

2023 Annual Report

Vacuum Glorietta East Unit Administrative/Environmental Order 1RP-744 Incident nPAC0605554033 Lea County, New Mexico

REVIEWED

By Mike Buchanan at 1:12 pm, Jul 16, 2024

Review of the 2023 Annual Report for Vacuum Glorietta East Unit, 1RP-744: content satisfactory

1. Continue gauging and groundwater monitoring events on a semi-annual schedule as planned.

2. Introduce a gravity fed Cool-Ox injection (ISCO) into BG-4 in order to expedite degradation of PSH.

 Maverick may discontinue SVE remediation in replacement for the ISCO Cool-Ox injections.

4. Submit the 2024 Annual Report to OCD via the online portal by April 1, 2025.

#212C-HN-02008 January 31, 2024

2023 Annual Report

Vacuum Glorietta East Unit (1RP-744) Administrative/Environmental Order 1RP-744 Incident nPAC0605554033 Lea County, New Mexico

#212C-HN-02008 February 07, 2024

PRESENTED TO

Maverick Permian, LLC

1410 NW County Road Hobbs, NM 88240 **Tetra Tech, Inc.** 1500 CityWest Blvd Suite 1000 Houston, TX 77042

PRESENTED BY

P +1-832-251-5160 F +1-832-251-5170 tetratech.com

Prepared by:

Chris Straub Project Manager

02/07/2024

Reviewed by:

Charles H. Terhune IV, P.G. Program Manager

02/07/2024

2023 Annual Report February 7, 2024

TABLE OF CONTENTS

1.0 INTRODUCTION
2.0 BACKGROUND AND PREVIOUS INVESTIGATIONS
3.0 HYDROGEOLOGY
3.1 Geology
3.2 Site Hydrogeology
4.0 GROUNDWATER MONITORING
4.1 Groundwater Level Measurements7
4.2 Groundwater Sampling7
4.3 Groundwater Analytical Results8
5.0 QUALITY ASSURANCE/QUALITY CONTROL
5.1 Field and Laboratory Precision9
5.2 Laboratory Data Qualification9
5.3 Data Usability9
6.0 REMEDIAL ACTIVITIES
6.1 objectives
6.2 Methodology
6.3 SVE Results
7.0 2023 WORKPLAN
8.0 REFERENCES
LIST OF FIGURES

Figure 1: Site Location Map

- Figure 2: Site Details Map
- Figure 3: Groundwater Potentiometric Surface Map February 2023
- Figure 4: Groundwater Potentiometric Surface Map September 2023
- Figure 5: Benzene Concentration Map February 2023
- Figure 6: Benzene Concentration Map September 2023
- Figure 7: Chloride Concentration Map February 2023
- Figure 8: Chloride Concentration Map September 2023

TE TETRA TECH

LIST OF TABLES

- Table 1: Groundwater Elevation Data
- Table 2:
 Groundwater Field Parameters
- **Table 3**: Groundwater Analytical Summary
- Table 4:
 Quality Assurance/Quality Control Summary
- Table 5:
 AcuVac SVE Summary

APPENDICES

- Appendix A: Laboratory Analytical Data
- **Appendix B:** Benzene Concentration Graphs
- Appendix C: Historical Groundwater Gauging Data
- Appendix D: Historical Groundwater Analytical Data
- Appendix E: AcuVac Remediation Reports
- Appendix F: Monitor Well Construction
- Appendix G: Cool-Ox® Safety Date Sheet

2023 Annual Report February 7, 2024

2023 Annual Report February 7, 2024

1.0 INTRODUCTION

This report details the continuing groundwater monitoring and remedial activities at the Maverick Permian, LLC (Maverick) Vacuum Glorietta East Unit Site in Lea County, New Mexico (Site). The Site is located on Buckeye Road approximately 17 miles west-northwest of Hobbs, New Mexico, and assigned New Mexico Oil Conservation Division (NMOCD) identifier 1RP-744. Groundwater monitoring and remediation at the Site are conducted under New Mexico Oil Conservation District (NMOCD) Administrative/Environmental Order AP-115-1. The Site and surrounding areas are rural grasslands used primarily for oil and gas production.

2.0 BACKGROUND AND PREVIOUS INVESTIGATIONS

In October 2002 the Site operator reported a Release Notification to the NMOCD for which the current impacts to soil and groundwater at the Site are believed to be associated. Approximately 80 barrels (bbls) of oil and 20 bbls of water were recovered after the release with an affected area of approximately 12,000 square feet.

B&H Environmental Services performed the initial investigation at the Site by in November 2002. The investigation included the installation of one groundwater monitor well which was subsequently destroyed during follow-on excavation works. The investigation indicated the presence of chlorides and petroleum hydrocarbons above NMOCD Recommended Remedial Action Limits (RRALs). Approximately 3,240 cubic yards (CY) of petroleum-impacted soil was excavated in August 2004, and another 1,000 CY of soil was removed in November and December 2008 after additional assessment.

Backfilling and reseeding of the excavation were completed in June 2009 along with the installation of three monitor wells, one in the excavation footprint, one upgradient of the excavation, and one downgradient of the excavation. Three additional groundwater monitor wells VG-5, VG-6, and VG-7 were installed in December 2013 to further assess the northern, western, and southern extent of hydrocarbon and chloride impacts in the groundwater.

Small quantities of phase-separated hydrocarbons (PSH) and benzene, toluene, ethylbenzene, and total xylenes (BTEX) and chloride at concentrations greater than New Mexico Water Quality Control Commission (NMWQCC) Groundwater Quality Standards have historically been reported in samples collected from monitoring well VG-4. Mobile dual-phase extraction (DPE) has been used as a remediation method at the Site previously at monitor well VG-4 in September 2014, May 2015, June 2019, May 2020, February 2021, and May 2021 by AcuVac Remediation, LLC (AcuVac) of Houston, Texas. Based on the absence of measurable PSH at the Site in 2021, 2022 remedial activities shifted to single-phase SVE events to target vapor-phase petroleum hydrocarbon recovery from soil and groundwater within the monitor well VG-4 zone of influence.

TETRA TECH

3.0 HYDROGEOLOGY

3.1 GEOLOGY

The Site is located in the Querecho Plains of southeastern New Mexico. This area generally consists of a thin cover of Quaternary sand dunes overlying the undivided Triassic Upper Chinle Group. The soil consists of well-drained sand and sandy clay loam. Typically, the surface layer is reddish-brown loamy fine sand. It is underlain by red light sandy clay. Below this is white moderately to well-indurated caliche. Underlying the caliche are dark reddish shales and thin sandstones of the undivided Triassic Upper Chinle Group. The Upper Chinle Group consists of silty shale, thin-bedded to massive, purplish red to reddish-brown with greenish reduction spots. The Upper Chinle Group is interbedded with thin beds of fine-grained sandstone with chert pebble gravel.

3.2 SITE HYDROGEOLOGY

The water-bearing zone consists of the Pliocene-age Ogallala aquifer under unconfined conditions at the site. The Ogallala aquifer is located at the base of the Ogallala Formation. In general, the Ogallala Formation consists of quartz sand and gravel that is poorly to well-cemented with calcium carbonate and contains minor amounts of clay. The wells installed at the Site were drilled to depths of approximately 65 to 80 feet below ground surface (bgs) with static groundwater water levels at approximately 70 feet bgs.

2023 Annual Report February 7, 2024

4.0 GROUNDWATER MONITORING

The Site is currently the subject of semi-annual groundwater monitoring under the NMOCD-approved abatement plan. Tetra Tech performed the 2023 annual groundwater monitoring events in February 2023. Tetra Tech contracted Hydrologic Monitoring, LLC (HMI) to conduct groundwater sampling at the Site in September of 2023.

The current groundwater monitoring and remediation program approved by the NMOCD includes semiannual groundwater gauging and sampling of the Site monitoring well network comprised of monitoring wells VG-2, VG-3, VG-4, VG-5, VG-6, and VG-7 for analysis of BTEX and chloride. In addition to the groundwater monitoring program, remedial activities at the Site have included quarterly soil vapor extraction (SVE) events at monitor well VG-4.

4.1 GROUNDWATER LEVEL MEASUREMENTS

Prior to purging and sampling the monitor well network, Tetra Tech or HMI personnel gauged each well to measure the depth to groundwater and the presence of PSH, if any. Monitoring wells containing PSH are gauged, but not sampled. Groundwater level and PSH measurements are presented in **Table 1** along with groundwater elevation calculations. PSH was identified in VG-4 during both 2023 groundwater monitoring events. **Figure 2** presents the site details map showing the current monitoring well network. All six (6) of the monitoring wells in the Site monitoring well network were gauged during the 2023 annual groundwater monitoring events.

In 2023, groundwater elevations ranged from 3,862.19 feet above mean sea level (AMSL) in VG-5 to 3,864.33 feet AMSL in VG-3. Groundwater potentiometric surface maps with calculated groundwater elevations are presented in **Figures 3** and **4**. Groundwater flow at the Site was shown to flow to the southeast with an approximate average hydraulic gradient of 0.00448 feet per foot in 2023, generally consistent with historical groundwater flow at the Site. Historical groundwater gauging data is provided in **Appendix C**.

4.2 GROUNDWATER SAMPLING

During the 2023 monitoring events, wells VG-4, VG-5, VG-6, and VG-7 were sampled. VG-2 and VG-3 both measured as dry during both 2023 sampling events and therefore were not sampled. Additionally, VG-4 was gauged but not sampled during two groundwater sampling events due to the presence of PSH in the well. Low-flow sampling methodology was utilized to purge and sample monitoring wells using either a decontaminated submersible pump with disposable tubing or a bladder pump with dedicated disposable tubing and bladders in accordance with United States Environmental Protection Agency (EPA) guidance. The bladder pump intake was set to the approximate center of the water column within the screened interval for each monitor well prior to purging. **Table 2** presents a summary of the groundwater field analytical parameters that were tested during the sampling of the wells.

Groundwater quality parameters including temperature, pH, Specific Conductivity (SC), Dissolved Oxygen (DO), Oxygen Reduction Potential (ORP), and turbidity were recorded during purging in addition to well drawdown and flow rate to document monitor well stabilization. Once field parameters stabilized at each well, samples were collected into laboratory-provided pre-preserved sample containers,

2023 Annual Report February 7, 2024

2023 Annual Report February 7, 2024

immediately placed on ice, and transported to Pace Analytical Services, LLC, in Dallas, Texas, and Pace Analytical National in Mount Juliette, Tennessee, under chain-of-custody documentation submitted for analysis of the following constituents of concern (COCs):

- Benzene, toluene, ethylbenzene, and xylenes (BTEX) by Method 8260; and
- Chloride by Method 9056A.

4.3 GROUNDWATER ANALYTICAL RESULTS

During the February 2023 sampling event, monitoring wells VG-5, VG-6, and VG-7 were sampled during both sampling events. During both events, VG-2 and VG-3 did not contain enough water to sample and VG-4 contained measurable quantities of PSH, therefore no samples were taken from these wells. BTEX constituents were not detected by the laboratory in any samples submitted during the 2023 sampling events.

Chloride was reported at a concentration of 316 mg/L in the sample collected from VG-5 in February 2023 and 257 mg/L in the sample collected in VG-6 in September 2023, greater than the NMWQCC standards of 250 mg/L.

Table 3 presents a summary of the groundwater analytical results screened against NMWQCC Groundwater Quality Standards. The laboratory analytical data packages including chain-of-custody documentation are provided in **Appendix A**, benzene and chloride concentration maps are provided in **Figures 4** through **6**. Historical groundwater analytical data summaries are provided in **Appendix D**.

2023 Annual Report February 7, 2024

5.0 QUALITY ASSURANCE/QUALITY CONTROL

A total of two primary groundwater samples from each well were collected and analyzed during each groundwater monitoring event in 2023, with the exception of VG-2, VG-3, and VG-4. Samples were not collected in February and November from VG-2 and VG-3 as the wells were dry and VG-4 as measurable quantities of PSH were present in the well. One field duplicate was collected and analyzed for each event.

5.1 FIELD AND LABORATORY PRECISION

The project measurement quality objectives are 30 percent for relative-percent-difference (RPD) between primary and duplicate sample results for inorganic analytes including chloride and 50 percent RPD between primary and duplicate sample results for organic analytes including BTEX. **Table 4** presents primary and duplicate sample results and RPD calculations. All primary-duplicate pair analytes for 2023 were within project DQOs.

5.2 LABORATORY DATA QUALIFICATION

No laboratory analytical results were qualified in the three analytical data packages during the two 2023 groundwater monitoring events.

5.3 DATA USABILITY

Groundwater analytical data are deemed useable for the purpose of determining groundwater COC concentrations at the Site. Field duplicate samples reported results within Data quality objectives.

6.0 REMEDIAL ACTIVITIES

In 2023, PSH recovery was conducted at the Site during two soil vapor extraction (SVE) events. The events were conducted between March 27 and 31 and December 11 and 15, 2023. During the events, Tetra Tech personnel mobilized to the Site to supervise remedial activities conducted by AcuVac. The event was conducted at VG-4 for both 2023 events.

6.1 OBJECTIVES

The objectives of the SVE events are to induce a vacuum and extract volatile vapor phase hydrocarbons from soils and groundwater at the VG-4 location which periodically exhibits measurable levels of PSH in the well or reports concentrations of benzene above NMWQCC Groundwater Quality Standards.

6.2 METHODOLOGY

The SVE system employed at the site consists of a vacuum pump driven by an internal combustion engine. The vacuum pump is connected to the extraction well and used to induce a vacuum on the well to volatilize light-end hydrocarbons in groundwater and surrounding vadose zone soil. Volatilized hydrocarbons flow through a moisture knockout tank to the vacuum pump and the internal combustion engine where they are burned as part of the normal combustion process. An auxiliary propane tank is fitted to the system as a supplementary fuel source to drive the engine during startup and when extracted well vapor cannot provide the required energy to drive the system.

Emissions from the engine pass through three catalytic converters to maximize the destruction of engine emissions. During SVE events the engine's fuel-to-air ratio is adjusted to maintain efficient combustion and minimize emissions. As the engine drives the entire system, the system stops when the engine stops preventing an uncontrolled release of hydrocarbons into the atmosphere. Since the System operates entirely under vacuum, any leaks in the system, leak the atmosphere into the System rather than allowing emission to the atmosphere.

Extracted Vapor phase hydrocarbon concentrations are measured after system startup and every 30 minutes during the daytime of SVE events while the SVE system is manned and under observation by AcuVac and Tetra Tech. Hydrocarbon vapor concentrations are analyzed with a modified Horiba Exhaust Gas Analyzer Photo Ionization Detector (PID) calibrated with hexane, carbon monoxide, and carbon dioxide. Vapor phase PSH volume recoveries reported by AcuVac are calculated using the TCEQ formula for the emissions of the AcuVac SVE system internal combustion engine.

6.3 SVE RESULTS

During 2014 and 2015 multi-phase recovery events liquid phase and vapor phase PSH was recovered during each event, however, liquid phase recovery was discontinued after 2015 as liquid phase recovery was very low compared to the quantities of generated waste groundwater during each event. From 2019 through 2021 SVE events have been increased to four (4) per year, as well as extended from 3-day/28-hour events to 5-day/100-hour events, resulting in progressively higher quantities of PSH recovery each year. In 2022 three (3) SVE Events were conducted and in 2023 two (2) SVE events were conducted.

TETRA TECH

2023 Annual Report February 7, 2024

2023 Annual Report February 7, 2024

In 2023, PSH recovery was conducted at the VG-4 monitoring well at the Site during two SVE events. The 2023 events were conducted March 27 through 31 and December 11 through 14. During each event, Tetra Tech personnel mobilized to the Site to supervise remedial activities conducted by AcuVac.

The March SVE event resulted in the vapor phase recovery of 22.18 gallons of PSH and the December SVE event resulted in vapor phase recovery of 20.47 gallons for a total of 42.65 gallons of PSH for 2023. Total PSH recovery to date from VG-4 from dual phase extraction (2014 and 2015) and SVE is 202.89 gallons.

A summary of the PSH recovery completed to date is provided in **Table 5**. The AcuVac SVE reports documenting remedial activities for 2023 are provided in **Appendix E**.

7.0 2023 WORKPLAN

2023 Annual Report February 7, 2024

For 2023, Maverick proposes to continue semi-annual groundwater gauging and sampling with annual reporting. Additionally, Maverick proposes to discontinue SVE remediation for 2024 and replace SVE remedial activities with chemical oxidant injections to more aggressively and cost-effectively remove source zone hydrocarbons from the vicinity of VG-4 and drive the site toward regulatory closure. Upon receipt of NMED approval, DeepEarth Technologies, Inc. (DTI) will be contracted to conduct a single Cool-Ox® oxidant injection event at the Site into monitoring wells BG-4.

DTI and Tetra Tech will mobilize to the Site along with Cool-Ox® reagent, blending tanks, injection equipment, and potable water for DTI reagent blending and injection. The reagent will be blended in batches and 1,000-gallons of diluted Cool-Ox® reagent will be gravity-fed into monitor well VG-4.

Cool-Ox® is a hydrogen peroxide-based technology designed to address a wide variety of remedial challenges presented by organic contaminants in groundwater. Cool-Ox® is based on Fenton reaction chemistry that does not create heat or corrosion and is near-neutral pH. The Fenton reaction is a metal-catalyzed oxidation process which generates free radicals through the reaction between ferrous or ferric ions and hydrogen peroxide. The free radicals are employed to destruct the nonbiodegradable compounds into less-harmful entities.

Cool-Ox® utilizes an aqueous suspension of solid peroxygen compounds that hydrolyze to generate hydrogen peroxide in the proximity of the contaminants. The relative insolubility of these compounds allows the oxidizers to be produced over an extended period of time (up to three months) to increase the probability of the oxidizing compounds contacting contaminants and providing an ongoing source of molecular oxygen, enhancing aerobic microbial proliferation. The Cool-Ox® SDS is provided in **Appendix G**.

The proposed oxidant injection event is intended to treat residual PSH mass at the Site in an attempt to reduce residual hydrocarbon mass sufficiently so that the practical endpoint of PSH recovery at the Site will be reached and groundwater monitored natural attenuation may be used moving forward as the remedial action. Remedial strategies will be re-evaluated at the end of 2024 to assess the effectiveness of oxidant injections and determine if a return to SVE or absorbent socks will be warranted for 2025.

TETRA TECH

2023 Annual Report February 7, 2024

8.0 REFERENCES

Nicholson Jr., A. and Clebsch Jr., A. (1961). Geology and Ground-Water Conditions in Souther Lea County, New Mexico. Socorro, NM: State Bureau of Mines and Mineral Resources and New Mexico Institute of Mining & Technology Campus Stationuthor.

.

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

2023 Annual Report February 7, 2024

FIGURES

Released to Imaging: 7/16/2024 1:30:31 PM

Received by OCD: 2/22/2024 12:34:10 PM

Page 15 of 104

Document Path: S:\NEW Projects\Maverick Natural Resources\4-Groundwater\212C-HN-02227 - Vacuum Glorietta\08 - Reporting\2023 Annual Report\Figures\Figures\Figure 2 Vacuum Glorietta.mxd By: ANNACAPRI.PEREZ

Document Path: S:\NEW Projects\Maverick Natural Resources\4-Groundwater\212C-HN-02227 - Vacuum Glorietta\08 - Reporting\2023 Annual Report\Figures\Figure 3 Vacuum Glorietta.mxd By: ANNACAPRI.PEREZ

Document Path: S:\NEW Projects\Maverick Natural Resources\4-Groundwater\212C-HN-02227 - Vacuum Glorietta\08 - Reporting\2023 Annual Report\Figures\Figure 4 Vacuum Glorietta_mxd By: ANNACAPRI.PEREZ

Document Path: S:\NEW Projects\Maverick Natural Resources\4-Groundwater\212C-HN-02227 - Vacuum Glorietta\08 - Reporting\2023 Annual Report\Figures\Figure 5 Vacuum Glorietta.mxd By: ANNACAPRI.PEREZ

Document Path: S:\NEW Projects\Maverick Natural Resources\4-Groundwater\212C-HN-02227 - Vacuum Glorietta\08 - Reporting\2023 Annual Report\Figures\Figure 7 Vacuum Glorietta.mxd By: ANNACAPRI.PEREZ

Document Path: S:\NEW Projects\Maverick Natural Resources\4-Groundwater\212C-HN-02227 - Vacuum Glorietta\08 - Reporting\2023 Annual Report\Figures\Figure 8 Vacuum Glorietta.mxd By: ANNACAPRI.PEREZ

.

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico

2023 Annual Report February 7, 2024

TABLES

Table 1 Groundwater Elevation Summary Vacuum Glorietta East Unit Lea County, New Mexico

Well ID	Gauging Date	Well Total Depth (feet)	Depth to PSH (feet BTOC)	Depth to Water (feet BTOC)	PSH Thickness (feet)	Top of Casing Elevation (feet AMSL)	PSH Corrected Groundwater Elevation (feet AMSL)
VG-2	2/28/2023	67.70			Dry		
VG-2	9/13/2023	67.70			Dry		
VG-3	2/28/2023	68.6			Dry		
VG-3	9/13/2023	68.6			Dry		
VG-4	2/28/2023	70.70	67.56	67.74	0.18	3,931.93	3,864.33
VG-4	9/13/2023	70.70	69.48	69.61	0.13	3,931.93	3,862.42
VG-5	2/28/2023	75.15	-	67.46	-	3,930.52	3,863.06
VG-5	9/13/2023	75.15	-	68.33	-	3,930.52	3,862.19
VG-6	2/28/2023	79.72	-	71.46	-	3,935.16	3,863.70
0-0	9/13/2023	79.72	-	72.48	-	3,935.16	3,862.68
VG-7	2/28/2023	79.86	-	71.31	-	3,934.78	3,863.47
VG-7	9/13/2023	79.86	-	72.38	-	3,934.78	3,862.40

Notes:

BTOC: Below Top of Casing

AMSL: Above Mean Sea Level

PSH: Phase-Separated Hydrocarbons

PSH Corrected Groundwater Elevation: PSH assumed density of 0.8

Table 2 2023 Groundwater Field Parameters Vacuum Glorieta Lea County, New Mexico

Well ID	Gauging Date	РН	Temperature (°C)	Standard Conducivity (umho/cm)	Dissolved Oxygen (mg/L)	Oxidation- Reduction Potential (mV)	Turbidity (NTU)
VG-2	2/28/2023	NS	NS	NS	NS	NS	NS
VG-2	9/13/2023	NS	NS	NS	NS	NS	NS
VG-3	2/28/2023	NS	NS	NS	NS	NS	NS
VG-5	9/13/2023	NS	NS	NS	NS	NS	NS
VG-4	2/28/2023	NS	NS	NS	NS	NS	NS
VG-4	9/13/2023	NS	NS	NS	NS	NS	NS
VG-5	2/28/2023	7.58	20.6	1,371	2.86	91.3	NS
VG-5	9/13/2023	7.03	19.7	1,542	2.50	93.9	60
VG-6	2/28/2023	7.98	20.5	609	1.54	50.4	NS
VG-0	9/13/2023	7.20	20.2	1,610	3.10	290.7	28
VG-7	2/28/2023	7.70	20.7	1,006	1.24	233.1	NS
VG-7	9/13/2023	6.85	19.7	1,290	2.80	86.8	45

Notes:

NS: Not Sampled BTOC: Below Top of Casing AMSL: Above Mean Sea Level

Table 3 Monitor Wells Groundwater Analytical Summary Vacuum Glorietta East Unit Lea County, New Mexico

Well ID	Sample Date	Chloride (mg/L)	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylene (mg/L)				
NMWQCC Grou	undwater	250	0.01	0.75	0.75	0.62				
Quality Stand	Quality Standards		0.01	0.15	0.15	0.02				
	2/28/2023			Not Sampled -	Dry					
VG-2	9/13/2023			Not Sampled -	Dry					
	2/28/2023			Not Sampled -	Dry					
V(1-3	9/13/2023	Not Sampled - Dry								
	2/28/2023			Not Sampled -	PSH					
VG-4	9/13/2023			Not Sampled -	PSH					
	2/28/2023	316	< 0.0000941	<0.000278	< 0.000137	<0.000174				
VG-5	9/13/2023	191	< 0.0000941	<0.000278	< 0.000137	<0.000174				
	2/28/2023	134	< 0.0000941	<0.000278	< 0.000137	<0.000174				
VG-0	VQCC Groundwater ity Standards VG-2 2/28/2023 9/13/2023 VG-3 2/28/2023 9/13/2023 VG-4 2/28/2023 9/13/2023 VG-5 2/28/2023 9/13/2023	257	< 0.0000941	<0.000278	< 0.000137	< 0.000174				
	2/28/2023	144	< 0.0000941	<0.000278	<0.000137	< 0.000174				
VG-7	9/13/2023	104 J6	<0.0000941	<0.000278	<0.000137	< 0.000174				

Notes:

NMWQCC: New Mexico Water Quality Control Commission

Exceeds applicable regulatory standards

TDS: Total Dissolved Solids

PSH: Phase-Separated Hydrocarbons

J6: Matrix interference resulted in estimated concentration

Table 4 Quality Assurance/Quality Control Summary Vacuum Glorietta East Unit Lea County, New Mexico

Well ID	Sample Date	Analyte	Primary Sample Result (mg/L)	Duplicate Sample Result (mg/L)	RPD	Within DQOs
		Chloride	134	144	7.2%	Yes
		Benzene	<0.0000941	<0.0000941	N/A	Yes
VG-6	2/28/2023	Toluene	<0.000278	<0.000278	N/A	Yes
		Ethylbenzene	<0.000137	< 0.000137	N/A	Yes
		Xylene	<0.000174	< 0.000174	N/A	Yes
		Chloride	257	263	2.3%	Yes
		Benzene	<0.0000941	<0.0000941	N/A	Yes
VG-6	9/13/2023	Toluene	<0.000278	<0.000278	N/A	Yes
		Ethylbenzene	<0.000137	<0.000137	N/A	Yes
		Xylene	<0.000174	<0.000174	N/A	Yes

Notes:

RPD: Relative Percent Difference calculated as = (SR-DR)*200/(SR+DR)

DQO: Data Quality Objectives

ND: Not Detected above the laboratory method detection limit

N/A: Not Applicable

Table 5 AcuVac SVE Summary Vacuum Glorietta East Unit Lea County, New Mexico

Event Number	Event Date	Duration (hours)	PSH Recovery (Vapor Phase gallons)	PSH Recovery (Liquid Phase gallons)	Total PSH Recovery (gallons)	Average PSH Vapor Phase Recovery (gallons per hour)
	9/8/2014	5	2.66	0.95	C 05	0 552
1	9/9/2014	3	1.76	0.68	- 6.05	0.553
	5/4/2015	5	1.48	1.24		
2	5/5/2015	11	3.72	2.90	14.51	0.340
	5/6/2015	8	2.96	2.21		
	6/11/2019	10	3.41	0		
3	6/12/2019	10	3.62	0	9.78	0.349
	6/13/2019	8	2.75	0		
	5/5/2020	10	3.21	0		
4	5/6/2020	10	4.49	0	11.88	0.424
	5/7/2020	8	4.18	0		
	2/23/2021	10	1.58	0		
5	2/24/2021	10	1.76	0	7.69	0.202
5	2/25/2021	10	2.25	0	7.09	0.202
	2/26/2021	8	2.10	0		
	5/3/2021	10	2.25	0		
6	5/4/2021	10	2.73	0	10.34	0.272
0	5/5/2021	10	2.73	0		0.272
	5/6/2021	8	2.63	0		
	7/26/2021	9	2.67	0		
7	7/27/2021	10	2.85	0	10.49	0.284
	7/28/2021	10	2.63	0	10.45	0.204
	7/29/2021	8	2.34	0		
	11/8/2021	10	3.17	0		
8	11/9/2021	10	3.40	0		0.326
0	11/10/2021	10	3.19	0	12.39	0.520
	11/11/2021	8	2.63	0		
	2/7/2022	16	4.28	0		
	2/8/2022	24	6.86	0		
9	2/9/2022	24	7.02	0	28.73	0.287
	2/10/2022	24	7.06	0		
	2/11/2022	12	3.51	0		
	5/16/2022	24	6.72	0		
	5/17/2022	24	7.35	0		
10	5/18/2022	24	6.98	0	29.19	0.292
	5/19/2022	24	6.98	0		
	5/20/2022	4	1.16	0		
	11/7/2022	24	4.47	0		
	11/8/2022	24	4.46	0		
11	11/9/2022	24	5.11	0	19.19	0.192
	11/10/2022	24	4.50	0		
	11/11/2022	4	0.65	0		
	3/27/2023	24	5.11	0		
	3/28/2023	24	5.30	0	1	
12	3/29/2023	24	5.26	0	22.18	0.222
	3/30/2023	24	5.65	0	1	
	3/31/2023	4	0.86	0	1	
	12/11/2023	24	3.37	0	1	
	12/12/2023	24	4.56	0	1	
13	12/13/2023	24	6.13	0	20.47	0.205
	12/14/2023	24	5.72	0	1	
	12/15/2023	4	0.69	0	1	
	12/13/2023	Т	0.05	Cumulative Tota	l 202.89 gal	<u> </u>

Notes:

PSH Vapor Phase Recovery: Calculated using Texas Commission on Environmental Quality formula for emissions.

2023 Annual Report February 7, 2024

APPENDIX A: LABORATORY ANALYTICAL DATA

Received by OCD: 2/22/2024 12:34:10 PM

Page 30 of 104

ce Analyt	ioui	ICAL REPORT	¹ Cp
			² Tc
	Tetra Tech EMI - Ho	ouston, TX	³ Ss
	Sample Delivery Group:	L1591760	[°] Cn
	Samples Received:	03/04/2023	⁵ Sr
	Project Number:	212C-HN-02227	
	Description:	MNR Vacuum Glorietta 2023	⁶ Qc
	Report To:	Dylon Breyman	⁷ Gl
		1500 CityWest Boulevard	⁸ Al
		Suite 1000	9
		Houston, TX 77042	[°] Sc

Entire Report Reviewed By:

that tphat

Chad A Upchurch Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 77/16/2024 1:30:31 PM Tetra Tech EMI - Houston, TX

PROJECT: 212C-HN-02227

SDG: L1591760

DATE/TIME: 03/09/23 23:30 PAGE: 1 of 13

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-6 L1591760-01	5
VG-7 L1591760-02	6
VG-5 L1591760-03	7
DUP L1591760-04	8
Qc: Quality Control Summary	9
Wet Chemistry by Method 9056A	9
Volatile Organic Compounds (GC/MS) by Method 8260B	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

SDG: L1591760

DATE/TIME: 03/09/23 23:30 PAGE: 2 of 13 Received by OCD: 2/22/2024 12:34:10 PM

SAMPLE SUMMARY

Page 32 of 104

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

VG-6 L1591760-01 GW			Collected by Matthew C.	Collected date/time 02/28/23 14:30	Received date/time 03/04/23 08:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2018192	1	03/07/23 13:41	03/07/23 13:41	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2017297	1	03/05/23 10:30	03/05/23 10:30	GH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VG-7 L1591760-02 GW			Matthew C.	03/01/23 09:30	03/04/23 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2018192	1	03/07/23 13:51	03/07/23 13:51	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2017297	1	03/05/23 10:49	03/05/23 10:49	GH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VG-5 L1591760-03 GW			Matthew C.	03/01/23 10:50	03/04/23 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2018192	5	03/07/23 14:01	03/07/23 14:01	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2017297	1	03/05/23 11:08	03/05/23 11:08	GH	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP L1591760-04 GW			Matthew C.	03/01/23 00:00	03/04/23 08	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2018192	1	03/07/23 14:10	03/07/23 14:10	GEB	Mt. Juliet, TN

SDG: L1591760 DATE/TIME: 03/09/23 23:30 PAGE: 3 of 13

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

that tph

Chad A Upchurch Project Manager

Released to Imaging: 7/16/2024 1:30:31 PM Tetra Tech EMI - Houston, TX PROJECT: 212C-HN-02227

SDG: L1591760 DATE/TIME: 03/09/23 23:30

/TIME: 13 23:30 PAGE: 4 of 13

SAMPLE RESULTS - 01

Collected date/time: 02/28/23 14:30

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	134		0.379	1.00	1	03/07/2023 13:41	WG2018192	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	U		0.0000941	0.00100	1	03/05/2023 10:30	WG2017297	
Toluene	U		0.000278	0.00100	1	03/05/2023 10:30	<u>WG2017297</u>	
Ethylbenzene	U		0.000137	0.00100	1	03/05/2023 10:30	WG2017297	
Total Xylenes	U		0.000174	0.00300	1	03/05/2023 10:30	WG2017297	
(S) Toluene-d8	98.8			80.0-120		03/05/2023 10:30	WG2017297	
(S) 4-Bromofluorobenzene	94.0			77.0-126		03/05/2023 10:30	WG2017297	
(S) 1,2-Dichloroethane-d4	103			70.0-130		03/05/2023 10:30	<u>WG2017297</u>	

Â

Sc

SAMPLE RESULTS - 02 L1591760

Page 35 of 104

Â

Sc

Collected date/time: 03/01/23 09:30

Wet Chemist	Wet Chemistry by Method 9056A								1
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		Ср
Analyte	mg/l		mg/l	mg/l		date / time		ſ	2
Chloride	144		0.379	1.00	1	03/07/2023 13:51	<u>WG2018192</u>		Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Co	Result Qualifi			RDL	Dilution	Analysis	Batch	[
Analyte	mg/l	Guainici	mg/l	mg/l	Dilution	date / time	buch]
Benzene	U		0.0000941	0.00100	1	03/05/2023 10:49	WG2017297	
Toluene	U		0.000278	0.00100	1	03/05/2023 10:49	WG2017297	
Ethylbenzene	U		0.000137	0.00100	1	03/05/2023 10:49	WG2017297	
Total Xylenes	U		0.000174	0.00300	1	03/05/2023 10:49	WG2017297	
(S) Toluene-d8	104			80.0-120		03/05/2023 10:49	WG2017297	
(S) 4-Bromofluorobenzene	91.4			77.0-126		03/05/2023 10:49	WG2017297	
(S) 1,2-Dichloroethane-d4	101			70.0-130		03/05/2023 10:49	<u>WG2017297</u>	

SDG: L1591760

DATE/TIME: 03/09/23 23:30

SAMPLE RESULTS - 03

L1591760

Â

Sc

Wet Chemistry by Method 9056A

Collected date/time: 03/01/23 10:50

							 Cn
	Result	Qualifier MDL	RDL	Dilution	Analysis	Batch	CP
Analyte	mg/l	mg/l	mg/l		date / time		2
Chloride	316	1.90	5.00	5	03/07/2023 14:01	WG2018192	⁻Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC/MS) by Method 8260B							³ S	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		4
Benzene	U		0.0000941	0.00100	1	03/05/2023 11:08	WG2017297	
Toluene	U		0.000278	0.00100	1	03/05/2023 11:08	WG2017297	5
Ethylbenzene	U		0.000137	0.00100	1	03/05/2023 11:08	WG2017297	55
Total Xylenes	U		0.000174	0.00300	1	03/05/2023 11:08	WG2017297	
(S) Toluene-d8	102			80.0-120		03/05/2023 11:08	WG2017297	6
(S) 4-Bromofluorobenzene	93.8			77.0-126		03/05/2023 11:08	WG2017297	
(S) 1,2-Dichloroethane-d4	108			70.0-130		03/05/2023 11:08	WG2017297	7

Released to Imaging: 07/16/2024 1:30:31 PM Tetra Tech EMI - Houston, TX

PAGE: 7 of 13
SAMPLE RESULTS - 04 L1591760

Page 37 of 104

Â

Sc

Collected date/time: 03/01/23 00:00

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	144		0.379	1.00	1	03/07/2023 14:10	<u>WG2018192</u>	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B									
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	[1
Analyte	mg/l		mg/l	mg/l		date / time		-	4 Cn
Benzene	U		0.0000941	0.00100	1	03/05/2023 11:27	WG2017297		
Toluene	U		0.000278	0.00100	1	03/05/2023 11:27	WG2017297		5
Ethylbenzene	U		0.000137	0.00100	1	03/05/2023 11:27	WG2017297		ँSr
Total Xylenes	U		0.000174	0.00300	1	03/05/2023 11:27	WG2017297		
(S) Toluene-d8	101			80.0-120		03/05/2023 11:27	WG2017297	1	⁶ Qc
(S) 4-Bromofluorobenzene	94.9			77.0-126		03/05/2023 11:27	WG2017297		
(S) 1,2-Dichloroethane-d4	102			70.0-130		03/05/2023 11:27	WG2017297		⁷ Gl

Reg & gldy 860:2/22/2024 12:34:10 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3898511-1 03/	(MB) R3898511-1 03/07/23 09:45						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Chloride	U		0.379	1.00			

L1591756-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1591756-01 03/07/2	23 11:56 • (DUP)	R3898511-3 (03/07/23 12	2:06		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	98.1	98.1	1	0.0804		15

L1591976-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1591976-01	03/07/23 15:46 • (DUP)) R3898511-6	03/07/23	15:55			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	IP RPD nits	
Analyte	mg/l	mg/l		%			
Chloride	55.7	54.9	1	1.34			

Laboratory Control Sample (LCS)

(LCS) R3898511-2 03/07/	CS) R3898511-2 03/07/23 09:55								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/l	mg/l	%	%					
Chloride	40.0	39.7	99.2	80.0-120					

L1591756-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1591756-01 03/07/2	(OS) L1591756-01 03/07/23 11:56 • (MS) R3898511-4 03/07/23 12:15 • (MSD) R3898511-5 03/07/23 12:25											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	98.1	142	142	88.6	88.7	1	80.0-120			0.0216	15

L1591976-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1591976-01 03/07/2	s) L1591976-01 03/07/23 15:46 • (MS) R3898511-7 03/07/23 16:05											
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Chloride	50.0	55.7	103	94.6	1	80.0-120						

```
Released to Imaging 7916/2024 1:30:31 PM
Tetra Tech EMI - Houston, TX
```

PROJECT: 212C-HN-02227

SDG: L1591760 DATE/TIME: 03/09/23 23:30

Page 38 of 104

⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Τс

Ss

PAGE: 9 of 13 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

L1591760-01,02,03,04

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0000941	0.00100
Toluene	U		0.000278	0.00100
Ethylbenzene	U		0.000137	0.00100
Xylenes, Total	U		0.000174	0.00300
(S) Toluene-d8	99.2			80.0-120
(S) 4-Bromofluorobenzene	97.3			77.0-126
(S) 1,2-Dichloroethane-d4	100			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3898687-1 03/05/	'23 09:13 • (LCS	D) R3898687	-2 03/05/23 0	9:32							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	΄GΙ
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00529	0.00564	106	113	70.0-123			6.40	20	8
Toluene	0.00500	0.00499	0.00526	99.8	105	79.0-120			5.27	20	AI
Ethylbenzene	0.00500	0.00478	0.00489	95.6	97.8	79.0-123			2.28	20	9
Xylenes, Total	0.0150	0.0141	0.0145	94.0	96.7	79.0-123			2.80	20	Sc
(S) Toluene-d8				97.2	96.4	80.0-120					
(S) 4-Bromofluorobenzene				96.9	95.0	77.0-126					
(S) 1,2-Dichloroethane-d4				102	103	70.0-130					

SDG: L1591760

DATE/TIME: 03/09/23 23:30

PAGE: 10 of 13

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

SDG: L1591760 DATE/TIME: 03/09/23 23:30

Received by OCD: 2/22/2024 12:34:10 PACCREDITATIONS & LOCATIONS

Page	41	of	104
------	----	----	-----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio–VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
laine	TN00003	Texas ⁵	LAB0152
flaryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
linnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
fontana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1591760

D. 03/

Received by OCD: 2/22/2024 12:34:10 PM

Company Name/Address:			Billing Info	ormation:		T	1		 Analysis	/ Conta	iner / Preservat	ive		Chain of (Custody	Page of
Tetra Tech EMI - Houst	on, TX			ts Payable		Pres Chk									B	
1500 CityWest Boulevard Suite 1000 Houston, TX 77042			Suite 10 Midland	00 d, TX 79701										[-	T COT LC I	CC ADVANCING SCIENCE
Report to: Dylon Breyman	Ser an			yman@tetratech.com;bill.smith2@tet										12065 Leban	on Rd Mou	LIET, TN nt Juliet, TN 37122 this chain of custody
Project Description: MNR Vacuum Glorietta 2023	2023 City/State Collected:					Circle: CT ET								constitutes a Pace Terms a	cknowledge and Conditio	nent and acceptance of the
Phone: 832-251-5160	Client Project		Lab Project # TETRAHTX-V	ACUUMGI	LORI	VoPres	0						SDG #	15	9/760	
Collected by (print): Matthew Castvegar	Site/Facility	ID #		P.O. #			HDPE-N	40mlAmb-HCl						Acctnum		
Collected by (signature):	Rush?	(Lab MUST Be		Quote #			Smlt	DmlA						Template		A REAL PROPERTY OF THE REAL PR
Immediately Packed on Ice N Y				Date Result	ts Needed	No. of	CHLORIDE 125mlHDPE-NoPres	V8260BTEX 40						Prelogin: PM: 356 PB:		GGGG A Upchurch
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	HLOF	/8260						Shipped Rema	The second second	Sample # (lab only)
16-6	G	GW		3-28-73	1430	4	X	X								- 0
VG-6 VG-7 VG-5 DWP	6	GW		3-1-23	0930	1	1									-02
VG-5	6	GW		3-1-23	1050										1	-03
DUP	G	GW		-		X	V	V								_04
		GW														
		GW								1000000						
		GW														
		GW												1000		
		GW														
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	emarks:		1			<u> </u>			pH Flow		_ Temp Other	_	COC Sea COC Sign Bottles	Sample Receip 1 Present/In ned/Accurate arrive inta	tact: : .ct:	NP Y N NP Y N
DW - Drinking Water	W - Drinking Water Samples returned via:												Suffici	bottles use ent volume s <u>If Appl</u> o Headspace:	ent: icable	
Relinquished by : (Signature) Date: Time: R Multimut Carter 373-28 0800					ved by: (Signa	ture	A	>	Trip Blan	nk Receir	ved: Yes / No HCL / Me TBR		Preserva	ation Correc een <0.5 mR/	t/Chec	cked: $\underline{Y} \underline{N}$
Relinquished by : (Signature)	D	ate:	Time	e: Receiv	ved by: (Signa	ture)			Temp:	2 °	C Bottles Recei	ved:	If preserv	ation required	by Logi	n: Date/Time
Relinquished by : (Signature)	Signature) Date: Time: Rece				ved for lab by:	6.960.007860	ure)		Date: 30	4/2	Time:	3	Hold:			Condition

Received by OCD: 2/22/2024 12:34:10 PM

e Analytica	<i>.</i>	ICAL REPORT ember 22, 2023	¹ Cp
			² Tc
	Tetra Tech EMI - Ho	ouston, TX	³ Ss
	Sample Delivery Group:	L1655979	[≁] Cn
	Samples Received:	09/14/2023	⁵Sr
	Project Number:	212C-HN-02227	
	Description:	MNR Vacuum Glorietta 2023	⁶ Qc
	Report To:	Dylon Breyman	⁷ Gl
		1500 CityWest Boulevard	⁸ Al
		Suite 1000	9
		Houston, TX 77042	ٌSc

Entire Report Reviewed By:

that tph

Chad A Upchurch Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 77/16/2024 1:30:31 PM Tetra Tech EMI - Houston, TX

PROJECT: 212C-HN-02227

SDG: L1655979

DATE/TIME: 09/22/23 14:27 PAGE: 1 of 15

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
VG-5 L1655979-01	5
VG-6 L1655979-02	6
VG-7 L1655979-03	7
DUP-01 L1655979-04	8
Qc: Quality Control Summary	9
Wet Chemistry by Method 9056A	9
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

SDG: L1655979

0'

PAGE: 2 of 15 Received by OCD: 2/22/2024 12:34:10 PM

SAMPLE SUMMARY

Page 45 of 104

Ср

²Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received da	te/time
VG-5 L1655979-01 GW			Greg S	09/13/23 09:35	09/14/23 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2134861	1	09/19/23 20:04	09/19/23 20:04	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2136222	1	09/21/23 04:58	09/21/23 04:58	JCP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VG-6 L1655979-02 GW			Greg S	09/13/23 10:50	09/14/23 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2134880	5	09/20/23 11:33	09/20/23 11:33	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2133846	1	09/17/23 12:49	09/17/23 12:49	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2136222	1	09/21/23 05:20	09/21/23 05:20	JCP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
VG-7 L1655979-03 GW			Greg S	09/13/23 08:40	09/14/23 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2134880	1	09/20/23 20:47	09/20/23 20:47	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2133846	1	09/17/23 13:10	09/17/23 13:10	JAH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2136222	1	09/21/23 05:41	09/21/23 05:41	JCP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUP-01 L1655979-04 GW			Greg S	09/13/23 12:00	09/14/23 08:	45
	Batch	Dilution	Preparation	Analysis	Analyst	Location
Method			date/time	date/time		
Method Wet Chemistry by Method 9056A	WG2134880	5	date/time 09/20/23 11:46	date/time 09/20/23 11:46	GEB	Mt. Juliet, TN
	WG2134880 WG2133846	5 1			GEB JAH	Mt. Juliet, TN Mt. Juliet, TN

PROJECT: 212C-HN-02227

SDG: L1655979 DATE/TIME: 09/22/23 14:27

ME: 14:27 PAGE: 3 of 15

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

that tph

Chad A Upchurch Project Manager

Released to Imaging: 07/16/2024 1:30:31 PM Tetra Tech EMI - Houston, TX

PROJECT: 212C-HN-02227

SDG: L1655979 DATE/TIME:

09/22/23 14:27

PAGE: 4 of 15

Received by OCD: 2/22/2024 12:34:10 PM

SAMPLE RESULTS - 01 L1655979

Collected date/time: 09/13/23 09:35

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	191		0.379	1.00	1	09/19/2023 20:04	WG2134861	Tc

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>		, ,,					5	
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	U		0.0000941	0.00100	1	09/21/2023 04:58	WG2136222	
Toluene	U		0.000278	0.00100	1	09/21/2023 04:58	WG2136222	
Ethylbenzene	U		0.000137	0.00100	1	09/21/2023 04:58	WG2136222	
Total Xylenes	U		0.000174	0.00300	1	09/21/2023 04:58	WG2136222	
(S) Toluene-d8	110			80.0-120		09/21/2023 04:58	WG2136222	
(S) 4-Bromofluorobenzene	90.9			77.0-126		09/21/2023 04:58	WG2136222	
(S) 1,2-Dichloroethane-d4	99.5			70.0-130		09/21/2023 04:58	WG2136222	

Â

Sc

PROJECT: 212C-HN-02227

SDG: L1655979

DATE/TIME: 09/22/23 14:27

PAGE: 5 of 15

SAMPLE RESULTS - 02

Sc

Collected date/time: 09/13/23 10:50

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		р
Analyte	mg/l		mg/l	mg/l		date / time		2	_
Chloride	257		1.90	5.00	5	09/20/2023 11:33	WG2134880	To	С

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	U		0.0000941	0.00100	1	09/21/2023 05:20	WG2136222	
Toluene	U		0.000278	0.00100	1	09/17/2023 12:49	WG2133846	
Ethylbenzene	U		0.000137	0.00100	1	09/17/2023 12:49	WG2133846	
Total Xylenes	U		0.000174	0.00300	1	09/21/2023 05:20	WG2136222	
(S) Toluene-d8	102			80.0-120		09/17/2023 12:49	WG2133846	
(S) Toluene-d8	107			80.0-120		09/21/2023 05:20	WG2136222	
(S) 4-Bromofluorobenzene	102			77.0-126		09/17/2023 12:49	WG2133846	
(S) 4-Bromofluorobenzene	91.6			77.0-126		09/21/2023 05:20	WG2136222	
(S) 1,2-Dichloroethane-d4	87.4			70.0-130		09/17/2023 12:49	WG2133846	
(S) 1,2-Dichloroethane-d4	99.2			70.0-130		09/21/2023 05:20	WG2136222	

SAMPLE RESULTS - 03

Page 49 of 104

Sc

Collected date/time: 09/13/23 08:40

Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/l		mg/l	mg/l		date / time		2
Chloride	104	<u>J6</u>	0.379	1.00	1	09/20/2023 20:47	WG2134880	¯Тс

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	U		0.0000941	0.00100	1	09/21/2023 05:41	WG2136222	
Toluene	U		0.000278	0.00100	1	09/17/2023 13:10	WG2133846	
Ethylbenzene	U		0.000137	0.00100	1	09/17/2023 13:10	WG2133846	
Fotal Xylenes	U		0.000174	0.00300	1	09/17/2023 13:10	WG2133846	
(S) Toluene-d8	101			80.0-120		09/17/2023 13:10	WG2133846	
(S) Toluene-d8	108			80.0-120		09/21/2023 05:41	WG2136222	
(S) 4-Bromofluorobenzene	103			77.0-126		09/17/2023 13:10	WG2133846	
(S) 4-Bromofluorobenzene	91.9			77.0-126		09/21/2023 05:41	WG2136222	
(S) 1,2-Dichloroethane-d4	86.4			70.0-130		09/17/2023 13:10	WG2133846	
(S) 1,2-Dichloroethane-d4	103			70.0-130		09/21/2023 05:41	WG2136222	

SAMPLE RESULTS - 04

Page 50 of 104

Sc

Collected date/time: 09/13/23 12:00

Wet Chemist	Wet Chemistry by Method 9056A										
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		Ср		
Analyte	mg/l		mg/l	mg/l		date / time			2		
Chloride	263		1.90	5.00	5	09/20/2023 11:46	WG2134880		Tc		

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Benzene	U		0.0000941	0.00100	1	09/21/2023 06:03	WG2136222	
Toluene	U		0.000278	0.00100	1	09/17/2023 13:30	WG2133846	
Ethylbenzene	U		0.000137	0.00100	1	09/17/2023 13:30	WG2133846	
Fotal Xylenes	U		0.000174	0.00300	1	09/17/2023 13:30	WG2133846	
(S) Toluene-d8	101			80.0-120		09/17/2023 13:30	WG2133846	
(S) Toluene-d8	109			80.0-120		09/21/2023 06:03	WG2136222	
(S) 4-Bromofluorobenzene	102			77.0-126		09/17/2023 13:30	WG2133846	
(S) 4-Bromofluorobenzene	90.9			77.0-126		09/21/2023 06:03	WG2136222	
(S) 1,2-Dichloroethane-d4	86.1			70.0-130		09/17/2023 13:30	WG2133846	
(S) 1,2-Dichloroethane-d4	98.4			70.0-130		09/21/2023 06:03	WG2136222	

Received by Q605 2/22/2024 12:34:10 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1655979-01

Method Blank (MB)

(MB) R3975639-1 0	MB) R3975639-1 09/19/23 09:25										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/l		mg/l	mg/l							
Chloride	U		0.379	1.00							

L1655970-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1655970-05 09/19/	/23 15:12 • (DUP)) R3975639-3	09/19/23	15:50		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	128	128	1	0.0743		15

L1655972-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1655972-07 09/19/2	23 19:26 • (DUP) R3975639-6	09/19/23	19:39			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	P RPD nits	
analyte	mg/l	mg/l		%			
Chloride	132	132	1	0.155			

Laboratory Control Sample (LCS)

(LCS) R3975639-2 09/19	S) R3975639-2 09/19/23 09:38											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/l	mg/l	%	%								
Chloride	40.0	38.7	96.8	80.0-120								

L1655970-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1655970-05 09/19	(OS) L1655970-05 09/19/23 15:12 • (MS) R3975639-4 09/19/23 16:03 • (MSD) R3975639-5 09/19/23 16:15													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Chloride	40.0	128	142	141	35.2	33.8	1	80.0-120	J6	J6	0.415	15		

L1655972-07 Original Sample (OS) • Matrix Spike (MS)

(OS) L1655972-07 09/19/2	(OS) L1655972-07 09/19/23 19:26 • (MS) R3975639-7 09/19/23 19:52													
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier							
Analyte	mg/l	mg/l	mg/l	%		%								
Chloride	40.0	132	144	29.3	1	80.0-120	<u>J6</u>							

```
Released to Imaging ACTA 2024 1:30:31 PM
              Tetra Tech EMI - Houston, TX
```

PROJECT: 212C-HN-02227

SDG: L1655979

DATE/TIME: 09/22/23 14:27

PAGE:

9 of 15

Page 51 of 104

⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

Τс

Ss

Received by 0,618 6/22/2024 12:34:10 PM

Wet Chemistry by Method 9056A

QUALITY CONTROL SUMMARY L1655979-02,03,04

Method Blank (MB)

(MB) R3976173-1 09	(MB) R3976173-1 09/20/23 09:20										
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/l		mg/l	mg/l							
Chloride	U		0.379	1.00							

L1655802-21 Original Sample (OS) • Duplicate (DUP)

L1655802-21 Oligi	nai Sampie	(OS) • Du	plicate (DUP)		
S) L1655802-21 09/20/	/23 10:41 • (DUP) R3976173-3	09/20/23	10:54		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	0.643	0.654	1	1.70	Ţ	15

L1655979-03 Original Sample (OS) • Duplicate (DUP)

L1655979-03 Orig	ginal Sample	(OS) • Du	plicate	(DUP)			
(OS) L1655979-03 09/20	0/23 20:47 • (DU	P) R3976173-6	6 09/20/2	3 21:01			
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Chloride	104	104	1	0.390		15	

Laboratory Control Sample (LCS)

(LCS) R3976173-2 09/20/	CS) R3976173-2 09/20/23 09:34												
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier								
Analyte	mg/l	mg/l	%	%									
Chloride	40.0	39.8	99.5	80.0-120									

L1655802-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1655802-21 09/20/	(OS) L1655802-21 09/20/23 10:41 • (MS) R3976173-4 09/20/23 11:07 • (MSD) R3976173-5 09/20/23 11:20													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Chloride	40.0	0.643	41.5	41.3	102	102	1	80.0-120			0.467	15		

L1655979-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L1655979-03 09/20/	(OS) L1655979-03 09/20/23 20:47 • (MS) R3976173-7 09/20/23 21:14												
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier						
Analyte	mg/l	mg/l	mg/l	%		%							
Chloride	40.0	104	123	49.3	1	80.0-120	<u>J6</u>						

```
Released to Imaging ACTA 2024 1:30:31 PM
              Tetra Tech EMI - Houston, TX
```

PROJECT: 212C-HN-02227

SDG: L1655979

DATE/TIME: 09/22/23 14:27

PAGE:

10 of 15

Page 52 of 104

Τс

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1655979-02,03,04

Method Blank (MB)

)				1 Cn
(MB) R3975588-2 09/17/2	23 08:23				Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	Tc
Toluene	U		0.000278	0.00100	
Ethylbenzene	U		0.000137	0.00100	³ Ss
Total Xylenes	U		0.000174	0.00300	
(S) Toluene-d8	100			80.0-120	4
(S) 4-Bromofluorobenzene	96.7			77.0-126	Cn
(S) 1,2-Dichloroethane-d4	86.4			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3975588-1 09/17/2	23 07:22						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/l	mg/l	%	%			
Toluene	0.00500	0.00504	101	79.0-120			
Ethylbenzene	0.00500	0.00546	109	79.0-123			
Total Xylenes	0.0150	0.0166	111	79.0-123			
(S) Toluene-d8			99.7	80.0-120			
(S) 4-Bromofluorobenzene			103	77.0-126			
(S) 1,2-Dichloroethane-d4			85.9	70.0-130			

DATE/TIME: 09/22/23 14:27

PAGE: 11 of 15

Page 53 of 104

Sr

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Page 54 of 104

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3976020-3 09/20	/23 22:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0000941	0.00100
Toluene	U		0.000278	0.00100
Ethylbenzene	U		0.000137	0.00100
Total Xylenes	U		0.000174	0.00300
(S) Toluene-d8	111			80.0-120
(S) 4-Bromofluorobenzene	94.1			77.0-126
(S) 1,2-Dichloroethane-d4	98.2			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3976020-1 09/20/	/23 21:30 • (LCS	SD) R3976020)-2 09/20/23 2	1:52							7
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	΄GΙ
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00494	0.00498	98.8	99.6	70.0-123			0.806	20	8
Toluene	0.00500	0.00498	0.00489	99.6	97.8	79.0-120			1.82	20	A
Ethylbenzene	0.00500	0.00483	0.00511	96.6	102	79.0-123			5.63	20	9
Total Xylenes	0.0150	0.0145	0.0147	96.7	98.0	79.0-123			1.37	20	Sc
(S) Toluene-d8				105	108	80.0-120					
(S) 4-Bromofluorobenzene				96.6	97.2	77.0-126					
(S) 1,2-Dichloroethane-d4				96.6	100	70.0-130					

DATE/TIME: 09/22/23 14:27

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
1.0	

		•			
The sample matrix interfere	d with the	ability 1	to make any	accurate determination;	spike value is low.

J6

PROJECT: 212C-HN-02227

SDG: L1655979 DATE/TIME: 09/22/23 14:27

PAGE: 13 of 15

Received by OCD: 2/22/2024 12:34:10 PACCREDITATIONS & LOCATIONS

Page	56	of	104
------	----	----	-----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Centucky ²	16	South Dakota	n/a
ouisiana	AI30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
laine	TN00003	Texas ⁵	LAB0152
faryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
lichigan	9958	Virginia	110033
linnesota	047-999-395	Washington	C847
Aississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
lontana	CERT0086	Wyoming	A2LA
2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1655979

DATE/TIME: 09/22/23 14:27

i i i i i i i i i i i i i i i i i i i	Received by OCD: 2/22/2024 12:34:10 PM					<u>- 2006 - 5 6</u>				Anal	lvsis / Cont	ainer / Pres	ervativ	P	بر (1. محمد 10)	Chain of Custo	Page 57
Cetra Tech EMI - Hou 500 CityWest Boulevard uite 1000 Jouston. TX 77042	iston, TX		Account 901 Wes Suite 100 Midland	st Wall 0			Pres Chk									- FP	Pace.
eport to: I ylon Breyman		13	Email To: dylon.brey	man@te	tratech.c	com;bill.smith	n2@tet				and the second					and the second se	JULIET, TN Mount Juliet, TN 37122
roject Description: /INR Vacuum Glorietta 2023		City/State Collected:		eye, NM Please Circle: PT MT CT ET												constitutes acknowl Pace Terms and Cor	e via this chain of custody ledgment and acceptance of the nditions found at: us.com/hubfs/pas-standard-
hone: 832-251-5160	New York, and the second s	Client Project # 212C-HN-02227		Lab Pro	ject #	ACUUMGL		oPres			M.					sDG # LIV	55979
billected by (print): Greg & hurbers ke - H.		Site/Facility ID # TCTAM Rush? (Lab MUST Be Notified) Same Day Five Day Next Day S Day (Rad Only) Two Day 10 Day (Rad Only) Three Day		P.O. #				DPE-N	DH-du							Table #	
nmediately acked on Ice N_ Y_	Rush? (I Same D Next Da Two Day			y)		No.	RIDE 125mHDPE-NoPr	BTEX 40mlAmb-HC							Acctnum: TE Template:T2 Prelogin: P1 PM: 3564 - C PB:	19041	
Sample ID	Comp/Grab	Matrix *	Depth	D	ate	Time	Cntrs	CHLORIDE	V8260BTEX					2		Shipped Via: Remarks	Sample # (lab only)
- VG-2	- With	-GW	No. antes				4	X	X		16- S	ample	n;	BRig			
+4-3		-GW		105 105			4	×	X			stmp		DRA	1997 (1997)	and the factor	
VG-4		- GW				1	4	_X_	X		and the second s	amplie		LNAPL		- Maile	
V4-5	04 E	GW	1 A. J.	9-13	5-23	935	4	X	X		3		-				-01
VG-6	12 A .	GW		1221		1050	4	X	x						Sec. and		-02
V4-7	The Said States	GW		224 - 1224 -		840	4	X	x			1.45			- Sec	and the	-03
PUP-01	V	GW		V	1	1200	4	X	X							The second second	1-04
		GW	100 4	1		and the second s	4	X	X								
N. Londor		GW		5.44 - A			4	X	X						-		
		GW		-12			4	Х	X			- All					100 120
Matrix: - Soil AIR - Air F - Filter N - Groundwater B - Bioassay W - WasteWater	Remarks:						1				pH	_ Temp _ _ Other	200	COC S Bottl	Seal Pre Signed/A les arr:	Accurate: ive intact:	t: NP Y N N
V - Drinking Water - Other	Samples returned v UPS FedEx				Trackin	B# 694	183	48	9151	7				Suffi	lcient v	cles used: volume sent <u>If Applica</u>	
elinquished by (Signature)	Dat	n 13/23	Time:	500	Receive	ed by: (Signati	ure)			Trip	Blank Rece	ived: Yes HC TB	L/Meo	Prese RAD S	ervation	dspace: 1 Correct/Cl 20.5 mR/hr:	
elinquished by : (Signature)	Dat	e:	Time:		Receive	ed by: (Signati	ure)	25			.DAS	C Bottles	Receive	d: If pres	ervation	required by Lo	ogin: Date/Time
elinquished by : (Signature)	Dat	e:	Time:		Receive	ed for lab by:	(Signatu	re) -(19)	Date	4/23	Time:	45	Hold:			Condition: NCF / OK

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2023 Annual Report February 7, 2024

APPENDIX B: BENZENE CONCENTRATION GRAPHS

Benzene Concentration Graph Maverick Natural Resources - Vacuum Glorietta Lea County, New Mexico

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2023 Annual Report February 7, 2024

APPENDIX C: HISTORICAL GROUNDWATER GAUGING DATA

Historical Groundwater Gauging Data

VG-2

Vacuum Glorietta

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
1/27/2014	70.00	-	65.41	-	-	3,930.56	3,865.15
4/16/2014	70.00	-	65.38	-	-	3,930.56	3,865.18
7/22/2014	70.00	-	65.32	-	-	3,930.56	3,865.24
10/9/2014	70.00	-	64.03	-	-	3,930.56	3,866.53
1/14/2015	70.00	-	64.30	-	-	3,930.56	3,866.26
4/16/2015	70.00	-	64.37	-	-	3,930.56	3,866.19
7/8/2015	70.00	-	64.85	-	-	3,930.56	3,865.71
10/9/2015	70.00	-	65.15	-	-	3,930.56	3,865.41
1/7/2016	70.00	-	65.25	-	-	3,930.56	3,865.31
4/6/2016	70.00	-	65.29	-	-	3,930.56	3,865.27
6/10/2016	70.00	-	65.35	-	-	3,930.56	3,865.21
8/16/2017	70.00	-	65.58	-	-	3,930.56	3,864.98
11/30/2017	70.00	-	65.57	-	-	3,930.56	3,864.99
7/24/2018	-	-	65.79	-	-	3,930.56	3,864.77
11/14/2018	67.70	-	65.90	-	-	3,930.56	3,864.66
6/17/2019	67.89	-	66.44	-	-	3,930.56	3,864.12
11/20/2019	67.89	-	66.42	-	-	3,930.56	3,864.14
5/13/2020	67.7	-	66.51	-	-	3,930.56	3,864.05
11/19/2020	67.7	-	66.74	-	-	3,930.56	3,863.82
5/11/2021	67.7	-	Dry	-	-	3,930.56	Dry
11/17/2021	67.7	-	Dry	-	-	3,930.56	Dry
5/23/2022	67.7	-	Dry	-	-	3,930.56	Dry
11/14/2022	67.7	-	Dry	-	-	3,930.56	Dry
2/28/2023	67.7	-	Dry	-	-	3,930.56	Dry
9/13/2023	67.7	-	Dry	-	-	3,930.56	Dry

Received by OCD:	eceived by OCD: 2/22/2024 12:34:10 PM APPENDIX C Historical Groundwater Gauging Data VG-2 Vacuum Glorietta Lea County, New Mexico										
Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)				
Notes:											
TOC	Top of Casing										
AMSL	Above Mean Sea Le	evel									
BTOC	Below Top of Casing	g									

VG-3

Vacuum Glorietta

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
1/27/2014	70.00	-	64.71	-	-	3,931.15	3,866.44
4/16/2014	70.00	-	64.66	-	-	3,931.15	3,866.49
7/22/2014	70.00	-	64.59	-	-	3,931.15	3,866.56
9/10/2014	70.00	-	63.30	-	-	3,931.15	3,867.85
1/14/2015	70.00	-	63.58	-	-	3,931.15	3,867.57
4/16/2015	70.00	-	63.63	-	-	3,931.15	3,867.52
8/7/2015	70.00	-	64.11	-	-	3,931.15	3,867.04
9/10/2015	70.00	-	64.38	-	-	3,931.15	3,866.77
7/1/2016	70.00	-	64.48	-	-	3,931.15	3,866.67
6/4/2016	70.00	-	64.54	-	-	3,931.15	3,866.61
6/10/2016	70.00	-	64.61	-	-	3,931.15	3,866.54
8/16/2017	70.00	-	64.86	-	-	3,931.15	3,866.29
11/30/2017	70.00	-	64.87	-	-	3,931.15	3,866.28
7/24/2018	-	-	65.02	-	-	3,931.15	3,866.13
11/14/2018	68.48	-	65.21	-	-	3,931.15	3,865.94
6/17/2019	68.61	-	65.56	-	-	3,931.15	3,865.59
11/19/2019	68.61	-	65.66	-	-	3,931.15	3,865.49
5/12/2020	68.3	-	65.78	-	-	3,931.15	3,865.37
11/19/2020	68.3	-	65.98	-	-	3,931.15	3,865.17
5/11/2021	68.41	-	66.59	-	-	3,931.15	3,864.56
11/17/2021	68.41	-	67.23	-	-	3,931.15	3,863.92
5/23/2022	68.41	-	67.06	-	-	3,931.15	3,864.09
11/14/2022	68.41	-	67.13	-	-	3,931.15	3,864.02
2/28/2023	68.6	-	67.62	-	-	3,931.15	3,863.53
9/13/2023	68.6	-	68.41	-	-	3,931.15	3,862.74

Received by OCD: 2/22/2024 12:34:10 PM APPENDIX C Historical Groundwater Gauging Data VG-3 Vacuum Glorietta Lea County, New Mexico							Page 64 oj
Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
Notes:							
TOC	Top of Casing						
AMSL	Above Mean Sea Le	vel					
BTOC	Below Top of Casing	g					

Historical Groundwater Gauging Data VG-4 Vacuum Glorietta

							Corrected
Gauging Date	Well Total Depth	PSH	Water level	PSH Thickness	PSH Elevation	TOC Elevation	Groundwater
Gauging Date	(feet BTOC)	(feet BTOC)	(feet BTOC)	(feet)	(feet AMSL)	(feet AMSL)	Elevation
							(feet AMSL)
1/27/2014	78.00	65.52	65.56	0.04	3,865.63	3,931.15	3,865.62
4/16/2014	78.00	65.48	65.49	0.01	3,865.67	3,931.15	3,865.66
7/22/2014	78.00	65.44	65.45	0.01	3,865.71	3,931.15	3,865.70
10/9/2014	78.00	-	63.93	0	-	3,931.15	3,867.22
1/14/2015	78.00	-	64.48	0	-	3,931.15	3,866.67
4/16/2015	78.00	-	64.53	0	-	3,931.15	3,866.62
7/8/2015	78.00	-	65.02	0	-	3,931.15	3,866.13
10/9/2015	78.00	-	65.25	0	-	3,931.15	3,865.90
1/7/2016	78.00	-	65.33	0	-	3,931.15	3,865.82
4/6/2016	78.00	65.35	65.36	0.01	3,865.80	3,931.15	3,865.79
10/6/2016	78.00	-	65.46	0	-	3,931.15	3,865.69
8/16/2017	78.00	-	65.75	0	-	3,931.15	3,865.40
11/30/2017	78.00	-	68.42	0	-	3,931.15	3,862.73
7/24/2018	-	65.13	65.92	0.79	3,866.02	3,931.15	3,865.23
11/14/2018	-	66.06	67.14	1.08	3,865.09	3,931.15	3,864.01
6/17/2019	-	66.35	66.38	0.03	3,864.80	3,931.15	3,864.77
11/19/2019	-	66.57	66.68	0.11	3,864.58	3,931.15	3,864.47
5/13/2020	72.1	-	66.65	0	-	3,931.15	3,864.50
11/18/2020	-	67.89	67.93	0.04	3,863.26	3,931.15	3,863.22
5/12/2021	70.7	-	67.54	0	-	3,931.15	3,863.61
11/17/2021	70.7	-	67.86	0	-	3,931.15	3,863.29
5/23/2022	70.7	-	67.89	0	-	3,931.15	3,863.26
11/14/2022	70.7	67.93	67.96	0.03	3,863.22	3,931.15	3,863.19
2/28/2023	70.7	67.56	67.74	0.18	3,863.59	3,931.15	3,863.41
9/13/2023	70.7	69.48	69.61	0.13	3,861.67	3,931.15	3,861.54

Received by OCD:	2/22/2024 12:34:10 PM		Historical Ground Ve Vacuum	NDIX C water Gauging Data G-4 Glorietta , New Mexico		Page 66 o	
Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Corrected Groundwater Elevation (feet AMSL)
Notes:							
TOC	Top of Casing						
AMSL	Above Mean Sea Le	evel					
BTOC	Below Top of Casing	g					

Historical Groundwater Gauging Data VG-5

Vacuum Glorietta

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
1/27/2014	74.00	-	64.51	-	-	3,930.52	3,866.01
4/16/2014	74.00	-	64.80	-	-	3,930.52	3,865.72
7/22/2014	74.00	-	64.38	-	-	3,930.52	3,866.14
10/9/2014	74.00	-	63.16	-	-	3,930.52	3,867.36
1/14/2015	74.00	-	63.42	-	-	3,930.52	3,867.10
4/16/2015	74.00	-	63.46	-	-	3,930.52	3,867.06
7/8/2015	74.00	-	63.99	-	-	3,930.52	3,866.53
10/9/2015	74.00	-	64.25	-	-	3,930.52	3,866.27
1/7/2016	74.00	-	64.32	-	-	3,930.52	3,866.20
4/6/2016	74.00	-	64.36	-	-	3,930.52	3,866.16
10/6/2016	74.00	-	64.43	-	-	3,930.52	3,866.09
8/16/2017	74.00	-	64.68	-	-	3,930.52	3,865.84
11/30/2017	74.00	-	64.77	-	-	3,930.52	3,865.75
7/24/2018	-	-	64.84	-	-	3,930.52	3,865.68
11/14/2018	75.30	-	64.98	-	-	3,930.52	3,865.54
6/17/2019	75.31	-	65.46	-	-	3,930.52	3,865.06
11/20/2019	75.31	-	65.49	-	-	3,930.52	3,865.03
5/13/2020	75.15	-	65.57	-	-	3,930.52	3,864.95
11/19/2020	75.15	-	65.80	-	-	3,930.52	3,864.72
5/11/2021	75.15	-	66.49	-	-	3,930.52	3,864.03
11/17/2021	75.15	-	66.81	-	-	3,930.52	3,863.71
5/23/2022	75.15	-	66.90	-	-	3,930.52	3,863.62
11/14/2022	75.15	-	66.97	-	-	3,930.52	3,863.55
2/28/2023	75.15	-	67.46	-	-	3,930.52	3,863.06
9/13/2023	75.15	-	68.33	-	-	3,930.52	3,862.19

Received by OCD:	2/22/2024 12:34:10 PM		Historical Ground V Vacuum	APPENDIX C Historical Groundwater Gauging Data VG-5 Vacuum Glorietta Lea County, New Mexico			Page 68 (
Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
Notes:							
тос	Top of Casing						
AMSL	Above Mean Sea Le	vel					
BTOC	Below Top of Casing	1					

Historical Groundwater Gauging Data VG-6

Vacuum Glorietta

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
1/27/2014	80.00	-	68.38	-	-	3,935.16	3,866.78
4/16/2014	80.00	-	68.32	-	-	3,935.16	3,866.84
7/22/2014	80.00	-	68.26	-	-	3,935.16	3,866.90
10/9/2014	80.00	-	67.06	-	-	3,935.16	3,868.10
1/14/2015	80.00	-	67.27	-	-	3,935.16	3,867.89
4/16/2015	80.00	-	67.30	-	-	3,935.16	3,867.86
7/8/2015	80.00	-	67.86	-	-	3,935.16	3,867.30
10/9/2015	80.00	-	68.12	-	-	3,935.16	3,867.04
1/7/2016	80.00	-	68.16	-	-	3,935.16	3,867.00
4/6/2016	80.00	-	68.21	-	-	3,935.16	3,866.95
10/6/2016	80.00	-	68.27	-	-	3,935.16	3,866.89
8/16/2017	80.00	-	68.53	-	-	3,935.16	3,866.63
11/30/2017	80.00	-	68.57	-	-	3,935.16	3,866.59
7/24/2018	-	-	68.69	-	-	3,935.16	3,866.47
11/14/2018	80.00	-	68.86	-	-	3,935.16	3,866.30
6/17/2019	80.16	-	69.35	-	-	3,935.16	3,865.81
11/19/2019	80.16	-	69.31	-	-	3,935.16	3,865.85
5/12/2020	79.72	-	69.41	-	-	3,935.16	3,865.75
11/18/2020	79.72	-	69.64	-	-	3,935.16	3,865.52
5/12/2021	79.72	-	70.48	-	-	3,935.16	3,864.68
11/17/2021	79.72	-	70.73	-	-	3,935.16	3,864.43
5/23/2022	79.72	-	70.80	-	-	3,935.16	3,864.36
11/14/2022	79.72	-	70.65	-	-	3,935.16	3,864.51
2/28/2023	79.72	-	71.46	-	-	3,935.16	3,863.70
9/13/2023	79.72	-	72.48	-	-	3,935.16	3,862.68

Received by OCD:	2/22/2024 12:34:10 PM		APPENDIX C Historical Groundwater Gauging Data VG-6 Vacuum Glorietta Lea County, New Mexico				Page 70 o
Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
Notes:							
TOC	Top of Casing						
AMSL	Above Mean Sea Le	vel					
BTOC	Below Top of Casing]					

Historical Groundwater Gauging Data

VG-7

Vacuum Glorietta

Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
1/27/2014	80.00	-	68.23	-	-	3,934.78	3,866.55
4/16/2014	80.00	-	68.19	-	-	3,934.78	3,866.59
7/22/2014	80.00	-	68.10	-	-	3,934.78	3,866.68
10/9/2014	80.00	-	66.93	-	-	3,934.78	3,867.85
1/14/2015	80.00	-	67.12	-	-	3,934.78	3,867.66
4/16/2015	80.00	-	67.16	-	-	3,934.78	3,867.62
7/8/2015	80.00	-	67.70	-	-	3,934.78	3,867.08
10/9/2015	80.00	-	67.98	-	-	3,934.78	3,866.80
1/7/2016	80.00	-	68.01	-	-	3,934.78	3,866.77
4/6/2016	80.00	-	68.07	-	-	3,934.78	3,866.71
10/6/2016	80.00	-	68.13	-	-	3,934.78	3,866.65
8/16/2017	80.00	-	68.38	-	-	3,934.78	3,866.40
11/30/2017	80.00	-	68.36	-	-	3,934.78	3,866.42
7/24/2018	-	-	68.58	-	-	3,934.78	3,866.20
11/14/2018	79.80	-	68.65	-	-	3,934.78	3,866.13
6/17/2019	80.09	-	69.15	-	-	3,934.78	3,865.63
11/19/2019	80.09	-	69.17	-	-	3,934.78	3,865.61
5/12/2020	79.87	-	69.30	-	-	3,934.78	3,865.48
11/18/2020	79.86	-	69.48	-	-	3,934.78	3,865.30
5/12/2021	79.86	-	70.36	-	-	3,934.78	3,864.42
11/17/2021	79.86	-	70.77	-	-	3,934.78	3,864.01
5/23/2022	79.86	-	70.52	-	-	3,934.78	3,864.26
11/14/2022	79.86	-	70.60	-		3,934.78	3,864.18
2/28/2023	79.86	-	71.31	-	-	3,934.78	3,863.47
9/13/2023	79.86	-	72.38	-	-	3,934.78	3,862.40

Received by OCD:	2/22/2024 12:34:10 PM		Historical Ground V Vacuum	NDIX C water Gauging Data G-7 Glorietta , New Mexico			Page 72 of J
Gauging Date	Well Total Depth (feet BTOC)	PSH (feet BTOC)	Water level (feet BTOC)	PSH Thickness (feet)	PSH Elevation (feet AMSL)	TOC Elevation (feet AMSL)	Groundwater Elevation (feet AMSL)
Notes:							
TOC	Top of Casing						
AMSL	Above Mean Sea Le	evel					
BTOC	Below Top of Casing	g					
Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2023 Annual Report February 7, 2024

APPENDIX D: HISTORICAL GROUNDWATER ANALYTICAL DATA

APPENDIX D Historical Groundwater Analytical Data VG-2 Vacuum Glorietta Lea County, New Mexico

Page	74 of 104

Sample Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/28/2014	<0.001	<0.001	< 0.001	<0.003	125
4/16/2014	<0.001	<0.001	<0.001	<0.003	134
7/22/2014	<0.001	< 0.001	< 0.001	<0.003	146
10/9/2014	<0.001	< 0.001	<0.001	<0.003	111
1/14/2015	<0.001	<0.001	<0.001	<0.003	106
4/16/2015	<0.001	< 0.001	<0.001	<0.003	88.4
7/8/2015	< 0.001	<0.001	<0.001	<0.003	73.8
10/9/2015	< 0.001	<0.001	<0.001	<0.003	106
1/7/2016	<0.001	<0.001	<0.001	<0.003	183
4/6/2016	< 0.001	<0.001	<0.001	<0.003	174
10/6/2016	< 0.001	<0.001	<0.001	<0.003	200
8/16/2017	<0.0020	<0.0050	< 0.0020	<0.0060	200
11/30/2017	<0.0020	<0.0050	< 0.0020	<0.0060	195
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	173
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	175
6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	193
11/20/2019	<0.00100	<0.00100	<0.00100	<0.00300	192
5/13/2020	<0.00100	< 0.00100	<0.00100	<0.00300	176
11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	117
5/11/2021			Not Sampled - Dry		
11/17/2021			Not Sampled - Dry		
5/23/2022			Not Sampled - Dry		
11/14/2022			Not Sampled - Dry		
2/28/2023			Not Sampled - Dry		
9/13/2023	Not Sampled - Dry				

Notes:	
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D Historical Groundwater Analytical Data VG-3 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/18/2014	<0.001	< 0.001	<0.001	<0.003	45.2
4/16/2014	< 0.001	< 0.001	< 0.001	<0.003	46.7
7/22/2014	< 0.001	<0.001	< 0.001	<0.003	44.4
9/10/2014	<0.001	< 0.001	<0.001	<0.003	38.2
1/14/2015	<0.001	< 0.001	<0.001	<0.003	50
4/16/2015	< 0.001	<0.001	< 0.001	<0.003	45.7
7/8/2015	< 0.001	<0.001	< 0.001	<0.003	44.2
10/9/2015	< 0.001	<0.001	< 0.001	<0.003	41.6
1/7/2016	<0.001	< 0.001	<0.001	<0.003	40.4
4/6/2016	<0.001	< 0.001	< 0.001	<0.003	40.9
10/6/2016	<0.001	< 0.001	< 0.001	<0.003	40.3
8/16/2017	<0.0020	<0.0050	<0.0020	< 0.0060	40.4
11/30/2017	<0.0020	<0.0050	<0.0020	< 0.0060	38.1
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	44.8
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	46.6
6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	49.6
11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	55.1
5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	56.8
11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	59.8
5/11/2021	0.000254 J	<0.00100	0.000335 J	0.000705 J	58.9
11/17/2021	<0.0020	<0.0050	<0.0020	< 0.0060	51.7
5/23/2022	<0.0020	<0.0050	<0.0020	< 0.0060	76.2
11/15/2022	<0.00100	<0.00100	<0.00100	<0.00300	59.7
2/28/2023			Not Sampled - Dry		
9/13/2023			Not Sampled - Dry		

Notes:	
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D Historical Groundwater Analytical Data VG-4 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
10/28/2014	1.8	< 0.05	0.82	0.2	4,140
1/14/2015	2.7	0.03	1.1	0.78	5,640
4/16/2015	5.6	0.037	1.7	0.8	3,080
7/8/2015	4.94	<0.05	1.57	<0.15	2,240
10/9/2015	4.18	<0.05	1.5	0.305	1,480
1/7/2016	4.12	<0.05	2.1	0.272	1,360
4/6/2016	3.61	<0.05	5.47	2.13	1,190
10/6/2016	1.51	<0.05	0.54	0.256	1,490
8/16/2017	0.77	<0.0050	0.12	0.035	1,180
11/30/2017	0.96	0.0065	0.25	0.11	1,060
7/25/2018		١	Not Sampled - PSH Presen	t	
11/14/2018		1	Not Sampled - PSH Presen	t	
6/17/2019		١	Not Sampled - PSH Presen	t	
11/19/2019		1	Not Sampled - PSH Presen	t	
5/13/2020	1.59	0.0837	0.551	0.826	581
11/18/2020		1	Not Sampled - PSH Presen	t	
5/12/2021	1.32	0.0246 J	0.296	0.111 J	532
11/18/2021	2.12	0.0463	0.0911	0.952	461
5/23/2022	1.56	0.0135	0.671	0.397	376
11/15/2022		١	Not Sampled - PSH Presen	t	
2/28/2023		١	Not Sampled - PSH Presen	t	
9/13/2023		1	Not Sampled - PSH Presen	t	

Notes: NMWQCC GQS

New Mexico Water Quality Control Commission

GQS Groundwater Quality Standards

- J The identification of the analyte is acceptable; the reported value is an estimate
- Not Analyzed
 - Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D

Historical Groundwater Analytical Data VG-5 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/28/2014	<0.001	< 0.001	< 0.001	<0.003	304
4/16/2014	< 0.001	< 0.001	<0.001	<0.003	342
7/22/2014	< 0.001	< 0.001	<0.001	<0.003	140
10/9/2014	<0.001	< 0.001	<0.001	<0.003	278
1/14/2015	<0.001	<0.001	<0.001	<0.003	228
4/16/2015	< 0.001	< 0.001	<0.001	<0.003	200
7/8/2015	< 0.001	< 0.001	<0.001	<0.003	232
10/9/2015	< 0.001	< 0.001	<0.001	<0.003	204
1/7/2016	<0.001	< 0.001	<0.001	<0.003	158
4/6/2016	<0.001	< 0.001	<0.001	<0.003	224
10/6/2016	< 0.001	< 0.001	<0.001	<0.003	283
8/16/2017	<0.0020	<0.0050	<0.0020	<0.0060	298
11/30/2017	<0.0020	<0.0050	<0.0020	<0.0060	417
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	225
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	180
6/17/2019	0.000862 J	0.00439	0.000526 J	0.00244 J	188
11/20/2019	<0.00100	<0.00100	<0.00100	<0.00300	176
5/13/2020	<0.00100	<0.00100	<0.00100	<0.00300	295
11/19/2020	<0.00100	<0.00100	<0.00100	<0.00300	368
5/11/2021	0.000166 J	<0.00100	<0.00100	<0.00300	154
11/18/2021	<0.00200	<0.00500	<.00200	<0.00600	331
5/23/2022	<0.00200	<0.00500	<.00200	<0.00600	204
11/16/2022	<0.00100	<0.00100	<0.00100	<0.00300	248
2/28/2023	<0.0000941	<0.000278	<0.000137	<0.000174	316
9/13/2023	< 0.0000941	< 0.000278	< 0.000137	< 0.000174	191

Notes:

U	Not detected at the Reporting Limit (or MDL where applicable)
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
-	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D Historical Groundwater Analytical Data VG-6 Vacuum Glorietta Lea County, New Mexico

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/28/2014	<0.001	< 0.001	<0.001	< 0.003	88.3
4/16/2014	<0.001	< 0.001	<0.001	< 0.003	78.1
7/22/2014	< 0.001	< 0.001	<0.001	< 0.003	95.3
10/9/2014	< 0.001	< 0.001	<0.001	< 0.003	113
1/14/2015	< 0.001	< 0.001	<0.001	< 0.003	88.4
4/16/2015	< 0.001	< 0.001	< 0.001	< 0.003	82.3
7/8/2015	< 0.001	< 0.001	< 0.001	< 0.003	99.9
10/9/2015	<0.001	< 0.001	< 0.001	<0.003	134
1/7/2016	<0.001	< 0.001	< 0.001	< 0.003	111
4/6/2016	<0.001	< 0.001	< 0.001	< 0.003	86
10/6/2016	< 0.001	< 0.001	< 0.001	< 0.003	139
8/16/2017	<0.0020	<0.0050	<0.0020	< 0.0060	140
11/30/2017	<0.0020	<0.0050	<0.0020	< 0.0060	84.4
7/25/2018	< 0.00100	<0.00100	<0.00100	<0.00300	117
11/14/2018	< 0.00100	<0.00100	<0.00100	<0.00300	134
6/17/2019	< 0.00100	0.00105	<0.00100	<0.00300	138
11/19/2019	<0.00100	< 0.00100	<0.00100	< 0.00300	143
5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	135
11/18/2020	< 0.00100	<0.00100	< 0.00100	<0.00300	115
5/12/2021	< 0.00100	<0.00100	< 0.00100	<0.00300	88.8
11/17/2021	<0.0020	<0.0050	<0.0020	< 0.0060	75.1
5/23/2022	<0.0020	<0.0050	<0.0020	< 0.0060	64.1
11/15/2022	< 0.00100	< 0.00100	< 0.00100	<0.00300	126
2/28/2023	<0.0000941	<0.000278	< 0.000137	< 0.000174	134
9/13/2023	< 0.0000941	<0.000278	< 0.000137	< 0.000174	257

Notes:

_	Notes:	
	U	Not detected at the Reporting Limit (or MDL where applicable)
	NMWQCC	New Mexico Water Quality Control Commission
	GQS	Groundwater Quality Standards
	J	The identification of the analyte is acceptable; the reported value is an estimate
	-	Not Analyzed
		Result exceeds NMWQCC Groundwater Quality Standards

APPENDIX D Historical Groundwater Analytical Data VG-7 Vacuum Glorietta Lea County, New Mexico

Page	79	of	10)4
------	-----------	----	----	----

Sample Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)
NMWQCC GQS	0.01	0.75	0.75	0.62	250
1/28/2014	< 0.001	< 0.001	< 0.001	< 0.003	191
4/16/2014	< 0.001	< 0.001	<0.001	<0.003	211
7/22/2014	< 0.001	< 0.001	<0.001	<0.003	201
10/9/2014	< 0.001	<0.001	< 0.001	<0.003	189
1/14/2015	< 0.001	<0.001	< 0.001	<0.003	246
4/16/2015	< 0.001	< 0.001	< 0.001	<0.003	270
7/8/2015	< 0.001	< 0.001	< 0.001	<0.003	203
10/9/2015	< 0.001	< 0.001	< 0.001	<0.003	154
1/7/2016	< 0.001	< 0.001	< 0.001	<0.003	121
4/6/2016	< 0.001	< 0.001	< 0.001	< 0.003	148
10/6/2016	< 0.001	< 0.001	< 0.001	<0.003	172
8/16/2017	<0.0020	<0.0050	<0.0020	< 0.0060	134
11/30/2017	<0.0020	<0.0050	<0.0020	< 0.0060	164
7/25/2018	<0.00100	<0.00100	<0.00100	<0.00300	254
11/14/2018	<0.00100	<0.00100	<0.00100	<0.00300	229
6/17/2019	<0.00100	<0.00100	<0.00100	<0.00300	207
11/19/2019	<0.00100	<0.00100	<0.00100	<0.00300	149
5/12/2020	<0.00100	<0.00100	<0.00100	<0.00300	129
11/18/2020	<0.00100	<0.00100	<0.00100	<0.00300	122
5/12/2021	<0.00100	<0.00100	<0.00100	<0.00300	127
11/17/2021	<0.0020	<0.0050	<0.0020	< 0.0060	137
5/23/2022	<0.0020	<0.0050	<0.0020	< 0.0060	124
11/15/2022	<0.00100	<0.00100	<0.00100	<0.00300	137
2/28/2023	<0.0000941	<0.000278	<0.000137	< 0.000174	144
9/13/2023	< 0.0000941	<0.000278	< 0.000137	< 0.000174	104

Notes:

 Notes:	
 U	Not detected at the Reporting Limit (or MDL where applicable)
NMWQCC	New Mexico Water Quality Control Commission
GQS	Groundwater Quality Standards
J	The identification of the analyte is acceptable; the reported value is an estimate
 -	Not Analyzed
	Result exceeds NMWQCC Groundwater Quality Standards

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2023 Annual Report February 7, 2024

APPENDIX E: ACUVAC REMEDIATION REPORTS

April 10, 2022

Mr. Dylon Breyman Environmental Scientist, III Project Manager Tetra Tech 2500 City West Blvd, Suite 1000 Houston, TX 77042

Dear Dylon:

Re: Vacuum Glorietta Site, Lea County, NM, (Event #12)

At your request, AcuVac Remediation, LLC (AcuVac) performed) performed a single continuous one hundred (100.0) hour Soil Vapor Extraction (SVE) Event; recorded as #12A, #12B, #12C, #12D and #12E at the above referenced site as outlined in the table below. The following is the report and a copy of the operating data collected during Event #12. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#12A	VG-4	SVE	24.0	03/27/2023
#12B	VG-4	SVE	24.0	03/28/2023
#12C	VG-4	SVE	24.0	03/29/2023
#12D	VG-4	SVE	24.0	03/30/2023
#12E	VG-4	SVE	4.0	03/31/2023

The event hours for each day are based on the start time of the event 0800 hrs. and ending at 0800 hrs. on the following day.

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH refers to both petroleum hydrocarbons and Non-Aqueous Phase Liquids (NAPL). The source of the PSH is a historical pipeline release.

OBJECTIVES

The objectives of the SVE Events:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the liquid and vapor phase petroleum hydrocarbon specific yields with high induced vacuums.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac						
Measurement Equipment	Data Element					
Extraction Well Induced Vacuum and Flow						
Dwyer Magnehelic Gauges	Extraction Well Vacuum					
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow					
Observation Wells						
Dwyer Digital Manometer	Vacuum / Pressure Influence					
Extraction Well Vapor Monitoring						
AcuVac V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection					
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration					
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content					
NAPL Thickness (if present)						
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater					
Atmospheric Conditions						
Testo Model 511	Relative and Absolute Barometric Pressure					

ACUVAC SOIL VAPOR EXTRACTION SYSTEM

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and in the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy.

The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, over-speed, or overheating automatically shut down the engine.

The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR SVE EVENT #12

The Recovery Summary Table below lists the groundwater, liquid LNAPL, and PSH vapor recovery data for Event #12, on the dates shown.

Recovery Summary Well VG-4									
Event Number		Event #12A	Event #12B	Event #12C	Event #12D	Event #12E	Event #12		
Event Date		03/27/2023	03/28/2023	03/29/2023	03/30/2023	03/31/2023	Total		
Event Hours		24.0	24.0	24.0	24.0	4.0	100.0		
Data Element	Data Element								
Groundwater Recovery	gals	0	0	0	0	0	0		
LNAPL Recovery									
Liquid	gals	0	0	0	0	0	0		
Vapor	gals	5.11	5.30	5.26	5.65	0.86	22.17		
Total	gals	5.11	5.30	5.26	5.65	0.86	22.17		
Gallons/Hour	gph	0.21	0.22	0.22	0.24	0.21	0.22		

• Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA[®] data recorded in the Influent Vapor Data Table shown below.

Influent Vapor Data Well VG-4									
Event Number		Event #12A	Event #12B	Event #12C	Event #12D	Event #12E			
Event Date		03/27/2023	03/28/2023	03/29/2023	03/30/2023	03/31/2023			
Event Hours		24.0	24.0	24.0	24.0	4.0			
Data Element									
TPH- Maximum	ppmv	8,250	7,520	7,630	7,880	7,230			
TPH- Average	ppmv	7,269	6,878	7,153	7,521	7,104			
TPH- Minimum	ppmv	6,340	5,740	6,600	7,010	7,000			
TPH- Initial	ppmv	6,340	5,740	6,670	7,010	7,040			
TPH- Ending	ppmv	7,520	7,520	7,070	7,620	7,230			
PID - Average	ppm	1,096	1,133	1,429	1,312	1,365			
CO ₂ Average	%	12.83	12.58	12.38	12.99	12.66			
O ₂ Average	%	2.7	2.9	2.2	1.8	1.9			

• The TPH vapor concentrations from the influent vapor samples for Event #11 are presented in the following graph.

• The extraction well induced vacuum and well vapor flow for Event #12 are presented in the following table.

Well Vacuum and Well Vapor Flow Well VG-4									
Event Number		Event #12A	Event #12B	Event #12C	Event #12D	Event #12E			
Event Date		03/27/2023	03/28/2023	03/29/2023	03/30/2023	03/31/2023			
Event Hours	24.0	24.0	24.0	24.0	4.0				
Data Element									
Well Vacuum- Maximum	InH ₂ O	46.00	47.00	47.00	48.00	48.00			
Well Vacuum- Average	InH ₂ O	45.12	47.00	46.82	47.41	47.78			
Well Vacuum- Minimum	InH₂O	45.00	47.00	45.00	47.00	47.00			
Well Vapor Flow- Maximum	scfm	15.19	14.98	14.95	15.63	14.00			
Well Vapor Flow- Average	scfm	14.24	14.75	14.21	14.63	13.99			
Well Vapor Flow- Minimum	scfm	13.94	13.99	13.87	13.99	13.97			

 The LNAPL thickness recorded at the start and conclusion of Event #12 is contained in the following table.

LNAPL Thickness Data Well VG-4							
Event Number		Event #12A	Event #12E				
Event Date		03/27/2023	03/31/2023				
Event Hours		24.0	4.0				
Event Start							
Depth to LNAPL	Ft BTOC	68.74	NM				
Depth to Groundwater	Ft BTOC	69.09	-				
LNAPL Thickness	ft	0.35	-				
Hydro Equivalent	Ft BTOC	68.83	NM				
Event Conclusion							
Depth to LNAPL	Ft BTOC	NM	67.95				
Depth to Groundwater	Ft BTOC	-	69.08				
LNAPL Thickness	ft	-	0.14				
Hydro Equivalent	Ft BTOC	NM	67.99				

NM- Not Measured

ADDITIONAL INFORMATION

• All LNAPL volume recovered, 22.17 gals, was burned as IC engine fuel. The LNAPL weighted recovery rate for Event #12 was 0.22 gals/hour.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane and CO₂ in accordance with the manufacturer's specifications.

The formula used to calculate the emission rate is: $ER = HC (ppmv) \times MW (Hexane) \times Flow Rate (scfm) \times 1.58E^{-7} (min)(lb mole) = lbs/hr$ $(hr)(ppmv)(ft^3)$

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

Paulad

Paul D. Faucher President

Table #1								
Event		12A	12B	12C	12D	12E		
WELL NO.		VG-4	VG-4	VG-4	VG-4	VG-4		
Current Event Hours		24.0	24.0	24.0	24.0	4.0		
Total Event Hours		463.0	487.0	511.0	535.0	539.0		
TD (estimated)	ft BGS	73.8	73.8	73.8	73.8	73.8		
Well Screen	ft BGS	unknown	unknown	unknown	unknown	unknown		
Well Size	in	4.0	4.0	4.0	40	4.0		
Well Data	-							
Depth to LNAPL - Static - Start Event	ft BTOC	68.74	NM	NM	NM	NM		
Depth to Groundwater - Static - Start Event	ft BTOC	69.09	NM	NM	NM	NM		
LNAPL Thickness	ft	0.35	-		-	-		
Hydro-Equivalent- Beginning	ft BTOC	68.83	-		-	-		
Depth to LNAPL - End Event	ft BTOC	NM	NM	NM	NM	67.95		
Depth to Groundwater - End Event	ft BTOC	NM	NM	NM	NM	69.08		
LNAPL Thickness	ft	-	-		-	0.14		
Hydro-Equivalent- Ending	ft BTOC	-	-		-	67.99		
Extraction Data	-					-		
Maximum Extraction Well Vacuum	InH ₂ O	46.00	47.00	47.00	48.00	48.00		
Average Extraction Well Vacuum	InH ₂ O	45.12	47.00	46.82	47.41	47.78		
Minimum Extraction Well Vacuum	InH ₂ O	45.00	47.00	45.00	47.00	47.00		
Maximum Extraction Well Vapor Flow	scfm	15.19	14.98	14.95	15.63	14.00		
Average Extraction Well Vapor Flow	scfm	14.24	14.75	14.21	14.63	13.99		
Minimum Extraction Well Vapor Flow	scfm	13.94	13.99	13.87	13.99	13.97		
Influent Data	-							
Maximum TPH	ppmv	8,250	7,520	7,630	7,880	7,230		
Average TPH	ppmv	7,269	6,878	7,153	7,521	7,104		
Maximum TPH	ppmv	6,340	5,740	6,600	7,010	7,000		
Initial TPH	ppmv	6,340	5,740	6,670	7,010	7,040		
Final TPH	ppmv	7,520	7,520	7,070	7,620	7,230		
Average PID	ppm	1,096	1,133	1,429	1,312	1,365		
Average CO ₂	%	12.83	12.58	12.38	12.99	12.66		
Average O ₂	%	2.7	2.9	2.2	1.8	1.9		

Summary Well Data Table #1

.

Summary Recovery Data Table #2

Event		12A	12B	12C	12D	12E
WELL NO.	VG-4	VG-4	VG-4	VG-4	VG-4	
Recovery Data- Current Event				•	•	
Total Liquid Volume Recovered	gals	-	-	-	-	-
Total Liquid LNAPL Recovered	gals	-	-	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-	-
Total Vapor LNAPL Recovered	gals	5.11	5.30	5.26	5.65	0.86
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	5.11	5.30	5.26	5.65	0.86
Average LNAPL Recovery	gals/hr	0.21	0.22	0.22	0.24	0.21
Total LNAPL Recovered	lbs	36	37	37	40	6
Total Volume of Well Vapors	cu. ft	6,835	7,080	6,821	7,022	3,358
Recovery Data- Cumulative						
Total Liquid Volume Recovered	gals	27,394	27,394	27,394	27,394	27,394
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	62.90	68.20	73.46	79.11	79.96
Total Vapor and Liquid LNAPL Recovered	gals	70.88	76.19	81.44	87.09	87.95
Average LNAPL Recovery	gals/hr	0.13	0.13	0.13	0.14	0.14
Total LNAPL Recovered	lbs	1,996	2,034	2,070	2,110	2,116
Total Volume of Well Vapors	cu. ft	586,191	593,271	600,092	607,114	610,475

.

December 27, 2023

Mr. Chuck Terhune, P.G. Program Manager Tetra Tech 2500 City West Blvd, Suite 1000 Houston, TX 77042

Dear Chuck:

Re: Vacuum Glorietta Site, Lea County, NM, (Site)

At your request, AcuVac Remediation, LLC (AcuVac) performed) performed a single continuous one hundred (100.0) hour Soil Vapor Extraction (SVE) Event; recorded as #13A, #13B, #13C, #13D and #13E at the above referenced Site as outlined in the table below. The following is the report and a copy of the operating data collected during Event #13. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

Event Number	Well Number	Event Type	Event Duration (hrs)	Date
#13A	VG-4	SVE	24.0	12/11/2023
#13B	VG-4	SVE	24.0	12/12/2023
#13C	VG-4	SVE	24.0	12/13/2023
#13D	VG-4	SVE	24.0	12/14/2023
#13E	VG-4	SVE	4.0	12/15/2023

The event hours for each day are based on the start time of the event 0800 hrs. and ending at 0800 hrs. on the following day.

The purpose of the events was to enhance recovery of phase separated hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH refers to both petroleum hydrocarbons and Non-Aqueous Phase Liquids (NAPL). The source of the PSH is a historical pipeline release.

OBJECTIVES

The objectives of the SVE Events:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the liquid and vapor phase petroleum hydrocarbon specific yields with high induced vacuums.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform SVE events and uses no thirdparty equipment. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower, used as a vacuum pump, and a Roots RAI-22 positive displacement blower. The table below lists additional equipment and instrumentation employed, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac						
Measurement Equipment	Data Element					
Extraction Well Induced Vacuum and Flow						
Dwyer Magnehelic Gauges	Extraction Well Vacuum					
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extraction Well Vapor Flow					
Observation Wells						
Dwyer Digital Manometer	Vacuum / Pressure Influence					
Extraction Well Vapor Monitoring						
AcuVac V-1 Vacuum Box	Extraction Well Non-Diluted Vapor Sample Collection					
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration					
RKI 1200 O ₂ Monitor	Extraction Well Vapor Oxygen Content					
NAPL Thickness (if present)						
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater					
Atmospheric Conditions						
Testo Model 511	Relative and Absolute Barometric Pressure					

THE ACUVAC SYSTEM

Vacuum Glorietta SVE Event #13 Released to Imaging: 7/16/2024 1:30:31 PM The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump connects to the extraction well, and the vacuum created on the extraction well causes light hydrocarbons in the soil and in the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they burn as part of the normal combustion process. Auxiliary propane powers the engine if the well vapors do not provide the required energy. The IC engine provides the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows needed to maximize the vacuum radius of influence.

Emissions from the engine pass through three catalytic converters to maximize destruction of effluent hydrocarbon vapors. The engine's fuel-to-air ratio is adjusted to maintain efficient combustion. Since the System operates entirely under vacuum, any leaks in the seals or connections leak into the System and not the atmosphere. Vacuum loss, low oil pressure, overspeed, or overheating automatically shut down the engine. Because the engine powers all equipment, the System stops when the engine stops preventing an uncontrolled release of hydrocarbons.

The design of the AcuVac System enables independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controls the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improve the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR SVE EVENT #13

The Recovery Summary Table below lists the groundwater, liquid LNAPL, and PSH vapor recovery data for Event #13 on the dates shown.

Recovery Summary Well VG-4									
Event Number		Event #13A	Event #13B	Event #13C	Event #13D	Event #13E	Event #13		
Event Date		12/11/2023	12/12/2023	12/13/2023	12/14/2023	12/15/2023	Total		
Event Hours		24.0	24.0	24.0	24.0	4.0	100.0		
Data Element	Data Element								
Groundwater Recovery	gals	0	0	0	0	0	0		
LNAPL Recovery									
Liquid	gals	0	0	0	0	0	0		
Vapor	gals	3.37	4.56	6.13	5.72	0.69	20.47		
Total	gals	3.37	4.56	6.13	5.72	0.69	20.47		
Gallons/Hour	gph	0.14	0.19	0.26	0.24	0.17	0.20		

• Total vapor hydrocarbons burned as IC engine fuel in the Recovery Summary Table above are based on the HORIBA[®] data recorded in the Influent Vapor Data Table shown below.

Influent Vapor Data Well VG-4							
Event Number		Event #13A	Event #13B	Event #13C	Event #13D	Event #13E	
Event Date		12/11/2023	12/12/2023	12/13/2023	12/14/2023	12/15/2023	
Event Hours		24.0	24.0	24.0	24.0	4.0	
Data Element							
TPH- Maximum	ppmv	6,460	5,360	6,430	6,020	5,840	
TPH- Average	ppmv	5,911	4,998	6,151	5,713	5,703	
TPH- Minimum	ppmv	5,610	3,850	5,610	4,580	5,530	
TPH- Initial	ppmv	5,660	3,850	5,840	4,580	5,830	
TPH- Ending	ppmv	5,610	5,310	6,270	5,810	5,840	
PID - Average	ppm	1,027	1,093	1,221	1,268	1,427	
CO ₂ Average	%	9.39	8.12	10.01	9.66	9.36	
O ₂ Average	%	6.4	7.3	4.0	4.2	4.4	

• The extraction well induced vacuum and well vapor flow for Event #13 are presented in the following table.

Well Vacuum and Well Vapor Flow Well VG-4							
Event Number		Event #13A	Event #13B	Event #13C	Event #13D	Event #13E	
Event Date		12/11/2023	12/12/2023	12/13/2023	12/14/2023	12/15/2023	
Event Hours		24.0	24.0	24.0	24.0	4.0	
Data Element							
Well Vacuum- Maximum	InH ₂ O	92.00	84.00	60.00	70.00	84.00	
Well Vacuum- Average	InH ₂ O	83.00	76.59	60.00	64.65	76.59	
Well Vacuum- Minimum	InH ₂ O	70.00	73.00	60.00	60.00	73.00	
Well Vapor Flow- Maximum	scfm	12.26	14.19	21.40	21.37	14.19	
Well Vapor Flow- Average	scfm	12.12	13.96	21.40	20.42	13.96	
Well Vapor Flow- Minimum	scfm	11.78	13.36	21.40	13.68	13.36	

• The LNAPL thickness recorded at the start and conclusion of Event #13 is contained in the following table.

LNAPL Thickness Data Well VG-4						
Event Number		Event #13A	Event #13E			
Event Date		12/11/2023	12/15/2023			
Event Hours		24.0	4.0			
Event Start						
Depth to LNAPL	Ft BTOC	-	NM			
Depth to Groundwater	Ft BTOC	69.16	-			
LNAPL Thickness	ft	-	-			
Hydro Equivalent	Ft BTOC	69.16	NM			
Event Conclusion						
Depth to LNAPL	Ft BTOC	NM	NM			
Depth to Groundwater	Ft BTOC	-	-			
LNAPL Thickness	ft	-	-			
Hydro Equivalent	Ft BTOC	NM	NM			
NM- Not Measured			•			

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane and CO₂ in accordance with the manufacturer's specifications.

The formula used to calculate the emission rate is: ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E⁻⁷ (<u>min)(lb mole</u>) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide these services.

Sincerely, ACUVAC REMEDIATION, LLC

PryDaul

Paul D. Faucher President

Table #1 Summary Well Data

Event		13A	13B	13C	13D	13E
WELL NO.		VG-4	VG-4	VG-4	VG-4	VG-4
Current Event Hours		24.0	24.0	24.0	24.0	4.0
Total Event Hours		663.0	687.0	711.0	735.0	739.0
TD (estimated)	ft BGS	73.8	73.8	73.8	73.8	73.8
Well Screen	ft BGS	unknown	unknown	unknown	unknown	unknown
Well Size	in	4.0	4.0	4.0	40	4.0
Well Data						
Depth to LNAPL - Static - Start Event	ft BTOC	-	NM	NM	NM	NM
Depth to Groundwater - Static - Start Event	ft BTOC	69.16	NM	NM	NM	NM
LNAPL Thickness	ft	-	-		-	-
Hydro-Equivalent- Beginning	ft BTOC	69.16	-		-	-
Depth to LNAPL - End Event	ft BTOC	NM	NM	NM	NM	NM
Depth to Groundwater - End Event	ft BTOC	NM	NM	NM	NM	NM
LNAPL Thickness	ft	-	-		-	-
Hydro-Equivalent- Ending	ft BTOC	-	-		-	-
Extraction Data	-				•	
Maximum Extraction Well Vacuum	InH ₂ O	92.00	84.00	60.00	70.00	84.00
Average Extraction Well Vacuum	InH₂O	83.00	76.59	60.00	64.65	76.59
Minimum Extraction Well Vacuum	InH₂O	70.00	73.00	60.00	60.00	73.00
Maximum Extraction Well Vapor Flow	scfm	12.26	14.19	21.40	21.37	14.19
Average Extraction Well Vapor Flow	scfm	12.12	13.96	21.40	20.42	13.96
Minimum Extraction Well Vapor Flow	scfm	11.78	13.36	21.40	13.68	13.36
Influent Data						
Maximum TPH	ppmv	6,460	5,360	6,430	6,020	5,840
Average TPH	ppmv	5,911	4,998	6,151	5,713	5,703
Maximum TPH	ppmv	5,610	3,850	5,610	4,580	5,530
Initial TPH	ppmv	5,660	3,850	5,840	4,580	5,830
Final TPH	ppmv	5,610	5,310	6,270	5,810	5,840
Average PID	ppm	1,027	1,093	1,221	1,268	1,427
Average CO ₂	%	9.39	8.12	10.01	9.66	9.36
Average O ₂	%	6.4	7.3	4.0	4.2	4.4

.

Table #2 Summary Recovery Data

Event WELL NO.		13A	13B	13C	13D	13E
		VG-4	VG-4	VG-4	VG-4	VG-4
Recovery Data- Current Event					•	•
Total Liquid Volume Recovered	gals	-	-	-	-	-
Total Liquid LNAPL Recovered	gals	-	-	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-	-
Total Vapor LNAPL Recovered	gals	3.37	4.56	6.13	5.72	0.69
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	3.37	4.56	6.13	5.72	0.69
Average LNAPL Recovery	gals/hr	0.14	0.19	0.26	0.24	0.17
Total LNAPL Recovered	lbs	24	32	43	40	5
Total Volume of Well Vapors	cu. ft	5,818	6,701	10,272	9,802	3,350
Recovery Data- Cumulative						-
Total Liquid Volume Recovered	gals	27,394	27,394	27,394	27,394	27,394
Total Liquid LNAPL Recovered	gals	7.99	7.99	7.99	7.99	7.99
Total Vapor LNAPL Recovered	gals	83.34	87.89	94.03	99.74	100.43
Total Vapor and Liquid LNAPL Recovered	gals	91.32	95.88	102.01	107.73	108.42
Average LNAPL Recovery	gals/hr	0.14	0.14	0.14	0.15	0.15
Total LNAPL Recovered	lbs	2,140	2,171	2,214	2,254	2,259
Total Volume of Well Vapors	cu. ft	616,289	622,990	633,262	643,064	646,414

.

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2023 Annual Report February 7, 2024

APPENDIX F: MONITOR WELL CONSTUCTION AND LOCATIONS

PM Apppendix 2023 Montior Well Construction and Locations Vaccum Glorieta Lea County, New Mexico

Well ID	Date Installed	Latitude	Longitude	Screened Interval (ft bgs)	Total Depth (ft bgs)
VG-2	2/4/2004	32.798202	-103.444707	55 - 70	70
VG-3	2/5/2004	32.799435	-103.445218	55 - 70	70
VG-4	Unknown	32.798968	-103.446186	55 - 70	70
VG-5	12/10/2013	32.798493	-103.446157	60 - 75	75
VG-6	12/5/2013	32.799362	-103.446288	65 - 80	80
VG-7	12/4/2023	32.798988	-103.446540	65 - 80	80

Notes:

BTOC: Below Top of Casing

AMSL: Above Mean Sea Level

Vacuum Glorietta East Unit (1RP-744) Lea County, New Mexico 2023 Annual Report February 7, 2024

APPENDIX G: COOL-OX SAFETY DATA SHEET

Cool-Ox®

Salely Dala S							
Product Name:	$Cool-Ox^{\mathbb{R}}$ $Cool-Ox^{\mathbb{R}}$	is a registered trademark of DeepEarth Technologies, Inc.,					
Chemical Name:	Oxidizer all rights	s reserved.					
Chemical Family:	Peroxygens						
Trade Names:	$Cool-Ox^{\mathbb{R}}$						
Formulator:	DeepEarth Technologies, Inc.	Toll free: 1-877-Cool-Ox-1					
	8201 W. 183rd St., Suite C	Emergency: 1-312-909-3667					
	Tinley Park, IL 60487	1-800-695-4398					
SDS Number:	PB-01						
Issue Date:	January 2020						
Patented Product:	Formulation and use of this pr	roduct is protected under:					
	USPTO Patent # 6,843,618	USPTO Patent # 8,231,305					
	USPTO Patent # 9,475,106	USPTO Patent # 9,616,473					
	USPTO Patent # 10,040,105	USPTO Patent # 10,369,604					
	CAN Patent # 2684856	CAN Patent # 2776666					
	AUS Patent # 20122253381	AUS Patent # 20155271845					
	EP Patent # 2707154	EP Patent # 3192591					
	EF Fatent # 2707134	Er Falent # 5192391					
	Information on Ingredients						
Components:	Compound	CAS Number					
(as blended)	Calcium Peroxide	1305-79-9					
	EDTA	60-00-4					
	DTPA	67-43-6					
	EDDHA	1170-02-1					
3. Hazards Ident	ification						
Emergency Overvie		th combustibles may under extreme circumstances, cause					
8-1/		lecomposes, releasing oxygen that may intensify the fire.					
	,						
Potential Health Ef	fects: Irritating to the mucou	is membrane and eyes. If product contacts eyes and face,					
	e	treat eyes first. Submerge contaminated clothing in water prior to drying. Do					
	not dry near open flam						
Inhalation:	At high concentrations	At high concentrations, slight nose and throat irritation with cough. In case of					
		exposure, there is a risk of sore throat and nose bleeds.					
	ishanna si hisingan						
Eye contact:	Eye contact: Severe eye irritation with watering and redness. Risk of serious or per						
	eye lesions.						
	- , • 10010110.						
Skin contact:	In case of prolonged c	ontact: irritation.					
Ingestion:	Irritation of the mouth	and throat with nausea and vomiting.					
4. First-Aid Mea		······································					
		om ductu anvironment. Consult with a physician in case					
Inhalation:	•	om dusty environment. Consult with a physician in case					
	of respiratory symptor	ns.					

Safety Data Sheet

1

•

	Cool-Ox [®]
Eye contact:	Flush eyes with running water for 15 minutes, while keeping the eyelids wide open. Consult with ophthalmologist in all cases.
Skin contact:	Wash the affected skin with running water. Remove and clean clothing. Consult with a physician in case of persistent pain or redness.
Ingestion:	If the victim is conscious, rinse mouth and administer fresh water. DO NOT induce vomiting. Consult a physician in all cases.
5. Fire-Fighting Measu	
Flash point:	Not applicable
Flammability:	Not applicable
Auto-flammability:	Not applicable
Danger of explosion:	Non-explosive
Common extinguishing methods:	Large quantities of water, water spray. In case of fire in close proximity, all means of extinguishing are acceptable.
Inappropriate extinguishir methods:	ng No restriction.
Special precautions:	Evacuate all non-essential personnel. Intervention only by capable personnel who
	are trained and aware of the hazards of the product. If safe to do so, remove unaffected product to a safe area.
Specific hazards:	Oxidizing substance. Oxygen released on exothermic decomposition may support combustion in case of surrounding fire. Pressure burst may occur due to decomposition in confined spaces/containers. Contact with flammables may cause fire or explosion.
Firefighting instructions:	Personnel should wear full bunker gear and positive-pressure, self-contained breathing apparatus. Apply cooling water to sides of transport or storage vessels that are exposed to flames until fire is out. Do not approach hot vessels containing product.
6. Accidental Release M	<i>Measures</i>
Precautions:	Observe the protection measures given in Sections 5 and 8. Avoid materials and products which are incompatible with the product (see Section 10). Avoid direct contact of the product with water. Immediately notify the appropriate authorities in case of reportable discharge.
Cleanup methods:	Collect the product with a means suitable to avoid dust formation. All the receiving equipment should be clean, vented, dry, labeled and made of material that is compatible with the product. Because of the contamination risk, the collected material should be isolated in a safe place. Clean the area with large quantities of water. For disposal methods, refer to Section 13.

•

Cool-Ox®

7. Handling and Storage						
Handling:	Clean and dry process piping and equipment before any operation. Never return unused product to storage container. Keep away from incompatible products.					
	Containers and equipment used to handle this product should be used					
	exclusively for this material. Avoid any contact with water or humidity.					
Storage:	Store in a dry area, protected from heat sources and direct sunlight.					
Other precautions:	Warn personnel about the dangers of the product.					
8. Exposure Controls/						
Engineering controls:	Provide ventilation in work areas to keep dust below the following applicable limits:					
ACGIH TM TLV TM (5 mg/m ³ TWA	1996) OSHA PEL NIOSH REL (1994) Total dust - 15 mg/m ³ TWA 5 mg/m ³ TWA Respirable fraction - 5 mg/m ³ TWA					
ACGIH TM and TLV TM are r Hygienists.	egistered trademarks of the American Conference of Governmental Industrial					
Eye/face protection:	Dust proof chemical goggles.					
Hand protection:	Impervious protective gloves made of nitrile, natural rubber, or neoprene.					
Skin protection:	For brief contact, few precautions other than clean body-covering, clothing should be needed. When prolonged or frequently repeated contact could occur, use protective, full body clothing impervious to this material.					
Respiratory protection:	For many conditions, no respiratory protection may be needed; however, in dusty or unknown atmospheres use a NIOSH approved dust respirator.					
Other precautions:	Safety shower and eyewash stations. Consult your industrial hygienist or safety manager for the selection of personal protective equipment suitable for the working conditions.					
9. Physical and Chemi	cal Properties					
Appearance:	White to pale amber powder					
Odor:	Odorless					
pH:	7 - 9 (saturated solution)					
Melting Point:	$527 ^{\circ}\text{F} (275 ^{\circ}\text{C})$ - Decomposes					
Vapor Pressure: Vapor Density:	Not applicable					
Boiling point:	Not applicable					
Bulk Density:	Not applicable 0.5 - 0.65 g/mL (Loose Method)					
Solubility in Water:	Moderate					
10. Stability and React	ivity					
Chemical Stability:	Stable under certain conditions (see below).					

•

	Cool-Ox®
Conditions to avoid:	Heat and moisture
Materials to avoid:	Water, Acids, Bases, Salts of heavy metals, Reducing agents, Organic materials, Flammable substances
-	Oxygen, hydrogen peroxide, steam and heat.
products: Hazardous polymerization	· Does not occur
11. Toxicological Infor	
Acute toxicity:	Oral route, LD ₅₀ , rat, 7340 mg/kg
Chronic toxicity:	No data
Irritation:	Rabbit (eyes), severe irritant
Sensitization:	No data
Target Organ Effects:	Eyes and respiratory passages.
12. Ecological Information	
Acute ecotoxicity:	Fish, Cyprinus carpio, 48 hours, LC ₅₀ , 25.6 mg/L
Chronic ecotoxicity:	No data
Mobility:	Low solubility and mobility.
Abiotic degradation:	Air - Not applicable
Ablotic degradation.	Water - Slow hydrolysis
	Water/Soil - Complexation/precipitation Carbonates/phosphates present at environmental concentrations. Degradation products: carbonates/phosphates sparingly soluble.
Biotic degradation:	Not applicable
Potential for bioaccumulation:	Not applicable
Comments:	Observed effects are related to alkaline properties of the product. Hazard to the environment is limited due to the product propertiesa) No bioaccumulation.b) Weak solubility and precipitation as carbonate or phosphate in aquatic
	environment.
13 Disposal Consider	c) rapid neutralization at environmental pH.
13. Disposal Considera	
Waste Disposal Method:	Consult current federal, state and local regulations regarding the proper disposal of this material and its emptied containers.
14. Transport Informat	
D.O.T. Proper Shipping Na	ame: Oxidizing substances, solid, n.o.s.
UN Number:	UN 1479
Hazard Class:	5.1
Label(s):	5.1 (Oxidizer)
Packing Group:	III
STCC Number:	4918717 Emergency Response Guide #: 140

	Cool-Ox [®]
15. Regulatory Information	
TSCA Inventory List:	Not Listed
CERCLA Hazardous Substance (40 CFR Part 3	302)
Listed substance:	No
Unlisted substance:	
Reportable Quantity (RQ)	
	Ignitability
	D001
Right-To-Know) Extremely hazardous substance: WHMIS Classification: C Mater	Eye and skin irritant ity: Not Listed 70- Hazardous Chemical Reporting: Community No Oxidizing Material ial Causing Other Toxic Effects - Eye and skin irritant
	l, DSL/NDSL Record number - 3929 <i>ith the hazard criteria of the CPR and the SDS contains</i>
16. Other Information	
HMIS TM Rating: Health - 2FlammabilityHMIS TM is a registered trademark of the National I	- 0 Reactivity - 1 PPE - Required Paint and Coating Association.
NFPATM Rating: Health - 2 Flammability NFPA TM is a registered trademark of the National 1	

Disclaimer

The information contained in this document is believed to be true and correct. However, the formulator makes no warranty, either expressed or implied, as to its authenticity, accuracy or to the use of this product and this document is subject to change or revision without prior notice.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 316693

CONDITIONS					
Operator:	OGRID:				
Maverick Permian LLC	331199				
1000 Main Street, Suite 2900	Action Number:				
Houston, TX 77002	316693				
	Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)				

CON	DITIC	ONS

Created By	Condition	Condition Date
michael.buchanan	Review of the 2023 Annual Report for Vacuum Glorietta East Unit, 1RP-744: content satisfactory 1. Continue gauging and groundwater monitoring events on a semi-annual schedule as planned. 2. Introduce a gravity fed Cool-Ox injection (ISCO) into BG-4 in order to expedite degradation of PSH. 3. Maverick may discontinue SVE remediation in replacement for the ISCO Cool-Ox injections. 4. Submit the 2024 Annual Report to OCD via the online portal by April 1, 2025.	7/16/2024