March 16

Order No. 1RP-313 2021 Semi-Annual Groundwater Monitoring Report (June – December) Northeast Drinkard Unit #829, #830, #922, #928 and #929 Lea County, New Mexico

Prepared for:

Apache Corporation 2350 West Marland Blvd. Hobbs, New Mexico 88240

Prepared by:

\Lambda arson & 🖻 ssociates, Inc.

507 N. Marienfeld Street, Suite 202 Midland, Texas 79701 (432)687-0901

Mark J Larson Texas Professional Geologist #4469

Jeremy Reich Environmental Technician

19-0112-22

This Page Intentionally Left Blank

1st Quarter Groundwater Monitoring Report North Monument G/SA Unit #2102 Lea County, New Mexico March 31, 2021

Table of Contents

1.0 EXECUTIVE SUMMARY	1
2.0 INTRODUCTON	
2.1 Background	3
3.0 GROUNDWATER INVESTIGATION	
3.1 Monitoring Well Installation	
4.0 GROUNDWATER MONITORING	4
4.1 Depth to Groundwater and Groundwater Potentiometric Surface Elevation	4
4.2 Groundwater Samples and Analysis	
4.2.1 Organic Analysis	5
4.2.2 Inorganic Analysis	5
4.2.2.1 Chloride	5
4.2.2.2 TDS	6
5.0 CONCLUSIONS	6
6.0 RECOMMENDATIONS	7

List of Tables

Table 1	Monitor Well Completion and Gauging Summary
Table 2	Groundwater Analytical Data Summary

List of Figures

Figure 1	Topographic Map
Figure 2	Aerial Map
Figure 3	Site Map
Figure 4a	Groundwater Potentiometric Map, June 1, 2021
Figure 4b	Groundwater Potentiometric Map, November 8, 2021
Figure 5a	Chloride Concentration in Groundwater, June 1, 2021
Figure 5b	Chloride Concentration in Groundwater, November 8, 2021
Figure 6a	TDS Concentration in Groundwater, June 1, 2021
Figure 6b	TDS Concentration in Groundwater, November 8, 2021

List of Appendices

Appendix A	NMOCD Communications
Appendix A	Monitoring Well Completion Records
Appendix B	Laboratory Report

1.0 EXECUTIVE SUMMARY

Larson & Associates, Inc. (LAI) has prepared this 2021 semi-annual groundwater monitoring report for the Northeast Drinkard Unit (NEDU) #829, 830, 922, 928, and 929 (Sites) located in Lea County, New Mexico. The report is prepared on behalf of Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (NMOCD) District 1 in Hobbs and Santa Fe, New Mexico. This semi-annual report presents field and laboratory analysis of groundwater samples collected from four (4) groundwater monitoring wells (MW-1, MW-2, MW-3, and MW-4) during the third (3rd) quarter (July 29, 2021) and fourth (4th) quarter (November 8, 2021). The Sites are located in Section 22, Township 21 South, Range 37 East, in Lea County, New Mexico.

The following observations are documented in the report:

- The apparent groundwater flow direction was from west to east at a gradient of approximately 0.01 ft/ft, on July 29-30, 2021, and November 8, 2021.
- BTEX concentrations were below the analytical method RL and New Mexico WQCC human health standards in groundwater samples from monitoring wells MW-1, MW-3, and MW-4 on July 29-30, 2021.
- The benzene concentration in the sample from monitoring well MW-2 (0.0391 mg/L) was above the WQCC human health standard of 0.005 mg/L, on July 29, 2021.
- BTEX concentration were below the RL and WQCC human health standards in all wells on November 8, 2021.
- The chloride concentration in the samples from monitoring wells MW-1 (446 mg/L), MW-2 (268 mg/L), and MW-4 (559 mg/L) was above the WQCC domestic water quality standard of 250 mg/L, on July 29-30, 2021.
- The chloride concentration in the sample from monitoring well MW-3 (128 mg/L) was below the WQCC domestic water quality standard of 250 mg/L, on July 29-30, 2021.
- The TDS concentration was below the WQCC domestic water quality standard of 1000 mg/L in groundwater samples from monitoring well MW-3 (663 mg/L), on July 29-30, 2021, and in samples from monitoring wells MW-3 (644 mg/L) and MW-4 (832 mg/K) on November 8, 2021.
- TDS concentrations in the groundwater samples from wells MW-1 (2,510 mg/L), MW-2 (1,170 mg/L), and MW-4 (1,030 mg/L) were above the WQCC domestic water quality standard (1,000 mg/L) on July 29 30, 2021.
- TDS concentrations in the groundwater samples from wells MW-1 (2,490 mg/L) and MW-2 (1,100 mg/L) were above the WQCC domestic water quality standard (1,000 mg/L) on November 8, 2021.

Apache proposes the following:

- Continue groundwater monitoring on a quarterly (4 times per year) schedule.
- Gauge all monitoring wells for depth to groundwater and collect groundwater samples from monitoring wells with sufficient groundwater during each quarterly event.
- Analyze samples for BTEX, TDS and chloride.
- Report the laboratory results to NMOCD in quarterly reports, unless significant changes in analyte concentrations are detected, at which time Apache will immediately report the results to NMOCD.

• Apache will provide notice to the NMOCD in Hobbs and Santa Fe, New Mexico, at least 7 working days prior to each monitoring event.

2.0 INTRODUCTON

Larson & Associates, Inc. (LAI) has prepared this report on behalf of Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (NMOCD) District 1 in and Hobbs and Santa Fe, New Mexico. This report presents 2021 semi-annual groundwater monitoring results for the third (3rd) quarter on July 29, 2021, and fourth (4th) quarter on November 8, 2021. During each quarterly event groundwater samples were collected from four (4) monitor wells (MW-1 through MW-4) at the Northeast Drinkard Unit (NEDU) #829, 830, 922, 928, and 929 (Sites) located in Lea County, New Mexico. The legal description is Section 22, Township 21 South, Range 37 East. The geodetic coordinates are as follows:

Site	North (°)	West (°)		
NEDU #829	32.462947	-103.151539		
NEDU #830	32.463967	-103.155761		
NEDU #922	32.457803	-103.151181		
NEDU #928	32.458019	-103.155831		
NEDU #929	32.458022	-103.151450		

Figure 1 presents a topographic map. Figure 2 presents an aerial map.

2.1 Background

On April 6, 2001, the landowner reported to NMOCD that drilling pits were being closed by disposing pit fluid in an open trench excavated adjacent to the pit. Apache was notified and submitted the initial C-141 on April 23, 2001. NMOCD assigned the trenches remediation permit 1RP-313.

On April 23, 2001, Apache submitted a work plan for the remediating the trenches which OCD approved on May 8, 2001. The work plan stated that the trenches at wells #829, #830 and #929 would be excavated to approximately 19 feet bgs and to approximately 13 feet bgs at #928. There is no evidence that the trench at #922 was excavated. An Apache contractor collected bottom and composite samples from the excavations and reported chloride above the remediation closure limits in effect at that time from all excavations. Total petroleum hydrocarbons (TPH) were reported above the NMOCD closure limits in the excavation at #928. No documentation is available in the OCD online files to confirm the remediation.

On October 31, 2019, LAI prepared an administrative summary and path forward that Apache submitted to the NMOCD. The plan requested approval for a variance to excavate soil to a depth of approximately four (4) feet below ground surface (bgs) at each trench and install a 20-mil polyethylene liner in the bottom of the excavations. Additionally, Apache committed to installing a monitoring well hydraulically down gradient (east - southeast) approximately 50 feet from each trench except EBDU #829 where chloride was delineated vertically and horizontally to 600 milligrams per kilogram (mg/Kg). On May 19, 2021, NMOCD approved the administrative summary and path forward for remediation but stated that "preapproval for monitor well locations on map before installation" was required. On July 14, 2021, NMOCD approved the monitor well locations. Appendix A presents the NMOCD correspondence.

3.0 GROUNDWATER INVESTIGATION

3.1 Monitoring Well Installation

On July 19 - 20, 2021, Scarborough Drilling, Inc. (SDI) under the supervision of LAI, installed the monitoring wells utilizing an air rotary drilling rig. Five (5) inch diameter borings were advanced between about 65 and 76 feet bgs. The monitoring wells were completed at depths of approximately 74.08, 74.86, 65.35 and 76.01 feet bgs, respectively. The monitoring wells were constructed with 2-inch schedule 40 threaded PVC casing and 20 feet of 0.010-inch factory slotted screen was positioned above and below the groundwater level observed during drilling. Graded silica sand is placed around the well screens to about 2 feet above the screen. Sodium bentonite chips extend around the PVC riser and above the sand to about 1-foot bgs. The wells are secured with locking steel sleeves anchored in concrete. West Company, a State of New Mexico licensed Professional Land Surveyor (License Number 23263) surveyed the monitoring wells for location and elevation including top of casing and natural ground surface. Figure 3a through Figure 3d present Site drawings showing the monitoring well locations. Table 1 presents the monitoring well completion records.

On July 27-30, 2021, LAI personnel developed the wells by pumping with an electric submersible pump to remove sediment disturbed drilling and well installation. Approximately 40 gallons of water was removed from each well and placed in 55-gallon drums for disposal.

4.0 GROUNDWATER MONITORING

4.1 Depth to Groundwater and Groundwater Potentiometric Surface Elevation

On July 29, 2021, LAI personnel gauged monitoring wells MW-1, MW-2, MW-3, and MW-4 for depth to groundwater. Groundwater was gauged at 57.40 feet TOC (MW-1), 54.81 feet TOC (MW-2), 53.55 feet TOC (MW-3) and 44.38 feet TOC (MW-4). On July 29, 2021, the groundwater potentiometric surface elevation ranged from 3,370.64 feet above mean sea level (MSL) at MW-4 (EBDU #830) to 3,355.77 feet above MSL at MW-3 (EBDU #929). The apparent groundwater flow direction was from west to east at a gradient of approximately 0.010 feet per foot (ft/ft). Figure 4a presents the groundwater potentiometric surface map for July 29, 2021.

On November 8, 2021, LAI personnel gauged monitoring wells MW-1, MW-2, MW-3, and MW-4 for depth to groundwater. Groundwater was gauged at 3,359.98 feet TOC (MW-1), 3,356.75 feet TOC (MW-2), 3,355.49 feet TOC (MW-3) and 3,371.58 feet TOC (MW-4). The groundwater potentiometric surface elevation ranged from 3,371.58 feet 68.22 above MSL at MW-4 (EBDU #830) to 3,355.49 feet above MSL at MW-2 (EBDU #929). The apparent groundwater flow direction is from west to east a gradient of approximately 0.010 ft/ft. Figure 4b presents the groundwater potentiometric surface map for November 8, 2021.

4.2 Groundwater Samples and Analysis

Groundwater samples were collected from the monitoring wells (MW-1, MW-2, MW-3, and MW-4), during quarterly sampling events on July 29-30, 2021 (Q/3), and November 8, 2021 (Q/4). LAI personnel used the low stress or low flow method following EPA protocol (EQASOP-GW4, Revision 4, September 19,

2017) to collect groundwater samples. A stainless-steel environmental pump was lowered into the well near the middle of the water column and the well was pumped at a low rate until environmental parameters stabilized. Groundwater samples were collected in labeled laboratory containers from the of the dedicated Tygon[®] tubing after chemical parameters stabilized. The Tygon[®] tubing was discarded after each use and the pump was thoroughly cleaned with a solution of potable water and laboratory grade detergent (Alconox[®]) and rinsed with distilled water. The samples were transferred to, packed with ice in an ice chest, and delivered under chain of custody control to Eurofins Xenco Laboratory (Xenco), a National Environmental Laboratory Accreditation Conference (NELAC) accredited laboratory quality assurance and quality control (QA/QC). Xenco analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX) according to EPA SW-846 Method SW-8260D, chloride by EPA Method 300, and total dissolved solids (TDS) by EPA Method SM 2540C. Table 2 presents the laboratory analytical summary. Appendix C presents the laboratory reports.

4.2.1 Organic Analysis

Total BTEX concentrations were below the laboratory analytical reporting limit (RL) and New Mexico Water Quality Control Commission (WQCC) human health standards in groundwater samples collected from monitoring wells MW-1, MW-3, and MW-4, on July 29 - 30, 2021. The laboratory reported benzene above the WQCC human health standard of 0.005 milligrams per liter (mg/L) in the sample from monitoring well MW-2 (0.0391 mg/L) on July 29 - 30, 2021. Monitoring well MW-2 is located hydraulically downgradient from the pit at EBDU #922.

Total BTEX concentrations were below the laboratory analytical reporting limit (RL) and New Mexico Water Quality Control Commission (WQCC) human health standards in all groundwater samples collected from monitoring wells MW-1, MW-2, MW-3, and MW-4, on November 8, 2021.

4.2.2 Inorganic Analysis

4.2.2.1 Chloride

On July 29 – 30, 2021, chloride was reported below the WQCC domestic water quality standard (250 mg/L) in the sample from monitoring well MW-3 (128 mg/L). Chloride was reported above the WQCC domestic water quality standard in samples from monitoring wells MW-1 (446 mg/L), MW-2 (268 mg/L), and MW-4 (559 mg/L). The chloride concentration in the duplicate (QA/QC) sample collected from MW-2 (Dup-1) was 244 mg/L and within 1.1 percent of the original chloride value (268 mg/L) for MW-2. The chloride concentration in the duplicate (Dup-2) collected from MW-4 was 235 mg/L and within 2.4 percent of the original chloride value (559 mg/L) for MW-2. Figure 5a presents the chloride concentrations in groundwater samples from July 29 - 30, 2021.

On November 8, 2021, chloride was reported below the WQCC domestic water quality standard (250 mg/L) in samples from monitoring well MW-3 (114 mg/L) and MW-4 (182 mg/L). Chloride was reported above the WQCC domestic water quality standard in samples from monitoring wells MW-1 (1,250 mg/L) and MW-2 (253 mg/L). The chloride concentration in the duplicate (QA/QC) sample (Dup-1) collected from MW-2 was 270 mg/L and within 3.28 percent of the original chloride value (279 mg/L) for MW-2. Figure 5b presents the chloride concentrations in groundwater map for November 8, 2021.

4.2.2.2 TDS

On July 29 – 30, 2021, the laboratory reported TDS concentrations of 2,510 mg/L (MW-1), 1,170 mg/L (MW-2), 663 mg/L (MW-3) and 1,030 mg/L (MW-4). The TDS concentrations except MW-3 were above the WQCC domestic water quality standard (1,000 mg/L) The TDS concentration from monitoring well MW-3 (663 mg/L), was below the WQCC domestic water quality standard (1,000 mg/L). The TDS concentration in the duplicate samples were 1,160 mg/L (Dup-1) and 1,130 mg/L (DUP-2) from MW-2 and MW-4, respectively, were consistent with original TDS values for MW-2 (1,170 mg/L) and MW-4 (1,130 mg/L). The TDS concentration in the duplicate sample from MW-2 (Dup-1) was 1,160 mg/L and within 1.0 percent of the original chloride value (1,170 mg/L) for MW-2. Figure 6a presents the TDS concentrations in groundwater map for July 29-30, 2021.

On November 8, 2022, TDS concentrations were below the WQCC domestic water quality standard of 1,000 mg/L in groundwater samples from MW-3 (644 mg/L) and MW-4 (832 mg/L). The TDS concentrations for monitoring wells MW-1 and MW-2 were above the WQCC domestic water quality standard (1,000 mg/L) at 2,490 and 1,100 mg/L respectively. The TDS concentration in the duplicate (QA/QC) sample Dup-1 (1,100 mg/L) from MW-2 was consistent with original TDS values for MW-2 (1,100 mg/L). The TDS concentration in the duplicate (QA/QC) sample Dup-1 (1,100 mg/L) from MW-2 was consistent with original TDS values for MW-2 (1,100 mg/L). The TDS concentration in the duplicate (QA/QC) sample (Dup-1) collected from MW-2 was 1,100 mg/L and within 1.0 percent of the original chloride value (1,100 mg/L) for MW-2. Figure 6b presents the TDS concentrations in groundwater map for November 8, 2021.

5.0 CONCLUSIONS

The following observations are documented in this report:

- The apparent groundwater flow direction was from west to east at a gradient of approximately 0.01 ft/ft, on July 29 30, 2021, and November 8, 2021.
- BTEX concentrations were below the analytical method RL and New Mexico WQCC human health standards in groundwater samples from monitoring wells MW-1, MW-3, and MW-4 on July 29-30, 2021.
- The benzene concentration in the sample from monitoring well MW-2 (0.0391 mg/L) was above the WQCC human health standard of 0.005 mg/L, on July 29, 2021.
- BTEX concentration were below the RL and WQCC human health standards in all wells on November 8, 2021.
- The chloride concentration in the samples from monitoring wells MW-1 (446 mg/L), MW-2 (268 mg/L), and MW-4 (559 mg/L) was above the WQCC domestic water quality standard of 250 mg/L, on July 29-30, 2021.
- The chloride concentration in the sample from monitoring well MW-3 (128 mg/L) was below the WQCC domestic water quality standard of 250 mg/L, on July 29 30, 2021.
- The TDS concentration was below the WQCC domestic water quality standard of 1000 mg/L in groundwater samples from monitoring well MW-3 (663 mg/L), on July 29 30, 2021, and in samples from monitoring wells MW-3 (644 mg/L) and MW-4 (832 mg/K) on November 8, 2021.
- TDS concentrations in the groundwater samples from wells MW-1 (2,510 mg/L), MW-2 (1,170 mg/L), and MW-4 (1,030 mg/L) were above the WQCC domestic water quality standard (1,000 mg/L) on July 29 30, 2021.

• TDS concentrations in the groundwater samples from wells MW-1 (2,490 mg/L) and MW-2 (1,100 mg/L) were above the WQCC domestic water quality standard (1,000 mg/L) on November 8, 2021.

6.0 RECOMMENDATIONS

Apache proposes the following:

- Continue groundwater monitoring on a quarterly (4 times per year).
- Gauge each well (MW-1 through MW-4) for depth to groundwater and collect groundwater samples from monitoring wells with sufficient groundwater during each quarterly event.
- Report the laboratory results to NMOCD in quarterly reports, unless significant changes in analyte concentrations are detected, at which time Apache will immediately report the results to NMOCD.
- Apache will provide notice to the NMOCD in Hobbs and Santa Fe, New Mexico, at least 7 working days prior to each monitoring event.

Tables

Table 1 1RP-313

Monitoring Well Completion and Gauging Summary Apache Corportaion, NEDU Drill Pits Lea County, New Mexico

	Well Information								Groundwater Data				
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (Inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (Feet TOC)	Depth to Water (Feet BGS)	Water Column Height (Feet)	Groundwater Elevation (Feet AMSL)
MW-1	07/19/2021	74.08	71.08	2	3417.34	70.85-50.85	3.00	3,417.34	07/29/2021	57.40	54.40	16.68	3,359.94
									11/08/2021	57.40	54.40	16.68	3,359.94
									03/02/2022	57.36	54.36	16.72	3,359.98
MW-2	07/19/2021	74.86	71.86	2	3408.43	71.68-51.68	3.00	3,411.66	07/29/2021	54.81	51.81	20.05	3,356.85
									11/08/2021	54.85	51.85	20.01	3,356.81
									03/02/2022	54.91	51.91	19.95	3,356.75
MW-3	07/20/2021	65.35	62.75	2	3406.01	65.15-45.15	2.60	3,409.32	07/29/2021	53.55	50.95	11.80	3,355.77
									11/08/2021	53.67	51.07	9.68	3,357.99
									03/02/2022	53.83	51.23	11.52	3,355.49
MW-4	07/20/2021	76.01	72.93	2	3412.51	75.81-55.81	3.08	3,415.02	07/30/2021	44.38	41.30	31.63	3,370.64
									11/08/2021	43.44	40.36	32.57	3,368.22
									03/02/2022	43.44	40.36	32.57	3,371.58

Notes: monitoring wells installed by Environ-Drill, Albuquerque, New Mexico with 2 inch schedule 40 PVC casing and screen

bgs: below ground surface

TOC: top of casing

AMSL: denotes elevation in feet above mean sea level

Table 2 Groundwater Sample Analytical Data Summary Apache Corporation, NEDU #830, 922, 928, and 929 Lea County, New Mexico

Sample	Collection Date	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (mg/L)	Chloride (mg/L)	TDS (mg/L)
NMWQCC Standard:		*0.005	* 1	*0.7	*0.62	**250	**1,000
MW-1	7/29/2021	<0.00200	<0.00200	<0.00200	<0.00400	446	2,510
(NEDU #830)	11/8/2021	<0.00200	<0.00200	<0.00200	<0.00400	1,270	2,490
	3/2/2022	<0.00200	<0.00200	<0.00200	<0.00400	1,250	2,500
MW-2	7/29/2021	0.0391	<0.00200	<0.00219	<0.00400	268	1,170
(NEDU #922)	11/8/2021	<0.00200	<0.00200	<0.00200	<0.00400	279	1,100
	3/2/2022	M0.00200	M0.00200	M0.00200	M0.00400	253	1,110
MW-3	7/29/2021	0.00407	<0.00200	<0.00200	<0.00400	128	663
(NEDU #929)	11/8/2021	<0.00200	<0.00200	<0.00200	<0.00400	122	644
	3/2/2022	<0.00200	<0.00200	<0.00200	<0.00400	114	664
MW-4	7/30/2021	<0.00200	<0.00200	<0.00200	<0.00400	559	1,030
(NEDU #928)	11/8/2021	<0.00200	<0.00200	<0.00200	<0.00400	203	832
	3/2/2022	<0.00200	<0.00200	<0.00200	<0.00400	182	836
Dup-1 (MW-2)	7/29/2021	<0.00200	<0.00200	<0.00200	<0.00400	244	1,160
	11/8/2021	<0.00200	<0.00200	<0.00200	<0.00400	270	1,100
	3/2/2022	<0.00200	<0.00200	<0.00200	<0.00400	268	1,090
Dup-2 (MW-4)	7/30/2021	<0.00200	<0.00200	<0.00200	<0.00400	235	1,030

Notes:

analysis performed by Xenco Laboratories, Midland, Texas by EPA SW-846 Method 8021B (BTEX) and Method 300 (chloride)

All values reported in milligrams per liter (mg/L) equivalent to parts per million (ppm)

< values - denotes concentration is less than method reporting limit (RL).

* - NMWQCC human health standard

** - NMWQCC domestic water quality standard

BGS - below ground surface

Figures

Figure 1 - Topographic Map

Figure 2 - Aerial Map

Figure 3b - Aerial Map Showing NEDU 830

Figure 3c - Aerial Map Showing NEDU 922

Figure 3d - Aerial Map Showing NEDU 928

Figure 3e - Aerial Map Showing NEDU 929

Figure 4a - Groundwater Potentiometric Map, July 29 -30, 2021

Figure 4b - Groundwater Potentiometric Map, November 8, 2021

Figure 5a - TDS Concentration in Groundwater, July 29 -30, 2021

Figure 5b - TDS Concentration in Groundwater, November 8, 2021

Figure 6a - Chloride Concentration in Groundwater, July 29 -30, 2021

Figure 6b - Chloride Concentration in Groundwater, November 8, 2021

Appendix A

NMOCD Communications

From:	Baker, Larry
То:	Robert Nelson
Subject:	FW: [EXTERNAL] The Oil Conservation Division (OCD) has approved the application, Application ID: 10932
Date:	Tuesday, July 13, 2021 3:24:03 PM

From: OCDOnline@state.nm.us [mailto:OCDOnline@state.nm.us]
Sent: Thursday, May 13, 2021 3:00 PM
To: Baker, Larry <Larry.Baker@apachecorp.com>
Subject: [EXTERNAL] The Oil Conservation Division (OCD) has approved the application, Application ID: 10932

To whom it may concern (c/o Larry Baker for APACHE CORPORATION),

The OCD has approved the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nRM2031146817, with the following conditions:

• Using new Rule make sure sidewall data and bottom data are correct. Requested variances for excavation and liner are approved. Get pre-approval for Monitor Well locations on map before installations.

The signed C-141 can be found in the OCD Online: Imaging under the incident ID (n#).

If you have any questions regarding this application, please contact me.

Thank you, Bradford Billings Hydrologist/E.Spec.A 505-670-6549 bradford.billings@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

WARNING EXTERNAL EMAIL: This email is from an external source. Do not click links or open attachments without positive sender verification of purpose. Never enter Username, Password or sensitive information on linked pages from this email. If you are unsure about the message, please contact the Apache IT ServiceDesk for assistance.

From: To:	<u>Billings, Bradford, EMNRD</u> Robert Nelson
Cc:	Mark Larson; Baker, Larry
Subject:	RE: Apache Corp. (1RP-0313/nRM2031146817) Monitor Well Location Approval
Date:	Wednesday, July 14, 2021 12:13:08 PM
Attachments:	image001.png

07/14/2021

Hello,

Locations as indicated in attached PDF's are APPROVED. Question, one might consider some soil samples for same analytes, at least in the vicinity of anticipated/encountered groundwater. Thank you for your efforts.

Sincerely,

Bradford Billings EMNRD/OCD

From: Robert Nelson <rnelson@laenvironmental.com>
Sent: Wednesday, July 14, 2021 7:12 AM
To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>
Cc: Mark Larson <Mark@laenvironmental.com>; Baker, Larry <Larry.Baker@apachecorp.com>
Subject: Apache Corp. (1RP-0313/nRM2031146817) Monitor Well Location Approval

Hello Bradford,

On October 31, 2019, Larson & Associates, Inc. (LAI) submitted a summary of work and path forward for remediation and closure of trenches associated with drillings pits at the Northeast Drinkard Unit (NEDU) Wells 829, 830, 922, 928, & 929 (1RP-0313). The trenches were discovered on April 6, 2001 when a landowner reported the drilling pits were being closed by disposing pit fluid in trenches adjacent to the drilling pits. Apache was notified and submitted the initial C-141 on April 23, 2001. OCD assigned the wells (trenches) remediation permit 1RP-313. On May 13, 2021, Apache received notification from OCD with approval for the submitted application for administrative approval of a release notification and corrective action (C-141), for incident ID (n#) nRM2031146817. OCD stated " Using new Rule make sure sidewall data and bottom data are correct. Requested variance for excavation and liner are approved. Get pre- approval for Monitor Well locations on map before installations".

The summary of work and path forward stated that monitor wells be installed approximately 50 feet hydraulically down gradient (east-southeast) from the trenches and complete with 15 feet of 2-inch schedule 40 screen to gauge depth to groundwater and collect groundwater samples for laboratory analysis (BTEX, chloride and total dissolved solids (TDS)). Please find attached the topographic map and proposed monitor well locations. The drilling rig is currently scheduled to complete the

installation of these monitor wells on Tuesday – Thursday (July 20th through July 22nd, 2021). Your approval of these monitor well locations is requested and greatly appreciated. Please feel free to contact Bruce Baker with Apache at (432) 631-6982 or <u>Larry.Baker@apache.com</u>, Mark Larson at (432) 687-0901 or <u>mark@laenvironmental.com</u> or me if you have any questions.

Thank you,

Robert Nelson Sr. Geologist Office – 432-687-0901 Cell – 432-664-4804 <u>rnelson@laenvironmental.com</u>

Appendix B

Monitoring Well Completion Records

			BORING	RECORD		
		Start: 10:49 MST	DESCRIPTION USCS	00	Surface Elevation: TOC Elecation:	REMARKS
GEOLOGIC	DEPTH	Finish: 12:37	CS	GRAPHIC LOG	Vented Cap	
UNIT		DESCRIPTION LITHOLOGIC	SCR	Hd	Riser	
		Deserti non ennoeogie	DĔ	GR/	Bentonite	
	0	Sand, 10YR 5/6, Yellowish		· · · ·		
		Brown, Fine Grained Quartz	SW			
	5 _	Sand, Well Sorted, Dry				-
		Silty Sand, 10YR 5/6, Yellowish	SM			
	10 -	Brown, Fine Grained Quartz Sand, Well Sorted, Dry				
	-	Sand, 7.5YR 7/6, Reddish	/			
	15					
		Sand, Dry, Poorly Sorted				
	20					
	-					
	25 -	Sand, 7.5YR 7/6, Reddish	SW			
		Brown, Fine Grained Quartz		···· ·		
	30 -	Sand, Dry, 4.75mm Clasts,				
		Poorly Sorted				
	25			· · · · · · · ·		
	35 —					
	40 -	Silty Sand, 7.5YR 8/6, Pink,				
		Well Sorted, Fine Grained				
	45 –	Quartz Sand, Dry				
		10 YR 7/6, Yellowish Brown, Fine Grained Quartz Sand, Well				
	50 -	Sorted Dry				
		10 YR 7/6, Yellowish Brown,				
	55 -	Moderately Sorted, 2mm	SM		Graded	
—		Quartz Clasts, Dry			57.88 Silica Sand	
57.88 Depth to		Water Injected at 55'			to Water 2" Sch. 40 PVC	
Water	60 -				Threaded	
					Slotted	
	65 _				Screw	
	70 —	TD: 71 00'			70.85 Cap	
]	TD: 71.08'				
	75 -					
					JOB NUMBER : 19-01	12-22/ Apache
		ENETRATION TEST			HOLE DIAMETER : 5'	
	IDISTURBEI	—			LOCATION : NEDU #83	
<u> </u>	ATER TABLE	E (24 HRS) NR NO RECOV	ERY		LAI GEOLOGIST : R. Ne	
Aarson & ssociates, I Environmental Consulta				NUMBER :	DRILLING CONTRACTOR	
Environmental Consulta	ants	07/19/2021	MW	- 1	DRILLING METHOD : Air I	Rotary

Received by OCD: 8/14/2024 10:57:12 AM

			E	BORING	RECORD				
		Start: 13	:17 MST	NC	ŊC	Surface Elevation: TOC Elecation:			REMARKS
	DEDTU	Finish: 1		DESCRIPTION USCS	GRAPHIC LOG	Vented Cap			BACKGROUND
GEOLOGIC UNIT	DEPTH			USC USC	HIG	Riser	NUMBER RECOVERY	н	PID READING
GINIT		DESC	CRIPTION LITHOLOGIC	DES	RAI	Bentonite		EPT	SOIL :PF
	0	Sand 7 5	5YR 4/6, Strong Brown,		<u> </u>		ZR	Δ	
			ined Quartz Sand, Well						
	5 —	Sorted, D	-	sw					-
	10 —		d, 7.5YR 7/4, Pink,						-
			ined Quartz Sand,						
	15		ely Sorted, Dry, Quartz	SM					-
	-	Clasts 2r	nm 6, Reddish Yellow, Fine						
	20 —		Quartz Sand,						_
			ely Sorted, Dry, Fine to						
		Medium (Quartz Clasts						
	25 —		5YR 7/6, Reddish						-
	-	Sand, Dr	Fine Grained Quartz						
	30 —	7.5YR 7/	y 6, Reddish Yellow, Fine	SW	· · . ·				-
			Quartz Sand, Quartz						
	35 —	Clasts							
	55 -								
	40 _	Silty San	d, 7.5YR 5/6, Strong						-
		Brown, Fine Grained Quartz Sand, Well Sorted, Dry							
	45 —								
	_								
	50 —	7.5YR 5/	6, Strong Brown, Fine						
	-		Quartz Sand, Well						
	55 -		Dry, Quartz Clasts	~					
—			to Coarse Grained	SM		57.88 Graded Silica Sand			
57.88 Depth to	-	water inj	ected at 55'			Depth			
Water	60 —					Water PVC Threaded			
	-				말한	0.0.0"			
	65 _					Slotted Screw			
	-								
	70 –					71.68 Cap			
	-		TD: 71.86'			71.86			
	75 –								
	-								
	_						12 1		Anache
		JOUS AUGER S		BLE (TIME	OF BORING) • • - · · • · · · · · ·	12-2	<u> </u>	Apache
		ENETRATION T							
					NS/ SQ. FT)) LOCATION : <u>NEDU #922</u> LAI GEOLOGIST : <u>R. Nelson</u>			
		E(24 HRS)	NR NO RECOVE						SDI
Aarson & ssociates, Ir Environmental Consultar			07/19/2021	BORING NUMBER : DRILLING CONTRACTOR : S MW-2 DRILLING METHOD : Air Rotary					

	I		-	RECORD							
		Start: 13:45	DESCRIPTION USCS	ଥ	PID READING	SAMPLE	REMARKS				
	DEDTU	Finish: 14:50	L L S	GRAPHIC LOG	PPM X		BACKGROUND				
GEOLOGIC UNIT	DEPIH		LSC LSC			NUMBER PID READING RECOVERY DEPTH	PID READING				
UNIT		DESCRIPTION LITHOLOGIC	E S(\$	2 4 6 8 10 12 14 16 18		SOIL :				
	0			ΰ			SOIL :				
		2.5YR 4/6, Red, Fine Grained									
		Quartz Rich Sand, Very Well									
	5 —	Sorted, Well Rounded,				1 5	13:50				
		Unconsolidated				1 5					
	_	Increase in Depth Lithology									
		Remains Same Color Changes	SM				13:54				
		to 2.5YR 7/3 to 7/4 Light Reddish Brown at 13'				2 10					
	_	Reduish brown at 15									
	15						13:58				
						3 15					
	20						14:03				
	-					4 20					
		5YR 7/4, Pink, Fine to Medium		· · · · · · · · · · · · · · · · · · ·							
	25 —	Grained Quartz Rich Sand,					14:10				
	- 20	Moderately Sorted, Rounded to	SM			5 25					
		Sub Rounded									
	30 —						14:13				
	30 —					6 30					
	35 —						14:20				
	55					7 35					
		7 EVD 0/2 Data Vallawiah Diak									
		7.5YR 9/2, Pale Yellowish Pink,					14:22				
	- 04	Very Fine to Fine Grained				8 40					
		Quartz Grained Sand, Well									
		Sorted, Well Rounded to Sub					14:25				
		Rounded 7.5YR 6/8, Reddish Yellow,				9 45					
Depth to	_	Very Fine to Fine Grained									
Water:	50 —	Quartz Sand, Well Sorted, Well	SM				14:30				
53.71		Rounded				10 50					
_	_	Rounded									
	55 —					11 55	14:42				
						11 55					
	-										
	60 —					10 60	14:44				
						12 60					
	–						44.50				
	65 —			····		13 65	14:50				
		TD: 65.35'									
						Apache/19	-0112-22				
			BLE (TIME	OF BORING)	HOLE DIAMETER :						
ST	ANDARD PI	ENETRATION TEST	ORY TEST L	OCATION							
UN	IDISTURBEI	D SAMPLE + PENETRO	METER (TO	NS/ SQ. FT)	LOCATION : NEDU 929						
<u> </u>	ATER TABLE	E (24 HRS) NR NO RECOV	/ERY		LAI GEOLOGIST : T. Jackson						
Arson & marson & mars				NUMBER :	DRILLING CONTRAC	CTOR :	SDI				
Secociates 1	nc	7/20/2021	1 MV	V- 3	DRILLING METHOD	Air Dotony					
			E	BORING	RECORD						
--	--	---	-------------------------------	---------------------	--------------	-------------	-------	--------	-------------------------	------------------------	-------------
		Start: 9:35		NO	9C	PID READ	NG	SA	MPLE	REMARKS	
GEOLOGIC UNIT	DEPTH	Finish: 12:10 DESCRIPTION LITH	OLOGIC	DESCRIPTION USCS	GRAPHIC LOG	PPM X		NUMBER	PID READING RECOVERY		
	0				В			R			PPM
	-	Sand, 2.5YR 4/6, Rec Grained Quart Sand, Sorted, Well Rounded Unconsolidated, Quar Sand	Very Well I,	SM				1		9:38 5 9:40	-
	15 — 	Sand, 2.5YR 7/4, Ligh Brown, Very Fine to F Grained Quartz Sand	ine ,					3		9:40 ¹⁵	
	20	Moderately Sorted, Su to Sub Rounded, with Decrease in Grain Siz	Depth ce and					4		9:42	- - -
		Becomes Well Sorted Rich Sand 7.5YR 8/3, Pink, Fine	to Medium					5		9:45 25 10:30	- - -
	Grained Quartz Sand, Grained Quartz Sand, Rounded to Sub Angul Moderately Sorted, Qu 35 Sand	ular,	SM				6		³⁰ 10:35	_	
Depth to Water: 41.05		Sand 7.5YR 6/4, Light Brow Grained Quartz Sand Sorted, Rounded to S	, Well					7		³⁵ 10:38	_
	45 —	Rounded, with Depth in Consolidation and Cementation, Quartz	Increase					9		11:14	-
		¹ 7.5YR 7/4, Light Redo Brown, Poorly Sorted Coarse Grained Quar	dish , Fine to tz Sand,	· · · -							-
	55	Rounded to Angular, Consolidated with Re Sandstone Fragments	d s in								-
	60 — 65 —	Cuttings, Quartz Rich Introduced Water wit		SM							-
	70										-
	75	TD: 76.01									-
										19-0112-22	
			WATER TAB	BLE (TIME	OF BORING)	JOB NUMBER	• •		<u>, ne/</u> 5"		
						LOCATION :_					
	IDISTURBE	D SAMPLE +			NS/ SQ. FT)	LAI GEOLOG			Jack:	son	
∧arson & →		DRILL DATE :		BORING			NTRAC	CTOF	R :	SDI	
Associates, In Environmental Consulta	nts	7/20/20	Z I		N-4	DRILLING ME	THOD	:Ai	r Rota	ry	

Appendix C

Laboratory Reports

Received by OCD: 8/14/2024 10:57:12 AM

578 1 2 3 4 5 6 7 8 9 10 11 12

🔅 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-4569-1

Laboratory Sample Delivery Group: 19-0112-22 Client Project/Site: NEDU PITS

For:

Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Attn: Mr. Mark J Larson

Holly Taylor

Authorized for release by: 8/6/2021 4:21:43 PM Holly Taylor, Project Manager (806)794-1296 holly.taylor@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access **Have a Question?** Ask-The Expert Visit us at: www.eurofinsus.com/Env

Released to Imaging: 8/28/2024 3:45:54 PM

SDG: 19-0112-22

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	13
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	19

	Deminions/Giossary		
Client: Larson Project/Site: N	& Associates, Inc. EDU PITS	Job ID: 880-4569-1 SDG: 19-0112-22	2
Qualifiers			3
GC VOA Qualifier	Qualifier Description		
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		5
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
- Conoral Char			
General Chem Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.	<u> </u>	8
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		9
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

ND

NEG

POS

PQL

PRES QC

RER

RL RPD

TEF

TEQ

TNTC

Client: Larson & Associates, Inc.

4

5

Job ID: 880-4569-1 SDG: 19-0112-22

Job ID: 880-4569-1

Project/Site: NEDU PITS

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-4569-1

Receipt

The samples were received on 8/2/2021 10:17 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.6° C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Lab Sample ID: 880-4569-1

Matrix: Water

5

Client: Larson & Associates, Inc. Project/Site: NEDU PITS

Client Sample ID: MW-2 Date Collected: 07/29/21 10:20

Date Received: 08/02/21 10:17

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0391		0.00200	mg/L			08/02/21 22:51	1
Toluene	<0.00200	U	0.00200	mg/L			08/02/21 22:51	1
Ethylbenzene	0.00219		0.00200	mg/L			08/02/21 22:51	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			08/02/21 22:51	1
o-Xylene	<0.00200	U	0.00200	mg/L			08/02/21 22:51	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			08/02/21 22:51	1
Total BTEX	0.0413		0.00400	mg/L			08/02/21 22:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	53	S1-	70 - 130				08/02/21 22:51	1
1,4-Difluorobenzene (Surr)	99		70 - 130				08/02/21 22:51	1
Method: 300.0 - Anions, Ion C	hromatography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	268		5.00	mg/L			08/05/21 22:50	10
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1170		50.0	mg/L			08/02/21 17:00	1
ate Collected: 07/29/21 10:40						Lab Sa	mple ID: 880- Matriz	4569-2 x: Water
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17	nic Compounds ((GC)				Lab Sa		
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga		GC) Qualifier	RL	Unit	D	Lab Sa		x: Water
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte			 0.00200	Unit mg/L	<u>D</u>		Matriz	x: Water
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene	Result	Qualifier			<u>D</u> _		Matri: Analyzed	x: Water
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene	Result 0.00407	Qualifier	0.00200	mg/L	<u> </u>		Matri: Analyzed 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene	Result 0.00407 <0.00200	Qualifier U U	0.00200	mg/L mg/L	<u> </u>		Matri: Analyzed 08/02/21 23:11 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes	Result 0.00407 <0.00200	Qualifier U U U	0.00200 0.00200 0.00200	mg/L mg/L mg/L	<u> </u>		Matriz Analyzed 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Result 0.00407 <0.00200	Qualifier U U U U U	0.00200 0.00200 0.00200 0.00400	mg/L mg/L mg/L mg/L	<u> </u>		Matri: Analyzed 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Xylenes, Total	Result 0.00407 <0.00200	Qualifier U U U U U	0.00200 0.00200 0.00200 0.00400 0.00200	mg/L mg/L mg/L mg/L mg/L	<u>D</u>		Matri: Analyzed 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Xylenes, Total Total BTEX	Result 0.00407 <0.00200	Qualifier U U U U U	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400	mg/L mg/L mg/L mg/L mg/L mg/L	<u> </u>		Matri: Analyzed 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Xylenes, Total Total BTEX Surrogate	Result 0.00407 <0.00200	Qualifier U U U U U U U	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00400	mg/L mg/L mg/L mg/L mg/L mg/L	<u> </u>	Prepared	Matri: Analyzed 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m.p-Xylenes o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr)	Result 0.00407 <0.00200	Qualifier U U U U U U U	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00400 Limits	mg/L mg/L mg/L mg/L mg/L mg/L	<u> </u>	Prepared	Matri: <u>Analyzed</u> 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m.p-Xylenes o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Result 0.00407 <0.00200	Qualifier U U U U U U U	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130	mg/L mg/L mg/L mg/L mg/L mg/L	<u>D</u>	Prepared	Matri: Analyzed 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11	Dil Fac
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylenes o-Xylenes Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 300.0 - Anions, Ion C	Result 0.00407 <0.00200	Qualifier U U U U U U U	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00400 Limits 70 - 130 70 - 130 RL	mg/L mg/L mg/L mg/L mg/L mg/L	D	Prepared	Matri: Analyzed 08/02/21 23:11 08/02/21 23:11	Dil Fac 1 </td
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 300.0 - Anions, Ion C Analyte	Result 0.00407 <0.00200	Qualifier U U U U U Qualifier	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00400 <u>Limits</u> 70 - 130 70 - 130	mg/L mg/L mg/L mg/L mg/L mg/L		Prepared	Matri: Analyzed 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11 08/02/21 23:11	
ate Collected: 07/29/21 10:40 ate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 300.0 - Anions, Ion C Analyte Chloride	Result 0.00407 <0.00200	Qualifier U U U U U Qualifier	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00400 Limits 70 - 130 70 - 130 RL	mg/L mg/L mg/L mg/L mg/L mg/L		Prepared	Matri: Analyzed 08/02/21 23:11 08/02/21 23:11	Dil Fac
Client Sample ID: MW-3 Pate Collected: 07/29/21 10:40 Pate Received: 08/02/21 10:17 Method: 8021B - Volatile Orga Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Xylenes, Total Total BTEX Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: 300.0 - Anions, Ion C Analyte Chloride General Chemistry Analyte	Result 0.00407 <0.00200	Qualifier U U U U U Qualifier	0.00200 0.00200 0.00200 0.00400 0.00200 0.00400 0.00400 Limits 70 - 130 70 - 130 RL	mg/L mg/L mg/L mg/L mg/L mg/L		Prepared	Matri: Analyzed 08/02/21 23:11 08/02/21 23:11	Dil Fac 1 </td

08/02/21 17:00

Released to Imaging: 8/28/2024 3:45:54 PM

Total Dissolved Solids

50.0

663

mg/L

Lab Sample ID: 880-4569-3

Matrix: Water

Matrix: Water

5

Client: Larson & Associates, Inc. Project/Site: NEDU PITS

Client Sample ID: MW-1 Date Collected: 07/29/21 11:15 Date Received: 08/02/21 10:17

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			08/02/21 23:32	1
Toluene	<0.00200	U	0.00200	mg/L			08/02/21 23:32	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			08/02/21 23:32	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			08/02/21 23:32	1
o-Xylene	<0.00200	U	0.00200	mg/L			08/02/21 23:32	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			08/02/21 23:32	1
Total BTEX	<0.00400	U	0.00400	mg/L			08/02/21 23:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130		-		08/02/21 23:32	1
1,4-Difluorobenzene (Surr)	94		70 - 130				08/02/21 23:32	1
Method: 300.0 - Anions, Ion C	hromatography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	446		10.0	mg/L			08/05/21 23:29	20
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	2510		200	mg/L			08/02/21 17:00	1

Client Sample ID: IVIVV-4

Date Collected: 07/30/21 09:55 Date Received: 08/02/21 10:17

Method: 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared Benzene <0.00200 U 0.00200 08/02/21 23:52 mg/L 1 Toluene <0.00200 U 0.00200 08/02/21 23:52 mg/L 1 Ethylbenzene <0.00200 U 0.00200 08/02/21 23:52 mg/L 1 m,p-Xylenes <0.00400 U 0.00400 mg/L 08/02/21 23:52 o-Xylene <0.00200 U 0.00200 08/02/21 23:52 mg/L 1 0.00400 Xylenes, Total <0.00400 U mg/L 08/02/21 23:52 1 Total BTEX <0.00400 U 0.00400 08/02/21 23:52 mg/L 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 08/02/21 23:52 4-Bromofluorobenzene (Surr) 118 70 - 130 1 1,4-Difluorobenzene (Surr) 95 70 - 130 08/02/21 23:52 1 Method: 300.0 - Anions, Ion Chromatography Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Chloride 559 5.00 mg/L 08/05/21 23:38 10 **General Chemistry** Analyte Qualifier RL Unit Dil Fac Result D Prepared Analyzed 50.0 08/02/21 17:00 mg/L **Total Dissolved Solids** 1030 1

Lab Sample ID: 880-4569-5

Matrix: Water

Matrix: Water

5

Client: Larson & Associates, Inc. Project/Site: NEDU PITS

Client Sample ID: DUP-1 Date Collected: 07/30/21 00:00 Date Received: 08/02/21 10:17

Method: 8021B - Volatile Organic Co	ompounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			08/03/21 00:13	1
Toluene	<0.00200	U	0.00200	mg/L			08/03/21 00:13	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			08/03/21 00:13	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			08/03/21 00:13	1
o-Xylene	<0.00200	U	0.00200	mg/L			08/03/21 00:13	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			08/03/21 00:13	1
Total BTEX	<0.00400	U	0.00400	mg/L			08/03/21 00:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		70 - 130		-		08/03/21 00:13	1
1,4-Difluorobenzene (Surr)	88		70 - 130				08/03/21 00:13	1
– Method: 300.0 - Anions, Ion Chroma	atography							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	244		5.00	mg/L			08/05/21 23:48	10
General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids	1160		50.0	mg/L			08/02/21 17:00	1
Client Sample ID: DUP-2						Lab Sa	mple ID: 880-	4569-6

Date Collected: 07/30/21 00:00

Date Received: 08/02/21 10:17

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L		•	08/03/21 00:33	1
Toluene	<0.00200	U	0.00200	mg/L			08/03/21 00:33	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			08/03/21 00:33	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			08/03/21 00:33	1
o-Xylene	<0.00200	U	0.00200	mg/L			08/03/21 00:33	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			08/03/21 00:33	1
Total BTEX	<0.00400	U	0.00400	mg/L			08/03/21 00:33	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130		-		08/03/21 00:33	1
1,4-Difluorobenzene (Surr)	96		70 - 130				08/03/21 00:33	1
- Method: 300.0 - Anions, Ion C	hromatography							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	235		5.00	mg/L			08/05/21 23:57	10
- General Chemistry								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Released to Imaging: 8/28/2024 3:45:54 PM

Client: Larson & Associates, Inc. Project/Site: NEDU PITS

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Water

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
ample ID	Client Sample ID	(70-130)	(70-130)	
6-A-2 MS	Matrix Spike	106	101	
6-A-2 MSD	Matrix Spike Duplicate	109	101	
1	MW-2	53 S1-	99	
-2	MW-3	114	91	
-3	MW-1	105	94	
-4	MW-4	118	95	
5	DUP-1	119	88	
	DUP-2	99	96	
5977/3	Lab Control Sample	113	102	
0-5977/4	Lab Control Sample Dup	115	103	
-5977/9	Method Blank	102	92	
ogate Legend				

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Page 46 of 78

Job ID: 880-4569-1 SDG: 19-0112-22

Prep Type: Total/NA

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-5977/9

Matrix: Water Analysis Batch: 5977

	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/L			08/02/21 16:43	1
Toluene	<0.00200	U	0.00200	mg/L			08/02/21 16:43	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			08/02/21 16:43	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			08/02/21 16:43	1
o-Xylene	<0.00200	U	0.00200	mg/L			08/02/21 16:43	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			08/02/21 16:43	1
Total BTEX	<0.00400	U	0.00400	mg/L			08/02/21 16:43	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130		-		08/02/21 16:43	1
1,4-Difluorobenzene (Surr)	92		70 - 130				08/02/21 16:43	1

Lab Sample ID: LCS 880-5977/3 Matrix: Water

Analysis Batch: 5977

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1002		mg/L		100	70 - 130	
Toluene	0.100	0.09713		mg/L		97	70 - 130	
Ethylbenzene	0.100	0.09726		mg/L		97	70 - 130	
m,p-Xylenes	0.200	0.1954		mg/L		98	70 - 130	
o-Xylene	0.100	0.09752		mg/L		98	70 - 130	

	LCS		
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	113		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: LCSD 880-5977/4 Matrix: Water

Analysis Batch: 5977

	Spike	LCSD	LCSD				%Rec.		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1018		mg/L		102	70 - 130	2	20
Toluene	0.100	0.09587		mg/L		96	70 - 130	1	20
Ethylbenzene	0.100	0.09767		mg/L		98	70 - 130	0	20
m,p-Xylenes	0.200	0.1993		mg/L		100	70 - 130	2	20
o-Xylene	0.100	0.1000		mg/L		100	70 - 130	3	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	115		70 - 130
1.4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 880-4556-A-2 Matrix: Water	MS						Client): Matrix Spike Type: Total/NA
Analysis Batch: 5977 Analyte Benzene	•	Sample Qualifier U	Spike Added 0.100	MS Qualifier	Unit mg/L	<u>D</u>	% Rec	%Rec. Limits 70 - 130	

Page 47 of 78

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Client Sample ID: Lab	Control Sample	Dup
	Prep Type: Tota	I/NA

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: NEDU PITS

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-4556-A-2 M Matrix: Water	S							Client	Sample ID: Prep T		
Analysis Batch: 5977											
-	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Toluene	<0.00200	U	0.100	0.09080		mg/L		90	70 - 130		
Ethylbenzene	<0.00200	U	0.100	0.09125		mg/L		91	70 - 130		
m,p-Xylenes	<0.00400	U	0.200	0.1880		mg/L		94	70 ₋ 130		
o-Xylene	<0.00200	U	0.100	0.09260		mg/L		93	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	106		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
Lab Sample ID: 880-4556-A-2 M	SD						Client S	Sample II	D: Matrix Sp	ike Duj	olicat
Matrix: Water									Prep T	ype: To	tal/N
Analysis Batch: 5977											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RP
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Benzene	<0.00200	U	0.100	0.1056		mg/L		106	70 - 130	11	2
Toluene	<0.00200	U	0.100	0.1015		mg/L		101	70 ₋ 130	11	2
Ethylbenzene	<0.00200	U	0.100	0.1007		mg/L		101	70 - 130	10	2
m,p-Xylenes	< 0.00400	U	0.200	0.2055		mg/L		103	70 - 130	9	2
o-Xylene	<0.00200	U	0.100	0.1019		mg/L		102	70 - 130	10	2
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	109		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								
lethod: 300.0 - Anions, Ion	Chromat	ography									
											Plan
Lab Sample ID: MB 880-6085/3								Client S	Sample ID: N	Nethod	Diali
								Client S	Sample ID: M Prep T		
Matrix: Water								Client S	Sample ID: M Prep T		
Matrix: Water		МВ МВ						Client S			
Matrix: Water Analysis Batch: 6085	R	MB MB esult Qualifier		RL	Unit		D	Client S		уре: То	otal/N
Matrix: Water Analysis Batch: 6085 ^{Analyte}				RL	Unit mg/L		<u>D</u>		Prep T	ype: To	o <mark>tal/N</mark> Dil Fa
Matrix: Water Analysis Batch: 6085 Analyte Chloride	<	esult Qualifier						Prepared	Prep T Analyze 08/05/21 2	ed	Dil Fa
Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCS 880-6085/4	<	esult Qualifier						Prepared	Analyze 08/05/21 2 08/D5 Lab Co	ed 21:34 –	Dil Fa
Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water	<	esult Qualifier		0.500	mg/L			Prepared	Analyza 08/05/21 2 e ID: Lab Co Prep T	ed 21:34 –	Dil Fa
Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water Analysis Batch: 6085	<	esult Qualifier	Spike	0.500 LCS	LCS		Clier	Prepared	Analyze 08/05/21 2 Prep T %Rec.	ed 21:34 –	Dil Fa
Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water Analysis Batch: 6085 Analyte	<	esult Qualifier	Spike Added	0.500 LCS Result	mg/L	Unit		Prepared nt Sample <u>%Rec</u>	Analyze 08/05/21 2 e ID: Lab Co Prep Ty %Rec. Limits	ed 21:34 –	Dil Fa
Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water Analysis Batch: 6085 Analyte	<	esult Qualifier	Spike	0.500 LCS	LCS	- Unit mg/L	Clier	Prepared	Analyze 08/05/21 2 Prep T %Rec.	ed 21:34 –	Dil Fa
Matrix: Water Analysis Batch: 6085 Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water Analysis Batch: 6085 Analyte Chloride	<(esult Qualifier	Spike Added	0.500 LCS Result	LCS	mg/L	Clier	Prepared nt Sample <u>%Rec</u> 101	Analyze 08/05/21 2 e ID: Lab Co Prep T %Rec. Limits 90 - 110 Lab Control	ed 21:34 211	Dil Fa ampl otal/N
Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCSD 880-6085	<(esult Qualifier	Spike Added	0.500 LCS Result	LCS	mg/L	Clier	Prepared nt Sample <u>%Rec</u> 101	Analyze 08/05/21 2 e ID: Lab Co Prep T %Rec. Limits 90 - 110	ed 21:34 211	Dil Fa ampl otal/N
Matrix: Water Analysis Batch: 6085 Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCSD 880-6085 Matrix: Water	<(esult Qualifier	Spike Added	0.500 LCS Result	LCS	mg/L	Clier	Prepared nt Sample <u>%Rec</u> 101	Analyze 08/05/21 2 e ID: Lab Co Prep T %Rec. Limits 90 - 110 Lab Control	ed 21:34 211	Dil Fa ampl tal/N
Matrix: Water Analysis Batch: 6085 Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCSD 880-6085 Matrix: Water	<(esult Qualifier	Spike Added	0.500 LCS Result 25.36	LCS	mg/L	Clier	Prepared nt Sample <u>%Rec</u> 101	Analyze 08/05/21 2 e ID: Lab Co Prep T %Rec. Limits 90 - 110 Lab Control	ed 21:34 211	tal/N. Dil Fa ampl tal/N. le Du
Lab Sample ID: MB 880-6085/3 Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCS 880-6085/4 Matrix: Water Analysis Batch: 6085 Analyte Chloride Lab Sample ID: LCSD 880-6085 Matrix: Water Analysis Batch: 6085	<(esult Qualifier	Spike Added 25.0	LCS Result 25.36	LCS Qualifier	mg/L	Clier	Prepared nt Sample <u>%Rec</u> 101	Analyze 08/05/21 2 Prep T %Rec. Limits 90 - 110 Lab Control Prep T	ed 21:34 211	Dil Fa ampletal/N

Job ID: 880-4569-1 SDG: 19-0112-22

Method: 300.0 - Anions, Ion Chromatography (Continued)

										Client	Sample ID	: Matrix	Spike
Matrix: Water												Type: To	
Analysis Batch: 6085													
-	Sample	Sample	Spike		MS	MS					%Rec.		
Analyte	Result	Qualifier	Added	Res	ult	Qualifier	Unit	ſ	D	%Rec	Limits		
Chloride	14.1		25.0	38	.56		mg/L			98	90 - 110		
Lab Sample ID: 880-4692-A-1 MSD								Client	Sar	nple IC): Matrix Sp	oike Dup	olicate
Matrix: Water											Prep 1	Type: To	tal/N/
Analysis Batch: 6085													
	Sample	Sample	Spike	N	SD	MSD					%Rec.		RPI
Analyte	Result	Qualifier	Added	Res	ult	Qualifier	Unit	[D	%Rec	Limits	RPD	Limi
Chloride	14.1		25.0	38	.65		mg/L			98	90 _ 110	0	20
Method: SM 2540C - Solids, To	otal Dis	solved (TD	S)										
Lab Sample ID: MB 880-6074/1									c	lient S	Sample ID:	Method	Blanl
Matrix: Water												Type: To	
Analysis Batch: 6074													
		MB MB											
Analyte	R	esult Qualifier		RL		Unit		D	Pre	pared	Analyz	ed	Dil Fa
Total Dissolved Solids	<	<25.0 U		25.0		mg/L		·			08/02/21	17:00	
Lab Sample ID: LCS 880-6074/2								Clie	nt S	Sample	D: Lab Co	ontrol S	ample
Matrix: Water								••		- and -		Type: To	
Analysis Batch: 6074											i i op i	, , po . 10	
Analysis Daten. 0074			Spike		cs	LCS					%Rec.		
Analyte			Added	_			Unit	r	D	%Rec	Limits		
Total Dissolved Solids			1000		003		mg/L			100	80 - 120		
Lab Sample ID: LCSD 880-6074/3							C	liont Sc	m		Lab Contro	Sampl	
Matrix: Water									annp			Type: To	
Analysis Batch: 6074											Fiehi	ype. io	
Analysis Batch. 0074			Spike	1.0	en	LCSD					%Rec.		RP
Analyte			Added			Qualifier	Unit	,	D	%Rec	Limits	RPD	Limi
Analyte Total Dissolved Solids			1000		005		mg/L	I		100	80 - 120	0	1(
			1000	I.	,00		iiig/L			100	00 - 120	U	п
Lab Sample ID: 880-4569-5 DU											Client Sam	-	
Matrix: Water											Prep 1	Type: To	tal/NA
Analysis Batch: 6074													
	Sample	Sample			DU	DU							RPD
Analyte	Result	Qualifier		Res	ult	Qualifier	Unit	ſ	D			RPD	Limi
· ···· · · · · · · · · · · · · · · · ·		-				quannoi	-		_				

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: NEDU PITS Job ID: 880-4569-1

SDG: 19-0112-22

GC VOA

Analysis Batch: 5977

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-4569-1	MW-2	Total/NA	Water	8021B	
380-4569-2	MW-3	Total/NA	Water	8021B	
380-4569-3	MW-1	Total/NA	Water	8021B	
880-4569-4	MW-4	Total/NA	Water	8021B	
380-4569-5	DUP-1	Total/NA	Water	8021B	
880-4569-6	DUP-2	Total/NA	Water	8021B	
MB 880-5977/9	Method Blank	Total/NA	Water	8021B	
LCS 880-5977/3	Lab Control Sample	Total/NA	Water	8021B	
_CSD 880-5977/4	Lab Control Sample Dup	Total/NA	Water	8021B	
380-4556-A-2 MS	Matrix Spike	Total/NA	Water	8021B	
380-4556-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

HPLC/IC

Analysis Batch: 6085

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-4569-1	MW-2	Total/NA	Water	300.0	
880-4569-2	MW-3	Total/NA	Water	300.0	
880-4569-3	MW-1	Total/NA	Water	300.0	
880-4569-4	MW-4	Total/NA	Water	300.0	
880-4569-5	DUP-1	Total/NA	Water	300.0	
880-4569-6	DUP-2	Total/NA	Water	300.0	
MB 880-6085/3	Method Blank	Total/NA	Water	300.0	
LCS 880-6085/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-6085/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-4692-A-1 MS	Matrix Spike	Total/NA	Water	300.0	
880-4692-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 6074

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-4569-1	MW-2	Total/NA	Water	SM 2540C	
880-4569-2	MW-3	Total/NA	Water	SM 2540C	
880-4569-3	MW-1	Total/NA	Water	SM 2540C	
880-4569-4	MW-4	Total/NA	Water	SM 2540C	
880-4569-5	DUP-1	Total/NA	Water	SM 2540C	
880-4569-6	DUP-2	Total/NA	Water	SM 2540C	
MB 880-6074/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-6074/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-6074/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-4569-5 DU	DUP-1	Total/NA	Water	SM 2540C	

5

Lab Sample ID: 880-4569-1 Matrix: Water

Lab Sample ID: 880-4569-2

Date Collected: 07/29/21 10:20 Date Received: 08/02/21 10:17

Client Sample ID: MW-2

Client: Larson & Associates, Inc.

Project/Site: NEDU PITS

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	5977	08/02/21 22:51	KL	XEN MID
Total/NA	Analysis	300.0		10			6085	08/05/21 22:50	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	6074	08/02/21 17:00	SC	XEN MID

Client Sample ID: MW-3 Date Collected: 07/29/21 10:40

Date Received: 08/02/21 10:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	5977	08/02/21 23:11	KL	XEN MID
Total/NA	Analysis	300.0		5			6085	08/05/21 23:00	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	6074	08/02/21 17:00	SC	XEN MID

Client Sample ID: MW-1 Date Collected: 07/29/21 11:15

Date Received: 08/02/21 10:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	5977	08/02/21 23:32	KL	XEN MID
Total/NA	Analysis	300.0		20			6085	08/05/21 23:29	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	6074	08/02/21 17:00	SC	XEN MID

Client Sample ID: MW-4

Date Collected: 07/30/21 09:55 Date Received: 08/02/21 10:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	5977	08/02/21 23:52	KL	XEN MID
Total/NA	Analysis	300.0		10			6085	08/05/21 23:38	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	6074	08/02/21 17:00	SC	XEN MID

Client Sample ID: DUP-1 Date Collected: 07/30/21 00:00 Date Received: 08/02/21 10:17

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	5977	08/03/21 00:13	KL	XEN MID
Total/NA	Analysis	300.0		10			6085	08/05/21 23:48	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	6074	08/02/21 17:00	SC	XEN MID

Eurofins Xenco, Midland

Lab Sample ID: 880-4569-3 Matrix: Water

Lab Sample ID: 880-4569-4

Lab Sample ID: 880-4569-5

Matrix: Water

Matrix: Water

Matrix: Water

SDG: 19-0112-22

Matrix: Water

Lab Sample ID: 880-4569-6

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: NEDU PITS

.

Client Sample ID: DUP-2 Date Collected: 07/30/21 00:00 Date Received: 08/02/21 10:17

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	5977	08/03/21 00:33	KL	XEN MID
Total/NA	Analysis	300.0		10			6085	08/05/21 23:57	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	6074	08/02/21 17:00	SC	XEN MID

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Xenco, Midland

Job ID: 880-4569-1

Released to Imaging: 8/28/2024 3:45:54 PM

Page 53 of 78

		Accreditation/Co	ertification Summary		
Client: Larson & Assoc Project/Site: NEDU PIT				Job ID: 880-4569 SDG: 19-0112-	
Laboratory: Eurofi					3
Unless otherwise noted, all a	analytes for this laborato	ry were covered under each acc	reditation/certification below.		_
Authority		Program	Identification Number	Expiration Date	
Texas		NELAP	T104704400-20-21	06-30-22	5
The following analytes	are included in this repo	ort, but the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for which	5
the agency does not of					
Analysis Method 8021B	Prep Method	Matrix	Analyte Total BTEX		
80218		Water	Iotal BTEX		
					8
					Q
					3
					10
					13

Received by OCD: 8/14/2024 10:57:12 AM

Job ID: 880-4569-1 SDG: 19-0112-22

lethod	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
800.0	Anions, Ion Chromatography	MCAWW	XEN MID
SM 2540C	Solids, Total Dissolved (TDS)	SM	XEN MID
030B	Purge and Trap	SW846	XEN MID

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Larson & Associates, Inc. Project/Site: NEDU PITS Job ID: 880-4569-1 SDG: 19-0112-22

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-4569-1	MW-2	Water	07/29/21 10:20	08/02/21 10:17
880-4569-2	MW-3	Water	07/29/21 10:40	08/02/21 10:17
880-4569-3	MW-1	Water	07/29/21 11:15	08/02/21 10:17
880-4569-4	MW-4	Water	07/30/21 09:55	08/02/21 10:17
880-4569-5	DUP-1	Water	07/30/21 00:00	08/02/21 10:17
880-4569-6	DUP-2	Water	07/30/21 00:00	08/02/21 10:17

Received by OCD: 8/14/2024 10:57:12 AM

Page

18 of

Page 56 of 78

Job Number: 880-4569-1

SDG Number: 19-0112-22

List Source: Eurofins Xenco, Midland

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Login Number: 4569 List Number: 1 Creator: Phillips, Kerianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 8/14/2024 10:57:12 AM

eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins Xenco, Midland 1211 W. Florida Ave Midland, TX 79701 Tel: (432)704-5440

Laboratory Job ID: 880-8148-1

Laboratory Sample Delivery Group: 19-0112-22 Client Project/Site: NEDU 928,929,922,830,829 Drill

For:

Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701

Attn: Mr. Mark J Larson

Holly Taylor

Authorized for release by: 11/18/2021 5:09:31 PM Holly Taylor, Project Manager (806)794-1296 holly.taylor@eurofinset.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at:

www.eurofinsus.com/Env Released to Imaging: 8/28/2024 3:45:54 PM

•

Laboratory Job ID: 880-8148-1

SDG: 19-0112-22

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Client Sample Results	5
Surrogate Summary	8
QC Sample Results	9
	13
Lab Chronicle	14
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

Definitions/Glossary

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

LOQ

MCL

MDA

MDC

MDL

ML

MPN

MQL

NC

ND NEG

POS PQL

PRES

QC

RER

RPD TEF

TEQ

TNTC

RL

Qualifiare		
Qualifiers		- 3
GC VOA		
Qualifier	Qualifier Description	4
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		5
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	6
General Chen	nistrv	
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		· 8
Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
<u></u>	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	4
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	1
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	

4

5

Job ID: 880-8148-1 SDG: 19-0112-22

Job ID: 880-8148-1

Laboratory: Eurofins Xenco, Midland

Narrative

Job Narrative 880-8148-1

Receipt

The samples were received on 11/10/2021 9:20 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.4° C

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill

Client Sample ID: MW-1 Date Collected: 11/08/21 09:15

Date Received: 11/10/21 09:20

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			11/18/21 01:34	1
Toluene	<0.00200	U	0.00200	mg/L			11/18/21 01:34	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			11/18/21 01:34	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			11/18/21 01:34	1
o-Xylene	<0.00200	U	0.00200	mg/L			11/18/21 01:34	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			11/18/21 01:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130		-		11/18/21 01:34	1
	100		70 - 130				11/18/21 01:34	1
1,4-Difluorobenzene (Surr)	100		10 - 130				11/10/21 01.34	1
1,4-Difluorobenzene (Surr)			70 - 130				11/10/21 01.34	,
-	EX Calculation	Qualifier	RL	Unit	D	Prepared	Analyzed	, Dil Fac
_ Method: Total BTEX - Total BT	EX Calculation			<mark>Unit</mark> mg/L	<u>D</u>	Prepared		
Method: Total BTEX - Total BT Analyte Total BTEX	EX Calculation Result <0.00400		RL		<u> </u>	Prepared	Analyzed	
Method: Total BTEX - Total BT	EX Calculation Result <0.00400		RL		D	Prepared	Analyzed	
Method: Total BTEX - Total BT Analyte Total BTEX Method: 300.0 - Anions, Ion Cl Analyte	EX Calculation Result <0.00400	U	RL	mg/L			Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 300.0 - Anions, Ion Cl	EX Calculation Result <0.00400 hromatography Result	U	RL 0.00400 RL	mg/L Unit			Analyzed 11/16/21 14:23 Analyzed	Dil Fac 1 Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 300.0 - Anions, Ion Cl Analyte Chloride	rEX Calculation Result <0.00400 hromatography Result 1270	U	RL 0.00400 RL	mg/L Unit			Analyzed 11/16/21 14:23 Analyzed	Dil Fac 1 Dil Fac

Client Sample ID: MW-2

Date Collected: 11/08/21 10:00

Date Received: 11/10/21 09:20

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			11/18/21 01:55	1
Toluene	<0.00200	U	0.00200	mg/L			11/18/21 01:55	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			11/18/21 01:55	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			11/18/21 01:55	1
o-Xylene	<0.00200	U	0.00200	mg/L			11/18/21 01:55	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			11/18/21 01:55	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		70 - 130		-		11/18/21 01:55	1
1,4-Difluorobenzene (Surr)	98		70 - 130				11/18/21 01:55	1
Method: Total BTEX - Total BT	EX Calculation							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Total BTEX	Result <0.00400		RL 0.00400	Unit mg/L	<u> </u>	Prepared	Analyzed 11/16/21 14:23	Dil Fac
Total BTEX	<0.00400				<u> </u>	Prepared		Dil Fac
Total BTEX Method: 300.0 - Anions, Ion C	<0.00400				<u>D</u>	Prepared Prepared		1
· · ·	<0.00400	U	0.00400	mg/L		·	11/16/21 14:23	1 Dil Fac
Total BTEX Method: 300.0 - Anions, Ion C Analyte	<0.00400 Chromatography Result	U	0.00400 RL	mg/L Unit		·	11/16/21 14:23 Analyzed	1 Dil Fac
Total BTEX Method: 300.0 - Anions, Ion C Analyte Chloride	<0.00400 Chromatography Result 279	U	0.00400 RL	mg/L Unit		·	11/16/21 14:23 Analyzed	Dil Fac 1 Dil Fac 10 Dil Fac

Job ID: 880-8148-1 SDG: 19-0112-22

Page 62 of 78

Lab Sample ID: 880-8148-1

Lab Sample ID: 880-8148-2

Matrix: Water

Matrix: Water

Client Sample Results

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill

Client Sample ID: MW-3 Date Collected: 11/08/21 10:25

Date Received: 11/10/21 09:20

Method: 8021B - Volatile Organic Compound	s (GC)						
Analyte Res	ult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene <0.002	00 U	0.00200	mg/L			11/18/21 02:15	1
Toluene <0.002	00 U	0.00200	mg/L			11/18/21 02:15	1
Ethylbenzene <0.002	00 U	0.00200	mg/L			11/18/21 02:15	1
m,p-Xylenes <0.004	00 U	0.00400	mg/L			11/18/21 02:15	1
o-Xylene <0.002	00 U	0.00200	mg/L			11/18/21 02:15	1
Xylenes, Total <0.004	U 00	0.00400	mg/L			11/18/21 02:15	1
Surrogate %Recover	ry Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) 1	19	70 - 130		-		11/18/21 02:15	1
1,4-Difluorobenzene (Surr)	99	70 - 130				11/18/21 02:15	1
Method: Total BTEX - Total BTEX Calculation							
	ult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX <0.004	00 U	0.00400	mg/L			11/16/21 14:23	1
– Method: 300.0 - Anions, Ion Chromatography	,						
Analyte Res	ult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride 1	22	2.50	mg/L			11/14/21 17:11	5
General Chemistry							
Analyte Res	ult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids 6	14	50.0	mg/L			11/11/21 18:50	1

Client Sample ID: MW-4

Date Collected: 11/08/21 10:50

Date Received: 11/10/21 09:20

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			11/18/21 02:36	1
Toluene	<0.00200	U	0.00200	mg/L			11/18/21 02:36	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			11/18/21 02:36	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			11/18/21 02:36	1
o-Xylene	<0.00200	U	0.00200	mg/L			11/18/21 02:36	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			11/18/21 02:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119		70 - 130		-		11/18/21 02:36	1
1,4-Difluorobenzene (Surr)	102		70 - 130				11/18/21 02:36	1
Method: Total BTEX - Total B1	EX Calculation							
		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte			RL	Unit mg/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total BTEX	Result <0.00400				<u> </u>	Prepared	·	Dil Fac
Analyte Total BTEX Method: 300.0 - Anions, Ion C	romatography				<u>D</u> _	Prepared	·	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 300.0 - Anions, Ion C Analyte Chloride	romatography	U	0.00400	mg/L		·	11/16/21 14:23	1 Dil Fac
Analyte Total BTEX Method: 300.0 - Anions, Ion C Analyte	result <0.00400 hromatography Result	U	0.00400 RL	mg/L Unit		·	11/16/21 14:23 Analyzed	1 Dil Fac
Analyte Total BTEX Method: 300.0 - Anions, Ion C Analyte Chloride	hromatography Result 203	U	0.00400 RL	mg/L Unit		·	11/16/21 14:23 Analyzed	Dil Fac 1 Dil Fac 10 Dil Fac

Job ID: 880-8148-1 SDG: 19-0112-22

Lab Sample ID: 880-8148-3

Lab Sample ID: 880-8148-4

Matrix: Water

Matrix: Water

Page 63 of 78

Project/Site: NEDU 928,929,922,830,829 Drill

Job ID: 880-8148-1 SDG: 19-0112-22

Matrix: Water

Lab Sample ID: 880-8148-5

Client Sample ID: DUP-1 Date Collected: 11/08/21 00:00

Client: Larson & Associates, Inc.

Date Received: 11/10/21 09:20

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200	mg/L			11/18/21 02:56	1
Toluene	<0.00200	U	0.00200	mg/L			11/18/21 02:56	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			11/18/21 02:56	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			11/18/21 02:56	1
o-Xylene	<0.00200	U	0.00200	mg/L			11/18/21 02:56	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			11/18/21 02:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130		-		11/18/21 02:56	1
1 1 Diffuse we have a second (Durw)	92		70 - 130				11/18/21 02:56	1
1,4-Difluorobenzene (Surr)	92		70 - 130				11/10/21 02.50	1
			70 - 130				11/10/21 02.50	I
Method: Total BTEX - Total BT	EX Calculation	Qualifier	70 - 730 RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Total BT	EX Calculation			<u>Unit</u> mg/L	D	Prepared		Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX	TEX Calculation Result <0.00400		RL		<u>D</u>	Prepared	Analyzed	/ 1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 300.0 - Anions, Ion C	TEX Calculation Result <0.00400 hromatography		RL		D	Prepared	Analyzed	Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 300.0 - Anions, Ion C Analyte	TEX Calculation Result <0.00400 hromatography	U	RL	mg/L		<u> </u>	Analyzed	1
Method: Total BTEX - Total BT Analyte Total BTEX Method: 300.0 - Anions, Ion C Analyte Chloride	FEX Calculation Result <0.00400 hromatography Result	U	RL 0.00400 RL	mg/L Unit		<u> </u>	Analyzed 11/16/21 14:23 Analyzed	1 Dil Fac
Method: Total BTEX - Total BT Analyte Total BTEX Method: 300.0 - Anions, Ion C	FEX Calculation Result <0.00400 hromatography Result 270	U	RL 0.00400 RL	mg/L Unit		<u> </u>	Analyzed 11/16/21 14:23 Analyzed	1 Dil Fac

Surrogate Summary

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Water

				Percent Sur	rrogate Rec
		BFB1	BFB1	DFBZ1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	(70-130)	(70-130)
880-8148-1	MW-1	120	120	100	100
880-8148-1 MS	MW-1	118	118	104	104
880-8148-1 MSD	MW-1	113	113	100	100
880-8148-2	MW-2	120	120	98	98
880-8148-3	MW-3	119	119	99	99
880-8148-4	MW-4	119	119	102	102
880-8148-5	DUP-1	115	115	92	92
LCS 880-12499/34	Lab Control Sample	111	111	99	99
LCSD 880-12499/35	Lab Control Sample Dup	128	128	106	106
MB 880-12436/5-A	Method Blank	122	122	103	103
MB 880-12499/39	Method Blank	124	124	103	103

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Page 65 of 78

5 6 7

Job ID: 880-8148-1 SDG: 19-0112-22

Prep Type: Total/NA

Lab Sample ID: MB 880-12436/5-A

Matrix: Water

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill

Method: 8021B - Volatile Organic Compounds (GC)

Analysis Databa 40400									Drew Det	
Analysis Batch: 12499									Prep Bat	ch: 12436
		3 MB	_			_				
Analyte		t Qualifier		RL	Unit			Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.0020		mg/L			/17/21 10:11	11/17/21 13:32	1
Toluene	<0.00200		0.0020		mg/L			/17/21 10:11	11/17/21 13:32	1
Ethylbenzene	<0.00200) U	0.0020	00	mg/L		11/	/17/21 10:11	11/17/21 13:32	1
m,p-Xylenes	<0.00400) U	0.0040	00	mg/L		11/	17/21 10:11	11/17/21 13:32	1
o-Xylene	<0.00200) U	0.0020	00	mg/L		11/	/17/21 10:11	11/17/21 13:32	1
Xylenes, Total	<0.00400) U	0.0040	00	mg/L		11/	/17/21 10:11	11/17/21 13:32	1
	МЕ	B MB								
0			1					D	A	D# 5
Surrogate		Qualifier	Limits	<u></u>				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	12		70 - 130					/17/21 10:11	11/17/21 13:32	
1,4-Difluorobenzene (Surr)	10.	3	70 - 130				11/	/17/21 10:11	11/17/21 13:32	1
- Lab Cample ID: MD 000 404	00/20									ad Diaula
Lab Sample ID: MB 880-1249	99/39							Client Sa	ample ID: Meth	
Matrix: Water									Prep Type:	Iotal/NA
Analysis Batch: 12499										
		3 MB								
Analyte		t Qualifier		RL	Unit)	Prepared	Analyzed	Dil Fac
Benzene	<0.00200) U	0.0020	00	mg/L				11/18/21 01:06	1
Toluene	<0.00200) U	0.0020	00	mg/L				11/18/21 01:06	1
Ethylbenzene	<0.00200) U	0.0020	00	mg/L				11/18/21 01:06	1
m,p-Xylenes	< 0.00400) U	0.0040	00	mg/L				11/18/21 01:06	1
o-Xylene	<0.00200) U	0.0020	00	mg/L				11/18/21 01:06	1
Xylenes, Total	<0.00400) U	0.0040	00	mg/L				11/18/21 01:06	1
-	ME									
Surrogate	%Recover		Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130						11/18/21 01:06	
1,4-Difluorobenzene (Surr)	10.	3	70 - 130						11/18/21 01:06	1
Lab Sample ID: LCS 880-124	199/34						Clier	t Sample	ID: Lab Contro	Sample
Matrix: Water							Chief	it oumpio	Prep Type:	
Analysis Batch: 12499									Trop Type.	
Analysis Datch. 12455			Spike	1.09	LCS				%Rec.	
Analyta			-			Unit	Б	% Bee	Limits	
Analyte			Added		Qualifier	Unit	D	%Rec	70 - 130	
Benzene			0.100	0.09185		mg/L		92		
Toluene			0.100	0.09491		mg/L		95	70 - 130	
Ethylbenzene			0.100	0.09163		mg/L		92	70 - 130	
m,p-Xylenes			0.200	0.1833		mg/L		92	70 - 130	
o-Xylene			0.100	0.08748		mg/L		87	70 - 130	
	LCS LC	s								
Surrogate	%Recovery Qu		Limits							
4-Bromofluorobenzene (Surr)			70 - 130							
	99		70 - 130 70 - 130							
1,4-Difluorobenzene (Surr)	33		10-130							
Lab Sample ID: LCSD 880-1	2499/35					Clie	nt Sa	mple ID· I	ab Control Sa	mole Dup
Matrix: Water						0101	Ju		Prep Type:	
Analysis Batch: 12499									i ich ijhe.	
Analysis Datell. 12433			Spike		LCSD				%Rec.	RPD
Analyte			Added		Qualifier	Unit	D	%Rec		PD Limit
			0.100	0.08277	Quainter			83		$\frac{10}{10}$ $\frac{10}{20}$
Benzene			0.100	0.06277		mg/L		00	10 - 130	10 20

Prep Type: Total/NA

Client Sample ID: Method Blank

Page 66 of 78

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill Job ID: 880-8148-1

Page 67 of 78

SDG: 19-0112-22

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-1249 Matrix: Water	9/35					Clie	ent San	nple ID:	Lab Contro Prep 1	l Sampl Type: To	
Analysis Batch: 12499											
			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene			0.100	0.1064		mg/L		106	70 - 130	11	20
Ethylbenzene			0.100	0.09516		mg/L		95	70 - 130	4	20
m,p-Xylenes			0.200	0.1862		mg/L		93	70 _ 130	2	20
o-Xylene			0.100	0.09402		mg/L		94	70 - 130	7	20
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	128		70 - 130								
1,4-Difluorobenzene (Surr)	106		70 - 130								
- Lab Sample ID: 880-8148-1 MS									Client Sar	nple ID:	MW-1
Matrix: Water									Prep 1	· Type: To	tal/NA
Analysis Batch: 12499											
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyta	Beault	Qualifier	Addad	Beault	Qualifiar	Unit	Б	% Bee	Limite		

Analyte	Result	Qualifier	Added	Result C	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.100	0.09751		mg/L		98	70 - 130	
Benzene	<0.00200	U	0.100	0.09751		mg/L		98	70 - 130	
Toluene	<0.00200	U	0.100	0.09539		mg/L		94	70 - 130	
Toluene	<0.00200	U	0.100	0.09539		mg/L		94	70 - 130	
Ethylbenzene	<0.00200	U	0.100	0.1007		mg/L		101	70 - 130	
Ethylbenzene	<0.00200	U	0.100	0.1007		mg/L		101	70 - 130	
m,p-Xylenes	<0.00400	U	0.200	0.2001		mg/L		100	70 - 130	
m,p-Xylenes	<0.00400	U	0.200	0.2001		mg/L		100	70 - 130	
o-Xylene	<0.00200	U	0.100	0.09823		mg/L		98	70 - 130	
o-Xylene	<0.00200	U	0.100	0.09823		mg/L		98	70 - 130	
	MS	MS								

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	118		70 - 130
4-Bromofluorobenzene (Surr)	118		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 880-8148-1 MSD Matrix: Water

Analysis Batch: 12499

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.100	0.09328		mg/L		93	70 - 130	4	25
Toluene	<0.00200	U	0.100	0.09560		mg/L		95	70 - 130	0	25
Ethylbenzene	<0.00200	U	0.100	0.09624		mg/L		96	70 - 130	4	25
m,p-Xylenes	<0.00400	U	0.200	0.1909		mg/L		95	70 - 130	5	25
o-Xylene	<0.00200	U	0.100	0.09133		mg/L		91	70 - 130	7	25
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
A Promofluorobonzono (Surr)			70 120								

4-Bromofluorobenzene (Surr)	113	70 - 130
1,4-Difluorobenzene (Surr)	100	70 - 130

Client Sample ID: MW-1

Prep Type: Total/NA

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill Job ID: 880-8148-1 SDG: 19-0112-22

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-12213/3											Client S	Sample ID:	Metho	d Blank
Matrix: Water													Type: T	
Analysis Batch: 12213														
		мв	МВ											
Analyte	R	esult	Qualifier		RL		Unit		D	Р	repared	Analyz	zed	Dil Fac
Chloride	<(0.500	U		0.500		mg/L					11/14/21		1
=														
Lab Sample ID: LCS 880-12213/4									CI	ient	Sample	D: Lab C		
Matrix: Water												Prep 1	Type: T	otal/NA
Analysis Batch: 12213														
				Spike			LCS			_		%Rec.		
Analyte				Added			Qualifier	Unit		D	%Rec	Limits		
Chloride				25.0		25.49		mg/L			102	90 - 110		
Lab Sample ID: LCSD 880-12213/5								С	lient \$	Sam	ple ID:	Lab Contro	ol Samp	ole Dup
Matrix: Water													Гуре: Т	-
Analysis Batch: 12213														
				Spike		LCSD	LCSD					%Rec.		RPD
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride				25.0		25.40		mg/L		_	102	90 _ 110	0	20
Lab Sample ID: 880-8282-B-1 MS											Client	Sample ID		-
Matrix: Water												Prep 1	Type: T	otal/NA
Analysis Batch: 12213	<u> </u>	•		• •								~ -		
	Sample			Spike			MS			_		%Rec.		
Analyte Chloride	Result 2690	Quai		Added 1250		3923	Qualifier	Unit		D	%Rec 99	Limits 90 - 110		
	2090			1250		3923		mg/L			55	90 - 110		
Lab Sample ID: 880-8282-B-1 MSD									Clien	nt Sa	ample IC): Matrix S	pike Du	plicate
Matrix: Water												Prep 1	Type: T	otal/NA
Analysis Batch: 12213														
	Sample	Sam	ple	Spike		MSD	MSD					%Rec.		RPD
Analyte	Result	Qual	ifier	Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride	2690			1250		3916		mg/L		_	98	90 - 110	0	20
Method: SM 2540C - Solids, To	otal Dis	sol	ved (TDS	S)										
_				- /										
Lab Sample ID: MB 880-12214/1											Client S	Sample ID:	Method	d Blank
Matrix: Water												Prep 1	Гуре: Т	otal/NA
Analysis Batch: 12214														
		MB	MB											
Analyte			Qualifier		RL		Unit		D	Р	repared	Analyz	zed	Dil Fac
Total Dissolved Solids	<	25.0	U		25.0		mg/L					11/11/21	18:50	1
- Lab Sample ID: LCS 880-12214/2									CI	ient	Sample	ID: Lab C	ontrol	Sample
Matrix: Water											. campie		Type: T	
Analysis Batch: 12214														
Analytic Butchi 12214				Spike		LCS	LCS					%Rec.		
						200						,		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCSD 880-12214/ Matrix: Water Analysis Batch: 12214	3					Clie	ent Sam	ple ID:	Lab Contro Prep T	l Sampl ype: To	
Analysis Datch. 12214			Spike	LCSD	LCSD				%Rec.		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Dissolved Solids			1000	996.0		mg/L		100	80 - 120	0	10
_ Lab Sample ID: 880-8148-1 DU									Client San	nple ID:	MW-1
Matrix: Water									Prep T	уре: То	tal/NA
Analysis Batch: 12214											
	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Total Dissolved Solids	2490			2540		mg/L				2	10

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill

Job ID: 880-8148-1 SDG: 19-0112-22

GC VOA

Analysis Batch: 12338

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-8148-1	MW-1	Total/NA	Water	Total BTEX	
880-8148-2	MW-2	Total/NA	Water	Total BTEX	
880-8148-3	MW-3	Total/NA	Water	Total BTEX	
880-8148-4	MW-4	Total/NA	Water	Total BTEX	
880-8148-5	DUP-1	Total/NA	Water	Total BTEX	
rep Batch: 12436					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-12436/5-A	Method Blank	Total/NA	Water	5035	
nalysis Batch: 1249	9				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-8148-1	MW-1	Total/NA	Water	8021B	
880-8148-2	MW-2	Total/NA	Water	8021B	
880-8148-3	MW-3	Total/NA	Water	8021B	
880-8148-4	MW-4	Total/NA	Water	8021B	
880-8148-5	DUP-1	Total/NA	Water	8021B	
			Water	8021B	12436
MB 880-12436/5-A	Method Blank	Total/NA	water	00210	
MB 880-12436/5-A MB 880-12499/39	Method Blank Method Blank	Total/NA Total/NA	Water	8021B	
MB 880-12499/39 LCS 880-12499/34	Method Blank	Total/NA	Water	8021B	
MB 880-12499/39	Method Blank Lab Control Sample	Total/NA Total/NA	Water Water	8021B 8021B	

HPLC/IC

Analysis Batch: 12213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-8148-1	MW-1	Total/NA	Water	300.0	
880-8148-2	MW-2	Total/NA	Water	300.0	
880-8148-3	MW-3	Total/NA	Water	300.0	
880-8148-4	MW-4	Total/NA	Water	300.0	
880-8148-5	DUP-1	Total/NA	Water	300.0	
MB 880-12213/3	Method Blank	Total/NA	Water	300.0	
LCS 880-12213/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-12213/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-8282-B-1 MS	Matrix Spike	Total/NA	Water	300.0	
880-8282-B-1 MSD	Matrix Spike Duplicate	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 12214

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-8148-1	MW-1	Total/NA	Water	SM 2540C	
880-8148-2	MW-2	Total/NA	Water	SM 2540C	
880-8148-3	MW-3	Total/NA	Water	SM 2540C	
880-8148-4	MW-4	Total/NA	Water	SM 2540C	
880-8148-5	DUP-1	Total/NA	Water	SM 2540C	
MB 880-12214/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-12214/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-12214/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-8148-1 DU	MW-1	Total/NA	Water	SM 2540C	

Client Sample ID: MW-1 Date Collected: 11/08/21 09:15

Date Received: 11/10/21 09:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	12499	11/18/21 01:34	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			12338	11/16/21 14:23	AJ	XEN MID
Total/NA	Analysis	300.0		20			12213	11/14/21 16:56	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	12214	11/11/21 18:50	SC	XEN MID

Date Collected: 11/08/21 10:00

Date	Received:	11/10/21	09:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	12499	11/18/21 01:55	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			12338	11/16/21 14:23	AJ	XEN MID
Total/NA	Analysis	300.0		10			12213	11/14/21 17:04	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	12214	11/11/21 18:50	SC	XEN MID

Client Sample ID: MW-3 Date Collected: 11/08/21 10:25 Date Received: 11/10/21 09:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	12499	11/18/21 02:15	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			12338	11/16/21 14:23	AJ	XEN MID
Total/NA	Analysis	300.0		5			12213	11/14/21 17:11	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	12214	11/11/21 18:50	SC	XEN MID

Client Sample ID: MW-4

Date Collected: 11/08/21 10:50 Date Received: 11/10/21 09:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	12499	11/18/21 02:36	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			12338	11/16/21 14:23	AJ	XEN MID
Total/NA	Analysis	300.0		10			12213	11/14/21 17:18	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	12214	11/11/21 18:50	SC	XEN MID

Client Sample ID: DUP-1 Date Collected: 11/08/21 00:00

Date Received: 11/10/21 09:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	12499	11/18/21 02:56	MR	XEN MID
Total/NA	Analysis	Total BTEX		1			12338	11/16/21 14:23	AJ	XEN MID
Total/NA	Analysis	300.0		10			12213	11/14/21 17:41	СН	XEN MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	12214	11/11/21 18:50	SC	XEN MID

Eurofins Xenco, Midland

Job ID: 880-8148-1 SDG: 19-0112-22

Lab Sample ID: 880-8148-1 Matrix: Water

Matrix: Water

Lab Sample ID: 880-8148-3

Lab Sample ID: 880-8148-4

Lab Sample ID: 880-8148-5

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 880-8148-1

SDG: 19-0112-22

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill

Laboratory References:

XEN MID = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Larson & Associates, Inc.

Project/Site: NEDU 928,929,922,830,829 Drill Laboratory: Eurofins Xenco, Midland Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		ogram	Identification Number	Expiration Dat
Texas	NE	ELAP	T104704400-21-22	06-30-22
The following analytes	are included in this report, bu	it the laboratory is not certif	fied by the governing authority. This list ma	av include analytes t
The following analytes the agency does not of Analysis Method	• •	It the laboratory is not certif Matrix	ied by the governing authority. This list ma	ay include analytes t

Page 73 of 78

Job ID: 880-8148-1 SDG: 19-0112-22 4 5 6 7 8 9

Method Summary

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill Job ID: 880-8148-1 SDG: 19-0112-22

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	XEN MID
Total BTEX	Total BTEX Calculation	TAL SOP	XEN MID
300.0	Anions, Ion Chromatography	MCAWW	XEN MID
SM 2540C	Solids, Total Dissolved (TDS)	SM	XEN MID
5030B	Purge and Trap	SW846	XEN MID
Protocol Re	ferences:		
MCAWV	/ = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020,	March 1983 And Subsequent Revisions.	
SM = "S	andard Methods For The Examination Of Water And Wastewater"		
SW846	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third	Edition, November 1986 And Its Updates.	
TAL SO	P = TestAmerica Laboratories, Standard Operating Procedure		
Laboratory	References:		
XEN MI	0 = Eurofins Xenco, Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440	

Laboratory References:

Client: Larson & Associates, Inc. Project/Site: NEDU 928,929,922,830,829 Drill Job ID: 880-8148-1 SDG: 19-0112-22

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-8148-1		Water	11/08/21 09:15	11/10/21 09:20
880-8148-2	MW-2	Water	11/08/21 10:00	11/10/21 09:20
880-8148-3	MW-3	Water	11/08/21 10:25	11/10/21 09:20
880-8148-4	MW-4	Water	11/08/21 10:50	11/10/21 09:20
880-8148-5	DUP-1	Water	11/08/21 00:00	11/10/21 09:20

.

Released to Imaging: 8/28/2024 3:45:54 PM

Received by OCD: 8/14/2024 10:57:12 AM

Page 76 of 78

Job Number: 880-8148-1

SDG Number: 19-0112-22

List Source: Eurofins Xenco, Midland

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Login Number: 8148 List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	

True

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 373804

CONDITIONS Operator: OGRID: APACHE CORPORATION 873 303 Veterans Airpark Ln Action Number: Midland, TX 79705 373804 Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	NEDU-Pits-2021-Semiannual-(June-Dec)-Groundwater-Monitoring-Report has been accepted for the record, App ID: 373804, received by OCD on 08/14/2024.	8/28/2024