# 2023 Annual Groundwater Monitoring and Activities Summary Report

# Burton Flats Booster Station Eddy County, New Mexico #2R799 Incident # nMLB1004239132

Prepared for:

**REVIEWED** By Mike Buchanan at 8:53 am, Jun 20, 2024

Review of the 2023 Annual Groundwater Monitoring and Activities Summary Report for Burton Flats Booster Station: Content Satisfactory 1. Continue groundwater monitoring on a quarterly basis for all constituents 2. Continue to monitor and evaluate the LNAPL passive skimmer. 3. Continue EFR events 4. Submit the 2024 Annual Report by April 1, 2025.



6900 E. Layton Ave., Suite 900 Denver, CO 80237-3658

Prepared by:



6855 W. 119<sup>th</sup> Ave. Broomfield, Colorado 80020

March 4, 2024



## **Table of Contents**

| 1. | Intr | oduction                                   | . 1 |
|----|------|--------------------------------------------|-----|
| 2. | Site | Location and Background                    | . 1 |
| 3. | Gro  | undwater Monitoring                        | . 1 |
|    | 8.1  | Groundwater and LNAPL Elevation Monitoring | . 2 |
| З  | 3.2  | Groundwater Quality Monitoring             | . 2 |
|    | .3   | Data Quality Assurance / Quality Control   | . 5 |
| 4. | Ren  | nediation Activities                       | . 5 |
| 5. | Con  | clusions                                   | . 6 |
| 6. | Rec  | ommendations                               | . 6 |

### Tables

| 1 | 2023 Summary of Groundwater Elevation Data                      |
|---|-----------------------------------------------------------------|
| 2 | 2023 Summary of BTEX and Chloride Concentrations in Groundwater |

### **Figures**

| 1 | Site Location                                          |
|---|--------------------------------------------------------|
| 2 | Site Map with Monitoring Well Locations                |
| 3 | Groundwater Elevation Contour Map – March 16, 2023     |
| 4 | Groundwater Elevation Contour Map – June 28, 2023      |
| 5 | Groundwater Elevation Contour Map – September 28, 2023 |
| 6 | Groundwater Elevation Contour Map – December 13, 2023  |
| 7 | Analytical Results Map – March 16, 2023                |
| 8 | Analytical Results Map – June 28, 2023                 |

- 9 Analytical Results Map September 28, 2023
- 10 Analytical Results Map December 13, 2023

### Appendices

- A Historical Analytical Results BTEX and Chloride Concentrations in Groundwater
- B Laboratory Analytical Reports
  - Pace Analytical Job #: L1596004
  - Pace Analytical Job #: L1630641
  - Pace Analytical Job #: L1661192
  - Pace Analytical Job #: L1688211
- C NMOCD Sampling Notifications



## 1. Introduction

This report summarizes groundwater monitoring and remediation activities conducted during 2023 at the Burton Flats Booster Station (Site) in Eddy County, New Mexico (Figure 1). Tasman Geosciences (Tasman) performed these activities on behalf of DCP Operating Company (DCP). Field activities were conducted with the purpose of monitoring groundwater flow and quality conditions and assessing the presence of light non-aqueous phase liquid (LNAPL) hydrocarbons in the Site subsurface. Current Site conditions were evaluated from field data and laboratory analytical results collected March 16, June 28, September 28, and December 12, 2023.

## 2. Site Location and Background

The Site is located in the Fourth and Fifth Lots of Section 1, Township 21 South, Range 27 East (approximate coordinates 32.5195 degrees north and 104.1507 degrees west). It is approximately 3.4 miles northwest of the intersection of US Highway 62 and County Road 243. The area is sparsely populated, and land use is primarily associated with livestock grazing and oil and gas production and gathering.

Based on information included in historical Site investigation reports, a release of approximately 10 barrels (bbl) of oil and produced water occurred on October 5, 2009, of which approximately 8 bbls were recovered from within the tank secondary containment area. The C-141 report was submitted on October 12, 2009, and Site investigation and soil sampling within the release area occurred during the fourth quarter of 2009 and early fourth quarter of 2010 (BH-1 through BH-5). Elevated levels of petroleum hydrocarbons within the soil were encountered at depths of 20-feet below ground surface (bgs). Groundwater was encountered between 16-feet and 20-feet bgs during Site characterization activities. Subsequent to soil investigation efforts, four groundwater monitoring wells were installed around and down-gradient from the release area during the fourth quarter of 2011 (MW-1 through MW-4). Elevated petroleum hydrocarbon concentrations in soil were observed during well installation. Consequently, two additional soil borings were completed to a depth of 20 feet bgs in the suspected source area (SB 11-1 and SB 11-2). Monitoring well locations are shown in Figure 2.

Boring logs for the Site monitoring wells indicate that the subsurface geology contains unconsolidated fine-grained sand, silt, and clay sediments. This general characteristic has been utilized in evaluating the historical and current LNAPL behavior. Ongoing monitoring and sampling of the four (4) Site monitoring wells listed above has been conducted on a quarterly basis following installation.

## 3. Groundwater Monitoring

This section describes the field and laboratory activities performed throughout the 2023 calendar year. Quarterly monitoring activities were conducted on March 16, June 28, September 28, and December 12, 2023, which included Site-wide groundwater gauging, LNAPL measurements, and groundwater sampling. Figure 2 illustrates the groundwater monitoring network (MW-1 through MW-4) utilized to perform these activities at the Site.



## 3.1 Groundwater and LNAPL Elevation Monitoring

Groundwater and LNAPL levels are measured in order to evaluate hydraulic characteristics and provide information regarding seasonal fluctuations of groundwater and LNAPL elevations at the Site. Throughout 2023, groundwater levels were measured at four Site monitoring well locations (MW-1 through MW-4).

Groundwater levels were measured on the north side of the well casing to the nearest 0.01-foot using an oil-water interface probe (IP). Groundwater level data were subsequently converted to elevation (feet above mean sea level [AMSL]). Measured groundwater levels, LNAPL measurements, and calculated groundwater elevations are presented in Table 1.

A 2023 groundwater elevation contour maps, included as Figures 3 through 6, indicates that the groundwater gradient at the Site trends to the northeast which is consistent with the previous trends shifting from northwest to northeast. The corrected groundwater elevation ranges, average elevation change from the previous monitoring event, and the calculated hydraulic gradient at the Site are summarized in the table below.

| Quarter                                       | 1st      | 2nd      | 3rd      | 4th      |
|-----------------------------------------------|----------|----------|----------|----------|
| Maximum Elevation                             | 3,177.08 | 3,176.87 | 3,176.47 | 3,176.70 |
| (Well ID)                                     | (MW-3)   | (MW-3)   | (MW-3)   | (MW-3)   |
| Minimum Elevation                             | 3,174.58 | 3,175.56 | 3,172.83 | 3,173.35 |
| (Well ID)                                     | (MW-4)   | (MW-4)   | (MW-4)   | (MW-4)   |
| Potentiometric Surface<br>Average Change (ft) | -0.28    | 0.02     | -0.98    | 0.08     |
| Hydraulic Gradient<br>(ft/ft)                 | 0.022    | 0.011    | 0.032    | 0.029    |

### **Summary of Measured Hydraulic Parameters**

\* Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well \* LNAPL Relative Density)

Measurable LNAPL was observed at monitor well MW-4 during all four quarters of the 2023 calendar year which is consistent with historical data since 2015. LNAPL thickness at monitor well MW-4 ranged from 1.56 feet during the September monitoring event to 0.34 feet during the March monitoring event.

## 3.2 Groundwater Quality Monitoring

Subsequent to recording groundwater level measurements at each of the quarterly monitoring events during 2023, groundwater samples were collected from three of the four locations (MW-1 through MW-3). A minimum of three well casing volumes of groundwater were purged from each monitoring well prior to collection of groundwater samples. Due to the presence of LNAPL observed at MW-4, no groundwater sample was collected at this location.

Groundwater samples were collected using disposable polyethylene bailers, placed in clean laboratory supplied containers, packed in an ice-filled cooler and maintained at approximately four degrees Celsius (°C) for transportation to the laboratory. Groundwater samples were then shipped under chain-of-custody procedures to Pace Analytical laboratory (Pace) in Mount Juliet, Tennessee.



Water quality samples were submitted for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260B and chloride by EPA Method 9056A.

Table 2 summarizes BTEX and chloride concentrations in groundwater samples collected during the 2023 reporting period. Historical laboratory analytical results up to and including the December 2023 event are provided in Appendix A, and the laboratory analytical report for the previous four quarters are included in Appendix B. The laboratory analytical results are displayed on Figure 4 and NMOCD sampling notifications are included as Appendix C.

## 3.2.1 1<sup>st</sup> Quarter Data Evaluation

The 1<sup>st</sup> Quarter 2023 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected at concentrations greater than the laboratory reported detection limit (RDL) in monitor well MW-1 and its duplicate. The detected concentration of the parent sample was below the NMWQCC standard for benzene, and the duplicate sample was greater than the standard of 0.01 milligrams per liter (mg/L).
- Toluene was not detected above the laboratory method detection limit (MDL) in any of the sampled Site monitoring wells.
- Ethylbenzene was detected above the laboratory MDL in monitoring well MW-1 and its duplicate. The detected concentrations of ethylbenzene were below the NMWQCC groundwater standard of 0.70 mg/L.
- Total xylenes were detected above the laboratory MDL but below the laboratory reported detection limit (RDL) in both monitor well MW-1 and its duplicate. The detected concentrations of total xylenes were below the NMWQCC groundwater standard of 0.62mg/L.
- Chlorides were detected at concentrations greater than the NMWQCC secondary maximum contaminant level (MCL) guideline of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 1,790 mg/L at monitor well MW-2 to 442 mg/L at monitor well MW-3.

### 3.2.2 2<sup>nd</sup> Quarter Data Evaluation

The 2<sup>nd</sup> Quarter 2023 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected in each of the monitor well locations, but below the NMWQCC standard for Benzene. Detected concentrations ranged from 0.00918 mg/L at monitor well MW-1 to 0.000132 J mg/L.
- Toluene was not detected above the MDL in any of the sampled Site monitoring wells.



- Ethylbenzene was detected above the laboratory MDL but below the laboratory RDL in monitoring well MW-1 and its duplicate. The detected concentrations of ethylbenzene were below the NMWQCC groundwater standard of 0.70 mg/L.
- Total Xylenes was not detected above the laboratory MDL in any of the sampled Site monitoring wells.
- Chlorides were detected at concentrations greater than the NMWQCC secondary MCL guideline of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 469 mg/L at monitor well MW-3 to 1,840 mg/L at monitor well MW-2.

## 3.2.3 3<sup>rd</sup> Quarter Data Evaluation

The 3<sup>rd</sup> Quarter 2023 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected above the laboratory MDL at monitor well MW-1. The detected concentration was below the NMWQCC standard.
- Toluene was not detected above the laboratory MDL in any of the sampled Site monitoring wells.
- Ethylbenzene was detected above the laboratory MDL at monitor well MW-3. The detected concentration was below the NMWQCC standard.
- Total Xylenes was detected above the laboratory MDL at monitor well MW-3. The detected concentration was below the NMWQCC standard.
- Chlorides were detected at concentrations greater than the NMWQCC secondary MCL guideline of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 414 mg/L at monitor well MW-3 to 2,320 mg/L at monitor well MW-2.

## 3.2.4 4<sup>th</sup> Quarter Data Evaluation

The 4<sup>th</sup> Quarter 2023 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected above the laboratory MDL at monitor well MW-1. The detected concentration was below the NMWQCC standard.
- Toluene was not detected above the laboratory MDL in any of the sampled Site monitoring wells.
- Ethylbenzene was detected above the laboratory MDL at monitor well MW-1. The detected concentration was below the NMWQCC standard.
- Total Xylenes was detected above the laboratory MDL at monitor well MW-3. The detected concentration was below the NMWQCC standard.
- Chlorides were detected at concentrations greater than the NMWQCC secondary MCL guideline of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 474 mg/L at monitor well MW-3 to 2,220 mg/L at monitor well MW-2.



## 3.3 Data Quality Assurance / Quality Control

A field duplicate sample (MW-1) was collected during the sampling event. The data were reviewed for compliance with the analytical method and the associated quality assurance/quality control (QA/QC) procedures. All samples were analyzed using the correct analytical methods and within the correct holding times. Chain of custody forms were in order and properly executed indicating that samples were received with no headspace. All data were reported using the correct method number and reporting units. QA/QC items of note for 2023 include the following:

- Target analytes were not detected above laboratory detection limits in the trip blank.
- During each quarter of 2023, parent samples gathered from MW-1 and their associated duplicates exhibited concentrations of benzene except for the 3<sup>rd</sup> Quarter. In compliance with QA/QC, each quarter's Relative Percent Difference (RPD) is listed below:

| Quarter | Parent Sample (mg/L) | Duplicate Sample (mg/L) | RPD  |
|---------|----------------------|-------------------------|------|
| 1st     | 0.00872              | 0.0125                  | 35.6 |
| 2nd     | 0.00918              | 0.00134                 | 149  |
| 3rd     | 0.000269 J           | <0.00100                | N/A  |
| 4th     | 0.00836              | 0.00519                 | 46.7 |

• Subsequent to collection of groundwater samples during all four quarters of 2023, the sample transport coolers were properly packaged with ice and shipped to Pace laboratory in Mount Juliet, Tennessee with priority overnight shipping. All coolers were received within laboratory temperature specifications as well as Chain of Custody (COC) forms properly executed.

The RPD values are outside of the target 20% RPD for the 1<sup>st</sup>, 2<sup>nd</sup>, and 3<sup>rd</sup> quarters. However, based on the data review, the QA/QC assessment indicates that overall data precision and accuracy are within acceptable limits.

## 4. Remediation Activities

Remediation activities conducted during the 2023 reporting period include vacuum enhanced fluid recovery (EFR) activities. EFR events were initiated in December 2014 and began on a routine frequency at monitoring wells MW-1 and MW-4; However, beginning in 1<sup>st</sup> quarter 2023, EFR events have been discontinued at MW-1 to determine its effectiveness on dissolved phase hydrocarbon abatement. EFR events are scheduled to continue, pending observation of the effectiveness of the effort in addressing persistent free phase and dissolved phase petroleum hydrocarbons on-Site.

EFR events were conducted at the site on March 16, June 28, September 28, and December 13, 2023. Each event included application of high vacuum (utilizing a vacuum truck) at MW-4 through flexible hosing inserted into the well. The stingers were placed slightly below the current groundwater level to facilitate removal of groundwater, LNAPL, and vapors from the subsurface. A total of 676 barrels (bbls) have been recovered since EFR events commenced in 2014. The volumes recovered during 2023 events are below.



| Date         | Volume (bbls) |
|--------------|---------------|
| March 16     | 15            |
| June 28      | 16            |
| September 28 | 10            |
| December 13  | 4             |

A passive LNAPL skimmer was installed in MW-4 in an effort to collect and dispose of free-phase liquids in between groundwater sampling and EFR events. Throughout the 2023 calendar year the passive bailer recovered approximately 1.03 gallons of LNAPL. The passive bailer is emptied and replaced prior to each EFR event.

## 5. Conclusions

Evaluation of the 2023 monitoring data and historical information provides the following general observations:

- Groundwater elevations at the Site indicated an overall decrease compared to the levels that were
  observed during the 4<sup>th</sup> Quarter 2022 with an average decrease of 0.27 ft per monitoring well
  across all four quarters of 2023.
- LNAPL was observed at monitoring well MW-4 during the 2023 monitoring period. The presence of LNAPL at this location has historically fluctuated since 2015.
- Chloride concentrations were above the NMWQCC secondary MCL guideline at all sampled Site monitoring wells.

## 6. Recommendations

Based on evaluation of 2023 and historical Site monitoring results, recommendations for future activities include:

- Continue quarterly groundwater monitoring and sampling at the monitoring locations illustrated on Figure 2.
- Continue monitoring and evaluation of the passive LNAPL skimmer.
- Continue quarterly EFR events at MW-4 during the 2024 monitoring period.

Tables

### TABLE 1 2023 ANNUAL SUMMARY OF GROUNDWATER ELEVATION DATA BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

| Location | Date       | Depth to<br>Groundwater<br>(feet) | Depth to<br>Product<br>(feet) | Free Phase<br>Hydrocarbon<br>Thickness<br>(LNAPL)<br>(feet) | Total Depth<br>(feet) | TOC Elevation<br>(feet amsl) (2) | Groundwater<br>Elevation (*)<br>(feet amsl) | Change in<br>Groundwater<br>Elevation Since<br>Previous Event <sup>1</sup><br>(feet) |
|----------|------------|-----------------------------------|-------------------------------|-------------------------------------------------------------|-----------------------|----------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------|
| MW-1     | 3/16/2023  | 20.64                             |                               |                                                             | 32.95                 | 3,197.65                         | 3,177.01                                    | 0.02                                                                                 |
| MW-1     | 6/28/2023  | 20.99                             |                               |                                                             | 33.14                 | 3,197.65                         | 3,176.66                                    | -0.35                                                                                |
| MW-1     | 9/28/2023  | 21.42                             |                               |                                                             | 33.14                 | 3,197.65                         | 3,176.23                                    | -0.43                                                                                |
| MW-1     | 12/13/2023 | 22.21                             |                               |                                                             | 34.15                 | 3,197.65                         | 3,175.44                                    | -0.79                                                                                |
| MW-2     | 3/16/2023  | 23.05                             |                               |                                                             | 32.96                 | 3,200.00                         | 3,176.95                                    | 0.29                                                                                 |
| MW-2     | 6/28/2023  | 23.39                             |                               |                                                             | 32.70                 | 3,200.00                         | 3,176.61                                    | -0.34                                                                                |
| MW-2     | 9/28/2023  | 23.74                             |                               |                                                             | 32.70                 | 3,200.00                         | 3,176.26                                    | -0.35                                                                                |
| MW-2     | 12/13/2023 | 23.38                             |                               |                                                             | 32.67                 | 3,200.00                         | 3,176.62                                    | 0.36                                                                                 |
|          | 2/16/2022  | 22.7(                             |                               |                                                             | 24.41                 | 2 200 84                         | 2 177 00                                    | 0.2(                                                                                 |
| MW-3     | 3/16/2023  | 23.76                             |                               |                                                             | 34.41                 | 3,200.84                         | 3,177.08                                    | 0.26                                                                                 |
| MW-3     | 6/28/2023  | 23.97                             |                               |                                                             | 34.39                 | 3,200.84                         | 3,176.87                                    | -0.21                                                                                |
| MW-3     | 9/28/2023  | 24.37                             |                               |                                                             | 34.39                 | 3,200.84                         | 3,176.47                                    | -0.40                                                                                |
| MW-3     | 12/13/2023 | 24.14                             |                               |                                                             | 34.10                 | 3,200.84                         | 3,176.70                                    | 0.23                                                                                 |
| MW-4     | 3/16/2023  | 26.40                             | 26.06                         | 0.34                                                        | 31.93                 | 3,200.98                         | 3,174.58                                    | -1.67                                                                                |
| MW-4     | 6/28/2023  | 25.42                             | 24.40                         | 1.02                                                        | 33.04                 | 3,200.98                         | 3,175.56                                    | 0.98                                                                                 |
| MW-4     | 9/28/2023  | 28.15                             | 26.59                         | 1.56                                                        | 33.04                 | 3,200.98                         | 3,172.83                                    | -2.73                                                                                |
| MW-4     | 12/13/2023 | 27.63                             | 26.89                         | 0.74                                                        | 33.04                 | 3,200.98                         | 3,173.35                                    | 0.52                                                                                 |
|          |            |                                   |                               |                                                             | Av                    | verage change in gro             | undwater elevation                          | -0.29                                                                                |

Notes:

1- Changes in groundwater elevation calculated by subtracting the measurement collected during the previous monitoring event from the measurement collected during the most recent monitoring event.

2- The TOC elevation for MW-1 through MW-4 have been calculated based on a relative elevation re-survey conducted on 8/7/2019.

amsl = feet above mean sea level

TOC = top of casing

LNAPL - Light non-aqueous phase liquid

Groundwater elevation = (TOC Elevation - Measured Depth to Water)

\*Groundwater elevation was corrected for product thickness using the following calculation, when applicable:

Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well \* LNAPL Relative Density)

LNAPL relative density was calculated to be approximately 0.792 grams per cubic centimeter (g/cm<sup>3</sup>)

NM = Not measured.

NC= Not calculated.

### TABLE 2 2023 ANNUAL SUMMARY OF BTEX AND CHLORIDE CONCENTRATIONS IN GROUNDWATER BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

| Location Identification                | Sample Date | Benzene<br>(mg/l)                         | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides<br>(mg/l) | Comments                   |
|----------------------------------------|-------------|-------------------------------------------|-------------------|------------------------|----------------------------|---------------------|----------------------------|
| NMWQCC Groundwater<br>Standards (mg/L) |             | 0.010                                     | 1.00              | 0.70                   | 0.62                       | 250                 |                            |
| MW-1                                   | 3/16/2023   | 0.00872                                   | < 0.00100         | 0.00278                | 0.00111 J                  | 733                 | Duplicate Sample Collected |
| MW-1 (Duplicate)                       | 3/16/2023   | 0.0125                                    | < 0.00100         | 0.00300                | 0.000790 J                 | 711                 |                            |
| MW-1                                   | 6/28/2023   | 0.00918                                   | < 0.00100         | 0.000311 J             | < 0.00300                  | 716                 | Duplicate Sample Collected |
| MW-1 (Duplicate)                       | 6/28/2023   | 0.00134                                   | < 0.00100         | 0.000411 J             | < 0.00300                  | 762                 |                            |
| MW-1                                   | 9/28/2023   | 0.000269 J                                | < 0.00100         | < 0.00100              | < 0.00300                  | 648                 | Duplicate Sample Collected |
| MW-1 (Duplicate)                       | 9/28/2023   | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | 788                 |                            |
| MW-1                                   | 12/13/2023  | 0.00836                                   | < 0.00100         | 0.000374 J             | < 0.00300                  | 732                 | Duplicate Sample Collected |
| MW-1 (Duplicate)                       | 12/13/2023  | 0.00519                                   | < 0.00100         | 0.000261 J             | < 0.00300                  | 727                 |                            |
| MW-2                                   | 3/16/2023   | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | 1,790               |                            |
| MW-2                                   | 6/28/2023   | 0.000135 J                                | < 0.00100         | < 0.00100              | < 0.00300                  | 1,840               |                            |
| MW-2                                   | 9/28/2023   | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | 2,320               |                            |
| MW-2                                   | 12/13/2023  | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | 2,220               |                            |
| MW-3                                   | 3/16/2023   | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | 442                 |                            |
| MW-3                                   | 6/28/2023   | 0.000132 J                                | < 0.00100         | < 0.00100              | < 0.00300                  | 469                 |                            |
| MW-3                                   | 9/28/2023   | < 0.00100                                 | < 0.00100         | 0.000269 J             | 0.000948 J                 | 414                 |                            |
| MW-3                                   | 12/13/2023  | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | 474                 |                            |
| MW-4                                   | 3/16/2023   |                                           | Not Sa            | mpled - Historica      | l LNAPL                    |                     |                            |
| MW-4                                   | 6/28/2023   |                                           | Not Sa            | mpled - Historica      | l LNAPL                    |                     |                            |
| MW-4                                   | 9/28/2023   |                                           | Not Sa            | mpled - Historica      | l LNAPL                    |                     |                            |
| MW-4                                   | 12/13/2023  | 12/13/2023 Not Sampled - Historical LNAPL |                   |                        |                            |                     |                            |
| Trip Blank                             | 3/16/2023   | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |                            |
| Trip Blank                             | 6/28/2023   | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |                            |
| Trip Blank                             | 9/28/2023   | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |                            |
| Trip Blank                             | 12/13/2023  | < 0.00100                                 | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |                            |

Notes:

**Bold red** values indicate an exceedance of the associated NMWQCC standard (Effective 7/1/2020) or, for chlorides, the secondary maximum contaminant level (SMCL) which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid

NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter







M. Kaczmarek Released to Imaging: 6/20/2024 10:49:41 AM





DRAWN BY:



Second Quarter



B. Dennis



Contour Map (September 28, 2023)







## Legend

Monitoring Well

| NMWQCC Groundwater Standards |        |  |  |  |  |
|------------------------------|--------|--|--|--|--|
| Compound                     | (mg/L) |  |  |  |  |
| Benzene                      | 0.01   |  |  |  |  |
| Toluene                      | 1.00   |  |  |  |  |
| Ethylbenzene                 | 0.70   |  |  |  |  |
| Total Xylenes                | 0.62   |  |  |  |  |
| Chlorides                    | 250    |  |  |  |  |

#### Notes:

\*The chloride value is a secondary maximum contaminant level (SMCL) and has been established as a guideline in the National Secondary Drinking Water Regulations

**Red** text denotes exceedances of NMWQCC Standards

mg/L - Milligrams per liter LNAPL - Light Non-Aqueous Phase Liquid

NMWQCC - New Mexico Water Quality Control Commission

J - The reported value is an estimate

70 ⊐Feet

Analytical Results Map (March 16, 2023)



## Legend

Monitoring Well

 $- \times - \times$  Property Fence Alignment

| NMWQCC Groundwater Standards |        |  |  |  |  |
|------------------------------|--------|--|--|--|--|
| Compound                     | (mg/L) |  |  |  |  |
| Benzene                      | 0.01   |  |  |  |  |
| Toluene                      | 1.00   |  |  |  |  |
| Ethylbenzene                 | 0.70   |  |  |  |  |
| Total Xylenes                | 0.62   |  |  |  |  |
| Chlorides                    | 250    |  |  |  |  |

### Notes:

\*The chloride value is a secondary maximum contaminant level (SMCL) and has been established as a guideline in the National Secondary Drinking Water Regulations

**Red** text denotes exceedances of NMWQCC Standards

mg/L - Milligrams per liter LNAPL - Light Non-Aqueous Phase Liquid

NMWQCC - New Mexico Water Quality Control Commission

J - The reported value is an estimate

70 ⊐Feet

Analytical Results Map (June 28, 2023)



## Legend

Monitoring Well

- × - × Property Fence Alignment

| NMWQCC Groundwater Standards |        |  |  |  |  |
|------------------------------|--------|--|--|--|--|
| Compound                     | (mg/L) |  |  |  |  |
| Benzene                      | 0.01   |  |  |  |  |
| Toluene                      | 1.00   |  |  |  |  |
| Ethylbenzene                 | 0.70   |  |  |  |  |
| Total Xylenes                | 0.62   |  |  |  |  |
| Chlorides                    | 250    |  |  |  |  |

#### Notes:

\*The chloride value is a secondary maximum contaminant level (SMCL) and has been established as a guideline in the National Secondary Drinking Water Regulations

**Red** text denotes exceedances of NMWQCC Standards

mg/L - Milligrams per liter LNAPL - Light Non-Aqueous Phase Liquid

NMWQCC - New Mexico Water Quality Control Commission

J - The reported value is an estimate

70 ⊐Feet

Analytical Results Map (September 28, 2023)



## Legend

Monitoring Well

- × - × Property Fence Alignment

| NMWQCC Groundwater Standards |        |  |  |  |  |
|------------------------------|--------|--|--|--|--|
| Compound                     | (mg/L) |  |  |  |  |
| Benzene                      | 0.01   |  |  |  |  |
| Toluene                      | 1.00   |  |  |  |  |
| Ethylbenzene                 | 0.70   |  |  |  |  |
| Total Xylenes                | 0.62   |  |  |  |  |
| Chlorides                    | 250    |  |  |  |  |

#### Notes:

\*The chloride value is a secondary maximum contaminant level (SMCL) and has been established as a guideline in the National Secondary Drinking Water Regulations

**Red** text denotes exceedances of NMWQCC Standards

mg/L - Milligrams per liter LNAPL - Light Non-Aqueous Phase Liquid

NMWQCC - New Mexico Water Quality Control Commission

J - The reported value is an estimate

70 ⊐Feet

Analytical Results Map (December 13, 2023)

Appendix A

Historical Analytical Results

|                          |                        |                   |                    |                        | Total                  |                     |                             |
|--------------------------|------------------------|-------------------|--------------------|------------------------|------------------------|---------------------|-----------------------------|
| Location Identification  | Sample Date            | Benzene<br>(mg/l) | Toluene<br>(mg/l)  | Ethylbenzene<br>(mg/l) | Xylenes<br>(mg/l)      | Chlorides<br>(mg/l) | Comments                    |
| NMWQCC Groundwater       | Sample Date            | (ing/i)           | (ing/i)            | (ing/i)                | (iiig/i)               | (ing/i)             | Comments                    |
| Standards (mg/L)         |                        | 0.01              | 1.00               | 0.70                   | 0.62                   | 250                 |                             |
| MW-1                     | 12/14/2011             | 0.140             | 0.0034             | 0.200                  | 0.111                  | 665                 | Duplicate sample collected  |
| MW-1                     | 4/26/2012              | 0.153             | < 0.001            | 0.229                  | 0.0073                 | 584                 |                             |
| MW-1                     | 6/20/2012              | 0.0967            | < 0.001            | 0.284                  | 0.0474                 | 651                 | Duplicate sample collected  |
| MW-1                     | 9/26/2012              | 0.0615            | < 0.001            | 0.0803                 | 0.0015                 | 590                 | Duplicate sample concerca   |
| MW-1                     | 12/5/2012              | 0.0013            | <0.001             | 0.17                   | 0.037                  | 599                 |                             |
| MW-1                     | 2/21/2013              | 0.0020            | <0.001             | 0.0058                 | < 0.003                | 668                 | Duplicate sample collected  |
| MW-1<br>MW-1             | 6/3/2013               | 0.0021            | <0.001             | 0.0038                 | <0.003                 | 703                 | Duplicate sample collected  |
| MW-1<br>MW-1             | 9/11/2013              | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               | Duplicate sample concered   |
| MW-1                     | 12/3/2013              | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               |                             |
| MW-1                     | 2/26/2014              | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               |                             |
| MW-1                     | 6/2/2014               | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               |                             |
| MW-1                     | 9/24/2014              |                   |                    | Sampling Suspend       |                        |                     |                             |
| MW-1                     | 12/3/2014              | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               |                             |
| MW-1                     | 2/27/2015              | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               |                             |
| MW-1                     | 6/2/2015               | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               |                             |
| MW-1                     | 8/31/2015              | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               |                             |
| MW-1                     | 12/15/2015             | LNAPL             | LNAPL              | LNAPL                  | LNAPL                  | LNAPL               |                             |
| MW-1                     | 3/21/2016              | 0.0450            | < 0.0010           | 0.080                  | 0.010                  | 685                 |                             |
| MW-1                     | 6/20/2016              | 0.082             | < 0.0010           | 0.10                   | 0.0072                 | 700                 |                             |
| MW-1                     | 9/26/2016              | 0.035             | < 0.0050           | 0.033                  | < 0.015                | 705                 |                             |
| MW-1                     | 12/19/2016             | 0.051             | < 0.0010           | 0.040                  | 0.0035                 | 769                 |                             |
| MW-1                     | 3/6/2017               | 0.044             | < 0.0010           | 0.025                  | 0.0012                 | 733                 | Duplicate sample collected  |
| MW-1 (Duplicate)         | 3/6/2017               | 0.054             | <0.0010            | 0.035                  | 0.0014                 | 740                 |                             |
| MW-1<br>MW-1             | 6/19/2017<br>9/27/2017 | 0.043<br>0.00867  | <0.0010<br><0.0010 | 0.020 0.00359          | <0.0010<br><0.0030     | 671<br>649          | Duralizata Samala Callestad |
| MW-1 (Duplicate)         | 9/27/2017              | 0.00867           | <0.0010            | 0.00339                | <0.0030                | 608                 | Duplicate Sample Collected  |
| MW-1                     | 12/18/2017             | 0.00990           | <0.0010            | 0.00522                | <0.0030                | 679                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 12/18/2017             | 0.0179            | < 0.0010           | 0.00502                | < 0.0030               | 778                 | 1 1                         |
| MW-1                     | 3/12/2018              | 0.0299            | < 0.0010           | 0.0199                 | 0.00114 J              | 764                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 3/12/2018              | 0.0399            | < 0.0010           | 0.0230                 | <0.0030                | 770                 |                             |
| MW-1<br>MW-1 (Duplicate) | 6/25/2018<br>6/25/2018 | 0.0255<br>0.0281  | <0.0010<br><0.0010 | 0.0255<br>0.0277       | <0.0030<br><0.0030     | 623<br>632          | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 9/17/2018              | 0.0201            | <0.0010            | 0.0277                 | <0.0030                | 668                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 9/17/2018              | 0.0105            | < 0.0010           | 0.0060                 | <0.0030                | 641                 | Bupileate Bample Conceled   |
| MW-1                     | 12/10/2018             | 0.000641 J        | < 0.0010           | 0.00115                | < 0.0030               | 1,180               | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 12/10/2018             | 0.000712 J        | < 0.0010           | 0.00126                | < 0.0030               | 1,230               |                             |
| MW-1                     | 3/21/2019              | 0.0018            | < 0.0010           | 0.00159                | < 0.0030               | 667                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 3/21/2019              | 0.0026            | < 0.0010           | 0.00144                | < 0.0030               | 680                 |                             |
| MW-1                     | 6/13/2019              | 0.0316            | < 0.0010           | 0.0232                 | < 0.0030               | 774                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 6/13/2019              | 0.0294            | < 0.0010           | 0.0216                 | < 0.0030               | 768                 |                             |
| MW-1                     | 9/17/2019              | 0.00456           | < 0.0010           | 0.00219                | < 0.0030               | 654                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 9/17/2019              | 0.0059            | < 0.0010           | 0.00272                | <0.0030                | 768                 |                             |
| MW-1                     | 12/9/2019              | 0.00713           | < 0.0010           | 0.00789                | 0.00161 J              | 681                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 12/9/2019              | 0.00772           | <0.0010<br><0.0010 | 0.00827                | 0.00166 J              | 684                 | Duplicate Sample Collected  |
| MW-1<br>MW-1 (Duplicate) | 6/19/2020<br>6/19/2020 | 0.0278<br>0.0277  | <0.0010            | 0.01900<br>0.01870     | 0.00160 J<br>0.00139 J | 908<br>927          | Duplicate Sample Collected  |
| MW-1 (Duplicate)<br>MW-1 | 12/11/2020             | 0.0277            | <0.0010            | 0.01870                | 0.00139 J              | 743                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 12/11/2020             | 0.0439            | <0.00100           | 0.0247                 | 0.00769                | 743                 | Dupneau Sample Conceteu     |
| MW-1 (Duplicate)         | 3/24/2021              | 0.0386            | <0.00100           | 0.0248                 | 0.00599                | 786                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 3/24/2021              | 0.0323            | <0.00100           | 0.0188                 | 0.00456                | 781                 | 2 apricato Sumple Concettu  |
| MW-1                     | 6/18/2021              | 0.0356            | <0.00100           | 0.0100                 | 0.00263 J              | 848                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 6/18/2021              | 0.0375            | < 0.00100          | 0.0127                 | 0.00279 J              | 844                 | 1                           |
| MW-1                     | 9/24/2021              | 0.0403            | <0.00100           | 0.0138                 | 0.00203 J              | 814                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 9/24/2021              | 0.0448            | < 0.00100          | 0.0170                 | 0.00289 J              | 868                 | 1 1                         |
| MW-1                     | 12/21/2021             | 0.0326            | < 0.00100          | 0.0108                 | 0.00182 J              | 743                 | Duplicate Sample Collected  |
| MW-1 (Duplicate)         | 12/21/2021             | 0.0323            | < 0.00100          | 0.0108                 | 0.00198 J              | 741                 | • •                         |

### **Released to Imaging: 6/20/2024 10:49:41 AM**

|                          | 1                      |                    |                      |                       | Total                    | I I            |                            |
|--------------------------|------------------------|--------------------|----------------------|-----------------------|--------------------------|----------------|----------------------------|
|                          |                        | Benzene            | Toluene              | Ethylbenzene          | Xylenes                  | Chlorides      |                            |
| Location Identification  | Sample Date            | (mg/l)             | (mg/l)               | (mg/l)                | (mg/l)                   | (mg/l)         | Comments                   |
| NMWQCC Groundwater       |                        | 0.01               | 1.00                 | 0.70                  | 0.62                     | 250            |                            |
| Standards (mg/L)         | 2/22/2022              | 0.01(5             | -0.00100             | 0.00050               | 0.00000 1                | 010            |                            |
| MW-1                     | 3/23/2022<br>3/23/2022 | 0.0167<br>0.00284  | <0.00100<br><0.00100 | 0.00872<br>0.00114    | 0.00280 J<br>0.000235 J  | 818<br>826     | Duplicate Sample Collected |
| MW-1 (Duplicate)<br>MW-1 | 6/24/2022              | 0.00284<br>0.0426  | <0.00100             | 0.00114               | 0.000235 J<br>0.000423 J | 704            | Duplicate Sample Collected |
| MW-1 (Duplicate)         | 6/24/2022              | 0.0420             | <0.00100             | 0.0120                | 0.000423 J<br>0.000413 J | 704            | Duplicate Sample Collected |
| MW-1                     | 9/19/2022              | 0.00469            | <0.00100             | 0.00125<br>0.000982 J | <0.00300                 | 748            | Duplicate Sample Collected |
| MW-1 (Duplicate)         | 9/19/2022              | 0.00105            | <0.00100             | 0.00247               | <0.00300                 | 732            | Duplicate Sample Concered  |
| MW-1                     | 12/7/2022              | 0.00483            | < 0.00100            | 0.000567 J            | <0.00300                 | 695            | Duplicate Sample Collected |
| MW-1 (Duplicate)         | 12/7/2022              | 0.00416            | < 0.00100            | 0.000411 J            | < 0.00300                | 795            | 2 up neuro sumpro contente |
| MW-1                     | 3/16/2023              | 0.00872            | < 0.00100            | 0.00278               | 0.00111 J                | 733            | Duplicate Sample Collected |
| MW-1 (Duplicate)         | 3/16/2023              | 0.0125             | < 0.00100            | 0.00300               | 0.000790 J               | 711            | 1 1                        |
| MW-1                     | 6/28/2023              | 0.00918            | < 0.00100            | 0.000311 J            | < 0.00300                | 716            | Duplicate Sample Collected |
| MW-1 (Duplicate)         | 6/28/2023              | 0.00134            | < 0.00100            | 0.000411 J            | < 0.00300                | 762            |                            |
| MW-1                     | 9/28/2023              | 0.000269 J         | < 0.00100            | < 0.00100             | < 0.00300                | 648            | Duplicate Sample Collected |
| MW-1 (Duplicate)         | 9/28/2023              | < 0.00100          | < 0.00100            | < 0.00100             | < 0.00300                | 788            |                            |
| MW-1                     | 12/13/2023             | 0.00836            | < 0.00100            | 0.000374 J            | < 0.00300                | 732            | Duplicate Sample Collected |
| MW-1 (Duplicate)         | 12/13/2023             | 0.00519            | < 0.00100            | 0.000261 J            | < 0.00300                | 727            |                            |
| MW-2                     | 12/14/2011             | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,170          |                            |
| MW-2                     | 4/26/2012              | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,040          |                            |
| MW-2                     | 6/20/2012              | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,150          |                            |
| MW-2<br>MW-2             | 9/26/2012              | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,130          |                            |
| MW-2<br>MW-2             | 12/5/2012              | <0.001             | <0.001               | <0.001                | <0.003                   | 1,120          | Duplicate sample collected |
|                          |                        |                    |                      |                       |                          |                | Duplicate sample conected  |
| MW-2                     | 2/21/2013              | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,250          |                            |
| MW-2                     | 6/3/2013               | < 0.001            | < 0.001              | < 0.001               | < 0.001                  | 1,150          |                            |
| MW-2                     | 9/11/2013              | < 0.001            | < 0.001              | < 0.001               | < 0.001                  | 1,410          | Duplicate sample collected |
| MW-2                     | 12/3/2013              | < 0.001            | < 0.001              | < 0.001               | < 0.001                  | 1,120          | Duplicate sample collected |
| MW-2                     | 2/26/2014<br>2/26/2014 | <0.001<br><0.001   | <0.001<br><0.001     | <0.001<br><0.001      | <0.001                   | 1,220          | Duplicate sample collected |
| MW-2 (Duplicate)<br>MW-2 | 6/2/2014               | <0.001             | <0.001               | <0.001                | <0.001<br><0.001         | 1,270<br>1,270 | Duplicate sample collected |
| MW-2 (Duplicate)         | 6/2/2014               | <0.001             | <0.001               | <0.001                | <0.001                   | 1,270          | Duplicate sample conected  |
| MW-2 (Duplicate)         | 9/24/2014              |                    |                      | Sampling Suspend      |                          | 1 1 1          |                            |
| MW-2<br>MW-2             | 12/3/2014              | < 0.001            | <0.001               | <0.001                | <0.001                   | 1,300          | Duplicate sample collected |
| MW-2 (Duplicate)         | 12/3/2014              | <0.001             | <0.001               | <0.001                | <0.001                   | 1,300          | Duplicate sample concered  |
| MW-2                     | 2/27/2015              | < 0.001            | <0.001               | <0.001                | <0.001                   | 1,440          | Duplicate sample collected |
| MW-2 (Duplicate)         | 2/27/2015              | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,440          | Bupheute sumple concettu   |
| MW-2                     | 6/2/2015               | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,650          | Duplicate sample collected |
| MW-2 (Duplicate)         | 6/2/2015               | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,810          | 1 1                        |
| MW-2                     | 8/31/2015              | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,420          | Duplicate sample collected |
| MW-2 (Duplicate)         | 8/31/2015              | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,440          | ▲ ▲                        |
| MW-2                     | 12/15/2015             | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,350          | Duplicate sample collected |
| MW-2 (Duplicate)         | 12/15/2015             | < 0.001            | < 0.001              | < 0.001               | < 0.003                  | 1,350          |                            |
| MW-2                     | 3/21/2016              | < 0.0010           | < 0.0010             | < 0.0010              | < 0.0030                 | 1,300          |                            |
| MW-2                     | 6/20/2016              | < 0.0010           | < 0.0010             | < 0.0010              | < 0.0030                 | 1,280          |                            |
| MW-2                     | 9/26/2016              | < 0.0010           | < 0.0010             | < 0.0010              | < 0.0030                 | 1,310          |                            |
| MW-2                     | 12/19/2016             | < 0.0010           | < 0.0010             | < 0.0010              | < 0.0030                 | 1,560          | Duplicate sample collected |
| MW-2 (Duplicate)         | 12/19/2016             | <0.0010            | < 0.0010             | <0.0010               | < 0.0030                 | 1,350          |                            |
| MW-2                     | 3/6/2017               | <0.0010            | <0.0010              | <0.0010               | <0.0010                  | 1,210          |                            |
| MW-2                     | 6/19/2017              | <0.0010            | <0.0010              | <0.0010               | <0.0010                  | 1,480          |                            |
| MW-2                     | 9/27/2017              | <0.0010            | <0.0010              | <0.0010               | <0.0030                  | 1,530          |                            |
| MW-2                     | 12/18/2017             | <0.0010            | <0.0010              | <0.0010               | <0.0030                  | 1,300          |                            |
| MW-2<br>MW-2             | 3/12/2018              | <0.0010<br><0.0010 | <0.0010<br><0.0010   | <0.0010<br><0.0010    | <0.0030<br><0.0030       | 1,290          |                            |
| MW-2<br>MW-2             | 6/25/2018<br>9/17/2018 |                    | <0.0010              |                       | <0.0030                  | 1,490          |                            |
| MW-2<br>MW-2             | 9/1//2018              | <0.0010<br><0.0010 | <0.0010              | <0.0010<br><0.0010    | <0.0030                  | 2,130<br>3,780 |                            |
|                          | 1 12/10/2010           | 1 50.0010          | <u>SUUUIU</u>        | SUJULU                | <u>SUUU1U</u>            |                |                            |

### **Released to Imaging: 6/20/2024 10:49:41 AM**

| Location Identification                | Sample Date           | Benzene<br>(mg/l) | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides<br>(mg/l) | Comments                   |
|----------------------------------------|-----------------------|-------------------|-------------------|------------------------|----------------------------|---------------------|----------------------------|
| NMWQCC Groundwater<br>Standards (mg/L) |                       | 0.01              | 1.00              | 0.70                   | 0.62                       | 250                 |                            |
| MW-2                                   | 6/13/2019             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 1,860               |                            |
| MW-2                                   | 9/17/2019             | <0.0010           | <0.0010           | <0.0010                | <0.0030                    | 2,380               |                            |
| MW-2<br>MW-2                           | 12/9/2019             | <0.0010           | <0.0010           | <0.0010                | <0.0030                    | 1,870               |                            |
| MW-2                                   | 6/19/2020             | <0.0010           | <0.0010           | <0.0010                | <0.0030                    | 2,220               |                            |
| MW-2<br>MW-2                           | 12/11/2020            | < 0.00100         | < 0.0010          | < 0.00100              | < 0.00300                  | 2,160               |                            |
| MW-2                                   | 3/24/2021             | 0.000195 J        | < 0.00100         | < 0.00100              | < 0.00300                  | 1,860               |                            |
| MW-2<br>MW-2                           | 6/18/2021             | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | 2,120               |                            |
| MW-2                                   | 9/24/2021             | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | 2,120               |                            |
| MW-2                                   | 12/21/2021            | 0.000114 J        | < 0.00100         | < 0.00100              | < 0.00300                  | 435                 |                            |
| MW-2                                   | 3/23/2022             | < 0.00100         | < 0.00100         | < 0.00100              | 0.00112 J                  | 1,870               |                            |
| MW-2                                   | 6/24/2022             | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | 2,220               |                            |
| MW-2                                   | 9/19/2022             | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | 2,380               |                            |
| MW-2                                   | 12/7/2022             | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | 2,380               |                            |
| MW-2                                   | 3/16/2023             | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | 1,790               |                            |
| MW-2                                   | 6/28/2023             | 0.000135 J        | < 0.00100         | < 0.00100              | < 0.00300                  | 1,840               |                            |
| MW-2                                   | 9/28/2023             | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | 2,320               |                            |
| MW-2                                   | 12/13/2023            | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | 2,220               |                            |
| MW-3                                   | 12/14/2011            | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | 426                 |                            |
| MW-3                                   | 4/26/2012             | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | 406                 | Duplicate sample collected |
| MW-3                                   | 6/20/2012             | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | 435                 | ▲ ▲                        |
| MW-3                                   | 9/26/2012             | < 0.001           | < 0.001           | 0.00057                | < 0.003                    | 447                 | Duplicate sample collected |
| MW-3                                   | 12/5/2012             | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | 444                 |                            |
| MW-3                                   | 2/21/2013             | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | 503                 |                            |
| MW-3                                   | 6/12/2013             | <0.001            | <0.001            | <0.001                 | <0.003                     | 474                 |                            |
|                                        |                       |                   |                   |                        |                            |                     |                            |
| MW-3                                   | 9/11/2013             | < 0.001           | < 0.001           | < 0.001                | < 0.001                    | 589                 |                            |
| MW-3                                   | 12/3/2013             | < 0.001           | <0.001            | <0.001                 | <0.001                     | 432                 |                            |
| MW-3<br>MW-3                           | 2/26/2014<br>6/2/2014 | <0.001<br><0.001  | <0.001<br><0.001  | <0.001<br><0.001       | <0.001<br><0.001           | 484<br>519          |                            |
| MW-3                                   | 9/24/2014             |                   |                   | Sampling Suspend       |                            |                     |                            |
| MW-3                                   | 12/3/2014             | < 0.001           | <0.001            | <0.001                 | <0.001                     | 294                 |                            |
| MW-3                                   | 2/27/2014             | <0.001            | <0.001            | <0.001                 | <0.001                     | 301                 |                            |
| MW-3                                   | 6/2/2015              | <0.001            | <0.001            | <0.001                 | <0.003                     | 384                 |                            |
| MW-3                                   | 8/31/2015             | <0.001            | <0.001            | <0.001                 | <0.003                     | 386                 |                            |
| MW-3                                   | 12/15/2015            | <0.001            | <0.001            | <0.001                 | <0.003                     | 568                 |                            |
| MW-3                                   | 3/21/2016             | <0.001            | <0.001            | <0.001                 | <0.003                     | 484                 | Duplicate sample collected |
| MW-3(Duplicate)                        | 3/21/2016             | <0.0010           | <0.0010           | <0.0010                | < 0.0030                   | 526                 | Bupileate sample conceled  |
| MW-3                                   | 6/20/2016             | <0.0010           | <0.0010           | <0.0010                | < 0.0030                   | 414                 | Duplicate sample collected |
| MW-3 (Duplicate)                       | 6/20/2016             | < 0.0010          | <0.0010           | < 0.0010               | < 0.0030                   | 383                 |                            |
| MW-3                                   | 9/26/2016             | < 0.0010          | <0.0010           | < 0.0010               | < 0.0030                   | 320                 | Duplicate sample collected |
| MW-3 (Duplicate)                       | 9/26/2016             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 324                 |                            |
| MW-3                                   | 12/19/2016            | < 0.0010          | < 0.0010          | < 0.0010               | <0.0030                    | 285                 |                            |
| MW-3                                   | 3/6/2017              | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0010                   | 466                 |                            |
| MW-3                                   | 6/19/2017             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0010                   | 247                 |                            |
| MW-3 (Duplicate)                       | 6/19/2017             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0010                   | 251                 |                            |
| MW-3                                   | 9/27/2017             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 269                 |                            |
| MW-3                                   | 12/18/2017            | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 310                 |                            |
| MW-3                                   | 3/12/2018             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 253                 |                            |
| MW-3                                   | 6/25/2018             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 258                 |                            |
| MW-3                                   | 9/17/2018             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 277                 |                            |
| MW-3                                   | 12/10/2018            | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 429                 |                            |
| MW-3                                   | 3/21/2019             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 309                 |                            |
| MW-3                                   | 6/13/2019             | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | 369                 |                            |
| MW-3                                   | 9/17/2019             | 0.00426           | < 0.0010          | < 0.0010               | < 0.0030                   | 333                 |                            |
| MW-3                                   | 12/9/2019             | 0.00216           | < 0.0010          | < 0.0010               | < 0.0030                   | 339                 |                            |

| Location Identification                | Sample Date            | Benzene<br>(mg/l) | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l)    | Total<br>Xylenes<br>(mg/l) | Chlorides<br>(mg/l) | Comments          |
|----------------------------------------|------------------------|-------------------|-------------------|---------------------------|----------------------------|---------------------|-------------------|
| NMWQCC Groundwater<br>Standards (mg/L) |                        | 0.01              | 1.00              | 0.70                      | 0.62                       | 250                 |                   |
| MW-3                                   | 6/19/2020              | 0.000240 J        | < 0.0010          | < 0.0010                  | < 0.0030                   | 372                 |                   |
| MW-3                                   | 12/11/2020             | < 0.00100         | < 0.00100         | < 0.00100                 | < 0.00300                  | 420                 |                   |
| MW-3                                   | 3/24/2021              | 0.000352 J        | 0.000345 J        | < 0.00100                 | < 0.00300                  | 410                 |                   |
| MW-3                                   | 6/18/2021              | < 0.00100         | < 0.00100         | < 0.00100                 | < 0.00300                  | 436                 |                   |
| MW-3                                   | 9/24/2021              | 0.000125 J        | < 0.00100         | < 0.00100                 | < 0.00300                  | 443                 |                   |
| MW-3                                   | 12/21/2021             | < 0.00100         | < 0.00100         | < 0.00100                 | < 0.00300                  | 1990                |                   |
| MW-3                                   | 3/23/2022              | 0.00110           | 0.00119           | < 0.00100                 | 0.000290 J                 | 434                 |                   |
| MW-3                                   | 6/24/2022              | < 0.00100         | < 0.00100         | < 0.00100                 | < 0.00300                  | 436                 |                   |
| MW-3                                   | 9/19/2022              | < 0.00100         | < 0.00100         | < 0.00100                 | < 0.00300                  | 431                 |                   |
| MW-3                                   | 12/7/2022              | 0.000191 J        | < 0.00100         | < 0.00100                 | < 0.00300                  | 436                 |                   |
| MW-3                                   | 3/16/2023              | < 0.00100         | < 0.00100         | < 0.00100                 | < 0.00300                  | 442                 |                   |
| MW-3                                   | 6/28/2023              | 0.000132 J        | < 0.00100         | < 0.00100                 | < 0.00300                  | 469                 |                   |
| MW-3                                   | 9/28/2023              | 0.001             | 0.001             | 0.000269 J                | 0.000948 J                 | 414                 |                   |
| MW-3                                   | 12/13/2023             | < 0.00100         | < 0.00100         | < 0.00100                 | < 0.00300                  | 474                 |                   |
| MW-4                                   | 4/26/2012              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 6/20/2012              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 9/26/2012              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 12/5/2012              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 2/21/2013              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 6/3/2013               | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
|                                        |                        |                   |                   |                           |                            |                     |                   |
| MW-4                                   | 9/11/2013              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 12/3/2013              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 2/26/2014              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4<br>MW-4                           | 6/2/2014<br>9/24/2014  | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4<br>MW-4                           | 9/24/2014<br>12/3/2014 | LNAPL             | LNAPL             | Sampling Suspend<br>LNAPL | LNAPL                      | LNAPL               |                   |
| MW-4<br>MW-4                           | 2/27/2014              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 6/2/2015               | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 8/31/2015              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 12/15/2015             | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               |                   |
| MW-4                                   | 3/21/2016              | 0.58              | 0.17              | 0.48                      | 0.90                       | 10,700              |                   |
| MW-4                                   | 6/20/2016              | 0.46              | 0.16              | 0.64                      | 1.2                        | 9,700               |                   |
| MW-4                                   | 9/26/2016              | 0.51              | 0.14              | 0.54                      | 1.0                        | 7,780               |                   |
| MW-4                                   | 12/19/2016             | 0.37              | 0.12              | 0.56                      | 0.99                       | 7,530               |                   |
| MW-4                                   | 3/6/2017               | 0.37              | 0.086             | 0.49                      | 0.8                        | 6,370               |                   |
| MW-4                                   | 6/19/2017              | 0.14              | 0.035             | 0.46                      | 0.50                       | 6,420               | LNAPL (0.30 feet) |
| MW-4                                   | 9/27/2017              | 0.104             | 0.0718            | 0.706                     | 1.12                       | 7,520               | LNAPL (0.24 feet) |
| MW-4                                   | 12/18/2017             | 0.433             | 0.0979            | 0.570                     | 1.12                       | 6,450               | LNAPL (0.10 feet) |
| MW-4                                   | 3/12/2018              | 0.293             | 0.0641            | 0.319                     | 0.627                      | 6,160               |                   |
| MW-4                                   | 6/25/2018              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               | LNAPL (0.18 feet) |
| MW-4                                   | 9/17/2018              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               | LNAPL (0.5 feet)  |
| MW-4                                   | 12/10/2018             | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               | LNAPL (0.59 feet) |
| MW-4                                   | 3/21/2019              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               | LNAPL (0.65 feet) |
| MW-4                                   | 6/13/2019              | LNAPL             | LNAPL             | LNAPL                     | LNAPL                      | LNAPL               | LNAPL (0.55 feet) |
| MW-4                                   | 9/17/2019              |                   |                   | LNAPL                     |                            |                     | LNAPL (0.23 feet) |
| MW-4                                   | 12/9/2019              |                   |                   | LNAPL                     |                            |                     | LNAPL (0.39 feet) |
| MW-4                                   | 6/19/2020              |                   |                   | LNAPL                     |                            |                     | LNAPL             |
| MW-4                                   | 12/11/2020             |                   |                   | LNAPL                     |                            |                     | LNAPL             |
| MW-4                                   | 3/24/2021              |                   |                   | LNAPL                     |                            |                     | LNAPL             |
| MW-4                                   | 6/18/2021              |                   |                   | LNAPL                     |                            |                     | LNAPL             |
| MW-4                                   | 9/24/2021              |                   |                   | LNAPL                     |                            |                     | LNAPL             |
| MW-4                                   | 12/21/2021             |                   |                   | LNAPL                     |                            |                     | LNAPL             |
| MW-4                                   | 3/23/2022              |                   |                   | LNAPL                     |                            |                     | LNAPL             |
| MW-4                                   | 6/24/2022              |                   |                   | LNAPL                     |                            |                     | LNAPL (1.07 feet) |

| Location Identification | Sample Date | Benzene<br>(mg/l) | Toluene<br>(mg/l) | Ethylbenzene<br>(mg/l) | Total<br>Xylenes<br>(mg/l) | Chlorides<br>(mg/l) | Comments      |
|-------------------------|-------------|-------------------|-------------------|------------------------|----------------------------|---------------------|---------------|
| NMWQCC Groundwater      |             | 0.01              | 1.00              | 0.70                   | 0.62                       | 250                 |               |
| Standards (mg/L)        |             | 0.01              |                   |                        |                            | 230                 |               |
| MW-4                    | 9/19/2022   |                   | N                 | lot Sampled - LNA      | APL                        |                     | LNAPL (0.16') |
| MW-4                    | 12/7/2022   |                   | Not Sa            | ampled - Historica     | l LNAPL                    |                     |               |
| MW-4                    | 3/16/2023   |                   | Not Sa            | mpled - Historica      | l LNAPL                    |                     | LNAPL (0.34') |
| MW-4                    | 6/28/2023   |                   |                   | mpled - Historica      |                            | LNAPL (1.02')       |               |
| MW-4                    | 9/28/2023   |                   |                   | ampled - Historica     |                            |                     | LNAPL (1.56') |
| MW-4                    | 12/13/2023  |                   | Not Sa            | mpled - Historica      | l LNAPL                    |                     | LNAPL (0.74') |
| Trip Blank              | 6/2/2014    | < 0.001           | < 0.001           | < 0.001                | < 0.001                    | NA                  |               |
| Trip Blank              | 12/3/2014   | < 0.001           | < 0.001           | < 0.001                | < 0.001                    | NA                  |               |
| Trip Blank              | 2/27/2015   | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | NA                  |               |
| Trip Blank              | 6/2/2015    | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | NA                  |               |
| Trip Blank              | 8/31/2015   | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | NA                  |               |
| Trip Blank              | 12/15/2015  | < 0.001           | < 0.001           | < 0.001                | < 0.003                    | NA                  |               |
| Trip Blank              | 3/21/2016   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 6/20/2016   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 9/26/2016   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 12/19/2016  | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0010                   | NA                  |               |
| Trip Blank              | 3/6/2017    | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0010                   | NA                  |               |
| Trip Blank              | 6/19/2017   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0010                   | NA                  |               |
| Trip Blank              | 9/27/2017   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 12/18/2017  | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 3/12/2018   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 3/12/2018   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 6/25/2018   | < 0.0010          | <0.0010           | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 9/17/2018   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 12/9/2019   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 6/19/2020   | < 0.0010          | < 0.0010          | < 0.0010               | < 0.0030                   | NA                  |               |
| Trip Blank              | 12/11/2020  | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |               |
| Trip Blank              | 3/24/2021   | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |               |
| Trip Blank              | 6/18/2021   | NA                | NA                | NA                     | NA                         | NA                  |               |
| Trip Blank              | 9/24/2021   | 0.000372 J        | < 0.00100         | < 0.00100              | < 0.00100                  | NA                  |               |
| Trip Blank              | 12/21/2021  | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |               |
| Trip Blank              | 3/23/2022   | NA                | NA                | NA                     | NA                         | NA                  | No Trip Blank |
| Trip Blank              | 6/24/2022   | < 0.00100         | <0.00100          | < 0.00100              | < 0.00300                  | NA                  | F             |
| Trip Blank              | 9/19/2022   | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |               |
| Trip Blank              | 12/7/2022   | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |               |
| Trip Blank              | 3/16/2023   | < 0.00100         | <0.00100          | < 0.00100              | < 0.00300                  | NA                  |               |
| Trip Blank              | 6/28/2023   | < 0.00100         | < 0.00100         | < 0.00100              | < 0.00300                  | NA                  |               |
| Trip Blank              | 9/28/2023   | < 0.00100         | <0.00100          | < 0.00100              | <0.00300                   | NA                  |               |
| Trip Blank              | 12/13/2023  | < 0.00100         | <0.00100          | < 0.00100              | < 0.00300                  | NA                  |               |
| The Bully               | 12,13,2023  | .0.00100          | -0100100          | .0.00100               | -0.00500                   | 1 1 1 1             |               |

Notes:

**Bold red** values indicate an exceedance of the associated NMWQCC standard (Effective 7/1/2020) or, for chlorides, the secondary maximum contaminant level (SMCL) which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid

NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

## Appendix B

## Laboratory Analytical Report

- Pace Analytical Job #: L1596004
- Pace Analytical Job #: L1630641
- Pace Analytical Job #: L1661192
- Pace Analytical Job #: L1688211

Received by OCD: 3/11/2024 11:01:15 AM



| DCP Midstream - Ta     | asman                        |  |
|------------------------|------------------------------|--|
| Sample Delivery Group: | L1596004                     |  |
| Samples Received:      | 03/17/2023                   |  |
| Project Number:        | 311090017                    |  |
| Description:           | Burton Flats Booster Station |  |
| Report To:             | Kyle Norman                  |  |
|                        |                              |  |

Entire Report Reviewed By:

Chris Ward

Chris Ward Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

## Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 0/20/2024 10:49:41 AM DCP Midstream - Tasman PROJECT: 311090017

SDG: L1596004

03/2

DATE/TIME: 03/23/23 14:29 PAGE: 1 of 15

## TABLE OF CONTENTS

| Cp: Cover Page                                     | 1  |
|----------------------------------------------------|----|
| Tc: Table of Contents                              | 2  |
| Ss: Sample Summary                                 | 3  |
| Cn: Case Narrative                                 | 4  |
| Sr: Sample Results                                 | 5  |
| MW-1 L1596004-01                                   | 5  |
| MW-2 L1596004-02                                   | 6  |
| MW-3 L1596004-03                                   | 7  |
| DUPLICATE L1596004-04                              | 8  |
| TRIP BLANK L1596004-05                             | 9  |
| Qc: Quality Control Summary                        | 10 |
| Wet Chemistry by Method 9056A                      | 10 |
| Volatile Organic Compounds (GC/MS) by Method 8260B | 11 |
| GI: Glossary of Terms                              | 13 |
| Al: Accreditations & Locations                     | 14 |
| Sc: Sample Chain of Custody                        | 15 |

Ss Cn Sr Qc GI Â

Sc

Ср

SDG: L1596004

DATE/TIME: 03/23/23 14:29 Received by OCD: 3/11/2024 11:01:15 AM

## SAMPLE SUMMARY

Page 32 of 97

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

| MW-1 L1596004-01 GW                                |           |          | Collected by<br>Chris Flores | Collected date/time<br>03/16/23 10:04 | Received da 03/17/23 09: |                |
|----------------------------------------------------|-----------|----------|------------------------------|---------------------------------------|--------------------------|----------------|
| Method                                             | Batch     | Dilution | Preparation                  | Analysis                              | Analyst                  | Location       |
|                                                    |           |          | date/time                    | date/time                             |                          |                |
| Wet Chemistry by Method 9056A                      | WG2027550 | 20       | 03/22/23 11:25               | 03/22/23 11:25                        | GEB                      | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2028242 | 1        | 03/22/23 21:44               | 03/22/23 21:44                        | JHH                      | Mt. Juliet, TN |
|                                                    |           |          | Collected by                 | Collected date/time                   | Received da              | te/time        |
| MW-2 L1596004-02 GW                                |           |          | Chris Flores                 | 03/16/23 09:31                        | 03/17/23 09:             | :15            |
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                  | Location       |
| Wet Chemistry by Method 9056A                      | WG2027550 | 100      | 03/22/23 12:04               | 03/22/23 12:04                        | GEB                      | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2028242 | 1        | 03/22/23 22:03               | 03/22/23 22:03                        | JHH                      | Mt. Juliet, TN |
|                                                    |           |          | Collected by                 | Collected date/time                   | Received da              | te/time        |
| MW-3 L1596004-03 GW                                |           |          | Chris Flores                 | 03/16/23 10:20                        | 03/17/23 09:             | :15            |
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                  | Location       |
| Wet Chemistry by Method 9056A                      | WG2027550 | 10       | 03/22/23 12:17               | 03/22/23 12:17                        | GEB                      | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2026970 | 1        | 03/21/23 10:45               | 03/21/23 10:45                        | KSD                      | Mt. Juliet, TN |
|                                                    |           |          | Collected by                 | Collected date/time                   | Received da              | te/time        |
| DUPLICATE L1596004-04 GW                           |           |          | Chris Flores                 | 03/16/23 10:04                        | 03/17/23 09:             | :15            |
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                  | Location       |
| Wet Chemistry by Method 9056A                      | WG2027550 | 20       | 03/22/23 12:29               | 03/22/23 12:29                        | GEB                      | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2026970 | 1        | 03/21/23 11:07               | 03/21/23 11:07                        | KSD                      | Mt. Juliet, TN |
|                                                    |           |          | Collected by                 | Collected date/time                   | Received da              | te/time        |
| TRIP BLANK L1596004-05 GW                          |           |          | Chris Flores                 | 03/16/23 00:00                        | 03/17/23 09:             | :15            |
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time                 | Analyst                  | Location       |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2026970 | 1        | 03/21/23 10:04               | 03/21/23 10:04                        | KSD                      | Mt. Juliet, TN |

SDG: L1596004 DATE/TIME: 03/23/23 14:29 PAGE: 3 of 15

### CASE NARRATIVE

his Word

Chris Ward Project Manager

Page 33 of 97

SDG: L1596004 DATE/TIME:

PAGE: 4 of 15

## Received by OCD: 3/11/2024 11:01:15 AM

### SAMPLE RESULTS - 01 L1596004

Â

Sc

Collected date/time: 03/16/23 10:04

### Wet Chemistry by Method 9056A

|          | Result | Qualifier | MDL  | RDL  | Dilution | Analysis         | Batch     | Ср |
|----------|--------|-----------|------|------|----------|------------------|-----------|----|
| Analyte  | mg/l   |           | mg/l | mg/l |          | date / time      |           | 2  |
| Chloride | 733    |           | 7.58 | 20.0 | 20       | 03/22/2023 11:25 | WG2027550 | Tc |

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result  | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     | [ |
|---------------------------|---------|-----------|-----------|----------|----------|------------------|-----------|---|
| Analyte                   | mg/l    |           | mg/l      | mg/l     |          | date / time      |           | - |
| Benzene                   | 0.00872 |           | 0.0000941 | 0.00100  | 1        | 03/22/2023 21:44 | WG2028242 |   |
| Toluene                   | U       |           | 0.000278  | 0.00100  | 1        | 03/22/2023 21:44 | WG2028242 |   |
| Ethylbenzene              | 0.00278 |           | 0.000137  | 0.00100  | 1        | 03/22/2023 21:44 | WG2028242 |   |
| Total Xylenes             | 0.00111 | J         | 0.000174  | 0.00300  | 1        | 03/22/2023 21:44 | WG2028242 |   |
| (S) Toluene-d8            | 93.8    |           |           | 80.0-120 |          | 03/22/2023 21:44 | WG2028242 | 1 |
| (S) 4-Bromofluorobenzene  | 90.1    |           |           | 77.0-126 |          | 03/22/2023 21:44 | WG2028242 |   |
| (S) 1,2-Dichloroethane-d4 | 109     |           |           | 70.0-130 |          | 03/22/2023 21:44 | WG2028242 |   |

Released to Imaging: 0/20/2024 10:49:41 AM DCP Midstream - Tasman

SDG: L1596004 PAGE: 5 of 15

### SAMPLE RESULTS - 02 L1596004

Page 35 of 97

Collected date/time: 03/16/23 09:31 Wet Chemistry by Method 9056A

|          | ,,     |           |      |      |          |                  |           | Cn  |
|----------|--------|-----------|------|------|----------|------------------|-----------|-----|
|          | Result | Qualifier | MDL  | RDL  | Dilution | Analysis         | Batch     | Ср  |
| Analyte  | mg/l   |           | mg/l | mg/l |          | date / time      |           | 2   |
| Chloride | 1790   |           | 37.9 | 100  | 100      | 03/22/2023 12:04 | WG2027550 | ¯Тс |

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     |   |
|---------------------------|--------|-----------|-----------|----------|----------|------------------|-----------|---|
| Analyte                   | mg/l   |           | mg/l      | mg/l     |          | date / time      |           | 4 |
| Benzene                   | U      |           | 0.0000941 | 0.00100  | 1        | 03/22/2023 22:03 | WG2028242 |   |
| Toluene                   | U      |           | 0.000278  | 0.00100  | 1        | 03/22/2023 22:03 | WG2028242 |   |
| Ethylbenzene              | U      |           | 0.000137  | 0.00100  | 1        | 03/22/2023 22:03 | WG2028242 |   |
| Total Xylenes             | U      |           | 0.000174  | 0.00300  | 1        | 03/22/2023 22:03 | WG2028242 |   |
| (S) Toluene-d8            | 99.3   |           |           | 80.0-120 |          | 03/22/2023 22:03 | WG2028242 | e |
| (S) 4-Bromofluorobenzene  | 83.9   |           |           | 77.0-126 |          | 03/22/2023 22:03 | WG2028242 |   |
| (S) 1,2-Dichloroethane-d4 | 113    |           |           | 70.0-130 |          | 03/22/2023 22:03 | WG2028242 | [ |

# SAMPLE RESULTS - 03

L1596004

Wet Chemistry by Method 9056A

Collected date/time: 03/16/23 10:20

|          |        |              |          |          |                  |           | Cn  |
|----------|--------|--------------|----------|----------|------------------|-----------|-----|
|          | Result | Qualifier MI | DL RDL   | Dilution | Analysis         | Batch     | Ch  |
| Analyte  | mg/l   | m            | ı/l mg/l |          | date / time      |           | 2   |
| Chloride | 442    | 3.1          | 10.0     | 10       | 03/22/2023 12:17 | WG2027550 | ⁻Tc |

### Volatile Organic Compounds (GC/MS) by Method 8260B

| Volatile Organic Compounds (GC/MS) by Method 8260B |        |           |           |          |          |                  |                  |  |  |
|----------------------------------------------------|--------|-----------|-----------|----------|----------|------------------|------------------|--|--|
|                                                    | Result | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch            |  |  |
| Analyte                                            | mg/l   |           | mg/l      | mg/l     |          | date / time      |                  |  |  |
| Benzene                                            | U      | <u>J3</u> | 0.0000941 | 0.00100  | 1        | 03/21/2023 10:45 | WG2026970        |  |  |
| Toluene                                            | U      |           | 0.000278  | 0.00100  | 1        | 03/21/2023 10:45 | WG2026970        |  |  |
| Ethylbenzene                                       | U      |           | 0.000137  | 0.00100  | 1        | 03/21/2023 10:45 | <u>WG2026970</u> |  |  |
| Total Xylenes                                      | U      | <u>J3</u> | 0.000174  | 0.00300  | 1        | 03/21/2023 10:45 | <u>WG2026970</u> |  |  |
| (S) Toluene-d8                                     | 104    |           |           | 80.0-120 |          | 03/21/2023 10:45 | <u>WG2026970</u> |  |  |
| (S) 4-Bromofluorobenzene                           | 99.0   |           |           | 77.0-126 |          | 03/21/2023 10:45 | <u>WG2026970</u> |  |  |
| (S) 1,2-Dichloroethane-d4                          | 91.7   |           |           | 70.0-130 |          | 03/21/2023 10:45 | WG2026970        |  |  |
SAMPLE RESULTS - 04 L1596004

Wet Chemistry by Method 9056A

|          | Result | Qualifier | MDL  | RDL  | Dilution | Analysis         | Batch     | — Ср |
|----------|--------|-----------|------|------|----------|------------------|-----------|------|
| Analyte  | mg/l   |           | mg/l | mg/l |          | date / time      |           | 2    |
| Chloride | 711    |           | 7.58 | 20.0 | 20       | 03/22/2023 12:29 | WG2027550 | Tc   |

### Volatile Organic Compounds (GC/MS) by Method 8260B

| Volatile Organic Co       | ompounds | s (GC/MS)   | by Metho  | d 8260B  |          |                  |           |   | ЗS             |
|---------------------------|----------|-------------|-----------|----------|----------|------------------|-----------|---|----------------|
|                           | Result   | Qualifier   | MDL       | RDL      | Dilution | Analysis         | Batch     |   |                |
| Analyte                   | mg/l     |             | mg/l      | mg/l     |          | date / time      |           |   | <sup>4</sup> C |
| Benzene                   | 0.0125   | <u>J3</u>   | 0.0000941 | 0.00100  | 1        | 03/21/2023 11:07 | WG2026970 |   |                |
| Toluene                   | U        |             | 0.000278  | 0.00100  | 1        | 03/21/2023 11:07 | WG2026970 |   | 5              |
| Ethylbenzene              | 0.00300  |             | 0.000137  | 0.00100  | 1        | 03/21/2023 11:07 | WG2026970 |   | ຶSi            |
| Total Xylenes             | 0.000790 | <u>J J3</u> | 0.000174  | 0.00300  | 1        | 03/21/2023 11:07 | WG2026970 |   |                |
| (S) Toluene-d8            | 102      |             |           | 80.0-120 |          | 03/21/2023 11:07 | WG2026970 |   | <sup>6</sup> Q |
| (S) 4-Bromofluorobenzene  | 109      |             |           | 77.0-126 |          | 03/21/2023 11:07 | WG2026970 |   |                |
| (S) 1,2-Dichloroethane-d4 | 91.4     |             |           | 70.0-130 |          | 03/21/2023 11:07 | WG2026970 | [ | <sup>7</sup>   |

Sc

# SAMPLE RESULTS - 05 L1596004

Page 38 of 97

ʹQc

Gl

Â

Sc

# Volatile Organic Compounds (GC/MS) by Method 8260B

| Volatile Organic Co       | ompound | ds (GC/MS) | by Metho  | d 8260B  |          |                  |           | 1               |        |
|---------------------------|---------|------------|-----------|----------|----------|------------------|-----------|-----------------|--------|
|                           | Result  | Qualifier  | MDL       | RDL      | Dilution | Analysis         | Batch     |                 | p.     |
| Analyte                   | mg/l    |            | mg/l      | mg/l     |          | date / time      |           | 2               |        |
| Benzene                   | U       | <u>J3</u>  | 0.0000941 | 0.00100  | 1        | 03/21/2023 10:04 | WG2026970 | T               | С      |
| Toluene                   | U       |            | 0.000278  | 0.00100  | 1        | 03/21/2023 10:04 | WG2026970 |                 |        |
| Ethylbenzene              | U       |            | 0.000137  | 0.00100  | 1        | 03/21/2023 10:04 | WG2026970 | <sup>3</sup> Ss | _      |
| Total Xylenes             | U       | <u>J3</u>  | 0.000174  | 0.00300  | 1        | 03/21/2023 10:04 | WG2026970 | 0.              | 3      |
| (S) Toluene-d8            | 103     |            |           | 80.0-120 |          | 03/21/2023 10:04 | WG2026970 | 4               | $\neg$ |
| (S) 4-Bromofluorobenzene  | 98.9    |            |           | 77.0-126 |          | 03/21/2023 10:04 | WG2026970 | C               | 'n     |
| (S) 1,2-Dichloroethane-d4 | 91.3    |            |           | 70.0-130 |          | 03/21/2023 10:04 | WG2026970 |                 |        |

SDG: L1596004

DATE/TIME: 03/23/23 14:29

PAGE: 9 of 15

# Received dy 200953711/2024 11:01:15 AM

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY L1596004-01,02,03,04

# Method Blank (MB)

| (MB) R3904223-1 03/22/23 06:46 |           |              |        |        |  |  |
|--------------------------------|-----------|--------------|--------|--------|--|--|
|                                | MB Result | MB Qualifier | MB MDL | MB RDL |  |  |
| Analyte                        | mg/l      |              | mg/l   | mg/l   |  |  |
| ,                              | 5         |              |        |        |  |  |

# L1595838-02 Original Sample (OS) • Duplicate (DUP)

| L1595838-02 Orig<br>(OS) L1595838-02 03/22 |      | 1          |   |       |               |                   |  |  | 4 |
|--------------------------------------------|------|------------|---|-------|---------------|-------------------|--|--|---|
|                                            | · ·  | DUP Result |   |       | DUP Qualifier | DUP RPD<br>Limits |  |  | 5 |
| Analyte                                    | mg/l | mg/l       |   | %     |               | %                 |  |  |   |
| Chloride                                   | 1.72 | 1.72       | 1 | 0.163 |               | 15                |  |  | 6 |

# L1595838-07 Original Sample (OS) • Duplicate (DUP)

| L1595838-07 C       | riginal Sample       | (OS) • Du     | plicate   | (DUP)   |               |                   |  |
|---------------------|----------------------|---------------|-----------|---------|---------------|-------------------|--|
| (OS) L1595838-07 03 | 3/22/23 10:33 • (DUF | P) R3904223-6 | 6 03/22/2 | 3 10:46 |               |                   |  |
|                     | Original Result      | DUP Result    | Dilution  | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |
| Analyte             | mg/l                 | mg/l          |           | %       |               | %                 |  |
| Chloride            | 1.70                 | 1.65          | 1         | 3.30    |               | 15                |  |

# Laboratory Control Sample (LCS)

| (LCS) R3904223-2 03/2 | 2/23 06:59   |            |          |             |               |
|-----------------------|--------------|------------|----------|-------------|---------------|
|                       | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte               | mg/l         | mg/l       | %        | %           |               |
| Chloride              | 40.0         | 38.9       | 97.1     | 80.0-120    |               |

# L1595838-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1595838-02 03/22/2 | 23 08:20 • (MS | ) R3904223-4    | 03/22/23 08:4 | 47 • (MSD) R39 | 04223-5 03/2 | 2/23 09:26 |          |             |              |               |      |            |
|--------------------------|----------------|-----------------|---------------|----------------|--------------|------------|----------|-------------|--------------|---------------|------|------------|
|                          | Spike Amount   | Original Result | MS Result     | MSD Result     | MS Rec.      | MSD Rec.   | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                  | mg/l           | mg/l            | mg/l          | mg/l           | %            | %          |          | %           |              |               | %    | %          |
| Chloride                 | 50.0           | 1.72            | 50.8          | 52.0           | 98.1         | 101        | 1        | 80.0-120    |              |               | 2.44 | 15         |

# L1595838-07 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1595838-07 | 03/22/23 10:33 • (MS) | R3904223-7 (    | 03/22/23 10:5 | 9       |          |             |              |
|------------------|-----------------------|-----------------|---------------|---------|----------|-------------|--------------|
|                  | Spike Amount          | Original Result | MS Result     | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte          | mg/l                  | mg/l            | mg/l          | %       |          | %           |              |
| Chloride         | 50.0                  | 1.70            | 49.9          | 96.4    | 1        | 80.0-120    |              |

```
Released to Imaging<sup>A</sup> 6/20/2024 10:49:41 AM
                  DCP Midstream - Tasman
```

PROJECT: 311090017

SDG: L1596004

DATE/TIME: 03/23/23 14:29

PAGE: 10 of 15 Τс

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

#### QUALITY CONTROL SUMMARY L1596004-03,04,05

|                           | 1         |              |           |          | l'Cn            |
|---------------------------|-----------|--------------|-----------|----------|-----------------|
| (MB) R3904497-3 03/21/2   | 23 08:01  |              |           |          |                 |
|                           | MB Result | MB Qualifier | MB MDL    | MB RDL   | 2               |
| Analyte                   | mg/l      |              | mg/l      | mg/l     | Tc              |
| Benzene                   | U         |              | 0.0000941 | 0.00100  |                 |
| Toluene                   | U         |              | 0.000278  | 0.00100  | <sup>3</sup> Ss |
| Ethylbenzene              | U         |              | 0.000137  | 0.00100  |                 |
| Xylenes, Total            | U         |              | 0.000174  | 0.00300  | 4               |
| (S) Toluene-d8            | 104       |              |           | 80.0-120 | Cr              |
| (S) 4-Bromofluorobenzene  | 99.7      |              |           | 77.0-126 |                 |
| (S) 1,2-Dichloroethane-d4 | 91.7      |              |           | 70.0-130 | ⁵Sr             |

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3904497-1 03/21/2  | 23 06:57 • (LCS | D) R3904497- | ·2 03/21/23 07· | :19      |           |             |               |                |      |            | 7  |
|---------------------------|-----------------|--------------|-----------------|----------|-----------|-------------|---------------|----------------|------|------------|----|
|                           | Spike Amount    | LCS Result   | LCSD Result     | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits | GI |
| Analyte                   | mg/l            | mg/l         | mg/l            | %        | %         | %           |               |                | %    | %          |    |
| Benzene                   | 0.00500         | 0.00540      | 0.00432         | 108      | 86.4      | 70.0-123    |               | <u>J3</u>      | 22.2 | 20         | 8  |
| Toluene                   | 0.00500         | 0.00527      | 0.00431         | 105      | 86.2      | 79.0-120    |               |                | 20.0 | 20         |    |
| Ethylbenzene              | 0.00500         | 0.00541      | 0.00445         | 108      | 89.0      | 79.0-123    |               |                | 19.5 | 20         | 9  |
| Xylenes, Total            | 0.0150          | 0.0159       | 0.0128          | 106      | 85.3      | 79.0-123    |               | <u>J3</u>      | 21.6 | 20         | Sc |
| (S) Toluene-d8            |                 |              |                 | 101      | 101       | 80.0-120    |               |                |      |            |    |
| (S) 4-Bromofluorobenzene  |                 |              |                 | 101      | 98.8      | 77.0-126    |               |                |      |            |    |
| (S) 1,2-Dichloroethane-d4 |                 |              |                 | 93.3     | 91.6      | 70.0-130    |               |                |      |            |    |

DATE/TIME: 03/23/23 14:29

PAGE: 11 of 15 Qc

Volatile Organic Compounds (GC/MS) by Method 8260B

### QUALITY CONTROL SUMMARY L1596004-01,02

Ср

Τс

Ss

Cn

Sr

Qc

#### Method Blank (MB)

| (MB) R3904502-3 03/22     | /23 18:22 |              |           |          |
|---------------------------|-----------|--------------|-----------|----------|
|                           | MB Result | MB Qualifier | MB MDL    | MB RDL   |
| Analyte                   | mg/l      |              | mg/l      | mg/l     |
| Benzene                   | U         |              | 0.0000941 | 0.00100  |
| Toluene                   | U         |              | 0.000278  | 0.00100  |
| Ethylbenzene              | U         |              | 0.000137  | 0.00100  |
| Xylenes, Total            | U         |              | 0.000174  | 0.00300  |
| (S) Toluene-d8            | 99.0      |              |           | 80.0-120 |
| (S) 4-Bromofluorobenzene  | 86.4      |              |           | 77.0-126 |
| (S) 1,2-Dichloroethane-d4 | 111       |              |           | 70.0-130 |

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3904502-1 03/22/   | '23 17:04 • (LCS | 5D) R3904502 | 2-2 03/22/23 17 | 7:23     |           |             |               |                |       |            | ſ   |
|---------------------------|------------------|--------------|-----------------|----------|-----------|-------------|---------------|----------------|-------|------------|-----|
|                           | Spike Amount     | LCS Result   | LCSD Result     | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits |     |
| Analyte                   | mg/l             | mg/l         | mg/l            | %        | %         | %           |               |                | %     | %          | l   |
| Benzene                   | 0.00500          | 0.00536      | 0.00537         | 107      | 107       | 70.0-123    |               |                | 0.186 | 20         | - F |
| Toluene                   | 0.00500          | 0.00519      | 0.00501         | 104      | 100       | 79.0-120    |               |                | 3.53  | 20         |     |
| Ethylbenzene              | 0.00500          | 0.00498      | 0.00465         | 99.6     | 93.0      | 79.0-123    |               |                | 6.85  | 20         | Г   |
| (ylenes, Total            | 0.0150           | 0.0145       | 0.0142          | 96.7     | 94.7      | 79.0-123    |               |                | 2.09  | 20         |     |
| (S) Toluene-d8            |                  |              |                 | 101      | 98.3      | 80.0-120    |               |                |       |            | L   |
| (S) 4-Bromofluorobenzene  |                  |              |                 | 89.0     | 87.4      | 77.0-126    |               |                |       |            |     |
| (S) 1,2-Dichloroethane-d4 |                  |              |                 | 113      | 113       | 70.0-130    |               |                |       |            |     |

SDG: L1596004

DATE/TIME: 03/23/23 14:29

PAGE: 12 of 15

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

# Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                 | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                                           |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                            |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                        |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                      |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                    |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                                          |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                   |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| J                               | The identification of the analyte is acceptable; the reported value is an estimate.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Guannor |                                                                                          |
|---------|------------------------------------------------------------------------------------------|
| J       | The identification of the analyte is acceptable; the reported value is an estimate.      |
| J3      | The associated batch QC was outside the established quality control range for precision. |

SDG: L1596004

# Received by OCD: 3/11/2024 11:01:15 ACCREDITATIONS & LOCATIONS

| Page | <i>43</i> | oj | F 97 |
|------|-----------|----|------|
|      |           |    |      |

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

| Alabama                       | 40660       | Nebraska                    | NE-OS-15-05      |
|-------------------------------|-------------|-----------------------------|------------------|
| Alaska                        | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                       | AZ0612      | New Hampshire               | 2975             |
| Arkansas                      | 88-0469     | New Jersey-NELAP            | TN002            |
| California                    | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado                      | TN00003     | New York                    | 11742            |
| Connecticut                   | PH-0197     | North Carolina              | Env375           |
| Florida                       | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                       | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>          | 923         | North Dakota                | R-140            |
| Idaho                         | TN00003     | Ohio-VAP                    | CL0069           |
| Illinois                      | 200008      | Oklahoma                    | 9915             |
| Indiana                       | C-TN-01     | Oregon                      | TN200002         |
| lowa                          | 364         | Pennsylvania                | 68-02979         |
| Kansas                        | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup>        | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>         | 16          | South Dakota                | n/a              |
| ouisiana                      | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| Louisiana                     | LA018       | Texas                       | T104704245-20-18 |
| Maine                         | TN00003     | Texas ⁵                     | LAB0152          |
| Maryland                      | 324         | Utah                        | TN000032021-11   |
| Massachusetts                 | M-TN003     | Vermont                     | VT2006           |
| Michigan                      | 9958        | Virginia                    | 110033           |
| Minnesota                     | 047-999-395 | Washington                  | C847             |
| Mississippi                   | TN00003     | West Virginia               | 233              |
| Missouri                      | 340         | Wisconsin                   | 998093910        |
| Montana                       | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025              | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                        | 1461.01     | USDA                        | P330-15-00234    |
| EPA–Crypto                    | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1596004 DATE/TIME: 03/23/23 14:29 PAGE: 14 of 15

| eceived by OCD: 3/11/2024                                                                       | 11:01:15 AM                  |                                                                                               |                                                                  |                                |                   |           |          |            |                                         |                |            |                                    |                                                                                                                                           |                                                                                                             |                                              | Page 44 a                                                                                               |  |  |                                                                |  |  |
|-------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------|-------------------|-----------|----------|------------|-----------------------------------------|----------------|------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|----------------------------------------------------------------|--|--|
| ompany Name/Address:                                                                            |                              |                                                                                               | Billing Infor                                                    | rmation:                       |                   |           |          | 1          | 4                                       | Analysis /     | / Conta    | iner / Preservativ                 | e                                                                                                                                         |                                                                                                             | Chain of Custor                              | y Page of                                                                                               |  |  |                                                                |  |  |
| CP -Midstream - Tasn<br>620 W. Marland Blvd<br>Jobbs, NM 88240                                  | nan                          |                                                                                               | Steve Weathers<br>370 17th St, Ste 2500<br>Denver, CO 80202      |                                |                   |           |          |            |                                         |                |            |                                    |                                                                                                                                           |                                                                                                             | - PEOPL                                      | ACC<br>acce<br>e advancing science                                                                      |  |  |                                                                |  |  |
| eport to:<br>Syle Norman                                                                        |                              |                                                                                               | Email To: knorman@tasman-<br>geo.com;swweathers@dcpmidstream.com |                                |                   |           |          |            |                                         |                |            |                                    |                                                                                                                                           |                                                                                                             | 12065 Lebanon Rd M                           | ULIET, TN<br>ount Juliet, TN 37122                                                                      |  |  |                                                                |  |  |
| roject Description:<br>Burton Flats Booster Station                                             |                              | City/State<br>Collected:                                                                      | <u> </u>                                                         | Please Circ<br>PT MT CT        |                   | Circle:   |          | es         |                                         |                |            |                                    |                                                                                                                                           |                                                                                                             | constitutes acknowled<br>Pace Terms and Cond | ia this chain of custody<br>Igment and acceptance of the<br>Itions found at:<br>com/hubfs/pas-standard- |  |  |                                                                |  |  |
| hone: 720-218-4003                                                                              | Client Project               | :#                                                                                            |                                                                  | Lab Project #<br>DCPTASMAN-BUI |                   | IFLAT     | Pres     | -NoPr      | T                                       | b-HCI          |            |                                    |                                                                                                                                           |                                                                                                             | SDG # 1                                      | 596004                                                                                                  |  |  |                                                                |  |  |
| ollected by (print):                                                                            | Site/Facility I              | D #                                                                                           |                                                                  | P.O. #<br>0000661900           |                   |           | E-Nol    | HDPE       | 40mlAmb-HCl                             | nIAm           |            |                                    |                                                                                                                                           |                                                                                                             |                                              | 225                                                                                                     |  |  |                                                                |  |  |
| HRIS FLORES<br>ollected by (signature):                                                         | Rush? (                      | Lab MUST Be                                                                                   | Notified)                                                        |                                |                   |           | HDP      | Som        | mIAn                                    | K 40r          |            |                                    |                                                                                                                                           |                                                                                                             | Acctnum: DC<br>Template:T1                   | CAN ANY COMPANY OF THE OWNER                                                                            |  |  |                                                                |  |  |
| mmediately<br>Packed on Ice N Y X                                                               | Next Da                      | Same Day     Five Day       Next Day     5 Day (Rad Only)       Two Day     10 Day (Rad Only) |                                                                  |                                |                   |           |          |            | Day<br>y (Rad Only) Date Results Needed |                | No.<br>of  | de 250m                            | Chloride 250mlHDPE-NoPres<br>Chloride-BLK 250mlHDPE-NoPres                                                                                | V8260BTEX 40                                                                                                | V8260BTEX-BLK 40mlAmb-H                      |                                                                                                         |  |  | Prelogin: <b>P984850</b><br>PM: <b>824 - Chris Ward</b><br>PB: |  |  |
| Sample ID                                                                                       | Comp/Grab                    | Matrix *                                                                                      | Depth                                                            | Date                           | Time              | Cntrs     | Chloride | Chlori     | V8260                                   | V8260          |            |                                    |                                                                                                                                           |                                                                                                             | Shipped Via: Remarks                         | Sample # (lab only)                                                                                     |  |  |                                                                |  |  |
| 1W-1                                                                                            |                              | GW                                                                                            |                                                                  | 3/16/2                         | 23 1004           | 4         |          |            | X                                       | -              |            |                                    |                                                                                                                                           |                                                                                                             |                                              | 1-01                                                                                                    |  |  |                                                                |  |  |
| W-2                                                                                             |                              | GW                                                                                            |                                                                  | 1                              | 0931              | 4         |          |            | X                                       |                | a control  |                                    |                                                                                                                                           |                                                                                                             |                                              | -02                                                                                                     |  |  |                                                                |  |  |
| 1W-3                                                                                            |                              | GW                                                                                            |                                                                  |                                | 1020              |           | X        |            | X                                       |                |            | and the second                     |                                                                                                                                           |                                                                                                             |                                              | -03                                                                                                     |  |  |                                                                |  |  |
| nW-4                                                                                            |                              | GW                                                                                            |                                                                  |                                |                   |           |          |            |                                         |                |            |                                    |                                                                                                                                           |                                                                                                             |                                              |                                                                                                         |  |  |                                                                |  |  |
| UPLICATE                                                                                        |                              | GW                                                                                            |                                                                  | 3/16/23                        | 5 1004            | 4         | X        |            | X                                       |                |            |                                    |                                                                                                                                           |                                                                                                             |                                              | -04                                                                                                     |  |  |                                                                |  |  |
|                                                                                                 |                              | GW                                                                                            |                                                                  |                                |                   |           | - ACTOR  |            |                                         |                | Sector and |                                    |                                                                                                                                           |                                                                                                             |                                              | -0-0311-                                                                                                |  |  |                                                                |  |  |
| RIP BLANK                                                                                       |                              | GW                                                                                            |                                                                  |                                |                   |           |          |            |                                         |                |            |                                    |                                                                                                                                           |                                                                                                             |                                              | -05                                                                                                     |  |  |                                                                |  |  |
|                                                                                                 |                              |                                                                                               |                                                                  |                                |                   |           |          |            |                                         |                |            |                                    |                                                                                                                                           |                                                                                                             |                                              |                                                                                                         |  |  |                                                                |  |  |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater |                              |                                                                                               |                                                                  |                                |                   |           |          | pH<br>Flow | Flow Other                              |                |            |                                    | Sample Receipt Checklist<br>COC Seal Present/Intact:NPYN<br>COC Signed/Accurate:YN<br>Bottles arrive intact:YN<br>Correct bottles used:YN |                                                                                                             |                                              |                                                                                                         |  |  |                                                                |  |  |
| DW - Drinking Water<br>DT - Other                                                               | Samples returned<br>UPSFedEx |                                                                                               | -                                                                | Tr                             | acking #          | 60        | 94       | 5          | 47                                      | 0 9            | 19-        | 12                                 |                                                                                                                                           | Sufficient volume sent:<br><u>If Applicable</u><br>VOA Zero Headspace:<br>Preservation Correct/Checked: Y N |                                              |                                                                                                         |  |  |                                                                |  |  |
| Relinquished by : (Signature)                                                                   |                              | ate:<br>3/16/2                                                                                | Time                                                             | e: Re                          | eceived by: (Sign | ature)    |          |            |                                         | Trip Blan      | nk Rece    | ived: Ves / No<br>HCL / Med<br>TBR | эΗ                                                                                                                                        |                                                                                                             | tion Correct/Ch<br>en <0.5 mR/hr:            | ecked: _Y _N                                                                                            |  |  |                                                                |  |  |
| Relinquished by : (Signature)                                                                   |                              | ate:                                                                                          | Time                                                             | e: Re                          | eceived by: (Sign | ature)    |          |            |                                         | Temp: N<br>Sot |            | C Bottles Receiv                   | •                                                                                                                                         | If preservation required by Login: Date/Time                                                                |                                              |                                                                                                         |  |  |                                                                |  |  |
| Relinquished by : (Signature)                                                                   | D                            | ate:                                                                                          | Time                                                             | e: Re                          | eceived for lab b | v: (Signa | nature)  |            |                                         | Date:          | 2/2        | Time: 9)                           | 8                                                                                                                                         | Hold:                                                                                                       |                                              | Condition:<br>NCF / OK                                                                                  |  |  |                                                                |  |  |

ace



| eAnalytical <sup>®</sup> ANALYT | ICAL REPORT                  | <sup>1</sup> Cp |
|---------------------------------|------------------------------|-----------------|
|                                 |                              | <sup>2</sup> Tc |
| DCP Midstream - Ta              | asman                        | <sup>3</sup> Ss |
| Sample Delivery Group:          | L1630641                     | <sup>4</sup> Cn |
| Samples Received:               | 06/29/2023                   | ⁵Sr             |
| Project Number:                 | 311090017                    |                 |
| Description:                    | Burton Flats Booster Station | <sup>6</sup> Qc |
| Report To:                      | Kyle Norman                  | <sup>7</sup> Gl |
|                                 | 2620 W. Marland Blvd         | <sup>8</sup> Al |
|                                 | Hobbs, NM 88240              | <sup>9</sup> Sc |

Entire Report Reviewed By:

Chrip Ward

Chris Ward Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

# Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 0/20/2024 10:49:41 AM DCP Midstream - Tasman PROJECT: 311090017

SDG: L1630641 DATE/TIME: 07/14/23 10:26

PAGE: 1 of 16

# TABLE OF CONTENTS

| Cp: Cover Page                                     | 1  |
|----------------------------------------------------|----|
| Tc: Table of Contents                              | 2  |
| Ss: Sample Summary                                 | 3  |
| Cn: Case Narrative                                 | 4  |
| Sr: Sample Results                                 | 5  |
| MW-1 L1630641-01                                   | 5  |
| MW-2 L1630641-02                                   | 6  |
| MW-3 L1630641-03                                   | 7  |
| DUPLICATE L1630641-05                              | 8  |
| TRIP BLANK L1630641-07                             | 9  |
| Qc: Quality Control Summary                        | 10 |
| Wet Chemistry by Method 9056A                      | 10 |
| Volatile Organic Compounds (GC/MS) by Method 8260B | 12 |
| GI: Glossary of Terms                              | 13 |
| Al: Accreditations & Locations                     | 14 |
| Sc: Sample Chain of Custody                        | 15 |

Ss

Cn

Sr

Qc

Gl

Â

Sc

SDG: L1630641

DATE/TIME: 07/14/23 10:26 PAGE: 2 of 16

# SAMPLE SUMMARY

Page 47 of 97

Ср

Тс

Cn

Sr

ʹQc

Gl

Â

Sc

| /W-1 L1630641-01 GW                                                                                                       |                    |          | Collected by                                                 | Collected date/time<br>06/28/23 08:02                                                              | Received date/time<br>06/29/23 09:00                     |                                                         |  |
|---------------------------------------------------------------------------------------------------------------------------|--------------------|----------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|--|
| Method                                                                                                                    | Batch              | Dilution | Preparation<br>date/time                                     | Analysis<br>date/time                                                                              | Analyst                                                  | Location                                                |  |
| Wet Chemistry by Method 9056A                                                                                             | WG2093269          | 5        | 07/12/23 20:47                                               | 07/12/23 20:47                                                                                     | КМС                                                      | Mt. Juliet, TN                                          |  |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                                        | WG2089887          | 1        | 07/06/23 05:44                                               | 07/06/23 05:44                                                                                     | ACG                                                      | Mt. Juliet, TN                                          |  |
|                                                                                                                           |                    |          | Collected by                                                 | Collected date/time 06/28/23 08:23                                                                 | Received da<br>06/29/23 09                               |                                                         |  |
| MW-2 L1630641-02 GW                                                                                                       |                    |          |                                                              | 06/28/23 08:23                                                                                     | 06/29/23 09                                              | :00                                                     |  |
| Method                                                                                                                    | Batch              | Dilution | Preparation<br>date/time                                     | Analysis<br>date/time                                                                              | Analyst                                                  | Location                                                |  |
| Wet Chemistry by Method 9056A                                                                                             | WG2093529          | 100      | 07/12/23 23:12                                               | 07/12/23 23:12                                                                                     | GEB                                                      | Mt. Juliet, TN                                          |  |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                                        | WG2089887          | 1        | 07/06/23 06:06                                               | 07/06/23 06:06                                                                                     | ACG                                                      | Mt. Juliet, TN                                          |  |
|                                                                                                                           |                    |          | Collected by                                                 | Collected date/time                                                                                |                                                          |                                                         |  |
| MW-3 L1630641-03 GW                                                                                                       |                    |          |                                                              | 06/28/23 08:42                                                                                     | Received date/time<br>06/29/23 09:00<br>Analyst Location |                                                         |  |
| Method                                                                                                                    | Batch              | Dilution | Preparation<br>date/time                                     | Analysis<br>date/time                                                                              | Analyst                                                  | Location                                                |  |
| Wet Chemistry by Method 9056A                                                                                             | WG2093529          | 5        | 07/12/23 23:25                                               | 07/12/23 23:25                                                                                     | GEB                                                      | Mt. Juliet, TN                                          |  |
| Volatile Organic Compounds (GC/MS) by Method 8260B                                                                        | WG2089887          | 1        | 07/06/23 06:27                                               | 07/06/23 06:27                                                                                     | ACG                                                      | Mt. Juliet, TN                                          |  |
| ······································                                                                                    |                    |          |                                                              |                                                                                                    |                                                          |                                                         |  |
|                                                                                                                           |                    |          | Collected by                                                 | Collected date/time                                                                                | Received da                                              |                                                         |  |
|                                                                                                                           |                    |          | Collected by                                                 | Collected date/time<br>06/28/23 00:00                                                              | Received da<br>06/29/23 09                               |                                                         |  |
| DUPLICATE L1630641-05 GW                                                                                                  | Batch              | Dilution | Collected by<br>Preparation<br>date/time                     |                                                                                                    |                                                          |                                                         |  |
| DUPLICATE L1630641-05 GW<br>Method                                                                                        | Batch<br>WG2093529 | Dilution | Preparation                                                  | 06/28/23 00:00<br>Analysis                                                                         | 06/29/23 09                                              | :00<br>Location                                         |  |
| DUPLICATE L1630641-05 GW<br>Method<br>Wet Chemistry by Method 9056A<br>Volatile Organic Compounds (GC/MS) by Method 8260B |                    |          | Preparation<br>date/time                                     | 06/28/23 00:00<br>Analysis<br>date/time                                                            | 06/29/23 09<br>Analyst                                   | :00<br>Location<br>Mt. Juliet, TN                       |  |
| DUPLICATE L1630641-05 GW<br>Method<br>Wet Chemistry by Method 9056A<br>Volatile Organic Compounds (GC/MS) by Method 8260B | WG2093529          | 5        | Preparation<br>date/time<br>07/12/23 23:39                   | 06/28/23 00:00<br>Analysis<br>date/time<br>07/12/23 23:39                                          | 06/29/23 09<br>Analyst<br>GEB                            | Location<br>Mt. Juliet, TN<br>Mt. Juliet, TN<br>te/time |  |
| DUPLICATE L1630641-05 GW<br>Method<br>Wet Chemistry by Method 9056A                                                       | WG2093529          | 5        | Preparation<br>date/time<br>07/12/23 23:39<br>07/06/23 06:49 | 06/28/23 00:00<br>Analysis<br>date/time<br>07/12/23 23:39<br>07/06/23 06:49<br>Collected date/time | 06/29/23 09<br>Analyst<br>GEB<br>ACG<br>Received da      | Location<br>Mt. Juliet, TN<br>Mt. Juliet, TN<br>te/time |  |

SDG: L1630641

DATE/TIME: 07/14/23 10:26 PAGE: 3 of 16

# CASE NARRATIVE

his Word

Chris Ward Project Manager



SDG: L1630641

DATE/TIME: 07/14/23 10:26

PAGE: 4 of 16

#### SAMPLE RESULTS - 01 L1630641

Page 49 of 97

Â

Sc

Collected date/time: 06/28/23 08:02

| Wet Chemist | Wet Chemistry by Method 9056A |           |      |      |          |                  |           |  |    |  |
|-------------|-------------------------------|-----------|------|------|----------|------------------|-----------|--|----|--|
|             | Result                        | Qualifier | MDL  | RDL  | Dilution | Analysis         | Batch     |  | Ср |  |
| Analyte     | mg/l                          |           | mg/l | mg/l |          | date / time      |           |  | 2  |  |
| Chloride    | 716                           |           | 1.90 | 5.00 | 5        | 07/12/2023 20:47 | WG2093269 |  | Tc |  |

| Volatile Organic Compounds (GC/MS) by Method 8260B |          |           |           |          |          |                  |           |    |  |
|----------------------------------------------------|----------|-----------|-----------|----------|----------|------------------|-----------|----|--|
|                                                    | Result   | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     | L  |  |
| Analyte                                            | mg/l     |           | mg/l      | mg/l     |          | date / time      |           | 4  |  |
| Benzene                                            | 0.00918  |           | 0.0000941 | 0.00100  | 1        | 07/06/2023 05:44 | WG2089887 |    |  |
| Toluene                                            | U        |           | 0.000278  | 0.00100  | 1        | 07/06/2023 05:44 | WG2089887 | 5  |  |
| Ethylbenzene                                       | 0.000311 | J         | 0.000137  | 0.00100  | 1        | 07/06/2023 05:44 | WG2089887 | 55 |  |
| Total Xylenes                                      | U        |           | 0.000174  | 0.00300  | 1        | 07/06/2023 05:44 | WG2089887 |    |  |
| (S) Toluene-d8                                     | 98.0     |           |           | 80.0-120 |          | 07/06/2023 05:44 | WG2089887 | 6  |  |
| (S) 4-Bromofluorobenzene                           | 88.9     |           |           | 77.0-126 |          | 07/06/2023 05:44 | WG2089887 |    |  |
| (S) 1,2-Dichloroethane-d4                          | 106      |           |           | 70.0-130 |          | 07/06/2023 05:44 | WG2089887 | 7  |  |

#### SAMPLE RESULTS - 02 L1630641

Page 50 of 97

Collected date/time: 06/28/23 08:23 Wet Chemistry by Method 9056A

|          |        |           |      |      |          |                  |           |  | Cn |
|----------|--------|-----------|------|------|----------|------------------|-----------|--|----|
|          | Result | Qualifier | MDL  | RDL  | Dilution | Analysis         | Batch     |  | Cp |
| Analyte  | mg/l   |           | mg/l | mg/l |          | date / time      |           |  | 2  |
| Chloride | 1840   |           | 37.9 | 100  | 100      | 07/12/2023 23:12 | WG2093529 |  | Tc |

# Volatile Organic Compounds (GC/MS) by Method 8260B

| Volatile Organic C        | ompound  | s (GC/MS) | by Metho  | d 8260B  |          |                  |           | <sup>3</sup> S |
|---------------------------|----------|-----------|-----------|----------|----------|------------------|-----------|----------------|
|                           | Result   | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     |                |
| Analyte                   | mg/l     |           | mg/l      | mg/l     |          | date / time      |           | 4 C            |
| Benzene                   | 0.000135 | J         | 0.0000941 | 0.00100  | 1        | 07/06/2023 06:06 | WG2089887 |                |
| Toluene                   | U        |           | 0.000278  | 0.00100  | 1        | 07/06/2023 06:06 | WG2089887 | 5              |
| Ethylbenzene              | U        |           | 0.000137  | 0.00100  | 1        | 07/06/2023 06:06 | WG2089887 | ٢S             |
| Total Xylenes             | U        |           | 0.000174  | 0.00300  | 1        | 07/06/2023 06:06 | WG2089887 |                |
| (S) Toluene-d8            | 99.3     |           |           | 80.0-120 |          | 07/06/2023 06:06 | WG2089887 | <sup>6</sup> G |
| (S) 4-Bromofluorobenzene  | 87.3     |           |           | 77.0-126 |          | 07/06/2023 06:06 | WG2089887 |                |
| (S) 1,2-Dichloroethane-d4 | 107      |           |           | 70.0-130 |          | 07/06/2023 06:06 | WG2089887 | <sup>7</sup> G |

Â

Sc

# SAMPLE RESULTS - 03

L1630641

Wet Chemistry by Method 9056A

Collected date/time: 06/28/23 08:42

|          | Result | Qualifier | MDL  | RDL  | Dilution | Analysis         | Batch     | <br>Ср |
|----------|--------|-----------|------|------|----------|------------------|-----------|--------|
| Analyte  | mg/l   |           | mg/l | mg/l |          | date / time      |           | 2      |
| Chloride | 469    |           | 1.90 | 5.00 | 5        | 07/12/2023 23:25 | WG2093529 | ⁻Tc    |

| Volatile Organic Co       | ompound  | s (GC/MS) | by Metho  | d 8260B  |          |                  |           |  |
|---------------------------|----------|-----------|-----------|----------|----------|------------------|-----------|--|
|                           | Result   | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     |  |
| Analyte                   | mg/l     |           | mg/l      | mg/l     |          | date / time      |           |  |
| Benzene                   | 0.000132 | J         | 0.0000941 | 0.00100  | 1        | 07/06/2023 06:27 | WG2089887 |  |
| Toluene                   | U        |           | 0.000278  | 0.00100  | 1        | 07/06/2023 06:27 | WG2089887 |  |
| Ethylbenzene              | U        |           | 0.000137  | 0.00100  | 1        | 07/06/2023 06:27 | WG2089887 |  |
| Total Xylenes             | U        |           | 0.000174  | 0.00300  | 1        | 07/06/2023 06:27 | WG2089887 |  |
| (S) Toluene-d8            | 99.8     |           |           | 80.0-120 |          | 07/06/2023 06:27 | WG2089887 |  |
| (S) 4-Bromofluorobenzene  | 84.4     |           |           | 77.0-126 |          | 07/06/2023 06:27 | WG2089887 |  |
| (S) 1,2-Dichloroethane-d4 | 105      |           |           | 70.0-130 |          | 07/06/2023 06:27 | WG2089887 |  |

# SAMPLE RESULTS - 05

L1630641

Wet Chemistry by Method 9056A

|          | Result | Qualifier MDL | RDL  | Dilution | Analysis         | Batch     | <br>Ср |
|----------|--------|---------------|------|----------|------------------|-----------|--------|
| Analyte  | mg/l   | mg/l          | mg/l |          | date / time      |           | 2      |
| Chloride | 762    | 1.90          | 5.00 | 5        | 07/12/2023 23:39 | WG2093529 | Tc     |

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result  | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch            | L |
|---------------------------|---------|-----------|-----------|----------|----------|------------------|------------------|---|
| Analyte                   | mg/l    |           | mg/l      | mg/l     |          | date / time      |                  | 4 |
| Benzene                   | 0.00134 |           | 0.0000941 | 0.00100  | 1        | 07/06/2023 06:49 | WG2089887        |   |
| Toluene                   | U       |           | 0.000278  | 0.00100  | 1        | 07/06/2023 06:49 | <u>WG2089887</u> | 5 |
| Ethylbenzene              | U       |           | 0.000137  | 0.00100  | 1        | 07/06/2023 06:49 | WG2089887        | Ŭ |
| Total Xylenes             | U       |           | 0.000174  | 0.00300  | 1        | 07/06/2023 06:49 | <u>WG2089887</u> |   |
| (S) Toluene-d8            | 98.1    |           |           | 80.0-120 |          | 07/06/2023 06:49 | WG2089887        | 6 |
| (S) 4-Bromofluorobenzene  | 91.4    |           |           | 77.0-126 |          | 07/06/2023 06:49 | <u>WG2089887</u> |   |
| (S) 1,2-Dichloroethane-d4 | 108     |           |           | 70.0-130 |          | 07/06/2023 06:49 | WG2089887        | 7 |

Â

Sc

# SAMPLE RESULTS - 07

Page 53 of 97

ʹQc

Gl

Â

Sc

|                           | Result | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch            |  |
|---------------------------|--------|-----------|-----------|----------|----------|------------------|------------------|--|
| Analyte                   | mg/l   |           | mg/l      | mg/l     |          | date / time      |                  |  |
| Benzene                   | U      |           | 0.0000941 | 0.00100  | 1        | 07/06/2023 01:45 | <u>WG2089887</u> |  |
| Toluene                   | U      |           | 0.000278  | 0.00100  | 1        | 07/06/2023 01:45 | <u>WG2089887</u> |  |
| Ethylbenzene              | U      |           | 0.000137  | 0.00100  | 1        | 07/06/2023 01:45 | WG2089887        |  |
| Total Xylenes             | U      |           | 0.000174  | 0.00300  | 1        | 07/06/2023 01:45 | <u>WG2089887</u> |  |
| (S) Toluene-d8            | 101    |           |           | 80.0-120 |          | 07/06/2023 01:45 | WG2089887        |  |
| (S) 4-Bromofluorobenzene  | 81.4   |           |           | 77.0-126 |          | 07/06/2023 01:45 | WG2089887        |  |
| (S) 1,2-Dichloroethane-d4 | 106    |           |           | 70.0-130 |          | 07/06/2023 01:45 | WG2089887        |  |

# Ref & gldy 92 63 91/2024 11:01:15 AM

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

# Method Blank (MB)

| (MB) R3948339-1 ( | 07/12/23 09:14 |              |        |        |  |
|-------------------|----------------|--------------|--------|--------|--|
|                   | MB Result      | MB Qualifier | MB MDL | MB RDL |  |
| Analyte           | mg/l           |              | mg/l   | mg/l   |  |
| Chloride          | U              |              | 0.379  | 1.00   |  |

# L1630515-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1630515-02 07/12 | 2/23 15:42 • (DUP | ) R3948339-5 | 07/12/23 | 16:33   |               |                   |
|------------------------|-------------------|--------------|----------|---------|---------------|-------------------|
|                        | Original Result   | DUP Result   | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                | mg/l              | mg/l         |          | %       |               | %                 |
| Chloride               | 14.7              | 14.5         | 5        | 1.56    |               | 15                |

# L1630537-05 Original Sample (OS) • Duplicate (DUP)

| (OS) L1630537-05 07/1 | 12/23 19:56 • (DUP | ) R3948339-6 | 07/12/23 | 20:13   |               |                |  |
|-----------------------|--------------------|--------------|----------|---------|---------------|----------------|--|
|                       | Original Result    | DUP Result   | Dilution | DUP RPD | DUP Qualifier | JP RPD<br>nits |  |
| Analyte               | mg/l               | mg/l         |          | %       |               |                |  |
| Chloride              | 61.9               | 62.3         | 1        | 0.782   |               |                |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3948339-2 07/12 | /23 09:31    |            |          |             |               |
|------------------------|--------------|------------|----------|-------------|---------------|
|                        | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                | mg/l         | mg/l       | %        | %           |               |
| Chloride               | 40.0         | 39.4       | 98.5     | 80.0-120    |               |

# L1630515-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1630515-02 07/12/2 | 23 15:42 • (MS) F | 23948339-3 0    | 7/12/23 15:59 • | (MSD) R39483 | 39-4 07/12/23 | 3 16:16  |          |             |              |               |      |            |
|--------------------------|-------------------|-----------------|-----------------|--------------|---------------|----------|----------|-------------|--------------|---------------|------|------------|
|                          | Spike Amount      | Original Result | MS Result       | MSD Result   | MS Rec.       | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                  | mg/l              | mg/l            | mg/l            | mg/l         | %             | %        |          | %           |              |               | %    | %          |
| Chloride                 | 250               | 14.7            | 269             | 263          | 102           | 99.4     | 5        | 80.0-120    |              |               | 2.13 | 15         |

### L1630537-05 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1630537-05 ( | 07/12/23 19:56 • (MS) I | R3948339-7 C    | 7/12/23 20:30 |         |          |             |              |
|--------------------|-------------------------|-----------------|---------------|---------|----------|-------------|--------------|
|                    | Spike Amount            | Original Result | MS Result     | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte            | mg/l                    | mg/l            | mg/l          | %       |          | %           |              |
| Chloride           | 50.0                    | 61.9            | 111           | 98.0    | 1        | 80.0-120    |              |

Released to Imaging: 6/20/2024 10:49:41 AM DCP Midstream - Tasman PROJECT: 311090017

SDG: L1630641 DATE/TIME: 07/14/23 10:26

PAGE: 10 of 16 <sup>3</sup>Ss - <sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al <sup>9</sup>Sc

Тс

# Rep in glang 230 230 1/2024 11:01:15 AM

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

# Method Blank (MB)

| (MB) R3948112-1 07/12 | 2/23 22:46 |              |        |        |
|-----------------------|------------|--------------|--------|--------|
|                       | MB Result  | MB Qualifier | MB MDL | MB RDL |
| Analyte               | mg/l       |              | mg/l   | mg/l   |
| Chloride              | 0.431      | J            | 0.379  | 1.00   |

# L1630688-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1630688-01 07/12/2 | 23 23:52 • (DUP | ) R3948112-5 | 07/13/23 ( | 00:32   |               |                   |
|--------------------------|-----------------|--------------|------------|---------|---------------|-------------------|
|                          | Original Result | DUP Result   | Dilution   | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                  | mg/l            | mg/l         |            | %       |               | %                 |
| Chloride                 | 102             | 95.9         | 1          | 6.33    |               | 15                |

# L1630883-32 Original Sample (OS) • Duplicate (DUP)

| (OS) L1630883-32 07/13 | /23 04:48 • (DUF | P) R3948112-6 | 07/13/23 | 05:01   |               |                   |  |
|------------------------|------------------|---------------|----------|---------|---------------|-------------------|--|
|                        | Original Result  | DUP Result    | Dilution | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |  |
| Analyte                | mg/l             | mg/l          |          | %       |               | %                 |  |
| Chloride               | 6.84             | 7.09          | 1        | 3.68    |               | 15                |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3948112-2 07/12/2 | 23 22:58     |            |          |             |               |
|--------------------------|--------------|------------|----------|-------------|---------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                  | mg/l         | mg/l       | %        | %           |               |
| Chloride                 | 40.0         | 39.4       | 98.5     | 80.0-120    |               |

# L1630688-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1630688-01 07/12/2 | 3 23:52 • (MS)                                                                                                                    | R3948112-3 07 | 7/13/23 00:06 | (MSD) R39481 | 12-4 07/13/23 | 00:19 |   |          |  |  |       |    |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|--------------|---------------|-------|---|----------|--|--|-------|----|--|
|                          | Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits |               |               |              |               |       |   |          |  |  |       |    |  |
| Analyte                  | mg/l                                                                                                                              | mg/l          | mg/l          | mg/l         | %             | %     |   | %        |  |  | %     | %  |  |
| Chloride                 | 50.0                                                                                                                              | 102           | 149           | 148          | 93.6          | 92.5  | 1 | 80.0-120 |  |  | 0.361 | 15 |  |

# L1630883-32 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1630883-32 07/13/2 | 23 04:48 • (MS) | R3948112-7 07   | 7/13/23 05:15 |         |          |             |              |
|--------------------------|-----------------|-----------------|---------------|---------|----------|-------------|--------------|
|                          | Spike Amount    | Original Result | MS Result     | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                  | mg/l            | mg/l            | mg/l          | %       |          | %           |              |
| Chloride                 | 50.0            | 6.84            | 57.6          | 102     | 1        | 80.0-120    |              |

Released to Imaging: 6/20/2024 10:49:41 AM DCP Midstream - Tasman SDG: L1630641 DATE/TIME: 07/14/23 10:26

Page 55 of 97

<sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al <sup>9</sup>Sc

Тс

Ss

PAGE: 11 of 16 Volatile Organic Compounds (GC/MS) by Method 8260B

#### QUALITY CONTROL SUMMARY L1630641-01,02,03,05,07

Тс

Ss

Cn

Sr

Qc

#### Method Blank (MB)

| (MB) R3945567-3 07/05/    | 23 22:01  |              |           |          |
|---------------------------|-----------|--------------|-----------|----------|
|                           | MB Result | MB Qualifier | MB MDL    | MB RDL   |
| Analyte                   | mg/l      |              | mg/l      | mg/l     |
| Benzene                   | U         |              | 0.0000941 | 0.00100  |
| Toluene                   | U         |              | 0.000278  | 0.00100  |
| Ethylbenzene              | U         |              | 0.000137  | 0.00100  |
| Total Xylenes             | U         |              | 0.000174  | 0.00300  |
| (S) Toluene-d8            | 102       |              |           | 80.0-120 |
| (S) 4-Bromofluorobenzene  | 85.6      |              |           | 77.0-126 |
| (S) 1,2-Dichloroethane-d4 | 108       |              |           | 70.0-130 |

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3945567-1 07/05/   | 23 20:12 • (LCS | SD) R3945567 | -2 07/05/23 20 | D:34     |           |             |               |                |      |            | 7    |
|---------------------------|-----------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|------|------------|------|
|                           | Spike Amount    | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits | Í GI |
| Analyte                   | mg/l            | mg/l         | mg/l           | %        | %         | %           |               |                | %    | %          |      |
| Benzene                   | 0.00500         | 0.00500      | 0.00451        | 100      | 90.2      | 70.0-123    |               |                | 10.3 | 20         | 8    |
| Toluene                   | 0.00500         | 0.00482      | 0.00452        | 96.4     | 90.4      | 79.0-120    |               |                | 6.42 | 20         | A    |
| Ethylbenzene              | 0.00500         | 0.00446      | 0.00414        | 89.2     | 82.8      | 79.0-123    |               |                | 7.44 | 20         | 9    |
| Total Xylenes             | 0.0150          | 0.0132       | 0.0122         | 88.0     | 81.3      | 79.0-123    |               |                | 7.87 | 20         | Sc   |
| (S) Toluene-d8            |                 |              |                | 96.3     | 99.1      | 80.0-120    |               |                |      |            |      |
| (S) 4-Bromofluorobenzene  |                 |              |                | 86.4     | 88.6      | 77.0-126    |               |                |      |            |      |
| (S) 1,2-Dichloroethane-d4 |                 |              |                | 105      | 107       | 70.0-130    |               |                |      |            |      |

SDG: L1630641

DATE/TIME: 07/14/23 10:26

PAGE: 12 of 16

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

# Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                                           |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                                |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.                                                                                                                                                                                                                                                                  |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                                              |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was<br>no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL"<br>(Below Detectable Levels). The information in the results column should always be accompanied by either an MDL<br>(Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect<br>or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                                      |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                                    |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                                          |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                                         |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                                        |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1630641 DATE/TIME: 07/14/23 10:26

# Received by OCD: 3/11/2024 11:01:15 ACCREDITATIONS & LOCATIONS

| P | ag | e | 58 | oj | f 9 | 97 |
|---|----|---|----|----|-----|----|
|   |    |   |    |    |     |    |

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

| Alabama                      | 40660       | Nebraska                    | NE-OS-15-05      |
|------------------------------|-------------|-----------------------------|------------------|
| Alaska                       | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                      | AZ0612      | New Hampshire               | 2975             |
| Arkansas                     | 88-0469     | New Jersey–NELAP            | TN002            |
| California                   | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado                     | TN00003     | New York                    | 11742            |
| Connecticut                  | PH-0197     | North Carolina              | Env375           |
| lorida                       | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                      | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>         | 923         | North Dakota                | R-140            |
| daho                         | TN00003     | Ohio-VAP                    | CL0069           |
| llinois                      | 200008      | Oklahoma                    | 9915             |
| ndiana                       | C-TN-01     | Oregon                      | TN200002         |
| owa                          | 364         | Pennsylvania                | 68-02979         |
| Kansas                       | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup>       | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>        | 16          | South Dakota                | n/a              |
| ouisiana                     | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| ouisiana                     | LA018       | Texas                       | T104704245-20-18 |
| Maine                        | TN00003     | Texas <sup>5</sup>          | LAB0152          |
| /laryland                    | 324         | Utah                        | TN000032021-11   |
| Massachusetts                | M-TN003     | Vermont                     | VT2006           |
| Aichigan                     | 9958        | Virginia                    | 110033           |
| linnesota                    | 047-999-395 | Washington                  | C847             |
| Mississippi                  | TN00003     | West Virginia               | 233              |
| Missouri                     | 340         | Wisconsin                   | 998093910        |
| Montana                      | CERT0086    | Wyoming                     | A2LA             |
| A2LA – ISO 17025             | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| 2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                       | 1461.01     | USDA                        | P330-15-00234    |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1630641

| eived by OCD: 3/11/2024 11:                                     |                                                                                                   |                          | Billing Infor                                                     | mation:                             |                 | T           |                           |                  | Δ                | nalysis /     | Containe | r / Preserv | ative  |                                                                            |                              | Chain of Custo                                                            | Page 59           dy         Page of      |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------|-------------------------------------------------------------------|-------------------------------------|-----------------|-------------|---------------------------|------------------|------------------|---------------|----------|-------------|--------|----------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------|-------------------------------------------|
| CP Midstream - Tasm<br>620 W. Marland Blvd<br>obbs, NM 88240    | an                                                                                                |                          | Steve Weathers<br>370 17th St, Ste 2500<br>Denver, CO 80202       |                                     |                 |             |                           |                  |                  |               |          |             |        |                                                                            |                              | PEOF                                                                      | Pace.                                     |
| eport to:                                                       |                                                                                                   |                          | Email To: knorman@tasman-<br>geo.com;swweathers@dcpmidstream.com; |                                     |                 |             |                           |                  |                  |               |          |             |        |                                                                            |                              | 12065 Lebanon Rd                                                          | JULIET, TN<br>Mount Juliet, TN 37122      |
| yle Norman                                                      |                                                                                                   |                          | geo.com;s                                                         |                                     |                 |             |                           |                  |                  |               |          |             |        |                                                                            |                              | e via this chain of custody<br>edgment and acceptance of the              |                                           |
| oject Description:<br>urton Flats Booster Station               |                                                                                                   | City/State<br>Collected: |                                                                   | Please Circ<br>PT MT CT             |                 |             |                           | res              |                  | _             |          |             |        |                                                                            |                              |                                                                           | is.com/hubfs/pas-standard-                |
| none: 720-218-4003                                              | Client Project                                                                                    | #                        |                                                                   | Lab Project #<br>DCPTASMAN-BURTONFL |                 |             | oPres                     | 250mlHDPE-NoPres | BTEX 40mlAmb-HCl | 40mlAmb-HCl   |          |             |        |                                                                            | SDG # L16706                 |                                                                           |                                           |
| billected by (print):<br>hris Flores                            | Site/Facility ID # Rush? (Lab MUST Be Notified)                                                   |                          |                                                                   | P.O. #<br>0000661900                | )               |             | DPE-N                     | IDHIM            |                  | 40mlA         |          |             |        |                                                                            |                              | ALTER ALL CONTRACTOR                                                      | CPTASMAN                                  |
| ollected by (signature):                                        | Thre):<br>Rush? (Lab MUST Be Noti<br>Same DayFive Day<br>Next Day5 Day (Rac<br>Two Day10 Day (Rac |                          |                                                                   | Quote #<br>Date Resu                | Its Needed      | No.         | Chloride 250mlHDPE-NoPres | e-BLK 250        |                  | V8260BTEX-BLK | BTEX-BLK |             |        | Template: <b>T1</b><br>Prelogin: <b>P1(</b><br>PM: <b>824 - Chr</b><br>PB: |                              | .004412                                                                   |                                           |
| acked on Ice N Y X<br>Sample ID                                 | Comp/Grab                                                                                         | Matrix *                 | Depth                                                             | Date                                | Time            | Of<br>Cntrs | Chlorid                   | Chloride-BLK     | V8260BTEX        | V82601        |          |             |        |                                                                            |                              | Shipped Via:<br>Remarks                                                   | FedEX Ground Sample # (lab only)          |
| 1W-1                                                            |                                                                                                   | GW                       |                                                                   | 6.28.23                             | 08:02           | 4           | X                         | X                | X                | X             |          |             |        |                                                                            |                              | Karana da                                                                 | 10-                                       |
| IW-2                                                            | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1                                                          | GW                       |                                                                   | 1                                   | 08:2            | 34          | X                         | X                | X                | X             |          |             |        |                                                                            | -1-1-1                       | -the house                                                                | -02                                       |
| W-3                                                             |                                                                                                   | GW                       |                                                                   |                                     | 08:42           | 4           | ×                         | X                | X                | X             |          |             |        |                                                                            |                              |                                                                           | -03                                       |
| IW-4                                                            |                                                                                                   | GW                       |                                                                   |                                     |                 |             |                           | 1.1.1.           | -                |               |          |             |        |                                                                            |                              |                                                                           | - F                                       |
| DUPLICATE                                                       |                                                                                                   | GW                       |                                                                   | V                                   |                 | И           | X                         | X                | X                | X             |          |             |        |                                                                            |                              |                                                                           | -05                                       |
|                                                                 | <b>111</b>                                                                                        | GW                       | 1 1 1 1 1 1                                                       | and the second                      |                 |             |                           |                  |                  | 1.1 m         |          |             |        |                                                                            | 20.25                        | 1.27 VA-1                                                                 | 67 10 10 10 10 10 10 10 10 10 10 10 10 10 |
| RIP BLANK                                                       | and a start                                                                                       | GW                       |                                                                   | 1- 10-001                           |                 | 3           | ×                         | X                | X                | X             |          |             |        |                                                                            | 1000                         | Sec. Burt                                                                 | -07                                       |
|                                                                 | and the second                                                                                    | -14-194<br>              |                                                                   |                                     |                 |             | 0                         | ×                |                  |               |          |             |        |                                                                            |                              |                                                                           |                                           |
| e .                                                             | Server 1                                                                                          |                          | 1444                                                              |                                     | -               |             |                           |                  |                  |               |          |             |        |                                                                            |                              |                                                                           |                                           |
| SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay | Remarks:                                                                                          |                          |                                                                   |                                     |                 |             |                           |                  |                  | pH            |          | Temp        | - 24   | COC S<br>Bottl                                                             | eal Pr<br>Signed/<br>.es arr | Accurate:<br>ive intact                                                   | ct:NPYN<br>N                              |
| ww - WasteWater                                                 | - Other UPSFedExCourier                                                                           |                          |                                                                   |                                     | king #          |             | 6                         | 296 1            |                  | 77            | 199      |             | -      | Suffi<br>VOA 2                                                             | cient<br>Zero He             | tles used:<br>volume sent<br><u>If Applic</u><br>adspace:<br>on Correct/0 | able                                      |
| Relinquished by : (Signature)                                   |                                                                                                   | Date:<br>6.28.           |                                                                   | 12:28                               | eived by: (Sign |             |                           |                  |                  |               | 3        | TBR         | / MeoH | RAD S                                                                      | Screen                       | <0.5 mR/hr                                                                |                                           |
| Refinquished by (Signature)                                     |                                                                                                   |                          |                                                                   |                                     | eived by: (Sign | ature)      |                           |                  |                  | Temp: C       | ot 13.0  | - M         | l9     | in pres                                                                    | Servation                    | required by                                                               | cobini parc/ nine                         |
| Relinquished by : (Signature)                                   |                                                                                                   | ne: Rec                  | eived for lab b                                                   | y: (Signa                           | ture            | A           | S                         | Date:            | .73              | Time:         | 0        | Hold:       |        |                                                                            | Condition:<br>NCF / OK       |                                                                           |                                           |

| Membous                                                                                                                                                                                    | Grouping date: 5 July 2023 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| DP) Devin Piedimonte (responsible) 🛞 Chris Ward                                                                                                                                            |                            |
| ▲ Login Clarification needed<br>Chain of custody is incomplete<br>Please specify Metals requested<br>Please specify TCLP requested                                                         |                            |
| Received additional samples not listed on COC<br>Sample IDs on containers do not match IDs on COC<br>Client did not "X" analysis<br>Chain of Custody is missing<br>If no COC: Received hy: |                            |
| If no COC: Date/Time:<br>If no COC: Temp./Cont.Rec./pH:                                                                                                                                    |                            |
| If no COC: Carrier:<br>If no COC: Tracking #:                                                                                                                                              |                            |
| Client informed by call<br>Client informed by Email<br>Client informed by Voicemail<br>Date/Time:                                                                                          |                            |
| PM initials:<br>Client Contact:<br>Comments                                                                                                                                                |                            |
| <i>Devin Piedimonte</i><br>OOT. Cooler came in with melted ice. Temp was at 10.0 c                                                                                                         | 29 June 2023 10:52 AM      |
| Tony Gibson<br>Please proceed with running samples.                                                                                                                                        | 29 June 2023 10:59 AM      |
| Devin Piedimonte<br>Thank you! Done!                                                                                                                                                       | 5 July 2023 8:38 AM        |

Page 60 of 9



| DCP Midstream - Ta     | asman                        |  |
|------------------------|------------------------------|--|
| Sample Delivery Group: | L1661192                     |  |
| Samples Received:      | 09/29/2023                   |  |
| Project Number:        | 311090017                    |  |
| Description:           | Burton Flats Booster Station |  |
| Report To:             | Brett Dennis                 |  |
|                        | 2620 W. Marland Blvd         |  |
|                        | Hobbs, NM 88240              |  |

Entire Report Reviewed By:

Chris Ward

Chris Ward Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

# Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 0/20/2024 10:49:41 AM DCP Midstream - Tasman PROJECT: 311090017

SDG: L1661192

DATE/TIME: 10/06/23 11:42

PAGE: 1 of 15

# TABLE OF CONTENTS

| Cp: Cover Page                                     | 1  |
|----------------------------------------------------|----|
| Tc: Table of Contents                              | 2  |
| Ss: Sample Summary                                 | 3  |
| Cn: Case Narrative                                 | 4  |
| Sr: Sample Results                                 | 5  |
| MW-1 L1661192-01                                   | 5  |
| MW-2 L1661192-02                                   | 6  |
| MW-3 L1661192-03                                   | 7  |
| DUPLICATE L1661192-04                              | 8  |
| TRIP BLANK L1661192-05                             | 9  |
| Qc: Quality Control Summary                        | 10 |
| Wet Chemistry by Method 9056A                      | 10 |
| Volatile Organic Compounds (GC/MS) by Method 8260B | 11 |
| GI: Glossary of Terms                              | 13 |
| Al: Accreditations & Locations                     | 14 |
| Sc: Sample Chain of Custody                        | 15 |

Ср

Ss

Cn

Sr

Qc

GI

ΆI

Sc

SDG: L1661192

DATE/TIME: 10/06/23 11:42 PAGE: 2 of 15

# SAMPLE SUMMARY

Page 63 of 97

Ср

Тс

Cn

Sr

Qc

Gl

Â

Sc

| MW-1 L1661192-01 GW                                |           |          | Collected by<br>Kendon Stark | Collected date/time 09/28/23 08:26 | Received da 09/29/23 09 |                |
|----------------------------------------------------|-----------|----------|------------------------------|------------------------------------|-------------------------|----------------|
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time              | Analyst                 | Location       |
| Wet Chemistry by Method 9056A                      | WG2143082 | 10       | 10/04/23 18:45               | 10/04/23 18:45                     | GEB                     | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2143705 | 1        | 10/03/23 12:08               | 10/03/23 12:08                     | JCP                     | Mt. Juliet, TN |
|                                                    |           |          | Collected by                 | Collected date/time                | Received da             | te/time        |
| MW-2 L1661192-02 GW                                |           |          | Kendon Stark                 | 09/28/23 08:40                     | 09/29/23 09             | :30            |
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time              | Analyst                 | Location       |
| Wet Chemistry by Method 9056A                      | WG2143082 | 100      | 10/04/23 19:26               | 10/04/23 19:26                     | GEB                     | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2143886 | 1        | 10/04/23 07:40               | 10/04/23 07:40                     | JBE                     | Mt. Juliet, TN |
|                                                    |           |          | Collected by                 | Collected date/time                | Received da             | te/time        |
| MW-3 L1661192-03 GW                                |           |          | Kendon Stark                 | 09/28/23 08:54                     | 09/29/23 09             | :30            |
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time              | Analyst                 | Location       |
| Wet Chemistry by Method 9056A                      | WG2143082 | 10       | 10/04/23 19:40               | 10/04/23 19:40                     | GEB                     | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2143886 | 1        | 10/04/23 07:59               | 10/04/23 07:59                     | JBE                     | Mt. Juliet, TN |
|                                                    |           |          | Collected by                 | Collected date/time                | Received da             | te/time        |
| DUPLICATE L1661192-04 GW                           |           |          | Kendon Stark                 | 09/28/23 00:00                     | 09/29/23 09             | :30            |
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time              | Analyst                 | Location       |
| Wet Chemistry by Method 9056A                      | WG2143082 | 10       | 10/04/23 20:07               | 10/04/23 20:07                     | GEB                     | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2143886 | 1        | 10/04/23 08:19               | 10/04/23 08:19                     | JBE                     | Mt. Juliet, TN |
|                                                    |           |          | Collected by                 | Collected date/time                | Received da             | te/time        |
| TRIP BLANK L1661192-05 GW                          |           |          | Kendon Stark                 | 09/28/23 00:00                     | 09/29/23 09             | :30            |
| Method                                             | Batch     | Dilution | Preparation<br>date/time     | Analysis<br>date/time              | Analyst                 | Location       |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2143886 | 1        | 10/04/23 05:45               | 10/04/23 05:45                     | JBE                     | Mt. Juliet, TN |
|                                                    |           |          |                              |                                    |                         |                |

SDG: L1661192 DATE/TIME: 10/06/23 11:42

PAGE: 3 of 15

# CASE NARRATIVE

his Word

Chris Ward Project Manager

Page 64 of 97

SDG: L1661192

DATE/TIME: 10/06/23 11:42 PAGE: 4 of 15

#### SAMPLE RESULTS - 01 L1661192

Page 65 of 97

Collected date/time: 09/28/23 08:26

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier | MDL RDL   | Dilution | Analysis         | Batch     | Ср |
|----------|--------|-----------|-----------|----------|------------------|-----------|----|
| Analyte  | mg/l   | r         | mg/l mg/  | l        | date / time      |           | 2  |
| Chloride | 648    | ŝ         | 3.79 10.0 | 10       | 10/04/2023 18:45 | WG2143082 | Tc |

### Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result   | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     | L |
|---------------------------|----------|-----------|-----------|----------|----------|------------------|-----------|---|
| Analyte                   | mg/l     |           | mg/l      | mg/l     |          | date / time      |           | 4 |
| Benzene                   | 0.000269 | J         | 0.0000941 | 0.00100  | 1        | 10/03/2023 12:08 | WG2143705 |   |
| Toluene                   | U        |           | 0.000278  | 0.00100  | 1        | 10/03/2023 12:08 | WG2143705 | 5 |
| Ethylbenzene              | U        |           | 0.000137  | 0.00100  | 1        | 10/03/2023 12:08 | WG2143705 | Ĭ |
| Total Xylenes             | U        |           | 0.000174  | 0.00300  | 1        | 10/03/2023 12:08 | WG2143705 |   |
| (S) Toluene-d8            | 93.8     |           |           | 80.0-120 |          | 10/03/2023 12:08 | WG2143705 | 6 |
| (S) 4-Bromofluorobenzene  | 93.1     |           |           | 77.0-126 |          | 10/03/2023 12:08 | WG2143705 |   |
| (S) 1,2-Dichloroethane-d4 | 110      |           |           | 70.0-130 |          | 10/03/2023 12:08 | WG2143705 | 7 |

Â

Sc

PROJECT: 311090017

SDG: L1661192

#### SAMPLE RESULTS - 02 L1661192

Page 66 of 97

Â

Sc

Wet Chemistry by Method 9056A

Collected date/time: 09/28/23 08:40

|          | Result | Qualifier | MDL  | RDL  | Dilution | Analysis         | Batch     | C | Ĵр |
|----------|--------|-----------|------|------|----------|------------------|-----------|---|----|
| Analyte  | mg/l   |           | mg/l | mg/l |          | date / time      |           | 2 |    |
| Chloride | 2320   |           | 37.9 | 100  | 100      | 10/04/2023 19:26 | WG2143082 | T | С  |

|                           | Result | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch            | [ |
|---------------------------|--------|-----------|-----------|----------|----------|------------------|------------------|---|
| Analyte                   | mg/l   |           | mg/l      | mg/l     |          | date / time      |                  |   |
| Benzene                   | U      |           | 0.0000941 | 0.00100  | 1        | 10/04/2023 07:40 | WG2143886        |   |
| Toluene                   | U      |           | 0.000278  | 0.00100  | 1        | 10/04/2023 07:40 | WG2143886        |   |
| Ethylbenzene              | U      |           | 0.000137  | 0.00100  | 1        | 10/04/2023 07:40 | WG2143886        |   |
| Total Xylenes             | U      |           | 0.000174  | 0.00300  | 1        | 10/04/2023 07:40 | WG2143886        |   |
| (S) Toluene-d8            | 94.6   |           |           | 80.0-120 |          | 10/04/2023 07:40 | WG2143886        |   |
| (S) 4-Bromofluorobenzene  | 95.0   |           |           | 77.0-126 |          | 10/04/2023 07:40 | WG2143886        |   |
| (S) 1,2-Dichloroethane-d4 | 116    |           |           | 70.0-130 |          | 10/04/2023 07:40 | <u>WG2143886</u> | [ |

#### SAMPLE RESULTS - 03 L1661192

Page 67 of 97

Collected date/time: 09/28/23 08:54

# Wet Chemistry by Method 9056A

|          | Result | Qualifier | MDL  | RDL  | Dilution | Analysis         | Batch     | Ср |
|----------|--------|-----------|------|------|----------|------------------|-----------|----|
| Analyte  | mg/l   |           | mg/l | mg/l |          | date / time      |           | 2  |
| Chloride | 414    |           | 3.79 | 10.0 | 10       | 10/04/2023 19:40 | WG2143082 | Tc |

| Volatile Organic Co       | nic Compounds (GC/MS) by Method 8260B |           |           |          |          |                  |           |                |
|---------------------------|---------------------------------------|-----------|-----------|----------|----------|------------------|-----------|----------------|
|                           | Result                                | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     |                |
| Analyte                   | mg/l                                  |           | mg/l      | mg/l     |          | date / time      |           | 4              |
| Benzene                   | 0.00115                               |           | 0.0000941 | 0.00100  | 1        | 10/04/2023 07:59 | WG2143886 |                |
| Toluene                   | 0.00111                               |           | 0.000278  | 0.00100  | 1        | 10/04/2023 07:59 | WG2143886 | 5              |
| Ethylbenzene              | 0.000269                              | J         | 0.000137  | 0.00100  | 1        | 10/04/2023 07:59 | WG2143886 | ٢SI            |
| Total Xylenes             | 0.000948                              | J         | 0.000174  | 0.00300  | 1        | 10/04/2023 07:59 | WG2143886 |                |
| (S) Toluene-d8            | 96.4                                  |           |           | 80.0-120 |          | 10/04/2023 07:59 | WG2143886 | <sup>6</sup> Q |
| (S) 4-Bromofluorobenzene  | 98.7                                  |           |           | 77.0-126 |          | 10/04/2023 07:59 | WG2143886 |                |
| (S) 1,2-Dichloroethane-d4 | 119                                   |           |           | 70.0-130 |          | 10/04/2023 07:59 | WG2143886 | 7              |

SAMPLE RESULTS - 04 L1661192

Page 68 of 97

Â

Sc

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier MDL | RDL  | Dilution | Analysis         | Batch     | Ср |
|----------|--------|---------------|------|----------|------------------|-----------|----|
| Analyte  | mg/l   | mg/l          | mg/l |          | date / time      |           | 2  |
| Chloride | 788    | 3.79          | 10.0 | 10       | 10/04/2023 20:07 | WG2143082 | Тс |

|                           | Result | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch            |  |
|---------------------------|--------|-----------|-----------|----------|----------|------------------|------------------|--|
| Analyte                   | mg/l   |           | mg/l      | mg/l     |          | date / time      |                  |  |
| Benzene                   | U      |           | 0.0000941 | 0.00100  | 1        | 10/04/2023 08:19 | WG2143886        |  |
| Toluene                   | U      |           | 0.000278  | 0.00100  | 1        | 10/04/2023 08:19 | WG2143886        |  |
| Ethylbenzene              | U      |           | 0.000137  | 0.00100  | 1        | 10/04/2023 08:19 | WG2143886        |  |
| Total Xylenes             | U      |           | 0.000174  | 0.00300  | 1        | 10/04/2023 08:19 | <u>WG2143886</u> |  |
| (S) Toluene-d8            | 97.1   |           |           | 80.0-120 |          | 10/04/2023 08:19 | WG2143886        |  |
| (S) 4-Bromofluorobenzene  | 95.1   |           |           | 77.0-126 |          | 10/04/2023 08:19 | <u>WG2143886</u> |  |
| (S) 1,2-Dichloroethane-d4 | 123    |           |           | 70.0-130 |          | 10/04/2023 08:19 | <u>WG2143886</u> |  |

#### SAMPLE RESULTS - 05 L1661192

Page 69 of 97

ʹQc

Gl

Â

Sc

# Volatile Organic Compounds (GC/MS) by Method 8260B

| Volatile Organic Co       | ompound | ds (GC/MS) | by Metho  | d 8260B  |          |                  |           | 1               |
|---------------------------|---------|------------|-----------|----------|----------|------------------|-----------|-----------------|
|                           | Result  | Qualifier  | MDL       | RDL      | Dilution | Analysis         | Batch     | Cp              |
| Analyte                   | mg/l    |            | mg/l      | mg/l     |          | date / time      |           | 2               |
| Benzene                   | U       |            | 0.0000941 | 0.00100  | 1        | 10/04/2023 05:45 | WG2143886 | Tc              |
| Toluene                   | U       |            | 0.000278  | 0.00100  | 1        | 10/04/2023 05:45 | WG2143886 |                 |
| Ethylbenzene              | U       |            | 0.000137  | 0.00100  | 1        | 10/04/2023 05:45 | WG2143886 | <sup>3</sup> Ss |
| Total Xylenes             | U       |            | 0.000174  | 0.00300  | 1        | 10/04/2023 05:45 | WG2143886 | - 55            |
| (S) Toluene-d8            | 96.1    |            |           | 80.0-120 |          | 10/04/2023 05:45 | WG2143886 | 4               |
| (S) 4-Bromofluorobenzene  | 94.4    |            |           | 77.0-126 |          | 10/04/2023 05:45 | WG2143886 | Cn              |
| (S) 1,2-Dichloroethane-d4 | 124     |            |           | 70.0-130 |          | 10/04/2023 05:45 | WG2143886 |                 |

SDG: L1661192

DATE/TIME: 10/06/23 11:42

9 of 15

# Reg @ 24 26 28 3/11/2024 11:01:15 AM

Wet Chemistry by Method 9056A

# QUALITY CONTROL SUMMARY

# Method Blank (MB)

| (MB) R3982209-1 10/0 | 4/23 09:14 |              |        |        |  |
|----------------------|------------|--------------|--------|--------|--|
|                      | MB Result  | MB Qualifier | MB MDL | MB RDL |  |
| Analyte              | mg/l       |              | mg/l   | mg/l   |  |
| Chloride             | U          |              | 0.379  | 1.00   |  |

# L1661163-02 Original Sample (OS) • Duplicate (DUP)

| (OS) L1661163-02 10/04/2 | 23 14:11 • (DUP) R | 3982209-3  | 10/04/23 14 | 4:24    |               |                   |
|--------------------------|--------------------|------------|-------------|---------|---------------|-------------------|
|                          | Original Result    | DUP Result | Dilution    | DUP RPD | DUP Qualifier | DUP RPD<br>Limits |
| Analyte                  | mg/l               | mg/l       |             | %       |               | %                 |
| Chloride                 | 12.7               | 12.9       | 1           | 1.66    |               | 15                |

# L1661328-01 Original Sample (OS) • Duplicate (DUP)

| (OS) L1661328-01 10/04/2 | 23 21:16 • (DUP) F | R3982209-6 | 10/04/23 2 | 21:30   |               |              |  |
|--------------------------|--------------------|------------|------------|---------|---------------|--------------|--|
|                          | Original Result    | DUP Result | Dilution   | DUP RPD | DUP Qualifier | P RPD<br>its |  |
| Analyte                  | mg/l               | mg/l       |            | %       |               |              |  |
| Chloride                 | 18.8               | 18.9       | 1          | 0.284   |               |              |  |

#### Laboratory Control Sample (LCS)

| (LCS) R3982209-2 10/04 | (LCS) R3982209-2 10/04/23 09:28 |            |          |             |               |  |  |  |  |  |
|------------------------|---------------------------------|------------|----------|-------------|---------------|--|--|--|--|--|
|                        | Spike Amount                    | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |  |  |  |  |  |
| Analyte                | mg/l                            | mg/l       | %        | %           |               |  |  |  |  |  |
| Chloride               | 40.0                            | 39.3       | 98.2     | 80.0-120    |               |  |  |  |  |  |

# L1661163-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1661163-02 10/04/23 | (OS) L1661163-02 10/04/23 14:11 • (MS) R3982209-4 10/04/23 14:38 • (MSD) R3982209-5 10/04/23 15:19 |                 |           |            |         |          |          |             |              |               |      |            |  |  |
|---------------------------|----------------------------------------------------------------------------------------------------|-----------------|-----------|------------|---------|----------|----------|-------------|--------------|---------------|------|------------|--|--|
|                           | Spike Amount                                                                                       | Original Result | MS Result | MSD Result | MS Rec. | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |  |  |
| Analyte                   | mg/l                                                                                               | mg/l            | mg/l      | mg/l       | %       | %        |          | %           |              |               | %    | %          |  |  |
| Chloride                  | 40.0                                                                                               | 12.7            | 49.7      | 50.4       | 92.5    | 94.2     | 1        | 80.0-120    |              |               | 1.36 | 15         |  |  |

# L1661328-01 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1661328-01 10/04/2 | (OS) L1661328-01 10/04/23 21:16 • (MS) R3982209-7 10/04/23 21:43 |                 |           |         |          |             |              |  |  |  |  |
|--------------------------|------------------------------------------------------------------|-----------------|-----------|---------|----------|-------------|--------------|--|--|--|--|
|                          | Spike Amount                                                     | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifier |  |  |  |  |
| Analyte                  | mg/l                                                             | mg/l            | mg/l      | %       |          | %           |              |  |  |  |  |
| Chloride                 | 40.0                                                             | 18.8            | 53.1      | 85.6    | 1        | 80.0-120    |              |  |  |  |  |

Released to Imaging: 6/20/2024 10:49:41 AM DCP Midstream - Tasman PROJECT: 311090017

SDG: L1661192 DATE/TIME: 10/06/23 11:42

PAGE: 10 of 15 <sup>4</sup>Cn <sup>5</sup>Sr <sup>6</sup>Qc <sup>7</sup>Gl <sup>8</sup>Al <sup>9</sup>Sc

Тс

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

# QUALITY CONTROL SUMMARY

Page 71 of 97

Ср

Τс

Ss

Cn

Sr

Qc

# Method Blank (MB)

| (MB) R3982592-3 10/03/2   | 23 07:32  |              |           |          |
|---------------------------|-----------|--------------|-----------|----------|
|                           | MB Result | MB Qualifier | MB MDL    | MB RDL   |
| Analyte                   | mg/l      |              | mg/l      | mg/l     |
| Benzene                   | U         |              | 0.0000941 | 0.00100  |
| Toluene                   | U         |              | 0.000278  | 0.00100  |
| Ethylbenzene              | U         |              | 0.000137  | 0.00100  |
| Total Xylenes             | U         |              | 0.000174  | 0.00300  |
| (S) Toluene-d8            | 93.4      |              |           | 80.0-120 |
| (S) 4-Bromofluorobenzene  | 91.6      |              |           | 77.0-126 |
| (S) 1,2-Dichloroethane-d4 | 115       |              |           | 70.0-130 |

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3982592-1 10/03/   | 23 06:30 • (LCS | SD) R3982592 | 2-2 10/03/23 0 | 6:51     |           |             |               |                |       |            | 7                |
|---------------------------|-----------------|--------------|----------------|----------|-----------|-------------|---------------|----------------|-------|------------|------------------|
|                           | Spike Amount    | LCS Result   | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD   | RPD Limits | Í GI             |
| Analyte                   | mg/l            | mg/l         | mg/l           | %        | %         | %           |               |                | %     | %          |                  |
| Benzene                   | 0.00500         | 0.00562      | 0.00562        | 112      | 112       | 70.0-123    |               |                | 0.000 | 20         | <sup>8</sup> A I |
| Toluene                   | 0.00500         | 0.00507      | 0.00507        | 101      | 101       | 79.0-120    |               |                | 0.000 | 20         | A                |
| Ethylbenzene              | 0.00500         | 0.00421      | 0.00422        | 84.2     | 84.4      | 79.0-123    |               |                | 0.237 | 20         | 9                |
| Total Xylenes             | 0.0150          | 0.0125       | 0.0124         | 83.3     | 82.7      | 79.0-123    |               |                | 0.803 | 20         | Sc               |
| (S) Toluene-d8            |                 |              |                | 92.9     | 93.3      | 80.0-120    |               |                |       |            |                  |
| (S) 4-Bromofluorobenzene  |                 |              |                | 91.6     | 93.8      | 77.0-126    |               |                |       |            |                  |
| (S) 1,2-Dichloroethane-d4 |                 |              |                | 112      | 115       | 70.0-130    |               |                |       |            |                  |

DATE/TIME: 10/06/23 11:42

PAGE: 11 of 15 Volatile Organic Compounds (GC/MS) by Method 8260B

#### QUALITY CONTROL SUMMARY L1661192-02,03,04,05

Тс

Ss

Cn

Sr

Qc

# Method Blank (MB)

| (MB) R3982334-3 10/04/2   | 23.05.26  |              |           |          |
|---------------------------|-----------|--------------|-----------|----------|
| (1112) 10302334 3 10/04/2 |           |              |           |          |
|                           | MB Result | MB Qualifier | MB MDL    | MB RDL   |
| Analyte                   | mg/l      |              | mg/l      | mg/l     |
| Benzene                   | U         |              | 0.0000941 | 0.00100  |
| Toluene                   | U         |              | 0.000278  | 0.00100  |
| Ethylbenzene              | U         |              | 0.000137  | 0.00100  |
| Total Xylenes             | U         |              | 0.000174  | 0.00300  |
| (S) Toluene-d8            | 94.4      |              |           | 80.0-120 |
| (S) 4-Bromofluorobenzene  | 97.6      |              |           | 77.0-126 |
| (S) 1,2-Dichloroethane-d4 | 126       |              |           | 70.0-130 |

# Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R3982334-1 10/04/2  | 23 04:28 • (LCS | D) R3982334 | -2 10/04/23 04 | :47      |           |             |               |                |      |            | 7    |
|---------------------------|-----------------|-------------|----------------|----------|-----------|-------------|---------------|----------------|------|------------|------|
|                           | Spike Amount    | LCS Result  | LCSD Result    | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits | Í GI |
| Analyte                   | mg/l            | mg/l        | mg/l           | %        | %         | %           |               |                | %    | %          |      |
| Benzene                   | 0.00500         | 0.00498     | 0.00482        | 99.6     | 96.4      | 70.0-123    |               |                | 3.27 | 20         | 8    |
| Toluene                   | 0.00500         | 0.00467     | 0.00439        | 93.4     | 87.8      | 79.0-120    |               |                | 6.18 | 20         | A    |
| Ethylbenzene              | 0.00500         | 0.00461     | 0.00421        | 92.2     | 84.2      | 79.0-123    |               |                | 9.07 | 20         | 9    |
| Total Xylenes             | 0.0150          | 0.0143      | 0.0133         | 95.3     | 88.7      | 79.0-123    |               |                | 7.25 | 20         | Sc   |
| (S) Toluene-d8            |                 |             |                | 96.1     | 95.4      | 80.0-120    |               |                |      |            |      |
| (S) 4-Bromofluorobenzene  |                 |             |                | 102      | 101       | 77.0-126    |               |                |      |            |      |
| (S) 1,2-Dichloroethane-d4 |                 |             |                | 121      | 121       | 70.0-130    |               |                |      |            |      |

DATE/TIME: 10/06/23 11:42

PAGE: 12 of 15
Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

#### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the resul<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                             |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                             |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

J

The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1661192 DATE/TIME: 10/06/23 11:42

# Received by OCD: 3/11/2024 11:01:15 ACCREDITATIONS & LOCATIONS

| P | age | 74 | of | 97 |
|---|-----|----|----|----|
|   |     |    |    |    |

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

| Alabama                       | 40660       | Nebraska                    | NE-OS-15-05      |
|-------------------------------|-------------|-----------------------------|------------------|
| Alaska                        | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                       | AZ0612      | New Hampshire               | 2975             |
| Arkansas                      | 88-0469     | New Jersey–NELAP            | TN002            |
| California                    | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado                      | TN00003     | New York                    | 11742            |
| Connecticut                   | PH-0197     | North Carolina              | Env375           |
| lorida                        | E87487      | North Carolina <sup>1</sup> | DW21704          |
| Georgia                       | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>          | 923         | North Dakota                | R-140            |
| daho                          | TN00003     | Ohio-VAP                    | CL0069           |
| llinois                       | 200008      | Oklahoma                    | 9915             |
| ndiana                        | C-TN-01     | Oregon                      | TN200002         |
| owa                           | 364         | Pennsylvania                | 68-02979         |
| Kansas                        | E-10277     | Rhode Island                | LAO00356         |
| Kentucky <sup>16</sup>        | KY90010     | South Carolina              | 84004002         |
| Kentucky <sup>2</sup>         | 16          | South Dakota                | n/a              |
| ouisiana                      | AI30792     | Tennessee <sup>14</sup>     | 2006             |
| ouisiana                      | LA018       | Texas                       | T104704245-20-18 |
| Maine                         | TN00003     | Texas ⁵                     | LAB0152          |
| Maryland                      | 324         | Utah                        | TN000032021-11   |
| Massachusetts                 | M-TN003     | Vermont                     | VT2006           |
| Michigan                      | 9958        | Virginia                    | 110033           |
| Minnesota                     | 047-999-395 | Washington                  | C847             |
| Mississippi                   | TN00003     | West Virginia               | 233              |
| Missouri                      | 340         | Wisconsin                   | 998093910        |
| Montana                       | CERT0086    | Wyoming                     | A2LA             |
| 42LA – ISO 17025              | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                        | 1461.01     | USDA                        | P330-15-00234    |
| EPA-Crypto                    | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1661192 DATE/TIME: 10/06/23 11:42

PAGE: 14 of 15

| Company Name/Address:                                                                           |                              |                          | Billing Infor | mation:                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                       |                 | Analysis /     | Contair   | ner / Pre         | servative                 |             |                               |                             | Chain of Custor                                             | ly Page of                                         |
|-------------------------------------------------------------------------------------------------|------------------------------|--------------------------|---------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|-----------------------|-----------------|----------------|-----------|-------------------|---------------------------|-------------|-------------------------------|-----------------------------|-------------------------------------------------------------|----------------------------------------------------|
| <b>DCP Midstream - Tasr</b>                                                                     | nan                          |                          | Steve We      | athors                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pres      |                  |                       |                 |                |           |                   |                           |             |                               |                             |                                                             |                                                    |
|                                                                                                 |                              |                          |               | St, Ste 2500           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Chk       |                  |                       |                 |                |           |                   |                           |             |                               |                             | 1                                                           | 2                                                  |
| 2620 W. Marland Blvd                                                                            |                              |                          |               | CO 80202               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                       |                 |                |           |                   |                           |             |                               |                             | P                                                           | ace                                                |
| Hobbs, NM 88240                                                                                 |                              |                          | Denver,       | 0 80202                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | T         |                  |                       |                 |                |           |                   |                           |             |                               |                             | l peopu                                                     | E ADVANCING SCIENCE                                |
| Depart to:                                                                                      |                              |                          | Email To: k   | norman@tasmai          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                       |                 |                |           |                   |                           |             |                               |                             | MTJ                                                         | ULIET, TN                                          |
| Report to:<br>Brett Dennis                                                                      |                              |                          | geo.com;sv    | wweathers@dcp          | midstream.con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n;jwat    |                  |                       |                 |                |           |                   |                           |             |                               |                             | 2065 Lebanon Rd M                                           | ount Juliet, TN 37122<br>ria this chain of custody |
| Project Description:                                                                            |                              | City/State               | 1             | k.d                    | Please Cir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | cle:      |                  |                       |                 |                |           |                   |                           |             |                               | P                           | ace Terms and Cond                                          |                                                    |
| Burton Flats Booster Station                                                                    |                              | Collected:               |               |                        | PT MT C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T ET      |                  |                       |                 |                |           |                   |                           |             |                               |                             | ttps://info.pacelabs.<br>erms.pdf                           | com/hubfs/pas-standard-                            |
| Phone: 720-218-4003                                                                             | Client Project               | #                        |               | Lab Project # DCPTASMA | N-BURTONF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LAT       | oPres            | Ū                     | ICI-BIK         |                |           |                   |                           |             |                               | c                           | E                                                           | 6/192                                              |
| Collected by (print):<br>Kendon Stack                                                           | Site/Facility II             | D #                      |               | P.O. #<br>0000661900   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 250mIHDPE-NoPres | Amb-H                 | 40mlAmb-HCI-Blk |                |           |                   |                           |             |                               | A                           |                                                             | PTASMAN                                            |
| Collected by (signature):                                                                       |                              | Lab MUST Be<br>ay Five I |               | Quote #                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Hu               | 10ml/                 | 10ml/           |                |           |                   |                           |             |                               | 8399 B B                    | emplate: <b>T1</b>                                          |                                                    |
| Immediately<br>Packed on Ice N Y                                                                |                              | y5 Day<br>y10 Da         |               | Date Resu              | ts Needed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No.<br>of |                  | V8260BTEX 40mlAmb-HCl | V8260BTEX 4     |                |           |                   |                           |             |                               | F                           | M: 824 - Chr                                                | is Ward<br>9-7-23                                  |
| Sample ID                                                                                       | Comp/Grab                    | Matrix *                 | Depth         | Date                   | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Cntrs     | Chloride         | /8260                 | /8260           |                |           |                   |                           |             |                               | S                           | hipped Via:                                                 | Sample # (lab on                                   |
| MW-1                                                                                            | Gias                         | GW                       | NA            | 9.28,23                | 08:26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4         | x                | x                     | -               |                |           |                   |                           |             |                               |                             |                                                             | 50                                                 |
| MW-2                                                                                            | Georb                        | GW                       | MA            | 9.28.2                 | 306:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4         | X                | X                     |                 |                |           |                   |                           |             |                               |                             |                                                             | -07                                                |
| MW-3                                                                                            | Grab                         | GW                       | NA            | 9.20.2                 | State State and a state of the | 4         | X                | X                     |                 |                |           |                   |                           |             |                               |                             |                                                             | - 02                                               |
| MW-4                                                                                            | 0.00.12                      | GW                       |               | 1.001                  | 00.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4         | x                | x                     |                 |                |           |                   |                           |             |                               |                             |                                                             |                                                    |
| DUPLICATE                                                                                       | Groub                        | GW                       | NA            | 9.28.23                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4         | X                | X                     |                 |                |           |                   |                           |             |                               |                             |                                                             | - NU                                               |
|                                                                                                 | Groves                       | GW                       | NIS           | 1.20.2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4         | X                | X                     |                 |                |           |                   |                           |             |                               |                             |                                                             | - 07                                               |
| TRIP BLANK                                                                                      |                              |                          |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | ^                |                       | V               |                |           |                   |                           |             |                               |                             |                                                             | 00                                                 |
|                                                                                                 |                              | GW                       |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3         |                  |                       | X               |                |           |                   |                           |             |                               |                             |                                                             | -05                                                |
|                                                                                                 |                              |                          |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | and the second   |                       |                 |                |           |                   |                           |             |                               |                             |                                                             |                                                    |
|                                                                                                 |                              |                          |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                       |                 |                |           |                   |                           | F           |                               |                             |                                                             |                                                    |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay<br>WW - WasteWater | Remarks:                     |                          |               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                  |                       |                 | pH<br>Flow     |           | _ Temp<br>_ Other |                           |             | COC Sea<br>COC Sig<br>Bottles | al Pres<br>gned/Ac<br>arriv | Receipt C<br>ent/Intact<br>curate:<br>e intact:<br>es used: | hecklist<br>.:NPY<br>                              |
| DW - Drinking Water<br>OT - Other                                                               | Samples returned<br>UPSFedEx |                          |               | Track                  | ing# 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33        | 72               | 225                   | 50              | 90             | 36        |                   |                           | 4           | Suffici<br>VOA Zer            | ent vo<br>j<br>co Head      | lume sent:<br><u>f Applical</u><br>space:                   | oleY                                               |
| Relinquished by : (Signature)                                                                   |                              | ate:                     | S 13          | Recei                  | ved by: (Signat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ure)      |                  |                       |                 | Trip Blar      | ik Receiv | 24                | s / NO<br>ICL / Meo<br>BR |             |                               |                             | Correct/Ch<br>.5 mR/hr:                                     | ecked:                                             |
| Relinquished by : (Signature)                                                                   | Da                           | ate:                     | Time          | : Recei                | ved by: (Signat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ure)      |                  |                       |                 | Temp:C<br>4.9- | (A8°)     |                   | es Receive                | ed:         | If preserv                    | vation r                    | equired by Lo                                               | gin: Date/Time                                     |
| Relinquished by : (Signature)                                                                   | D                            | ate:                     | Time          | : Recei                | ved for lab by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Signat   | ure)             | 11                    | m               | Date:          | 912       | Time              | 192                       | Charles and | Hold:                         |                             |                                                             | Condition:<br>NCF / OK                             |



**DCP Midstream - Tasman** 

December 26, 2023

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1688211 12/14/2023 311090017 **Burton Flats Booster Station** 

Brett Dennis 2620 W. Marland Blvd Hobbs, NM 88240

Entire Report Reviewed By:

Chris Word

Chris Ward Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

# **Pace Analytical National**

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 8/20/2024 10:49:41 AM DCP Midstream - Tasman

PROJECT: 311090017

SDG: L1688211

DATE/TIME. 12/26/23 11:58 PAGE: 1 of 15

Page 76 of 97



## TABLE OF CONTENTS

| Cp: Cover Page                                     | 1  |
|----------------------------------------------------|----|
| Tc: Table of Contents                              | 2  |
| Ss: Sample Summary                                 | 3  |
| Cn: Case Narrative                                 | 4  |
| Sr: Sample Results                                 | 5  |
| MW-1 L1688211-01                                   | 5  |
| MW-2 L1688211-02                                   | 6  |
| MW-3 L1688211-03                                   | 7  |
| DUPLICATE L1688211-04                              | 8  |
| TRIP BLANK L1688211-05                             | 9  |
| Qc: Quality Control Summary                        | 10 |
| Wet Chemistry by Method 9056A                      | 10 |
| Volatile Organic Compounds (GC/MS) by Method 8260B | 12 |
| GI: Glossary of Terms                              | 13 |
| Al: Accreditations & Locations                     | 14 |
| Sc: Sample Chain of Custody                        | 15 |

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

SDG: L1688211

DATE/TIME: 12/26/23 11:58 PAGE: 2 of 15

## SAMPLE SUMMARY

Page 78 of 97

Ср

Тс

Ss

Cn

Sr

Qc

Gl

Â

Sc

|                                                    |           |          | Collected by             | Collected date/time   |               |                |
|----------------------------------------------------|-----------|----------|--------------------------|-----------------------|---------------|----------------|
| MW-1 L1688211-01 GW                                |           |          | Kendon Stark             | 12/13/23 08:56        | 12/14/23 09:0 | 00             |
| Method                                             | Batch     | Dilution | Preparation              | Analysis              | Analyst       | Location       |
|                                                    |           |          | date/time                | date/time             |               |                |
| Wet Chemistry by Method 9056A                      | WG2193742 | 10       | 12/21/23 15:49           | 12/21/23 15:49        | GEB           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2191754 | 1        | 12/19/23 10:31           | 12/19/23 10:31        | DYW           | Mt. Juliet, TN |
|                                                    |           |          | Collected by             | Collected date/time   | Received da   | te/time        |
| MW-2 L1688211-02 GW                                |           |          | Kendon Stark             | 12/13/23 09:14        | 12/14/23 09:0 | 00             |
| Method                                             | Batch     | Dilution | Preparation              | Analysis              | Analyst       | Location       |
|                                                    |           |          | date/time                | date/time             |               |                |
| Wet Chemistry by Method 9056A                      | WG2193742 | 20       | 12/21/23 16:17           | 12/21/23 16:17        | GEB           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2191754 | 1        | 12/19/23 10:52           | 12/19/23 10:52        | DYW           | Mt. Juliet, TN |
|                                                    |           |          | Collected by             | Collected date/time   | Received da   | te/time        |
| MW-3 L1688211-03 GW                                |           |          | Kendon Stark             | 12/13/23 09:23        | 12/14/23 09:0 | 00             |
| Method                                             | Batch     | Dilution | Preparation<br>date/time | Analysis<br>date/time | Analyst       | Location       |
| Wat Chamistry by Mathed 00FCA                      | WC2102742 |          |                          |                       | CED           | Mt Juliat Th   |
| Wet Chemistry by Method 9056A                      | WG2193742 | 5        | 12/21/23 16:27           | 12/21/23 16:27        | GEB           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2191754 | 1        | 12/19/23 11:12           | 12/19/23 11:12        | DYW           | Mt. Juliet, TN |
|                                                    |           |          | Collected by             | Collected date/time   | Received da   | te/time        |
| DUPLICATE L1688211-04 GW                           |           |          | Kendon Stark             | 12/13/23 00:00        | 12/14/23 09:0 | 00             |
| Method                                             | Batch     | Dilution | Preparation              | Analysis              | Analyst       | Location       |
|                                                    | 1100007-5 | 40       | date/time                | date/time             | 055           |                |
| Wet Chemistry by Method 9056A                      | WG2193742 | 10       | 12/21/23 16:37           | 12/21/23 16:37        | GEB           | Mt. Juliet, TN |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2191754 | 1        | 12/19/23 11:33           | 12/19/23 11:33        | DYW           | Mt. Juliet, TN |
|                                                    |           |          | Collected by             | Collected date/time   | Received da   | te/time        |
| TRIP BLANK L1688211-05 GW                          |           |          | Kendon Stark             | 12/13/23 13:11        | 12/14/23 09:0 | 00             |
| Method                                             | Batch     | Dilution | Preparation              | Analysis              | Analyst       | Location       |
|                                                    |           |          | date/time                | date/time             |               |                |
| Volatile Organic Compounds (GC/MS) by Method 8260B | WG2191754 | 1        | 12/19/23 05:11           | 12/19/23 05:11        | DYW           | Mt. Juliet, TN |
|                                                    |           |          |                          |                       |               |                |

SDG: L1688211 DATE/TIME: 12/26/23 11:58 PAGE: 3 of 15

## CASE NARRATIVE

his Word

Chris Ward Project Manager



SDG: L1688211 DA1 12/26 PAGE: 4 of 15

#### SAMPLE RESULTS - 01 L1688211

Page 80 of 97

Â

Sc

Collected date/time: 12/13/23 08:56

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier MD | L RDL   | Dilution | Analysis         | Batch     | Ср |
|----------|--------|--------------|---------|----------|------------------|-----------|----|
| Analyte  | mg/l   | mg           | /I mg/I |          | date / time      |           | 2  |
| Chloride | 732    | 3.7          |         | 10       | 12/21/2023 15:49 | WG2193742 | Tc |

#### Volatile Organic Compounds (GC/MS) by Method 8260B

| Volatile Organic Co       | anic Compounds (GC/MS) by Method 8260B |           |           |          |          |                  |           |     |
|---------------------------|----------------------------------------|-----------|-----------|----------|----------|------------------|-----------|-----|
|                           | Result                                 | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     | L   |
| Analyte                   | mg/l                                   |           | mg/l      | mg/l     |          | date / time      |           | 4   |
| Benzene                   | 0.00836                                |           | 0.0000941 | 0.00100  | 1        | 12/19/2023 10:31 | WG2191754 |     |
| Toluene                   | U                                      |           | 0.000278  | 0.00100  | 1        | 12/19/2023 10:31 | WG2191754 | 5   |
| Ethylbenzene              | 0.000374                               | J         | 0.000137  | 0.00100  | 1        | 12/19/2023 10:31 | WG2191754 | 5   |
| Total Xylenes             | U                                      |           | 0.000174  | 0.00300  | 1        | 12/19/2023 10:31 | WG2191754 |     |
| (S) Toluene-d8            | 108                                    |           |           | 80.0-120 |          | 12/19/2023 10:31 | WG2191754 | 6   |
| (S) 4-Bromofluorobenzene  | 90.0                                   |           |           | 77.0-126 |          | 12/19/2023 10:31 | WG2191754 |     |
| (S) 1,2-Dichloroethane-d4 | 111                                    |           |           | 70.0-130 |          | 12/19/2023 10:31 | WG2191754 | 7 ( |

#### SAMPLE RESULTS - 02 L1688211

Collected date/time: 12/13/23 09:14

## Page 81 of 97

Â

Sc

Wet Chemistry by Method 9056A

|          |        |               |      |          |                  |           | <br>' Cn |
|----------|--------|---------------|------|----------|------------------|-----------|----------|
|          | Result | Qualifier MDL | RDL  | Dilution | Analysis         | Batch     | ΟP       |
| Analyte  | mg/l   | mg/l          | mg/l |          | date / time      |           | <br>2    |
| Chloride | 2220   | 7.58          | 20.0 | 20       | 12/21/2023 16:17 | WG2193742 | ⁻Tc      |

#### Volatile Organic Compounds (GC/MS) by Method 8260B

| Volatile Organic Co       | ompound | ounds (GC/MS) by Method 8260B |           |          |          |                  |           |   | <sup>3</sup> Ss |
|---------------------------|---------|-------------------------------|-----------|----------|----------|------------------|-----------|---|-----------------|
|                           | Result  | Qualifier                     | MDL       | RDL      | Dilution | Analysis         | Batch     | L |                 |
| Analyte                   | mg/l    |                               | mg/l      | mg/l     |          | date / time      |           | 2 | <sup>4</sup> Cn |
| Benzene                   | U       |                               | 0.0000941 | 0.00100  | 1        | 12/19/2023 10:52 | WG2191754 |   | CII             |
| Toluene                   | U       |                               | 0.000278  | 0.00100  | 1        | 12/19/2023 10:52 | WG2191754 |   | 5               |
| Ethylbenzene              | U       |                               | 0.000137  | 0.00100  | 1        | 12/19/2023 10:52 | WG2191754 |   | ँSr             |
| Total Xylenes             | U       |                               | 0.000174  | 0.00300  | 1        | 12/19/2023 10:52 | WG2191754 |   |                 |
| (S) Toluene-d8            | 111     |                               |           | 80.0-120 |          | 12/19/2023 10:52 | WG2191754 | e | <sup>6</sup> Qc |
| (S) 4-Bromofluorobenzene  | 85.6    |                               |           | 77.0-126 |          | 12/19/2023 10:52 | WG2191754 |   |                 |
| (S) 1,2-Dichloroethane-d4 | 113     |                               |           | 70.0-130 |          | 12/19/2023 10:52 | WG2191754 | 7 | <sup>7</sup> Gl |

SDG: L1688211

#### SAMPLE RESULTS - 03 L1688211

Collected date/time: 12/13/23 09:23

Page 82 of 97

Тс

ΆI

Sc

| Wet Chemist | ry by Method S | 9056A     |      |      |          |                  |
|-------------|----------------|-----------|------|------|----------|------------------|
|             | Result         | Qualifier | MDL  | RDL  | Dilution | Analysis         |
| Analyte     | mg/l           |           | mg/l | mg/l |          | date / time      |
| Chloride    | 474            |           | 1.90 | 5.00 | 5        | 12/21/2023 16:27 |

## Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch            |  |
|---------------------------|--------|-----------|-----------|----------|----------|------------------|------------------|--|
| Analyte                   | mg/l   |           | mg/l      | mg/l     |          | date / time      |                  |  |
| Benzene                   | U      |           | 0.0000941 | 0.00100  | 1        | 12/19/2023 11:12 | <u>WG2191754</u> |  |
| Toluene                   | U      |           | 0.000278  | 0.00100  | 1        | 12/19/2023 11:12 | <u>WG2191754</u> |  |
| Ethylbenzene              | U      |           | 0.000137  | 0.00100  | 1        | 12/19/2023 11:12 | <u>WG2191754</u> |  |
| Total Xylenes             | U      |           | 0.000174  | 0.00300  | 1        | 12/19/2023 11:12 | <u>WG2191754</u> |  |
| (S) Toluene-d8            | 108    |           |           | 80.0-120 |          | 12/19/2023 11:12 | WG2191754        |  |
| (S) 4-Bromofluorobenzene  | 85.8   |           |           | 77.0-126 |          | 12/19/2023 11:12 | WG2191754        |  |
| (S) 1,2-Dichloroethane-d4 | 113    |           |           | 70.0-130 |          | 12/19/2023 11:12 | WG2191754        |  |

Batch

WG2193742

SAMPLE RESULTS - 04 L1688211

Page 83 of 97

Â

Sc

#### Wet Chemistry by Method 9056A

|          | Result | Qualifier MDL | RDL  | Dilution | Analysis         | Batch     | Ср |
|----------|--------|---------------|------|----------|------------------|-----------|----|
| Analyte  | mg/l   | mg/l          | mg/l |          | date / time      |           | 2  |
| Chloride | 727    | 3.79          | 10.0 | 10       | 12/21/2023 16:37 | WG2193742 | Tc |

#### Volatile Organic Compounds (GC/MS) by Method 8260B

| Volatile Organic Co       | ompound  | s (GC/MS) | by Metho  | d 8260B  |          |                  |           | <sup>3</sup> Ss |
|---------------------------|----------|-----------|-----------|----------|----------|------------------|-----------|-----------------|
|                           | Result   | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     |                 |
| Analyte                   | mg/l     |           | mg/l      | mg/l     |          | date / time      |           | $^{4}$          |
| Benzene                   | 0.00519  |           | 0.0000941 | 0.00100  | 1        | 12/19/2023 11:33 | WG2191754 |                 |
| Toluene                   | U        |           | 0.000278  | 0.00100  | 1        | 12/19/2023 11:33 | WG2191754 | 5               |
| Ethylbenzene              | 0.000261 | J         | 0.000137  | 0.00100  | 1        | 12/19/2023 11:33 | WG2191754 | ۳S              |
| Total Xylenes             | U        |           | 0.000174  | 0.00300  | 1        | 12/19/2023 11:33 | WG2191754 |                 |
| (S) Toluene-d8            | 108      |           |           | 80.0-120 |          | 12/19/2023 11:33 | WG2191754 | <sup>6</sup> Q  |
| (S) 4-Bromofluorobenzene  | 91.4     |           |           | 77.0-126 |          | 12/19/2023 11:33 | WG2191754 |                 |
| (S) 1,2-Dichloroethane-d4 | 110      |           |           | 70.0-130 |          | 12/19/2023 11:33 | WG2191754 | <sup>7</sup> Gl |

# SAMPLE RESULTS - 05

## Volatile Organic Compounds (GC/MS) by Method 8260B

|                           | Result | Qualifier | MDL       | RDL      | Dilution | Analysis         | Batch     | Ср              |
|---------------------------|--------|-----------|-----------|----------|----------|------------------|-----------|-----------------|
| Analyte                   | mg/l   |           | mg/l      | mg/l     |          | date / time      |           | 2               |
| Benzene                   | U      |           | 0.0000941 | 0.00100  | 1        | 12/19/2023 05:11 | WG2191754 | Tc              |
| Toluene                   | U      |           | 0.000278  | 0.00100  | 1        | 12/19/2023 05:11 | WG2191754 |                 |
| Ethylbenzene              | U      |           | 0.000137  | 0.00100  | 1        | 12/19/2023 05:11 | WG2191754 | <sup>3</sup> Ss |
| Total Xylenes             | U      |           | 0.000174  | 0.00300  | 1        | 12/19/2023 05:11 | WG2191754 | 55              |
| (S) Toluene-d8            | 111    |           |           | 80.0-120 |          | 12/19/2023 05:11 | WG2191754 | 4               |
| (S) 4-Bromofluorobenzene  | 89.7   |           |           | 77.0-126 |          | 12/19/2023 05:11 | WG2191754 | Ċn              |
| (S) 1,2-Dichloroethane-d4 | 108    |           |           | 70.0-130 |          | 12/19/2023 05:11 | WG2191754 |                 |
|                           |        |           |           |          |          |                  |           |                 |

Released to Imaging: 0/20/2024 10:49:41 AM DCP Midstream - Tasman

SDG: L1688211 DA 12/2 PAGE: 9 of 15

Page 84 of 97

Wet Chemistry by Method 9056A

#### QUALITY CONTROL SUMMARY L1688211-01,02,03,04

#### Method Blank (MB)

| (MB) R4016105-1 12/2 | 21/23 11:13 |              |        |        |  |
|----------------------|-------------|--------------|--------|--------|--|
|                      | MB Result   | MB Qualifier | MB MDL | MB RDL |  |
| Analyte              | mg/l        |              | mg/l   | mg/l   |  |
| Chloride             | U           |              | 0.379  | 1.00   |  |

### L1687505-02 Original Sample (OS) • Duplicate (DUP)

| Original Result     DUP Result     DUP RPD     DUP Qualifier     DUP RPD       Analyte     mg/l     mg/l     %     % |
|----------------------------------------------------------------------------------------------------------------------|
| ingri ingri                                                                                                          |

## L1688320-03 Original Sample (OS) • Duplicate (DUP)

| L1688320-03      | Original Sample       | e (OS) • Du   | plicate    | (DUP)   |               |                 |  |
|------------------|-----------------------|---------------|------------|---------|---------------|-----------------|--|
| (OS) L1688320-03 | 12/21/23 16:56 • (DUF | P) R4016105-6 | 12/21/23 1 | 7:05    |               |                 |  |
|                  | Original Result       | t DUP Result  | Dilution   | DUP RPD | DUP Qualifier | UP RPD<br>imits |  |
| Analyte          | mg/l                  | mg/l          |            | %       |               | ,               |  |
| Chloride         | 49.3                  | 49.2          | 1          | 0.138   |               | )               |  |

#### Laboratory Control Sample (LCS)

| (LCS) R4016105-2 12/21/2 | 23 11:22     |            |          |             |               |
|--------------------------|--------------|------------|----------|-------------|---------------|
|                          | Spike Amount | LCS Result | LCS Rec. | Rec. Limits | LCS Qualifier |
| Analyte                  | mg/l         | mg/l       | %        | %           |               |
| Chloride                 | 40.0         | 40.6       | 102      | 80.0-120    |               |

#### L1687505-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

| (OS) L1687505-02 12/21/2 | 23 12:58 • (MS) F | R4016105-4 12   | /21/23 13:17 • (1 | ASD) R4016105 | -5 12/21/23 13: | 26       |          |             |              |               |      |            |
|--------------------------|-------------------|-----------------|-------------------|---------------|-----------------|----------|----------|-------------|--------------|---------------|------|------------|
|                          | Spike Amount      | Original Result | MS Result         | MSD Result    | MS Rec.         | MSD Rec. | Dilution | Rec. Limits | MS Qualifier | MSD Qualifier | RPD  | RPD Limits |
| Analyte                  | mg/l              | mg/l            | mg/l              | mg/l          | %               | %        |          | %           |              |               | %    | %          |
| Chloride                 | 40.0              | 11.5            | 49.8              | 49.1          | 95.9            | 94.1     | 1        | 80.0-120    |              |               | 1.44 | 15         |

#### L1688320-03 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1688320-03 12/21/2 | 23 16:56 • (MS) F | R4016105-7 12/  | /21/23 17:15 |         |          |             |              |
|--------------------------|-------------------|-----------------|--------------|---------|----------|-------------|--------------|
|                          | Spike Amount      | Original Result | MS Result    | MS Rec. | Dilution | Rec. Limits | MS Qualifier |
| Analyte                  | mg/l              | mg/l            | mg/l         | %       |          | %           |              |
| Chloride                 | 40.0              | 49.3            | 79.4         | 75.2    | 1        | 80.0-120    | <u>J6</u>    |

Released to Imaging<sup>A</sup> 6/20/2024 10:49:41 AM DCP Midstream - Tasman

PROJECT: 311090017

SDG: L1688211

DATE/TIME: 12/26/23 11:58

PAGE: 10 of 15 Тс

Ss

# QUALITY CONTROL SUMMARY

Page 86 of 97

L1688320-03 Original Sample (OS) • Matrix Spike (MS)

| (OS) L1688320-03 12/21/23 16:56 • (MS) R4016105-7 12/21/23 17:15 |  |
|------------------------------------------------------------------|--|
|------------------------------------------------------------------|--|

|         | Spike Amount | Original Result | MS Result | MS Rec. | Dilution | Rec. Limits | MS Qualifie |
|---------|--------------|-----------------|-----------|---------|----------|-------------|-------------|
| Analyte | mg/l         | mg/l            | mg/l      | %       |          | %           |             |

Sample Narrative:

MS: [spike failed due to sample matrix]

Wet Chemistry by Method 9056A



SDG: L1688211 DATE/TIME: 12/26/23 11:58

PAGE: 11 of 15 Volatile Organic Compounds (GC/MS) by Method 8260B

# QUALITY CONTROL SUMMARY

Page 87 of 97

Ср

Τс

Ss

Cn

Sr

<sup>°</sup>Qc

### Method Blank (MB)

| (MB) R4015024-3 12/19/23  | 3 04:30   |              |           |          |
|---------------------------|-----------|--------------|-----------|----------|
|                           | MB Result | MB Qualifier | MB MDL    | MB RDL   |
| Analyte                   | mg/l      |              | mg/l      | mg/l     |
| Benzene                   | U         |              | 0.0000941 | 0.00100  |
| Toluene                   | U         |              | 0.000278  | 0.00100  |
| Ethylbenzene              | U         |              | 0.000137  | 0.00100  |
| Total Xylenes             | U         |              | 0.000174  | 0.00300  |
| (S) Toluene-d8            | 110       |              |           | 80.0-120 |
| (S) 4-Bromofluorobenzene  | 88.1      |              |           | 77.0-126 |
| (S) 1,2-Dichloroethane-d4 | 108       |              |           | 70.0-130 |

## Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

| (LCS) R4015024-1 12/19/23 03:28 • (LCSD) R4015024-2 12/19/23 03:48 |              |            |             |          |           |             |               |                |      |            | 7 |                 |
|--------------------------------------------------------------------|--------------|------------|-------------|----------|-----------|-------------|---------------|----------------|------|------------|---|-----------------|
|                                                                    | Spike Amount | LCS Result | LCSD Result | LCS Rec. | LCSD Rec. | Rec. Limits | LCS Qualifier | LCSD Qualifier | RPD  | RPD Limits |   | <sup>′</sup> GI |
| Analyte                                                            | mg/l         | mg/l       | mg/l        | %        | %         | %           |               |                | %    | %          |   |                 |
| Benzene                                                            | 0.00500      | 0.00531    | 0.00538     | 106      | 108       | 70.0-123    |               |                | 1.31 | 20         |   | 8               |
| Toluene                                                            | 0.00500      | 0.00503    | 0.00519     | 101      | 104       | 79.0-120    |               |                | 3.13 | 20         |   | AI              |
| Ethylbenzene                                                       | 0.00500      | 0.00503    | 0.00533     | 101      | 107       | 79.0-123    |               |                | 5.79 | 20         |   | 9               |
| Total Xylenes                                                      | 0.0150       | 0.0143     | 0.0153      | 95.3     | 102       | 79.0-123    |               |                | 6.76 | 20         |   | Sc              |
| (S) Toluene-d8                                                     |              |            |             | 109      | 109       | 80.0-120    |               |                |      |            |   |                 |
| (S) 4-Bromofluorobenzene                                           |              |            |             | 95.1     | 95.3      | 77.0-126    |               |                |      |            |   |                 |
| (S) 1,2-Dichloroethane-d4                                          |              |            |             | 106      | 103       | 70.0-130    |               |                |      |            |   |                 |

SDG: L1688211 DATE/TIME: 12/26/23 11:58 PAGE: 12 of 15

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

### Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

#### Abbreviations and Definitions

| MDL                             | Method Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RDL                             | Reported Detection Limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Rec.                            | Recovery.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RPD                             | Relative Percent Difference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SDG                             | Sample Delivery Group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (S)                             | Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.                                                                                                                                                                                                                                               |
| U                               | Not detected at the Reporting Limit (or MDL where applicable).                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Analyte                         | The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes<br>reported.                                                                                                                                                                                                                                                                                                                                                                                              |
| Dilution                        | If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.                                                                                    |
| Limits                          | These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal<br>for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or<br>duplicated within these ranges.                                                                                                                                                                                                                                                |
| Original Sample                 | The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | This column provides a letter and/or number designation that corresponds to additional information concerning the result<br>reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and<br>potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.                                                                                                                                                            |
| Result                          | The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte. |
| Uncertainty<br>(Radiochemistry) | Confidence level of 2 sigma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Case Narrative (Cn)             | A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.                                                                                                                                                                          |
| Quality Control<br>Summary (Qc) | This section of the report includes the results of the laboratory quality control analyses required by procedure or<br>analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not<br>being performed on your samples typically, but on laboratory generated material.                                                                                                                                                                                        |
| Sample Chain of<br>Custody (Sc) | This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.                                                              |
| Sample Results (Sr)             | This section of your report will provide the results of all testing performed on your samples. These results are provided<br>by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for<br>each sample will provide the name and method number for the analysis reported.                                                                                                                                                                                       |
| Sample Summary (Ss)             | This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.                                                                                                                                                                                                                                                                                                                                                            |
| Qualifier                       | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| J                               | The identification of the analyte is acceptable; the reported value is an estimate.                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.0                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| The sample matrix interfered with the abili | y to make any accurate determination; spike value is low. |
|---------------------------------------------|-----------------------------------------------------------|
|                                             |                                                           |

J6

PROJECT: 311090017

SDG: L1688211 DATE/TIME: 12/26/23 11:58

PAGE: 13 of 15

# Received by OCD: 3/11/2024 11:01:15 ACCREDITATIONS & LOCATIONS

| Pag | e | <b>89</b> | of | 97 |
|-----|---|-----------|----|----|
|     |   |           |    |    |

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

| Alabama                       | 40660       | Nebraska                    | NE-OS-15-05      |
|-------------------------------|-------------|-----------------------------|------------------|
| Alaska                        | 17-026      | Nevada                      | TN000032021-1    |
| Arizona                       | AZ0612      | New Hampshire               | 2975             |
| Arkansas                      | 88-0469     | New Jersey–NELAP            | TN002            |
| California                    | 2932        | New Mexico <sup>1</sup>     | TN00003          |
| Colorado                      | TN00003     | New York                    | 11742            |
| Connecticut                   | PH-0197     | North Carolina              | Env375           |
| lorida                        | E87487      | North Carolina <sup>1</sup> | DW21704          |
| ieorgia                       | NELAP       | North Carolina <sup>3</sup> | 41               |
| Georgia <sup>1</sup>          | 923         | North Dakota                | R-140            |
| daho                          | TN00003     | Ohio-VAP                    | CL0069           |
| linois                        | 200008      | Oklahoma                    | 9915             |
| ndiana                        | C-TN-01     | Oregon                      | TN200002         |
| owa                           | 364         | Pennsylvania                | 68-02979         |
| lansas                        | E-10277     | Rhode Island                | LAO00356         |
| entucky <sup>16</sup>         | KY90010     | South Carolina              | 84004002         |
| entucky <sup>2</sup>          | 16          | South Dakota                | n/a              |
| ouisiana                      | AI30792     | Tennessee <sup>1 4</sup>    | 2006             |
| ouisiana                      | LA018       | Texas                       | T104704245-20-18 |
| laine                         | TN00003     | Texas ⁵                     | LAB0152          |
| laryland                      | 324         | Utah                        | TN000032021-11   |
| lassachusetts                 | M-TN003     | Vermont                     | VT2006           |
| lichigan                      | 9958        | Virginia                    | 110033           |
| linnesota                     | 047-999-395 | Washington                  | C847             |
| Mississippi                   | TN00003     | West Virginia               | 233              |
| lissouri                      | 340         | Wisconsin                   | 998093910        |
| lontana                       | CERT0086    | Wyoming                     | A2LA             |
| 2LA – ISO 17025               | 1461.01     | AIHA-LAP,LLC EMLAP          | 100789           |
| A2LA – ISO 17025 <sup>5</sup> | 1461.02     | DOD                         | 1461.01          |
| Canada                        | 1461.01     | USDA                        | P330-15-00234    |
| PA-Crypto                     | TN00003     |                             |                  |

<sup>1</sup> Drinking Water <sup>2</sup> Underground Storage Tanks <sup>3</sup> Aquatic Toxicity <sup>4</sup> Chemical/Microbiological <sup>5</sup> Mold <sup>6</sup> Wastewater n/a Accreditation not applicable

\* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

\* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1688211

| Company Name/Address:                                                        |         |                               |                          | Billing Info                                                      | ormation:           |                     | T           | 1                |                       |                 | Analysis / | Contai | ner / Pre                 | servative   |            |                          | Chain of C                                             | Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Page of                                                    |
|------------------------------------------------------------------------------|---------|-------------------------------|--------------------------|-------------------------------------------------------------------|---------------------|---------------------|-------------|------------------|-----------------------|-----------------|------------|--------|---------------------------|-------------|------------|--------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| DCP Midstream - Tasi<br>2620 W. Marland Blvd                                 | man     |                               |                          |                                                                   | h St, Ste 2500      | 1                   | Pres<br>Chk |                  |                       |                 |            |        |                           |             |            |                          | - [-                                                   | Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ice <sup>.</sup>                                           |
| Hobbs, NM 88240                                                              |         |                               |                          | Denver, CO 80202                                                  |                     |                     |             |                  |                       | and a start     |            |        |                           |             |            |                          | 1                                                      | PEOPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ADVANCING SCIENCE                                          |
| Report to:<br>Brett Dennis                                                   |         |                               |                          | Email To: knorman@tasman-<br>geo.com;Stephen.Weathers@p66.com;bdo |                     |                     | dennis      |                  |                       |                 |            |        |                           |             |            |                          | 12065 Leband                                           | on Rd Mou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ILIET, TN<br>Int Juliet, TN 37122<br>this chain of custody |
| Project Description:<br>Burton Flats Booster Station                         |         |                               | City/State<br>Collected: | 104                                                               |                     | Please C<br>PT MT ( |             |                  |                       |                 |            |        |                           |             |            |                          | constitutes ad<br>Pace Terms a                         | cknowledg<br>nd Conditi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ment and acceptance of the                                 |
| Phone: 720-218-4003                                                          | Clier   | nt Project                    | #                        |                                                                   | Lab Project #       | AN-BURTONI          | FLAT        | Pres             |                       | cl-Bik          |            |        |                           |             |            |                          | SDG #                                                  | California (California)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88211                                                      |
| Collected by (print):<br>Kendon Stark                                        | Site/   | Facility I                    | ) #                      |                                                                   | P.O. #<br>000066190 | 0                   |             | 250mlHDPE-NoPres | H-dm/                 | 40mlAmb-HCI-Blk |            |        |                           |             |            |                          | Acctnum                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TASMAN                                                     |
| Collected by (signature):                                                    | _       | Same Da                       | ab MUST Be               | Day                                                               | Quote #             |                     |             | DHIMD            | 40mlA                 | 40ml/           |            |        |                           |             |            |                          | Template<br>Prelogin:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| Much Mont<br>Immediately<br>Packed on Ice N Y                                |         | Next Da<br>Two Day<br>Three D | y 5 Day<br>y 10 Da<br>ay | r (Rad Only)<br>ay (Rad Only)                                     | Date Rest           | ults Needed         | No.<br>of   |                  | V8260BTEX 40mlAmb-HCl | V8260BTEX       |            |        |                           |             |            |                          | PM: 824                                                | - Chris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ward<br>- <u>7</u> - 73                                    |
| Sample ID                                                                    | Con     | np/Grab                       | Matrix *                 | Depth                                                             | Date                | Time                | Cntrs       | Chloride         | V826                  | V826            |            |        |                           |             |            |                          | Shipped<br>Rema                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample # (lab only)                                        |
| MW-1                                                                         | 6.      | rab                           | GW                       | NA                                                                | 12/13/2:            | 3 08:56             | , 4         | X                | X                     |                 |            |        |                           |             |            |                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -01                                                        |
| MW-2                                                                         |         | 1                             | GW                       | 1                                                                 | 1                   | 09:14               | 4           | X                | X                     |                 |            |        |                           |             |            |                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -02                                                        |
| MW-3                                                                         |         |                               | GW                       |                                                                   |                     | 09:23               | 4           | X                | X                     |                 |            |        |                           |             |            |                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -03                                                        |
| MW-4                                                                         |         |                               | GW                       |                                                                   |                     |                     | 4           | X                | X                     |                 |            |        |                           |             |            |                          | -                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| DUPLICATE                                                                    |         |                               | GW                       |                                                                   |                     | -                   | 4           | X                | x                     |                 |            |        |                           |             |            |                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -04                                                        |
| and the second second                                                        |         | 1,                            | GW                       | 11                                                                |                     |                     | 4           | X                | X                     |                 |            |        |                           |             |            |                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| TRIP BLANK                                                                   | ~ ~     | √                             | GW                       |                                                                   | V                   | 13:11               | 3           |                  |                       | X               |            |        |                           |             |            |                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -65                                                        |
|                                                                              |         |                               |                          |                                                                   |                     |                     |             |                  |                       |                 |            |        |                           |             |            |                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
|                                                                              |         |                               |                          |                                                                   |                     |                     | -           |                  |                       |                 |            |        |                           |             |            |                          |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |
| * Matrix:<br>SS - Soil AIR - Air F - Filter<br>GW - Groundwater B - Bioassay | Remarks |                               |                          |                                                                   |                     |                     |             |                  |                       |                 |            |        |                           |             |            | C Seal I<br>C Signed     | ple Recei<br>Present/In<br>NAccurate<br>Trive inta     | tact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NP Y N                                                     |
| WW - WasteWater<br>DW - Drinking Water<br>OT - Other                         | Samples |                               | via:<br>Courier          |                                                                   | Тгас                | king # 7,0          | 74          | 8-               | 79t                   |                 | Flow       | 8      | _ Other                   |             | Con<br>Sui | ficient                  | ottles use<br>volume s<br><u>If Appl</u><br>leadspace: | d:<br>ent:<br>licabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |
| Relinquished by : (Signature) Date:                                          |         |                               | Time                     | e: Rece                                                           | eived by: (Signat   | ture)               |             |                  |                       | Trip Blank I    |            | 2'     | s / NO<br>CL / MeoH<br>BR | Pre         | eservati   | on Correct<br>1 <0.5 mR/ | t/Che                                                  | $\frac{1}{2} \frac{1}{2} \frac{1}$ |                                                            |
| Relinquished by : (Signature)                                                |         |                               | te:                      | Time                                                              |                     | eived by: (Signat   | ture)       |                  |                       |                 | Temp:D     | 178°   |                           | es Received | lf p       | reservatio               | on required                                            | by Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in: Date/Time                                              |
| Relinquished by : (Signature)                                                |         | Da                            | te:                      | Time                                                              | e: Rece             | eived for lab by:   |             | 11 11            | ul                    | 9NI             | Date:      | £123   | Time                      | 0901        | Hol        | d:                       |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Condition:<br>NCF / OK                                     |

Appendix C

Sampling Notifications

 From:
 Weathers, S

 To:
 "Velez, Nels

 Subject:
 Notification

Weathers, Stephen W "Velez, Nelson, EMNRD"; mike.bratcher@state.nm.us Notification of DCP 1st Quarter 2023 Groundwater Monitoring for SENM Remediation Projects

Nelson/Mike

This email is to serve as notification that Tasman will be conducting the 1st Quarter 2023 groundwater sampling event during March at several DCP Midstream remediation sites. Below is the estimated sampling schedule

| 1st Quarter 2023            |                       |                       |        |             |         |          |       |                               |  |  |
|-----------------------------|-----------------------|-----------------------|--------|-------------|---------|----------|-------|-------------------------------|--|--|
| Date                        | Time<br>(Approximate) | Location              | County | Unit Letter | Section | Township | Range | Comments/NMOCD Case<br>Number |  |  |
| Tuesday, March 14-15, 2023  | 8:00 AM               | Hobbs Booster Station | Lea    | C and D     | 4       | 19S      | 38E   | AP-114/Sampling               |  |  |
| Thursday, March 16, 2023    | 8:00 AM               | Burton Flats          | Eddy   | D           | 1       | 215      | 27E   | 2RP-799/Sampling              |  |  |
| Thursday, March 16, 2023    | 12:00 PM              | PCA Junction          | Eddy   | E and L     | 11      | 20S      | 30E   | 2RP-43/Sampling               |  |  |
| Friday, March 17, 2023      | 8:00 AM               | Hobbs Gas Plant       | Lea    | G           | 36      | 18S      | 36E   | AP-122/Sampling               |  |  |
| Monday, March 20 - 21, 2023 | 8:00 AM               | RR Extension          | Lea    | C and F     | 19      | 205      | 37E   | AP-55/Sampling                |  |  |
| Wednesday, March 22, 2023   | 8:00 AM               | Linam Ranch           | Lea    | В           | 6       | 19S      | 37E   | GW-015/Sampling               |  |  |

Let me know if you have any questions or concerns with the schedule. Thanks Steve Weathers, P.G. Environmental Specialist DCP Midstream, LP

Environmental Specialist DCP Midstream, LP 6900 E. Layton Avenue - Suite 900 Denver, CO 80237 Cell 303.619.3042 From: To: Subject: Attachments: Weathers, Stephen "Velez, Nelson, ENNRD"; mike bratcher@state.nm.us Notification of DCP 2nd Quarter 2023 Groundwater Monitoring for SENM Remediation Projects image001.pnq image002.png image003.png

#### Nelson/Mike

This email is to serve as notification that Tasman will be conducting the 2nd Quarter 2023 groundwater sampling event during June at several DCP Midstream remediation sites.

Below is the estimated sampling schedule

| 2nd Quarter 2023            |                       |                       |        |             |         |          |       |                  |  |  |
|-----------------------------|-----------------------|-----------------------|--------|-------------|---------|----------|-------|------------------|--|--|
| Date                        | Time<br>(Approximate) | Location              | County | Unit Letter | Section | Township | Range | Field Activities |  |  |
| Monday, June 19-20, 2023    | 8:00 AM               | Hobbs Booster Station | Lea    | C and D     | 4       | 19S      | 38E   | Sampling/O&M     |  |  |
| Wednesday, June 21-22, 2023 | 8:00 AM               | Lee Gas Plant         | Lea    | 0           | 30      | 17S      | 35E   | Sampling/O&M     |  |  |
| Friday, June 23, 2023       | 8:00 AM               | Hobbs Gas Plant       | Lea    | G           | 36      | 18S      | 36E   | Sampling         |  |  |
| Monday, June 26, 2023       | 8:00 AM               | RR Extension          | Lea    | C and F     | 19      | 20S      | 37E   | Sampling         |  |  |
| Tuesday, June 27, 2023      | 8:00 AM               | Monument Booster      | Lea    | В           | 33      | 19S      | 37E   | Sampling         |  |  |
| Wednesday, June 28, 2023    | 8:00 AM               | Burton Flats          | Eddy   | D           | 1       | 21S      | 27E   | Sampling/EFR     |  |  |
| Wednesday, June 28, 2023    | 12:00 PM              | PCA Junction          | Eddy   | E and L     | 11      | 20S      | 30E   | Sampling         |  |  |

Let me know if you have any questions or concerns with the schedule.

Thanks

Steve

PLEASE NOTE: My email has changed to Stephen.Weathers@P66.com effective April 29, 2023. Please

update my email in your contacts and address list.



Steve Weathers, P.G. Program Manager, Remediation Management

Phillips 66 | 6900 E. Layton Ave. | Suite 900 Denver, C0 80237-3658 | M: 303-619-3042 <u>stephen.weathers@p66.com</u>



Report Suspicious

| From:<br>To: | Weathers, Stephen<br>Kyle Norman; Brett Dennis                                                           |
|--------------|----------------------------------------------------------------------------------------------------------|
| Subject:     | FW: [EXTERNAL] Notification of DCP 3rd Quarter 2023 Groundwater Monitoring for SENM Remediation Projects |
| Date:        | Wednesday, September 6, 2023 3:21:51 PM                                                                  |
| Attachments: | image002.png                                                                                             |
|              | image005.png                                                                                             |
|              | image001.ing                                                                                             |
|              | Outlook-Imfq0qqu.png                                                                                     |
|              | image003.jpg                                                                                             |
|              | image004.ipg                                                                                             |

See Nelson's comments below. We just need to let them know of any changes to the schedule. I would strictly adhere to your schedule if at all possible.



Phillips 66 | 6900 E. Layton Ave. | Suite 900 Denver, C0 80237-3658 | M: 303-619-3042 stephen.weathers@p66.com

?

From: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Sent: Wednesday, September 6, 2023 2:19 PM
To: Weathers, Stephen <Stephen.Weathers@p66.com>
Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>
Subject: Re: [EXTERNAL] Notification of DCP 3rd Quarter 2023 Groundwater Monitoring for SENM Remediation Projects

| This Message Is From an External Sender           |  |
|---------------------------------------------------|--|
| This message came from outside your organization. |  |

Stephen,

Thank you for the notice. If an OCD representative is not on-site on the date &/or time given, please proceed with your sampling. For whatever reason, the sample collection timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of the rescheduling may result in the sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate reporting documentation.

Thanks again

Regards,

Nelson Velez • Environmental Specialist - Adv

Environmental Bureau | EMNRD - Oil Conservation Division

1000 Rio Brazos Road | Aztec, NM 87410

(505) 469-6146 | nelson.velez@emnrd.nm.gov

http://www.emnrd.state.nm.us/OCD/



From: Weathers, Stephen <<u>Stephen.Weathers@p66.com</u>>

Sent: Wednesday, September 6, 2023 1:50 PM

To: Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>; Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>

Subject: [EXTERNAL] Notification of DCP 3rd Quarter 2023 Groundwater Monitoring for SENM Remediation Projects

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson/Mike

This email is to serve as notification that Tasman will be conducting the 3rd Quarter 2023 groundwater sampling event during September at several DCP remediation sites.

Below is the estimated sampling schedule.

| 3nd Quarter 2023              |                       |                       |        |             |         |          |       |                               |  |
|-------------------------------|-----------------------|-----------------------|--------|-------------|---------|----------|-------|-------------------------------|--|
| Date                          | Time<br>(Approximate) | Location              | County | Unit Letter | Section | Township | Range | Comments/NMOCD Case<br>Number |  |
| Monday, September 18-19, 2023 | 8:00 AM               | Hobbs Booster Station | Lea    | C and D     | 4       | 19S      | 38E   | AP-114/Sampling               |  |
|                               |                       |                       |        |             |         |          |       |                               |  |

| Wednesday, September 20, 2023 | 8:00 AM | Hobbs Gas Plant | Lea  | G       | 36 | 18S | 36E | AP-122/Sampling  |
|-------------------------------|---------|-----------------|------|---------|----|-----|-----|------------------|
| Thursday, September 21, 2023  | 8:00 AM | RR Extension    | Lea  | C and F | 19 | 20S | 37E | AP-55/Sampling   |
| Friday, September 22, 2023    | 8:00 AM | Linam Ranch     | Lea  | В       | 6  | 19S | 37E | GW-015/Sampling  |
| Monday, September 25-27 2023  | 8:00 AM | Eldridge Ranch  | Lea  | Ρ       | 21 | 19S | 37E | AP-33/Sampling   |
| Thursday, September 28, 2023  | 8:00 AM | Burton Flats    | Eddy | D       | 1  | 21S | 27E | 2RP-799/Sampling |

Let me know if you have any questions or concerns with the schedule.

Thanks

Steve



Steve Weathers, P.G. Program Manager, Remediation Management

Phillips 66 | 6900 E. Layton Ave. | Suite 900 Denver, C0 80237-3658 | M: 303-619-3042 stephen.weathers@p66.com



From: To: Cc: Subject: Date: Attachments: Weathers, Stephen Velez, Nelson, EMNRD; Bratcher, Michael, EMNRD Kyle Norman; Brett Dennis Notification of DCP 4th Quarter 2023 Groundwater Monitoring for SENM Remediation Projects Monday, November 27, 2023 8:21:23 AM Monday, Nover image002.png image004.png image005.gif image006.ipg image001.jpg

Nelson/Mike

This email is to serve as notification that Tasman will be conducting the 4th Quarter 2023 groundwater sampling event during December at several DCP remediation sites.

Below is the estimated sampling schedule.

| 4th Quarter 2023              |                       |                       |        |             |         |          |       |                               |  |  |  |
|-------------------------------|-----------------------|-----------------------|--------|-------------|---------|----------|-------|-------------------------------|--|--|--|
| Date                          | Time<br>(Approximate) | Location              | County | Unit Letter | Section | Township | Range | Comments/NMOCD Case<br>Number |  |  |  |
| Monday, December 4 – 5, 2023  | 8:00 AM               | Hobbs Booster Station | Lea    | C and D     | 4       | 19S      | 38E   | AP-114/Sampling               |  |  |  |
| Wednesday, December 6-7, 2023 | 8:00 AM               | Lee Gas Plant         | Lea    | 0           | 30      | 17S      | 35E   | GW-002/Sampling               |  |  |  |
| Friday, December 8, 2023      | 8:00 AM               | Hobbs Gas Plant       | Lea    | G           | 36      | 18S      | 36E   | AP-122/Sampling               |  |  |  |
| Monday, December 11, 2023     | 8:00 AM               | RR Extension          | Lea    | C and F     | 19      | 20S      | 37E   | AP-55/Sampling                |  |  |  |
| Tuesday, December 12, 2023    | 8:00 AM               | Monument Booster      | Lea    | В           | 33      | 19S      | 37E   | 1RP-156-0/Sampling            |  |  |  |
| Wednesday, December 13, 2023  | 8:00 AM               | Burton Flats          | Eddy   | D           | 1       | 21S      | 27E   | 2RP-799/Sampling              |  |  |  |
| Wednesday, December 13, 2023  | 12:00 PM              | PCA Junction          | Eddy   | E and L     | 11      | 20S      | 30E   | 2RP-43/Sampling               |  |  |  |

Let me know if you have any questions.

Thanks Steve



Phillips 66 | 6900 E. Layton Ave. | Suite 900 Denver, C0 80237-3658 | M: 303-619-3042 stephen.weathers@p66.com

?

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 322076

CONDITIONS

| Operator:                 | OGRID:                                                   |
|---------------------------|----------------------------------------------------------|
| DCP OPERATING COMPANY, LP | 36785                                                    |
| 2331 Citywest Blvd        | Action Number:                                           |
| Houston, TX 77042         | 322076                                                   |
|                           | Action Type:                                             |
|                           | [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT) |

#### CONDITIONS

| Created By       | Condition                                                                                                                                                                                                                                                                                                                                                         | Condition<br>Date |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| michael.buchanan | Review of the 2023 Annual Groundwater Monitoring and Activities Summary Report for Burton Flats Booster Station: Content Satisfactory 1.<br>Continue groundwater monitoring on a quarterly basis for all constituents 2. Continue to monitor and evaluate the LNAPL passive skimmer. 3.<br>Continue EFR events 4. Submit the 2024 Annual Report by April 1, 2025. | 6/20/2024         |