freen 114110Ethyl Benzene944-Ethyltoluene944-Ethyltoluene94Hexachlorobutadiene1022-Hexanone72Methylene Chloride874-Methyl-2-pentanone82Styrene901,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichlorobenzene881,1,2-Trichloroethane88	cis-1,3-Dichloropropene		
Ethyl Benzene944-Ethyltoluene94Hexachlorobutadiene1022-Hexanone72Methylene Chloride874-Methyl-2-pentanone82Styrene901,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88	trans-1,3-Dichloropropene		
4-Ethyltoluene94Hexachlorobutadiene1022-Hexanone72Methylene Chloride874-Methyl-2-pentanone82Styrene901,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichloroethane881,1,1-Trichloroethane1181,1,2-Trichloroethane88			
Hexachlorobutadiene1022-Hexanone72Methylene Chloride874-Methyl-2-pentanone82Styrene901,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichloroethane881,1,1-Trichloroethane1181,1,2-Trichloroethane88	-		-
2-Hexanone72Methylene Chloride874-Methyl-2-pentanone82Styrene901,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88			
Methylene Chloride874-Methyl-2-pentanone82Styrene901,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88	Hexachlorobutadiene		
4-Methyl-2-pentanone82Styrene901,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88			
Styrene901,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88			
1,1,2,2-Tetrachloroethane81Tetrachloroethene100Toluene951,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88			
Tetrachloroethene100Toluene951,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88			
Toluene951,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88			
1,2,4-Trichlorobenzene881,1,1-Trichloroethane1181,1,2-Trichloroethane88			
1,1,1-Trichloroethane1181,1,2-Trichloroethane88			
1,1,2-Trichloroethane 88			
1,1,2-Trichloroethane 88	1,1,1-Trichloroethane		118
Trichloroethene 100			
	Trichloroethene		100

Air Toxics

Client Sample ID: CCV Lab ID#: 2001613-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17012902	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 1/29/20 09:51 AM
Compound		%Recovery
Freon 11		123
Freon 113		109
1,2,4-Trimethylbenzene		92
1,3,5-Trimethylbenzene		92
Vinyl Acetate		104
Vinyl Chloride		89
m,p-Xylene		99
o-Xylene		91
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	102	70-130	
1,2-Dichloroethane-d4	122	70-130	
4-Bromofluorobenzene	104	70-130	

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2001613-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17012903 Date of Coll	
Dil. Factor:	1.00 Date of Ana	llysis: 1/29/20 10:18 AM
Commonweal	0/ D	Method
Compound	%Recovery	Limits
Acetone	72	70-130
Benzene	85	70-130
alpha-Chlorotoluene	111	70-130
Bromodichloromethane	105	70-130
Bromoform	109	70-130
Bromomethane	91	70-130
2-Butanone (Methyl Ethyl Ketone)	86	70-130
Carbon Disulfide	87	70-130
Carbon Tetrachloride	114	70-130
Chlorobenzene	93	70-130
Dibromochloromethane	105	70-130
Chloroethane	84	70-130
Chloroform	105	70-130
Chloromethane	74	70-130
1,2-Dibromoethane (EDB)	95	70-130
1,2-Dichlorobenzene	101	70-130
1,3-Dichlorobenzene	97	70-130
1,4-Dichlorobenzene	101	70-130
1,1-Dichloroethane	89	70-130
Freon 12	109	70-130
1,2-Dichloroethane	106	70-130
1,1-Dichloroethene	94	70-130
cis-1,2-Dichloroethene	87	70-130
trans-1,2-Dichloroethene	102	70-130
1,2-Dichloropropane	83	70-130
cis-1,3-Dichloropropene	102	70-130
trans-1,3-Dichloropropene	102	70-130
Freon 114	101	70-130
Ethyl Benzene	99	70-130
4-Ethyltoluene	104	70-130
Hexachlorobutadiene	102	70-130
2-Hexanone	91	70-130
Methylene Chloride	78	70-130
4-Methyl-2-pentanone	89	70-130
Styrene	103	70-130
		70-130
1,1,2,2-Tetrachloroethane	100	70-130
Tetrachloroethene		70-130
Toluene	91	
1,2,4-Trichlorobenzene	90	70-130
1,1,1-Trichloroethane	112	70-130
1,1,2-Trichloroethane	88	70-130
Trichloroethene	96	70-130

Air Toxics

Client Sample ID: LCS Lab ID#: 2001613-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 17 Dil. Factor:	17012903 1.00		
Compound		%Recovery	Method Limits
Freon 11		112	70-130
Freon 113		100	70-130
1,2,4-Trimethylbenzene		102	70-130
1,3,5-Trimethylbenzene		102	70-130
Vinyl Acetate		88	70-130
Vinyl Chloride		82	70-130
m,p-Xylene		101	70-130
o-Xylene		97	70-130
TVOC Ref. to Hexane		Not Spiked	

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	121	70-130
4-Bromofluorobenzene	104	70-130

🛟 eurofins |

Air Toxics

Client Sample ID: LCSD Lab ID#: 2001613-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:		Date of Collection: NA	
DII. Factor:	1.00	Date of Analysis: 1/29/20 10:45 AM	
Compound	% Decement	Method	
Compound	%Recovery	Limits	
Acetone	72	70-130	
Benzene	88	70-130	
alpha-Chlorotoluene	112	70-130	
Bromodichloromethane	106	70-130	
Bromoform	108	70-130	
Bromomethane	94	70-130	
2-Butanone (Methyl Ethyl Ketone)	90	70-130	
Carbon Disulfide	90	70-130	
Carbon Tetrachloride	118	70-130	
Chlorobenzene	98	70-130	
Dibromochloromethane	108	70-130	
Chloroethane	82	70-130	
Chloroform	106	70-130	
Chloromethane	73	70-130	
1,2-Dibromoethane (EDB)	96	70-130	
1,2-Dichlorobenzene	103	70-130	
1,3-Dichlorobenzene	100	70-130	
1,4-Dichlorobenzene	102	70-130	
1,1-Dichloroethane	92	70-130	
Freon 12	112	70-130	
1,2-Dichloroethane	106	70-130	
1,1-Dichloroethene	98	70-130	
cis-1,2-Dichloroethene	91	70-130	
trans-1,2-Dichloroethene	106	70-130	
1,2-Dichloropropane	80	70-130	
cis-1,3-Dichloropropene	104	70-130	
trans-1,3-Dichloropropene	102	70-130	
Freon 114	101	70-130	
Ethyl Benzene	100	70-130	
4-Ethyltoluene	107	70-130	
Hexachlorobutadiene	107	70-130	
2-Hexanone	95	70-130	
Methylene Chloride	81	70-130	
4-Methyl-2-pentanone	93	70-130	
Styrene	105	70-130	
1,1,2,2-Tetrachloroethane	90	70-130	
Tetrachloroethene	101	70-130	
Toluene	92	70-130	
1,2,4-Trichlorobenzene	92	70-130	
1,1,1-Trichloroethane	113	70-130	
		70-130	
1,1,2-Trichloroethane Trichloroethene	91 98	70-130	

Client Sample ID: LCSD Lab ID#: 2001613-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor: Compound	17012904 1.00	Date of Collection: NA Date of Analysis: 1/29/20 10:45 AM	
		%Recovery	Method Limits
Freon 11		114	70-130
Freon 113		104	70-130
1,2,4-Trimethylbenzene		102	70-130
1,3,5-Trimethylbenzene		103	70-130
Vinyl Acetate		97	70-130
Vinyl Chloride		85	70-130
m,p-Xylene		104	70-130
o-Xylene		101	70-130
TVOC Ref. to Hexane		Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	96	70-130	
1,2-Dichloroethane-d4	116	70-130	
4-Bromofluorobenzene	104	70-130	

Released to Imaging: 6/4/2024 2:38:02 PM

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-102436-1 SDG Number: Property ID: 891077 Login Number: 102436 List Source: Eurofins TestAmerica, Pittsburgh 5 List Number: 1 Creator: Gartner, Cathy Answer Comment Question Radioactivity wasn't checked or is </= background as measured by a survey meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. 10 Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). Multiphasic samples are not present. Samples do not require splitting or compositing. Residual Chlorine Checked.

Received by OCD: 4/25/2024 8:53:21 AM

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-103356-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

-athy Gartner

Authorized for release by: 3/24/2020 7:56:51 AM

Cathy Gartner, Project Manager II (615)301-5041 cathy.gartner@testamericainc.com

LINKS Review your project results through Total Access

Visit us at: <u>www.testamericainc.com</u> Released to Imaging: 6/4/2024 2:38:02 PM This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Laboratory Job ID: 180-103356-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Subcontract Data	
Receipt Checklists	23
Job ID: 180-103356-1 SDG: Property ID: 891077

Page 109 of 193

Job ID: 180-103356-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-103356-1

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Glossary

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-1 SDG: Property ID

103356-1 : 891077	2
	4
	5
	8
	9

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin) Page 110 of 193

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-103356-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Pittsburgh

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	19-033-0	06-27-20
California	State	2891	04-30-20
Connecticut	State	PH-0688	09-30-20
Florida	NELAP	E871008	06-30-20
Georgia	State	PA 02-00416	04-30-20
Illinois	NELAP	004375	06-30-20
Kansas	NELAP	E-10350	03-31-20
Kentucky (UST)	State	162013	04-30-20
Kentucky (WW)	State	KY98043	12-31-20
Louisiana	NELAP	04041	06-30-20
Minnesota	NELAP	042-999-482	12-31-20
Nevada	State	PA00164	07-31-20
New Hampshire	NELAP	2030	04-04-20
New Jersey	NELAP	PA005	06-30-20
New York	NELAP	11182	04-01-20
North Carolina (WW/SW)	State	434	01-01-21
North Dakota	State	R-227	04-30-20
Oregon	NELAP	PA-2151	02-06-21
Pennsylvania	NELAP	02-00416	04-30-20
Rhode Island	State	LAO00362	12-31-20
South Carolina	State	89014	04-30-20
Texas	NELAP	T104704528	03-31-20
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	Federal	P-Soil-01	06-26-22
USDA	US Federal Programs	P330-16-00211	06-26-22
Utah	NELAP	PA001462019-8	05-31-20
Virginia	NELAP	10043	09-15-20
West Virginia DEP	State	142	02-01-21
Wisconsin	State	998027800	08-31-20

5

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 180-103356-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
180-103356-1 20200305 M SVE	20200305 M SVE	Air	03/05/20 13:05	03/10/20 12:26		4
						5
						6
						8
						9

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-103356-1 SDG: Property ID: 891077

lethod	Method Description	Protocol	Laboratory	
O-15	TO-15	EPA	Eurofins	-
Protocol R	References:			
EPA = I	JS Environmental Protection Agency			
Laborator	y References:			
Eurofins	s = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630			
				17

Protocol References:

Laboratory References:

Received by OCD: 4/25/2024 8:53:21 AM

8

Air Toxics

3/20/2020 Ms. Cathy Gartner Eurofins Test America 2960 Foster Creighton Dr.

Nashville TN 37204

Project Name: CHK STATE M Project #: Workorder #: 2003225

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 3/9/2020 at Air Toxics Ltd.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics Inc. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettake

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630

T 916-985-1000 F 916-351-8279 www.airtoxics.com

Page 1 of 14 Page 8 of 23 🛟 eurofins

Air Toxics

WORK ORDER #: 2003225

Work Order Summary

CLIENT:	Ms. Cathy Gartner Eurofins Test America 2960 Foster Creighton Dr. Nashville, TN 37204	BILL TO:	Accounts Payable Eurofins Test America 4104 Shuffel St NW North Canton, OH 44720
PHONE:	800-765-0980	P.O. #	23738
FAX:	615-726-3404	PROJECT #	CHK STATE M
DATE RECEIVED:	03/09/2020	CONTACT:	Brian Whittaker
DATE COMPLETED:	03/20/2020		

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	20200305MSVE	TO-15	4.5 "Hg	4.9 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

layes terde

DATE: <u>03/20/20</u>

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209218, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-18-13, UT NELAP – CA009332019-11, VA NELAP - 460197, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-011, Effective date: 10/18/2019, Expiration date: 10/17/2020. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000 . (800) 985-5955 . FAX (916) 351-8279

> > Page 2 of 14 Page 9 of 23

🛟 eurofins

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2003225

One 6 Liter Summa Canister sample was received on March 09, 2020. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Dilution was performed on sample 20200305MSVE due to the presence of high level target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

M - Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

eurofins Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20200305MSVE

Lab ID#: 2003225-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Benzene	7.8	42	25	130
Ethyl Benzene	7.8	120	34	510
4-Ethyltoluene	7.8	100	38	510
Trichloroethene	7.8	20	42	110
1,2,4-Trimethylbenzene	7.8	59	38	290
1,3,5-Trimethylbenzene	7.8	43	38	210
m,p-Xylene	7.8	210	34	900
o-Xylene	7.8	50	34	220
TVOC Ref. to Hexane	160	26000	550	92000

🛟 eurofins

Air Toxics

Client Sample ID: 20200305MSVE Lab ID#: 2003225-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a031223 15.7	Date of Collection: 3/5/20 1:05:00 PM Date of Analysis: 3/12/20 10:55 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	78	Not Detected	190	Not Detected
Benzene	7.8	42	25	130
alpha-Chlorotoluene	7.8	Not Detected	41	Not Detected
Bromodichloromethane	7.8	Not Detected	52	Not Detected
Bromoform	7.8	Not Detected	81	Not Detected
Bromomethane	78	Not Detected	300	Not Detected
2-Butanone (Methyl Ethyl Ketone)	31	Not Detected	92	Not Detected
Carbon Disulfide	31	Not Detected	98	Not Detected
Carbon Tetrachloride	7.8	Not Detected	49	Not Detected
Chlorobenzene	7.8	Not Detected	36	Not Detected
Dibromochloromethane	7.8	Not Detected	67	Not Detected
Chloroethane	31	Not Detected	83	Not Detected
Chloroform	7.8	Not Detected	38	Not Detected
Chloromethane	78	Not Detected	160	Not Detected
1,2-Dibromoethane (EDB)	7.8	Not Detected	60	Not Detected
1,2-Dichlorobenzene	7.8	Not Detected	47	Not Detected
1,3-Dichlorobenzene	7.8	Not Detected	47	Not Detected
1,4-Dichlorobenzene	7.8	Not Detected	47	Not Detected
1,1-Dichloroethane	7.8	Not Detected	32	Not Detected
Freon 12	7.8	Not Detected	39	Not Detected
1,2-Dichloroethane	7.8	Not Detected	32	Not Detected
1,1-Dichloroethene	7.8	Not Detected	31	Not Detected
	7.8	Not Detected	31	Not Detected
cis-1,2-Dichloroethene	7.8	Not Detected	31	Not Detected
trans-1,2-Dichloroethene	7.8	Not Detected	36	Not Detected
1,2-Dichloropropane				
cis-1,3-Dichloropropene	7.8	Not Detected	36	Not Detected
trans-1,3-Dichloropropene	7.8	Not Detected	36	Not Detected
Freon 114	7.8	Not Detected	55	Not Detected
Ethyl Benzene	7.8	120	34	510
4-Ethyltoluene	7.8	100	38	510
Hexachlorobutadiene	31	Not Detected	330	Not Detected
2-Hexanone	31	Not Detected	130	Not Detected
Methylene Chloride	78	Not Detected	270	Not Detected
4-Methyl-2-pentanone	7.8	Not Detected	32	Not Detected
Styrene	7.8	Not Detected	33	Not Detected
1,1,2,2-Tetrachloroethane	7.8	Not Detected	54	Not Detected
Tetrachloroethene	7.8	Not Detected	53	Not Detected
Toluene	7.8	Not Detected	30	Not Detected
1,2,4-Trichlorobenzene	31	Not Detected	230	Not Detected
1,1,1-Trichloroethane	7.8	Not Detected	43	Not Detected
1,1,2-Trichloroethane	7.8	Not Detected	43	Not Detected
Trichloroethene	7.8	20	42	110

eurofins Air Toxics

Client Sample ID: 20200305MSVE Lab ID#: 2003225-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a031223 15.7	Date of Collection: 3/5/20 1:05:00 PM Date of Analysis: 3/12/20 10:55 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	7.8	Not Detected	44	Not Detected
Freon 113	7.8	Not Detected	60	Not Detected
1,2,4-Trimethylbenzene	7.8	59	38	290
1,3,5-Trimethylbenzene	7.8	43	38	210
Vinyl Acetate	31	Not Detected	110	Not Detected
Vinyl Chloride	7.8	Not Detected	20	Not Detected
m,p-Xylene	7.8	210	34	900
o-Xylene	7.8	50	34	220
TVOC Ref. to Hexane	160	26000	550	92000

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	104	70-130
4-Bromofluorobenzene	97	70-130

🛟 eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2003225-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a031208 1.00	Date of Collection: NA Date of Analysis: 3/12/20 02:10 PM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

🔅 eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2003225-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a031208 1.00	Date Date	: NA 3/12/20 02:10 PM					
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)				
Freon 11	0.50	Not Detected	2.8	Not Detected				
Freon 113	0.50	Not Detected	3.8 Not Detected					
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected				
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected				
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected				
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected				
m,p-Xylene	0.50	Not Detected	2.2	Not Detected				
o-Xylene	0.50	Not Detected	2.2	Not Detected Not Detected				
TVOC Ref. to Hexane	10	Not Detected	35					

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	98	70-130
1,2-Dichloroethane-d4	94	70-130
4-Bromofluorobenzene	98	70-130

Air Toxics

Client Sample ID: CCV Lab ID#: 2003225-03A EPA METHOD TO-15 GC/MS FULL SCAN

1	LPA METHOD TO-IS	
File Name:	a031202	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/12/20 11:03 AM
Compound		%Recovery
Acetone		93
Benzene		84
alpha-Chlorotoluene		82
Bromodichloromethane		81
Bromoform		85
Bromomethane		98
2-Butanone (Methyl Ethyl Ketone)		87
Carbon Disulfide		92
Carbon Tetrachloride		83
Chlorobenzene		85
Dibromochloromethane		86
Chloroethane		88
Chloroform		86
Chloromethane		88
1,2-Dibromoethane (EDB)		84
1,2-Dichlorobenzene		84
1,3-Dichlorobenzene		81
1,4-Dichlorobenzene		83
1,1-Dichloroethane		88
Freon 12		92
1,2-Dichloroethane		
		92
1,1-Dichloroethene		88
cis-1,2-Dichloroethene		93
trans-1,2-Dichloroethene		80
1,2-Dichloropropane		
cis-1,3-Dichloropropene		83
trans-1,3-Dichloropropene		87
Freon 114		90
Ethyl Benzene		84
4-Ethyltoluene		85
Hexachlorobutadiene		80
2-Hexanone		85
Methylene Chloride		90
4-Methyl-2-pentanone		86
Styrene		88
1,1,2,2-Tetrachloroethane		84
Tetrachloroethene		80
Toluene		81
1,2,4-Trichlorobenzene		80
1,1,1-Trichloroethane		86
1,1,2-Trichloroethane		
Trichloroethene		83

Air Toxics

Client Sample ID: CCV Lab ID#: 2003225-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a031202 1.00	Date of Collection: NA Date of Analysis: 3/12/20 11:03 AM
	1.00	Date of Anarysis. Of 2/20 11.00 Am
Compound		%Recovery
Freon 11		92
Freon 113		87
1,2,4-Trimethylbenzene		85
1,3,5-Trimethylbenzene		85
Vinyl Acetate		92
Vinyl Chloride		92
m,p-Xylene		84
o-Xylene		84
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	97	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	96	70-130

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2003225-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:		Collection: NA
Dil. Factor:	1.00 Date of A	Analysis: 3/12/20 11:29 AM
Compound	%Recovery	Method Limits
Acetone	103	70-130
Benzene	110	70-130
alpha-Chlorotoluene	110	70-130
Bromodichloromethane	108	70-130
Bromoform	109	70-130
Bromomethane	109	70-130
2-Butanone (Methyl Ethyl Ketone)	114	70-130
Carbon Disulfide	120	70-130
Carbon Tetrachloride	106	70-130
Chlorobenzene	106	70-130
Dibromochloromethane	109	70-130
Chloroethane	115	70-130
Chloroform	114	70-130
Chloromethane	111	70-130
1,2-Dibromoethane (EDB)	106	70-130
1,2-Dichlorobenzene	105	70-130
1,3-Dichlorobenzene	101	70-130
1,4-Dichlorobenzene	104	70-130
1,1-Dichloroethane	113	70-130
Freon 12	123	70-130
1,2-Dichloroethane	111	70-130
1,1-Dichloroethene	117	70-130
cis-1,2-Dichloroethene	106	70-130
trans-1,2-Dichloroethene	132 Q	70-130
1,2-Dichloropropane	103	70-130
cis-1,3-Dichloropropene	111	70-130
rans-1,3-Dichloropropene	114	70-130
Freon 114	118	70-130
Ethyl Benzene	105	70-130
4-Ethyltoluene	107	70-130
Hexachlorobutadiene	104	70-130
2-Hexanone	111	70-130
Methylene Chloride	116	70-130
4-Methyl-2-pentanone	109	70-130
Stvrene	110	70-130
1,1,2,2-Tetrachloroethane	92	70-130
Tetrachloroethene	101	70-130
Toluene	102	70-130
1,2,4-Trichlorobenzene	107	70-130
1,1,1-Trichloroethane	110	70-130
1,1,2-Trichloroethane	108	70-130
Trichloroethene	122	70-130

🛟 eurofins |

Air Toxics

Client Sample ID: LCS Lab ID#: 2003225-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a031203 1.00	Date of Collect Date of Analys	tion: NA is: 3/12/20 11:29 AM
Compound		%Recovery	Method Limits
Freon 11		118	70-130
Freon 113		110	70-130
1,2,4-Trimethylbenzene		107	70-130
1,3,5-Trimethylbenzene		106	70-130
Vinyl Acetate		113	70-130
Vinyl Chloride		122	70-130
m,p-Xylene		108	70-130
o-Xylene		106	70-130
TVOC Ref. to Hexane		Not Spiked	

Q = Exceeds Quality Control limits.

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	97	70-130

🛟 eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2003225-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a031204 Date of Col 1.00 Date of Ana	lection: NA alysis: 3/12/20 11:56 AM
		Method
Compound	%Recovery	Limits
Acetone	104	70-130
Benzene	114	70-130
alpha-Chlorotoluene	115	70-130
Bromodichloromethane	109	70-130
Bromoform	110	70-130
Bromomethane	114	70-130
2-Butanone (Methyl Ethyl Ketone)	113	70-130
Carbon Disulfide	120	70-130
Carbon Tetrachloride	106	70-130
Chlorobenzene	108	70-130
Dibromochloromethane	111	70-130
Chloroethane	111	70-130
Chloroform	112	70-130
Chloromethane	107	70-130
1,2-Dibromoethane (EDB)	110	70-130
1,2-Dichlorobenzene	105	70-130
1,3-Dichlorobenzene	104	70-130
1,4-Dichlorobenzene	105	70-130
1,1-Dichloroethane	112	70-130
Freon 12	119	70-130
1,2-Dichloroethane	113	70-130
1,1-Dichloroethene	114	70-130
cis-1,2-Dichloroethene	105	70-130
trans-1,2-Dichloroethene	128	70-130
1,2-Dichloropropane	106	70-130
cis-1,3-Dichloropropene	114	70-130
trans-1,3-Dichloropropene	121	70-130
Freon 114	116	70-130
Ethyl Benzene	110	70-130
4-Ethyltoluene	109	70-130
Hexachlorobutadiene	108	70-130
2-Hexanone	119	70-130
Methylene Chloride	114	70-130
4-Methyl-2-pentanone	109	70-130
Styrene	112	70-130
1,1,2,2-Tetrachloroethane	94	70-130
Tetrachloroethene	104	70-130
Toluene	103	70-130
1,2,4-Trichlorobenzene	111	70-130
1,1,1-Trichloroethane	112	70-130
1,1,2-Trichloroethane	112	70-130
Trichloroethene	124	70-130

Air Toxics

Client Sample ID: LCSD Lab ID#: 2003225-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a031204 1.00	Date of Collec Date of Analys	tion: NA sis: 3/12/20 11:56 AM
Compound		%Recovery	Method Limits
Freon 11		118	70-130
Freon 113		107	70-130
1,2,4-Trimethylbenzene		108	70-130
1,3,5-Trimethylbenzene		106	70-130
Vinyl Acetate		106	70-130
Vinyl Chloride		119	70-130
m,p-Xylene		109	70-130
o-Xylene		108	70-130
TVOC Ref. to Hexane		Not Spiked	

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	96	70-130
1,2-Dichloroethane-d4	100	70-130
4-Bromofluorobenzene	100	70-130

CHAN OF CUSTOP RECORD Severes semiconae Severes s	! 93	28 of	ge 1	Pa						of X									ſ	AM	21.	:53:2	24 8	5/20	4/2	C D :	v 0	ed b	lecei	Re
CHAN OF CUSTOP RECORD CHAN OF CUSTOP RECORD International Sumple ID ID IC	1					TERE	SAMPLER'S S	2		W											TOTAL NUMBI	RELINQUISHE	RELINGUISHE	METHOD OF S		HECEIVED IN	LABORATORY	CA	POINT	
CHAN OF CUSTOPY RECORD Sumpe ID Sample ID Sample Matrix FRUEET WANGER: PRUEET WANGER: ALT 12003057/15vE ALT I 1200407000000000000000000000000000000000			**	4. *		T Fro	H GNATURE		Time	1305									$\left[\right]$		ER OF CONT	DBY:	D BY:	HIPMENT:		LABORATO	CONTACT:		OF ORIGIN:	
CHAIN OF CUSTODY RECORD PROJECT NAME: PROJECT MANAGER: PROJECT MANAGER: PROJECT MANAGER: PROJECT MANAGER: PROJECT MANAGER: PROJECT MANAGER: PROJECT MANAGER: AVI D RRAD RECEIVED BY: RECEIVED BY: RECEIVED BY: AND ADDRESS: 180 BLVE R-VIVE RD.	5 6 7 8 9		♪ >>===5	NEUUUS		Yer.			Sample ID	0305 M											TAINERS			A A A A A A A A A A A A A A A A A A A	DEX			ARTNER 615-301-5041		
HAIN OF CUSTODY RECORD PROJECT NAME: CIHIC STAT PROJECT MANAGER: CIHIC STAT PROJECT MANAGER: TO -15 TO TAL VUC ANNUMBER: 1361 SITAL VICE (If applicable) to: LABORATORY ADDRESS: 180 BL VIE RAVINE RD.			PROJEC	SHIPPED			Matrix	lample	Sa	Air					N			***			V	DATE 3-	1.1			DATE	Association and a second s			
N OF CUSTODY RECORD PROJECT NAME: CHK STAT. PROJECT MANAGER: PROJECT MANAGER: PROJECT MANAGER: A VID RRAD X VID RRAD RBILL NUMBER: 1361 S 179 12 90 RBILL NUMBER: 180 RATORY ADDRESS: BORATORY ADDRESS:		CH	T NUMBE	10	N .				ļ	-	T			1																
		AIN OF CUSTOD	R:		IR TOXICS	E X	EXAN	-1 K NU VO 95 H	TOTAL	XX													RECEIVED BY:	AIRBILL NUMBER:	5 1361 3	Send PDF, EDD, and If	LABORATORY ADDRE	_		
		Y RECORD	PROJECT NAME:	PROJECT MANAGER	DAVID BR	 																IAT (179 129	VVOICE (if applicable)	iss:			
ULIE. CZE		2003225	ATE NA	- r	ADV															k			DATE		0			D. JTE B		
B FOLL	والمحافظة	25		TAT:		N//A	* 7//)			TAG #	V		Cus	NΥ	চ	\mathbf{O}	. S					<u>net br</u>				JONNE		_		
2003225 No. 1466 EM COC L + L ASSOW: W/A * TVOC as HEXA NE Clustody Seal Intact? Clustody Seal Intact? V NNORG TEMP/V/ Reinarks DATE 2/4/20 DATE STOLINM CA 95630 STE & FOLINM CA 95630	vorbert vorben overnationska (data ståd) i geförer tilst i socialet och etter og stall daten verkenske vorken o		$\left \cdot \right $		STANDARD		1 as I have a set	C6-C12	REMARKS				tody Seal Intact?	None Temp/VA												TONN FRANCOM		OM CA 95630		

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-103356-1 SDG Number: Property ID: 891077 Login Number: 103356 List Source: Eurofins TestAmerica, Pittsburgh 5 List Number: 1 Creator: Gartner, Cathy Answer Comment Question Radioactivity wasn't checked or is </= background as measured by a survey meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). Multiphasic samples are not present. Samples do not require splitting or compositing. Residual Chlorine Checked.

Received by OCD: 4/25/2024 8:53:21 AM

1 2 3 4 5 6 7 8 9 10

🔅 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Nashville 2960 Foster Creighton Drive Nashville, TN 37204 Tel: (615)726-0177

Laboratory Job ID: 490-175390-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1 Sampling Event: State M Revision: 1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

athyGartner

Authorized for release by: 6/19/2019 12:46:24 PM

Cathy Gartner, Project Manager II (615)301-5041 cathy.gartner@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through TOTOLACCESS Have a Question? Ask The Expert Visit us at: Www.testamericainc.com

Laboratory Job ID: 490-175390-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	
Case Narrative	4
Definitions	5
Client Sample Results	6
QC Sample Results	10
QC Association	12
Chronicle	13
Method Summary	14
Certification Summary	15
Chain of Custody	16

.

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 490-175390-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	3
490-175390-1	MW-4	Water	06/04/19 12:10	06/06/19 09:20		4
490-175390-2	MW-8	Water	06/04/19 14:05	06/06/19 09:20		
490-175390-3	EQ Blank	Water	06/04/19 00:01	06/06/19 09:20		
490-175390-4	Dup	Water	06/04/19 00:01	06/06/19 09:20		5

Job ID: 490-175390-1 SDG: Property ID: 891077

Job ID: 490-175390-1

Laboratory: Eurofins TestAmerica, Nashville

Narrative

Job Narrative 490-175390-1

Revised report Dup (490-175390-4) was reanalyzed per client request. Reanalysis result is reported. This replaces the final report generated on 6/14/19.

Receipt

The samples were received on 6/6/2019 9:20 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.4° C.

HPLC/IC

Method(s) 300.0: Due to the high concentration of Chloride, the matrix spike (MS) for analytical batch 490-600727 could not be evaluated for accuracy and precision. The associated laboratory control sample / laboratory control sample duplicate (LCS/LCSD) met acceptance criteria.

Method(s) 300.0: Due to the nature of the sample matrix, a matrix spike / matrix spike duplicate (MS/MSD) was not analyzed with 490-601096. However, the laboratory control sample / laboratory control sample duplicate (LCS/LCSD) recoveries were within the acceptance limits. (LCS 490-601096/4) and (LCSD 490-601096/5)

Method(s) 300.0: The following samples were diluted due to the nature of the sample matrix: MW-4 (490-175390-1), MW-8 (490-175390-2) and Dup (490-175390-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Page 133 of 193

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: State M-1

5

Job ID: 490-175390-1 SDG: Property ID: 891077

Qualifiers

HPLC/IC Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not
E	applicable. Result exceeded calibration range.

Glossary

Cloccary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Client: Chesapeake Energy Corporation

6

Client Sample Results

Job ID: 490-175390-1 SDG: Property ID: 891077

Project/Site: State M-1 **Client Sample ID: MW-4** Lab Sample ID: 490-175390-1 Date Collected: 06/04/19 12:10 **Matrix: Water** Date Received: 06/06/19 09:20 Method: 300.0 - Anions, Ion Chromatography Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Chloride 10.0 06/12/19 18:28 10 392 mg/L

Client: Chesapeake Energy Corporation

6

Client Sample Results

Job ID: 490-175390-1 SDG: Property ID: 891077

Project/Site: State M-1 **Client Sample ID: MW-8** Lab Sample ID: 490-175390-2 Date Collected: 06/04/19 14:05 **Matrix: Water** Date Received: 06/06/19 09:20 Method: 300.0 - Anions, Ion Chromatography Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Chloride 10.0 06/12/19 18:51 10 283 mg/L

Project/Site: State M-1

Client Sample Results

Job ID: 490-175390-1 SDG: Property ID: 891077

Client Sample ID: EQ Blank Date Collected: 06/04/19 00:01 Date Received: 06/06/19 09:20

Client: Chesapeake Energy Corporation

Method: 300.0 - Anions, Ion Chr	omatogra	aphy								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	ND		1.00		mg/L			06/11/19 19:51	1	_
					•					6

Eurofins TestAmerica, Nashville

Lab Sample ID: 490-175390-3 Matrix: Water 5 6 Client: Chesapeake Energy Corporation

6

Client Sample Results

Job ID: 490-175390-1 SDG: Property ID: 891077

Project/Site: State M-1 **Client Sample ID: Dup** Lab Sample ID: 490-175390-4 Date Collected: 06/04/19 00:01 **Matrix: Water** Date Received: 06/06/19 09:20 Method: 300.0 - Anions, Ion Chromatography Result Qualifier Analyte RL MDL Unit D Prepared Analyzed Dil Fac Chloride 20.0 06/18/19 11:04 20 382 mg/L

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: State M-1

Page 139 of 193

Job ID: 490-175390-1 SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 490-60										С	lie	nt Sam	ple ID: Met	hod	Blank
Matrix: Water													Prep Type		
Analysis Batch: 600727															
Analyte	Re	MB sult	MB Qualifier		RL		MDL	Unit		D	Pr	epared	Analyze	d	Dil Fac
Chloride		ND			1.00			mg/L				epuieu	06/11/19 16		1
- - - Leh Semple ID: LCS 400.6	00707/4								01	ont C			Lab Cant		omnio
Lab Sample ID: LCS 490-6 Matrix: Water	0072774								CI	ent S	all		Lab Conti Prep Type		
Analysis Batch: 600727				0		1.00	LCS						%/Da.a		
Analyte				Spike Added		Result		lifier	Unit		D	%Rec	%Rec. Limits		
Chloride				10.0		9.938			mg/L		_	99	90 - 110		
Lab Sample ID: LCSD 490 Matrix: Water	-600727/5							C	lient S	amp	le	ID: Lab	Control Sa Prep Type		
Analysis Batch: 600727				Cuilco				_					% Dee		000
Analyte				Spike Added		LCSD Result			Unit		D	%Rec	%Rec. Limits	RPD	RPD Limit
Chloride				10.0		9.932			mg/L		_	99	90 - 110	0	20
Lab Sample ID: 490-17539 Matrix: Water	0-1 MS											Cli	ent Sample Prep Type		
Analysis Batch: 600727	Sample	Sami	nle	Spike		MS	MS						%Rec.		
Analyte	Result		•	Added		Result	-	lifier	Unit		D	%Rec	Limits		
Chloride	169	E		10.0		166.8	E 4		mg/L	·		-20	80 - 120		
Lab Sample ID: 490-17539 Matrix: Water Analysis Batch: 600727	0-3 MS											Client	Sample ID: Prep Type		
	Sample	Sam	ple	Spike		MS	MS						%Rec.		
Analyte	Result	Qual	ifier	Added		Result	Qual	lifier	Unit		D	%Rec	Limits		
Chloride	ND			10.0		11.80			mg/L			118	80 - 120		
Lab Sample ID: MB 490-60 Matrix: Water Analysis Batch: 601096	1096/3									С	lie	nt Sam	ple ID: Met Prep Type		
		MB	МВ												
Analyte	Re		Qualifier		RL		MDL			D	Pr	epared	Analyze		Dil Fac
Chloride		ND			1.00			mg/L					06/12/19 17	1:07	1
Lab Sample ID: LCS 490-6 Matrix: Water	01096/4								Cli	ent S	an	nple ID	Lab Conti Prep Type		
Analysis Batch: 601096				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result		lifier	Unit		D	%Rec	Limits		
Chloride				10.0		9.901			mg/L		_	99	90 - 110		
Lab Sample ID: LCSD 490 Matrix: Water	-601096/5							C	Client S	amp	le	ID: Lab	Control Sa Prep Type		
Analysis Batch: 601096				Spike		LCSD	LCS	D					%Rec.		RPD
Analysis Batch: 601096				Spike Added		LCSD Result			Unit		D	%Rec	%Rec. Limits	RPD	RPD Limit

Eurofins TestAmerica, Nashville

QC Sample Results

Job ID: 490-175390-1 SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 490-602063	3									C	lie	nt Sam	ple ID: M	ethod	Blank
Matrix: Water													Prep Ty	pe: Tot	tal/NA
Analysis Batch: 602063														·	
		MB	MB												
Analyte	Re	esult	Qualifier		RL	1	MDL	Unit		D	Pr	epared	Analy	zed	Dil Fac
Chloride		ND			1.00			mg/L					06/18/19	09:29	1
Lab Sample ID: LCS 490-602063	/5								Cl	ient S	San	nple ID	: Lab Cor	ntrol Sa	ample
Matrix: Water													Prep Ty	pe: Tot	tal/NA
Analysis Batch: 602063															
-				Spike		LCS	LCS						%Rec.		
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride				10.0		9.372			mg/L		_	94	90 - 110		
Lab Sample ID: LCSD 490-60206	53/6							C	lient S	Samp	ole	ID: Lab	Control	Sample	e Dup
Matrix: Water													Prep Ty		
Analysis Batch: 602063															
-				Spike		LCSD	LCS	D					%Rec.		RPD
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride				10.0		9.373			mg/L		_	94	90 - 110	0	20
Lab Sample ID: 490-175846-C-2	MS										Cli	ent Sa	mple ID:	Matrix	Spike
Matrix: Water													Prep Ty	pe: Tot	tal/NA
Analysis Batch: 602063														- -	
S	ample	Sam	ple	Spike		MS	MS						%Rec.		
Analyte	Result	Qua	lifier	Added		Result	Qua	lifier	Unit		D	%Rec	Limits		
Chloride	245	E		10.0		264.5	E 4		mg/L		_	192	80 - 120		
															lieste
Lab Sample ID: 490-175846-C-2	MSD								Clien	it Sar	npl	e ID: N	latrix Spi	ke Dup	licate
Lab Sample ID: 490-175846-C-2 Matrix: Water	MSD								Clien	t Sar	npl	e ID: N	latrix Spi Prep Ty		
Matrix: Water	MSD								Clien	t Sar	npl	e ID: N	Prep Ty		
Matrix: Water Analysis Batch: 602063	MSD ample	Sam	ple	Spike		MSD	MSE)	Clien	t Sar	np	e ID: N			
Matrix: Water Analysis Batch: 602063 S			-	Spike Added		MSD Result			Clien Unit	it Sar	npl D	e ID: N %Rec	Prep Ty		tal/NA

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

HPLC/IC

Analysis Batch: 600727

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-175390-3	EQ Blank	Total/NA	Water	300.0	
MB 490-600727/3	Method Blank	Total/NA	Water	300.0	
LCS 490-600727/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 490-600727/5	Lab Control Sample Dup	Total/NA	Water	300.0	
490-175390-1 MS	MW-4	Total/NA	Water	300.0	
490-175390-3 MS	EQ Blank	Total/NA	Water	300.0	

Analysis Batch: 601096

Analysis Batch: 601	096					0
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	0
490-175390-1	MW-4	Total/NA	Water	300.0		g
490-175390-2	MW-8	Total/NA	Water	300.0		
MB 490-601096/3	Method Blank	Total/NA	Water	300.0		
LCS 490-601096/4	Lab Control Sample	Total/NA	Water	300.0		
LCSD 490-601096/5	Lab Control Sample Dup	Total/NA	Water	300.0		

Analysis Batch: 602063

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
490-175390-4	Dup	Total/NA	Water	300.0	
MB 490-602063/3	Method Blank	Total/NA	Water	300.0	
LCS 490-602063/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 490-602063/6	Lab Control Sample Dup	Total/NA	Water	300.0	
490-175846-C-2 MS	Matrix Spike	Total/NA	Water	300.0	
490-175846-C-2 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Lab Chronicle

Job ID: 490-175390-1 SDG: Property ID: 891077

Lab Sample ID: 490-175390-1

Project/Site: State M-1 **Client Sample ID: MW-4** Date Collected: 06/04/19 12:10

Client: Chesapeake Energy Corporation

Date Received: 06/06/19 09:20

	Batch	Batch	Dur	Dil	Initial	Final	Batch	Prepared	Analyst	Lah
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10			601096	06/12/19 18:28	SW1	TAL NSH
Client Sam	ple ID: MW	-8					La	b Sample II	D: 490-	175390-2
Date Collecte	d: 06/04/19 1	4:05						-	Ma	trix: Wate
Date Receive	d: 06/06/19 0	9:20								
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10			601096	06/12/19 18:51	SW1	TAL NSH
Date Collecte	d: 06/04/19 0	0:01					La	b Sample II		
Client Sam Date Collecte Date Receive	d: 06/04/19 0	0:01		Dil	Initial	Final	La Batch	b Sample II		
Date Collecte	d: 06/04/19 0 d: 06/06/19 0	0:01 9:20	Run	Dil Factor	Initial Amount	Final Amount				
Date Collecte Date Receive	d: 06/04/19 0 d: 06/06/19 0 Batch	0:01 9:20 Batch	Run				Batch	Prepared	Ма	trix: Wate
Date Collecte Date Receive Prep Type	d: 06/04/19 0 d: 06/06/19 0 Batch Type Analysis	0:01 9:20 Batch <u>Method</u> 300.0	Run	Factor			Batch Number 600727	Prepared or Analyzed	Ma Analyst SW1	trix: Wate
Date Collecte Date Received Prep Type Total/NA	d: 06/04/19 0 d: 06/06/19 0 Batch Type Analysis ple ID: Dup	0:01 9:20 Batch Method 300.0	Run	Factor			Batch Number 600727	Prepared or Analyzed 06/11/19 19:51	Ma Analyst SW1 D: 490-	trix: Wate
Date Collecte Date Received Prep Type Total/NA Client Sam	d: 06/04/19 0 d: 06/06/19 0 Batch Type Analysis ple ID: Dup d: 06/04/19 0	0:01 9:20 Batch Method 300.0 0:01	Run	Factor			Batch Number 600727	Prepared or Analyzed 06/11/19 19:51	Ma Analyst SW1 D: 490-	Lab TAL NSH
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 06/04/19 0 d: 06/06/19 0 Batch Type Analysis ple ID: Dup d: 06/04/19 0	0:01 9:20 Batch Method 300.0 0:01	Run	Factor			Batch Number 600727	Prepared or Analyzed 06/11/19 19:51	Ma Analyst SW1 D: 490-	Lab TAL NSH
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	d: 06/04/19 0 d: 06/06/19 0 Batch Type Analysis ple ID: Dup d: 06/04/19 0 d: 06/06/19 0	0:01 9:20 Batch Method 300.0 0:01 9:20	Run Run	Factor 1	Amount	Amount	Batch Number 600727	Prepared or Analyzed 06/11/19 19:51 b Sample II	Ma Analyst SW1 D: 490-	Lab TAL NSH

Laboratory References:

TAL NSH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville, TN 37204, TEL (615)726-0177

Matrix: Water

Method Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 490-175390-1 SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory	
300.0	Anions, Ion Chromatography	MCAWW	TAL NSH	
	References: /W = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-	020, March 1983 And Subsequent Revisions.		5
Laborator	ry References:			
TAL NS	SH = Eurofins TestAmerica, Nashville, 2960 Foster Creighton Drive, Nashville	e, TN 37204, TEL (615)726-0177		
				8
				7 8 9
				4 8 9 1(

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 490-175390-1 SDG: Property ID: 891077

Page 144 of 193

Laboratory: Eurofins TestAmerica, Nashville

The accreditations/certifications listed below are applicable to this report.

Oklahoma State Program 6 9412 08-31-19	Au	ithority	Program	EPA Region	Identification Number	Expiration Date
	Ok	lahoma	State Program	6	9412	08-31-19

Eurofins TestAmerica, Nashville
Nashville, TN

|--|--|

490-175390 Chain of Custody

THE LEADER IN ENVIRONMENTAL TESTING	
Nashville, TN	COOLER RECEIPT FORM

Cooler Received/Opened On 6/6/2019 @ 9:20

TestAmerica

Time Samples Removed From Cooler 17:20 Time Samples Placed In Storage 17:30	(2 Hour Window)
1. Tracking #(last 4 digits, FedEx) Courier: <u>FedEx</u>	
IR Gun ID 17960358 pH Strip Lot chlorine Strip Lot	
2. Temperature of rep. sample or temp blank when opened: $\frac{1}{2}$ Degrees Celsius	
3. If Item #2 temperature is 0° C or less, was the representative sample or temp blank frozen?	YES NO. NA
4. Were custody seals on outside of cooler?	ESNONA
5. Were the seals intact, signed, and dated correctly?	YESNONA
6. Were custody papers inside cooler?	VESNONA
I certify that I opened the cooler and answered questions 1-6 (intial)	•
7. Were custody seals on containers: YES O and Intact	YESNO.
Were these signed and dated correctly?	YES NO
8. Packing mat'l used? Bubblewrap Plastic bag Peanuts Vermiculite Foam Insert Pape	r Othe None
9. Cooling process: Ice Ice-pack loe (direct contact) Dry ice	Other None
10. Did all containers arrive in good condition (unbroken)?	ES.NONA
11. Were all container labels complete (#, date, signed, pres., etc)?	ES.NONA
12. Did all container labels and tags agree with custody papers?	VES.NONA
13a. Were VOA vials received?	YES. NO.NA
b. Was there any observable headspace present in any VOA vial?	YESNO.
Larger than this.	
14. Was there a Trip Blank in this cooler? YESNO((.NA) If multiple coolers, sequence	e#

14. Was there a Trip Blank in this cooler? YESNO(.NA) If multiple coolers, sequer	nce #
I certify that I unloaded the cooler and answered guestions 7-14 (intial)	mom
15a. On pres'd bottles, did pH test strips suggest preservation reached the correct pH level?	YESNO. NA
b. Did the bottle labels indicate that the correct preservatives were used	YESNO
16. Was residual chlorine present?	YESNO. NA
I certify that I checked for chlorine and pH as per SOP and answered questions 15-16 (intial)	MDM
17. Were custody papers properly filled out (ink, signed, etc)?	TESNONA
18. Did you sign the custody papers in the appropriate place?	(YES)NONA
19. Were correct containers used for the analysis requested?	ENONA
20. Was sufficient amount of sample sent in each container?	TES NO NA
I certify that I entered this project into LIMS and answered questions 17-20 (intial)	mon
I certify that I attached a label with the unique LIMS number to each container (intial)	mom
21. Were there Non-Conformance issues at login? YES NO Was a NCM generated? YES NO	.)#

Page 145 of 193

12

Revised 8/23/17

BIS = Broken in shipment Cooler Receipt Form.doc

Received by OCD: 4/25/2024 8:53:21 AM

6-4-19 RELINQUISHED BY: RELINQUISHED BY: SAMPLER'S PRINTED NAME RECEIVED IN LABORATORY BY: 6-4-19 SAMPLER'S SIGNATURE: METHOD OF SHIPMENT: 1-4-1 5 6-4-19 LABORATORY CONTACT: **FOTAL NUMBER OF CONTAINERS** Date ERRY CATHY GARTNER POINT OF ORIGIN: भव Sohl 017 Time -IShe Fab Ala <u>0,0</u> EQ Blank mw-4 mw-8 EQUUS 615-301-5041 Sample ID DATE6-5-19 TIME 1680 DATE TIME DATE 3 TIME E Ę SHIPPED TO: PROJECT NUMBER z CHKSTATM: HI9001 Sample Matrix TA - NASHVILLE ſ # of Sample Containers CHAIN OF CUSTODY RECORD RECEIVED BY: Send PDF, EDD, and INVOICE (if applicable) to: OAGC [D EGUNSENV, COM; JULLE, CZECH OEGUNSENV, COMRECEIVED BY; AIRBILL NUMBER: \times ベ CHLORIDE 2960 FOSTER CREIGHTON PRVE 4564 TAWAS PROJECT NAME: PROJECT MANAGER: DAVID BRADY CHK STATE 10 85 1.40 2 4119 DATE 6.6.49 TIME 0920 DATE TIME NASHVILLE, TN ASOW: N/ATAT: STANDARD õ 37204 REMARKS No. Loc: 490 175390 -<u>o</u> 1073 Î ŝ L. ~

Page 146 of 193

ż

1

12

Received by OCD: 4/25/2024 8:53:21 AM

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.testamericainc.com

Visit us at:

Expert

Released to Imaging: 6/4/2024 2:38:02 PM

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-190781-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: CHK STATE M

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

-athy Gartner

Authorized for release by: 9/20/2019 5:07:00 PM

Cathy Gartner, Project Manager II (615)301-5041 cathy.gartner@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Page 148 of 193

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-190781-1 SDG: Property ID: 891077

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	Λ
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	0
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	8
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	9
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	10
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	11
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	13 14
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 460-190781-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-190781-1

Comments

No additional comments.

Receipt

The samples were received on 9/6/2019 10:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

GC Semi VOA

Method(s) 300.0: The following samples were diluted to bring the concentration of Chloride within the calibration range: MW-4 (460-190781-1), MW-8 (460-190781-3) and Dup (460-190781-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Received by OCD: 4/25/2024 8:53:21 AM

Client: Chesapeake Energy Corporation

Detection Summary

Job ID: 460-190781-1 SDG: Property ID: 891077

Project/Site: CHK STATE M

Client Sample ID: MW-4						Lab Sam	ple ID: 4	60-190781-1
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	404		150		mg/L	150	300.0	Total/NA
Client Sample ID: EQ Blank						Lab Sam	ple ID: 4	60-190781-2
No Detections.								
Client Sample ID: MW-8						Lab Sam	ple ID: 4	60-190781-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	223		80.0		mg/L	80	300.0	Total/NA
Client Sample ID: Dup						Lab Sam	ple ID: 4	60-190781-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	217		80.0		mg/L		300.0	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Chesapeake Energy Corporation

Matrix: Water

5 6 7

Client Sample Results

Job ID: 460-190781-1 SDG: Property ID: 891077

Client Sample ID: MW-4 Date Collected: 09/04/19 12:05 Date Received: 09/06/19 10:30

Project/Site: CHK STATE M

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	404	150		mg/L			09/16/19 00:21	150
Client Sample ID: EQ Blank					Lal	b Sample	ID: 460-190)781-2
Date Collected: 09/04/19 12:15								: Wate
Date Received: 09/06/19 10:30								
_ Method: 300.0 - Anions, Ion Chr	omatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	1.00		mg/L			09/15/19 12:22	
Client Sample ID: MW-8					l al	h Samnlo	ID: 460-190	781-1
Date Collected: 09/04/19 14:30					La	oumpic		: Wate
							Watin	. wale
Date Received: 09/06/19 10:30								
_								
Method: 300.0 - Anions, Ion Chr								
Method: 300.0 - Anions, Ion Chro Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	
Method: 300.0 - Anions, Ion Chro		RL 80.0	MDL	Unit mg/L	D	Prepared	Analyzed	
Method: 300.0 - Anions, Ion Chro Analyte Chloride	Result Qualifier		MDL			•	09/16/19 00:36	8
Method: 300.0 - Anions, Ion Chro Analyte Chloride Client Sample ID: Dup	Result Qualifier		MDL			•	09/16/19 00:36 D: 460-190	80 781-4
Method: 300.0 - Anions, Ion Chro Analyte Chloride Client Sample ID: Dup Date Collected: 09/04/19 00:00	Result Qualifier		MDL			•	09/16/19 00:36 D: 460-190	Dil Fac 80 0781-4 : Wate
Method: 300.0 - Anions, Ion Chro Analyte Chloride Client Sample ID: Dup Date Collected: 09/04/19 00:00 Date Received: 09/06/19 10:30	Result Qualifier		MDL			•	09/16/19 00:36 D: 460-190	80 781-4
Method: 300.0 - Anions, Ion Chro Analyte Chloride Client Sample ID: Dup Date Collected: 09/04/19 00:00 Date Received: 09/06/19 10:30 Method: 300.0 - Anions, Ion Chro	Result Qualifier 223	80.0		mg/L	Lal	b Sample	09/16/19 00:36 D: 460-190 Matrix	8 9781-4 : Wate
Analyte Chloride Client Sample ID: Dup Date Collected: 09/04/19 00:00 Date Received: 09/06/19 10:30	Result Qualifier					•	09/16/19 00:36 D: 460-190	

Lab Sample ID: 460-190781-1

QC Sample Results

Job ID: 460-190781-1 SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-639415/8									CI	ien	t Sam	ple ID: M		
Matrix: Water												Prep Ty	be: To	tal/NA
Analysis Batch: 639415														
	MB	MB												
Analyte		Qualifier		RL		MDL	Unit		D	Pre	pared	Analyz		Dil Fac
Chloride	ND			1.00			mg/L					09/15/19	11:37	1
Lab Sample ID: LCS 460-639415/5								Clie	ent Sa	am	ple ID	: Lab Cor	trol Sa	ample
Matrix: Water												Prep Ty	be: To	tal/NA
Analysis Batch: 639415														
-			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qua	lifier	Unit	0) %	%Rec	Limits		
Chloride			1.50		1.583			mg/L			106	90 - 110		
Lab Sample ID: LCSD 460-639415/	6						C	lient S	ampl	e IC	D: Lat		Sampl	e Dup
Matrix: Water												Prep Ty	be: To	tal/NA
Analysis Batch: 639415														
-			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qua	lifier	Unit	0) %	%Rec	Limits	RPD	Limit
Chloride			1.50		1.604			mg/L			107	90 - 110	1	15
Lab Sample ID: MB 460-639589/37									CI	ien	t Sam	ple ID: M	ethod	Blank
Matrix: Water												Prep Ty	be: To	tal/NA
Analysis Batch: 639589														
	MB	MB												
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Pre	pared	Analyz	ed	Dil Fac
Chloride	ND			1.00			mg/L					09/16/19	08:38	1
Lab Sample ID: LCS 460-639589/5								Clie	ent Sa	am	ple ID	: Lab Cor	trol Sa	ample
Matrix: Water											·	Prep Ty	be: To	tal/NA
Analysis Batch: 639589														
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qua	lifier	Unit	0) %	%Rec	Limits		
Chloride			1.50		1.587			mg/L			106	90 - 110		
Lab Sample ID: LCSD 460-639589/	6		1.50		1.587		C	Ū.	ampl	e II		90 - 110	Sampl	e Dup
	6		1.50		1.587		C	Ū.	ampl	e II		o Control		
Lab Sample ID: LCSD 460-639589/ Matrix: Water	6		1.50		1.587		C	Ū.	ampl	e II				
Lab Sample ID: LCSD 460-639589/	6		1.50 Spike		1.587	LCS		Ū.	ampl	e I[o Control		
Lab Sample ID: LCSD 460-639589/ Matrix: Water	6						D	Ū.	ampl			Control Prep Ty		tal/NA

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 639415

Client Sample ID	Prep Type	Matrix	Method	Prep Batch
EQ Blank	Total/NA	Water	300.0	
Method Blank	Total/NA	Water	300.0	
Lab Control Sample	Total/NA	Water	300.0	
Lab Control Sample Dup	Total/NA	Water	300.0	
	Method Blank Lab Control Sample	Method BlankTotal/NALab Control SampleTotal/NALab Control Sample DupTotal/NA	Method BlankTotal/NAWaterLab Control SampleTotal/NAWaterLab Control Sample DupTotal/NAWater	Method BlankTotal/NAWater300.0Lab Control SampleTotal/NAWater300.0Lab Control Sample DupTotal/NAWater300.0

Batch: 63958 Г

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-190781-1	MW-4	Total/NA	Water	300.0	8
460-190781-3	MW-8	Total/NA	Water	300.0	
460-190781-4	Dup	Total/NA	Water	300.0	9
MB 460-639589/37	Method Blank	Total/NA	Water	300.0	·····
LCS 460-639589/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-639589/6	Lab Control Sample Dup	Total/NA	Water	300.0	
					13

Job ID: 460-190781-1

Client: Chesapeake Energy Corporation

Matrix: Water

Lab Chronicle

Job ID: 460-190781-1 SDG: Property ID: 891077

Lab Sample ID: 460-190781-1

Client Sample ID: MW-4 Date Collected: 09/04/19 12:05 Date Received: 09/06/19 10:30

Project/Site: CHK STATE M

_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0		150	639589	09/16/19 00:21	VMI	TAL EDI	
Client Sam	ple ID: EQ	Blank					Lab Sa	mple ID:	460-190781-2
Date Collecte	d: 09/04/19 1	2:15						-	Matrix: Wate
Date Receive	d: 09/06/19 1	0:30							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0			639415	09/15/19 12:22	VMI	TAL EDI	
– Client Sam	,	-8					Lab Sa	mole ID:	460-190781-
Client Sam Date Collecte Date Receive	ple ID: MW d: 09/04/19 1	4:30					Lab Sa	mple ID:	
Date Collecte	ple ID: MW d: 09/04/19 1	4:30		Dilution	Batch	Prepared	Lab Sa	imple ID:	
Date Collecte	ple ID: MW d: 09/04/19 1 d: 09/06/19 1	4:30 0:30	Run	Dilution Factor	Batch Number		Lab Sa	Lab	
Date Collecte Date Receive	ple ID: MW d: 09/04/19 1 d: 09/06/19 1 Batch	4:30 0:30 Batch	Run			Prepared			
Date Collecte Date Receive Prep Type	ple ID: MW d: 09/04/19 1 d: 09/06/19 1 Batch Type Analysis	4:30 0:30 Batch <u>Method</u> 300.0	Run	Factor	Number	Prepared or Analyzed 09/16/19 00:36	<mark>Analyst</mark> VMI	Lab TAL EDI	Matrix: Wate
Date Collecte Date Receive Prep Type Total/NA	ple ID: MW d: 09/04/19 1 d: 09/06/19 1 Batch Type Analysis ple ID: Dup	4:30 0:30 Batch Method 300.0	<u>Run</u>	Factor	Number	Prepared or Analyzed 09/16/19 00:36	<mark>Analyst</mark> VMI	Lab TAL EDI	Matrix: Wate
Date Collecte Date Receive Prep Type Total/NA Client Sam	ple ID: MW d: 09/04/19 1 d: 09/06/19 1 Batch Type Analysis ple ID: Dup d: 09/04/19 0	4:30 0:30 Batch Method 300.0 0:00	Run	Factor	Number	Prepared or Analyzed 09/16/19 00:36	<mark>Analyst</mark> VMI	Lab TAL EDI	Matrix: Wate
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	ple ID: MW d: 09/04/19 1 d: 09/06/19 1 Batch Type Analysis ple ID: Dup d: 09/04/19 0	4:30 0:30 Batch Method 300.0 0:00	Run	Factor	Number	Prepared or Analyzed 09/16/19 00:36	<mark>Analyst</mark> VMI	Lab TAL EDI	Matrix: Wate
Date Collecte Date Received Prep Type Total/NA Client Sam Date Collecte	ple ID: MW d: 09/04/19 1 d: 09/06/19 1 Batch Type Analysis ple ID: Dup d: 09/06/19 1	4:30 0:30 Batch Method 300.0 0:00 0:30	Run	Factor 80	Number 639589	Prepared or Analyzed 09/16/19 00:36	<mark>Analyst</mark> VMI	Lab TAL EDI	460-190781-3 Matrix: Water 460-190781-4 Matrix: Water

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M Job ID: 460-190781-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
Connecticut	State	PH-0200	09-30-20	
Connecticut	State Program	PH-0200	09-30-20	
DE Haz. Subst. Cleanup Act (HSCA)	State	<cert no.=""></cert>	12-31-21	
DE Haz. Subst. Cleanup Act (HSCA)	State Program	N/A	12-31-19	
lew Jersey	NELAP	12028	06-30-20	
lew Jersey	NELAP	12028	06-30-20	
lew York	NELAP	11452	04-01-20	
lew York	NELAP	11452	04-01-20	
ennsylvania	NELAP	68-00522	02-28-20	
ennsylvania	NELAP	68-00522	02-28-20	
hode Island	State	LAO00132	12-30-19	
hode Island	State Program	LAO00132	12-30-19	
SDA	Federal	NJCA-003-08	05-03-21	
JSDA	US Federal Programs	P330-18-00135	05-03-21	
aboratory: Eurofins TestA	merica, Nashville			
e accreditations/certifications listed below	are applicable to this report.			
authority	Program	Identification Number	Expiration Date	
Oklahoma	State Program	9412	08-31-20	

Method Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-190781-1 SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory	
300.0	Anions, Ion Chromatography	MCAWW	TAL EDI	4
Protocol R	References:			5
MCAW	W = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983	And Subsequent Revisions	S.	
Laborator	y References:			
TAL ED	II = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-	3900		
				8
				9
				11

Page 158 of 193

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-190781-1 SDG: Property ID: 891077

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
60-190781-1	MW-4	Water	09/04/19 12:05	09/06/19 10:30		
60-190781-2	EQ Blank	Water	09/04/19 12:15	09/06/19 10:30		
60-190781-3	MW-8	Water	09/04/19 14:30	09/06/19 10:30		
60-190781-4	Dup	Water	09/04/19 00:00	09/06/19 10:30		

Eurofins TestAmerica, Edison

Page 159 of 193

Page 13 of 15

Number of Coolers:				Ø									
areave -0.0		IR Gun #		<u> </u>	mperal	tures							
	ac (c)	<u> </u>	Cooler #4: Cooler #5: Cooler #6:				<u> </u>	Cooler #7: Cooler #8: Cooler #9:					
	Nitrate COD Nitrite	te te Metals	Hardness	Pest	EPH or QAM	Phenols	Sulfide	TKN	TOC	Total Cyanide	Total Phos	Other	Other
TALS Sample Number (pH<2) (pH<2)	I<2) (pH<2)	2) (pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(6 <hq)< td=""><td>(pH<2)</td><td>(pH<2)</td><td>(pH>12)</td><td>(pH<2)</td><td></td><td></td></hq)<>	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
					<u> </u>								
													1
If pH adjustments are required record the information below: Sample No(s). adjusted:	ients are re	quired recor		mation be	:woli								
Preservative Name/Conc.:				Volun	ne of Pres	Volume of Preservative used (ml):	sed (ml): _						
Lot # of Preservative(s)						Expirati	Expiration Date: _						
The ap	propriate Pr * Samples fo	The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. * Samples for Metal analvsis which are out of compliance must be acidified at least 24 hours prior to analvsis.	er and Dep. 'sis which a	artment Mi rre out of c	anager shi ompliance	ould be no e must be (tified abou acidified a	it the sam t least 24	ples whic hours pric	h were pH or to analv	I adjusted. sis.		
	Initials:					Date [.]	MANA	G /19	J				
EDS-WI-038, Rev 4, 06/09/2014		 				1							

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 190781 List Number: 1 Creator: Lysy, Susan

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1084175
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

14

Job Number: 460-190781-1 SDG Number: Property ID: 891077

List Source: Eurofins TestAmerica, Edison

Received by OCD: 4/25/2024 8:53:21 AM

🛟 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-199185-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: CHK STATE M

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

athy Gartner

Authorized for release by: 12/24/2019 12:05:47 PM

Cathy Gartner, Project Manager II (615)301-5041 cathy.gartner@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through TOTOLACCESS Have a Question? Have a Question? Ask The Expert

Visit us at: www.testamericainc.com

Released to Imaging: 6/4/2024 2:38:02 PM

Page 163 of 193

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	9
Lab Chronicle	10
Certification Summary	11
Method Summary	12
Sample Summary	13
Chain of Custody	14
Receipt Checklists	16

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-199185-1 SDG: Property ID: 891077

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	Α
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CNF	Contains No Free Liquid	3
DER	Duplicate Error Ratio (normalized absolute difference)	6
Dil Fac	Dilution Factor	0
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	ŏ
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	9
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	13
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	13 14
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 460-199185-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-199185-1

Comments

No additional comments.

Receipt

The samples were received on 12/18/2019 3:21 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC Semi VOA

Method 300.0: The following sample was diluted to bring the concentration of Chloride within the calibration range: MW-8 (460-199185-3). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted to bring the concentration of Chloride within the calibration range: MW-4 (460-199185-1). Elevated reporting limits (RLs) are provided.

Method 300.0: The following sample was diluted to bring the concentration of Chloride within the calibration range: Dup (460-199185-4). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

Received by OCD: 4/25/2024 8:53:21 AM

Client: Chesapeake Energy Corporation

Detection Summary

Job ID: 460-199185-1 SDG: Property ID: 891077

Project/Site: CHK STATE M Client Sample ID: MW-4

Client Sample ID: MW-4						Lab San	nple ID: 4	60-199185-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	421		250		mg/L	250	300.0	Total/NA
Client Sample ID: EQ Blank						Lab San	nple ID: 4	60-199185-2
No Detections.								
Client Sample ID: MW-8						Lab San	nple ID: 4	60-199185-3
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	198		50.0		mg/L	50	300.0	Total/NA
Client Sample ID: Dup						Lab San	nple ID: 4	60-199185-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloride	415		250		mg/L	250	300.0	Total/NA

This Detection Summary does not include radiochemical test results.

Client: Chesapeake Energy Corporation

Matrix: Water

5 6

Client Sample Results

Job ID: 460-199185-1 SDG: Property ID: 891077

Lab Sample ID: 460-199185-1

Client Sample ID: MW-4 Date Collected: 12/06/19 12:20 Date Received: 12/18/19 15:21

Project/Site: CHK STATE M

Analyte	Result Qualifie	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	421	250		mg/L			12/20/19 07:40	25
Client Sample ID: EQ Bla	nk				La	b Sample	ID: 460-199	9185-2
Date Collected: 12/06/19 12:25	;					-	Matrix	: Wate
Date Received: 12/18/19 15:21								
 Method: 300.0 - Anions, Ion (Chromatography							
Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	ND	1.00		mg/L			12/19/19 03:08	
Client Sample ID: MW-8					La	b Sample	ID: 460-199	9185-3
Date Collected: 12/06/19 13:40)						Matrix	
Date Received: 12/18/19 15:21								
_ Method: 300.0 - Anions, Ion (Chromatography							
Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	198	50.0		mg/L			12/19/19 03:23	5
Client Sample ID: Dup					La	b Sample	ID: 460-199	9185-4
Date Collected: 12/06/19 00:00)						Matrix	
Date Received: 12/18/19 15:21								
_ Method: 300.0 - Anions, Ion (Chromatography							
method. 000.0 - Amons, 1011	Sinomatography				_			
Analyte	Result Qualifi	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Page 168 of 193

5

Job ID: 460-199185-1 SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-663679/3 Matrix: Water								C	lie	nt Sam	ple ID: Me Prep Typ		
Analysis Batch: 663679													
• • •		MB						_	_				
Analyte Chloride	ND	Qualifier		RL		MDL Unit		D	Pi	repared	Analyz 12/18/19 2		Dil Fa
	ND			1.00		mg/L					12/10/19 2	22.42	
Lab Sample ID: LCS 460-663679/5 Matrix: Water							CI	ient S	Sar	nple ID	: Lab Con Prep Typ		
Analysis Batch: 663679			Calles		1.00	LCS					%Rec.		
Analyte			Spike Added		-	Qualifier	Unit		D	%Rec	Skec.		
Chloride			1.50		1.529		mg/L		-	102	90 - 110		
-							-						
Lab Sample ID: LCSD 460-663679/6	5					C	client \$	Samp	ole	ID: Lab	Control S		
Matrix: Water											Prep Typ	e: To	tal/N/
Analysis Batch: 663679			Spike		LCSD	LCSD					%Rec.		RPI
Analyte			Added			Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride			1.50		1.583		mg/L		_	106	90 - 110	3	1:
								_				41	Diani
Lab Sample ID: MB 460-663765/3 Matrix: Water								C	lie	nt Sam	ple ID: Me Prep Typ		
Analysis Batch: 663765											пертур	. 10	
,	MB	МВ											
								D	р,		Analyz	ed	
Analyte		Qualifier		RL		MDL Unit		D	г	epared	-		
	Result ND	Qualifier		RL 1.00		MDL Unit mg/L		<u> </u>		epared	12/20/19 0		
Chloride		Qualifier					CI			·	12/20/19 (01:30	
Chloride Lab Sample ID: LCS 460-663765/5		Qualifier					CI			·	12/20/19 0	01:30	ample
Analyte Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765		Qualifier				mg/L	CI			·	12/20/19 (01:30	ample
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765		Qualifier	Spike	1.00	LCS	LCS		ient S	Sar	nple ID	12/20/19 (: Lab Con Prep Typ %Rec.	01:30	ample
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte		Qualifier	Added	1.00	LCS Result	mg/L	Unit	ient S		nple ID	12/20/19 (Lab Con Prep Typ %Rec. Limits	01:30	ample
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte		Qualifier	•	1.00	LCS	LCS		ient S	Sar	nple ID	12/20/19 (: Lab Con Prep Typ %Rec.	01:30	ample
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride	ND	Qualifier	Added	1.00	LCS Result	LCS Qualifier	Unit mg/L	ient S	Sar D	nple ID %Rec 103	12/20/19 (Lab Con Prep Typ %Rec. Limits 90 - 110	trol Sa be: To	ample tal/NA
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte	ND	Qualifier	Added	1.00	LCS Result	LCS Qualifier	Unit mg/L	ient S	Sar D	nple ID %Rec 103	12/20/19 (Lab Con Prep Typ %Rec. Limits	trol Sampl	ample tal/N/
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6	ND	Qualifier	Added 1.50	1.00	LCS Result 1.548	LCS Qualifier	Unit mg/L	ient S	Sar D	nple ID %Rec 103	12/20/19 (Lab Com Prep Typ %Rec. Limits 90 - 110 Control S Prep Typ	trol Sampl	ample tal/N/ e Dup tal/N/
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765	ND	Qualifier	Added 1.50 Spike	1.00	LCS Result 1.548	LCS Qualifier LCSD	Unit mg/L	ient S	Sar D	nple ID %Rec 103 ID: Lab	12/20/19 (: Lab Com Prep Typ %Rec. Limits 90 - 110 Control S Prep Typ %Rec.	ontrol Sampl Sample: To	e Dup tal/NA RPI
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte	ND	Qualifier	Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result	LCS Qualifier	Unit mg/L Client \$	ient S	Sar D	nple ID %Rec 103 ID: Lab	12/20/19 (Lab Com Prep Typ %Rec. Limits 90 - 110 Control S Prep Typ %Rec. Limits	sampl croi Sampl croi Sampl croi croi croi croi croi croi croi croi	e Dup tal/NA tal/NA RPE Limi
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765	ND	Qualifier	Added 1.50 Spike	1.00	LCS Result 1.548	LCS Qualifier LCSD	Unit mg/L	ient S	Sar D	nple ID %Rec 103 ID: Lab	12/20/19 (: Lab Com Prep Typ %Rec. Limits 90 - 110 Control S Prep Typ %Rec.	ontrol Sampl Sample: To	e Dup tal/NA tal/NA RPE Limi
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride	ND	Qualifier	Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result	LCS Qualifier LCSD	Unit mg/L Client \$	ient S	Sar D D D D	%Rec 103 ID: Lab %Rec 104	12/20/19 (Lab Com Prep Typ %Rec. Limits 90 - 110 Control S Prep Typ %Rec. Limits	Sample: To RPD	e Dup tal/N/ tal/N/ RPI Limi
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water	ND	Qualifier	Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result	LCS Qualifier LCSD	Unit mg/L Client \$	ient S	Sar D D D D	%Rec 103 ID: Lab %Rec 104	12/20/19 (12/20/19 (: Lab Comprep Typ %Rec. Limits 90 - 110 Control S Prep Typ %Rec. Limits 90 - 110 %Rec. Limits 90 - 110	Sampl be: To RPD 1 sthod	e Dup tal/N/ RPI Limi
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water	ND		Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result	LCS Qualifier LCSD	Unit mg/L Client \$	ient S	Sar D D D D	%Rec 103 ID: Lab %Rec 104	12/20/19 (12/20/19 (: Lab Compression Prep Typ %Rec. Limits 90 - 110 Control S Prep Typ %Rec. Limits 90 - 110 %Rec. Limits 90 - 110 ple ID: Met	Sampl be: To RPD 1 sthod	e Dup tal/N/ tal/N/ RPI Limi 11 Blan
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water Analysis Batch: 664036	ND		Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result 1.562	LCS Qualifier LCSD Qualifier	Unit mg/L Client \$	ient S	D D D D Clie	nple ID %Rec 103 ID: Lab %Rec 104 mt Sam	12/20/19 (12/20/19 (: Lab Comprep Typ %Rec. Limits 90 - 110 O Control S Prep Typ %Rec. Limits 90 - 110 %Rec. Limits 90 - 110 %Prep Typ %Rec. Limits 90 - 110 Prep ID: Me Prep Typ	Sample: To RPD 1 sthod 1	e Dup tal/NA RPC Limi 18 Blank tal/NA
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water Analysis Batch: 664036 Analyte	ND		Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result 1.562	LCS Qualifier LCSD Qualifier MDL Unit	Unit mg/L Client \$	ient S	D D D D Clie	%Rec 103 ID: Lab %Rec 104	12/20/19 (12/20/19 (: Lab Compensation Prep Typ %Rec. Limits 90 - 110 Control S Prep Typ %Rec. Limits 90 - 110 %Rec. Limits 90 - 110 ple ID: Me Prep Typ Analyze	Sample: To RPD 1 sethod e: To 1 sethod sethod	e Dup tal/NA RPC Limi 15 Blank tal/NA
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water Analysis Batch: 664036	ND		Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result 1.562	LCS Qualifier LCSD Qualifier	Unit mg/L Client \$	ient S	D D D D Clie	nple ID %Rec 103 ID: Lab %Rec 104 mt Sam	12/20/19 (12/20/19 (: Lab Comprep Typ %Rec. Limits 90 - 110 O Control S Prep Typ %Rec. Limits 90 - 110 %Rec. Limits 90 - 110 %Prep Typ %Rec. Limits 90 - 110 Prep ID: Me Prep Typ	Sample: To RPD 1 sethod e: To 1 sethod sethod	e Dup tal/NA RPI Limi 1! Blank tal/NA
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water Analysis Batch: 664036 Analyte Chloride Lab Sample ID: LCS 460-664036/5	ND		Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result 1.562	LCS Qualifier LCSD Qualifier MDL Unit	Unit mg/L Client S Unit mg/L	Samp	Sar D D D C D C C C C C C C C C C C C C C	nple ID %Rec 103 ID: Lab %Rec 104 mt Sam	12/20/19 (12/20/19 (* Lab Comprep Typ %Rec. Limits 90 - 110 • Control S Prep Typ %Rec. Limits 90 - 110 • Control S Prep Typ %Rec. Limits 90 - 110 • Prep Typ %Rec. Limits 90 - 110 • Prep Typ * Analyze 12/20/19 1 : Lab Con	trol Sampl be: To Sampl be: To RPD 1 sthod be: To ed 15:12	e Duj tal/N/ E Duj tal/N/ Blani tal/N/ Dil Fa
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water Analysis Batch: 664036 Analyte Chloride Lab Sample ID: LCS 460-664036/5 Matrix: Water	ND		Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result 1.562	LCS Qualifier LCSD Qualifier MDL Unit	Unit mg/L Client S Unit mg/L	Samp	Sar D D D C D C C C C C C C C C C C C C C	nple ID %Rec 103 ID: Lab %Rec 104 mt Sam	12/20/19 (12/20/19 (* Lab Compensation Prep Typ %Rec. Limits 90 - 110 Control S Prep Typ %Rec. Limits 90 - 110 %Rec. Limits 90 - 110 ple ID: Met Prep Typ Analyz 12/20/19 1	trol Sampl be: To Sampl be: To RPD 1 sthod be: To ed 15:12	e Dup tal/N/ RPI Limi 1: Blanl tal/N/ Dil Fa
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water Analysis Batch: 664036 Analyte	ND		Added 1.50 Spike Added 1.50	1.00	LCS Result 1.548 LCSD Result 1.562	LCS Qualifier LCSD Qualifier MDL Unit mg/L	Unit mg/L Client S Unit mg/L	Samp	Sar D D D C D C C C C C C C C C C C C C C	nple ID %Rec 103 ID: Lab %Rec 104 mt Sam	12/20/19 (0 12/20/19 (0 : Lab Comprep Typ %Rec. Limits 90 - 110 0 Control S Prep Typ %Rec. Limits 90 - 110 %Rec. Limits 90 - 110 Prep Typ %Rec. Limits 90 - 110 Prep Typ Analyze 12/20/19 1 : Lab Comprep Typ	trol Sampl be: To Sampl be: To RPD 1 sthod be: To ed 15:12	e Dup tal/NA RPI Limi 1! Blank tal/NA Dil Fac
Chloride Lab Sample ID: LCS 460-663765/5 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: LCSD 460-663765/6 Matrix: Water Analysis Batch: 663765 Analyte Chloride Lab Sample ID: MB 460-664036/3 Matrix: Water Analysis Batch: 664036 Analyte Chloride Lab Sample ID: LCS 460-664036/5 Matrix: Water	ND		Added 1.50 Spike Added	1.00	LCS Result 1.548 LCSD Result 1.562	LCS Qualifier LCSD Qualifier MDL Unit	Unit mg/L Client S Unit mg/L	ient S Samp C	Sar D D D C D C C C C C C C C C C C C C C	nple ID %Rec 103 ID: Lab %Rec 104 mt Sam	12/20/19 (12/20/19 (* Lab Comprep Typ %Rec. Limits 90 - 110 • Control S Prep Typ %Rec. Limits 90 - 110 • Control S Prep Typ %Rec. Limits 90 - 110 • Prep Typ %Rec. Limits 90 - 110 • Prep Typ * Analyze 12/20/19 1 : Lab Con	trol Sampl be: To Sampl be: To RPD 1 sthod be: To ed 15:12	e Dup tal/NA RPC Limit 15 Blank tal/NA Dil Fac

Eurofins TestAmerica, Edison

Job ID: 460-199185-1

SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCSD 460-664036/6 Matrix: Water Analysis Batch: 664036			C	Client S	Sample	ID: Lat	Control Prep Ty		
Analysis Datch. 004030	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	1.50	1.456		mg/L		97	90 - 110	2	15

Page 169 of 193

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

HPLC/IC

Analysis Batch: 663679

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-199185-2	EQ Blank	Total/NA	Water	300.0	
460-199185-3	MW-8	Total/NA	Water	300.0	
MB 460-663679/3	Method Blank	Total/NA	Water	300.0	
LCS 460-663679/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-663679/6	Lab Control Sample Dup	Total/NA	Water	300.0	
Analysis Batch: 663		D	BI = 6 × 5 × 5		Dura Datak
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
460-199185-1	MW-4	Total/NA	Water	300.0	
MB 460-663765/3	Method Blank	Total/NA	Water	300.0	
LCS 460-663765/5	Lab Control Sample	Total/NA	Water	300.0	
LCSD 460-663765/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Analysis Batch: 664036

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
460-199185-4	Dup	Total/NA	Water	300.0		
MB 460-664036/3	Method Blank	Total/NA	Water	300.0		
LCS 460-664036/5	Lab Control Sample	Total/NA	Water	300.0		
LCSD 460-664036/6	Lab Control Sample Dup	Total/NA	Water	300.0		

Page 170 of 193

Job ID: 460-199185-1 SDG: Property ID: 891077

Client: Chesapeake Energy Corporation

Lab Chronicle

Job ID: 460-199185-1 SDG: Property ID: 891077

Client Sample ID: MW-4 Date Collected: 12/06/19 12:20 Date Received: 12/18/19 15:21

Project/Site: CHK STATE M

Lab Sample ID: 460-199185-1

Matrix: Water Batch Batch Dilution Batch Prepared Method or Analyzed Prep Type Туре Run Factor Number Analyst Lab TAL EDI Total/NA 12/20/19 07:40 VMI Analysis 300.0 250 663765 **Client Sample ID: EQ Blank** Lab Sample ID: 460-199185-2 Date Collected: 12/06/19 12:25 Matrix: Water Date Received: 12/18/19 15:21 Dilution Batch Batch Batch Prepared Prep Type Туре Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 1 663679 12/19/19 03:08 VMI TAL EDI **Client Sample ID: MW-8** Lab Sample ID: 460-199185-3 Date Collected: 12/06/19 13:40 Matrix: Water Date Received: 12/18/19 15:21 Batch Batch Dilution Batch Prepared Prep Type Туре Method Factor Number or Analyzed Run Analyst Lab VMI TAL EDI Total/NA Analysis 300.0 50 663679 12/19/19 03:23 **Client Sample ID: Dup** Lab Sample ID: 460-199185-4 Date Collected: 12/06/19 00:00 Matrix: Water Date Received: 12/18/19 15:21 Batch Batch Dilution Batch Prepared Prep Type Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis 300.0 250 664036 12/20/19 23:54 VMI TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-199185-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

Authority	Program	Identification Number	Expiration Date	
Connecticut	State	PH-0200	09-30-20	
DE Haz. Subst. Cleanup Act (HSCA)	State	<cert no.=""></cert>	12-31-21	
Georgia	State	12028 (NJ)	06-30-20	
Massachusetts	State	M-NJ312	06-30-20	
Massachusetts	State Program	M-NJ312	06-30-20	
New Jersey	NELAP	12028	06-30-20	
New York	NELAP	11452	04-01-20	
Pennsylvania	NELAP	68-00522	02-28-20	
Rhode Island	State	LAO00132	12-30-19	
USDA	US Federal Programs	P330-18-00135	05-03-21	

Laboratory: Eurofins TestAmerica, Nashville

Authority	Program	Identification Number	Expiration Date
Arizona	State Program	AZ0473	05-05-14 *

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

Eurofins TestAmerica, Edison

Method Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-199185-1 SDG: Property ID: 891077

lethod	Method Description	Protocol	Laboratory
00.0	Anions, Ion Chromatography	MCAWW	TAL EDI
Protocol R	eferences:		
MCAW	N = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/	/4-79-020, March 1983 And Subsequent Revisions	
Laboratory	/ References:		
TAL ED	I = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ	08817, TEL (732)549-3900	

Page 174 of 193

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: CHK STATE M

Job ID: 460-199185-1 SDG: Property ID: 891077

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	Asset ID	
60-199185-1	MW-4	Water	12/06/19 12:20	12/18/19 15:21		
60-199185-2	EQ Blank	Water	12/06/19 12:25	12/18/19 15:21		
60-199185-3	MW-8	Water	12/06/19 13:40			
60-199185-4	Dup	Water	12/06/19 00:00	12/18/19 15:21		
						- 1
						1

												-									- <u>-</u>				÷	1
	CRILLI	_{No.} 1444	coc <u></u>	TANDARD			REMARKS													\sim	9.6/2.6	μμ ΙΈΝΝ. CO Μ	ŗ	1+		2 3 4 5 6 7
1.	· -	ODY RECORD		PROJECT MANAGER: DAVID BRADY					7	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							لم TIME	and here of all DATE		Send PDF, EDD, and INVOICE (if applicable) to:	JULIE. CZECH (O EWUNJENV. COM		777 NEW DURHAM KU. EUIJUN, NJ VOBI +		8 9 10 11 12 13 14
		CHAIN OF CUSTODY RECORD	PROJECT NUMBER: CHKSTATM:H19001	SHIPPED TO: TA - EDISON	ainers		(07HJ Idwes to #	7 - 3	Z									DATE/2/0/16 RECEIVED BY:			-	TIME		F77 NEM		
					SAMPLER'S PRINTED MAME: TERRY TISHER	SAMPLER'S SIGNATURE	Date Sample ID	12-6-19 1220 MW-4	1225	1340	12-6-14 Dwp		-				TOTAL NUMBER OF CONTAINERS	RELINQUISHED BY:	RELINQUISHED	METHOD OF SHIPMENT:	HECEIVED IN LABORATORY BY		1	CATHY 4ARTHER 615-301-5041	POINT OF ORIGIN:	

Pageof			Other														
Å			ه ک ک						 			 				ed.	
-			l Total de Phos												I	pH adjust	alysis.
		W CORRE	Cyanide					 								hich were	טווטו ויט מוו
		BA B	TOC													amples w	, sinui 1 2
-		Cooler #7: Cooler #8: Cooler #9:	e TKN											ź): The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted.	samples for interal analysis which are out of compliance must be actimed at least 24 hours prior to analysis.
son I Log			s Sulfide											m) hood (m	e useu (III	Expiration Date: d be notified abo	ust be aciditie
Eurofins TestAmerica Edison Receipt Temperature and pH Log	<u>dooler Temperatures</u>		Phenols												Volume of Preservative used (ml):	Expi should be	ICE LINSE F
stAmer berature	er Tempe		EPH or QAM		 								below:	of D	lume or r	Manager	T conipitat
ofins Te pt Tem		<u>y</u> 1000 1000 1000	Pest	-									ormation	5	2	partment	l are out o
Eur		Cooler #4: Cooler #5: Cooler #6:	Hardness			-							rd the inf			er and De	VSIS WIILU
	IR Gun #		Metals										If pH adjustments are required record the information below:			ect Manag	vetal aria
			Nitrate Nitrite	(2>Ud)				 					: are requ			riate Proje	npies ior i
5		Corrected 2.6 C C	COD	(7\uni)									ustments		~	he approp	0.01
199.85		2, 2 <u>0</u> 2, 5 7	Ammonia	(2~nq)									lf pH adj	adjusted	ne/Conc.	rvative(s). T	
I	Jersi	cooler #1: <u>3.5c</u> Cooler #2: <u>5</u> Cooler #3: <u>c</u>												Sample No(s). adjusted:	Preservative Name/Conc.:	Lot # of Preservative(s): 77	
Job Number:	Number of Coolers:						. 					 		Samp	Preserv	Lot #	
dot	Ţ		i i i i i i i i i i i i i i i i i i i														

12/24/2019

Page 176 of 193

14

Job Number: 460-199185-1 SDG Number: Property ID: 891077

List Source: Eurofins TestAmerica, Edison

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 199185 List Number: 1 Creator: Rivera, Kenneth

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Received by OCD: 4/25/2024 8:53:21 AM

🔅 eurofins

Environment Testing TestAmerica

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-204623-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

athyGartner

Authorized for release by: 3/18/2020 12:29:29 PM

Cathy Gartner, Project Manager II (615)301-5041 cathy.gartner@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

www.testamericainc.com
Released to Imaging: 6/4/2024 2:38:02 PM

Visit us at:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

Expert

.

Laboratory Job ID: 460-204623-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-204623-1 SDG: Property ID: 891077

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CNF	Contains No Free Liquid	J
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	8
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	9
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	13
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
Job ID: 460-204623-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-204623-1

Comments

No additional comments.

Receipt

The samples were received on 3/9/2020 11:00 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.1° C.

GC Semi VOA

Method 300.0: The following samples were diluted to bring the concentration of target analytes within the calibration range: MW-4 (460-204623-1), MW-8 (460-204623-2), Dup (460-204623-4), (460-204966-D-1), (460-204966-D-1 DU), (460-204966-D-1 MS) and (460-204966-D-1 MSD). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client: Chesapeake Energy Corporation

Detection Summary

Project/Site: State M-1							S	3DG: Prope	erty ID: 891077	
Client Sample ID: MW-4						Lab Sa	am	ple ID: 40	60-204623-1	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	
Chloride - DL	443		100		mg/L	100	-	300.0	Total/NA	
Client Sample ID: MW-8						Lab Sa	am	ple ID: 40	60-204623-2	5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type	6
Chloride - DL2	118		100		mg/L	100	-	300.0	Total/NA	
lient Sample ID: EQ Bla	ank					Lab Sa	am	ple ID: 40	60-204623-3	
No Detections.										8
Client Sample ID: Dup						Lab Sa	am	ple ID: 40	60-204623-4	
							_	-		
	Result	Qualifier	RL	MDL	Unit	Dil Fac			Prep Type	2
Analyte	Result	Qualifier	RL 100	MDL	Unit mg/L		D			1
Analyte		Qualifier		MDL		Dil Fac	D	Method	Prep Type	1
Analyte		Qualifier		MDL		Dil Fac	D	Method	Prep Type	1
Analyte		Qualifier		MDL		Dil Fac	D	Method	Prep Type	1
Analyte		Qualifier		MDL		Dil Fac	D	Method	Prep Type	
Analyte Chloride - DL		Qualifier		MDL		Dil Fac	D	Method	Prep Type	1 1 1

Client: Chesapeake Energy Corporation

Matrix: Water

Client Sample Results

Job ID: 460-204623-1 SDG: Property ID: 891077

Lab Sample ID: 460-204623-1

Client Sample ID: MW-4 Date Collected: 03/05/20 11:05 Date Received: 03/09/20 11:00

Project/Site: State M-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	443		100		mg/L			03/14/20 19:28	100
Client Sample ID: MW-8						Lab	Sample	ID: 460-204	623-2
Date Collected: 03/05/20 12:15								Matrix	: Water
Date Received: 03/09/20 11:00									
_ Method: 300.0 - Anions, Ion Chr	omatogra	phy - DL2							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	118		100		mg/L			03/14/20 19:57	100
Client Sample ID: EQ Blank						Lab	Sample	ID: 460-204	623-3
Date Collected: 03/05/20 09:00									: Water
Date Received: 03/09/20 11:00									
_	omatogra	phy							
Date Received: 03/09/20 11:00 - Method: 300.0 - Anions, Ion Chr Analyte		<mark>phy</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Method: 300.0 - Anions, Ion Chr			RL 1.00	MDL	Unit mg/L	<u>D</u>	Prepared		
Method: 300.0 - Anions, Ion Chr Analyte Chloride	Result			MDL			•	Analyzed	Dil Fac
Method: 300.0 - Anions, Ion Chr Analyte Chloride Client Sample ID: Dup	Result			MDL			•	Analyzed 03/14/20 14:47 ID: 460-204	Dil Fac
Method: 300.0 - Anions, Ion Chr Analyte Chloride Client Sample ID: Dup Date Collected: 03/05/20 00:00	Result			MDL			•	Analyzed 03/14/20 14:47 ID: 460-204	Dil Fac 1 1 1623-4
Method: 300.0 - Anions, Ion Chr Analyte Chloride Client Sample ID: Dup Date Collected: 03/05/20 00:00 Date Received: 03/09/20 11:00	Result ND	Qualifier		MDL			•	Analyzed 03/14/20 14:47 ID: 460-204	Dil Fac 1 1 1623-4
Analyte	Result ND	Qualifier		MDL	mg/L		•	Analyzed 03/14/20 14:47 ID: 460-204	Dil Fac 1 1 1623-4

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: State M-1

Page 184 of 193

Job ID: 460-204623-1 SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-681065 Matrix: Water Analysis Batch: 681065	/45								Cli	ent Sam	ple ID: Me Prep Typ		
	MB	MB											
Analyte	Result	Qualifier		RL	I	MDL U	nit		D F	repared	Analyze	ed	Dil Fac
Chloride	ND			1.00		m	ıg/L				03/14/20 2	0:27	1
Lab Sample ID: LCS 460-68106	5/47							Clie	nt Sa	mple ID	: Lab Cont	rol Sa	ample
Matrix: Water											Prep Typ	e: Tot	tal/NA
Analysis Batch: 681065													
•			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qualifi	ier	Unit	D	%Rec	Limits		
Chloride			1.50		1.476			mg/L		98	90 - 110		
Lab Sample ID: LCSD 460-6810	65/48						CI	ient Sa	ample	ID: Lab	Control S	ampl	e Dup
Matrix: Water											Prep Typ	e: Tot	tal/NA
Analysis Batch: 681065													
-			Spike		LCSD	LCSD					%Rec.		RPD
Analyte			Added		Result	Qualifi	ier	Unit	D	%Rec	Limits	RPD	Limit
			1.50		1.462			mg/L		97	90 - 110		15

Eurofins TestAmerica, Edison

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-204623-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 681065

ib Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
0-204623-1 - DL	MW-4	Total/NA	Water	300.0		
0-204623-2 - DL2	MW-8	Total/NA	Water	300.0		
0-204623-3	EQ Blank	Total/NA	Water	300.0		
0-204623-4 - DL	Dup	Total/NA	Water	300.0		
B 460-681065/45	Method Blank	Total/NA	Water	300.0		
CS 460-681065/47	Lab Control Sample	Total/NA	Water	300.0		
CSD 460-681065/48	Lab Control Sample Dup	Total/NA	Water	300.0		Ī
						ĩ
						1
						2

Client: Chesapeake Energy Corporation

5 6

9

Lab Chronicle

Job ID: 460-204623-1 SDG: Property ID: 891077

Lab Sample ID: 460-204623-1

Client Sample ID: MW-4 Date Collected: 03/05/20 11:05 D

Project/Site: State M-1

	-							
								Matrix: Water
: 03/09/20 1	1:00							
Batch	Batch		Dilution	Batch	Prepared			
Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Analysis	300.0	DL	100	681065	03/14/20 19:28	VMI	TAL EDI	-
le ID: MW	/-8					Lab Sa	mple ID:	460-204623-2
								Matrix: Water
: 03/09/20 1	1:00							
Batch	Batch		Dilution	Batch	Prepared			
Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Analysis	300.0	DL2	100	681065	03/14/20 19:57	VMI	TAL EDI	-
le ID: EQ	Blank					Lab Sa	mple ID:	460-204623-3
								Matrix: Water
			Dilution	Detak	Durananad			
					•	A		
		Run	- Factor			-		
Analysis	300.0		1	681065	03/14/20 14:47	VMI	I AL EDI	
le ID: Dup	2					Lab Sa	mple ID:	460-204623-4
I: 03/05/20 0	00:00							Matrix: Water
: 03/09/20 1	1:00							
Batch	Batch		Dilution	Batch	Prepared			
					· · · ·			
Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
	: 03/09/20 1 Batch Type Analysis Ie ID: MW : 03/05/20 1 : 03/09/20 1 Batch Type Analysis Ie ID: EQ : 03/05/20 0 : 03/05/20 0 : 03/09/20 1 Batch Type Analysis Ie ID: Dup : 03/05/20 0 : 03/05/20 0	Type Method Analysis 300.0 Ie ID: MW-8	: 03/09/20 11:00 Batch Batch Type Method Run Analysis 300.0 DL le ID: MW-8	Batch Batch Dilution Type Method Run Factor Analysis 300.0 DL 100 Ie ID: MW-8 Dilution Factor : 03/05/20 12:15 03/09/20 11:00 Dilution Batch Batch Comparison Dilution Type Method Run Dilution Analysis 300.0 DL2 100 Batch Batch Run Factor Analysis 300.0 DL2 100 Ie ID: EQ Blank Colling Dilution : 03/05/20 09:00 00 03/09/20 11:00 100 Batch Batch Batch Dilution Type Method Run Factor .03/05/20 09:00 300.0 1 1 .03/05/20 00:00 300.0 Run Factor .03/05/20 00:00 .00 .03/09/20 11:00 1 Batch Batch Dilution 1	Batch Batch Dilution Batch Dilution Batch Number Analysis 300.0 DL DL 100 681065 Ie ID: MW-8 Column (Sector) Operation (Sector) Batch Number 300.0 DL DI 100 681065 Ie ID: MW-8 Column (Sector) Dilution Batch 300.0 DL Dilution Batch Type Method Run Factor Number Analysis 300.0 DL2 100 681065 Ie ID: EQ Blank Column (Sector) Batch Batch Batch Number . 03/05/20 09:00 . . 681065 . Ie ID: EQ Blank Batch Batch Dilution Batch	Batch Batch Batch Dilution Batch Prepared Type Method DL 100 681065 03/14/20 19:28 le ID: MW-8 : 03/05/20 12:15 03/09/20 11:00 0 Batch Prepared Method Run Dilution Batch Prepared 03/14/20 19:28 le ID: MW-8 : 03/05/20 12:15 : 03/09/20 11:00 Prepared Method Run Factor Number Or Analyzed Analysis 300.0 DL2 100 681065 03/14/20 19:57 le ID: EQ Blank : 03/05/20 09:00 : 03/04/20 11:00 Batch Prepared gatch Batch Batch Run Factor Number or Analyzed 03/05/20 09:00 : 03/05/20 09:00 : 03/14/20 14:47 03/14/20 14:47 le ID: Dup : 03/05/20 00:00 : 03/05/20 00:00 : 03/14/20 14:47 le ID: Dup : 03/05/20 00:00 : 03/09/20 11:00 03/14/20 14:47 Batch Batch	Batch Batch Dilution Batch Prepared Analyst Analysis 300.0 DL 100 681065 03/14/20 19:28 Analyst Ie ID: MW-8 Lab Sa : 03/09/20 12:15	Batch Batch Run Dilution Batch Prepared Type Method DL Toto 681065 or Analyzed Analyst Lab Ie ID: MW-8 Lab Sample ID: : 03/09/20 11:00 DL Dilution Batch Prepared Or Analyzed Analyst Lab Batch Batch Batch Lab Sample ID: Lab Sample ID: : 03/05/20 12:15

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-204623-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-20
DE Haz. Subst. Cleanup Act (HSCA)	State	<cert no.=""></cert>	12-31-21
Georgia	State	12028 (NJ)	06-30-20
Massachusetts	State	M-NJ312	06-30-20
New Jersey	NELAP	12028	06-30-20
New York	NELAP	11452	04-01-20
Pennsylvania	NELAP	68-00522	02-28-21
Rhode Island	State	LAO00132	12-31-20
USDA	US Federal Programs	P330-18-00135	05-03-21

Laboratory: Eurofins TestAmerica, Nashville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arizona	State Program	AZ0473	05-05-14 *

Eurofins TestAmerica, Edison

10

Method Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

lethod	Method Description	Protocol	Laboratory	
800.0	Anions, Ion Chromatography	MCAWW	TAL EDI	
	References:			5
MCAW	W = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983	3 And Subsequent Revisions	3.	
Laborator	y References:			
-	I = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-	-3900		
				8
				9
				1

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	Asset ID	
60-204623-1	MW-4	Water	03/05/20 11:05	03/09/20 11:00		
60-204623-2	MW-8	Water	03/05/20 12:15	03/09/20 11:00		
60-204623-3	EQ Blank	Water	03/05/20 09:00	03/09/20 11:00		
60-204623-4	Dup	Water	03/05/20 00:00	03/09/20 11:00		
						1

Released to Imaging: 6/4/2024 2:38:02 PM

Page 13 of 15

3/18/2020

Received by OCD: 4/25/2024 8:53:21 AM

ď Other Page Other The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. Total Phos (pH<2) Samples for Metal aparts which are out of compliance must be acidified at least 24 hours prior to analysis. (pH>12) ပ္ပ ç Total Cyanide Y ç ပ္ Q (pH<2) TOC Cooler #9: Cooler #8: Cooler #7: (pH<2) Phenols Sulfide TKN 120 Volume of Preservative used (ml): Expiration Date: (6<Hq) -0 ¢ **Receipt Temperature and pH Log Eurofins TestAmerica Edison** Date: (pH<2) **Cooler Temperatures** ý ç မ္ EPH or QAM (pH<2) If pH adjustments are required record the information below: φ ပ္မ Ç (pH 5-9) Pest Cooler #5: Cooler#6: * Metals Hardness Cooler #4: (pH<2) IR Gun # (pH<2) Nitrate Nitrite (pH<2) 460-204623 Initials: ç ç ç (pH<2) COD ř ပ္စ ç Preservative Name/Conc.: ပ္ Lot # of Preservative(s): Sample No(s). adjusted: (pH<2) Ammonia Cooler #1; 4.1 Cooler #3: Cooler #2: TALS Sample Number Number of Coolers: EDS-WI-038, Rev 4.1 10/22/2019 Job Number:

Received by OCD: 4/25/2024 8:53:21 AM

3/18/2020

Page 191 of 193

13 14

14

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 204623 List Number: 1 Creator: Breton, Jayson J

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 460-204623-1

SDG Number: Property ID: 891077

List Source: Eurofins TestAmerica, Edison

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 337541

CONDITIONS					
Operator:	OGRID:				
CHESAPEAKE OPERATING, INC.	147179				
6100 NORTH WESTERN AVE	Action Number:				
OKC, OK 73118	337541				
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)				

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Sixth Annual Groundwater Monitoring Report State M Lease (AP-72) has been accepted for the record.	6/4/2024