EIGHTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO

Prepared for:

Chesapeake Energy Corporation

6100 North Western Avenue Oklahoma City, Oklahoma 73118 (405) 935-3938

Prepared by:

Equus Environmental, LLC

1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136 (918) 921-5331

May 24, 2022

TABLE OF CONTENTS

LIST C	OF TAB	LES	. ii
LIST C	F FIGL	JRES	. ii
LIST C	F APP	ENDICES	. ii
1.0	INTRO	DUCTION	. 1
2.0	REME	DIATION	. 3
	2.1	SVE SYSTEM	3
	2.2	MW-1R LNAPL RECOVERY	5
3.0	QUAR	TERLY GROUNDWATER MONITORING	. 6
	3.1	GROUNDWATER MONITORING METHODOLOGY	6
	3.2	TWENTY-FIFTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.3	TWENTY-SIXTH QUARTERLY GROUNDWATER SAMPLING RESULTS	7
	3.4	TWENTY-SEVENTH QUARTERLY GROUNDWATER SAMPLING RESULTS	8
	3.5	TWENTY-EIGHTH QUARTERLY GROUNDWATER SAMPLING RESULTS	8
4.0	CONC	LUSIONS	. 9
5.0	RECO	MMENDATIONS	10

Page 3 of 212

LIST OF TABLES

- 1 Summary of SVE System Field Readings
- 2 Summary of Laboratory Analytical Results for Discharge Air Samples
- 3 Summary of Liquid Level Measurements
- 4 Summary of Laboratory Analytical Results for Groundwater Samples

LIST OF FIGURES

- 1 Site Location and Topographic Features
- 2 Site Base Map
- 3 SVE System VOC Discharge Concentrations Versus Time
- 4 Groundwater Potentiometric Surface, June 8, 2021
- 5 Groundwater Potentiometric Surface, September 8, 2021
- 6 Groundwater Potentiometric Surface, December 7, 2021
- 7 Groundwater Potentiometric Surface, March 8, 2022
- 8 Isopleth of Chloride Concentrations in Groundwater, March 8, 2022
- 9 Chloride Concentration Trend Graphs

LIST OF APPENDICES

(All Appendices on CD in bound copy)

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

EIGHTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) LEA COUNTY, NEW MEXICO MAY 24, 2022

1.0 INTRODUCTION

Chesapeake Energy Corporation (Chesapeake) has retained Equus Environmental, LLC (Equus), to perform impacted groundwater monitoring and light non-aqueous phase liquid (LNAPL) hydrocarbon remediation at Chesapeake's former State M Lease site (Site) located in Lea County, New Mexico. The Site is located approximately 8 miles south-southwest of Lovington, New Mexico in the SE-SW-SE of Section 18, Township 17 South, Range 36 East, Lea County, New Mexico (coordinates 32.828061° latitude, -103.391012° longitude). The Site location and topographic features are shown on **Figure 1**. A production tank battery for oil and gas was formerly located at the Site. Chesapeake purchased the Site in 2004, but never operated the tank battery. Chesapeake began abandonment and environmental investigation activities at the Site in 2007.

Initial Site investigation activities were conducted in May 2007. These investigation activities consisted of conducting EM-31 and EM-34 ground conductivity surveys, the collection of soil samples from nine boreholes, and the installation and sampling of seven groundwater monitoring wells. Following the investigation in August 2007, Chesapeake submitted to the New Mexico Oil Conservation Division (NMOCD) a Stage 1 Abatement Plan for the Site. In May 2010, the NMOCD responded to Chesapeake that the agency was not adequately staffed to review the abatement plan in a timely manner and advised Chesapeake that they could proceed with abatement operations at risk. In July 2010, Chesapeake notified the NMOCD of their intent to proceed with the Stage 1 Abatement activities. On March 20, 2012, following implementation of these activities, Chesapeake submitted the Stage 1 Abatement Report for the Site.

On March 27, 2012, Chesapeake submitted to the NMOCD the *Stage 2 Abatement Plan* (Plan) for the Site. A copy of the Plan is provided in **Appendix A**. In this Plan, Chesapeake proposed the following abatement activities at the Site:

• Excavate and remove the near-surface soils at the Site containing concentrations of chloride exceeding 1,000 milligrams per kilogram (mg/kg),

Page 5 of 212

- Excavate and remove the near-surface soils at the Site containing concentrations of TPH exceeding 1,000 mg/kg,
- Install clay liners in areas where chloride and/or TPH concentrations exceed 1,000 mg/kg at depths greater than five feet below ground level (bgl),
- Install one additional groundwater monitoring well downgradient of the Site,
- Monitor the groundwater at the Site until the concentrations of chloride and benzene are below the New Mexico Water Quality Control Commission standards.

On March 7, 2013, NMOCD notified Chesapeake that the Plan was administratively complete and that Chesapeake should proceed with public notice of the Plan. On March 30, 2013, Chesapeake published a notice of the proposed activities in the Albuquerque Journal, the Hobbs-Daily News Sun and the Lovington Leader. In addition, written notification of the Plan submittal was sent to all surface owners of record within a 1-mile radius of the Site. On June 27, 2013 upon completion of the notification activities, the NMOCD approved the Plan for the Site. A copy of the NMOCD correspondence approving the Plan is included in **Appendix B**.

The soil remediation activities outlined in the Plan were conducted at the Site during the period January 15, 2014 through March 27, 2014. The soil remediation activities were summarized in the document titled *Soil Remediation Summary Report*, submitted to the NMOCD on August 6, 2014.

This *Eighth Annual Groundwater Monitoring Report* (Report) summarizes the groundwater monitoring activities conducted at the Site during the following quarterly sampling events:

- Twenty-Ninth Event June 8, 2021,
- Thirtieth Event September 8-9, 2021,
- Thirty-First Event December 7, 2021,
- Thirty-Second Event March 8, 2022.

2.0 **REMEDIATION**

2.1 SVE SYSTEM

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, during the period May 12-14, 2014, a soil vapor extraction (SVE) remediation system (System) was installed and made operational at the Site. The System is comprised of 8 SVE wells connected through a manifold system constructed of two- and three-inch Schedule 80 PVC piping and plumbed to a 10-horsepower 3-phase SVE Regenerative Blower housed within the System Building. The location of the SVE wells and the System Building are shown on attached **Figure 2**. Within the System, soil vapor from the SVE wells is drawn through a moisture knock out/separator and a particulate filter prior to reaching the blower. An air-flow meter is installed downstream of the blower in the air-exhaust line and an air sample port is located on the air-exhaust line at a location upstream of its exit from the System Building.

System start-up was conducted on June 6, 2014. Routine checks of the System are conducted to record the blower run times, discharge rate/ACFM and VOC concentration of the discharge-air stream. These field readings are used to calculate the approximate weight of VOCs extracted from the subsurface and discharged from the System. The field PID data are entered into to a spreadsheet to calculate the VOC discharge rate and approximate total pounds removed by the System. The approximate total VOC discharges for each quarter are then summed to provide a cumulative VOC discharge total. These data are summarized in **Table 1**. Through March 9, 2022, the field PID data suggest that approximately 8,903 pounds of VOCs have been removed from the subsurface and discharged from the System.

During this reporting period, discharge-air samples were collected quarterly in laboratory-provided Suma canisters, shipped under chain-of-custody control to Eurofins TestAmerica, Pittsburgh, Pennsylvania and analyzed for VOC compounds and total VOCs as hexane by Method TO-15.

During the twenty-ninth quarter, discharge-air sample 2021608 M-1 was collected on June 8, 2021. On this date, the System had been running for a total of 59,276 hours, was operating at 460 ACFM and had a field reading of 31 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 2,100 PPB V/V (2.1 PPM V/V).

During the thirtieth quarter, discharge-air sample 20210908 M-1was collected on September 9, 2021. On this date, the System had been running for a total of 56,128 hours, was operating at

422 ACFM and had a field reading of 92 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 140,000 PPB V/V (140 PPM V/V).

During the thirty-first quarter, discharge-air sample 20211207 M-1 was collected on December 7, 2022. On this date, the System had been running for approximately 58,266 hours, was operating at 250 ACFM and had a field reading of 6.0 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 1,600 PPB V/V (1.6 PPM V/V).

During the thirty-second quarter, discharge-air sample 20220308 M-1 was collected on March 8, 2022. On this date, the System had been running for a total of 60,449 hours, was operating at 383 ACFM and had a field reading of 16.7 PPM from the discharge air stream. Laboratory analytical results for this discharge-air sample indicated a total VOC as Hexane concentration of 24,000 PPB V/V (24 PPM V/V).

A summary of the laboratory analytical results for the discharge-air samples is presented in **Table 2**, and complete copies of the laboratory analytical reports and chain-of-custody documentation are provided in **Appendix C**. The discharge-air analytical data are used to compute a correlation factor for the field PID readings to more accurately calculate the total VOC discharged.

Field PID instrument readings are typically lower than laboratory analysis for total VOCs. To compensate for the low field PID readings, a correlation factor is calculated based upon the ratio of the laboratory analytical value versus the field PID value. The correlation factor is then used to multiply the field PID readings and calculate the total VOC discharge. To accurately reflect the total VOC discharge from the System during a given period, **Table 1** includes the calculated unique correlation factor for each quarterly air-discharge sampling event. This unique correlation factor is then utilized to calculate the total VOC discharge from the System for the period in which that particular air-discharge sample was collected. Utilizing the noted correlation factors, approximately 14,563 pounds of VOCs have been removed from the subsurface at the Site.

Figure 3 presents a graph of the VOC concentrations observed in the discharge air stream versus time. As can be seen on this figure, the levels of VOC observed in the air discharge stream have decreased dramatically since startup. These data indicate that the System is effective at removing the hydrocarbon vapors from the subsurface. Removal of hydrocarbon vapors coupled

Page 8 of 212

with the influx of oxygen drawn into the impacted area by the System enhances biodegradation of the hydrocarbon impacts observed in this area.

2.2 MW-1R LNAPL RECOVERY

As documented in the *First Annual Groundwater Monitoring Report*, dated May 19, 2015, to enhance LNAPL recovery in the MW-1R area, 2-inch diameter monitoring well MW-1 was plugged and replaced with 4-inch diameter monitoring well MW-1R. On June 5, 2014, a QED Environmental Genie LNAPL recovery pump was placed and made operational in monitoring well MW-1R. The Genie LNAPL recovery pump is an air-actuated bladder pump with a floating intake (skimmer), set at a depth that produces the maximum amount of LNAPL recovery per cycle. Air is provided to the Genie LNAPL recovery pump from a compressor located within the System Building.

During the prior reporting period (2020), the LNAPL thicknesses observed in MW-1R ranged from 0.24-feet to 0.10-feet. LNAPL thicknesses this small are outside of the operating capabilities of the Genie LNAPL recovery pump. Therefore, the LNAPL recovery pump was turned off to see if LNAPL thicknesses would rebound in monitoring well MW-1R. The observed LNAPL thicknesses in MW-1R during this most recent reporting period ranged from 0.78-feet to 0.14-feet and exhibited a decreasing thickness trend during each quarterly monitoring period. At this time, LNAPL thicknesses are still outside of the recovery range for the LNAPL recovery pump.

Since start-up of the Genie LNAPL recovery pump, a total of approximately 15 drums (822.5 gallons) of LNAPL have been recovered from the Site. Chesapeake will deploy a hydrophobic LNAPL absorption sock within MW-1R to facilitate further removal of LNAPL from the well.

3.0 QUARTERLY GROUNDWATER MONITORING

This Report describes the findings from four quarterly groundwater sampling events conducted at the Site from June 8, 2021 through March 8, 2022.

3.1 GROUNDWATER MONITORING METHODOLOGY

Prior to collecting groundwater samples during each quarterly event, Equus gauged all 8 monitoring wells (MW-1R through MW-8) at the Site using an electronic interface probe to determine the depth-to-water (DTW) and LNAPL thickness within each well. The locations of these monitoring wells are shown on **Figure 2**. DTWs were measured from the surveyed top-of-casing (TOC) of each well and converted to elevations relative to mean sea level. These data are presented in **Table 3**. Potentiometric surface maps were constructed utilizing these data to illustrate the groundwater flow direction within the shallow groundwater system beneath the Site. These potentiometric surface maps are presented on **Figures 4** through **7**. It should be noted that DTW measurements collected from monitoring well MW-1R are not honored for generating potentiometric surfaces due to the influence of LNAPL present in the monitoring well and the potential influence of the SVE system on groundwater levels. As can be seen on the figures, groundwater flow at the Site is, in general, from the northwest to the southeast.

Upon completion of DTW measurement activities, Equus field personnel collected groundwater samples per the Plan. As specified in the Plan, chloride is the primary constituent of concern (COC) at the Site until the LNAPL has been adequately eliminated from monitoring well MW-1R. When the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well will be monitored for benzene, toluene, ethylbenzene and total xylenes (BTEX) until the levels of BTEX fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively.

The laboratory analytical results for chloride from these sampling events are screened against *the New Mexico Administrative Code 20.6.2, Standards for Groundwater of 10,000 mg/L TDS Concentration or Less* for chloride of 250 mg/L (Limit). According to the remediation goals set in the Plan, each monitoring well is required to exhibit eight consecutive monitoring events where chloride is below the Limit of 250 mg/L. When these remediation goals are met, Chesapeake will cease groundwater sampling activities for chloride.

As recommended in the *Fifth Annual Groundwater Monitoring Report*, dated May 20, 2019, during this reporting period groundwater samples were only collected from monitoring wells MW-4

and MW-8 for chloride analysis due to the remaining monitoring wells having already achieved the abatement goal of eight consecutive quarters of chloride concentrations below 250 mg/L.

The groundwater samples from monitoring wells MW-4 and MW-8 were collected utilizing EPA approved low-flow purging/sampling methodologies. Field parameters consisting of pH, specific conductivity, temperature, and dissolved oxygen (DO) were measured during field activities utilizing a multi-parameter meter and air-tight flow-through cell. Upon stabilization of the field parameters, groundwater samples were collected into laboratory prepared containers, labeled as to source and contents, placed on ice for preservation, placed under chain-of-custody control and shipped via overnight courier to the analytical laboratory (Eurofins TestAmerica, Edison, new Jersey). As per the Plan, groundwater samples collected from these monitoring wells were analyzed for chloride by EPA Method 300.0. A summary of the laboratory analytical results for chloride analyses is presented in **Table 4**, and complete copies of the laboratory analytical reports and chain-of-custody documentation is provided in **Appendix C**.

3.2 TWENTY-NINTH QUARTERLY GROUNDWATER SAMPLING RESULTS

The twenty-ninth groundwater sampling event was conducted at the Site on June 8, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (528 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L. The chloride concentration reported in monitoring well MW-8 (92.5 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L.

During the twenty-ninth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.78 feet.

3.3 THIRTIETH QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirtieth quarterly groundwater sampling event was conducted at the Site from September 8-9, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (438 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L. The chloride concentration reported in monitoring well MW-8 (65.5 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L

During the thirtieth quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.27 feet.

3.4 THIRTY-FIRST QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirty-first quarterly groundwater sampling event was conducted at the Site on December 7, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (404 mg/L) exhibited a concentration of chloride that exceeds the Limit of 250 mg/L. The chloride concentration reported in monitoring well MW-8 (56.2 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L

During the thirty-first quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.16 feet.

3.5 THIRTY-SECOND QUARTERLY GROUNDWATER SAMPLING RESULTS

The thirty-second quarterly groundwater sampling event was conducted at the Site on March 2, 2021. As can be seen in **Table 4**, the groundwater sample collected from monitoring well MW-4 (387 mg/L) exhibited a chloride concentration that exceeds the Limit of 250 mg/L. The groundwater sample collected from monitoring well MW-8 (29.6 mg/L) exhibited a chloride concentration that was less than the Limit of 250 mg/L. **Figure 8** presents an isopleth of the chloride concentrations observed in the groundwater samples collected during this sampling event. As can be seen on this figure, the highest levels of chloride observed in Site groundwater are observed in monitoring wells MW-4 and MW-8, in the southeast portion of the Site. To complete the chloride isopleth, Equus used chloride concentrations detected in monitoring wells MW-1 through MW-3 and MW-5 through MW-7 during the March 2018 sampling event. It should be noted that concentrations of chloride in monitoring well MW-8 have been less than the Limit during the last eleven groundwater monitoring events.

Figure 9 presents chloride concentration trend graphs for each of the monitoring wells sampled at the Site. A review of this figure indicates that the chloride concentration trends observed in the groundwater samples are, in general, decreasing in monitoring wells MW-4 and MW-8. The soil remediation activities conducted in the first quarter of 2014 have removed the continuing source of chloride impacts to the groundwater at the Site. Source removal has facilitated the physical natural attenuation mechanisms of dispersion and dilution on remnant chloride concentrations present in Site groundwater.

During the thirty-second quarterly groundwater sampling event, LNAPL was observed in monitoring well MW-1R at a thickness of 0.14 feet.

4.0 CONCLUSIONS

Based upon the data presented herein, the following conclusions are presented:

- Groundwater beneath the Site is encountered at depths ranging from approximately 46 to 49 feet from the surveyed top-of-casing of the Site monitoring wells.
- The direction of groundwater flow at the Site is, in general, from the northwest to the southeast.
- During the reporting period, concentrations of chloride greater than the Limit of 250 mg/L were observed in the groundwater samples collected from monitoring wells MW-4, ranging from 387 mg/L to 528 mg/L. Concentrations of chloride less than the Limit of 250 mg/L were observed in MW-8 during all events, ranging from 29.6 mg/L to 92.5 mg/L. Concentrations of chloride less than the Limit have been observed in monitoring well MW-8 during the last eleven monitoring events.
- The SVE System is operating as designed and has removed approximately 14,563 pounds of VOCs since start-up on June 6, 2014.
- During the reporting period, a measurable quantity of LNAPL was not recovered from monitoring well MW-1R. The lack of recovery is attributed to the decreasing LNAPL thicknesses observed within MW-1R (0.14-feet to 0.78-feet) during the reporting period. LNAPL thicknesses this thin are outside the effective operating capabilities of the skimmer-pump technology deployed within monitoring well MW-1R.

5.0 **RECOMMENDATIONS**

Based upon a review of the data presented within this report, the following recommendations have been developed:

- Operation of the LNAPL skimmer-pump within monitoring well MW-1R has been stopped as the LNAPL thickness observed within this well is too thin to be recovered utilizing this technology. A hydrophobic LNAPL absorbent sock will be deployed within monitoring well MW-1R to continue LNAPL removal.
- As specified in the Plan, LNAPL recovery within monitoring well MW-1R should be continued until the LNAPL observed within this well has been adequately eliminated.
- As specified in the Plan, when the LNAPL has been adequately eliminated from monitoring well MW-1R, the groundwater within this well should be monitored for BTEX until the levels of these constituents fall below the Limits of 0.01 mg/L, 0.75 mg/L, 0.75 mg/L and 0.62 mg/L, respectively, for eight consecutive quarters.
- Concentrations of chloride in monitoring well MW-8 have exhibited levels below the New Mexico Water Quality Control Commission standard of 250 mg/l for eleven consecutive events. Based on this milestone and the NMOCD-approved *Stage 2 Abatement Plan*, chloride monitoring will no longer be conducted from monitoring well MW-8.
- The groundwater within monitoring well MW-4 should continue to be monitored on a quarterly basis for chloride until eight consecutive quarterly sampling events result in chloride levels less than the New Mexico Water Quality Control Commission standards. The next groundwater monitoring event at the Site is scheduled to be conducted in June 2022.

•

TABLES

Released to Imaging: 6/4/2024 2:42:07 PM

Received by OCD: 4/25/2024 8:55:15 AM Table 1 : Summary of SVE System Field Readings Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

06/07/14 88 06/08/14 7 06/08/14 9 06/12/14 11 06/12/14 11 06/12/14 11 06/12/14 11 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 11 06/19/14 11 06/19/14 11 06/19/14 11 06/26/14 11 06/26/14 12 06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 12 07/09/14 12 07/09/14 12 07/07/14 12 07/17/14 12 07/17/14 12 07/17/14 12	8:00 7:10 9:15 12:40 12:43 7:15 7:17 7:18 12:05 13:30 16:00 12:42 9:35 9:37 11:40 11:42	Time Reading 4131.73 4154.69 4156.94 4256.45 4259.65 4274.90 4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92 4757.95	since last reading 19.73 22.96 22.55 99.51 3.20 13.70 13.71 0.81 1.44.94 1.72 1.72 1.17.27 1.17.27 1.15.01 2.19	Total 20 43 45 144 148 163 164 165 310 312 314 431 479	PPM 596 398 5000 1817 1561 1804 3390 2301 1153 1117 1448 1440	CFM 519 483 489 120 117 122 121 120 120 120 107 121	lbs/Hr 2.281 1.416 18.021 1.607 1.346 1.622 3.023 2.035 1.020 0.881 1.291	Ibs since last Ibs Reading Ibs 44.99 Ibs 44.95 Ibs	Tot Ibs 44.99 77.50 118.05 277.96 282.27 307.89 312.03 313.68 461.49 463.00	ral Tons 0.02 0.04 0.06 0.14 0.14 0.15 0.16 0.16 0.23 0.23	Correlation Factor
06/08/14 7 06/08/14 9 06/12/14 12 06/12/14 12 06/12/14 12 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 12 07/09/14 12 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12	7:10 9:15 12:40 12:43 7:15 7:17 7:18 12:05 13:30 16:00 12:05 12:42 9:35 9:37 11:40	4131.73 4154.69 4156.94 4256.45 4259.65 4274.90 4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	19.73 22.96 2.25 99.51 3.20 18.45 1.37 0.81 144.94 1.72 2.26 117.27 165.01 2.19	20 43 45 144 163 164 165 310 312 314 431	596 398 5000 1817 1561 1804 3390 2301 1153 1117 1448	519 483 489 120 117 122 121 120 120 107 121	2.281 1.416 18.021 1.607 1.346 1.622 3.023 2.035 1.020 0.881	44.99 32.50 40.55 159.92 4.31 29.93 4.14 1.65 147.81	44.99 77.50 118.05 277.96 282.27 307.89 312.03 313.68 461.49	0.02 0.04 0.06 0.14 0.15 0.16 0.16 0.23	Factor
06/08/14 7 06/08/14 9 06/12/14 12 06/12/14 12 06/12/14 12 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 12 07/09/14 12 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12	7:10 9:15 12:40 12:43 7:15 7:17 7:18 12:05 13:30 16:00 12:05 12:42 9:35 9:37 11:40	4154.69 4156.94 4256.45 4259.65 4274.90 4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	22.96 2.25 99.51 3.20 18.45 1.37 0.81 144.94 1.72 2.26 117.27 165.01 2.19	43 45 144 163 164 165 310 312 314 431	398 5000 1817 1561 1804 3390 2301 1153 1117 1448	483 489 120 117 122 121 120 120 107 121	1.416 18.021 1.607 1.346 1.622 3.023 2.035 1.020 0.881	44.99 32.50 40.55 159.92 4.31 29.93 4.14 1.65 147.81	77.50 118.05 277.96 282.27 307.89 312.03 313.68 461.49	0.04 0.06 0.14 0.15 0.16 0.16 0.23	
06/08/14 7 06/08/14 9 06/12/14 12 06/12/14 12 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 12 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12	9:15 12:40 12:43 7:15 7:17 7:18 12:05 13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4156.94 4256.45 4259.65 4274.90 4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	2.25 99.51 3.20 18.45 1.37 0.81 144.94 1.72 2.26 117.27 165.01 2.19	45 144 148 163 164 165 310 312 314 431	5000 1817 1561 1804 3390 2301 1153 1117 1448	489 120 117 122 121 120 120 107 121	18.021 1.607 1.346 1.622 3.023 2.035 1.020 0.881	40.55 159.92 4.31 29.93 4.14 1.65 147.81	118.05 277.96 282.27 307.89 312.03 313.68 461.49	0.06 0.14 0.15 0.16 0.16 0.23	
06/08/14 9 06/12/14 12 06/12/14 12 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 12 06/19/14 13 06/19/14 14 06/24/14 12 06/26/14 12 07/03/14 9 07/03/14 9 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12 07/17/14 12	12:40 12:43 7:15 7:17 7:18 12:05 13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4156.94 4256.45 4259.65 4274.90 4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	2.25 99.51 3.20 18.45 1.37 0.81 144.94 1.72 2.26 117.27 165.01 2.19	144 148 163 164 165 310 312 314 431	5000 1817 1561 1804 3390 2301 1153 1117 1448	120 117 122 121 120 120 107 121	18.021 1.607 1.346 1.622 3.023 2.035 1.020 0.881	40.55 159.92 4.31 29.93 4.14 1.65 147.81	118.05 277.96 282.27 307.89 312.03 313.68 461.49	0.06 0.14 0.15 0.16 0.16 0.23	
06/12/14 12 06/12/14 12 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/26/14 12 07/03/14 9 07/03/14 9 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12	12:43 7:15 7:17 7:18 12:05 13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4256.45 4259.65 4274.90 4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	3.20 18.45 1.37 0.81 144.94 1.72 2.26 117.27 165.01 2.19	148 163 164 165 310 312 314 431	1817 1561 1804 3390 2301 1153 1117 1448	120 117 122 121 120 120 107 121	1.607 1.346 1.622 3.023 2.035 1.020 0.881	159.92 4.31 29.93 4.14 1.65 147.81	277.96 282.27 307.89 312.03 313.68 461.49	0.14 0.14 0.15 0.16 0.16 0.23	
06/12/14 12 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 12 06/19/14 12 06/19/14 12 06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 9 07/09/14 12 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12	7:15 7:17 7:18 12:05 13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4274.90 4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	3.20 18.45 1.37 0.81 144.94 1.72 2.26 117.27 165.01 2.19	163 164 165 310 312 314 431	1804 3390 2301 1153 1117 1448	117 122 121 120 120 120 107 121	1.622 3.023 2.035 1.020 0.881	4.31 29.93 4.14 1.65 147.81	307.89 312.03 313.68 461.49	0.15 0.16 0.16 0.23	
06/13/14 7 06/13/14 7 06/13/14 7 06/13/14 7 06/19/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/24/14 12 06/26/14 12 07/03/14 9 07/03/14 12 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12	7:15 7:17 7:18 12:05 13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4274.90 4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	18.45 1.37 0.81 144.94 1.72 2.26 117.27 165.01 2.19	163 164 165 310 312 314 431	1804 3390 2301 1153 1117 1448	122 121 120 120 107 121	1.622 3.023 2.035 1.020 0.881	29.93 4.14 1.65 147.81	307.89 312.03 313.68 461.49	0.15 0.16 0.16 0.23	
06/13/14 7 06/13/14 7 06/19/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/24/14 12 06/26/14 12 07/03/14 9 07/03/14 9 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12	7:17 7:18 12:05 13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4276.27 4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	1.37 0.81 144.94 1.72 2.26 117.27 165.01 2.19	164 165 310 312 314 431	3390 2301 1153 1117 1448	121 120 120 107 121	3.023 2.035 1.020 0.881	4.14 1.65 147.81	312.03 313.68 461.49	0.16 0.16 0.23	
06/13/14 7 06/19/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/19/14 12 06/24/14 12 06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 12 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12	7:18 12:05 13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4277.08 4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	0.81 144.94 1.72 2.26 117.27 165.01 2.19	165 310 312 314 431	2301 1153 1117 1448	120 120 107 121	2.035 1.020 0.881	1.65 147.81	313.68 461.49	0.16 0.23	
06/19/14 12 06/19/14 14 06/19/14 14 06/24/14 12 06/26/14 12 06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12 07/17/14 12	12:05 13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4422.02 4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	144.94 1.72 2.26 117.27 165.01 2.19	310 312 314 431	1153 1117 1448	120 107 121	1.020 0.881	147.81	461.49	0.23	
06/19/14 13 06/19/14 14 06/24/14 14 06/26/14 14 06/26/14 14 06/26/14 14 07/03/14 9 07/03/14 9 07/09/14 14 07/09/14 14 07/17/14 14 07/17/14 14 07/17/14 14	13:30 16:00 12:05 12:40 12:42 9:35 9:37 11:40	4423.74 4426.00 4543.27 4591.01 4593.20 4755.92	1.72 2.26 117.27 165.01 2.19	314 431	1117 1448	107 121	0.881				
06/19/14 10 06/24/14 11 06/26/14 11 06/26/14 11 07/03/14 9 07/03/14 9 07/09/14 11 07/09/14 11 07/17/14 11 07/17/14 11 07/17/14 11 07/17/14 11	16:00 12:05 12:40 12:42 9:35 9:37 11:40	4426.00 4543.27 4591.01 4593.20 4755.92	2.26 117.27 165.01 2.19	314 431	1448	121		-		0.23	
06/24/14 12 06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 9 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12 07/17/14 12	12:05 12:40 12:42 9:35 9:37 11:40	4543.27 4591.01 4593.20 4755.92	117.27 165.01 2.19	431				2.92	465.92	0.23	
06/26/14 12 06/26/14 12 07/03/14 9 07/03/14 9 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12 07/17/14 12	12:40 12:42 9:35 9:37 11:40	4591.01 4593.20 4755.92	165.01 2.19		-	120	1.274	149.36	615.28	0.31	0.98
06/26/14 12 07/03/14 99 07/03/14 91 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12 07/17/14 12	12:42 9:35 9:37 11:40	4593.20 4755.92	2.19		1970	127	1.844	304.28	919.56	0.46	
07/03/14 9 07/03/14 9 07/09/14 12 07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12 07/17/14 12	9:35 9:37 11:40	4755.92		481	1968	120	1.741	3.81	923.37	0.46	
07/03/14 9 07/09/14 11 07/09/14 11 07/17/14 11 07/17/14 11 07/17/14 12 07/17/14 12	9:37 11:40		162.72	644	1650	126	1.532	249.34	1172.71	0.59	
07/09/14 11 07/09/14 11 07/17/14 11 07/17/14 12 07/17/14 12 07/17/14 12	11:40		2.03	646	1318	126	1.224	2.48	1175.20	0.59	
07/09/14 12 07/17/14 12 07/17/14 12 07/17/14 12		4901.77	143.82	790	875	126	0.812	116.80	1292.00	0.65	
07/17/14 12 07/17/14 12 07/17/14 12 07/17/14 12		4903.69	1.92	792	795	124	0.727	1.40	1293.39	0.65	
07/17/14 12 07/17/14 12	12:33	5094.48	190.79	982	790	124	0.722	137.75	1431.15	0.72	
07/17/14 12	12:34	5095.13	0.65	983	790	127	0.739	0.48	1431.63	0.72	
	12:36	5097.75	2.62	986	790	127	0.739	1.94	1433.56	0.72	
08/01/14 11	11:00	5452.10	354.35	1,340	1078	139	1.104	391.35	1824.91	0.91	
	11:42	5454.03	1.93	1,342	938	150	1.037	2.00	1826.91	0.91	
	11:44	5456.32	2.29	1,344	2314	14	0.239	0.55	1827.46	0.91	
	13:00	7118.38	1662.06	3,006	130	51	0.049	81.70	1909.16	0.95	
	13:02	7120.15	1.77	3,008	216	58	0.093	0.16	1909.32	0.95	1.86
	13:00	7622.85	502.70	3,511	161	48	0.057	28.63	1937.95	0.97	2.00
	13:04	7624.49	1.64	3,512	78	54	0.031	0.05	1938.00	0.97	
	13:50	8607.53	983.04	4,496	352	131	0.340	334.10	2272.11	1.14	
	10:11	9441.32	833.79	5,329	47	131	0.045	37.60	2309.70	1.15	
	10:12	9442.31	0.99	5,330	173	151	0.194	0.19	2309.89	1.15	
	10:12	9445.26	2.95	5,333	388	132	0.389	1.15	2311.04	1.16	
	11:50	9778.04	332.78	5,666	240	54	0.095	31.49	2311.04	1.10	
	11:52	9780.13	2.09	5,668	240	50	0.033	0.18	2342.72	1.17	0.21
	11:00	10448.98	668.85	6,337	72	137	0.073	48.63	2391.35	1.20	
	11:02	10448.98	1.12	6,338	178	157	0.204	0.23	2391.55	1.20	
	10:15	10430.10		6,669	483	155	0.552	182.40	2573.97	1.20	
	8:30	11901.34		7,789	126	114	0.332	118.86	2692.84	1.25	
	8:36	11901.34	6.08	7,795	132	114	0.123	0.75	2693.58	1.35	
	9:05	12285.12	377.70	8,173	96	55	0.039	14.68	2708.26	1.35	
	9:10	12285.12	4.93	8,173	105	58	0.035	0.22	2708.20	1.35	1.10
	11:30	12623.70	333.65	8,512	6	150	0.043	2.07	2710.55	1.35	
	10:39	12650.70	27.00	8,539	318	130	0.403	10.88	2721.43	1.36	
		13154.04			85						
	11:00 8:00	13154.04		9,042		112 104	0.070	35.32	2756.75 3044.60	1.38	0.76
	8:00 13:00	14662.17	1508.13 2353.11	10,550 12,903	249 162	95	0.191 0.113	287.85 266.92	3044.60	1.52 1.66	0.86

Received by OCD: 4/25/2024 8:55:15 AM Table 1 : Summary of SVE System Field Readings Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disc	harge		Calculated
Date	Time	Time	since					lbs since last	Tot	tal	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
03/10/16	12:00	17899.58	884.30	13,788	209	105	0.162	143.03	3454.55	1.73	1.78
06/29/16	8:00	20558.59	2659.01	16,447	156	101	0.116	309.58	3764.13	1.88	3.77
07/27/16	12:30	21232.43	673.84	17,120	126	103	0.095	64.20	3828.33	1.91	
08/25/16	11:00	21927.96	695.53	17,816	115	270	0.229	159.45	3987.78	1.99	1.55
09/22/16	10:20	22596.81	668.85	18,485	169	220	0.274	183.07	4170.85	2.09	
12/08/16	9:30	24443.73	1846.92	20,332	109	220	0.177	327.03	4497.88	2.25	6.59
01/10/17	12:23	24758.20	314.47	20,646	173	233	0.297	93.37	4591.25	2.30	
01/25/17	10:56	25115.43	357.23	21,003	206	179	0.271	96.95	4688.20	2.34	3.06
02/22/17	10:35	25786.27	670.84	21,674	248	214	0.391	262.30	4950.50	2.48	
03/09/17	11:04	26146.82	360.55	22,035	321	209	0.495	178.51	5129.01	2.56	
04/05/17	11:55	26792.33	645.51	22,680	454	113	0.378	244.08	5373.09	2.69	
05/16/17	7:00	26967.77	175.44	22,856	61	198	0.089	15.69	5388.79	2.69	5.78
06/07/17	13:00	27495.83	528.06	23,384	54	221	0.087	46.02	5434.80	2.72	
09/07/17	11:36	29698.50	2202.67	25,587	62	200	0.091	201.31	5636.11	2.82	
09/22/17	11:30	30057.43	358.93	25,945	56	211	0.087	31.26	5667.37	2.83	
10/04/17	10:15	30344.40	286.97	26,232	57	198	0.083	23.87	5691.24	2.85	0.81
11/02/17	13:00	31042.78	698.38	26,931	58	185	0.079	55.23	5746.48	2.87	
12/01/17	12:30	31739.31	696.53	27,627	59	192	0.083	58.16	5804.63	2.90	
12/06/17	12:40	31859.62	120.31	27,748	6	270	0.011	1.36	5806.00	2.90	
12/18/17	15:00	32149.36	289.74	28,037	60	208	0.092	26.65	5832.65	2.92	
01/09/18	10:00	32672.25	522.89	28,560	52	189	0.072	37.88	5870.52	2.94	
01/26/18	10:15	33080.48	408.23	28,968	48	172	0.061	24.84	5895.36	2.95	0.40
02/09/18	13:10	33416.85	336.37	29,305	32	220	0.052	17.45	5912.82	2.96	0.19
02/23/18	11:15	33753.60	336.75	29,642	34 52	186	0.047	15.70	5928.51	2.96	
03/07/18	10:55	34040.75	287.15	29,929	48	227	0.087	24.98	5953.50	2.98	
03/16/18 04/13/18	13:03 9:15	34251.67 34970.90	210.92 719.23	30,140 30,859	48	195 200	0.069	14.55 48.77	5968.05 6016.82	2.98 3.01	
04/13/18	13:16	35332.87	361.97	31,221	46	200	0.068	24.54	6016.82	3.01	
05/15/18	13:34	35692.17	359.30	31,580	40	200	0.008	24.34	6066.78	3.02	
05/29/18	14:20	36028.04	335.87	31,916	48	200	0.071	23.42	6090.55	3.05	0.65
06/04/18	16:30	36169.50	141.46	32,058	71	200	0.105	14.81	6105.35	3.05	0.05
06/20/18	14:30	36556.30	386.80	32,038	48	200	0.103	27.37	6132.72	3.03	
07/03/18	10:30	36865.13	308.83	32,753	56	520	0.215	66.28	6199.01	3.10	
07/19/18	10:40	37249.27	384.14	33,137	46	486	0.165	63.30	6262.30	3.13	
08/09/18	12:30	37754.97	505.70	33,643	58	386	0.165	83.45	6345.75	3.17	1
09/06/18					36						2.13
09/19/18	12:00	38730.31	975.34	34,618	46	405	0.137	133.93	6479.67	3.24	
10/04/18	15:30	39093.45	363.14	34,981	73	425	0.227	82.47	6562.14	3.28	
10/18/18	13:00	39428.14	334.69	35,316	42	261	0.081	27.04	6589.19	3.29	-
10/31/18	13:40	39716.90	288.76	35,605	52	317	0.121	35.08	6624.27	3.31	-
11/16/18	8:00	39983.80	266.90	35,872	68	156	0.078	20.87	6645.14	3.32	-
11/16/18	9:54	39985.70	1.90	35,874	77	264	0.149	0.28	6645.42	3.32	
12/11/18	14:20	40585.95	600.25	36,474	90	150	0.099	59.53	6704.95	3.35	-
12/27/18	13:40	40965.57	379.62	36,854	72	310	0.165	62.45	6767.40	3.38	

.

Received by OCD: 4/25/2024 8:55:15 AM Table 1 : Summary of SVE System Field Readings Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Discl	narge		Calculated
Date	Time	Time	since					lbs since last	Tot	al	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
01/24/19	14:58	41636.05	670.48	37,524	63	275	0.128	85.62	6853.01	3.43	
02/05/19	12:02	41919.95	283.90	37,808	48	251	0.088	25.08	6878.09	3.44	
02/21/19	12:00	42303.95	384.00	38,192	26	218	0.042	16.10	6894.20	3.45	
03/07/19	7:00	42632.85	328.90	38,521	80	208	0.122	40.29	6934.48	3.47	0.97
03/22/19	11:09	42986.51	353.66	38,875	47	177	0.062	21.78	6956.26	3.48	
04/03/19	15:00	43277.65	291.14	39,166	58	440	0.186	54.29	7010.55	3.51	
04/18/19	12:00	43634.32	356.67	39,522	105	450	0.348	124.21	7134.76	3.57	
05/17/19	13:30	44330.99	696.67	40,219	39	365	0.104	72.34	7207.11	3.60	
06/12/19	17:00	44952.75	621.76	40,841	6	170	0.008	4.67	7211.78	3.61	
06/25/19	11:00	45283.69	330.94	41,172	23	445	0.075	24.97	7236.75	3.62	
07/09/19	13:30	45573.87	290.18	41,462	27	360	0.072	20.79	7257.53	3.63	
07/22/19	14:00	45906.56	332.69	41,795	27	425	0.083	27.62	7285.15	3.64	0.87
08/05/19	11:30	46239.45	332.89	42,127	37	462	0.126	41.94	7327.09	3.66	
08/19/19	11:00	46575.01	335.56	42,463	23	533	0.090	30.32	7357.41	3.68	
09/03/19	15:15	46937.77	362.76	42,826	31	455	0.104	37.71	7395.12	3.70	
09/05/19	7:30	46980.41	42.64	42,868	79	227	0.133	5.65	7400.77	3.70	
09/16/19	11:30	47242.95	262.54	43,131	21	372	0.058	15.12	7415.89	3.71	
09/30/19	11:00	47576.43	333.48	43,464	24	355	0.063	20.94	7436.83	3.72	
10/16/19	12:00	47958.94	382.51	43,847	22	280	0.045	17.37	7454.20	3.73	
10/28/19	11:45	48246.61	287.67	44,135	16	326	0.038	11.06	7465.26	3.73	
11/11/19	11:00	48581.38	334.77	44,469	35	488	0.127	42.56	7507.82	3.75	
11/11/19	12:10	48582.46	1.08	44,470	27	188	0.037	0.04	7507.86	3.75	0.88
11/26/19	11:20	48916.78	334.32	44,805	16	284	0.033	10.95	7518.82	3.76	
11/26/19	11:50	48917.34	0.56	44,805	26	472	0.089	0.05	7518.87	3.76	
12/11/19	10:30	49294.17	376.83	45,182	30	214	0.047	17.79	7536.65	3.77	
12/22/19	11:00	49558.50	264.33	45,447	16	462	0.054	14.40	7551.05	3.78	
12/30/19	14:00	49631.20	72.70	45,519	30	462	0.102	7.43	7558.48	3.78	
01/12/20	13:00	49682.50	51.30	45,571	19	282	0.039	2.01	7560.49	3.78	
02/10/20	11:00	49806.20	123.70	45,694	19	145	0.021	2.55	7563.04	3.78	
03/05/20	12:40	50000.00	193.80	45,888	38	197	0.055	10.66	7573.71	3.79	0.69
03/09/20	12:10	50070.44	70.44	45,958	23	250	0.041	2.92	7576.62	3.79	
03/23/20	11:45	50083.25	12.81	45,971	25	323	0.060	0.76	7577.39	3.79	
04/06/20	10:30	50139.34	56.09	46,027	26	316	0.060	3.34	7580.73	3.79	
04/20/20	10:30	50225.20	85.86	46,113	19	408	0.056	4.84	7585.57	3.79	
05/05/20	11:00	50540.55	315.35	46,429	61	311	0.140	44.17	7629.74	3.81	1.06
05/18/20	12:30	50840.55		46,729	36	506	0.132	39.72	7669.46	3.83	
06/06/20	10:10	51279.56		47,168	47	340	0.118	51.71	7721.16	3.86	
06/20/20	13:20	51616.41		47,504	34	322	0.081	27.18	7748.35	3.87	
07/06/20	10:44	51998.22		47,886	0.5	425	0.001	0.60	7748.94	3.87	
07/19/20	11:10	52309.12		48,197	29	470	0.099	30.80	7779.75	3.89	
08/09/20	17:30	52819.74		48,708	28	428	0.087	44.46	7824.20	3.91	0.51
09/14/20	18:30	53480.00		49,368	25	420	0.076	50.19	7874.40	3.91	
09/24/20	13:20	53703.31		49,591	47	410	0.143	31.85	7906.25	3.94	
11/15/20	13:00	54664.23	960.92	50,552	38	418	0.145	111.61	8017.86	4.01	
12/11/20	8:27	55250.13		51,138	67	380	0.110	109.62	8127.48	4.01	1 26
12/11/20	0.27	55250.15	363.90	51,150	07	560	0.107	109.02	0127.40	4.00	1.36

Received by OCD: 4/25/2024 8:55:15 AM Table 1 : Summary of SVE System Field Readings Chesapeake Energy Corporation, State M Lease (AP-72) Lea County, New Mexico

		Run	Operating	Hours	Discharge	Readings		VOC Disc	harge		Calculated
Date	Time	Time	since					lbs since last	To	tal	Correlation
		Reading	last reading	Total	PPM	CFM	lbs/Hr	Reading	lbs	Tons	Factor
02/28/21	10:00	56876.10	1625.97	52,764	37	410	0.112	181.80	8309.28	4.15	0.36
03/02/21	14:05	56926.31	50.21	52,814	6.4	355	0.017	0.84	8310.12	4.16	
04/21/21	14:11	58101.61	1175.30	53,990	2.9	391	0.008	9.82	8319.94	4.16	
05/13/21	13:42	58654.06	552.45	54,542	3.2	490	0.012	6.38	8326.32	4.16	0.07
06/08/21	12:30	59275.70	621.64	55,164	31.0	460	0.105	65.34	8391.66	4.20	
09/09/21	12:50	60240.17	964.47	56,128	91.7	422	0.285	275.08	8666.74	4.33	1.53
09/24/21	12:30	60600.84	360.67	56,489	28.4	415	0.087	31.33	8698.07	4.35	1.55
10/24/21	14:20	61323.92	723.08	57,212	23.7	312	0.055	39.41	8737.48	4.37	
11/19/21	14:11	61946.79	622.87	57,835	26.1	402	0.077	48.17	8785.65	4.39	0.27
12/07/21	12:30	62377.93	431.14	58,266	6.0	350	0.015	6.67	8792.32	4.40	
01/23/22	10:49	63503.18	1125.25	59 <i>,</i> 391	15.4	295	0.033	37.68	8830.00	4.42	
02/16/22	11:30	64080.45	577.27	59 <i>,</i> 968	17.2	396	0.050	28.98	8858.98	4.43	1.38
03/09/22	12:01	64561.31	480.86	60,449	16.7	383	0.047	22.67	8881.65	4.44	1.50
03/27/22	9:05	65012.44	451.13	60,900	17.4	372	0.048	21.52	8903.17	4.45	
							Correc	ted Total:	14,563.70	7.40	

Notes:

1. Color shading indicates air sampling period with a unique correlation factor.

2. During the June 24 & July 17, 2014 site visit the field readings were not recorded. The italicized values presented above for these dates are conservative estimated values based upon last known readings.

	Sample ID:	SVE	Canister #34000823 Serial C8528 2014-12-11	CANISTER #C8522	Canister #8408 2015-06-11 Air Sample	Canister #5451 Batch #320- 14155 9-3-15	CANISTER #34000512 BATCH ID #320- 15930	STATE M-1 LEASE	20160629 M SVE	20160922 M SVE	20161208 M SVE	20170309 M SVE
Parameters	Sample Date:	1-Aug-14	11-Dec-14	12-Mar-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17
Volatile Organic Compounds by	TO-15				1				1		1	
Acetone	ppb v/v	<2000	<615	<965	<860	<615	<370	<915	<280	<175	<106	<203
Benzene	ppb v/v	8,820	2,960	533	3,630	312	194	1,070	2,600	853	373	550
Benzyl chloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Bromodichloromethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	103.5	<6.33	<12.2
Bromoform	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Bromomethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
2-Butanone (MEK)	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Carbon disulfide	ppb v/v	1,800	272	<154	<138	<98.4	<59.2	<146	177	<27.9	<16.9	<32.4
Carbon tetrachloride	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Chlorobenzene	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
Dibromochloromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Chloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Chloroform	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
Chloromethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,2-Dibromoethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,2-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,3-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,4-Dichlorobenzene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Dichlorodifluoromethane	ppb v/v	1,980	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1-Dichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
1,2-Dichloroethane	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
1,1-Dichloroethene	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
cis-1,2-Dichloroethene	ppb v/v	<160	<49.2	84.5	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
trans-1,2-Dichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2-Dichloropropane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
cis-1,3-Dichloropropene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
trans-1,3-Dichloropropene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Ethylbenzene	ppb v/v	13,500	3,830	799	2,890	731	723	446	2,530	1,390	531	908
4-Ethyltoluene	ppb v/v	974	533	164	299	256	186	<73.2	660	497	135	263
Hexachlorobutadiene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0
2-Hexanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Methylene Chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
4-Methyl-2-pentanone	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Styrene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2

Received by OCD: 4/25/2024 8:55:15 AM

	Sample ID:	SVE	Canister #34000823 Serial C8528 2014-12-11	CANISTER #C8522	Canister #8408 2015-06-11 Air Sample	Canister #5451 Batch #320- 14155 9-3-15	CANISTER #34000512 BATCH ID #320- 15930	STATE M-1 LEASE	20160629 M SVE	20160922 M SVE	20161208 M SVE	20170309 M SVE
Parameters	Sample Date:	1-Aug-14	11-Dec-14	12-Mar-15	11-Jun-15	3-Sep-15	10-Dec-15	10-Mar-16	29-Jun-16	22-Sep-16	8-Dec-16	9-Mar-17
1,1,2,2-Tetrachloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	41.1	<14.0	<8.44	20.0
Tetrachloroethene	ppb v/v	<160	71.9	<77.2	<68.8	<49.2	<29.6	92.9	<22.4	<14.0	<8.44	<16.2
Toluene	ppb v/v	4,020	1,040	228	1,480	<49.2	<29.6	120	975	380	164	193
1,2,4-Trichlorobenzene	ppb v/v	<800	<246	<386	<344	<246	<148	<366	<112	<69.8	<42.2	<81.0
1,1,1-Trichloroethane	ppb v/v	<120	<36.9	<57.9	<51.6	<36.9	<22.2	<54.9	<16.8	<10.5	<6.33	<12.2
1,1,2-Trichloroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Trichloroethene	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
Trichlorofluoromethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.4	<14.0	<8.44	<16.2
1,2,4-Trimethylbenzene	ppb v/v	2,020	648	299	774	<98.4	355	<146	968	740	228	411
1,3,5-Trimethylbenzene	ppb v/v	821	385	172	353	73.0	247	<73.2	727	541	192	397
Vinyl acetate	ppb v/v	<320	<98.4	<154	<138	<98.4	<59.2	<146	<44.8	<27.9	<16.9	<32.4
Vinyl chloride	ppb v/v	<160	<49.2	<77.2	<68.8	<49.2	<29.6	<73.2	<22.8	<14.0	<8.44	<16.2
m,p-Xylene	ppb v/v	12,700	4,680	1,110	3,920	1,140	1,380	609	5,050	2,550	870	1,510
o-Xylene	ppb v/v	4,520	1,190	286	1,120	164	194	107	720	419	177	337
Total VOC as Hexane (C6-C12)	ppb v/v	1,060,000	655,000	99,400	351,000	190,000	140,000	371,000	590,000	262,000	117,000	167,000

Received by OCD: 4/25/2024 8:55:15 AM

		20170607M	20170907 M	20171206 -M-	20180307-M-	20180604-M-	20180906-M-	2018121-M-	20190307 M	20190905 M	20200122 M1-	20200305 M	20200606-M-	20200924M1S		
	Sample ID:	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	SVE	VE	20201211 M-1	20210302 M-1
Parameters	Sample Date:	7-Jun-17	7-Sep-17	6-Dec-17	7-Mar-18	4-Jun-18	6-Sep-18	11-Dec-18	7-Mar-19	5-Sep-19	22-Jan-20	5-Mar-20	6-Jun-20	24-Sep-20	11-Dec-20	2-Mar-21
Volatile Organic Compounds by		1		1												
Acetone	ppb v/v	<76.0	<116	<20.0	5.67	<78.0	<124	<178	<22.3	<84	<17	<78	<34	<29	<110	<7.8
Benzene	ppb v/v	180	143	1.77	24.5	87.9	112	137	40.1	140	3.7	42	48	18	80	<0.78
Benzyl chloride	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromodichloromethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromoform	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Bromomethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8
2-Butanone (MEK)	ppb v/v	<12.2	178	<3.20	<0.800	<12.5	<19.8	<28.4	5.97	<34	<6.7	<31	<34	<11	<43	<3.1
Carbon disulfide	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1
Carbon tetrachloride	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chlorobenzene	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Dibromochloromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chloroethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<34	<6.7	<31	<34	<11	<43	<3.1
Chloroform	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Chloromethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<84	<17	<78	<34	<29	<110	<7.8
1,2-Dibromoethane	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1.3-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,4-Dichlorobenzene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Dichlorodifluoromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1-Dichloroethane	ppb v/v	<4.56	<6.93	<1.20	< 0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1.2-Dichloroethane	ppb v/v	<12.2	<18.5	<3.20	0.881	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1.1-Dichloroethene	ppb v/v	<12.2	<18.5	<3.20	< 0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
cis-1.2-Dichloroethene	ppb v/v	<6.08	<9.24	<1.60	< 0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
trans-1,2-Dichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichloropropane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
cis-1,3-Dichloropropene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
trans-1,3-Dichloropropene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2-Dichloro-1,1,2,2-tetrafluoroethane		<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8		<2.9	<11	
Ethylbenzene	ppb v/v ppb v/v	229	219	4.75	25.4	250	334	363	284	270	33	120	<8.4 150	56	180	<0.78 <0.78
4-Ethyltoluene	ppb v/v	58.5	45.1	2.38	3.74	42.7	89.2	76.7	167	180	25	120	130	64	170	0.78
Hexachlorobutadiene		<30.4	45.1 <46.2	<8.00	<2.00	42.7 <31.2	<49.5	<71.0	<8.90	<34	25 <6.7	<31	<34	64 <11	<43	<3.1
	ppb v/v															
2-Hexanone	ppb v/v	<6.08	<9.24	<1.60	<0.400	<4.68	<9.91	<14.2	<1.78	<34	<6.7	<31	<34	<11	<43	<3.1
Methylene Chloride	ppb v/v	<6.08	<9.24	<1.60	0.540	<6.24	<9.91	<14.2	<1.78	<84	<17	<78	<34	<29	<110	<7.8
4-Methyl-2-pentanone	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Styrene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78

	Sample ID:	20170607M SVE	20170907 M SVE	20171206 -M- SVE	20180307-M- SVE	20180604-M- SVE	20180906-M- SVE	2018121-M- SVE	20190307 M SVE	20190905 M SVE	20200122 M1- SVE	20200305 M SVE	20200606-M- SVE	20200924M1S VE	20201211 M-1	20210302 M-1
Parameters	Sample Date:	7-Jun-17	7-Sep-17	6-Dec-17	7-Mar-18	4-Jun-18	6-Sep-18	11-Dec-18	7-Mar-19	5-Sep-19	22-Jan-20	5-Mar-20	6-Jun-20	24-Sep-20	11-Dec-20	2-Mar-21
1,1,2,2-Tetrachloroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Tetrachloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Toluene	ppb v/v	68.4	49.2	<1.60	6.92	34.4	44.3	41.0	38.8	30	3.1	<7.8	11	3.1	<11	<0.78
1,2,4-Trichlorobenzene	ppb v/v	<30.4	<46.2	<8.00	<2.00	<31.2	<49.5	<71.0	<8.90	<34	<6.7	<31	<34	<11	<43	<3.1
1,1,1-Trichloroethane	ppb v/v	<4.56	<6.93	<1.20	<0.300	<4.68	<7.43	<10.7	<1.34	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1,2-Trichloroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
Trichloroethene	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	20	<8.4	<2.9	<11	<0.78
Trichlorofluoromethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
1,2,4-Trimethylbenzene	ppb v/v	85.9	50.3	7.35	9.05	71.3	134	124	83.0	75	10	59	60	38	79	<0.78
1,3,5-Trimethylbenzene	ppb v/v	53.6	45.5	6.18	5.81	46.2	88.6	102	67.0	69	9.1	43	50	31	77	1.0
Vinyl acetate	ppb v/v	<12.2	<18.5	<3.20	<0.800	<12.5	<19.8	<28.4	<3.56	<8.4	<6.7	<31	<34	<11	<43	<3.1
Vinyl chloride	ppb v/v	<6.08	<9.24	<1.60	<0.400	<6.24	<9.91	<14.2	<1.78	<8.4	<1.7	<7.8	<8.4	<2.9	<11	<0.78
m,p-Xylene	ppb v/v	322	330	10.3	48.7	376	501	544	442	440	66	210	280	110	380	<0.78
o-Xylene	ppb v/v	98.4	96.4	2.54	15.6	107	133	158	137	120	55	50	63	25	83	<0.78
Total VOC as Hexane (C6-C12)	ppb v/v	54,500	40,900	4,630	9,930	46,500	76,600	107,000	77,900	69,000	14,000	26,000	50,000	24,000	91,000	2,300

		20210608 M-1			
Parameters	Sample Date:	8-Jun-21	9-Sep-21	7-Dec-21	8-Mar-22
Volatile Organic Compounds by	T	46	02	9.6	20
Acetone	ppb v/v	16	92	8.6 <0.75	30
Benzene	ppb v/v	<0.71	71		<1.6
Benzyl chloride	ppb v/v	<0.71	< 0.80	<0.75	<1.6
Bromodichloromethane	ppb v/v	<0.71	< 0.80	<0.75	<1.6
Bromoform	ppb v/v	<0.71	<0.80	<0.75	<1.6
Bromomethane	ppb v/v	<7.1	<8.0	<7.5	<16
2-Butanone (MEK)	ppb v/v	<2.8	11	<3.0	<6.2
Carbon disulfide	ppb v/v	<2.8	11	<3.0	<6.2
Carbon tetrachloride	ppb v/v	<0.71	<0.80	<0.75	<1.6
Chlorobenzene	ppb v/v	<0.71	<0.80	<0.75	<1.6
Dibromochloromethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
Chloroethane	ppb v/v	<2.8	<3.2	<3.0	<6.2
Chloroform	ppb v/v	<0.71	<0.80	<0.75	<1.6
Chloromethane	ppb v/v	<7.1	<8.0	<7.5	<16
1,2-Dibromoethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2-Dichlorobenzene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,3-Dichlorobenzene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,4-Dichlorobenzene	ppb v/v	<0.71	<0.80	<0.75	<1.6
Dichlorodifluoromethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,1-Dichloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2-Dichloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,1-Dichloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
cis-1,2-Dichloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
trans-1,2-Dichloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2-Dichloropropane	ppb v/v	<0.71	<0.80	<0.75	<1.6
cis-1,3-Dichloropropene	ppb v/v	<0.71	<0.80	<0.75	<1.6
trans-1,3-Dichloropropene	ppb v/v	<0.71	< 0.80	<0.75	<1.6
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ppb v/v	<0.71	< 0.80	<0.75	<1.6
Ethylbenzene	ppb v/v	<0.71	88	<0.75	5.2
4-Ethyltoluene	ppb v/v	<0.71	140	<0.75	27
Hexachlorobutadiene	ppb v/v	<2.8	<3.2	<3.0	<6.2
2-Hexanone	ppb v/v	<2.8	<3.2	<3.0	<6.2
Methylene Chloride	ppb v/v	<7.1	<8.0	<7.5	<16
4-Methyl-2-pentanone	ppb v/v	<0.71	<0.0	<0.75	<1.6
Styrene	ppb v/v	<0.71	<0.80	<0.75	<1.6

Table 2 Page 5 of 6 H:\PROJECTS\Chesapeake Energy\CHKSTATM\H21001\07_QAQC\202203_StateM_T02_SVE.xlsx 5/24/2022

	Sample ID:	20210608 M-1	20210908 M-1	20211207M-1	20220308 M-1
Parameters	Sample Date:	8-Jun-21	9-Sep-21	7-Dec-21	8-Mar-22
1,1,2,2-Tetrachloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
Tetrachloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
Toluene	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2,4-Trichlorobenzene	ppb v/v	<2.8	<3.2	<3.0	<6.2
1,1,1-Trichloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,1,2-Trichloroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
Trichloroethene	ppb v/v	<0.71	<0.80	<0.75	<1.6
Trichlorofluoromethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,1,2-Trichloro-1,2,2-trifluoroethane	ppb v/v	<0.71	<0.80	<0.75	<1.6
1,2,4-Trimethylbenzene	ppb v/v	<0.71	100	0.80	9.7
1,3,5-Trimethylbenzene	ppb v/v	1.3	110	1.3	14
Vinyl acetate	ppb v/v	<2.8	<3.2	<3.0	<6.2
Vinyl chloride	ppb v/v	<0.71	<0.80	<0.75	<1.6
m,p-Xylene	ppb v/v	<0.71	260	<0.75	20
o-Xylene	ppb v/v	<0.71	55	<0.75	4.0
Total VOC as Hexane (C6-C12)	ppb v/v	2,100	140,000	1,600	24,000

Table 2 Page 6 of 6 H:\PROJECTS\Chesapeake Energy\CHKSTATM\H21001\07_QAQC\202203_StateM_T02_SVE.xlsx 5/24/2022

Monitoring	Top of Casing Elevation	Depth to Liquid Measurement	Depth to LNAPL	Depth to Groundwater		Groundwater Elevation
Well	(AMSL-Feet)	Date	(Feet-TOC)	(Feet-TOC)	(Feet)	(AMSL-Feet)
MW-1R	3888.97	06/03/14	44.57	49.89	5.32	3839.08
	3888.97	09/22/14	44.87	48.91	4.04	3840.06
	3888.97	12/10/14	45.80	46.30	0.50	3842.67
	3888.97	03/11/15	45.12	46.83	1.71	3842.14
	3888.97	06/10/15	45.54	46.31	0.77	3842.66
	3888.97	09/02/15	45.81	47.37	1.56	3841.60
	3888.97	12/09/15	45.22	49.07	3.85	3839.90
	3888.97	03/09/16	45.30	47.18	1.88	3841.79
	3888.97	06/28/16	45.75	47.02	1.27	3841.95
	3888.97	09/21/16	46.10	46.38	0.28	3842.59
	3888.97	12/07/16	46.13	46.88	0.75	3842.09
	3888.97	03/08/17	46.14	46.57	0.43	3842.40
	3888.97	06/06/17	45.82	48.86	3.04	3840.11
	3888.97	09/08/17	46.30	46.63	0.33	3842.34
	3888.97	12/04/17	46.36	46.77	0.00	3842.20
	3888.97	03/05/18	46.47	46.81	0.34	3842.16
	3888.97	06/05/18	46.56	46.93	0.37	3842.04
	3888.97	09/05/18	46.31	48.81	2.50	3840.16
	3888.97	12/11/18	46.34	49.11	2.00	3839.86
	3888.97	03/06/19	46.48	49.20	2.72	3839.77
	3888.97	06/04/19	46.58	48.84	2.26	3840.13
	3888.97	09/04/19	47.88	48.67	0.79	3840.30
	3888.97	12/06/19	47.13	47.43	0.79	3841.54
	3888.97	03/05/20	47.13	47.68	0.50	3841.29
	3888.97	06/06/20	47.11	47.45	0.37	3841.52
	3888.97	09/24/20	47.21	47.60	0.24	3841.37
	3888.97	12/10/20	47.44	47.69	0.18	3841.28
	3888.97	03/02/21	47.48	47.58	0.10	3841.39
	3888.97	06/08/21	47.40	48.30	0.10	3840.67
	3888.97	09/08/21	47.52	48.00	0.78	3840.07
	3888.97	12/07/21 03/08/22	47.87 47.84	48.03 47.98	0.16	3840.94 3840.99
	3888.97		47.04			
MW-2	3890.51	06/03/14		47.23		3843.28
	3890.51	09/22/14		46.37		3844.14
	3890.51	12/10/14		45.91		3844.60
	3890.51	03/11/15		46.03		3844.48
	3890.51	06/10/15		46.38		3844.13
	3890.51	09/02/15		46.44		3844.07
	3890.51	12/09/15		46.51		3844.00
	3890.51	03/09/16		46.61		3843.90
	3890.51	06/28/16		46.70		3843.81
	3890.51	09/21/16		46.80		3843.71
	3890.51	12/07/16		46.82		3843.69
	3890.51	03/08/17		46.88		3843.63
	3890.51	06/06/17		46.98		3843.53
	3890.51	09/08/17		47.06		3843.45
	3890.51	12/04/17		47.11		3843.40
	3890.51	03/05/18		47.22		3843.29

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-2	3890.51	06/05/18		47.31		3843.20
(con't)	3890.51	09/05/18		47.36		3843.15
	3890.51	12/11/18		47.46		3843.05
	3890.51	03/06/19		47.51		3843.00
	3890.51	06/04/19		47.61		3842.90
	3890.51	09/04/19		47.76		3842.75
	3890.51	12/06/19		47.81		3842.70
	3890.51	03/05/20		47.91		3842.60
	3890.51	06/06/20		49.98		3840.53
	3890.51	09/24/20		48.14		3842.37
	3890.51	12/10/20		48.21		3842.30
	3890.51	03/02/21		48.25		3842.26
	3890.51	06/08/21		48.31		3842.20
	3890.51	09/08/21		48.41		3842.10
	3890.51	12/07/21		48.51		3842.00
	3890.51	03/08/22		48.58		3841.93
MW-3	3889.34	06/03/14		46.35		3842.99
	3889.34	09/22/14		46.49		3842.85
	3889.34	12/10/14		46.08		3843.26
	3889.34	03/11/15		46.28		3843.06
	3889.34	06/10/15		46.51		3842.83
	3889.34	09/02/15		46.60		3842.74
	3889.34	12/09/15		46.68		3842.66
	3889.34	03/09/16		46.72		3842.62
	3889.34	06/28/16		46.85		3842.49
	3889.34	09/21/16		46.96		3842.38
	3889.34	12/07/16		47.02		3842.32
	3889.34	03/08/17		47.11		3842.23
	3889.34	06/06/17		47.13		3842.21
	3889.34	09/08/17		47.23		3842.11
	3889.34	12/04/17		47.28		3842.06
	3889.34	03/05/18		47.44		3841.90
	3889.34	06/05/18		47.44		3841.86
	3889.34	09/05/18		47.55		3841.79
	3889.34	12/11/18		47.60		3841.79
	3889.34	03/06/19		47.68		3841.66
	3889.34	06/04/19 09/04/19		47.80		3841.54
	3889.34			47.95		3841.39
	3889.34	12/06/19		48.00		3841.34
	3889.34	03/05/20		48.03		3841.31
	3889.34	06/06/20		48.16		3841.18
	3889.34	09/24/20		48.34		3841.00
	3889.34	12/10/20		48.42		3840.92
	3889.34	03/02/21		48.42		3840.92
	3889.34	06/08/21		48.50		3840.84
	3889.34	09/08/21		48.60		3840.74
	3889.34 3889.34	12/07/21 03/08/22		48.71 48.74		3840.63 3840.60

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-4	3888.90	06/03/14		46.38		3842.52
	3888.90	09/22/14		46.50		3842.40
	3888.90	12/10/14		46.14		3842.76
	3888.90	03/11/15		46.35		3842.55
	3888.90	06/10/15		46.49		3842.41
	3888.90	09/02/15		46.57		3842.33
	3888.90	12/09/15		46.68		3842.22
	3888.90	03/09/16		46.75		3842.15
	3888.90	06/28/16		46.87		3842.03
	3888.90	09/21/16		46.94		3841.96
	3888.90	12/07/16		47.03		3841.87
	3888.90	03/08/17		47.08		3841.82
	3888.90	06/06/17		47.15		3841.75
	3888.90	09/08/17		47.24		3841.66
	3888.90	12/04/17		47.29		3841.61
	3888.90	03/05/18		47.38		3841.52
	3888.90	06/05/18		47.50		3841.40
	3888.90	09/05/18		47.53		3841.37
	3888.90	12/11/18		47.62		3841.28
	3888.90	03/06/19		47.72		3841.18
	3888.90	06/04/19		47.80		3841.10
	3888.90	09/04/19		47.98		3840.92
	3888.90	12/06/19		48.00		3840.90
	3888.90	03/05/20		48.07		3840.83
	3888.90	06/06/20		48.20		3840.70
	3888.90	09/24/20		48.32		3840.58
	3888.90	12/10/20		48.39		3840.51
	3888.90	03/02/21		48.44		3840.46
	3888.90	06/08/21		48.55		3840.35
	3888.90	09/08/21		48.60		3840.30
				48.72		
	3888.90 3888.90	12/07/21		48.80		3840.18 3840.10
MW-5		03/08/22				
1VI V-5	3890.41	06/03/14 09/22/14		46.56		3843.85
	3890.41			46.70		3843.71
	3890.41	12/10/14		46.29		3844.12
	3890.41	03/11/15		46.44		3843.97
	3890.41	06/10/15		46.69		3843.72
	3890.41	09/02/15		46.79		3843.62
	3890.41	12/09/15		46.85		3843.56
	3890.41	03/09/16		46.90		3843.51
	3890.41	06/28/16		47.08		3843.33
	3890.41	09/21/16		47.13		3843.28
	3890.41	12/07/16		47.14		3843.27
	3890.41	03/08/17		47.23		3843.18
	3890.41	06/06/17		47.32		3843.09
	3890.41	09/08/17		47.40		3843.01
	3890.41	12/04/17		47.27		3843.14
	3890.41	03/05/18		47.54		3842.87

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-5	3890.41	06/05/18		47.66		3842.75
(con't)	3890.41	09/05/18		47.72		3842.69
	3890.41	12/11/18		47.80		3842.61
	3890.41	03/06/19		47.85		3842.56
	3890.41	06/04/19		47.98		3842.43
	3890.41	09/04/19		48.15		3842.26
	3890.41	12/06/19		48.17		3842.24
	3890.41	03/05/20		48.23		3842.18
	3890.41	06/06/20		48.33		3842.08
	3890.41	09/24/20		48.51		3841.90
	3890.41	12/10/20		48.60		3841.81
	3890.41	03/02/21		48.60		3841.81
	3890.41	06/08/21		48.66		3841.75
	3890.41	09/08/21		48.76		3841.65
	3890.41	12/07/21		48.90		3841.51
	3890.41	03/08/22		48.90		3841.51
MW-6	3888.25	06/03/14		46.25		3842.00
	3888.25	09/22/14		46.39		3841.86
	3888.25	12/10/14		46.09		3842.16
	3888.25	03/11/15		46.23		3842.02
	3888.25	06/10/15		46.32		3841.93
	3888.25	09/02/15		46.48		3841.77
	3888.25	12/09/15		46.57		3841.68
	3888.25	03/09/16		46.62		3841.63
	3888.25	06/28/16		46.74		3841.51
	3888.25	09/21/16		46.81		3841.44
	3888.25	12/07/16		46.90		3841.35
	3888.25	03/08/17		46.93		3841.32
	3888.25	06/06/17		47.08		3841.17
	3888.25	09/08/17		47.12		3841.13
	3888.25	12/04/17		47.21		3841.04
	3888.25	03/05/18		47.30		3840.95
	3888.25	06/05/18		47.36		3840.89
	3888.25	09/05/18		47.43		3840.82
	3888.25	12/11/18		47.52		3840.73
	3888.25	03/06/19		47.60		3840.65
	3888.25	06/04/19		47.71		3840.54
	3888.25	09/04/19		47.81		3840.34
	3888.25	12/06/19				3840.35
	3888.25	03/05/20		47.90 47.98		3840.35
	3888.25	03/05/20				
		06/06/20		48.08		3840.17
	3888.25			48.23		3840.02
	3888.25	12/10/20		48.28		3839.97
	3888.25	03/02/21		48.33		3839.92
	3888.25	06/08/21		48.48		3839.77
	3888.25	09/08/21		48.50		3839.75
	3888.25 3888.25	12/07/21 03/08/22		48.60 48.67		3839.65 3839.58

Monitoring Well	Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-7	3889.23	06/03/14		45.94		3843.29
	3889.23	09/22/14		46.08		3843.15
	3889.23	12/10/14		45.70		3843.53
	3889.23	03/11/15		45.36		3843.87
	3889.23	06/10/15		46.08		3843.15
	3889.23	09/02/15		46.14		3843.09
	3889.23	12/09/15		46.24		3842.99
	3889.23	03/09/16		46.30		3842.93
	3889.23	06/28/16		46.42		3842.81
	3889.23	09/21/16		46.52		3842.71
	3889.23	12/07/16		46.59		3842.64
	3889.23	03/08/17		46.65		3842.58
	3889.23	06/06/17		46.73		3842.50
	3889.23	09/08/17		46.80		3842.43
	3889.23	12/04/17		46.88		3842.35
	3889.23	03/05/18		46.96		3842.27
	3889.23	06/05/18		47.04		3842.19
	3889.23	09/05/18		47.11		3842.12
	3889.23	12/11/18		47.20		3842.03
	3889.23	03/06/19		47.27		3841.96
	3889.23	06/04/19		47.37		3841.86
	3889.23	09/04/19		47.50		3841.73
	3889.23	12/06/19		47.58		3841.65
	3889.23	03/05/20		47.66		3841.57
	3889.23	06/06/20		47.72		3841.51
	3889.23	09/24/20		47.90		3841.33
	3889.23	12/10/20		47.96		3841.27
	3889.23	03/02/21		48.02		3841.21
	3889.23	06/08/21		48.06		3841.17
	3889.23	09/08/21		48.14		3841.09
	3889.23	12/07/21		48.26		3840.97
	3889.23	03/08/22		48.33		3840.90
MW-8	3887.06	06/03/14		44.94		3842.12
	3887.06	09/22/14		45.11		3841.95
	3887.06	12/10/14		44.79		3842.27
	3887.06	03/11/15		44.94		3842.12
	3887.06	06/10/15		45.22		3841.84
	3887.06	09/02/15		45.21		3841.85
	3887.06	12/09/15		45.29		3841.77
	3887.06	03/09/16		45.35		3841.71
	3887.06	06/28/16		45.56		3841.50
	3887.00	09/21/16		45.67		3841.39
	3887.00	12/07/16		45.64		3841.42
	3887.06	03/08/17		45.68		3841.38
	3887.06	06/06/17		45.78		3841.28
	3887.06	09/08/17		45.82		3841.24
	3887.06 3887.06	12/04/17 03/05/18		45.91 46.03		3841.15 3841.03

Monitoring Well	Top of Casing Elevation (AMSL-Feet)	Depth to Liquid Measurement Date	Depth to LNAPL (Feet-TOC)	Depth to Groundwater (Feet-TOC)	LNAPL Thickness (Feet)	Groundwater Elevation (AMSL-Feet)
MW-8	3887.06	06/05/18		46.12		3840.94
(con't)	3887.06	09/05/18		46.16		3840.90
	3887.06	12/11/18		46.26		3840.80
	3887.06	03/06/19		46.33		3840.73
	3887.06	06/04/19		46.42		3840.64
	3887.06	09/04/19		46.53		3840.53
	3887.06	12/06/19		46.62		3840.44
	3887.06	03/05/20		46.71		3840.35
	3887.06	06/06/20		46.79		3840.27
	3887.06	09/24/20		46.95		3840.11
	3887.06	12/10/20		47.02		3840.04
	3887.06	03/02/21		47.06		3840.00
	3887.06	06/08/21		47.21		3839.85
	3887.06	09/08/21		47.25		3839.81
	3887.06	12/07/21		47.36		3839.70
	3887.06	03/08/22		47.41		3839.65

Notes:

1. TOC : Measured from top of casing.

2. LNAPL : Light non aqueous phase liquid.

3. --: Denotes Not Measured.

4. AMSL : Denotes above mean sea level (AMSL)

		Chloride (mg/L)														
	June 2014	Sept. 2014	Dec. 2014	March 2015	June 2015	Sept. 2015	Dec. 2015	March 2016	June 2016	Sept. 2016	Dec. 2016	March 2017	June 2017	Sept. 2017	Dec. 2017	March 2018
MW-1R		51.4	116	39.0	24.6	21.6	23.5	34.8	24.9	28.5	44.8	32.0	28.6	29.3	29.0	33.7
MW-2	17.7	17.4	18.3	16.6	16.8	16.6	15.4 *	13.5	18.9	17.6	18.2	15.0	15.9	15.2	16.2	16.6
MW-3	59.7	59.7	58.9	57.0	57.1	56.3	50.5 *	49.3	51.5	52.0	55.1	50.0	53.7	49.5	58.1	64.3
MW-4	586	534	535	543	556	567	546 *	525	527	569	605	500	493	465	492	484
MW-5	28.6	27.3	27.9	26.1	26.2	25.8	22.4 *	22.4	26.1	26.2	27.8	23.1	24.7	20.4	25.4	25.9
MW-6	282	263	268	261	253	277	197 *	150	128	128	125	94.4	86.3	79.3	71.8	64.7
MW-7	42.7	29.6	36.0	39.7	36.2	35.2	28.8 *	27.7	36.0	38.2	39.6	24.2	23.8	24.0	27.7	31.6
MVV-8	409	442	463	485	558	327	499	504	539	490	768	489	531	573	570	587

Notes:

1. mg/L : milligrams per liter.

2. < : Analyte not detected at the laboratory reporting limit.

3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.

4. Cells shaded in blue indicate results that are above the laboratory reporting limit.

5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code 20.6.2.3103, Standards for Groundwater: chloride (250.0 mg/L).

6. --- : Analysis not performed.

7. * : Analysis performed outside of holding time.

8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.

9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.

10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

Received by OCD: 4/25/2024 8:55:15 AM
4/25/
2024
8:5
55:1
5 41

		Chloride (mg/L)														
	June 2018	Sept. 2018	Dec. 2018	March 2019	June 2019	Sept. 2019	Dec. 2019	March 2020	June 2020	Sept. 2020	Dec. 2020	March 2021	June 2021	Sept. 2021	Dec. 2021	March 2022
MW-1R																
MW-2																
MW-3																
MW-4	413	387	373	617	392	404	421	443	429	430	475	437	528	438	404	387
MW-5																
MW-6																
MW-7																
MW-8	539	398	474	308	283	223	198	118	97.4	88.8	73.5	63.9	92.5	65.4	56.2	29.6

Notes:

1. mg/L : milligrams per liter.

2. < : Analyte not detected at the laboratory reporting limit.

3. All analyses performed by TestAmerica Laboratories in Nashville, Tennessee.

4. Cells shaded in blue indicate results that are above the laboratory reporting limit.

5. Cells with text **bolded** indicate results that exceed the New Mexico Administrative Code 20.6.2.3103, Standards for Groundwater: chloride (250.0 mg/L).

6. --- : Analysis not performed.

7. * : Analysis performed outside of holding time.

8. December 2016 results for MW-1R and MW-8 were confirmed by laboratory. reanalysis.

9. Sample MW-1R was collected in December 2017 under sample ID MW-R1 as shown on the COC and in the field book.

10. Beginning with the September 2019 sampling event, Eurofins TestAmerica (Edison, NJ) became the Project Laboratory.

•

FIGURES

Released to Imaging: 6/4/2024 2:42:07 PM

Released to Imaging: 6/4/2024 2:42:07 PM

LEGEND

LOCATION OF MONITORING WELL

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

SVE-1 LOCATION OF SVE SYSTEM WELL

ILE	
SITE BASE	MAP

			PROJECT NUMBER	FIGURE NUMBER	
MNM					
MNM	SCALE	1"= 60'	CHKSTATM:H21001	2	
SKG	DATE	5/6/2022			

Page 35 of 212

E TITLE SVE SYSTEM VOC DISCHARGE CONCENTRATIONS VERSUS TIME										
			PROJECT NUMBER	FIGURE NUMBER						
JEC										
MNM	SCALE	NTS	CHKSTATM:H21001	3						
SKG	DATE	4/9/2021								

LEGEND

MW-5 3841.75 LOCATION OF MONITORING WELL AND GROUNDWATER ELEVATION 6/8/2021, FEET AMSL

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

/ 3842.00 / GROUNDWATER POTENTIOMETRIC SURFACE

TLE	
GROUNDWATER POTENTIOMETRIC	
SURFACE, JUNE 8, 2021	

					Pag
MNM			PROJECT NUMBER	FIGURE NUMBER	Se
MNM	SCALE	1"= 60'	CHKSTATM:H21001	4	37
SKG	DATE	5/6/2022			e
					21
					N

LEGEND

MW-5 LOCATION OF MONITORING WELL AND 3841.65 GROUNDWATER ELEVATION 9/8/2021, FEET AMSL

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

/ 3842.00 / GROUNDWATER POTENTIOMETRIC SURFACE

TITLE	
GROUNDWATER POTENTIOMETRIC	
SURFACE, SEPTEMBER 8, 2021	

			PROJECT NUMBER	FIGURE NUMBER	
MNM					
MNM	SCALE	1"= 60'	CHKSTATM:H21001	5	
SKG	DATE	5/6/2022			

LEGEND

MW-5 LOCATION OF MONITORING WELL AND 3841.51 GROUNDWATER ELEVATION 12/7/2021, FEET AMSL

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

/ 3842.00 / GROUNDWATER POTENTIOMETRIC SURFACE

TITLE
GROUNDWATER POTENTIOMETRIC
SURFACE, DECEMBER 7, 2021

			PROJECT NUMBER	FIGURE NUMBER	
MNM				TIGORE NOMBER	
MNM	SCALE	1"= 60'	CHKSTATM:H21001	6	
SKG	DATE	5/6/2022			3

LEGEND

MW-5 LOCATION OF MONITORING WELL AND 3841.51 GROUNDWATER ELEVATION 3/8/2022, FEET AMSL

LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

GROUNDWATER POTENTIOMETRIC SURFACE

TLE	
GROUNDWATER POTENTIOMETRIC	
SURFACE, MARCH 8, 2022	

	·		PROJECT NUMBER	FIGURE NUMBER	
MNM				TIGORE NOMBER	
MNM	SCALE	1"= 60'	CHKSTATM:H21001	7	
SKG	DATE	5/6/2022			4

LEGEND

LOCATION OF MONITORING WELL AND CONCENTRATION OF CHLORIDE IN GROUNDWATER 3/8/2022, mg/L

WW-1 LOCATION OF PLUGGED AND ABANDONED MONITORING WELL

CONTOUR LINE SHOWING EQUAL CONCENTRATIONS OF CHLORIDE IN GROUNDWATER, mg/L. (DASHED WHERE INFERRED)

ISOPLETH OF CHLORIDE CONCENTRATIONS IN GROUNDWATER, MARCH 8, 2022

			PROJECT NUMBER	FIGURE NUMBER	١,
MNM				TISSINE NOMBER	Ì
MNM	SCALE	1"= 60'	CHKSTATM:H21001	8	
SKG	DATE	5/6/2022			

EQUUS	DOCUMENT TITLE EIGHTH ANNUAL GROUNDWATER MONITORING REPORT	FIG	FIGURE TITLE CHLORIDE CONCENTRATION TREND GRAPHS				
1323 East 71st Street, Suite 200 Tulsa, Oklahoma 74136-5065	CLIENT CHESAPEAKE ENERGY CORPORATION OKLAHOMA CITY, OKLAHOMA	DESIGNED BY	DESIGNED BY CNA		- PROJECT NUMBER	FIGURE NUMBER	
918.921.5331	LOCATION STATE M LEASE (AP-72)	APPROVED BY	/ MNM	SCALE	NTS	CHKSTATM:H21001	9
www.EQUUSENV.com	SEC. 18, T17S, R36E, LEA COUNTY, NEW MEXICO	DRAWN BY	' SKG	DATE	5/6/2022		/
					0.012022		

APPENDICES

- A Stage 2 Abatement Plan
- B NMOCD Approval of Stage 2 Abatement Plan
- C Laboratory Analytical Reports and Chain-of-Custody Documentation

APPENDIX A

STAGE 2 ABATEMENT PLAN

Mr. Glenn Von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Subject: State M-1 AP-072 Stage 2 Abatement Plan

Dear Mr. Von Gonten:

On behalf of Chesapeake Energy Corporation, ARCCADIS U.S. Inc. respectfully submits the enclosed Stage 2 Abatement plan for the State M-1 site (AP-072). A Stage 1 Abatement Plan Report was submitted on March 20, 2012. Your review and approval of this Abatement Plan will be appreciated. The landowner, Darr Angell, is anxious for us to complete soil remediation at this site.

If you have any questions please do not hesitate to contact Bradley Blevins at (575) 391-1462 or via e-mail at bblevins@chkenergy or me at (432) 687-5400, e-mail address shall@aracdis-us.com.

ARCADIS U.S., Inc. 1004 North Big Spring Street Suite 300 Midland Texas 79701 Tel 432 687 5400 Fax 432 687 5401 www.arcadis-us.com

ENVIRONMENT

Date: March 27, 2012

Contact: Sharon Hall

Phone: 432 687-5400

Email: shall@aracdis-us.com

Our ref: MT001088

ARCADIS U.S., Inc. TX Engineering License # F-533

Sincerely,

ARCADIS U.S., Inc.

Sham E. Hael

Sharon E. Hall Associate Vice President

_{Copies:} <mark>Bradley Blevins- C</mark>hesapeake, Hobbs

Imagine the result

g:\aproject\chesapeake\m-1 stage 2 plan\transmitall letter.doc

Received by OCD: 4/25/2024 8:55:15 AM

Page 46 of 212

Imagine the result

Chesapeake Energy Corporation

State M-1 AP-072 Stage 2 Abatement Plan Proposal

Hobbs, New Mexico

March 27, 2012

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Prepared for: Chesapeake Energy Corporation Hobbs, New Mexico

Prepared by: ARCADIS U.S., Inc. 1004 North Big Spring Street Suite 300 Midland Texas 79701 Tel 432 687 5400 Fax 432 687 5401

Our Ref.: MT001088.0001.00001

Date: March 27, 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Sharon Hall Associate Vice President

i

Table of Contents

1.	INTRO	DUCTIC	N	1
2 .	SUMM	ARY OF	F STAGE 1 ABATEMENT ACTIVITIES	1
3.	STAGE	2 ABA	TEMENT PLAN PROPOSAL	2
	3.1	Soil Re	emediation	2
	3.2	Ground	dwater Remediation and Monitoring	3
		3.2.1	Chlorides	4
		3.2.2	Hydrocarbons	4
4.	PUBLIC		FICATION	4
5.	REMED		N WORK SCHEDULE	4
6 .	REFER	ENCES	6	5

Figures

Figure 1 Soil and Groundwater Analyte Concentrations

Figure 2 Proposed Excavation

Appendices

Appendix A Multi-Med Model Inputs and Outputs

ARCADIS

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

1. INTRODUCTION

The subject site is a former tank battery site located east of Buckeye, New Mexico. The site was purchased by Chesapeake Energy Corporation (Chesapeake) in April 2004. Chesapeake did not operate the tank battery or the associated well field and began the process of facility abandonment in 2007.

Seven monitor wells and nine soil borings have been drilled at the site. Elevated chloride concentrations and limited hydrocarbon compounds were detected in soil samples collected from soil borings and monitoring wells. Elevated chlorides were detected in the down gradient monitor wells and light non-aqueous phase liquid (LNAPL) occurs in monitoring well MW-1. LNAPL recovery activities have been piloted at the site and will commence again upon completion of surface reclamation activities.

2. SUMMARY OF STAGE 1 ABATEMENT ACTIVITIES

Initial site investigation activities were conducted in May of 2007 following abandonment of the tank battery. Stage 1 Abatement activities were conducted during the period of May 2007 through September 2011. Stage 1 Abatement activities included drilling and soil sampling of nine boreholes, drilling and sampling of seven monitor wells, EM 31 and EM 34 surveys, conversion of one monitoring well into a recovery well and recovery of phase-separated hydrocarbons from the recovery well.

New Mexico Oil Conservation Division (NMOCD) was notified of impacts to groundwater at the site via e-mail on May 30, 2007. NMOCD notified Chesapeake in a letter dated June 19, 2007 that a Stage 1 Abatement Plan was required for the site in accordance with Rule 19.

The Stage 1 Abatement Plan was submitted to NMOCD on August 22, 2007. The plan summarized site activities taken to date. The plan proposed the drilling and sampling of a minimum of three additional soil borings and installation and sampling of nine groundwater monitoring wells.

BBC contacted NMOCD via email on April 24, 2010 to inquire about the status of the Stage 1 Abatement Plan approval and Chesapeake's desire to conduct the proposed Stage 1 Abatement Plan activities. On May 27, 2010, NMOCD responded via email that the State was not staffed to review the Abatement Plans (APs) in a timely manner. On June 23, 2010, BBC contacted NMOCD via email to request a waiver of the Public Notice requirement and inform NMOCD that Chesapeake and the landowner were

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

ARCADIS

anxious to move forward with the proposed AP activities. NMOCD replied via email on June 23, 2010 stating they were still understaffed to review the AP and could not waive the Public Notice requirement. They advised BBC that Chesapeake could proceed "at risk." On July 12, 2010 BBC informed NMOCD by registered letter that Chesapeake was planning to start the Stage 1 Assessment on or about August 23, 2010. They further informed NMOCD they would be submitting the required Public Notices, a copy of which was attached to the letter. NMOCD did not respond to the registered letter.

The public notices were published in the Hobbs News-Sun and Lovington Leader on July 22, 2010 and the Albuquerque Journal on July 24, 2010. No comments were received from the public or NMOCD during the 30-day comment period and Chesapeake proceeded with the proposed Stage 1 Abatement Plan activities on August 26, 2010. Copies of correspondence and Public Notice are included in Appendix A.

A detailed description of site activities and results can be found in the report submitted to NMOCD dated March 20, 2012 entitled State M-1 AP-072, Stage 1 Abatement Report (Site Assessment Investigation). Analytical results for soil and groundwater sampling are summarized on Figure 1.

3. STAGE 2 ABATEMENT PLAN PROPOSAL

After review of various remedial options, we propose the following Stage 2 Abatement Plan. The plan addresses soil and groundwater remediation.

3.1 Soil Remediation

The selected remedial option will be the excavation of near-surface soils and installation of clay liners. The anticipated extent and depth of excavation is based on assessment activities (laboratory analysis and visual observation) and is shown in Figure 2. Near surface soils (to a depth of 5 feet below ground surface) with chloride concentrations in excess of 1,000 milligrams per kilogram (mg/kg) and a Total Petroleum Hydrocarbons (TPH) concentration in excess of 1,000 mg/kg will be excavated and disposed. Excavated soils will be disposed at Lea Land Landfill.

Areas where chloride or TPH concentrations are expected to exceed 1,000 mg/kg at depths greater than 5 feet below ground surface soils will be excavated to a depth of 5

g:\aproject\chesapeake\m-1 stage 2 plan\m-1 stage 2 abatement plan final report.doc

ARCADIS

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

feet below ground surface. Soils will be screened in the field for chlorides using chloride field test kits and for TPH using a photoionization. Critical samples (samples used to delineate the excavations) will be submitted for laboratory analysis of chlorides and/or TPH. Following excavation, a 12-inch compacted clay layer that meets or exceeds a permeability of equal to or less than 1×10^{-8} centimeters per second will be installed in the excavations. The lined excavations will be backfilled with four feet of locally obtained native soil. All of the excavated areas will be re-seeded with native vegetation. Areas that are supporting vegetation will not be disturbed.

Use of the USEPA Multi-Med model demonstrates that the clay liners will mitigate the leaching of chlorides to groundwater. The model predicts that after 7000 years of infiltration through the liner the maximum concentration of chlorides in groundwater will be 221.8 milligrams per liter (mg/L). The Multi-Med inputs and outputs are included in Appendix A.

3.2 Groundwater Remediation and Monitoring

One additional groundwater monitoring well will be installed downgradient of the site. The monitoring well will be designated MW-8.

Groundwater samples will be collected from all of the monitoring wells and analyzed for chlorides using USEPA method 9056 for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling will be discontinued when eight quarters of sample results indicate chloride concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to the NMOCD annually on June 15.

Following removal of LNAPL from MW-1, groundwater samples will be collected from MW-1 and analyzed for benzene, toluene ethylbenzene and xylenes (BTEX) using USEPA method 8260B for each of four quarters. Based on sample results for one year (four quarters), sampling frequency will be reviewed and may be revised.

Sampling of MW-1 for BTEX will be discontinued when eight quarters of sample results indicate BTEX concentrations are below New Mexico Water Quality Control Commission, Title 20, Chapter 6, Part 2 standards. Sample results will be submitted to

g:\aproject\chesapeake\m-1 stage 2 plan\m-1 stage 2 abatement plan final report.doc

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

ARCADIS

the NMOCD annually on June 15. Proposed groundwater remediation is presented in Sections 3.2.1 and 3.2.2.

3.2.1 Chlorides

Chloride concentrations in groundwater exceed New Mexico Water Quality Control Commission standards in two wells (MW-1 411mg/L and MW-4 472mg/L).

Removal of near-surface soils that are a potential source of chlorides and BTEX in groundwater and lining of excavations with chloride and TPH concentrations in excess of 1,000 mg/kg will mitigate leaching of chlorides to groundwater. Considering the relatively low concentrations of chlorides in groundwater and the fact that soil removal and clay liner infiltration barrier installation will be conducted at this site, we propose monitoring the site for a period of two years before considering pumping of groundwater at this site. With the proposed source removal and mitigation and the severe drought conditions being experienced in this area, we believe it prudent to evaluate if chloride mass removal by pumping is warranted at this site.

3.2.2 Hydrocarbons

A pilot LNAPL recovery test will take place over a three week period and will be used to develop long-term recovery procedures. LNAPL will be recovered from MW-1 and disposed in a NMOCD approved facility. Additionally, two soil vent borings equipped with wind turbines will be installed in the area near MW-1.

4. PUBLIC NOTIFICATION

Written notification of submittal of the Stage 2 Abatement Plan Proposal and site activities will be sent to all surface owners of record within a one-mile radius of the site. NMOCD will be supplied with a list of parties to be notified. Publication of notice of activities will be published in a state-wide circulated newspaper, the Albuquerque Journal, and two county newspapers, the Hobbs-Daily News Sun and the Lovington Leader.

5. REMEDIATION WORK SCHEDULE

Soil remediation activities are expected to be completed in 15 working days (Monday through Friday). Groundwater remediation activities will be ongoing. An estimated completion date for groundwater remediation is not available.

State M-1 AP-072

Stage 2 Abatement Plan Proposal

Chesapeake Energy Corporation Hobbs, New Mexico

6. REFERENCES

Groundwater Handbook; United States Environmental Protection Agency, Office of Research and Development, Center for Environmental Research Information; 1992

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

State M-1 AP-072 Stage 1 Abatement Report (Site Assessment Investigation); ARCADIS; March 2012

State M-1Salt Water Disposal Tank Battery, Stage 1 Abatement Plan (Ap-072), BBC International; August 2007

New Mexico Water Quality Control Commission, Title 20 Chapter 6, Part 2, Subpart I

Page 54 of 212

Released to Imaging: 6/4/2024 2:42:07 PM

Appendix A

Multi-Med Model Inputs and Outputs

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico Multimed Model Input and Output (With Liner)

MOD	EL INPUT	AND OUT	PUT		MODEL	RANGE			
<i>II</i>	VPUT PAF	RAMETERS	S		Minimum	Maximum			
Unsaturated Zone Flow Parameters									
Depth of Unsaturated Zone	m	45	feet	13.7 m	0.000000001	None			
Hydraulic Conductivity	cm/hr	2	ft/day	2.54 cm/hr	0.00000000001	10,000			
Unsaturated Zone Porosity	fraction	0.05	fraction	0.05 fraction	0.00000001	0.99			
Residual Water Content	fraction	0.01	fraction	0.010 fraction	0.00000001	1			
	Uns	aturated Z	one Trans	port Parameters					
Thickness of Layer	m	45	feet	13.7 m	0.000000001	None			
Percent of Organic Matter	%	2.6	%	2.6 %	0	100			
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5			
Biological Decay Coefficient	1/yr	0	1/yr	0 1/yr	0	None			
		Aqu	lifer Paran	ieters					
Aquifer Porosity	fraction	0.25	fraction	0.25 fraction	0.00000001	0.99			
Bulk Density	g/cm ³	1.35	g/cm ³	1.35 g/cm ³	0.01	5			
Aquifer Thickness	m	50	ft	15.24 m	0.000000001	100,000			
Hydraulic Conductivity	m/yr	2	ft/day	223 m/yr	0.0000001	100,000,000			
Hydraulic Gradient	m/m	0.007	m/m	0.007 m/m	0.00000001	None			
Organic Carbon Content	fraction	0.00315	fraction	0.00315 fraction	0.000001	1			
Temperature of Aquifer	°C	14.4	°C	14.4 °C	0.00000001	None			
рН		6.2		6.2 · · · · · · · · · · · · · · · · · · ·	0.3	14			
x-distance Radial Distance from									
Site to Receptor	m	1	m	<u> </u>	1	None			
			rce Param	eters					
Infiltration Rate from the Facility	m/yr	0.124	in/yr	0.00315 m/yr	0.0000000001	10,000,000,000			
Area of Waste Disposal Unit	m ²	46,800	ft ²	4348 m ²	0.01	None			
Length Scale of Facility	m	240	feet	73.2 m	0.000000001	10,000,000,000			
Width Scale of Facility	m	195	feet	59.4 m	0.000000001	10,000,000,000			
Recharge Rate into the Plume	m/yr	16.71	in/yr	0.4244 m/yr	0	10,000,000,000			
Duration of Pulse	yr	8,000	yr	8000 yr	0.000000001	None			
Initial Concentration at Landfill	mg/L_	6,000	mg/L	6,000 mg/L	0	None			
		Addit	ional Para	meters					
Method				Gaussian	Gaussian	Patch			
Name of Chemical Specified				Chloride					

MODEL OUTPUT Final Concentration at Landfill mg/L 221.8 mg/L

	MODEL OUTPUT		
Concentration at Landfill	0.0 mg/L	Time	1 yr
	0.0 mg/L		10 yr
	0.0 mg/L		20 yr
	18.9 mg/L		50 yr
	36.6 mg/L		70 yr
	45.4 mg/L		80 yr
	61.8 mg/L		100 yr
	123.4 mg/L		200 yr
	154.1 mg/L		300 yr
	166.3 mg/L		400 yr
	178.5 mg/L		500 yr
	190.7 mg/L		600 yr
	204.8 mg/L		800 yr
	211.1 mg/L		1,000 yr
	220.4 mg/L		2,000 yr
	221.6 mg/L		3,000 yr
	221.8 mg/L		4,000 yr
	221.8 mg/L		5,000 yr
	221.8 mg/L		6,000 yr
	221.8 mg/L		7,000 yr

Chesapeake State M-1 Chesapeake Energy Corporation Buckeye, Lea County, New Mexico

TABLE 6-3. TOTAL POROSITY OF VARIOUS MATERIALS

	No. of		Arithmetic	
Material	Analyses	Range	Mean	
Igneous Rocks				
Weathered granite	8	0.34-0.57	0.45	
Weathered gabbro	4	0.42-0.45	0.43	
Basalt	94	0.03-0.35	0.17	
Sedimentary Materials				
Sandstone	65	0.14-0.49	0.34	
Siltstone	7	0.21-0.41	0.35	
Sand (fine)	243	0.26-0.53	0.43	
Sand (coarse)	26	0.31-0.46	0.39	
Gravel (fine)	38	0.25-0.38	0.34	
Gravel (coarse)	15	0.24-0.36	0.28	
Silt	281	0.34-0.61	0.46	
Clay	74	0.34-0.57	0.42	
Limestone	74	0.07-0.56	0.3	
Metamorphic Rocks				
Schist	18	0.04-0.49	0.38	

Sources: From Mercer et al. (1982),

McWhorter and Sunada (1977),

Original reference Morris and Johnson, (1967).

Texture	Bulk Density g/cm^3	Average Wilting Point	Plant Available Water Inches/Ft
Sandy loam	1.6	0.057	1.66
Silt Loam	1.45	0.119	2
Loam	1.5	0.097	2.4
Sandy clay loam	1.45	0.137	1.66
Clay loam	1.45	0.157	1.9

TABLE 6-8. MEAN BULK DENSITY (g/cm3) FOR FIVE SOIL TEXTURAL CLASSIFICATIONSa,b

Soil Texture	Mean Value	Range Reported	
Silt Loams	1.32	0.86 - 1.67	
Clay and Clay Loams	1.3	0.94 - 1.54	
Sandy Loams	1.49	1.25 - 1.76	
Gravelly Silt Loams	1.22	1.02 - 1.58	
Loams	1.42	1.16 - 1.58	
All Soils	1.35	0.86 - 1.76	

a Baes, C.F., III and R.D. Sharp. 1983. A Proposal for Estimation of Soil Leaching Constants for Use in Assessment Models. J. Environ. Qual. 12(1):17-28 (Original reference).

b From Dean et al. (1989)

TABLE 6-2. DE	SCRIPTIVE STATISTICS FOR SATURATED HYDRAULIC CONDUCTI	VITY
(cm hr-1		

	Hydraulic (Conductivity	/ (Ks)*			
Soil Type	x	s	CV	n		
Clay**	0.2	0.42	210.3	114	cm/hr	17.52
Clay Loam	0.26	0.7	267.2	345	cm/hr	22.776
Loam	1.04	1.82	174.6	735	cm/hr	91.104
Loamy Sand	14.59	11.36	77.9	315	cm/hr	1278.084
Silt	0.25	0.33	129.9	88	cm/hr	21.9
Silt Loam	0.45	1.23	275.1	1093	cm/hr	39.42
Silty Clay	0.02	0.11	453.3	126	cm/hr	1.752
Silty Clay Loam	0.07	0.19	288.7	592	cm/hr	6.132
Sand	29.7	15.6	52.4	246	cm/hr	2601.72
Sandy Clay	0.12	0.28	234.1	46	cm/hr	10.512
Sandy Clay Loam	1.31	2.74	208.6	214	cm/hr	114.756
Sandy Loam	4.42	5.63	127	1183	cm/hr	387.192

* n = Sample size, = Mean, s = Standard deviation, CV = Coefficient of variation (percent)

** Agricultural soil, less than 60 percent clay

Sources: From Dean et al. (1989), Original reference Carsel and Parrish (1988).

Saturated water content is the maximum volumetric amount of water in the soil when all pores are filled with water. Very often it is assumed that saturated water content equals the porosity n. However, in many cases qS is smaller than n due to the fact that small amounts of air will be trapped in very small pores. Residual water content can be defined as the asymptote of the pF-curve when h gets very high negative values. Usually qR is very small - on the order of 0.001--0.02 for coarse soils but gets as high values as 0.15..0.25 for heavy clay soils. Air entry point ha is

Soil texture. Fine-textured soils can hold much more organic matter than sandy soils for two reasons. First, clay particles form electrochemical bonds that hold organic compounds. Second, decomposition occurs faster in well-aerated sandy soils. A sandy loam rarely holds more than 2% organic matter.

The recharge rate in this model is the net amount of water that percolates directly into the aquifer system outside of the land disposal facility. The recharge is assumed to have no contamination and hence dilutes the groundwater contaminant plume. The recharge rate into the plume can be calculated in a variety of ways. One possibility is to use a model, such as HELP (Hydrologic Evaluation of Landfill Performance) (Schroeder et al., 1984), without any engineering controls (leachate collection system or a liner) to simulate the water balance for natural conditions.

The infiltration rate is the net amount of leachate that percolates into the aquifer system from a land disposal facility. Because of the use of engineering controls and the presence of non-native porous materials in the landfill facility, the infiltration rate will typically be different than the recharge rate. However, it can be estimated by similar

Most soils contain 2-10 percent organic matter. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production. http://www.fao.org

APPENDIX B

NMOCD APPROVAL OF STAGE 2 ABATEMENT PLAN

From:	Chase Acker
То:	Bruce McKenzie
Subject:	FW: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM
Date:	Monday, April 14, 2014 1:56:01 PM

From: Griswold, Jim, EMNRD [mailto:Jim.Griswold@state.nm.us]
Sent: Thursday, June 27, 2013 5:14 PM
To: Larry Wooten
Cc: Hall, Sharon; Chase Acker
Subject: Stage 2 Abatement Plan Approval: AP-72 Former State M-1 Tank Battery located in Unit Letter O of Section 18 in Township 17 South, Range 36 East, NMPM in Lea County, NM

Mr. Wooten,

The Oil Conservation Division (OCD) has reviewed the Stage 2 Abatement Plan for the abovereferenced site submitted on your behalf by Arcadis and dated 3/27/12. That plan has substantially met the requirements of 19.15.30 NMAC and is hereby approved. Please proceed with field activities.

Be advised this approval does not relieve Chesapeake of responsibility should the situation continue to pose a threat to groundwater, surface water, human health, or the environment. Furthermore, this approval does not relieve your responsibility for compliance with any federal, state, or local laws and/or regulations. Please retain a copy of this email for your files, as no hardcopy will be sent. If you have any questions, please feel free to contact me at any time.

Jim Griswold

Senior Hydrologist EMNRD/Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 505.476.3465 email: jim.griswold@state.nm.us

This email (and attachments if any) is intended only for the use of the individual or entity to which it is addressed, and may contain information that is confidential or privileged and exempt from disclosure under applicable law. If the reader of this email is not the intended recipient, or the employee or agent responsible for delivering this message to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited. If you have received this communication in error, please notify the sender immediately by return email and destroy all copies of the email (and attachments if any).

APPENDIX C

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

Received by OCD: 4/25/2024 8:55:15 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-123031-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

-athy Gartner

Authorized for release by: 7/9/2021 3:26:35 PM

Cathy Gartner, Project Manager II (615)301-5041 Cathy.Gartner@Eurofinset.com

LINKS Review your project results through TOTALACCESS

Visit us at: www.eurofinsus.com/Env Released to Imaging: 6/4/2024 2:42:07 PM This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Laboratory Job ID: 180-123031-1 SDG: Property ID: 891077

2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Subcontract Data	6
Receipt Checklists	21

Page 68 of 212

Job ID: 180-123031-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-123031-1

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Glossary Abbreviation

¤

%R

CFL

CFU

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-123031-1

Page 69 of 212

77 2
_ 3
Δ
5
5
6

CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 180-123031-1 SDG: Property ID: 891077

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
180-123031-1	20210608 M-1	Air	06/08/21 12:40	06/10/21 10:22		

Air Toxics

6/23/2021 Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M Project #: CHKSTATM:H20001 Workorder #: 2106254

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 6/10/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettaker

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-351-8279 www.airtoxics.com 🛟 eurofins

of 2.	12
	5
	6

Air Toxics

WORK ORDER #: 2106254

Work Order Summary

CLIENT:	Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100 Brentwood, TN 37027	BILL TO:	Accounts Payable Eurofins Test America 4104 Shuffel St NW North Canton, OH 44720
PHONE:	800-765-0980	P.O. #	180-123031
FAX:	615-726-3404	PROJECT #	CHKSTATM:H20001 CHK STATE M
DATE RECEIVED:	06/10/2021	CONTACT:	Brian Whittaker
DATE COMPLETED:	06/23/2021		

			KEUEIP I	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20210608 M-1	TO-15	6.0 "Hg	2 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

Tlayes Terde

DATE: 06/23/21

DECEIDT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209220, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-20-16, UT NELAP – CA009332020-12, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-014, Effective date: 10/18/2020, Expiration date: 10/17/2021. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

Page 2 of 14 Page 7 of 21
Air Toxics

One 6 Liter Summa Canister sample was received on June 10, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

All Quality Control Limit exceedances and affected sample results are noted by flags. Each flag is defined at the bottom of this Case Narrative and on each Sample Result Summary page. Target compound non-detects in the samples that are associated with high bias in QC analyses have not been flagged.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

- M Reported value may be biased due to apparent matrix interferences.
- CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

- a-File was requantified
- b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

🔅 eurofins

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20210608 M-1

Lab ID#: 2106254-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	7.1	16	17	37
1,3,5-Trimethylbenzene	0.71	1.3	3.5	6.4
TVOC Ref. to Hexane	14	2100	50	7400

Air Toxics

EPA METHOD TO-15 GC/MS FULL SCAN				
File Name: Dil. Factor:	j062114 1.42	Date of Collection: 6/8/21 12:40 Date of Analysis: 6/21/21 05:32		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	7.1	16	17	37
Benzene	0.71	Not Detected	2.3	Not Detected
alpha-Chlorotoluene	0.71	Not Detected	3.7	Not Detected
Bromodichloromethane	0.71	Not Detected	4.8	Not Detected
Bromoform	0.71	Not Detected	7.3	Not Detected
Bromomethane	7.1	Not Detected	28	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.8	Not Detected	8.4	Not Detected
Carbon Disulfide	2.8	Not Detected	8.8	Not Detected
Carbon Tetrachloride	0.71	Not Detected	4.5	Not Detected
Chlorobenzene	0.71	Not Detected	3.3	Not Detected
Dibromochloromethane	0.71	Not Detected	6.0	Not Detected
Chloroethane	2.8	Not Detected	7.5	Not Detected
Chloroform	0.71	Not Detected	3.5	Not Detected
Chloromethane	7.1	Not Detected	15	Not Detected
1,2-Dibromoethane (EDB)	0.71	Not Detected	5.4	Not Detected
1,2-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected
1,3-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected
1,4-Dichlorobenzene	0.71	Not Detected	4.3	Not Detected
1,1-Dichloroethane	0.71	Not Detected	2.9	Not Detected
Freon 12	0.71	Not Detected	3.5	Not Detected
1,2-Dichloroethane	0.71	Not Detected	2.9	Not Detected
1,1-Dichloroethene	0.71	Not Detected	2.8	Not Detected
cis-1,2-Dichloroethene	0.71	Not Detected	2.8	Not Detected
trans-1,2-Dichloroethene	0.71	Not Detected	2.8	Not Detected
1,2-Dichloropropane	0.71	Not Detected	3.3	Not Detected
cis-1,3-Dichloropropene	0.71	Not Detected	3.2	Not Detected
trans-1,3-Dichloropropene	0.71	Not Detected	3.2	Not Detected
Freon 114	0.71	Not Detected	5.0	Not Detected
Ethyl Benzene	0.71	Not Detected	3.1	Not Detected
4-Ethyltoluene	0.71	Not Detected	3.5	Not Detected
Hexachlorobutadiene	2.8	Not Detected		Not Detected
2-Hexanone	2.8	Not Detected	12	Not Detected
Methylene Chloride	7.1	Not Detected	25	Not Detected
4-Methyl-2-pentanone	0.71	Not Detected	2.9	Not Detected
Styrene	0.71	Not Detected	3.0	Not Detected
1,1,2,2-Tetrachloroethane	0.71	Not Detected	4.9	Not Detected
Tetrachloroethene	0.71	Not Detected	4.8	Not Detected
Toluene	0.71	Not Detected	2.7	Not Detected
1,2,4-Trichlorobenzene	2.8	Not Detected UJ	21	Not Detected UJ
1,1,1-Trichloroethane	0.71	Not Detected	3.9	Not Detected
1,1,2-Trichloroethane	0.71	Not Detected	3.9	Not Detected
Trichloroethene	0.71	Not Detected	3.8	Not Detected
	0.71		0.0	

Client Sample ID: 20210608 M-1 Lab ID#: 2106254-01A

Released to Imaging: 6/4/2024 2:42:07 PM

Air Toxics

Client Sample ID: 20210608 M-1 Lab ID#: 2106254-01A EPA METHOD TO-15 GC/MS FULL SCAN File Name: j062114 Date of Collection: 6/8/21 12:40:00 PM Dil. Factor: Date of Analysis: 6/21/21 05:32 PM 1.42 **Rpt.** Limit Amount **Rpt. Limit** Amount Compound (ug/m3) (ug/m3) (ppbv) (ppbv) Not Detected Freon 11 0.71 4.0 Not Detected 0.71 Not Detected 5.4 Not Detected Freon 113 1,2,4-Trimethylbenzene 0.71 Not Detected 3.5 Not Detected 0.71 3.5 1.3

6.4 1,3,5-Trimethylbenzene Vinyl Acetate 2.8 Not Detected 10 Not Detected 1.8 Not Detected Vinyl Chloride 0.71 Not Detected m,p-Xylene 0.71 Not Detected 3.1 Not Detected o-Xylene 0.71 Not Detected 3.1 Not Detected TVOC Ref. to Hexane 14 2100 50 7400

UJ = Analyte associated with low bias in the CCV.

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	120	70-130
1,2-Dichloroethane-d4	112	70-130
4-Bromofluorobenzene	101	70-130

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2106254-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j062108d 1.00		of Collection: NA of Analysis: 6/21	/21 01:42 PM
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected UJ	15	Not Detected UJ
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
	2.00			

٦

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2106254-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j062108d 1.00	Date of Collection: NA Date of Analysis: 6/21/21 01:42 PM		21 01:42 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

UJ = Analyte associated with low bias in the CCV.

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	105	70-130
1,2-Dichloroethane-d4	111	70-130
4-Bromofluorobenzene	87	70-130

٦

Air Toxics

Client Sample ID: CCV Lab ID#: 2106254-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j062103	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 6/21/21 10:14 AM
Compound	%Recove	əry
Acetone	87	
Benzene	107	
alpha-Chlorotoluene	107	
Bromodichloromethane	112	
Bromoform	110	
Bromomethane	94	
2-Butanone (Methyl Ethyl Ketone)	92	
Carbon Disulfide	99	
Carbon Tetrachloride	103	
Chlorobenzene	101	
Dibromochloromethane	113	
Chloroethane	99	
Chloroform	102	
Chloromethane	98	
1,2-Dibromoethane (EDB)	111	
1,2-Dichlorobenzene	116	
1,3-Dichlorobenzene	117	
1,4-Dichlorobenzene	110	
1,1-Dichloroethane	97	
Freon 12	107	
1,2-Dichloroethane	117	
1,1-Dichloroethene	85	
cis-1,2-Dichloroethene	96	
trans-1,2-Dichloroethene	97	
1,2-Dichloropropane	118	
cis-1,3-Dichloropropene		
trans-1,3-Dichloropropene	105	
Freon 114	97	
Ethyl Benzene	100	
4-Ethyltoluene	115	
Hexachlorobutadiene	78	
2-Hexanone	108	
Methylene Chloride	103	
4-Methyl-2-pentanone	102	
Styrene	110	
1,1,2,2-Tetrachloroethane		
Tetrachloroethene	106	
Toluene	106	
1,2,4-Trichlorobenzene	66 Q	
1,1,1-Trichloroethane	101	
1,1,2-Trichloroethane	113	
Trichloroethene	109	
	109	

Page 9 of 14 Page 14 of 21

Client Sample ID: CCV Lab ID#: 2106254-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j062103 1.00	Date of Collection Date of Analysis:	
Compound		%Recovery	
Freon 11		102	
Freon 113		92	
1,2,4-Trimethylbenzene		108	
1,3,5-Trimethylbenzene		121	
Vinyl Acetate		77	
Vinyl Chloride		94	
m,p-Xylene		106	
o-Xylene		99	
TVOC Ref. to Hexane		100	
Q = Exceeds Quality Control limi	ts.		
Container Type: NA - Not Appli	icable		

SurrogatesMethod
LimitsToluene-d810870-1301,2-Dichloroethane-d410470-1304-Bromofluorobenzene11270-130

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2106254-04A EPA METHOD TO-15 GC/MS FULL SCAN

Compound %Recovery Limit Acetone 88 70-13 Benzene 104 70-13 alpha-Chlorotoluene 104 70-13 Bromodichloromethane 106 70-13 Bromodichloromethane 106 70-13 Bromodin 104 70-13 Bromodin 104 70-13 Bromodinom 104 70-13 Bromodinom 104 70-13 Bromomethane 96 70-13 Carbon Disulfide 100 70-13 Carbon Tetrachloride 102 70-13 Chlorobenzene 98 70-13 Dibromochhane (EDB) 106 70-13 Chlorobenzene 111 70-13 1.2-Dibromethane (EDB) 106 70-13 1.2-Dibromethane (EDB) 106 70-13 1.2-Dibrorobenzene 111 70-13 1.2-Dibrorobenzene 112 70-13 1.2-Dichlorobenzene 106 70-13 1.2-Dichlo	File Name:	j062104	Date of Collect	
Compound %Recovery Limit Acetone 88 70-13 Benzene 104 70-13 Benzene 104 70-13 Bromodichloromethane 106 70-13 Bromodichloromethane 106 70-13 Bromodichloromethane 96 70-13 Schon Disulfide 100 70-13 Carbon Disulfide 102 70-13 Carbon Disulfide 102 70-13 Chorobenzene 98 70-13 Dibromochloromethane 100 70-13 Chorobenzene 98 70-13 Dibromochloromethane 100 70-13 Chorobenzene 98 70-13 1.2-Dichorobenzene 100 70-13 1.2-Dichorobenzene 100 70-13 1.2-Dichorobenzene 100 70-13 1.2-Dichorobenzene 111 70-13 1.2-Dichorobenzene 112 70-13 1.2-Dichorobenzene 112 70-13 1	Dil. Factor:	1.00	Date of Analys	
Benzene 104 70-13 alpha-Chlorotoluene 104 70-13 Bromodichloromethane 106 70-13 Bromodichloromethane 96 70-13 Bromodichloromethane 96 70-13 Bromodichloromethane 96 70-13 Carbon Disulfide 100 70-13 Carbon Tetrachloride 102 70-13 Chorobenzene 98 70-13 Dibromochloromethane 100 70-13 Chlorobenzene 98 70-13 Dibromochloromethane 100 70-13 Chlorobenzene 98 70-13 1.2-Dichlorobenzene 100 70-13 1.2-Dichlorobenzene 100 70-13 1.2-Dichlorobenzene 111 70-13 1.2-Dichlorobenzene 111 70-13 1.3-Dichlorobenzene 112 70-13 1.4-Dichlorobenzene 106 70-13 1.4-Dichlorobenzene 100 70-13 1.2-Dichloropethane 100 <t< th=""><th>Compound</th><th></th><th>%Recovery</th><th>Method Limits</th></t<>	Compound		%Recovery	Method Limits
alpha-Chlorotoluene 104 70-13 Bromodichloromethane 106 70-13 Bromodorm 104 70-13 Bromothane 96 70-13 2-Butanone (Methyl Ethyl Ketone) 95 70-13 Carbon Disulfide 100 70-13 Carbon Disulfide 102 70-13 Chorobenzene 98 70-13 Dibromochloromethane 105 70-13 Chlorobenzene 98 70-13 Chlorobenzene 90 70-13 Chlorobenzene 90 70-13 1,2-Dirchorobenzene 111 70-13 1,2-Dirchorobenzene 112 70-13 1,2-Dirchorobenzene 112 70-13 1,1-Dichlorobenzene 111 70-13 1,1-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,1-Dichloroethane 90 70-13 1,2-Dichloroethane 90 70-13 1,2-Dichloroethane 90 70-13	Acetone		88	70-130
Bromodichloromethane 106 70-13 Bromodichloromethane 96 70-13 Bromodichloromethane 96 70-13 Bromodichloromethane 95 70-13 Carbon Disulfide 100 70-13 Carbon Tetrachloride 102 70-13 Chorobenzene 98 70-13 Dibromochloromethane 105 70-13 Chlorobenzene 98 70-13 Dibromochloromethane 100 70-13 Chlorobenzene 90 70-13 1,2-Dichlorobenzene 110 70-13 1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 111 70-13 1,4-Dichlorobenzene 112 70-13 1,1-Dichloroethane 99 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 110 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethane 99 70-13 1,2-Dichloroethane 100	Benzene		104	70-130
Bromodichloromethane 106 70-13 Bromotorm 104 70-13 Bromomethane 96 70-13 2-Butanone (Methyl Ethyl Ketone) 95 70-13 Carbon Disulfide 100 70-13 Carbon Tetrachloride 102 70-13 Chorobenzene 98 70-13 Dibromochloromethane 105 70-13 Chlorobenzene 98 70-13 Chlorobenzene 102 70-13 Chlorobenzene 100 70-13 Chlorobenzene 100 70-13 1,2-Dichlorobenzene 111 70-13 1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethane 98 70-13 1,2-Dichloroethane 100 70-13	alpha-Chlorotoluene		104	70-130
Bromomethane 96 70-13 2-Butanone (Methyl Ethyl Ketone) 95 70-13 Carbon Disulfide 100 70-13 Carbon Tetrachloride 102 70-13 Chlorobenzene 98 70-13 Dibromochloromethane 105 70-13 Chlorobenzene 98 70-13 Chloromethane 100 70-13 Chloromethane 90 70-13 L-Dichlorobenzene 111 70-13 1,2-Dichlorobenzene 111 70-13 1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 111 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethane 106 70-13 1,2-Dichloroethane 106 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethane 100 70-13 1,1-Dichloroethane 99	-		106	70-130
2-Butanone (Methyl Ethyl Ketone) 95 70-13 Carbon Disulficie 100 70-13 Carbon Tetrachloride 102 70-13 Chlorobenzene 98 70-13 Dibromochloromethane 105 70-13 Chlorobenzene 106 70-13 Chlorobertane 100 70-13 Chlorobetnae 90 70-13 Chlorobetnae 90 70-13 1,2-Dibromoethane (EDB) 106 70-13 1,2-Dichorobenzene 111 70-13 1,4-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 100 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloroethene 100 70-13 1,2-Dichloroptene 93 70-13 trans-1,2-Dichloroptene 93	Bromoform		104	70-130
Carbon Disulfide 100 70-13 Carbon Tetrachloride 102 70-13 Chlorobenzene 98 70-13 Chlorobenzene 98 70-13 Dibromochloromethane 100 70-13 Chlorobethane 100 70-13 Chloromethane 100 70-13 1,2-Dibromochane (EDB) 106 70-13 1,2-Dichorobenzene 111 70-13 1,2-Dichorobenzene 112 70-13 1,4-Dichorobenzene 106 70-13 1,4-Dichorobenzene 106 70-13 1,4-Dichorobenzene 106 70-13 1,4-Dichorobenzene 106 70-13 1,1-Dichoroethane 100 70-13 1,1-Dichoroethane 100 70-13 1,2-Dichoroethane 100 70-13 1,2-Dichoroethane 100 70-13 1,1-Dichoroethene 90 70-13 1,2-Dichoropropane 112 70-13 trans-1,2-Dichloroethene 93 70-	Bromomethane		96	70-130
Carbon Disulfide 100 70-13 Carbon Tetrachloride 102 70-13 Chlorobenzene 98 70-13 Dibromochloromethane 105 70-13 Chlorobenzene 98 70-13 Chlorothane 100 70-13 Chlorothane 100 70-13 Chloromethane 90 70-13 1,2-Dibromoethane (EDB) 106 70-13 1,2-Dichorobenzene 111 70-13 1,4-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,1-Dichloroethane 100 70-13 1,2-Dichloroethene 90 70-13 1,1-Dichloroethene 90 70-13 1,2-Dichloropropane 102 70-13 trans-1,2-Dichloropthene 93 70-13 trans-1,3-Dichloropropane 102 <	2-Butanone (Methyl Ethyl Ketone)		95	70-130
Chlorobenzene 98 70-13 Dibromochloromethane 105 70-13 Chloroethane 100 70-13 Chloroethane 90 70-13 Chloroethane 90 70-13 Chloromethane 90 70-13 1,2-Dibromoethane (EDB) 106 70-13 1,2-Dichorobenzene 111 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloropthene 93 70-13 1,2-Dichloropthene 93 70-13 1,2-Dichloropthene 100 70-13 1,2-Dichloroptopene 102 70-13 Freon 114 99 70-13			100	70-130
Dibromochloromethane 105 70-13 Chloroethane 100 70-13 Chloroform 102 70-13 Chloromethane 90 70-13 1,2-Dibromoethane (EDB) 106 70-13 1,2-Dibromoethane (EDB) 106 70-13 1,2-Dichorobenzene 111 70-13 1,3-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 110 70-13 1,2-Dichloroethane 110 70-13 1,1-Dichloroethane 98 70-13 1,1-Dichloroethene 98 70-13 ics-1,2-Dichloroethene 100 70-13 ics-1,2-Dichloroptopene 102 70-13 ics-1,3-Dichloroptopene 102 70-13 rens-1,3-Dichloroptopene 102 70-13 Freon 114 99 70-13 Hexachlorobutadiene 101<	Carbon Tetrachloride		102	70-130
Chloroethane 100 70-13 Chloroform 102 70-13 Chloromethane 90 70-13 1,2-Dichorobethane (EDB) 106 70-13 1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 112 70-13 1,1-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 106 70-13 1,2-Dichloroethane 106 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroethene 100 70-13 1,2-Dichloropthene 102 70-13 trans-1,3-Dichloroptopane 112 70-13 trans-1,3-Dichloropropane 102 70-13 Freon 114 99 70-13 Patkathorobutadiene 110 70-13 2-Hexanone 101 70	Chlorobenzene		98	70-130
Chloroethane 100 70-13 Chloroform 102 70-13 Chloromethane 90 70-13 1,2-Dichorobethane (EDB) 106 70-13 1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 112 70-13 1,1-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 99 70-13 1,2-Dichloroethane 99 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroethene 100 70-13 1,2-Dichloropthene 100 70-13 trans-1,3-Dichloroptopene 93 70-13 trans-1,3-Dichloropropene 102 70-13 Freon 114 99 70-13 Patexahorobutadiene 110 70-13 2-Hexanone 101 70-13	Dibromochloromethane		105	70-130
Chloroform 102 70-13 Chloromethane 90 70-13 1,2-Dibromoethane (EDB) 106 70-13 1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 112 70-13 1,3-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 106 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloroptopane 112 70-13 trans-1,2-Dichloroptopene 93 70-13 trans-1,3-Dichloroptopene 98 70-13 trans-1,3-Dichloroptopene 100 70-13 tehylene 101 70-13 tehylene 101 70-13 tehylene 101 70-13 typene 105 70-13 <				70-130
Chloromethane 90 70-13 1,2-Dibromoethane (EDB) 106 70-13 1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 1,1-Dichloroethane 99 70-13 1,1-Dichloroethane 90 70-13 1,1-Dichloroethane 90 70-13 1,1-Dichloroethane 100 70-13 1,1-Dichloroethene 98 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloropthene 100 70-13 1,2-Dichloropthene 98 70-13 1,2-Dichloropthene 98 70-13 1,2-Dichloropthene 99 70-13 1,2-Dichloroptoppene 99 70-13 1,2-Dichloroptoppene 99 70-13 Ethyl Benzene 101 70-13 4-Ethyltoluene 101 <td< td=""><td></td><td></td><td></td><td>70-130</td></td<>				70-130
1,2-Dibromoethane (EDB) 106 70-13 1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichloroethane 99 70-13 Freon 12 106 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloroethene 90 70-13 1,2-Dichloroptopane 100 70-13 1,2-Dichloroptopene 93 70-13 1,2-Dichloroptopene 93 70-13 1,2-Dichloroptopene 93 70-13 Freon 114 99 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 101 70-13 Hexachlorobutadiene 118 70-13 2-Hexanone 101 70-13 4-Methyl-2-pentanone 99 70-13				70-130
1,2-Dichlorobenzene 111 70-13 1,3-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 106 70-13 1,1-Dichloroetnane 99 70-13 Freon 12 106 70-13 1,1-Dichloroetnane 90 70-13 1,2-Dichloroetnane 110 70-13 1,1-Dichloroetnene 90 70-13 cis-1,2-Dichloroethene 98 70-13 trans-1,2-Dichloroethene 98 70-13 trans-1,2-Dichloroethene 90 70-13 trans-1,3-Dichloropropane 112 70-13 cis-1,3-Dichloropropene 93 70-13 Freon 114 99 70-13 Freon 114 99 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 110 70-13 4-Ethyltoluene 101 70-13 5-Hexanone 99 70-13 5-Hexanone 101 70-13 4-Ethyltoluene 101 70-13 5-Hexanone 102 70-13 5-Hexanone				70-130
1.3-Dichlorobenzene 112 70-13 1,4-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 99 70-13 1,1-Dichloroethane 99 70-13 1,2-Dichloroethane 106 70-13 1,2-Dichloroethane 100 70-13 1,2-Dichloroethene 90 70-13 1,1-Dichloroethene 90 70-13 cis-1,2-Dichloroethene 98 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloropthene 100 70-13 1,2-Dichloropthene 98 70-13 1,2-Dichloropthene 93 70-13 1,2-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 102 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 101 70-13 Hexachlorobutadiene 101 70-13 2-Hexanone 101 70-13 Styrene 105 70-13 Styrene 105 70-13				70-130
14-Dichlorobenzene 106 70-13 1,4-Dichlorobenzene 99 70-13 1,1-Dichloroethane 90 70-13 1,2-Dichloroethane 110 70-13 1,2-Dichloroethane 90 70-13 1,1-Dichloroethene 90 70-13 cis-1,2-Dichloroethene 98 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloropthene 100 70-13 1,2-Dichloropthene 100 70-13 1,2-Dichloroptopene 93 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 102 70-13 Freon 114 99 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 110 70-13 Hexachlorobutadiene 118 70-13 2-Hexanone 101 70-13 Methyl-2-pentanone 101 70-13 1,1,2-Tetrachloroethane 101 70-13 Toluene 100 70-13				70-130
1.1-Dichloroethane 99 70-13 Freon 12 106 70-13 1.2-Dichloroethane 110 70-13 1.1-Dichloroethane 90 70-13 1.1-Dichloroethene 90 70-13 cis-1,2-Dichloroethene 98 70-13 1,2-Dichloroethene 98 70-13 1,2-Dichloroethene 100 70-13 1,2-Dichloroptopane 112 70-13 cis-1,3-Dichloropropene 93 70-13 trans-1,3-Dichloropropene 93 70-13 trans-1,3-Dichloropropene 99 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 99 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 101 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 101 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 101 70-13 trans-1,3-Dichoropropene				70-130
Freon 12 106 70-13 1,2-Dichloroethane 110 70-13 1,1-Dichloroethane 90 70-13 1,1-Dichloroethene 98 70-13 cis-1,2-Dichloroethene 98 70-13 trans-1,2-Dichloroethene 100 70-13 1,2-Dichloroptopane 112 70-13 cis-1,3-Dichloroptopene 93 70-13 trans-1,3-Dichloroptopene 90 70-13 trans-1,3-Dichloroptopene 99 70-13 trans-1,3-Dichloroptopene 98 70-13 trans-1,3-Dichloroptopene 99 70-13 trans-1,3-Dichloroptopene 98 70-13 trans-1,3-Dichloroptopene 98 70-13 trans-1,3-Dichloroptopene 98 70-13 trans-1,3-Dichloroptopene 102 70-13 trans-1,3-Dichloroptopene 98 70-13 trans-1,3-Dichloroptopene 102 70-13 tethyltouene 101 70-13 tethyltone 101 70-13				70-130
1,2-Dichloroethane 110 70-13 1,1-Dichloroethene 90 70-13 cis-1,2-Dichloroethene 98 70-13 trans-1,2-Dichloroethene 100 70-13 1,2-Dichloroptopane 112 70-13 cis-1,3-Dichloropropene 93 70-13 trans-1,3-Dichloropropene 93 70-13 trans-1,3-Dichloropropene 99 70-13 freon 114 99 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 110 70-13 4-Ethyltoluene 110 70-13 2-Hexanone 101 70-13 4-Methyl-2-pentanone 102 70-13 1,1,2,2-Tetrachloroethane 101 70-13 1,1,2,2-Tetrachloroethane 101 70-13 1,2,4-Trichloroethane 102 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 1				70-130
1,1-Dichloroethene 90 70-13 cis-1,2-Dichloroethene 98 70-13 trans-1,2-Dichloroethene 100 70-13 1,2-Dichloroptopane 112 70-13 cis-1,3-Dichloropropene 93 70-13 cis-1,3-Dichloropropene 93 70-13 trans-1,3-Dichloropropene 102 70-13 trans-1,3-Dichloropropene 99 70-13 Freon 114 99 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 110 70-13 Hexachlorobutadiene 118 70-13 2-Hexanone 101 70-13 Methylene Chloride 102 70-13 4-Methyl-2-pentanone 99 70-13 Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Toluene 100 70-13 1,2,4-Trichloroethane 105 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 <td></td> <td></td> <td></td> <td>70-130</td>				70-130
cis-1,2-Dichloroethene9870-13trans-1,2-Dichloroethene10070-131,2-Dichloropropane11270-13cis-1,3-Dichloropropene9370-13trans-1,3-Dichloropropene10270-13trans-1,3-Dichloropropene9970-13trans-1,3-Dichloropropene9870-13trans-1,3-Dichloropropene9870-13trans-1,3-Dichloropropene9870-13trans-1,3-Dichloropropene9870-13trans-1,3-Dichloropropene9870-13trans-1,3-Dichloropropene10070-13trans-1,3-Dichloropropene10170-13trans-1,3-Dichloropropene10170-13tenyl Benzene9870-134-Ethyltoluene10170-13texachlorobutadiene10170-132-Hexanone10170-13Methylene Chloride10270-134-Methyl-2-pentanone9970-135tyrene10570-131,1,2-Tetrachloroethane10170-131,2,4-Trichloroethane10070-131,1,1-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane <td></td> <td></td> <td></td> <td>70-130</td>				70-130
trans-1,2-Dichloroethene10070-131,2-Dichloropropane11270-13cis-1,3-Dichloropropene9370-13trans-1,3-Dichloropropene10270-13Freon 1149970-13Ethyl Benzene9870-134-Ethyltoluene11070-13Hexachlorobutadiene11870-132-Hexanone10170-13Methylene Chloride10270-134-Methyl-2-pentanone9970-135tyrene10570-131,1,2,2-Tetrachloroethane10170-131,2,4-Trichloroethane10070-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10770-13				70-130
1,2-Dichloropropane 112 70-13 cis-1,3-Dichloropropene 93 70-13 trans-1,3-Dichloropropene 102 70-13 Freon 114 99 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 110 70-13 Hexachlorobutadiene 118 70-13 2-Hexanone 101 70-13 Methylene Chloride 102 70-13 4-Methyl-2-pentanone 99 70-13 Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Toluene 100 70-13 1,2,4-Trichlorobenzene 105 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 105 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				70-130
cis-1,3-Dichloropropene 93 70-13 trans-1,3-Dichloropropene 102 70-13 Freon 114 99 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 110 70-13 Hexachlorobutadiene 110 70-13 2-Hexanone 101 70-13 Methylene Chloride 102 70-13 4-Methyl-2-pentanone 99 70-13 1,1,2,2-Tetrachloroethane 101 70-13 1,1,2,2-Tetrachloroethane 101 70-13 1,2,4-Trichlorobenzene 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				70-130
trans-1,3-Dichloropropene10270-13Freon 1149970-13Ethyl Benzene9870-134-Ethyltoluene11070-13Hexachlorobutadiene11870-132-Hexanone10170-13Methylene Chloride10270-134-Methyl-2-pentanone9970-135tyrene10570-131,1,2,2-Tetrachloroethane10170-137oluene10070-131,2,4-Trichlorobenzene10570-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10770-13				70-130
Freen 114 99 70-13 Ethyl Benzene 98 70-13 4-Ethyltoluene 110 70-13 4-Ethyltoluene 118 70-13 Hexachlorobutadiene 118 70-13 2-Hexanone 101 70-13 Methylene Chloride 102 70-13 4-Methyl-2-pentanone 99 70-13 Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Toluene 100 70-13 1,2,4-Trichlorobenzene 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13				70-130
Ethyl Benzene9870-134-Ethyltoluene11070-13Hexachlorobutadiene11870-132-Hexanone10170-13Methylene Chloride10270-134-Methyl-2-pentanone9970-13Styrene10570-131,1,2,2-Tetrachloroethane10170-13Tetrachloroethene10270-131,2,4-Trichlorobenzene10570-131,1,1-Trichloroethane10170-131,1,2-Trichloroethane10170-131,1,2-Trichloroethane10770-13				70-130
4-Ethyltoluene 110 70-13 Hexachlorobutadiene 118 70-13 2-Hexanone 101 70-13 Methylene Chloride 102 70-13 4-Methyl-2-pentanone 99 70-13 Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Tetrachloroethene 102 70-13 1,2,4-Trichlorobenzene 100 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				70-130
Hexachlorobutadiene 118 70-13 2-Hexanone 101 70-13 Methylene Chloride 102 70-13 4-Methyl-2-pentanone 99 70-13 Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Tetrachloroethane 101 70-13 Toluene 102 70-13 1,2,4-Trichlorobenzene 100 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13	-			70-130
2-Hexanone 101 70-13 Methylene Chloride 102 70-13 4-Methyl-2-pentanone 99 70-13 Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Tetrachloroethane 101 70-13 Toluene 102 70-13 1,2,4-Trichlorobenzene 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				
Methylene Chloride 102 70-13 4-Methyl-2-pentanone 99 70-13 Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Tetrachloroethane 102 70-13 Toluene 102 70-13 1,2,4-Trichlorobenzene 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				70-130
4-Methyl-2-pentanone 99 70-13 Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Tetrachloroethene 102 70-13 Toluene 100 70-13 1,2,4-Trichloroethane 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				
Styrene 105 70-13 1,1,2,2-Tetrachloroethane 101 70-13 Tetrachloroethene 102 70-13 Toluene 100 70-13 1,2,4-Trichloroethane 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13	-			
1,1,2,2-Tetrachloroethane 101 70-13 Tetrachloroethene 102 70-13 Toluene 100 70-13 1,2,4-Trichlorobenzene 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				70-130
Tetrachloroethene 102 70-13 Toluene 100 70-13 1,2,4-Trichlorobenzene 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13	· - ·			
Toluene 100 70-13 1,2,4-Trichlorobenzene 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				
1,2,4-Trichlorobenzene 105 70-13 1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				
1,1,1-Trichloroethane 101 70-13 1,1,2-Trichloroethane 107 70-13				
1,1,2-Trichloroethane 107 70-13				
Trichloroethene 121 70-13				70-130 70-130

Client Sample ID: LCS Lab ID#: 2106254-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: j00 Dil. Factor:	j062104 1.00		Date of Collection: NA Date of Analysis: 6/21/21 10:42 AM	
Compound		%Recovery	Method Limits	
Freon 11		103	70-130	
Freon 113		93	70-130	
1,2,4-Trimethylbenzene		107	70-130	
1,3,5-Trimethylbenzene		114	70-130	
Vinyl Acetate		84	70-130	
Vinyl Chloride		96	70-130	
m,p-Xylene		104	70-130	
o-Xylene		96	70-130	
TVOC Ref. to Hexane		Not Spiked		

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	106	70-130
1,2-Dichloroethane-d4	105	70-130
4-Bromofluorobenzene	112	70-130

🛟 eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2106254-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	j062105 Date of Colle	
Dil. Factor:	1.00 Date of Anal	lysis: 6/21/21 11:09 AM
Compound	%Recovery	Method Limits
Acetone	88	70-130
Benzene	103	70-130
alpha-Chlorotoluene	103	70-130
Bromodichloromethane	106	70-130
Bromoform	102	70-130
Bromomethane	96	70-130
2-Butanone (Methyl Ethyl Ketone)	96	70-130
Carbon Disulfide	100	70-130
Carbon Tetrachloride	102	70-130
Chlorobenzene	97	70-130
Dibromochloromethane	102	70-130
Chloroethane	100	70-130
Chloroform	103	70-130
Chloromethane	90	70-130
1,2-Dibromoethane (EDB)	103	70-130
1,2-Dichlorobenzene	108	70-130
1,3-Dichlorobenzene	108	70-130
1,4-Dichlorobenzene	104	70-130
1.1-Dichloroethane	98	70-130
Freon 12	107	70-130
		70-130
1,2-Dichloroethane	109 91	70-130
1,1-Dichloroethene	-	70-130
cis-1,2-Dichloroethene	100	70-130
trans-1,2-Dichloroethene	99 113	70-130
1,2-Dichloropropane		
cis-1,3-Dichloropropene	94	70-130
trans-1,3-Dichloropropene	101	70-130
Freon 114	101	70-130
Ethyl Benzene	98	70-130
4-Ethyltoluene	106	70-130
Hexachlorobutadiene	121	70-130
2-Hexanone	100	70-130
Methylene Chloride	104	70-130
4-Methyl-2-pentanone	99	70-130
Styrene	103	70-130
1,1,2,2-Tetrachloroethane	99	70-130
Tetrachloroethene	100	70-130
Toluene	100	70-130
1,2,4-Trichlorobenzene	108	70-130
1,1,1-Trichloroethane	101	70-130
1,1,2-Trichloroethane	103	70-130
Trichloroethene	119	70-130

Client Sample ID: LCSD Lab ID#: 2106254-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	j062105 1.00		Date of Collection: NA Date of Analysis: 6/21/21 11:09 AM	
Compound		%Recovery	Method Limits	
Freon 11		103	70-130	
Freon 113		93	70-130	
1,2,4-Trimethylbenzene		107	70-130	
1,3,5-Trimethylbenzene		113	70-130	
Vinyl Acetate		86	70-130	
Vinyl Chloride		94	70-130	
m,p-Xylene		102	70-130	
o-Xylene		96	70-130	
TVOC Ref. to Hexane		Not Spiked		

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	104	70-130
1,2-Dichloroethane-d4	106	70-130
4-Bromofluorobenzene	108	70-130

	c	CHAIN OF CUSTODY RECORD	Y RECORD	2106254	No. 1775
	CHKSTATN	roject number: CHKS7ATM:H20001	CHK STATE M		
	SHIPPED TO: A/R	R Taxics	PROJECT MANAGER:		TAT: STANDAED
SAMPLER'S PRINTED NAME: Terry Fisher				ASOW:	
SAMPLER'S SIGNATURE:		HEX		* TVOC as	0C a1 C6 - C12
Date Time Sample ID	Sample # of Sample	То-15 ГVOCs лэ			
					,
014 6-5-21 1240 20210608 M-1	AIT	XX		TAGH	t 1 27420
				· · · · · · · · · · · · · · · · · · ·	
<i>M</i>					
A					
		Custo	Custody Seal Infact?		
		DN A	Articlus duon		
			Lary Pro		
TOTAL NUMBER OF CONTAINERS					
RELINQUISHED BY: Torry Fisher	DATE 6-8-2	REGEIVED BY:	SAL -	TIME 127	
RELINQUISHED BY:	DATE	RECRIVED BY:		1 1	
METHOD OF SHIPMENT:		AIRBILL NUMBER:			
RECEIVED IN LABORATORY BY:	DATE	Send PDF, EDD, and	Send PDF, EDD, and INVOICE (if applicable) to: $OAOC \square EUNNJEWV. CJM$	DAOC/DEWNJE/	W. COM
LABORATORY CONTACT:		LABORATORY ADDRESS:	ESS:		
CATHY GARTNER 615-301-5041		180 BLUE	RAVINE RO	STE B Folsom	FOLSOM, CA 95630
POINT OF ORIGIN:					

Received by OCD: 4/25/2024 8:55:15 AM

Page 85 of 212

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-123031-1 SDG Number: Property ID: 891077 Login Number: 123031 List Source: Eurofins TestAmerica, Pittsburgh 5 List Number: 1 Creator: Gartner, Cathy Answer Comment Question Radioactivity wasn't checked or is </= background as measured by a survey 7 meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). Multiphasic samples are not present. Samples do not require splitting or compositing. Residual Chlorine Checked.

Received by OCD: 4/25/2024 8:55:15 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-126970-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 9/24/2021 2:07:34 PM

Cathy Gartner, Project Manager II (615)301-5041 Cathy.Gartner@Eurofinset.com

Review your project results through Total Access

LINKS

Visit us at: www.eurofinsus.com/Env Released to Imaging: 6/4/2024 2:42:07 PM This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Laboratory Job ID: 180-126970-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Method Summary	6
Subcontract Data	7
Chain of Custody	21
Receipt Checklists	22

Job ID: 180-126970-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-126970-1

Comments

No additional comments.

Receipt

The sample was received on 9/10/2021 10:17 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Page 89 of 212

RER

RL RPD

TEF

TEQ TNTC

Client: Chesapeake Energy Corporation Project/Site: State M-1

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Job ID: 180-126970-1 SDG: Property ID: 891077

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	4
%R	Percent Recovery	-
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	J
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-126970-1 SDG: Property ID: 891077

Page 91 of 212

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-126970-1	20210908 M-1	Air	09/09/21 15:25	

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-126970-1 SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory
TO-15	TO-15	EPA	Eurofins

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

9/23/2021 Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M Project #: CHKSTATM:H21001 Workorder #: 2109253

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 9/10/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettake

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-351-8279 www.airtoxics.com

1 2 3 4 5 6 7 8

Air Toxics

WORK ORDER #: 2109253

Work Order Summary

CLIENT:	Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100 Brentwood, TN 37027	BILL TO:	Accounts Payable Eurofins Test America 4104 Shuffel St NW North Canton, OH 44720
PHONE:	800-765-0980	P.O. #	180-126970
FAX:	615-726-3404	PROJECT #	CHKSTATM:H21001 CHK STATE M
DATE RECEIVED:	09/10/2021	CONTACT:	Brian Whittaker
DATE COMPLETED:	09/23/2021		

			KECEIP I	FINAL
FRACTION #	NAME	<u>TEST</u>	VAC./PRES.	PRESSURE
01A	20210908M-1	TO-15	9.4 "Hg	1.6 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

layes Ludi

DATE: <u>09/23/21</u>

DECEIDT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209220, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-20-16, UT NELAP – CA009332020-12, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-014, Effective date: 10/18/2020, Expiration date: 10/17/2021. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2109253

One 6 Liter Summa Canister sample was received on September 10, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

The recovery of surrogate 1,2-Dichloroethane-d4 in sample 20210908M-1 was outside laboratory control limits due to high level hydrocarbon matrix interference. The surrogate recovery is flagged.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

- M Reported value may be biased due to apparent matrix interferences.
- CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20210908M-1

Lab ID#: 2109253-01A

Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
8.0	92	19	220
0.80	71	2.6	230
3.2	11	9.5	33
3.2	11	10	33
0.80	88	3.5	380
0.80	140	4.0	700
0.80	1.2	4.3	6.6
0.80	100	4.0	500
0.80	110	4.0	560
0.80	260	3.5	1100
0.80	55	3.5	240
16	140000	57	490000
	(ppbv) 8.0 0.80 3.2 3.2 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80	(ppbv) (ppbv) 8.0 92 0.80 71 3.2 11 3.2 11 0.80 88 0.80 140 0.80 1.2 0.80 100 0.80 110 0.80 55	$\begin{tabular}{ c c c c } \hline (ppbv) & (ppbv) & (ug/m3) \\ \hline $8.0 & 92 & 19 \\ \hline $0.80 & 71 & 2.6 \\ \hline $3.2 & 11 & 9.5 \\ \hline $3.2 & 11 & 10 \\ \hline $0.80 & 88 & 3.5 \\ \hline $0.80 & 140 & 4.0 \\ \hline $0.80 & 1.2 & 4.3 \\ \hline $0.80 & 100 & 4.0 \\ \hline $0.80 & 110 & 4.0 \\ \hline $0.80 & 110 & 4.0 \\ \hline $0.80 & 260 & 3.5 \\ \hline $0.80 & 55 & 3.5 \\ \hline \end{tabular}$

eurofins Air Toxics

Client Sample ID: 20210908M-1 Lab ID#: 2109253-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092127 1.61	Date of Collection: 9/9/21 3:25:00 PM Date of Analysis: 9/22/21 01:26 AM		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	8.0	92	19	220
Benzene	0.80	71	2.6	230
alpha-Chlorotoluene	0.80	Not Detected	4.2	Not Detected
Bromodichloromethane	0.80	Not Detected	5.4	Not Detected
Bromoform	0.80	Not Detected	8.3	Not Detected
Bromomethane	8.0	Not Detected	31	Not Detected
2-Butanone (Methyl Ethyl Ketone)	3.2	11	9.5	33
Carbon Disulfide	3.2	11	10	33
Carbon Tetrachloride	0.80	Not Detected	5.1	Not Detected
Chlorobenzene	0.80	Not Detected	3.7	Not Detected
Dibromochloromethane	0.80	Not Detected	6.8	Not Detected
Chloroethane	3.2	Not Detected	8.5	Not Detected
Chloroform	0.80	Not Detected	3.9	Not Detected
Chloromethane	8.0	Not Detected	17	Not Detected
1,2-Dibromoethane (EDB)	0.80	Not Detected	6.2	Not Detected
1,2-Dichlorobenzene	0.80	Not Detected	4.8	Not Detected
1,3-Dichlorobenzene	0.80	Not Detected	4.8	Not Detected
1,4-Dichlorobenzene	0.80	Not Detected	4.8	Not Detected
1,1-Dichloroethane	0.80	Not Detected	3.2	Not Detected
Freon 12	0.80	Not Detected	4.0	Not Detected
1,2-Dichloroethane	0.80	Not Detected	3.2	Not Detected
1,1-Dichloroethene	0.80	Not Detected	3.2	Not Detected
cis-1,2-Dichloroethene	0.80	Not Detected	3.2	Not Detected
trans-1,2-Dichloroethene	0.80	Not Detected	3.2	Not Detected
1,2-Dichloropropane	0.80	Not Detected	3.7	Not Detected
cis-1,3-Dichloropropene	0.80	Not Detected	3.6	Not Detected
trans-1,3-Dichloropropene	0.80	Not Detected	3.6	Not Detected
Freon 114	0.80	Not Detected	5.6	Not Detected
Ethyl Benzene	0.80	88	3.5	380
4-Ethyltoluene	0.80	140	4.0	700
Hexachlorobutadiene	3.2	Not Detected	34	Not Detected
2-Hexanone	3.2	Not Detected	13	Not Detected
Methylene Chloride	8.0	Not Detected	28	Not Detected
4-Methyl-2-pentanone	0.80	Not Detected	3.3	Not Detected
Styrene	0.80	Not Detected	3.4	Not Detected
1,1,2,2-Tetrachloroethane	0.80	Not Detected	5.5	Not Detected
Tetrachloroethene	0.80	Not Detected	5.5	Not Detected
Toluene	0.80	Not Detected	3.0	Not Detected
1,2,4-Trichlorobenzene	3.2	Not Detected	24	Not Detected
1,1,1-Trichloroethane	0.80	Not Detected	4.4	Not Detected
1,1,2-Trichloroethane	0.80	Not Detected	4.4	Not Detected
Trichloroethene	0.80	1.2	4.3	6.6

Client Sample ID: 20210908M-1 Lab ID#: 2109253-01A EPA METHOD TO-15 GC/MS FULL SCAN

le Name: 3092127 I. Factor: 1.61		Date of Collection: 9/9/21 3:25:00 PM Date of Analysis: 9/22/21 01:26 AM			
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)	
Freon 11	0.80	Not Detected	4.5	Not Detected	
Freon 113	0.80	Not Detected	6.2	Not Detected	
1,2,4-Trimethylbenzene	0.80	100	4.0	500	
1,3,5-Trimethylbenzene	0.80	110	4.0	560	
Vinyl Acetate	3.2	Not Detected	11	Not Detected	
Vinyl Chloride	0.80	Not Detected	2.0	Not Detected	
m,p-Xylene	0.80	260	3.5	1100	
o-Xylene	0.80	55	3.5	240	
TVOC Ref. to Hexane	16	140000	57	490000	

Q = Exceeds Quality Control limits.

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	210 Q	70-130
4-Bromofluorobenzene	99	70-130

eurofins Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2109253-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092107d 1.00	Date of Collection: NA Date of Analysis: 9/21/21 01:28 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected

eurofins Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2109253-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092107d 1.00	Date of Collection: NA Date of Analysis: 9/21/21 01:28		21 01:28 PM
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	99	70-130
1,2-Dichloroethane-d4	103	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: CCV Lab ID#: 2109253-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092102	Date of Collection: NA	
Dil. Factor:	1.00	Date of Analysis: 9/21/21 09:58 AM	
Compound		%Recovery	
Acetone		100	
Benzene		100	
alpha-Chlorotoluene		102	
Bromodichloromethane		100	
Bromoform		104	
Bromomethane		99	
2-Butanone (Methyl Ethyl Ketone)		104	
Carbon Disulfide		101	
Carbon Tetrachloride		102	
Chlorobenzene		98	
Dibromochloromethane		102	
Chloroethane		104 97	
Chloroform Chloromethane		97 110	
		98	
1,2-Dibromoethane (EDB)		98	
1,2-Dichlorobenzene		100	
1,3-Dichlorobenzene 1,4-Dichlorobenzene		99	
1,1-Dichloroethane		98	
Freon 12		102	
1,2-Dichloroethane		102	
1,1-Dichloroethene		97	
cis-1,2-Dichloroethene		99	
trans-1,2-Dichloroethene		97	
1,2-Dichloropropane		98	
cis-1,3-Dichloropropene		102	
trans-1,3-Dichloropropene		103	
Freon 114		103	
Ethyl Benzene		101	
4-Ethyltoluene		100	
Hexachlorobutadiene		87	
2-Hexanone		116	
Methylene Chloride		100	
4-Methyl-2-pentanone		103	
Styrene		100	
1,1,2,2-Tetrachloroethane		99	
Tetrachloroethene		104	
Toluene		100	
1,2,4-Trichlorobenzene		87	
1,1,1-Trichloroethane		98	
1,1,2-Trichloroethane		100	
Trichloroethene		100	

Client Sample ID: CCV Lab ID#: 2109253-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	3092102 1.00	Date of Collection: NA Date of Analysis: 9/21/21 09:58 AM
Compound		%Recovery
Freon 11		104
Freon 113		97
1,2,4-Trimethylbenzene		100
1,3,5-Trimethylbenzene		99
Vinyl Acetate		103
Vinyl Chloride		97
m,p-Xylene		102
o-Xylene		101
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	101	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	101	70-130

Page 10 of 14 Page 16 of 22

Air Toxics

Client Sample ID: LCS Lab ID#: 2109253-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092103 Date of Col		
Dil. Factor:	1.00 Date of Ana	alysis: 9/21/21 10:25 AM	
Compound	%Recovery	Method Limits	
Acetone	98	70-130	
Benzene	99	70-130	
alpha-Chlorotoluene	102	70-130	
Bromodichloromethane	100	70-130	
Bromoform	103	70-130	
Bromomethane	96	70-130	
2-Butanone (Methyl Ethyl Ketone)	99	70-130	
Carbon Disulfide	101	70-130	
Carbon Tetrachloride	102	70-130	
Chlorobenzene	98	70-130	
Dibromochloromethane	102	70-130	
Chloroethane	103	70-130	
Chloroform	98	70-130	
Chloromethane	106	70-130	
1,2-Dibromoethane (EDB)	99	70-130	
1,2-Dichlorobenzene	96	70-130	
1,3-Dichlorobenzene	98	70-130	
1,4-Dichlorobenzene	98	70-130	
1,1-Dichloroethane	99	70-130	
Freon 12	101	70-130	
1,2-Dichloroethane	101	70-130	
1,1-Dichloroethene	99	70-130	
cis-1,2-Dichloroethene	101	70-130	
trans-1,2-Dichloroethene	98	70-130	
1,2-Dichloropropane	99	70-130	
cis-1,3-Dichloropropene	102	70-130	
trans-1,3-Dichloropropene	103	70-130	
Freon 114	102	70-130	
Ethyl Benzene	101	70-130	
4-Ethyltoluene	101	70-130	
Hexachlorobutadiene	102	70-130	
2-Hexanone	97	70-130	
Methylene Chloride	101	70-130	
4-Methyl-2-pentanone	94	70-130	
Styrene	99	70-130	
1,1,2,2-Tetrachloroethane	97	70-130	
Tetrachloroethene	104	70-130	
Toluene	98	70-130	
1,2,4-Trichlorobenzene	99	70-130	
1,1,1-Trichloroethane	99	70-130	
1,1,2-Trichloroethane	99	70-130	
Trichloroethene	100	70-130	

Air Toxics

Client Sample ID: LCS Lab ID#: 2109253-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:			Date of Collection: NA Date of Analysis: 9/21/21 10:25 AM	
Compound		%Recovery	Method Limits	
Freon 11		103	70-130	
Freon 113		99	70-130	
1,2,4-Trimethylbenzene		102	70-130	
1,3,5-Trimethylbenzene		98	70-130	
Vinyl Acetate		102	70-130	
Vinyl Chloride		95	70-130	
m,p-Xylene		104	70-130	
o-Xylene		101	70-130	
TVOC Ref. to Hexane		Not Spiked		

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	98	70-130
4-Bromofluorobenzene	100	70-130

٦

🛟 eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2109253-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	3092104	Date of Collect	
Dil. Factor:	1.00	Date of Analys	is: 9/21/21 10:53 AM
Compound		%Recovery	Method Limits
Acetone		97	70-130
Benzene		98	70-130
alpha-Chlorotoluene		103	70-130
Bromodichloromethane		98	70-130
Bromoform		104	70-130
Bromomethane		96	70-130
2-Butanone (Methyl Ethyl Ketone)		99	70-130
Carbon Disulfide		100	70-130
Carbon Tetrachloride		101	70-130
Chlorobenzene		98	70-130
Dibromochloromethane		102	70-130
Chloroethane		104	70-130
Chloroform		97	70-130
Chloromethane		106	70-130
1,2-Dibromoethane (EDB)		98	70-130
1,2-Dichlorobenzene		97	70-130
1,3-Dichlorobenzene		99	70-130
1,4-Dichlorobenzene		99	70-130
1,1-Dichloroethane		98	70-130
Freon 12		99	70-130
1,2-Dichloroethane		99	70-130
1,1-Dichloroethene		97	70-130
cis-1,2-Dichloroethene		101	70-130
trans-1,2-Dichloroethene		97	70-130
1,2-Dichloropropane		98	70-130
cis-1,3-Dichloropropene		102	70-130
trans-1,3-Dichloropropene		102	70-130
Freon 114		101	70-130
Ethyl Benzene		101	70-130
4-Ethyltoluene		101	70-130
Hexachlorobutadiene		112	70-130
2-Hexanone		97	70-130
Methylene Chloride		98	70-130
4-Methyl-2-pentanone		94	70-130
Styrene		100	70-130
1,1,2,2-Tetrachloroethane		97	70-130
Tetrachloroethene		104	70-130
Toluene		99	70-130
1,2,4-Trichlorobenzene		110	70-130
1,1,1-Trichloroethane		97	70-130
1,1,2-Trichloroethane		99	70-130
Trichloroethene		100	70-130

Air Toxics

Client Sample ID: LCSD Lab ID#: 2109253-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: 309 Dil. Factor:	3092104 1.00		Date of Collection: NA Date of Analysis: 9/21/21 10:53 AM	
Compound		%Recovery	Method Limits	
Freon 11		102	70-130	
Freon 113		98	70-130	
1,2,4-Trimethylbenzene		102	70-130	
1,3,5-Trimethylbenzene		99	70-130	
Vinyl Acetate		105	70-130	
Vinyl Chloride		97	70-130	
m,p-Xylene		103	70-130	
o-Xylene		101	70-130	
TVOC Ref. to Hexane		Not Spiked		

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	100	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	100	70-130

	PROJECT NUMBER: CHKSTAT M: H21001	PROJECT NAME: CHKSTATE M	COC of
Environmental LLC (918) 921-5331	SHIPPED TO: AIR Taxics	PROJECT MANAGER:	TAT: STANDARD
SAMPLER'S PRINTED NAME: TERPY Fisher	ainers		PO# WO#
SAMPLERS SIGNATURE:			* TVOC AJ C6 - C12
Date Time Sample ID	Samp # of Sampl TO - 15 TV OC xJ		STARABKS
9-9-21 1525 20210908m-1	AIRIXX		1 L 80 19 # WAY
			- 1
			-
RELINQUISHED BY:			
she	TIME / 600	11-11	TIME (d)2
) BY:	DATE RECEIVED BY:		DATE Custody Seal Intact/
	TIME		TIME V NUMBER TOMPYCH
×		AIRBILL NUMBER: 5196 7461 4036	
RECEIVED IN LABORA I URT BT:	TIME Send PDF, EDD, and QA(, and INVOICE (if applicable) to: QAQC@EquusEnv.com	
LABORATORY CONTACT:	LABORATORY ADDRESS:		
CATHY GARTNER 615-301-5041	180 BLUE	RAVINE RD STE B F	Folsom, CA 95630
White: Receiving Lab Yellow: Equus Environmental Project File Pink: Ec	Pink: Equus QA/QC		

Received by OCD: 4/25/2024 8:55:15 AM

Page 107 of 212

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-126970-1 SDG Number: Property ID: 891077 Login Number: 126970 List Source: Eurofins TestAmerica, Pittsburgh 5 List Number: 1 Creator: Gartner, Cathy Answer Comment Question Radioactivity wasn't checked or is </= background as measured by a survey meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). Multiphasic samples are not present. Samples do not require splitting or compositing. Residual Chlorine Checked.
Received by OCD: 4/25/2024 8:55:15 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-131325-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

CathyGartner

Authorized for release by: 12/21/2021 5:31:40 PM

Cathy Gartner, Project Manager II (615)301-5041 Cathy.Gartner@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Visit us at: www.eurofinsus.com/Env

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

Expert

Released to Imaging: 6/4/2024 2:42:07 PM

Laboratory Job ID: 180-131325-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Method Summary	6
Chain of Custody	7
Receipt Checklists	22

Page 110 of 212

.

Job ID: 180-131325-1

Laboratory: Eurofins TestAmerica, Pittsburgh

Narrative

Job Narrative 180-131325-1

Comments

No additional comments.

Receipt

The sample was received on 12/8/2021 12:09 PM. Unless otherwise noted below, the sample arrived in good condition.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Page 111 of 212

Glossary Abbreviation

¤ %R

CFL

CFU

CNF

DER

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-131325-1

State M-1	SDG: Property ID: 891077	2
		3
These commonly used abbreviations may or may not be present in this report.		_
Listed under the "D" column to designate that the result is reported on a dry weight basis		Δ
Percent Recovery		
Contains Free Liquid		5
Colony Forming Unit		
Contains No Free Liquid		6
Duplicate Error Ratio (normalized absolute difference)		0
Dilution Factor		

Page 112 of 212

Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Page 113 of 212

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-131325-1	20211207 M-1	Air	12/07/21 12:50	12/08/21 12:09

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-131325-1 SDG: Property ID: 891077

Method	Method Description	Protocol	Laboratory	
TO-15	TO-15	EPA	Eurofins	-

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

Eurofins = Eurofins Air Toxics, 180 Blue Ravine Road, Suite B, Folsom, CA 95630

Page 114 of 212

Air Toxics

12/21/2021 Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHK STATE M Project #: CHKSTATM:H21001 Workorder #: 2112234

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 12/8/2021 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettaker

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630 T 916-985-1000 F 916-351-8279 www.airtoxics.com

🛟 eurofins

f 2.	12
	5
	7
	0

Air Toxics

WORK ORDER #: 2112234

Work Order Summary

CLIENT:	Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100 Brentwood, TN 37027	BILL TO:	Accounts Payable Eurofins Test America 4104 Shuffel St NW North Canton, OH 44720
PHONE:	800-765-0980	P.O. #	180-131325
FAX:	615-726-3404	PROJECT #	CHKSTATM:H21001 CHK STATE M
DATE RECEIVED:	12/08/2021	CONTACT:	Brian Whittaker
DATE COMPLETED:	12/21/2021	continent	Brian Whittaker

			KECEH I	LINUT
FRACTION #	<u>NAME</u>	TEST	VAC./PRES.	PRESSURE
01A	20211207M-1	TO-15	7.6 "Hg	1.8 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

Mayes tude

DATE: <u>12/21/21</u>

RECEIPT

FINAT

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP – CA009332021-13, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

> > Page 2 of 14 Page 8 of 22

12/21/2021

🛟 eurofins

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2112234

One 6 Liter Summa Canister sample was received on December 08, 2021. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

- UJ- Non-detected compound associated with low bias in the CCV
- N The identification is based on presumptive evidence.
- M Reported value may be biased due to apparent matrix interferences.
- CN See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

🔅 eurofins |

Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20211207M-1

Lab ID#: 2112234-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	7.5	8.6	18	20
1,2,4-Trimethylbenzene	0.75	0.80	3.7	3.9
1,3,5-Trimethylbenzene	0.75	1.3	3.7	6.6
TVOC Ref. to Hexane	15	1600	53	5600

🛟 eurofins

Air Toxics

Lab ID#: 2112234-01A **EPA METHOD TO-15 GC/MS FULL SCAN** File Name: 17121623 Date of Collection: 12/7/21 12:50:00 PM Dil. Factor: 1.50 Date of Analysis: 12/17/21 02:37 AM **Rpt.** Limit Amount **Rpt.** Limit Amount Compound (ug/m3) (ppbv) (ppbv) (ug/m3) 7.5 8.6 18 20 Acetone 0.75 Benzene Not Detected 2.4 Not Detected alpha-Chlorotoluene 0.75 Not Detected 3.9 Not Detected 0.75 Not Detected 5.0 Not Detected Bromodichloromethane 0.75 7.8 Bromoform Not Detected Not Detected $\overline{29}$ Bromomethane 7.5 Not Detected Not Detected 2-Butanone (Methyl Ethyl Ketone) 3.0 Not Detected 8.8 Not Detected Carbon Disulfide 3.0 Not Detected 9.3 Not Detected 0.75 Not Detected 4.7 Not Detected Carbon Tetrachloride 0.75 Chlorobenzene Not Detected 3.4 Not Detected Dibromochloromethane 0.75 Not Detected 6.4 Not Detected Chloroethane 3.0 Not Detected 7.9 Not Detected 0.75 3.7 Not Detected Chloroform Not Detected Chloromethane 7.5 Not Detected 15 Not Detected 0.75 5.8 Not Detected 1,2-Dibromoethane (EDB) Not Detected 0.75 4.5 1,2-Dichlorobenzene Not Detected Not Detected 1,3-Dichlorobenzene 0.75 Not Detected 4.5 Not Detected 0.75 Not Detected 4.5 Not Detected 1,4-Dichlorobenzene 1,1-Dichloroethane 0.75 Not Detected 3.0 Not Detected 0.75 3.7 Not Detected Freon 12 Not Detected 1,2-Dichloroethane 0.75 Not Detected 3.0 Not Detected 1,1-Dichloroethene 0.75 Not Detected 3.0 Not Detected 0.75 Not Detected 3.0 Not Detected cis-1,2-Dichloroethene 0.75 3.0 Not Detected trans-1,2-Dichloroethene Not Detected 1,2-Dichloropropane 0.75 Not Detected 3.5 Not Detected 3.4 cis-1,3-Dichloropropene 0.75 Not Detected Not Detected 0.75 Not Detected 3.4 Not Detected trans-1,3-Dichloropropene Freon 114 0.75 Not Detected 5.2 Not Detected 0.75 Not Detected 3.2 Not Detected Ethyl Benzene 0.75 Not Detected 3.7 Not Detected 4-Ethyltoluene 32 3.0 Hexachlorobutadiene Not Detected Not Detected 3.0 Not Detected 12 Not Detected 2-Hexanone 7.5 26 Methylene Chloride Not Detected Not Detected 4-Methyl-2-pentanone 0.75 Not Detected 3.1 Not Detected 0.75 Not Detected 3.2 Not Detected Styrene 0.75 5.1 1,1,2,2-Tetrachloroethane Not Detected Not Detected 0.75 Not Detected 5.1 Not Detected Tetrachloroethene 0.75 Not Detected 2.8 Not Detected Toluene 1,2,4-Trichlorobenzene 3.0 Not Detected 22 Not Detected 0.75 Not Detected 4.1 Not Detected 1,1,1-Trichloroethane

Client Sample ID: 20211207M-1

1,1,2-Trichloroethane

Trichloroethene

Released to Imaging: 6/4/2024 2:42:07 PM

Not Detected

Not Detected

4.1

4.0

0.75

0.75

Not Detected

Not Detected

eurofins

Air Toxics

Client Sample ID: 20211207M-1 Lab ID#: 2112234-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17121623 1.50	Date of Collection: 12/7/21 12:50: Date of Analysis: 12/17/21 02:37 A		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.75	Not Detected	4.2	Not Detected
Freon 113	0.75	Not Detected	5.7	Not Detected
1,2,4-Trimethylbenzene	0.75	0.80	3.7	3.9
1,3,5-Trimethylbenzene	0.75	1.3	3.7	6.6
Vinyl Acetate	3.0	Not Detected	10	Not Detected
Vinyl Chloride	0.75	Not Detected	1.9	Not Detected
m,p-Xylene	0.75	Not Detected	3.2	Not Detected
o-Xylene	0.75	Not Detected	3.2	Not Detected
TVOC Ref. to Hexane	15	1600	53	5600

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	102	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	104	70-130

🛟 eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2112234-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121607d	Date of Collection: NA		
Dil. Factor:	1.00	Date of Analysis: 12/16/21 01:29 P		
	Rpt. Limit	Amount	Rpt. Limit	Amount
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)
Acetone	5.0	Not Detected	12	Not Detected
Benzene	0.50	Not Detected	1.6	Not Detected
alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
Bromoform	0.50	Not Detected	5.2	Not Detected
Bromomethane	5.0	Not Detected	19	Not Detected
2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Carbon Disulfide	2.0	Not Detected	6.2	Not Detected
Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloroethane	2.0	Not Detected	5.3	Not Detected
Chloroform	0.50	Not Detected	2.4	Not Detected
Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,2-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,3-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene	0.50	Not Detected	3.0	Not Detected
1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
Freon 12	0.50	Not Detected	2.5	Not Detected
1,2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene	0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane	0.50	Not Detected	2.3	Not Detected
cis-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene	0.50	Not Detected	2.3	Not Detected
Freon 114	0.50	Not Detected	3.5	Not Detected
Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
4-Ethyltoluene	0.50	Not Detected	2.4	Not Detected
Hexachlorobutadiene	2.0	Not Detected	21	Not Detected
2-Hexanone	2.0	Not Detected	8.2	Not Detected
Methylene Chloride	5.0	Not Detected	17	Not Detected
4-Methyl-2-pentanone	0.50	Not Detected	2.0	Not Detected
Styrene	0.50	Not Detected	2.1	Not Detected
1,1,2,2-Tetrachloroethane	0.50	Not Detected	3.4	Not Detected
Tetrachloroethene	0.50	Not Detected	3.4	Not Detected
Toluene	0.50	Not Detected	1.9	Not Detected
1,2,4-Trichlorobenzene	2.0	Not Detected	15	Not Detected
1,1,1-Trichloroethane	0.50	Not Detected	2.7	Not Detected
1,1,2-Trichloroethane	0.50	Not Detected	2.7	Not Detected
Trichloroethene	0.50	Not Detected	2.7	Not Detected
	0.00		2.1	NOL DELECIEU

🛟 eurofins |

Air Toxics

Lab ID#: 2112234-02A EPA METHOD TO-15 GC/MS FULL SCAN File Name: 17121607d Date of Collection: NA Dil. Factor: Date of Analysis: 12/16/21 01:29 PM 1.00 **Rpt.** Limit Amount **Rpt. Limit** Amount Compound (ug/m3) (ug/m3) (ppbv) (ppbv) Freon 11 0.50 Not Detected 2.8 Not Detected 0.50 3.8 Not Detected Freon 113 Not Detected 1,2,4-Trimethylbenzene 0.50 Not Detected 2.4 Not Detected 0.50 Not Detected 2.4 Not Detected 1,3,5-Trimethylbenzene Vinyl Acetate 2.0 Not Detected 7.0 Not Detected 1.3 Vinyl Chloride 0.50 Not Detected Not Detected m,p-Xylene 0.50 Not Detected 2.2 Not Detected o-Xylene 0.50 Not Detected 2.2 Not Detected TVOC Ref. to Hexane 10 Not Detected 35 Not Detected

Client Sample ID: Lab Blank

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	94	70-130	
4-Bromofluorobenzene	101	70-130	

1

🛟 eurofins

Air Toxics

Client Sample ID: CCV Lab ID#: 2112234-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17121604 1.00	Date of Collection: NA Date of Analysis: 12/16/21 11:14 AM
	1.00	
Compound		%Recovery
Acetone		92
Benzene		97
alpha-Chlorotoluene		102
Bromodichloromethane		98
Bromoform		103
Bromomethane		88
2-Butanone (Methyl Ethyl Ketone)		97
Carbon Disulfide		96
Carbon Tetrachloride		96
Chlorobenzene		98
Dibromochloromethane		101
Chloroethane		96
Chloroform		94
Chloromethane		105
1,2-Dibromoethane (EDB)		100
1,2-Dichlorobenzene		98
1,3-Dichlorobenzene		98
1,4-Dichlorobenzene		99
1,1-Dichloroethane		95
Freon 12		96
1,2-Dichloroethane		96
1,1-Dichloroethene		100
cis-1,2-Dichloroethene		99
trans-1,2-Dichloroethene		98
1,2-Dichloropropane		98
		103
cis-1,3-Dichloropropene		103
trans-1,3-Dichloropropene Freon 114		98
		98 101
Ethyl Benzene		99
4-Ethyltoluene		
Hexachlorobutadiene		98
2-Hexanone		97
Methylene Chloride		97
4-Methyl-2-pentanone		97
Styrene		104
1,1,2,2-Tetrachloroethane		96
Tetrachloroethene		102
Toluene		98
1,2,4-Trichlorobenzene		103
1,1,1-Trichloroethane		96
1,1,2-Trichloroethane		99
Trichloroethene		101

🔅 eurofins

Air Toxics

Client Sample ID: CCV Lab ID#: 2112234-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121604	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 12/16/21 11:14 AM
Compound		%Recovery
Freon 11		96
Freon 113		97
1,2,4-Trimethylbenzene		99
1,3,5-Trimethylbenzene		98
Vinyl Acetate		103
Vinyl Chloride		97
m,p-Xylene		102
o-Xylene		104
TVOC Ref. to Hexane		100

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	94	70-130	
4-Bromofluorobenzene	102	70-130	

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2112234-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121605 Date of Collec	
Dil. Factor:	1.00 Date of Analys	sis: 12/16/21 11:53 AM
Compound	%Recovery	Method Limits
Acetone	90	70-130
Benzene	96	70-130
alpha-Chlorotoluene	99	70-130
Bromodichloromethane	95	70-130
Bromoform	102	70-130
Bromomethane		70-130
2-Butanone (Methyl Ethyl Ketone)	95	70-130
Carbon Disulfide	96	70-130
Carbon Tetrachloride	96	70-130
Chlorobenzene	97	70-130
Dibromochloromethane	100	70-130
Chloroethane	97	70-130
Chloroform	92	70-130
Chloromethane	104	70-130
1,2-Dibromoethane (EDB)	99	70-130
1,2-Dichlorobenzene		70-130
1,2-Dichlorobenzene	96	70-130
1,4-Dichlorobenzene	96	70-130
1,1-Dichloroethane	94	70-130
Freon 12	95	70-130
	93	70-130
1,2-Dichloroethane	94 98	70-130
1,1-Dichloroethene	98	70-130
cis-1,2-Dichloroethene	98	70-130
trans-1,2-Dichloroethene	99	70-130
1,2-Dichloropropane		
cis-1,3-Dichloropropene	102	70-130
trans-1,3-Dichloropropene	103	70-130
Freon 114	99 102	70-130
Ethyl Benzene	102	70-130
4-Ethyltoluene	98	70-130
Hexachlorobutadiene	94	70-130
2-Hexanone	98	70-130
Methylene Chloride	94	70-130
4-Methyl-2-pentanone	97	70-130
Styrene	104	70-130
1,1,2,2-Tetrachloroethane	97	70-130
Tetrachloroethene	103	70-130
Toluene	96	70-130
1,2,4-Trichlorobenzene	96	70-130
1,1,1-Trichloroethane	97	70-130
1,1,2-Trichloroethane	102	70-130
Trichloroethene	101	70-130

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2112234-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17121605 1.00	Date of Colle Date of Analy	ction: NA /sis: 12/16/21 11:53 AM
Compound		%Recovery	Method Limits
Freon 11		95	70-130
Freon 113		98	70-130
1,2,4-Trimethylbenzene		98	70-130
1,3,5-Trimethylbenzene		99	70-130
Vinyl Acetate		120	70-130
Vinyl Chloride		97	70-130
m,p-Xylene		102	70-130
o-Xylene		103	70-130
TVOC Ref. to Hexane		Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	100	70-130	
1,2-Dichloroethane-d4	95	70-130	
4-Bromofluorobenzene	102	70-130	

1

🛟 eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2112234-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	17121606	Date of Collect	
Dil. Factor:	1.00	Date of Analys	is: 12/16/21 12:31 PM Method
Compound	%	Recovery	Limits
Acetone		88	70-130
Benzene		95	70-130
alpha-Chlorotoluene		98	70-130
Bromodichloromethane		94	70-130
Bromoform		101	70-130
Bromomethane		87	70-130
2-Butanone (Methyl Ethyl Ketone)		94	70-130
Carbon Disulfide		95	70-130
Carbon Tetrachloride		95	70-130
Chlorobenzene		97	70-130
Dibromochloromethane		100	70-130
Chloroethane		95	70-130
Chloroform		90	70-130
Chloromethane		102	70-130
1,2-Dibromoethane (EDB)		99	70-130
1,2-Dichlorobenzene		96	70-130
1,3-Dichlorobenzene		96	70-130
1,4-Dichlorobenzene		96	70-130
1,1-Dichloroethane		92	70-130
Freon 12		93	70-130
1,2-Dichloroethane		93	70-130
1,1-Dichloroethene		97	70-130
cis-1,2-Dichloroethene		97	70-130
trans-1,2-Dichloroethene		97	70-130
1,2-Dichloropropane		94	70-130
cis-1,3-Dichloropropene		101	70-130
trans-1,3-Dichloropropene		102	70-130
Freon 114		97	70-130
Ethyl Benzene		101	70-130
4-Ethyltoluene		97	70-130
Hexachlorobutadiene		97	70-130
2-Hexanone		97	70-130
Methylene Chloride		92	70-130
4-Methyl-2-pentanone		96	70-130
Styrene		103	70-130
1,1,2,2-Tetrachloroethane		96	70-130
Tetrachloroethene		102	70-130
Toluene		95	70-130
1,2,4-Trichlorobenzene		100	70-130
1,1,1-Trichloroethane		96	70-130
1,1,2-Trichloroethane		101	70-130
Trichloroethene		100	70-130

🔅 eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2112234-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	17121606 1.00		llection: NA alysis: 12/16/21 12:31 PM
Compound		%Recovery	Method Limits
Freon 11		94	70-130
Freon 113		96	70-130
1,2,4-Trimethylbenzene		98	70-130
1,3,5-Trimethylbenzene		98	70-130
Vinyl Acetate		116	70-130
Vinyl Chloride		95	70-130
m,p-Xylene		101	70-130
o-Xylene		102	70-130
TVOC Ref. to Hexane		Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	99	70-130	
1,2-Dichloroethane-d4	93	70-130	
4-Bromofluorobenzene	102	70-130	

Received by OCD: 4/25/2024 8:55:15 AM

Image <	RECEIVED IN LABORATORY BY:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Image: Second District Image: Second District<	METHOD OF SHIPMENT:
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Image: Semple Matrix	TERRY Fisher RELINQUISHED BY:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	TOTAL NUMBER OF CONTAINERS
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Image: State of the state o	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Sample Matrix # of Sample Containe TO -1 5 TVOC AJ HEXAN E	12-7-21 1250 20211207 m.
* TVOC as Containe	Time
	SAMPLERS SIGNATURE:
*P0#	FRRY FIGHER
(918) 921-5331 AIR TOXICS DAVID BRADY TAT: STANDARD	SAMPI FR'S DRINTED NAME.
MBER: TM: 1+21001	EQUUS
CHAIN OF CUSTODY RECORD No. 2702	

Page 129 of 212

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation Job Number: 180-131325-1 SDG Number: Property ID: 891077 Login Number: 131325 List Source: Eurofins TestAmerica, Pittsburgh List Number: 1 Creator: Gartner, Cathy Answer Comment Question Radioactivity wasn't checked or is </= background as measured by a survey meter. The cooler's custody seal, if present, is intact. Sample custody seals, if present, are intact. The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. COC is present. COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs Containers requiring zero headspace have no headspace or bubble is <6mm (1/4"). Multiphasic samples are not present. Samples do not require splitting or compositing. Residual Chlorine Checked.

Received by OCD: 4/25/2024 8:55:15 AM

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-135471-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Chase Acker

L'athy Gartner

Authorized for release by: 3/27/2022 5:08:36 PM

Cathy Gartner, Project Manager II (615)301-5041 Cathy.Gartner@Eurofinset.com

LINKS Review your project results through Total Access

Visit us at: www.eurofinsus.com/Env Released to Imaging: 6/4/2024 2:42:07 PM This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Laboratory Job ID: 180-135471-1 SDG: Property ID: 891077

2

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Sample Summary	5
Subcontract Data	6
Receipt Checklists	21

.

Case Narrative

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-135471-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-135471-1

Comments

No additional comments.

Receipt

The sample was received on 3/14/2022 10:23 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Subcontract Work

Method TO 15: This method was subcontracted to Eurofins Air Toxics. The subcontract laboratory certification is different from that of the facility issuing the final report.

Job ID: 180-135471-1 SDG: Property ID: 891077

Glossary

Client: Chesapeake Energy Corporation Project/Site: State M-1

SD

Job ID: 180-135471-1 DG: Property ID: 891077	2
	3
	4
	5
	6
	7

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

3/27/2022

5 6 7

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-135471-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-135471-1	20220308 M-1	Air	03/08/22 12:51	03/14/22 10:23

Air Toxics

3/25/2022 Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100

Brentwood TN 37027

Project Name: CHKSTATM Project #: CHKSTATM Workorder #: 2203521

Dear Ms. Cathy Gartner

The following report includes the data for the above referenced project for sample(s) received on 3/14/2022 at Eurofins Air Toxics LLC.

The data and associated QC analyzed by TO-15 are compliant with the project requirements or laboratory criteria with the exception of the deviations noted in the attached case narrative.

Thank you for choosing Eurofins Air Toxics LLC. for your air analysis needs. Eurofins Air Toxics Inc. is committed to providing accurate data of the highest quality. Please feel free to contact the Project Manager: Brian Whittaker at 916-985-1000 if you have any questions regarding the data in this report.

Regards,

Brian Whettaker

Brian Whittaker Project Manager

Eurofins Air Toxics, LLC

180 Blue Ravine Road, Suite B Folsom, CA 95630

T 916-985-1000 F 916-351-8279 www.airtoxics.com

🛟 eurofins

Air Toxics

WORK ORDER #: 2203521

Work Order Summary

CLIENT:	Ms. Cathy Gartner Eurofins Test America 500 Wilson Pike Circle Suite 100 Brentwood, TN 37027	BILL TO:	Accounts Payable Eurofins Test America 4104 Shuffel St NW North Canton, OH 44720
PHONE:	800-765-0980	P.O. #	180-135471
FAX:	615-726-3404	PROJECT #	CHKSTATM CHKSTATM
DATE RECEIVED:	03/14/2022	CONTACT:	Brian Whittaker
DATE COMPLETED:	03/25/2022		

			RECEIPT	FINAL
FRACTION #	NAME	TEST	VAC./PRES.	PRESSURE
01A	20220308M-1	TO-15	8 "Hg	2 psi
02A	Lab Blank	TO-15	NA	NA
03A	CCV	TO-15	NA	NA
04A	LCS	TO-15	NA	NA
04AA	LCSD	TO-15	NA	NA

CERTIFIED BY:

layes Ludi

DATE: 03/25/22

Technical Director

Certification numbers: AZ Licensure AZ0775, FL NELAP – E87680, LA NELAP – 02089, NH NELAP - 209221, NJ NELAP - CA016, NY NELAP - 11291, TX NELAP - T104704434-21-17, UT NELAP – CA009332021-13, VA NELAP - 10615, WA NELAP - C935 Name of Accreditation Body: NELAP/ORELAP (Oregon Environmental Laboratory Accreditation Program) Accreditation number: CA300005-015, Effective date: 10/18/2021, Expiration date: 10/17/2022. Eurofins Air Toxics, LLC certifies that the test results contained in this report meet all requirements of the NELAC standards

> This report shall not be reproduced, except in full, without the written approval of Eurofins Air Toxics, LLC. 180 BLUE RAVINE ROAD, SUITE B FOLSOM, CA - 95630 (916) 985-1000. (800) 985-5955. FAX (916) 351-8279

🛟 eurofins

Air Toxics

LABORATORY NARRATIVE EPA Method TO-15 Eurofins Test America Workorder# 2203521

One 6 Liter Summa Canister sample was received on March 14, 2022. The laboratory performed analysis via EPA Method TO-15 using GC/MS in the full scan mode.

Receiving Notes

There were no receiving discrepancies.

Analytical Notes

TVOC (Total Volatile Organic Compounds) referenced to Hexane includes area counts for peaks that elute from Hexane minus 0.08 minutes to Naphthalene plus 0.08 minutes and quantitating the area based on the response factor of Hexane.

Dilution was performed on sample 20220308M-1 due to the presence of high level non-target species.

Definition of Data Qualifying Flags

Ten qualifiers may have been used on the data analysis sheets and indicates as follows:

B - Compound present in laboratory blank greater than reporting limit (background subtraction not performed).

- J Estimated value.
- E Exceeds instrument calibration range.
- S Saturated peak.
- Q Exceeds quality control limits.

U - Compound analyzed for but not detected above the reporting limit, LOD, or MDL value. See data page for project specific U-flag definition.

UJ- Non-detected compound associated with low bias in the CCV

N - The identification is based on presumptive evidence.

M - Reported value may be biased due to apparent matrix interferences.

CN - See Case Narrative.

File extensions may have been used on the data analysis sheets and indicates as follows:

a-File was requantified

b-File was quantified by a second column and detector

r1-File was requantified for the purpose of reissue

eurofins Air Toxics

Summary of Detected Compounds EPA METHOD TO-15 GC/MS FULL SCAN

Client Sample ID: 20220308M-1

Lab ID#: 2203521-01A

Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	16	30	37	70
Ethyl Benzene	1.6	5.2	6.7	22
4-Ethyltoluene	1.6	27	7.6	130
1,2,4-Trimethylbenzene	1.6	9.7	7.6	48
1,3,5-Trimethylbenzene	1.6	14	7.6	70
m,p-Xylene	1.6	20	6.7	85
o-Xylene	1.6	4.0	6.7	18
TVOC Ref. to Hexane	31	24000	110	84000

🛟 eurofins |

Air Toxics

Client Sample ID: 20220308M-1 Lab ID#: 2203521-01A EPA METHOD TO-15 GC/MS FULL SCAN a032506 Date of Collection: 3/8/22 12:51:00 PM

File Name: Dil. Factor:	a032506 3.10	Date of Collection: 3/8/22 12:51:00 PM Date of Analysis: 3/25/22 01:07 PM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Acetone	16	30	37	70
Benzene	1.6	Not Detected	5.0	Not Detected
alpha-Chlorotoluene	1.6	Not Detected	8.0	Not Detected
Bromodichloromethane	1.6	Not Detected	10	Not Detected
Bromoform	1.6	Not Detected	16	Not Detected
Bromomethane	16	Not Detected	60	Not Detected
2-Butanone (Methyl Ethyl Ketone)	6.2	Not Detected	18	Not Detected
Carbon Disulfide	6.2	Not Detected	19	Not Detected
Carbon Tetrachloride	1.6	Not Detected	9.8	Not Detected
Chlorobenzene	1.6	Not Detected	7.1	Not Detected
Dibromochloromethane	1.6	Not Detected	13	Not Detected
Chloroethane	6.2	Not Detected	16	Not Detected
Chloroform	1.6	Not Detected	7.6	Not Detected
Chloromethane	16	Not Detected	32	Not Detected
1,2-Dibromoethane (EDB)	1.6	Not Detected	12	Not Detected
1,2-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,3-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,4-Dichlorobenzene	1.6	Not Detected	9.3	Not Detected
1,1-Dichloroethane	1.6	Not Detected	6.3	Not Detected
Freon 12	1.6	Not Detected	7.7	Not Detected
1,2-Dichloroethane	1.6	Not Detected	6.3	Not Detected
1,1-Dichloroethene	1.6	Not Detected	6.1	Not Detected
cis-1,2-Dichloroethene	1.6	Not Detected	6.1	Not Detected
trans-1,2-Dichloroethene	1.6	Not Detected	6.1	Not Detected
1,2-Dichloropropane	1.6	Not Detected	7.2	Not Detected
cis-1,3-Dichloropropene	1.6	Not Detected	7.0	Not Detected
trans-1,3-Dichloropropene	1.6	Not Detected	7.0	Not Detected
Freon 114	1.6	Not Detected	11	Not Detected
Ethyl Benzene	1.6	5.2	6.7	22
4-Ethyltoluene	1.6	27	7.6	130
Hexachlorobutadiene	6.2	Not Detected	66	Not Detected
2-Hexanone	6.2	Not Detected	25	Not Detected
Methylene Chloride	16	Not Detected	54	Not Detected
4-Methyl-2-pentanone	1.6	Not Detected	6.3	Not Detected
Styrene	1.6	Not Detected	6.6	Not Detected
1,1,2,2-Tetrachloroethane	1.6	Not Detected	11	Not Detected
Tetrachloroethene	1.6	Not Detected	10	Not Detected
Toluene	1.6	Not Detected	5.8	Not Detected
1,2,4-Trichlorobenzene	6.2	Not Detected	46	Not Detected
1,1,1-Trichloroethane	1.6	Not Detected	8.4	Not Detected
	1.6	Not Detected		Not Detected
1,1,2-Trichloroethane			8.4	
Trichloroethene	1.6	Not Detected	8.3	Not Detected

Released to Imaging: 6/4/2024 2:42:07 PM

eurofins

Air Toxics

Client Sample ID: 20220308M-1 Lab ID#: 2203521-01A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	1.6	Not Detected	8.7	Not Detected
Freon 113	1.6	Not Detected	12	Not Detected
1,2,4-Trimethylbenzene	1.6	9.7	7.6	48
1,3,5-Trimethylbenzene	1.6	14	7.6	70
Vinyl Acetate	6.2	Not Detected	22	Not Detected
Vinyl Chloride	1.6	Not Detected	4.0	Not Detected
m,p-Xylene	1.6	20	6.7	85
o-Xylene	1.6	4.0	6.7	18
TVOC Ref. to Hexane	31	24000	110	84000

Container Type: 6 Liter Summa Canister

		Method
Surrogates	%Recovery	Limits
Toluene-d8	108	70-130
1,2-Dichloroethane-d4	99	70-130
4-Bromofluorobenzene	96	70-130

🛟 eurofins

Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2203521-02A EPA METHOD TO-15 GC/MS FULL SCAN

CompoundRpt. Limit (ppbv)Amount (ppbv)Rpt. Limit (ug/m3)Amount (ug/m3)Acetone5.0Not Detected1.2Not DetectedBenzene0.50Not Detected1.6Not Detectedalpha-Chiorobluene0.50Not Detected2.6Not DetectedBromodichloromethane0.50Not Detected3.4Not DetectedBromodichloromethane5.0Not Detected5.2Not DetectedBromodichloromethane5.0Not Detected5.9Not DetectedCarbon Tetrachloride0.50Not Detected5.9Not DetectedCarbon Tetrachloride0.50Not Detected2.3Not DetectedChlorobenzene0.50Not Detected3.1Not DetectedChlorobenzene0.50Not Detected3.4Not DetectedChlorobenzene0.50Not Detected3.3Not DetectedChlorobenzene0.50Not Detected3.4Not Detected1.2-Dibromochloromethane5.0Not Detected3.8Not Detected1.2-Dichlorobenzene0.50Not Detected3.0Not Detected1.2-Dichlorobenzene0.50Not Detected3.0Not Detected1.3-Dichlorobenzene0.50Not Detected3.0Not Detected1.4-Dichlorobenzene0.50Not Detected3.0Not Detected1.2-Dichlorobenzene0.50Not Detected2.0Not Detected1.2-Dichloropethane0.50Not Detected <td< th=""><th>File Name: Dil. Factor:</th><th>a032505c 1.00</th><th colspan="3">Date of Collection: NA Date of Analysis: 3/25/22 11:14 AM</th></td<>	File Name: Dil. Factor:	a032505c 1.00	Date of Collection: NA Date of Analysis: 3/25/22 11:14 AM		
Benzene0.50Not Detected1.6Not Detectedalpha-Chiorotoluene0.50Not Detected2.6Not DetectedBromodichioromethane0.50Not Detected3.4Not DetectedBromodram0.50Not Detected5.2Not DetectedBromodrame5.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Disulfide0.50Not Detected3.1Not DetectedCarbon Tetrachloride0.50Not Detected2.2Not DetectedChiorobenzene0.50Not Detected2.3Not DetectedChiorobenzene0.50Not Detected5.3Not DetectedChioromethane2.0Not Detected5.3Not DetectedChioromethane0.50Not Detected3.0Not DetectedChioromethane0.50Not Detected3.0Not Detected1,2-Dioromethane (EDB)0.50Not Detected3.0Not Detected1,2-Diorobenzene0.50Not Detected3.0Not Detected1,3-Dichiorobenzene0.50Not Detected3.0Not Detected1,4-Dichiorobenzene0.50Not Detected2.0Not Detected1,2-Dichiorobenzene0.50Not Detected2.0Not Detected1,2-Dichiorothane0.50Not Detected2.0Not Detected1,2-Dichiorothane0.50Not Detected2.0Not Detected1,2-Dichiorothane		Rpt. Limit	Amount	Rpt. Limit	Amount
alpha-Chlorotoluene 0.50 Not Detected 2.6 Not Detected Bromodichloromethane 0.50 Not Detected 3.4 Not Detected Bromoorm 0.50 Not Detected 5.2 Not Detected Bromoorm 0.50 Not Detected 5.9 Not Detected 2-Butanone (Methyl Ethyl Ketone) 2.0 Not Detected 6.2 Not Detected Carbon Disulfide 2.0 Not Detected 6.2 Not Detected Carbon Disulfide 2.0 Not Detected 3.1 Not Detected Chlorobenzene 0.50 Not Detected 4.2 Not Detected Dibromochinormethane 0.50 Not Detected 4.2 Not Detected Chloroethane 2.0 Not Detected 3.8 Not Detected 1,2-Dibromoethane (EDB) 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,4-Dichlorobenzene 0.50 Not Detected 3.0 Not Detected 1,2-Dichlorobenzene 0.50 Not Detected 2.0 No	Acetone	5.0	Not Detected	12	Not Detected
Bromodichloromethane0.50Not Detected3.4Not DetectedBromodorm0.50Not Detected5.2Not DetectedBromomethane5.0Not Detected19Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedChlorobenzene0.50Not Detected4.2Not DetectedChloromethane2.0Not Detected2.4Not DetectedChloromethane5.0Not Detected2.4Not DetectedChloromethane5.0Not Detected3.8Not DetectedChloromethane5.0Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected<	Benzene	0.50	Not Detected	1.6	Not Detected
Bromoform0.50Not Detected5.2Not DetectedBromomethane5.0Not Detected5.9Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected2.3Not DetectedChlorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected2.4Not DetectedChlorobenzene5.0Not Detected2.4Not DetectedChlorobenzene5.0Not Detected3.8Not DetectedChlorobr0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected </td <td>alpha-Chlorotoluene</td> <td>0.50</td> <td>Not Detected</td> <td>2.6</td> <td>Not Detected</td>	alpha-Chlorotoluene	0.50	Not Detected	2.6	Not Detected
Bromomethane5.0Not Detected19Not Detected2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedChrobenzene0.50Not Detected2.3Not DetectedDibromochloromethane2.0Not Detected5.3Not DetectedChloroothane2.0Not Detected5.3Not DetectedChloroothane5.0Not Detected3.8Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.8Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.3Not	Bromodichloromethane	0.50	Not Detected	3.4	Not Detected
2-Butanone (Methyl Ethyl Ketone)2.0Not Detected5.9Not DetectedCarbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedDibromochloromethane0.50Not Detected4.2Not DetectedChloroberzene0.50Not Detected4.2Not DetectedChlorobername2.0Not Detected2.4Not DetectedChloroform0.50Not Detected2.4Not DetectedChloroform0.50Not Detected3.8Not DetectedChloroform0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,3-Dichloropropane0.50Not Detected2.3Not Detected <td>Bromoform</td> <td>0.50</td> <td>Not Detected</td> <td>5.2</td> <td>Not Detected</td>	Bromoform	0.50	Not Detected	5.2	Not Detected
Carbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedChlorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected4.2Not DetectedChlorobenzene0.50Not Detected5.3Not DetectedChloroothane2.0Not Detected10Not DetectedChloroomethane5.0Not Detected10Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroppene0.50Not Detected2.3Not Detected1,2-Dichloroppene0.50Not Detected2.3Not Detected1,2-Dichloroppene0.50Not Detected2.3Not Detected1,3-Dichloroppopene0.50Not Detected2.3Not Detected <td>Bromomethane</td> <td>5.0</td> <td>Not Detected</td> <td>19</td> <td>Not Detected</td>	Bromomethane	5.0	Not Detected	19	Not Detected
Carbon Disulfide2.0Not Detected6.2Not DetectedCarbon Tetrachloride0.50Not Detected3.1Not DetectedChlorobenzene0.50Not Detected2.3Not DetectedDibromochloromethane0.50Not Detected4.2Not DetectedChlorobenzene0.50Not Detected2.4Not DetectedChloroothane2.0Not Detected10Not DetectedChloroomethane5.0Not Detected10Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroppane0.50Not Detected2.3Not Detected1,2-Dichloroppane0.50Not Detected2.3Not Detected1,2-Dichloroppane0.50Not Detected2.4Not Detected1,2-Dichloroppane0.50Not Detected2.4Not Detected <td>2-Butanone (Methyl Ethyl Ketone)</td> <td>2.0</td> <td>Not Detected</td> <td>5.9</td> <td>Not Detected</td>	2-Butanone (Methyl Ethyl Ketone)	2.0	Not Detected	5.9	Not Detected
Chlorobenzene0.50Not Detected2.3Not DetectedDibromochioromethane0.50Not Detected4.2Not DetectedChloroform0.50Not Detected2.4Not DetectedChloroform0.50Not Detected2.4Not DetectedChloroform0.50Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,2-Dichlorobenzene0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.3Not Detected1,2-Dichloroptene0.50Not Detected2.3Not Detected1,2-Dichloroptene0.50Not Detected2.3Not Detected1,2-Dichloropropene0.50Not Detected2.3Not Detected1,2-Dichloropropene0.50Not Detected2.3Not Detected1,2-Dichloropropene0.50Not Detected2.4Not Detected <td></td> <td>2.0</td> <td>Not Detected</td> <td>6.2</td> <td>Not Detected</td>		2.0	Not Detected	6.2	Not Detected
Dibromochloromethane0.50Not Detected4.2Not DetectedChloroethane2.0Not Detected5.3Not DetectedChloroform0.50Not Detected2.4Not DetectedChloromethane5.0Not Detected10Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.8Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,4-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detected1,2-Dichloroptopane0.50Not Detected2.4Not	Carbon Tetrachloride	0.50	Not Detected	3.1	Not Detected
Chloroethane2.0Not Detected5.3Not DetectedChloroform0.50Not Detected2.4Not DetectedChloromethane (EDB)0.50Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.4Not Detected1,3-Dichloropropene0.50Not Detected2.4Not Detected1,4-Dichloropropene0.50Not Detected2.4Not D	Chlorobenzene	0.50	Not Detected	2.3	Not Detected
Chloroform0.50Not Detected2.4Not DetectedChloromethane5.0Not Detected10Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroetnane0.50Not Detected2.0Not Detected1,2-Dichloroetnane0.50Not Detected2.0Not Detected1,2-Dichloroetnane0.50Not Detected2.0Not Detected1,2-Dichloroetnane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,3-Dichloroptopene0.50Not Detected2.3Not Detected1,3-Dichloroptopene0.50Not Detected2.4Not Detected1,3-Dichloroptopene0.50Not Detected2.4Not Detected1,4-Dichloroptopene0.50Not Detected2.3Not Detected1,4-Dichloroptopene0.50Not Detected2.4Not De	Dibromochloromethane	0.50	Not Detected	4.2	Not Detected
Chloromethane5.0Not Detected10Not Detected1,2-Dibromoethane (EDB)0.50Not Detected3.8Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected2.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected2.3Not Detected1,4-Dichloropropene0.50Not Detected2.4Not Detected1,4-Dichloropropene0.50Not Detected2.2Not Detected1,2-Dichloropropene0.50Not Detected2.4Not Detected1,4-Dichloropropene0.50Not Detected2.4Not Detected1,4-Dichloropropene0.50Not Detected2.	Chloroethane	2.0	Not Detected	5.3	Not Detected
1,2-Dibromoethane (EDB)0.50Not Detected3.8Not Detected1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroptopene0.50Not Detected2.0Not Detected1,2-Dichloropropene0.50Not Detected2.3Not Detected1,2-Dichloropropene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected3.5Not Detected1,3-Dichloropropene0.50Not Detected2.2Not Detected1,4-Ehyltoluene0.50Not Detected2.2Not Detected4-Ehyltoluene0.50Not Detected2.4Not Detected2.0Not Detected1.7Not Detected2.4Not Detected4-Ehyltoluene0.50Not Detected2.0 <td></td> <td>0.50</td> <td>Not Detected</td> <td>2.4</td> <td>Not Detected</td>		0.50	Not Detected	2.4	Not Detected
1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropthene0.50Not Detected2.0Not Detected1,2-Dichloroptopene0.50Not Detected2.3Not Detected1,3-Dichloropropene0.50Not Detected3.5Not Detected1,3-Dichloropropene0.50Not Detected3.5Not Detected1,4-Ehyltoluene0.50Not Detected3.5Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2-Hexanone2.0Not Detected1.7Not Detected4-Ehyltoluene0.50Not Detected1.7Not Detected4-Ehyltoluene0.50Not Detected1.7Not Detected2-Hexanone2.0Not Detected1.1Not Detected4-Hexanone0.50Not Detected1.1Not Detected4-Hexan	Chloromethane	5.0	Not Detected	10	Not Detected
1,2-Dichlorobenzene0.50Not Detected3.0Not Detected1,3-Dichlorobenzene0.50Not Detected3.0Not Detected1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedfreon 1140.50Not Detected3.5Not Detectedethyl Benzene0.50Not Detected2.4Not Detected4-Ethylcluene0.50Not Detected2.4Not Detected4-Ethylcluene0.50Not Detected2.1Not Detected2-Hexanone2.0Not Detected2.1Not Detected4-Ethylcluene0.50Not Detected2.1Not Detected4-Ethylcluene0.50Not Detected2.1Not Detected4-Ethylcluene0.50Not Detected2.1Not Detected4-Hexanon	1,2-Dibromoethane (EDB)	0.50	Not Detected	3.8	Not Detected
1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not DetectedFreen 120.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedfreen 1140.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2-Hexanone2.0Not Detected3.4Not Detected4-Ethyltoluene0.50Not Detected3.4Not Detected4-Methyl-2-pentanone0.50Not Detected3.4Not Detected1,1,2-Tertachloroethane0.50Not Detected3.4Not Dete		0.50	Not Detected	3.0	Not Detected
1,4-Dichlorobenzene0.50Not Detected3.0Not Detected1,1-Dichloroethane0.50Not Detected2.0Not DetectedFreon 120.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloroethene0.50Not Detected2.3Not Detected1,2-Dichloroptopane0.50Not Detected2.3Not Detectedcis-1,3-Dichloroptopene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detectedtrans-1,2-Dic		0.50	Not Detected		Not Detected
Freen 120.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedfreon 1140.50Not Detected2.2Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene2.0Not Detected2.4Not Detected2-Hexanone2.0Not Detected2.1Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected5tyrene0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected1.9Not Dete		0.50	Not Detected	3.0	Not Detected
Freen 120.50Not Detected2.5Not Detected1,2-Dichloroethane0.50Not Detected2.0Not Detected1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropthene0.50Not Detected2.3Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.2Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.4Not Detectedthyl Benzene0.50Not Detected2.4Not Detectedt	1,1-Dichloroethane	0.50	Not Detected	2.0	Not Detected
1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2-Hexanone2.0Not Detected8.2Not Detected4-Hethyl-2-pentanone0.50Not Detected2.1Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected50Not Detected3.4Not Detected1.1,2,2-Tetrachloroethane0.50Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1.4,4-Trichloroethane1,2,4-Trichloroethane0.50Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected <td></td> <td>0.50</td> <td>Not Detected</td> <td>2.5</td> <td>Not Detected</td>		0.50	Not Detected	2.5	Not Detected
1,1-Dichloroethene0.50Not Detected2.0Not Detectedcis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2-Hexanone2.0Not Detected8.2Not Detected4-Hethyl-2-pentanone0.50Not Detected2.0Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected50Not Detected3.4Not Detected1.1,2,2-Tetrachloroethane0.50Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1.4,4-Trichloroethane1.5Not Detected1,1,2-Trichloroethane0.50Not Detected1.9Not Detected1.1,1-Trichloroethane1.50Not Detected1.5Not Detected1,1,2-Trichloroethane0.50Not Detected1.5	1.2-Dichloroethane	0.50	Not Detected	2.0	Not Detected
cis-1,2-Dichloroethene0.50Not Detected2.0Not Detectedtrans-1,2-Dichloropthene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not Detected2-Hexanone2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected3.2Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected4-Methyl-2-pentanone0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichloroethane0.50Not Detected1.9Not Detected1,2,4-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected		0.50	Not Detected	2.0	Not Detected
trans-1,2-Dichloroethene0.50Not Detected2.0Not Detected1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected8.2Not Detected2-Hexanone2.0Not Detected1.7Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5yrene0.50Not Detected3.4Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.9Not Detected1,2,2-Tichloroethane0.50Not Detected3.4Not Detected1,1,2-Trichloroethane0.50Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected		0.50	Not Detected	2.0	Not Detected
1,2-Dichloropropane0.50Not Detected2.3Not Detectedcis-1,3-Dichloropropene0.50Not Detected2.3Not Detectedtrans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected8.2Not Detected2-Hexanone2.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5yrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.9Not Detected1,2,4-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected		0.50	Not Detected	2.0	Not Detected
trans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected500Not Detected2.1Not Detected1, 1, 2, 2-Tetrachloroethane0.50Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1, 2, 4-Trichloroethane1.50Not Detected1.9Not Detected1,2,4-Trichloroethane0.50Not Detected1.5Not Detected1.1, 2, Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1.1, 2, 7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1.1, 2, 7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1.1, 2, 71,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50<		0.50	Not Detected	2.3	Not Detected
trans-1,3-Dichloropropene0.50Not Detected2.3Not DetectedFreon 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected2.1Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected1.7Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected500Not Detected2.1Not Detected1.1, 2, 2-Tetrachloroethane0.50Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1.2, 4-Trichloroethane1.50Not Detected1.9Not Detected1,2,4-Trichloroethane0.50Not Detected1.5Not Detected1.1, 1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1.1, 1-Trichloroethane2.0Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not D		0.50	Not Detected	2.3	Not Detected
Freen 1140.50Not Detected3.5Not DetectedEthyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5tyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected			Not Detected	2.3	Not Detected
Ethyl Benzene0.50Not Detected2.2Not Detected4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5tyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene0.50Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected			Not Detected	3.5	Not Detected
4-Ethyltoluene0.50Not Detected2.4Not DetectedHexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not Detected5tyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	Ethyl Benzene	0.50	Not Detected	2.2	Not Detected
Hexachlorobutadiene2.0Not Detected21Not Detected2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not Detected1,2,4-Trichlorobenzene2.0Not Detected1.9Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	-	0.50	Not Detected	2.4	Not Detected
2-Hexanone2.0Not Detected8.2Not DetectedMethylene Chloride5.0Not Detected17Not Detected4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	-	2.0	Not Detected	21	Not Detected
4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichloroethane2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected		2.0			
4-Methyl-2-pentanone0.50Not Detected2.0Not DetectedStyrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichloroethane2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected		5.0	Not Detected	17	Not Detected
Styrene0.50Not Detected2.1Not Detected1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichloroethane2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	-				
1,1,2,2-Tetrachloroethane0.50Not Detected3.4Not DetectedTetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichloroethane2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected	• •		Not Detected		Not Detected
Tetrachloroethene0.50Not Detected3.4Not DetectedToluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected					
Toluene0.50Not Detected1.9Not Detected1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected					
1,2,4-Trichlorobenzene2.0Not Detected15Not Detected1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected					
1,1,1-Trichloroethane0.50Not Detected2.7Not Detected1,1,2-Trichloroethane0.50Not Detected2.7Not Detected					
1,1,2-Trichloroethane 0.50 Not Detected 2.7 Not Detected					
	Trichloroethene	0.50	Not Detected	2.7	Not Detected

٦

eurofins Air Toxics

Client Sample ID: Lab Blank Lab ID#: 2203521-02A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a032505c 1.00	Date of Collection: NA Date of Analysis: 3/25/22 11:14 AM		
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Freon 11	0.50	Not Detected	2.8	Not Detected
Freon 113	0.50	Not Detected	3.8	Not Detected
1,2,4-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
1,3,5-Trimethylbenzene	0.50	Not Detected	2.4	Not Detected
Vinyl Acetate	2.0	Not Detected	7.0	Not Detected
Vinyl Chloride	0.50	Not Detected	1.3	Not Detected
m,p-Xylene	0.50	Not Detected	2.2	Not Detected
o-Xylene	0.50	Not Detected	2.2	Not Detected
TVOC Ref. to Hexane	10	Not Detected	35	Not Detected

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	109	70-130
1,2-Dichloroethane-d4	93	70-130
4-Bromofluorobenzene	98	70-130

Air Toxics

Client Sample ID: CCV Lab ID#: 2203521-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a032502	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/25/22 09:18 AM
Compound		%Recovery
Acetone		92
Benzene		98
alpha-Chlorotoluene		109
Bromodichloromethane		102
Bromoform		107
Bromomethane		100
2-Butanone (Methyl Ethyl Ketone)		104
Carbon Disulfide		98
Carbon Tetrachloride		99
Chlorobenzene		101
Dibromochloromethane		99
Chloroethane		99
Chloroform Chloromethane		100 96
1,2-Dibromoethane (EDB)		100
1,2-Dichlorobenzene		102
1,3-Dichlorobenzene		102
1,4-Dichlorobenzene		102
1,1-Dichloroethane		102
Freon 12		97
1,2-Dichloroethane		93
1,1-Dichloroethene		104
cis-1,2-Dichloroethene		107
trans-1,2-Dichloroethene		103
1,2-Dichloropropane		108
cis-1,3-Dichloropropene		110
trans-1,3-Dichloropropene		95
Freon 114		99
Ethyl Benzene		100
4-Ethyltoluene		106
Hexachlorobutadiene		96
2-Hexanone		95
Methylene Chloride		101
4-Methyl-2-pentanone		110
Styrene		111
1,1,2,2-Tetrachloroethane		102
Tetrachloroethene		94
Toluene		110
1,2,4-Trichlorobenzene		96
1,1,1-Trichloroethane		98
1,1,2-Trichloroethane		97
Trichloroethene		104

eurorins		eurofins
----------	--	----------

Air Toxics

Client Sample ID: CCV Lab ID#: 2203521-03A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a032502 1.00	Date of Collection: NA Date of Analysis: 3/25/22 09:18 AM		
Compound	%Recovery			
Freon 11		94		
Freon 113		101		
1,2,4-Trimethylbenzene		104		
1,3,5-Trimethylbenzene		105		
Vinyl Acetate		105		
Vinyl Chloride		99		
m,p-Xylene		104		
o-Xylene		105		
TVOC Ref. to Hexane		100		

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	108	70-130	
1,2-Dichloroethane-d4	96	70-130	
4-Bromofluorobenzene	100	70-130	

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2203521-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a032503	Date of Collect	tion: NA	
Dil. Factor:	1.00	Date of Analysis: 3/25/22 09:41 AM		
			Method	
Compound		%Recovery	Limits	
Acetone		86	70-130	
Benzene		98	70-130	
alpha-Chlorotoluene		111	70-130	
Bromodichloromethane		102	70-130	
Bromoform		108	70-130	
Bromomethane		94	70-130	
2-Butanone (Methyl Ethyl Ketone)		99	70-130	
Carbon Disulfide		97	70-130	
Carbon Tetrachloride		98	70-130	
Chlorobenzene		102	70-130	
Dibromochloromethane		97	70-130	
Chloroethane		99	70-130	
Chloroform		97	70-130	
Chloromethane		91	70-130	
1,2-Dibromoethane (EDB)		99	70-130	
1,2-Dichlorobenzene		104	70-130	
1,3-Dichlorobenzene		101	70-130	
1,4-Dichlorobenzene		102	70-130	
1,1-Dichloroethane		100	70-130	
Freon 12		94	70-130	
1,2-Dichloroethane		93	70-130	
1,1-Dichloroethene		102	70-130	
cis-1,2-Dichloroethene		104	70-130	
trans-1,2-Dichloroethene		102	70-130	
1,2-Dichloropropane		108	70-130	
cis-1,3-Dichloropropene		112	70-130	
trans-1,3-Dichloropropene		96	70-130	
Freon 114		96	70-130	
Ethyl Benzene		100	70-130	
4-Ethyltoluene		108	70-130	
Hexachlorobutadiene		113	70-130	
2-Hexanone		91	70-130	
Methylene Chloride		94	70-130	
4-Methyl-2-pentanone		109	70-130	
Styrene		111	70-130	
1,1,2,2-Tetrachloroethane		106	70-130	
Tetrachloroethene		94	70-130	
Toluene		111	70-130	
1,2,4-Trichlorobenzene		113	70-130	
1,1,1-Trichloroethane		99	70-130	
1,1,2-Trichloroethane		101	70-130	
Trichloroethene		103	70-130	

🛟 eurofins

Air Toxics

Client Sample ID: LCS Lab ID#: 2203521-04A EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a032503 1.00	Date of Collection: NA Date of Analysis: 3/25/22 09:41 AM		
Compound		%Recovery	Method Limits	
Freon 11		93	70-130	
Freon 113		97	70-130	
1,2,4-Trimethylbenzene		106	70-130	
1,3,5-Trimethylbenzene		106	70-130	
Vinyl Acetate		120	70-130	
Vinyl Chloride		94	70-130	
m,p-Xylene		102	70-130	
o-Xylene		103	70-130	
TVOC Ref. to Hexane		Not Spiked		

Container Type: NA - Not Applicable

		Method
Surrogates	%Recovery	Limits
Toluene-d8	109	70-130
1,2-Dichloroethane-d4	97	70-130
4-Bromofluorobenzene	100	70-130

1

Air Toxics

Client Sample ID: LCSD Lab ID#: 2203521-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name:	a032504	Date of Collection: NA
Dil. Factor:	1.00	Date of Analysis: 3/25/22 10:05 AM Method
Compound	%Recover	
Acetone	86	70-130
Benzene	100	70-130
alpha-Chlorotoluene	113	70-130
Bromodichloromethane	102	70-130
Bromoform	111	70-130
Bromomethane	93	70-130
2-Butanone (Methyl Ethyl Ketone)	99	70-130
Carbon Disulfide	95	70-130
Carbon Tetrachloride	97	70-130
Chlorobenzene	103	70-130
Dibromochloromethane		70-130
Chloroethane	96	70-130
Chloroform	96	70-130
Chloromethane	91	70-130
1,2-Dibromoethane (EDB)	100	70-130
1,2-Dichlorobenzene	106	70-130
1,3-Dichlorobenzene	104	70-130
1,4-Dichlorobenzene	104	70-130
1,1-Dichloroethane	99	70-130
Freon 12	94	70-130
1,2-Dichloroethane	93	70-130
1,1-Dichloroethene	99	70-130
cis-1,2-Dichloroethene	104	70-130
trans-1,2-Dichloroethene	100	70-130
1,2-Dichloropropane	107	70-130
cis-1,3-Dichloropropene	113	70-130
trans-1,3-Dichloropropene	97	70-130
Freon 114	95	70-130
Ethyl Benzene	103	70-130
4-Ethyltoluene	103	70-130
Hexachlorobutadiene	116	70-130
	92	70-130
2-Hexanone Mathylana Chlarida		70-130
Methylene Chloride	94 113	70-130
4-Methyl-2-pentanone	113	70-130
Styrene		
1,1,2,2-Tetrachloroethane	107	70-130
Tetrachloroethene	95	70-130
Toluene	112	70-130
1,2,4-Trichlorobenzene	116	70-130
1,1,1-Trichloroethane	98	70-130
1,1,2-Trichloroethane	101	70-130
Trichloroethene	103	70-130

🛟 eurofins

Air Toxics

Client Sample ID: LCSD Lab ID#: 2203521-04AA EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	a032504 1.00	Date of Collect Date of Analys	tion: NA is: 3/25/22 10:05 AM
Compound		%Recovery	Method Limits
Freon 11		92	70-130
Freon 113		97	70-130
1,2,4-Trimethylbenzene		107	70-130
1,3,5-Trimethylbenzene		108	70-130
Vinyl Acetate		123	70-130
Vinyl Chloride		94	70-130
m,p-Xylene		107	70-130
o-Xylene		106	70-130
TVOC Ref. to Hexane		Not Spiked	

Container Type: NA - Not Applicable

		Method	
Surrogates	%Recovery	Limits	
Toluene-d8	109	70-130	
1,2-Dichloroethane-d4	95	70-130	
4-Bromofluorobenzene	100	70-130	

PROJECT NAME: CHK STATE M PROJECT MANAGER: DAVID BRADY PO# TAT: STANDARD PO# WO# PO# 2203521 REMARKS TAG # 0772
PO# TAC # TAC
PO# *TVOCASC6 TAC# TAC# TAC# PO#
-72 R
t L L L L
L d
r .
where and and and the state of
5en14/#2375
Cuistoriy Soci Interio
· ~ r =
TIME
AIRBILL NUMBER: Feder 519674700146
, and INVOICE (if applicable) to: QAQC@EquusEnv.com
LABORATORY ADDRESS:
BLUE RANNERD STER FOLLOM, CA 95630

Received by OCD: 4/25/2024 8:55:15 AM

Page 150 of 212

3/27/2022

Job Number: 180-135471-1 SDG Number: Property ID: 891077

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 135471 List Number: 1 Creator: Gartner, Cathy

			SDG Number: Property ID: 891077	
Login Number: 135471			List Source: Eurofins Pittsburgh	4
List Number: 1			Ŭ	5
Creator: Gartner, Cathy				5
Question	Answer	Comment		6
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td></td> <td></td> <td></td> <td>7</td>				7
The cooler's custody seal, if present, is intact.				
Sample custody seals, if present, are intact.				
The cooler or samples do not appear to have been compromised or tampered with.				
Samples were received on ice.				
Cooler Temperature is acceptable.				
Cooler Temperature is recorded.				
COC is present.				
COC is filled out in ink and legible.				
COC is filled out with all pertinent information.				
Is the Field Sampler's name present on COC?				İ
There are no discrepancies between the containers received and the COC.				
Samples are received within Holding Time (excluding tests with immediate HTs)				
Sample containers have legible labels.				
Containers are not broken or leaking.				
Sample collection date/times are provided.				
Appropriate sample containers are used.				
Sample bottles are completely filled.				
Sample Preservation Verified.				
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs				
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").				
Multiphasic samples are not present.				
Samples do not require splitting or compositing.				
Residual Chlorine Checked.				

Received by OCD: 4/25/2024 8:55:15 AM

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Released to Imaging: 6/4/2024 2:42:07 PM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-236444-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

-athy Gartner

Authorized for release by: 6/22/2021 3:14:38 PM

Cathy Gartner, Project Manager II (615)301-5041 Cathy.Gartner@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Laboratory Job ID: 460-236444-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

2

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 460-236444-1 SDG: Property ID: 891077

2		
Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	13
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Case Narrative

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-236444-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-236444-1

Comments

No additional comments.

Receipt

The samples were received on 6/12/2021 3:11 PM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.2° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 460-236444-1 SDG: Property ID: 891077

Released to Imaging: 6/4/2024 2:42:07 PM

This Detection Summary does not include radiochemical test results.

Detection S	Summary
-------------	---------

Job ID: 460-236444-1 SDG: Property ID: 891077

Client Sample ID: MW	-4					Lab Sa	mple ID: 4	60-236444-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	528		25.0		mg/L	25	300.0	Total/NA
Client Sample ID: MW	-8					Lab Sa	mple ID: 4	60-236444-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chloride	92.5		25.0		mg/L	25	300.0	Total/NA
Client Sample ID: Dup)					Lab Sa	mple ID: 4	60-236444-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Analyte					mg/L	25	300.0	Total/NA

No Detections.

Page 156 of 212

6/22/2021

Client: Chesapeake Energy Corporation

Matrix: Water

5 6 7

Client Sample Results

Job ID: 460-236444-1 SDG: Property ID: 891077

Lab Sample ID: 460-236444-1

Client Sample ID: MW-4 Date Collected: 06/08/21 09:15 Date Received: 06/12/21 15:11

Project/Site: State M-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	528		25.0		mg/L			06/21/21 15:38	25
Client Sample ID: MW-8						Lal	b Sample	ID: 460-236	6444-2
Date Collected: 06/08/21 10:40							-	Matrix	: Wate
Date Received: 06/12/21 15:11									
_ Method: 300.0 - Anions, Ion Chr	omatogra	phy							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	92.5		25.0		mg/L			06/21/21 15:58	2
Client Sample ID: Dup						Lal	b Sample	ID: 460-236	6444-3
Date Collected: 06/08/21 00:00								Matrix	
Date Received: 06/12/21 15:11									
_ Method: 300.0 - Anions, Ion Chr	omatogra	uphy							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	524		25.0		mg/L			06/21/21 16:13	2
Client Sample ID: EQ Blank						Lal	b Sample	ID: 460-236	6444-4
Date Collected: 06/08/21 00:00								Matrix	: Wate
Date Received: 06/12/21 15:11									
_	omotoara	nhy							
Method: 300.0 - Anions, Ion Chr Analyte	-	i <mark>phy</mark> Qualifier	RL	моі	Unit	D	Prepared	Analyzed	Dil Fa

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 460-236444-1 SDG: Property ID: 891077

Page 158 of 212

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-785587/3 Matrix: Water Analysis Batch: 785587									CI	ient S	am	ple ID: Me Prep Typ		
	МВ	МВ												
Analyte	Result	Qualifier		RL	I	MDL	Unit		D	Prepar	ed	Analyz	ed	Dil Fac
Chloride	ND			1.00			mg/L					06/21/21 1	12:15	1
- Lab Sample ID: LCS 460-785587/5								CI	ient S	ample	D:	Lab Con	trol Sa	ample
Matrix: Water												Prep Typ		
Analysis Batch: 785587														
-			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Quali	ifier	Unit	[) %Re	ec	Limits		
Chloride			3.20		3.070			mg/L		ę	96	90 - 110		
Lab Sample ID: LCSD 460-785587	/6						C	lient S	Sampl	e ID: I	Lab	Control S	Sampl	e Dup
Matrix: Water												Prep Typ		
Analysis Batch: 785587														
•			Spike		LCSD	LCSE	C					%Rec.		RPD
Analyte			Added		Result	Quali	ifier	Unit	[D %Re	ec	Limits	RPD	Limit
Chloride			3.20		3.063			mg/L			96	90 - 110	0	15

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-236444-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 785587

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
160-236444-1	MW-4	Total/NA	Water	300.0	
60-236444-2	MW-8	Total/NA	Water	300.0	
60-236444-3	Dup	Total/NA	Water	300.0	
60-236444-4	EQ Blank	Total/NA	Water	300.0	
IB 460-785587/3	Method Blank	Total/NA	Water	300.0	
CS 460-785587/5	Lab Control Sample	Total/NA	Water	300.0	
CSD 460-785587/6	Lab Control Sample Dup	Total/NA	Water	300.0	

Client: Chesapeake Energy Corporation

Batch

Туре

Analysis

Batch

Туре

Analysis

Batch

Туре

Analysis

Batch

300.0

Batch

300.0

Batch

300.0

Method

Method

Method

Lab Chronicle

Dilution

Dilution

Dilution

Factor

25

Factor

25

Factor

25

Run

Run

Run

Batch

Number

785587

Batch

Number

785587

Batch

Number

785587

Prepared

or Analyzed

06/21/21 15:38

Prepared

or Analyzed

06/21/21 15:58

Prepared

or Analyzed

06/21/21 16:13

Job ID: 460-236444-1 SDG: Property ID: 891077

Client Sample ID: MW-4 Date Collected: 06/08/21 09:15 Date Received: 06/12/21 15:11

Client Sample ID: MW-8

Date Collected: 06/08/21 10:40

Date Received: 06/12/21 15:11

Client Sample ID: Dup

Date Collected: 06/08/21 00:00

Date Received: 06/12/21 15:11

Project/Site: State M-1

Prep Type

Prep Type

Prep Type

Total/NA

Total/NA

Total/NA

Lab Sample ID: 460-236444-1

Matrix: Water Analyst Lab VMI TAL EDI Lab Sample ID: 460-236444-2 Matrix: Water Analyst Lab 9 VMI TAL EDI Lab Sample ID: 460-236444-3 Matrix: Water Analyst Lab TAL EDI VMI Lab Sample ID: 460-236444-4 **Matrix: Water**

Client Sample ID: EQ Blank Date Collected: 06/08/21 00:00

Date Received: 06/12/21 15:11

	Batch	Batch		Dilution	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		1	785587	06/21/21 16:28	VMI	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-236444-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	07-01-21
Massachusetts	State	M-NJ312	06-30-21
New Jersey	NELAP	12028	06-30-21
New York	NELAP	11452	04-01-22
Pennsylvania	NELAP	68-00522	02-28-22
Rhode Island	State	LAO00132	12-30-21
USDA	US Federal Programs	P330-20-00244	11-03-23

10

Eurofins TestAmerica, Edison

Method Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-236444-1 SDG: Property ID: 891077

lethod	Method Description	Protocol	Laboratory	
00.0	Anions, Ion Chromatography	MCAWW	TAL EDI	
Protocol F	References:			4
MCAW	W = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And	Subsequent Revisions	ı.	
Laborator	y References:			
) I = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900)		

Page 163 of 212

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 460-236444-1 SDG: Property ID: 891077

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID	
460-236444-1	MW-4	Water	06/08/21 09:15	06/12/21 15:11		4
160-236444-2	MW-8	Water	06/08/21 10:40	06/12/21 15:11		
160-236444-3	Dup	Water	06/08/21 00:00	06/12/21 15:11		5
160-236444-4	EQ Blank	Water	06/08/21 00:00	06/12/21 15:11		
						8
						9
						10
						12
						13
						14

Page 164 of 212

		Total Phos Other Other	(pH<2)											ijusted.
	C C C C	Total Cyanide	(pH>12)											ich were pH a
	Cooler #7: Cooler #8:		(pH<2) (pH<2)			+				_				The appropriate Project Manager and Department Manager should be notified about the samples which were pH adjusted. Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.
D o	Cook Cook		d) (6 <hd)< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>rsed (ml):</td><td>Expiration Date:</td><td>stified about th acidified at lea</td></hd)<>							_		rsed (ml):	Expiration Date:	stified about th acidified at lea
Receipt Temperature and pH Log	မူ မ မ မ		(2) (pH<2)									Volume of Preservative used (ml):	Expira	r should be nc ance must be
sipt Temperature and pH	RAW CORRECTED CARACTER CORRECTED		(pH 5-9) (pH<2)		+	+-	-		 	ation helow.		Volume of	:	ment Manage out of compli
	Cooler #4: Cooler #5: Cooler #6:	Hardness	(pH<2) (f							ed record the information helow.				er and Uepan ysis which are
IR Gun #			<2) (pH<2)							Political reco				roject Manag
M	C C C		(pH<2) (pH<2)							If nH adjustments are require				appropriate + Samples j
WHAK 1			(pH<2)							If nH adius	. adjusted:	Ime/Conc.:	srvative(s):	Ine
Job Number: Number of Coolers:	Cooler #1: Cooler #2: Cooler #3:		TALS Sample Number								Sample No(s). adjusted:	Preservative Name/Conc.:	Lot # of Preservative(s):	

14

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 236444 List Number: 1 Creator: Rivera, Kenneth

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1541531
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 460-236444-1

SDG Number: Property ID: 891077

List Source: Eurofins TestAmerica, Edison

Received by OCD: 4/25/2024 8:55:15 AM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-242638-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

-athy Gartner

Authorized for release by: 9/22/2021 11:11:47 AM

Cathy Gartner, Project Manager II (615)301-5041 Cathy.Gartner@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS Review your project results through Dotal Access Have a Question? Ask The Expert Visit us at: www.eurofinsus.com/Env

Laboratory Job ID: 460-242638-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 460-242638-1 SDG: Property ID: 891077

	· ·	
Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	ŏ
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	13
NC	Not Calculated	13 14
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 460-242638-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-242638-1

Comments

No additional comments.

Receipt

The samples were received on 9/10/2021 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.3° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 460-242638-1 SDG: Property ID: 891077

Page	171	of 2	12

Job ID: 460-242638-1
SDG: Property ID: 891077

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Prep Type
Chloride	9.80		1.00		mg/L	1		0.0	Total/NA
Client Sample ID: MW-4						Lab Sa	amp	le ID: 4	60-242638-2
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Ргер Туре
Chloride	438		10.0		mg/L	10	30	0.0	Total/NA
Client Sample ID: MW-8						Lab Sa	amp	le ID: 4	60-242638-3
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Ргер Туре
Chloride	65.4		1.00		mg/L	1	30	0.0	Total/NA
Client Sample ID: DUP						Lab Sa	amp	le ID: 4	60-242638-4
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Me	ethod	Ргер Туре
Chloride	65.4		1.00		mg/L	1	30	0.0	Total/NA

Detection Summary

Page 5 of 15

.

Client: Chesapeake Energy Corporation

Matrix: Water

Client Sample Results

Job ID: 460-242638-1 SDG: Property ID: 891077

Lab Sample ID: 460-242638-1

Client Sample ID: EQ Blank Date Collected: 09/08/21 11:38 Date Received: 09/10/21 10:00

Project/Site: State M-1

D Prepared Analyzed Dil F Lab Sample ID: 460-242638 Matrix: Wat D Prepared Analyzed Dil F Lab Sample ID: 460-242638 Matrix: Wat
D Prepared Analyzed Dil F Dil F Dil F Dil F Dil F Dil F
<u>D</u> Prepared Analyzed Dil F 09/21/21 21:05 Lab Sample ID: 460-242638
Lab Sample ID: 460-242638
Lab Sample ID: 460-242638
Lab Sample ID: 460-242638
Lab Sample ID: 460-242638
D Prepared Analyzed Dil F
09/21/21 16:10
Lab Sample ID: 460-242638
Matrix: Wat
D Prepared Analyzed Dil F

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 460-242638-1 SDG: Property ID: 891077

Page 173 of 212

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-802015/3 Matrix: Water Analysis Batch: 802015									Cli	ent Sam	ple ID: Me Prep Typ		
· · · · · , · · · · · · · · · · · · · · · · · · ·	МВ	МВ											
Analyte	Result	Qualifier		RL	I	MDL	Unit		DI	Prepared	Analyz	ed	Dil Fac
Chloride	ND			1.00			mg/L				09/21/21	12:14	1
Lab Sample ID: LCS 460-802015/5								Cli	ent Sa	mple ID	: Lab Con	trol Sa	ample
Matrix: Water										- C	Prep Typ		
Analysis Batch: 802015													
-			Spike		LCS	LCS					%Rec.		
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits		
Chloride			3.20		2.920			mg/L		91	90 - 110		
Lab Sample ID: LCSD 460-802015/	6						C	lient S	Sample	D: Lab	Control S	Sampl	e Dup
Matrix: Water											Prep Typ	be: Tot	tal/NA
Analysis Batch: 802015													
-			Spike		LCSD	LCSI	D				%Rec.		RPD
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			3.20		2.963			mg/L		93	90 - 110	1	15

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-242638-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 802015

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
60-242638-1	EQ Blank	Total/NA	Water	300.0		
60-242638-2	MW-4	Total/NA	Water	300.0		
60-242638-3	MW-8	Total/NA	Water	300.0		
60-242638-4	DUP	Total/NA	Water	300.0		
IB 460-802015/3	Method Blank	Total/NA	Water	300.0		
CS 460-802015/5	Lab Control Sample	Total/NA	Water	300.0		
CSD 460-802015/6	Lab Control Sample Dup	Total/NA	Water	300.0		
						ī

Client: Chesapeake Energy Corporation

Matrix: Water

Lab Chronicle

Job ID: 460-242638-1 SDG: Property ID: 891077

Lab Sample ID: 460-242638-1

Client Sample ID: EQ Blank Date Collected: 09/08/21 11:38 Date Received: 09/10/21 10:00

Project/Site: State M-1

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0		1	802015	09/21/21 15:38	VMI	TAL EDI	-
Client Sam	ple ID: MW	/-4					Lab Sa	mple ID:	460-242638-2
Date Collecte									Matrix: Wate
Date Receive	d: 09/10/21 1	0:00							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0		10	802015	09/21/21 21:05	VMI	TAL EDI	-
-									
_ Client Sam	ple ID: MW	/-8					Lab Sa	mple ID:	460-242638-
Client Sam	-						Lab Sa	mple ID:	
Client Sam Date Collecte Date Receive	d: 09/08/21 1	6:45					Lab Sa	mple ID:	
Date Collecte	d: 09/08/21 1	6:45		Dilution	Batch	Prepared	Lab Sa	mple ID:	
Date Collecte Date Receive	d: 09/08/21 1 d: 09/10/21 1	6:45 0:00	Run	Dilution Factor	Batch Number		Lab Sa	Lab	
Date Collecte	d: 09/08/21 1 d: 09/10/21 1 Batch	6:45 0:00 Batch	<u>Run</u>			Prepared		·	
Date Collecte Date Receive Prep Type	d: 09/08/21 1 d: 09/10/21 1 Batch Type Analysis	6:45 0:00 Batch <u>Method</u> 300.0	<u>Run</u>	Factor	Number	Prepared or Analyzed 09/21/21 16:10	<mark>Analyst</mark> ∀MI	Lab TAL EDI	Matrix: Wate
Date Collecte Date Receive Prep Type Total/NA	d: 09/08/21 1 d: 09/10/21 1 Batch Type Analysis ple ID: DUI	6:45 0:00 Batch <u>Method</u> 300.0	Run	Factor	Number	Prepared or Analyzed 09/21/21 16:10	<mark>Analyst</mark> ∀MI	Lab TAL EDI	Matrix: Wate
Date Collecte Date Receive Prep Type Total/NA Client Sam	d: 09/08/21 1 d: 09/10/21 1 Batch Type Analysis ple ID: DUI d: 09/08/21 0	6:45 0:00 Batch <u>Method</u> 300.0 P 0:00	Run	Factor	Number	Prepared or Analyzed 09/21/21 16:10	<mark>Analyst</mark> ∀MI	Lab TAL EDI	Matrix: Wate
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	d: 09/08/21 1 d: 09/10/21 1 Batch Type Analysis ple ID: DUI d: 09/08/21 0	6:45 0:00 Batch <u>Method</u> 300.0 P 0:00	<u>Run</u>	Factor	Number	Prepared or Analyzed 09/21/21 16:10	<mark>Analyst</mark> ∀MI	Lab TAL EDI	Matrix: Wate
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	d: 09/08/21 1 d: 09/10/21 1 Batch Type Analysis ple ID: DUI d: 09/08/21 0 d: 09/10/21 1	6:45 0:00 Batch <u>Method</u> 300.0 P 0:00 0:00	Run	1	Number 802015	Prepared or Analyzed 09/21/21 16:10	<mark>Analyst</mark> ∀MI	Lab TAL EDI	460-242638- Matrix: Wate

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins TestAmerica, Edison

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-242638-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	06-30-22
Massachusetts	State	M-NJ312	06-30-22
New Jersey	NELAP	12028	06-30-22
New York	NELAP	11452	04-01-22
Pennsylvania	NELAP	68-00522	02-28-22
Rhode Island	State	LAO00132	12-30-21
USDA	US Federal Programs	P330-20-00244	11-03-23

Method Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-242638-1 SDG: Property ID: 891077

lethod	Method Description	Protocol	Laboratory	
00.0	Anions, Ion Chromatography	MCAWW	TAL EDI	- 4
Protocol F	References:			Ę
MCAW	W = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Sub	sequent Revisions.		
Laborator	y References:			
TAL ED	I = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900			
				9
				-

Eurofins TestAmerica, Edison

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-242638-1 SDG: Property ID: 891077

.ab Sample ID	Client Sample ID	Matrix	Collected	Received	
60-242638-1	EQ Blank	Water	09/08/21 11:38	09/10/21 10:00	
60-242638-2	MW-4	Water	09/08/21 14:55	09/10/21 10:00	
60-242638-3	MW-8	Water	09/08/21 16:45	09/10/21 10:00	
60-242638-4	DUP	Water	09/08/21 00:00	09/10/21 10:00	
					1
					1

.

Received by OCD: 4/25/2024 8:55:15 AM

Page 179 of 212

9/22/2021

Released to Imaging: 6/4/2024 2:42:07 PM

Job Number:	342638	X			Eurofi Receipt	Eurofins TestAmerica Edison Receipt Temperature and pH Log	America ature ai	i Edison nd pH L	_ D					Page _	đ
Number of Coolers:				IR Gun #		6									
	RAW	CORRECTED			Co	Cooler Temperatures	mpera	tures			RAW	CORRECTED			
Cooler #1:	#1: 0. Fc	0.30		ပိ	Cooler #4:	b	ę		ŭ	Cooler #7:	y	9			
Cooler #2:	#2: °C	ç		ပိ	Cooler #5: _	8	8		ŏ	Cooler #8:	8	2			
Cooler #3:	#3: C	S		ວິ	Cooler #6:	ç	y		ŭ	Cooler #9:	ç	y			
	Ammonia	COD	Nitrate Nitrite	* Metals	Hardness	Pest	EPH or QAM	Phenols	Sulfide	TKN	TOC	Total Cyanide	Total Phos	Other	Other
TALS Sample Number	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH<2)	(pH 5-9)	(pH<2)	(pH<2)	(pH>9)	(pH<2)	(pH<2)	(pH>12)	(pH<2)		
			-												
															1
Sample No(וו איז מעווי Samole No(s). adiusted:	it pri aujustitietits are reduited record the information below. Idiusted:	ne ledaue	nional na											
Preservative Name/Conc.	Name/Conc.:					Volun	ne of Pres	Volume of Preservative used (ml):	sed (ml):						
l of # of Dre	l of # of Preservativa(s).							Evnirati	- Evniration Date:						
		e apr	propriate Project Manager and Department Manager should be notified about the samples which were pH ad Samples for Metal analysis which are out of compliance must be acidified at least 24 hours prior to analysis.	t Manager tal-analysi	and Depa 's which al	rtment Ma re out of c	inager shc ompliance	uld be not	tified abou	t the sam t least 24	oles which nours prio	were pH to analys	adjusted. is.		
EDS-WI-038, Rev 4.1		Initials:	Jul .	Л				Date:	9/6	. ralo					
119									-						
14

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 242638 List Number: 1 Creator: DiGuardia, Joseph L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 460-242638-1

SDG Number: Property ID: 891077

List Source: Eurofins TestAmerica, Edison

Received by OCD: 4/25/2024 8:55:15 AM

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Edison 777 New Durham Road Edison, NJ 08817 Tel: (732)549-3900

Laboratory Job ID: 460-249019-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1 Revision: 1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

CathyGartner

Authorized for release by: 12/20/2021 1:20:47 PM Cathy Gartner, Project Manager II

(615)301-5041 Cathy.Gartner@Eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Visit us at: www.eurofinsus.com/Env Released to Imaging: 6/4/2024 2:42:07 PM

-

Laboratory Job ID: 460-249019-1 SDG: Property ID: 891077

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	15

2

.

Definitions/Glossary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-249019-1 SDG: Property ID: 891077

Qualifiers

Qualifiers		3
HPLC/IC Qualifier	Qualifier Description	4
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	5
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	8
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDI	Mathed Datastian Limit	

LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

Case Narrative

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-249019-1

Laboratory: Eurofins TestAmerica, Edison

Narrative

Job Narrative 460-249019-1

Revised report Sample ID was updated. This replaces the previously generated report.

Receipt

The samples were received on 12/8/2021 11:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.7° C.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Received by OCD: 4/25/2024 8:55:15 AM

Client: Chesapeake Energy Corporation Project/Site: State M-1

This Detection Summary does not include radiochemical test results.

Page 5 of 15

Eurofins TestAmerica, Edison

D 1 1		· ·	11/20212	10.07	D17
Released	to	Imaging:	/4/2024 2:	42:07 1	PM

Detection	Summary

Job ID: 460-249019-1 SDG: Property ID: 891077

Client Sample ID: MW	-4					Lab Sa	am	ple ID: 4	60-249019-1
_ Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	404		10.0		mg/L	10	_	300.0	Total/NA
Client Sample ID: EQ	Blank					Lab Sa	am	ple ID: 4	60-249019-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	13.9		1.00		mg/L	1	_	300.0	Total/NA
Client Sample ID: MW	/-8					Lab Sa	am	ple ID: 4	60-249019-3
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	56.2		10.0		mg/L	10	_	300.0	Total/NA
Client Sample ID: Dup	0					Lab Sa	am	ple ID: 4	60-249019-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloride	56.0		10.0		mg/L		—	300.0	Total/NA

Page 186 of 212

Client: Chesapeake Energy Corporation

Matrix: Water

Client Sample Results

Job ID: 460-249019-1 SDG: Property ID: 891077

Lab Sample ID: 460-249019-1

Client Sample ID: MW-4 Date Collected: 12/07/21 09:55 Date Received: 12/08/21 11:00

Project/Site: State M-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	404	10.0		mg/L			12/17/21 20:01	10
Client Sample ID: EQ Blank					Lal	b Sample	ID: 460-249	019-2
Date Collected: 12/07/21 10:00							Matrix	: Wate
Date Received: 12/08/21 11:00								
_ Method: 300.0 - Anions, Ion Chro	omatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	13.9	1.00		mg/L			12/17/21 20:15	
Client Sample ID: MW-8					Lal	b Sample	ID: 460-249	019-3
Date Collected: 12/07/21 11:20							Matrix	
Date Received: 12/08/21 11:00								
 Method: 300.0 - Anions, Ion Chro	matography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	56.2	10.0		mg/L			12/17/21 20:30	10
Client Sample ID: Dup					Lal	b Sample	ID: 460-249	019-4
Date Collected: 12/07/21 00:00							Matrix	: Wate
Date Received: 12/08/21 11:00								
_ Method: 300.0 - Anions, Ion Chro	omatography							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

5 6 7

QC Sample Results

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-249019-1

SDG: Property ID: 891077

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-8194	46/3							Clie	ent Sam	ple ID: Met	thod	Blank
Matrix: Water								•	our our	Prep Typ		
Analysis Batch: 819446										1.00.190		
		МВ МВ										
Analyte	Re	sult Qualifier		RL	I	MDL Unit		р р	repared	Analyze	d	Dil Fac
Chloride		ND		1.00		mg/L			-	12/17/21 1	5:25	1
Lab Sample ID: LCS 460-819	446/5						Clier	nt Sa	mple ID	: Lab Cont	rol Sa	ample
Matrix: Water							-			Prep Typ		
Analysis Batch: 819446												
-			Spike		LCS	LCS				%Rec.		
Analyte			Added	F	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			3.20		3.331		mg/L		104	90 - 110		
Lab Sample ID: 460-249111-0	C-6 MS							С	lient Sa	mple ID: M	atrix	Spike
Matrix: Water										Prep Typ		
Analysis Batch: 819446												
	Sample	Sample	Spike		MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	F	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	148		32.0		148.1	4	mg/L		1	90 - 110		
							Client	Samn	ID' N	latrix Spike		licato
Lab Sample ID: 460-249111-0	C-6 MSD										, Dup	noute
Lab Sample ID: 460-249111-0 Matrix: Water	C-6 MSD											
Matrix: Water	C-6 MSD									Prep Typ		
-		Sample	Spike		MSD	MSD						
Matrix: Water	Sample	Sample Qualifier	Spike Added	F	-	MSD Qualifier	Unit	D	%Rec	Prep Typ		tal/NA

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-249019-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 819446

ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
60-249019-1	MW-4	Total/NA	Water	300.0	
60-249019-2	EQ Blank	Total/NA	Water	300.0	
60-249019-3	MW-8	Total/NA	Water	300.0	
60-249019-4	Dup	Total/NA	Water	300.0	
B 460-819446/3	Method Blank	Total/NA	Water	300.0	
CS 460-819446/5	Lab Control Sample	Total/NA	Water	300.0	
60-249111-C-6 MS	Matrix Spike	Total/NA	Water	300.0	
0-249111-C-6 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

Eurofins TestAmerica, Edison

Client: Chesapeake Energy Corporation

Batch

Туре

Batch

Method

Lab Chronicle

Dilution

Factor

10

Run

Batch

Number

819446

Prepared

or Analyzed

12/17/21 20:01

Analyst

VMI

Lab

TAL EDI

Job ID: 460-249019-1 SDG: Property ID: 891077

Client Sample ID: MW-4 Date Collected: 12/07/21 09:55 Date Received: 12/08/21 11:00

Project/Site: State M-1

Prep Type

Lab Sample ID: 460-249019-1

Matrix: Water Lab Sample ID: 460-249019-2 Matrix: Water

Matrix: Water

Total/NA Analysis 300.0 **Client Sample ID: EQ Blank**

Date Collected: 12/07/21 10:00 Date Received: 12/08/21 11:00

Nissian In a m			
Number	or Analyzed	Analyst	Lab
819446	12/17/21 20:15	VMI	TAL EDI
r 1		1 819446 12/17/21 20:15	1 819446 12/17/21 20:15 VMI Lab Sa

Client Sample ID: MW-8

Date Collected: 12/07/21 11:20 Date Received: 12/08/21 11:00

Ргер Туре	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab	
Total/NA	Analysis	300.0		10	819446	12/17/21 20:30	VMI	TAL EDI	
Client Sam	ple ID: Dup)					Lab Sa	mple ID:	460-249019-4
Date Collecte Date Receive								-	Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10	819446	12/17/21 20:45	VMI	TAL EDI

Laboratory References:

TAL EDI = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-249019-1 SDG: Property ID: 891077

Laboratory: Eurofins TestAmerica, Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	12-31-21
Georgia	State	12028 (NJ)	06-30-22
Massachusetts	State	M-NJ312	06-30-22
New Jersey	NELAP	12028	07-01-23
New York	NELAP	11452	04-01-23
Pennsylvania	NELAP	68-00522	02-28-22
Rhode Island	State	LAO00132	12-30-21
USDA	US Federal Programs	P330-20-00244	11-03-23

Page 191 of 212

10

Eurofins TestAmerica, Edison

Method Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 460-249019-1 SDG: Property ID: 891077

lethod	Method Description	Protocol	Laboratory
00.0	Anions, Ion Chromatography	MCAWW	TAL EDI
	References:		
MCAWV	N = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4	I-79-020, March 1983 And Subsequent Revisions.	
	y References:		
TAL ED	I = Eurofins TestAmerica, Edison, 777 New Durham Road, Edison, NJ 0)8817, TEL (732)549-3900	

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Page 193 of 212

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
460-249019-1	MW-4	Water	12/07/21 09:55	12/08/21 11:00
460-249019-2	EQ Blank	Water	12/07/21 10:00	12/08/21 11:00
460-249019-3	MW-8	Water	12/07/21 11:20	12/08/21 11:00
460-249019-4	Dup	Water	12/07/21 00:00	12/08/21 11:00

Received by OCD: 4/25/2024 8:55:15 AM

Released to Imaging: 6/4/2024 2:42:07 PM

Other IR.Gun # Cooler #1: Cooler #2: Cooler #2: Endines Cooler #2: Endines Cooler #2: Endines Cooler #2: Endines Cooler #3: Endines Period Initials					Eurofii Receipt	ns Test/ Temper	America ature an	Eurofins TestAmerica Edison Receipt Temperature and pH Log	_ 60					Page	of
Deter: Runs Color famperatures Color famperatures Mumber (mrs) (mrs) Mumore	Job Number:	rygorg													
Coller Temperatures Coller Fi: Coller #: Coller	umber of Coolers:	-		R Gun #		0									
The manual content H:					Coc	oler Tei	mperat	tures							No.
Cooler #2: Cooler #3:	Cooler #1:	Or Ye Or Se	44) Q ()		oler #4:	RAW	CORRECTED		ပိ	oler #7:		CORRECTED			
Cooler#3: C C Coler#4: C C Coler#4: C C C Coler#4: C C C Coler#4: C C Coler#4: C C C C C C C C C C C C C C C C C C C	Cooler #2:	y y	5		oler #5:	ç	Q		ပိ	oler #8:	Q	y			
Immune Immune <td>Cooler #3:</td> <td>ç</td> <td></td> <td>Cot</td> <td>oler #6:</td> <td>ç</td> <td>ę</td> <td></td> <td>ů</td> <td>oler #9:</td> <td>Q</td> <td>ę</td> <td></td> <td></td> <td></td>	Cooler #3:	ç		Cot	oler #6:	ç	ę		ů	oler #9:	Q	ę			
Number (pH<2)			Nitrate Nitrite		łardness				Sulfide	TKN		Total Cyanide	Total Phos	Other	Other
Pieronce Pie	ALS Sample Number	- F	- 1						- F	(pH<2)		(pH>12)	(pH<2)		
hf pH active Name/Conc															
hf pH active (so the formula to the															
If pH at It															
If pH at Internet to the second															
hf pH active Name/Conc															
If pH active Name/Conc															
ple No(s). adjuster vative Name/Conc															
If pH at If pH at vative Name/Conc															
ple No(s). adjuster vative Name/Conc															
If pH active Name/Conc															
If pH at If pH at valive Name/Conc															
If pH at If pH at ple No(s). adjuster vative Name/Conc * of Preservative(s															
прпа ple No(s). adjuste vative Name/Conc # of Preservative(s															
vative Name/Conc # of Preservative(s	Sample No(s).	adjusted:	o al e ledall												
# of Preservative(s	Preservative Nan	ne/Conc.:				Volum	le of Prese	ervative us	sed (ml):						
	Lot # of Preser	vative(s):						Expiratio	on Date:						
Samplest		The appro-	priate Projec	t Manager	and Depai	tment Ma	nager sho	uld be not	ified abou	t the sam	oles which	were pH ¿	adjusted.		
Initials:		Sa	imples for the	etal analysi:	s which ar	e out of cc	ompliance	must be a	acidified at	Pastr24	hours prio	to analys	is.		
	EDS-WI-038, Rev 4.1	Initials						Date:	K1	8/2	~				

Released to Imaging: 6/4/2024 2:42:07 PM

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 249019 List Number: 1 Creator: Sgro, Angela M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	1770151
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

14

Received by OCD: 4/25/2024 8:55:15 AM

difference en la construction de
Environment Testing America

ANALYTICAL REPORT

Eurofins Pittsburgh 301 Alpha Drive RIDC Park Pittsburgh, PA 15238 Tel: (412)963-7058

Laboratory Job ID: 180-135251-1

Laboratory Sample Delivery Group: Property ID: 891077 Client Project/Site: State M-1

For:

Chesapeake Energy Corporation PO BOX 548806 Oklahoma City, Oklahoma 73154

Attn: Dana Drury

CathyGartner

Authorized for release by: 3/29/2022 9:48:49 AM

Cathy Gartner, Project Manager II (615)301-5041 Cathy.Gartner@Eurofinset.com

LINKS Review your project results through TOTOLACCESS

Visit us at: www.eurofinsus.com/Env Released to Imaging: 6/4/2024 2:42:07 PM This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

PA Lab ID: 02-00416

Laboratory Job ID: 180-135251-1 SDG: Property ID: 891077

Page 198 of 212

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Definitions/Glossary	4
Certification Summary	5
Sample Summary	6
Method Summary	7
Lab Chronicle	8
Client Sample Results	9
QC Sample Results	10
QC Association Summary	11
Chain of Custody	12
Receipt Checklists	14

Case Narrative

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 180-135251-1 SDG: Property ID: 891077

Job ID: 180-135251-1

Laboratory: Eurofins Pittsburgh

Narrative

Job Narrative 180-135251-1

Receipt

The samples were received on 3/11/2022 10:40 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Chesapeake Energy Corporation Project/Site: State M-1 Job ID: 180-135251-1 SDG: Property ID: 891077

Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	 4
%R	Percent Recovery	
CFL	Contains Free Liquid	5
CFU	Colony Forming Unit	J
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	ð
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	13
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

TNTC Too Numerous To Count

Eurofins Pittsburgh

Accreditation/Certification Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-135251-1 SDG: Property ID: 891077

Laboratory: Eurofins Edison

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Connecticut	State	PH-0200	09-30-22
DE Haz. Subst. Cleanup Act (HSCA)	State	N/A	01-01-23
Georgia	State	12028 (NJ)	06-30-22
Massachusetts	State	M-NJ312	06-30-22
New Jersey	NELAP	12028	06-30-22
New York	NELAP	11452	04-01-22
Pennsylvania	NELAP	68-00522	02-28-23
Rhode Island	State	LAO00376	12-31-22
USDA	US Federal Programs	P330-20-00244	11-03-23

5

Eurofins Pittsburgh

Sample Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1 Page 202 of 212

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
180-135251-1	EQ Blank	Water	03/08/22 08:25	03/11/22 10:40
180-135251-2	MW-4	Water	03/08/22 09:50	03/11/22 10:40
180-135251-3	MW-8	Water	03/08/22 11:30	03/11/22 10:40
180-135251-4	Dup	Water	03/08/22 00:00	03/11/22 10:40

5

Method Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-135251-1 SDG: Property ID: 891077

Method	Nothed Description	Protocol	Laboratory	- 3
300.0	Method Description Anions, Ion Chromatography	MCAWW	TAL EDI	- 4

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

Laboratory References:

TAL EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Eurofins Pittsburgh

Lab Chronicle

Job ID: 180-135251-1 SDG: Property ID: 891077

Client Sample ID: EQ Blank Date Collected: 03/08/22 08:25

Project/Site: State M-1

Client: Chesapeake Energy Corporation

Date Collecte Date Receive									Ма	trix: Wate
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	300.0 nt ID: IC 2		1			836018	03/28/22 14:36	VMI	TAL EDI
Client Sam	ple ID: MW	-4					La	b Sample II	D: 180-	135251-
Date Collecte								-	Ма	trix: Wate
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	300.0 nt ID: IC 2		10			836018	03/28/22 14:51	VMI	TAL EDI
Date Collecte Date Receive									Ма	trix: Wat
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	300.0		10			836018	03/28/22 15:20	VMI	TAL EDI
	Instrumer	nt ID: IC 2								
Client Sam	d: 03/08/22 0	0:00					La	b Sample II		135251- trix: Wate
Date Receive	d: 03/11/22 1	0:40								
	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	300.0 nt ID: IC 2		10			836018	03/28/22 15:41	VMI	TAL EDI

Laboratory References:

TAL EDI = Eurofins Edison, 777 New Durham Road, Edison, NJ 08817, TEL (732)549-3900

Analyst References:

Lab: TAL EDI

Batch Type: Analysis

VMI = Warleny Infante

5

Client: Chesapeake Energy Corporation

Matrix: Water

Client Sample Results

Job ID: 180-135251-1 SDG: Property ID: 891077

Lab Sample ID: 180-135251-1

Client Sample ID: EQ Blank Date Collected: 03/08/22 08:25 Date Received: 03/11/22 10:40

Project/Site: State M-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		1.00		mg/L			03/28/22 14:36	
Client Sample ID: MW-4						Lab	Sample	ID: 180-135	5251-2
Date Collected: 03/08/22 09:50							-	Matrix	: Wate
Date Received: 03/11/22 10:40									
_ Method: 300.0 - Anions, Ion Chro	omatogra	phy							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	387		10.0		mg/L			03/28/22 14:51	1(
Client Sample ID: MW-8						Lat	Sample	ID: 180-135	5251-3
Date Collected: 03/08/22 11:30								Matrix	
Date Received: 03/11/22 10:40									
_ Method: 300.0 - Anions, Ion Chro	omatogra	nhv							
Analyte	-	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
					mg/L		•	03/28/22 15:20	1(
Chloride	29.6		10.0		ing/L			03/20/22 13.20	
	29.6		10.0		ing/E	Lat	Sample		
Client Sample ID: Dup	29.6		10.0			Lat	Sample	ID: 180-135	5251-4
Client Sample ID: Dup Date Collected: 03/08/22 00:00	29.6		10.0		ing/L	Lat) Sample	ID: 180-135	5251-4
Client Sample ID: Dup Date Collected: 03/08/22 00:00 Date Received: 03/11/22 10:40			10.0		ing/L	Lat	o Sample	ID: 180-135	5251-4
Chloride Client Sample ID: Dup Date Collected: 03/08/22 00:00 Date Received: 03/11/22 10:40 Method: 300.0 - Anions, Ion Chro Analyte	omatogra	i <mark>phy</mark> Qualifier	10.0 	MDL		Lak	Prepared	ID: 180-135	5251-4

Eurofins Pittsburgh

10

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 460-836018/3 Matrix: Water Analysis Batch: 836018									Clie	ent Sam	ple ID: Metho Prep Type: T	
	MB	MB										
Analyte	Result	Qualifier		RL	ľ	MDL	Unit	D	Р	repared	Analyzed	Dil Fac
Chloride	ND			1.00			mg/L				03/28/22 12:47	1
Lab Sample ID: LCS 460-836018/5 Matrix: Water Analysis Batch: 836018								Clien	it Sai	nple ID	: Lab Control Prep Type: T	
			Spike		LCS	LCS					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	D	%Rec	Limits	
Chloride			3.20		3.498			mg/L		109	90 - 110	

Eurofins Pittsburgh

QC Association Summary

Client: Chesapeake Energy Corporation Project/Site: State M-1

Job ID: 180-135251-1 SDG: Property ID: 891077

HPLC/IC

Analysis Batch: 836018

nalysis Batch: 836	6018				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
180-135251-1	EQ Blank	Total/NA	Water	300.0	
80-135251-2	MW-4	Total/NA	Water	300.0	
80-135251-3	MW-8	Total/NA	Water	300.0	
80-135251-4	Dup	Total/NA	Water	300.0	
IB 460-836018/3	Method Blank	Total/NA	Water	300.0	
CS 460-836018/5	Lab Control Sample	Total/NA	Water	300.0	

Eurofins Pittsburgh

Page 207 of 212

Received by OCD: 4/25/2024 8:55:15 AM

Page 208 of 212

Page 12 of 15

3/29/2022

Released to Imaging: 6/4/2024 2:42:07 PM

ot	Other	
Page	Other	
	Total Phos ((pH<2)	isted.
		Image: Second
	Total Cyanide	Image: Second
E E E E E E E E E E E E E E E E E E E	TOC [pH<2]	mples with the hours of the hou
Cooler #7: Cooler #8:	TKN (pH<2)	ut the sa
	Sulfide (pH>9)	vative used (ml):
d pH Lures	Phenols (pH<2)	Vative us Idd be not Date:
Eurofins TestAmerica Edison Receipt Temperature and pH Log Cooler Temperatures oler #6: <u>c c</u>	5	Note Note
s TestAr		Image: Section of the section of t
rrofins eipt Te #5:		The second
* 000	Hardness () (pH<2)	ind the ind the indicate of th
5	Metals [*] (pH<2)	et al ana
20	Nitrate Nitrite (pH<2)	ate Proje
	COD COD	stments a Samp
	-	− − − − − − − − − − − − − − − − − − −
lolers: 280-	ź	Sample No(s). adjusted: Lot # of Preservative(s): Rev 4.1
	le Numbe	t # of Prive No
Job Number: Number of Coolers: Coole	TALS Sample Number	B8. Rev 4. Loi
	TAI	Sam Lot i 10/22/2019 Lot i

3/29/2022

13

Job Number: 180-135251-1 SDG Number: Property ID: 891077

List Source: Eurofins Pittsburgh

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 135251 List Number: 1 Creator: Gartner, Cathy

Creator: Gartner, Cathy		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td></td> <td></td>		
The cooler's custody seal, if present, is intact.		
Sample custody seals, if present, are intact.		
The cooler or samples do not appear to have been compromised or tampered with.		
Samples were received on ice.		
Cooler Temperature is acceptable.		
Cooler Temperature is recorded.		
COC is present.		
COC is filled out in ink and legible.		
COC is filled out with all pertinent information.		
Is the Field Sampler's name present on COC?		
There are no discrepancies between the containers received and the COC.		
Samples are received within Holding Time (excluding tests with immediate HTs)		
Sample containers have legible labels.		

Containers are not broken or leaking. Sample collection date/times are provided.

Appropriate sample containers are used.

Sample bottles are completely filled.

Sample Preservation Verified.

There is sufficient vol. for all requested analyses, incl. any requested $\ensuremath{\mathsf{MS/MSDs}}$

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Multiphasic samples are not present.

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Login Sample Receipt Checklist

Client: Chesapeake Energy Corporation

Login Number: 135251 List Number: 2 Creator: Lysy, Susan

List Number: 2		List Creation: 03/16/22 04:25 PM	5
Creator: Lysy, Susan Question	Answer	Comment	6
		Comment	
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> <td></td>	N/A		
The cooler's custody seal, if present, is intact.	True		
Sample custody seals, if present, are intact.	True		8
The cooler or samples do not appear to have been compromised or tampered with.	True		9
Samples were received on ice.	True		
Cooler Temperature is acceptable.	True		
Cooler Temperature is recorded.	True	2.8/3.0°C IR#9	
COC is present.	True		
COC is filled out in ink and legible.	True		
COC is filled out with all pertinent information.	True		
Is the Field Sampler's name present on COC?	True		13
There are no discrepancies between the containers received and the COC.	True		
Samples are received within Holding Time (excluding tests with immediate HTs)	True		
Sample containers have legible labels.	True		
Containers are not broken or leaking.	True		
Sample collection date/times are provided.	True		
Appropriate sample containers are used.	True		
Sample bottles are completely filled.	True		
Sample Preservation Verified.	True		
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True		
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A		
Multiphasic samples are not present.	N/A		
Samples do not require splitting or compositing.	N/A		
Residual Chlorine Checked.	N/A		

List Source: Eurofins Edison

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 337545

CONDITIONS					
Operator:	OGRID:				
CHESAPEAKE OPERATING, INC.	147179				
6100 NORTH WESTERN AVE	Action Number:				
OKC, OK 73118	337545				
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)				

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	EIGHTH ANNUAL GROUNDWATER MONITORING REPORT CHESAPEAKE ENERGY CORPORATION STATE M LEASE (AP-72) has been accepted as part of the record.	6/4/2024