

Volume Calculation determination of water made.

LOGOS determined the amount released based on water volumes made by well and production detlas.

Rosa Unit #215A DTW @ 161" based off Cathodic Well on the Rosa Unit #008

Rosa Unit # 215A Sitting Criteria

Nelson Velez New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Incident # nAPP2325135212

RE: The cause of the release is due to the packing having been backed out substantially by an unknown cause. The estimated release volume was 8 BBLS and 4 BBLS were recovered. The Rosa Unit #215A is in Unit E, Section 26, Township 31 North, Range 6 West, Rio Arriba County, New Mexico.

Dear Mr. Velez,

When the release was discovered, it was determined that the packing had been backed out substantially by an unknown cause. The release size was 12'x10'x.5"x1". All standing liquid has been removed and the area impacted has been remediated by removing the impacted soil. LOGOS will follow 19.15.29 when remediation occurs.

On December 9, 2023, LOGOS notified BLM and NMOCD for final confirmation sample to be taken. A representative from the NMOCD nor the BLM were present at the confirmation sampling. 1 (5)- point confirmation samples were collected from excavated areas. No odor or staining was observed during the sampling event. All confirmation samples were below closure standards.

•

			12/11/2023	Analytical	Results			
Sample	Date	Sample	EPA Meth	od 8015	EPA Meth	od 8021	EPA Meth	od 300.0
Description	12/11/2023	Depth	GRO	DRO	ORO	Benzene	Total	Chlorides
		See	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX	(mg/kg)
		below					(mg/kg)	
19.15.	29.13 (D) NMA	C		1000 mg/kg	5	10 mg/kg	50	600
							mg/kg	mg/kg
19.1	5.29.12 NMAC		1000	mg/kg				10,000
				2500 mg/kg	5			mg/kg
SB-1 @ 1'	12/11/2023	1 'bgs	ND	ND	ND	ND	ND	ND

		ble I		D ((2))
Received by OCD: 6/2/2024 6:06:08 PM		ls Impacted by a Release	1	Page 6 of 36
Minimum depth below any point within the horizontal boundary of the release to ground water less than 10,000	Constituent	Method*	Limit**	
mg/l TDS				
\leq 50 feet	Chloride***	EPA 300.0 or SM4500 Cl B	600 mg/kg	
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg	
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg	
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg	
51 feet-100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	10,000 mg/kg	
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg	
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg	
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg	
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg	
> <mark>100 feet</mark>	Chloride***	EPA 300.0 or SM4500 Cl B	20,000 mg/kg	
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg	
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg	
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg]
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg]

The samples that were collected were placed into individual laboratory 4-ounce jars, capped head space free and transported on ice to Envirotech. The samples were analyzed for TPH (GRO/DRO/ORO) using EPA Method 8015D; benzene, Toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B and chlorides using EPA Method 300.0.

All final confirmation sampling that was collected was below NMOCD 19.15.29 closure standard.

Therefore, based on the site activities and the laboratory analytical results confirms that concentrations of contaminants are below the applicable release, remediation/reclamation limits and no further action is required. LOGOS request a release and remediation. Reclamation will occur when the site is P&A and will meet BLM Onshore Order 1.

Sample area of Remediation Area

Sample area of Remediation Area

Sample area of Remediation Area

LOGOS Resources will

Sincerely,

Vanessa Fields Regulatory Manager Cell: 505-320-1243

DATA SHEET FOR DEEP GROUND BED CATHODIC PROTECTION WELLS IN NORTHWEST NEW MEXICO

PERATOR: Williams Production Company LDCATION: M 26 31 6 LEASE NUMBER: SF-078771 NAME OF WELL/WELLS OR PIPELINE SERVICED: RUSA UNIT #008 MV 30-039-07944 ELEVATION: 5428' GR COMPLETION DATE: 11/21/77 TOTAL DEPTH: 300 ft. LAND TYPE: FED CASING: 7-5/8" 26.4# K-55 Set @ N/A ft. Casing is not cemented. CEMENT PLUG--Top:N/A' Bottom: N/A' Used 0 sx. Class "B" (1.18 cu.ft./sk). WATER DEPTH: 60 ' Water zone thickness not available. WATER DESCRIPTION: Fresh DEPTH OF GAS: N/A ' COKE: 5670 lbs. of Metalurgical coke breeze used. NUMBER & TYPE OF ANODES: 10CD TOP ANODE @ 140 ft. BOTTOM ANODE @ 240 ft. VENT PIPE: 1" PVC Set @ 300 ft. Vent pipe perforated from 120 ft. to 300 ft. REMARKS:

Rosa Unit #215A Topo Map

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Logos Resources

Project Name: Ros

Rosa Unit 215A

Work Order: E312070

Job Number: 12035-0114

Received: 12/11/2023

Revision: 2

Report Reviewed By:

Walter Hinchman Laboratory Director 12/13/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 12/13/23

Vanessa Fields 2010 Afton Place Farmington, NM 87401

Project Name: Rosa Unit 215A Workorder: E312070 Date Received: 12/11/2023 3:09:00PM

Vanessa Fields,

Page 12 of 36

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 12/11/2023 3:09:00PM, under the Project Name: Rosa Unit 215A.

The analytical test results summarized in this report with the Project Name: Rosa Unit 215A apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

Michelle Golzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SB00#1 Rosa Unit 215A	5
QC Summary Data	6
QC - Volatile Organics by EPA 8021B	6
QC - Nonhalogenated Organics by EPA 8015D - GRO	7
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	8
QC - Anions by EPA 300.0/9056A	9
Definitions and Notes	10
Chain of Custody etc.	11

	Sample SummLogos ResourcesProject Name:2010 Afton PlaceProject Number:Farmington NM, 87401Project Manager:	mary			
Logos Resources		Project Name:	Rosa Unit 215A		Reported:
2010 Afton Place		Project Number:	12035-0114		Reported.
Farmington NM, 87401		Project Manager:	Vanessa Fields		12/13/23 15:18
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container

C

C

		imple D				
Logos Resources	Project Name:	Rosa	a Unit 215A			
2010 Afton Place	Project Numbe	er: 1203	35-0114			Reported:
Farmington NM, 87401	Project Manag	er: Van	essa Fields			12/13/2023 3:18:06PM
	SB00# 1	1 Rosa Unit	215A			
	-	E312070-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RAS		Batch: 2350012
Benzene	ND	0.0250	1	12/12/23	12/12/23	
Ethylbenzene	ND	0.0250	1	12/12/23	12/12/23	
Toluene	ND	0.0250	1	12/12/23	12/12/23	
p-Xylene	ND	0.0250	1	12/12/23	12/12/23	
o,m-Xylene	ND	0.0500	1	12/12/23	12/12/23	
Fotal Xylenes	ND	0.0250	1	12/12/23	12/12/23	
Surrogate: 4-Bromochlorobenzene-PID		92.9 %	70-130	12/12/23	12/12/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/12/23	12/12/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.8 %	70-130	12/12/23	12/12/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	st: RAS		Batch: 2350029
Diesel Range Organics (C10-C28)	ND	25.0	1	12/12/23	12/12/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/12/23	12/12/23	
Surrogate: n-Nonane		81.3 %	50-200	12/12/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: BA		Batch: 2350034
Chloride	ND	20.0	1	12/12/23	12/13/23	

Sample Data

QC Summary Data

	QC DI		ary Data					
	Project Name: Project Number: Project Manager:	1	2035-0114					Reported: 12/13/2023 3:18:06PM
		rganics	by EPA 8021	B				Analyst: RAS
	Reporting	Snike	Source		Rec		PPD	
Result	Limit	Level	Result	Rec	Limits	RPD	Limit	
mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
						Prepared: 1	2/11/23 A	nalyzed: 12/11/23
ND	0.0250					1		,
ND								
ND								
ND								
ND								
7.28	010220	8.00		91.0	70-130			
						Prepared: 1	2/11/23 A	analyzed: 12/11/23
4.87	0.0250	5.00		97.4	70-130			
5.16	0.0250	5.00		103	70-130			
5.11		5.00		102	70-130			
5.16	0.0250	5.00		103	70-130			
10.5	0.0500	10.0		105	70-130			
15.7	0.0250	15.0		105	70-130			
7.28		8.00		91.0	70-130			
			Source: E	312059-	01	Prepared: 1	2/11/23 A	analyzed: 12/11/23
4.64	0.0250	5.00	ND	92.9	54-133			
4.99	0.0250	5.00	ND	99.8	61-133			
4.92	0.0250	5.00	ND	98.4	61-130			
5.02	0.0250	5.00	ND	100	63-131			
10.2	0.0500	10.0	ND	102	63-131			
15.2	0.0250	15.0	ND	101	63-131			
7.45		8.00		93.2	70-130			
			Source: E	312059-	01	Prepared: 1	2/11/23 A	analyzed: 12/11/23
4.87	0.0250	5.00	ND	97.4	54-133	4.77	20	
5.25	0.0250	5.00	ND	105	61-133	5.02	20	
5.16	0.0250	5.00	ND	103	61-130	4.79	20	
	0.0250	5.00	ND	105	63-131	4.86	20	
5.27	0.0230							
5.27 10.7 16.0	0.0500	10.0 15.0	ND ND	107 106	63-131 63-131	4.92 4.90	20 20	
	ND ND ND ND ND 7.28 4.87 5.16 5.11 5.16 10.5 15.7 7.28 4.87 5.28 4.64 4.99 4.92 5.02 10.2 15.2 7.45	Project Name: Project Number: Project Manager: Volatile Or Result mg/kg Reporting Limit mg/kg ND 0.0250 7.28	Project Name: F Project Number: 1 Project Manager: N Volatile Organics Spike Result Reporting Spike mg/kg mg/kg Mg/kg ND 0.0250 mg/kg ND 0.0250 ND ND 0.0250 S.00 S.16 0.0250 S.00 5.16 0.0250 S.00 10.5 0.0500 10.0 15.7 0.0250 S.00 4.64 0.0250 5.00 4.99 0.0250 S.00 4.99 0.0250 5.00 5.02	Project Number: 12035-0114 Project Manager: Vanessa Fields Volatile Organics by EPA 8021 Result Reporting Spike Source Result ng/kg ng/kg mg/kg mg/kg ND 0.0250	Project Name: Rosa Unit 215A Project Number: 12035-0114 Project Manager: Vanessa Fields Volatile Organics by EPA 8021B Result Reporting Limit Spike Level Source Result Rec MD 0.0250 mg/kg mg/kg % ND 0.0250 ND 0.0250 ND 0.0250 103 S.16 0.0250 5.00 103 5.16 0.0250 103 10.5 0.0500 103 10.5 0.0250 105 7.28 8.00 91.0 Source: E312059- 4.64 0.0250 5.00 ND 92.9 4.64 0.0250 5.00 ND 92.9 Source:	Project Name: Rosa Unit 215A Project Number: 12035-0114 Project Manager: Vanessa Fields Volatile Organics by EPA 8021B Result Reporting Limit Spike Level Source Result Rec Limits ND 0.0250 mg/kg mg/kg % % ND 0.0250 nb 7.28 8.00 91.0 70-130 4.87 0.0250 5.00 103 70-130 5.16 0.0250 5.00 102 70-130 5.16 0.0250 5.00 103 70-130 5.16 0.0250 5.00 103 70-130 5.16 0.0250 5.00 103 70-130 5.16 0.0250 5.00 103 70-130 5.16 0.0250 5.00 103 70-130 7.28 8.00 91.0 70-130 7.28 8.00 91.0 70-130 7.28 8.00 91.0 70-13	Project Name: Project Number: Roa Unit 215A 12035-0114 Project Manager: Vanessa Fields Volatile Organics by EPA 8021B Result mg/kg Reporting Limit mg/kg Spike mg/kg Source mg/kg Rec % Kep % Rep % ND 0.0250 mg/kg mg/kg mg/kg mg/kg % % ND 0.0250 ND 0.0250 ND Prepared: 1 ND 0.0250 ND 0.0250 Prepared: 1 ND 0.0250 ND 0.0250 Prepared: 1 A87 0.0250 5.00 91.0 70-130 7.28 8.00 91.0 70-130 Prepared: 1 4.87 0.0250 5.00 103 70-130 5.16 0.0250 5.00 103 70-130 5.16 0.0250 5.00 103 70-130 5.16 0.0250 5.00 103 70-130 7.28 8.00 91.0 70-130 71-30	Project Name: Project Number: Ros Unit 215A 12035-0114 Project Manager: Roses Fields Volatile Organics by EPA 8021B Volatile Organics by EPA 8021B Result Reporting mg/kg Spike mg/kg Source mg/kg Rec % Rec % RPD % RPD % RPD

QC Summary Data

		QC S	umm	ary Data								
Logos Resources 2010 Afton Place Farmington NM, 87401		Project Name: Project Number: Project Manager:	1	Rosa Unit 215A 2035-0114 Vanessa Fields					Reported: 12/13/2023 3:18:06PM			
	Nonhalogenated Organics by EPA 8015D - GRO Analyst: RAS											
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes			
	ing ng			g ng	70	70	70	70	notes			
Blank (2350012-BLK1)							Prepared: 1	2/11/23 A	nalyzed: 12/11/23			
Gasoline Range Organics (C6-C10)	ND	20.0										
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.20		8.00		90.0	70-130						
LCS (2350012-BS2)							Prepared: 1	2/11/23 A	nalyzed: 12/11/23			
Gasoline Range Organics (C6-C10)	47.9	20.0	50.0		95.8	70-130						
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.19		8.00		89.9	70-130						
Matrix Spike (2350012-MS2)				Source: E	312059-0	01	Prepared: 1	2/11/23 A	nalyzed: 12/11/23			
Gasoline Range Organics (C6-C10)	49.4	20.0	50.0	ND	98.9	70-130						
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.15		8.00		89.3	70-130						
Matrix Spike Dup (2350012-MSD2)				Source: E	312059-0	01	Prepared: 1	2/11/23 A	nalyzed: 12/11/23			
Gasoline Range Organics (C6-C10)	49.7	20.0	50.0	ND	99.3	70-130	0.450	20				
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.18		8.00		89.8	70-130						

QC Summary Data

		QC DI	u11111	ialy Data								
Logos Resources 2010 Afton Place Farmington NM, 87401		Project Name: Project Number: Project Manager:		Rosa Unit 215A 12035-0114 Vanessa Fields					Reported: 12/13/2023 3:18:06PM			
	Nonhalogenated Organics by EPA 8015D - DRO/ORO Analyst: RAS											
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes			
Blank (2350029-BLK1)							Prepared: 1	2/12/23 A	Analyzed: 12/12/23			
Diesel Range Organics (C10-C28)	ND	25.0										
Oil Range Organics (C28-C36)	ND	50.0										
Surrogate: n-Nonane	41.9		50.0		83.9	50-200						
LCS (2350029-BS1)							Prepared: 1	2/12/23 A	Analyzed: 12/12/23			
Diesel Range Organics (C10-C28)	210	25.0	250		84.0	38-132						
Surrogate: n-Nonane	42.7		50.0		85.3	50-200						
Matrix Spike (2350029-MS1)				Source: F	312044-	26	Prepared: 1	2/12/23 A	Analyzed: 12/12/23			
Diesel Range Organics (C10-C28)	229	25.0	250	ND	91.6	38-132						
Surrogate: n-Nonane	44.5		50.0		89.0	50-200						
Matrix Spike Dup (2350029-MSD1)				Source: E	312044-	26	Prepared: 1	2/12/23 A	Analyzed: 12/12/23			
Diesel Range Organics (C10-C28)	246	25.0	250	ND	98.5	38-132	7.30	20				
Surrogate: n-Nonane	45.3		50.0		90.5	50-200						

QC Summary Data

		$\mathbf{x} \in \mathbf{z}$		ary Data	•					
Logos Resources 2010 Afton Place Farmington NM, 87401		Project Name: Project Number: Project Manager:		Rosa Unit 215A 12035-0114 Vanessa Fields					Reported: 12/13/2023 3:18:061	
Anions by EPA 300.0/9056A										
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limi %		
Blank (2350034-BLK1)							Prepared:	12/12/23	Analyzed: 12/13/23	
Chloride	ND	20.0								
LCS (2350034-BS1)							Prepared:	12/12/23	Analyzed: 12/13/23	
Chloride	248	20.0	250		99.2	90-110				
Matrix Spike (2350034-MS1)				Source: E	312067-	03	Prepared:	12/12/23	Analyzed: 12/13/23	
Chloride	18200	200	250	18000	55.3	80-120			M4	
Matrix Spike Dup (2350034-MSD1)				Source: E	312067-	03	Prepared:	12/12/23	Analyzed: 12/13/23	
Chloride	18500	200	250	18000	203	80-120	2.01	20	M4	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

	2 emilion	o unu 1 (oteb	
Logos Resources	Project Name:	Rosa Unit 215A	
2010 Afton Place	Project Number:	12035-0114	Reported:
Farmington NM, 87401	Project Manager:	Vanessa Fields	12/13/23 15:18

M4 Matrix spike recovery value is suspect since the analyte concentration in the sample is disproportionate to the spike level. The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

- DNI Did Not Ignite
- DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

2	
roject	Information
2	

Page _____ of ____

ent: CCV	Sare	5		Bi	ПТО				Li	ab Us	se On	ly	1				TAT					gram
niect: Vox LIDIT	alst		A	ttention: 20	e 1		Lab	WO#	+	~	Idol				10	2D	3D 5	Stand	ard	CWA	1	SDW
dress: 2010 Refor	SE FIG	elds		ddress:	10-52 ments of the		E	512	01		12	36	-01	19	V							DCD
dress: 2010 Afton	19			ity, State, Zip			1	-	-		Analy	/sis ar	nd Me	ethod				-				RCRA
y, State, Zip Farmingt	UN MI	13141		hone:														-		State		
one: 305 - 320 -	1240	cl	(com)E	mail:	the second second second		801	8015				0				. 1		NM	Icol	UT	C	TX
ail: Wieks210	502105	purss.					Vd C	yd C	8021	8260	010	300.	NN	X1-5				X	00			
fime	No. of	1		and the second		Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	by 8	Metals 6010	Chloride 300.0	BGDOC - I	1005-	7			1	I	<u>_</u>		
mpled Date Sampled Matrix	Containers	Sample II	D			Number	DRO	GRO	BTE	VOC by	Met	Chic	BGD	TCEQ	100					Remar	KS	
- 171, C		0	10-11	A D	11	1	V	V.	K			V										
11/11/23 2		0	ROOF	A BOBU	M+21SH	1	A	X	1			1					-					
						1			E • 1													
							-															
												3										
													-									
						1.1																
1 1										1.1												
			~																			
													-									
ditional Instructions:	1				$\langle \rangle$	/	-				I											-
							1	-													1	
eld sampler), attest to the validity an	authenticity	of this sampl	e. I am aware th	at tampering with or intention	anally mislabelling th	e ampte loca	nion,		~								be receive				npled o	or receiv
or time of collection is considered fr	aud and may l	be grounds fo	or legal action.	Sampled b		p-		-		-	раскец	in ice a	t an ave	tempa	-		than 6 °C c	on subseq	uent uay	».	-	
nquistied by (signature)	Date	103	Time DS	Received by: (Signatu	en A	Date	123	Time	50	2	Daras			. í	Lat	Use	Only					
anyished to (Signatura)	Date	1/2	Time	Received by: (Signatu		Date	ik	Time	50	-	Rece	eived	on ic	e:	C	(N						
nquished by: (Signature)	Date	1	line	Necelved by, (Signati	ii ej	bute		, inte		1.1	T1				т2			тз				
nguished by: (Signature)	Date		Time	Received by: (Signatu	ire)	Date		Time										15				
								100			AVG	Tem	n°C	2	4							
nquished by: (Signature)	Date		Time	Received by: (Signatu	ire)	Date		Time				. cm	P 0_	-	+							
inference of torgundary												1.5									1	
ple Matrix: S - Soil, Sd - Solid, Sg - Slu					No.	Container																
Note: Samples are discarded 30	days after re	sults are re	ported unless	other arrangements are	made. Hazardou	s samples w	ill be	return	ned to	client	t or dis	sposed	d of at	the c	lient ex	kpense	2. The r	report f	or the	analysis	of th	ne abor
S	imples is ap	plicable onl	y to those sam	ples received by the labo	ratory with this (.UC. The liab	oility o	it the l	labora	tory i	s limite	ed to	the ar	nount	paid f	or on t	the repo	ort.	Lan			

Page 21 of 36

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Logos Resources	Date Received:	12/11/23 15:	:09		Work Order ID:	E312070
Phone:	(505) 787-9100	Date Logged In:	12/11/23 15:	:14		Logged In By:	Jordan Montano
Email:	vfields@logosresourcesllc.com	Due Date:	12/12/23 17	:00 (1 day TAT)			
Chain o	f Custody (COC)						
1. Does 1	the sample ID match the COC?		Yes				
2. Does t	the number of samples per sampling site location ma	tch the COC	Yes				
3. Were	samples dropped off by client or carrier?		Yes	Carrier: V	Vanessa Fields		
4. Was th	ne COC complete, i.e., signatures, dates/times, reque	sted analyses?	Yes	_	_		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted i i.e, 15 minute hold time, are not included in this disucssi		Yes			<u>Commen</u>	ts/Resolution
<u>Sample</u>	Turn Around Time (TAT)						
	e COC indicate standard TAT, or Expedited TAT?		Yes				
Sample	<u>Cooler</u>						
7. Was a	sample cooler received?		Yes				
8. If yes,	was cooler received in good condition?		Yes				
9. Was th	ne sample(s) received intact, i.e., not broken?		Yes				
10. Were	e custody/security seals present?		No				
	s, were custody/security seals intact?		NA				
12. Was t	he sample received on ice? If yes, the recorded temp is 4°C Note: Thermal preservation is not required, if samples an		Yes				
13 Ifno	minutes of sampling visible ice, record the temperature. Actual sample	temperature: 1º	r.				
		temperature. <u>4</u>					
	Container aqueous VOC samples present?		No				
	VOC samples collected in VOA Vials?		NA				
	e head space less than 6-8 mm (pea sized or less)?		NA				
	a trip blank (TB) included for VOC analyses?		NA				
	non-VOC samples collected in the correct containers	?	Yes				
	appropriate volume/weight or number of sample containers		Yes				
Field La			- +0				
	e field sample labels filled out with the minimum info	ormation:					
	Sample ID?	·	Yes				
	Date/Time Collected?		Yes		L		
	Collectors name?		Yes				
	Preservation	10	N				
	s the COC or field labels indicate the samples were p	reserved?	No				
	sample(s) correctly preserved?	matala?	NA N-				
	o filteration required and/or requested for dissolved r	netais?	No				
	ase Sample Matrix	0					
	the sample have more than one phase, i.e., multipha		No				
27. If ye	s, does the COC specify which phase(s) is to be anal	yzed?	NA				
	ract Laboratory						
28. Are s	samples required to get sent to a subcontract laborate a subcontract laboratory specified by the client and i	-	No NA S				

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

Nelson Velez New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505

Incident # nAPP2325135212

RE: The cause of the release is due to the packing having been backed out substantially by an unknown cause. The estimated release volume was 8 BBLS and 4 BBLS were recovered. The Rosa Unit #215A is in Unit E, Section 26, Township 31 North, Range 6 West, Rio Arriba County, New Mexico.

Dear Mr. Velez,

When the release was discovered, it was determined that the packing had been backed out substantially by an unknown cause. The release size was 12'x10'x.5"x1". All standing liquid has been removed and the area impacted has been remediated by removing the impacted soil. LOGOS will follow 19.15.29 when remediation occurs.

On December 9, 2023, LOGOS notified BLM and NMOCD for final confirmation sample to be taken. A representative from the NMOCD nor the BLM were present at the confirmation sampling. 1 (5)- point confirmation samples were collected from excavated areas. No odor or staining was observed during the sampling event. All confirmation samples were below closure standards.

•

12/11/2023 Analytical Results										
Sample	Date	Sample	EPA Method 8015		EPA Method 8015 EPA Metho		od 8021 EPA Method		od 300.0	
Description	12/11/2023	Depth	GRO	DRO	ORO	Benzene	Total	Chlorides		
		See	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX	(mg/kg)		
		below					(mg/kg)			
19.15.29.13 (D) NMAC		1000 mg/kg		10 mg/kg	50	600				
						mg/kg	mg/kg			
19.15.29.12 NMAC		1000 mg/kg				10,000				
			2500 mg/kg	5			mg/kg			
SB-1 @ 1'	12/11/2023	1 'bgs	ND	ND	ND	ND	ND	ND		

OCD: 6/2/2024 6:06:08 PM		Fable I		Page 26 of.
Minimum depth below any point within the horizontal boundary of the release to ground water less than 10,000 mg/l TDS	Constituent	Method*	Limit**	1 uge 20 0j
\leq 50 feet	Chloride***	EPA 300.0 or SM4500 Cl B	600 mg/kg	
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	100 mg/kg	
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg	
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg	
51 feet-100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	10,000 mg/kg	
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg	
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg	
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg	
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg	
> <mark>100 feet</mark>	Chloride***	EPA 300.0 or SM4500 Cl B	20,000 mg/kg	
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015M	2,500 mg/kg	
	GRO+DRO	EPA SW-846 Method 8015M	1,000 mg/kg	
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg	
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg	

The samples that were collected were placed into individual laboratory 4-ounce jars, capped head space free and transported on ice to Envirotech. The samples were analyzed for TPH (GRO/DRO/ORO) using EPA Method 8015D; benzene, Toluene, ethylbenzene and total xylenes (BTEX) using EPA Method 8021B and chlorides using EPA Method 300.0.

All final confirmation sampling that was collected was below NMOCD 19.15.29 closure standard.

Therefore, based on the site activities and the laboratory analytical results confirms that concentrations of contaminants are below the applicable release, remediation/reclamation limits and no further action is required. LOGOS request a release and remediation. Reclamation will occur when the site is P&A and will meet BLM Onshore Order 1.

Received

Sample area of Remediation Area

Sample area of Remediation Area

Sample area of Remediation Area

LOGOS Resources will

Sincerely,

Vanessa Fields Regulatory Manager Cell: 505-320-1243

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 350020

QUESTIONS			
Operator:	OGRID:		
LOGOS OPERATING, LLC	289408		
2010 Afton Place	Action Number:		
Farmington, NM 87401	350020		
	Action Type:		
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)		

QUESTIONS

Prerequisites		
Incident ID (n#)	nAPP2325135212	
Incident Name	NAPP2325135212 ROSA UNIT #215A @ 30-039-27422	
Incident Type	Produced Water Release	
Incident Status	Remediation Closure Report Received	
Incident Well	[30-039-27422] ROSA UNIT #215A	

Location of Release Source

Please answer all the questions in this group.			
Site Name	ROSA UNIT #215A		
Date Release Discovered	09/07/2023		
Surface Owner	Federal		

Incident Details

Please answer all the questions in this group.				
Incident Type	Produced Water Release			
Did this release result in a fire or is the result of a fire	No			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	No			
Has this release endangered or does it have a reasonable probability of endangering public health	No			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No			

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.				
Crude Oil Released (bbls) Details	Not answered.			
Produced Water Released (bbls) Details	Cause: Other Well Produced Water Released: 8 BBL Recovered: 4 BBL Lost: 4 BBL.			
Is the concentration of chloride in the produced water >10,000 mg/l	No			
Condensate Released (bbls) Details	Not answered.			
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Not answered.			
Other Released Details	Not answered.			
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	When the release was discovered it was determined that the packing had been backed out substantially by an unknown cause. The release size was 12'x10'x.5. All standing liquid has been removed and the area impacted has been remediated by removing the impacted soil.			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 350020

Page 30 of 36

QUESTIONS (continued)

Operator:	OGRID:		
LOGOS OPERATING, LLC	289408		
2010 Afton Place	Action Number:		
Farmington, NM 87401	350020		
	Action Type:		
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)		

QUESTIONS

Nature and Volume of Release (continued)				
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.			
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No			
Reasons why this would be considered a submission for a notification of a major release	Unavailable.			
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.				

The responsible party must undertake the	Initial Response	
The responsible party must undertake the	The responsible party must undertake th	e

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.				
The source of the release has been stopped	True			
The impacted area has been secured to protect human health and the environment	True			
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True			
All free liquids and recoverable materials have been removed and managed appropriately	True			
If all the actions described above have not been undertaken, explain why	Not answered.			
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.				
I hereby agree and sign off to the above statement	Name: Vanessa Fields Title: Regulatory Manager Email: vfields@logosresourcesllc.com Date: 06/02/2024			

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 350020

Page 31 of 36

QUESTIONS (continued)

Operator:	OGRID:
LOGOS OPERATING, LLC	289408
2010 Afton Place	Action Number:
Farmington, NM 87401	350020
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-V-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	OCD Imaging Records Lookup
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 300 and 500 (ft.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Greater than 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	None
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 0 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 0 GRO+DRO (EPA SW-846 Method 8015M) 0 BTEX (EPA SW-846 Method 8021B or 8260B) 0 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 09/07/2023 On what date will (or did) the final sampling or liner inspection occur 12/11/2023 On what date will (or was) the remediation complete(d) 09/25/2023 What is the estimated surface area (in square feet) that will be reclaimed 200 What is the estimated volume (in cubic yards) that will be reclaimed 2 What is the estimated surface area (in square feet) that will be remediated 200 What is the estimated volume (in cubic yards) that will be remediated 2 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 350020

QUESTIONS (continued)		
Operator: LOGOS OPERATING, LLC 2010 Afton Place Farmington, NM 87401	OGRID: 289408 Action Number: 350020 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued) Please answer all the questions that apply or are indicated. This information must be provided to the This remediation will (or is expected to) utilize the following processes to remediate		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	ENVIROTECH [fSC0000000048]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efi which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Vanessa Fields Title: Regulatory Manager Email: vfields@logosresourcesllc.com Date: 06/02/2024	
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accors significantly deviate from the remediation plan proposed, then it should consult with the division to do	ordance with the physical realities encountered during remediation. If the responsible party has any need to letermine if another remediation plan submission is required.	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 33 of 36

Action 350020

QUESTIONS (continued)	
Operator: LOGOS OPERATING, LLC	OGRID: 289408
2010 Afton Place Farmington, NM 87401	Action Number: 350020
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 350020

Page 34 of 36

QUESTIONS (continued) Operator: OGRID: LOGOS OPERATING, LLC 289408 2010 Afton Place Action Number: Farmington, NM 87401 350020 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	291983
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	12/11/2023
What was the (estimated) number of samples that were to be gathered	1
What was the sampling surface area in square feet	200

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all re	nly answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.	
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	200	
What was the total volume (cubic yards) remediated	2	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	200	
What was the total volume (in cubic yards) reclaimed	2	
Summarize any additional remediation activities not included by answers (above)	see attached summary in closure report	
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ally restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.	

	Name: Vanessa Fields
I hereby agree and sign off to the above statement	Title: Regulatory Manager
	Email: vfields@logosresourcesllc.com
	Date: 06/02/2024

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 350020

Page 35 of 36

QUESTIONS (continued)

Operator: LOGOS OPERATING, LLC	OGRID: 289408
2010 Afton Place	Action Number:
Farmington, NM 87401	350020
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	

Requesting a reclamation approval with this submission

No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 36 of 36

CONDITIONS

Action 350020

[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

Operator: OGRID: LOGOS OPERATING, LLC 289408 2010 Afton Place Action Number: Farmington, NM 87401 350020 Action Type:

CONDITIONS

CONDITIONS

ſ	Created	Condition	Condition
	Ву		Date
	nvelez	None	7/2/2024