March 2,

2023

nRM2031146817 2022 Fourth (4th) Quarter Groundwater Monitoring Report Northeast Drinkard Unit (NEDU) #829, #830, #922, #928, and #929 Lea County, New Mexico

Prepared for:

Apache

303 Veterans Airpark Lance Midland, TX 79701

Prepared by:

507 North Marienfeld Street, Suite 202 Midland, Texas 79701 (432) 687-0901

Mark J. Larson Certified Professional Geologist #10490

LAI Project No: 19-0112-38

This Page Intentionally Left Blank

.

Tracking Number: nRM2031146817 2022 Fourth (4th) Quarter Groundwater Monitoring Report Lea County, New Mexico March 2, 2023

Contents

. 1
. 2
. 2
. 3
. 3
. 3
. 3
.4
.4
.4
. 5
. 5
· · · ·

List of Tables

Table 1	Monitor Well Completion and Gauging Summary
Table 2	Groundwater Analytical Data Summary

List of Figures

Figure 1	Topographic Map
Figure 2	Aerial Map
Figure 3	Site Map
Figure 4	Groundwater Potentiometric Map, December 14, 2022
Figure 5	Chloride Concentration in Groundwater, December 14, 2022
Figure 6	TDS Concentration in Groundwater, December 14, 2022

List of Appendices

Appendix A	NMOCD Communications
Appendix B	Monitoring Well Completion Records
Appendix C	Laboratory Report

1.0 EXECUTIVE SUMMARY

Larson & Associates, Inc. (LAI) has prepared this report on behalf of the Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (NMOCD) District I in Hobbs and Santa Fe, New Mexico. This report presents 2022 fourth (4th) quarter (October - December) groundwater monitoring results for the Northeast Drinkard Unit (NEDU) #829, 830, 922, 928, and 929 (Sites). The Sites are located in Section 22, Township 21 South, Range 37 East, in Lea County, New Mexico. The approximate geodetic position is North 32.46294° and West -103.15153°.

The following activities occurred on December 14, 2022:

- Gauged depth to groundwater and collected groundwater samples from monitoring wells MW-1 through MW-4.
- Analyzed groundwater samples for benzene, toluene, ethylbenzene, and xylenes (BTEX), chloride, and total dissolved solids (TDS).

The following observations are documented in this report:

- Depth to groundwater ranged from 40.56 feet bgs in monitoring well MW-4 to 54.39 feet below ground surface (bgs) in monitoring well MW-1.
- The groundwater elevation ranged between 3,371.38 and 3,355.11 feet above mean sea level (MSL) in monitoring wells MW-4 (upgradient) and MW-3 (downgradient), respectively.
- Groundwater flow is from northwest to southeast at a gradient of about 0.013 feet per foot (ft/ft).
- BTEX compounds were below the analytical method reporting limit (RL) and New Mexico Water Quality Control Commission (NMWQCC) human health standards in groundwater samples from monitoring wells MW-1 through MW-4.
- Chloride concentrations in the groundwater samples were below the NMWQCC domestic water quality standard of 250 milligrams per liter (mg/L) except from monitoring well MW-1 (893 mg/L).
- TDS concentrations in the groundwater samples were below the NMWQCC domestic water quality standard of 1,000 mg/L except monitoring well MW-1 (2,520 mg/L).
- The groundwater elevations, groundwater flow direction and laboratory analysis were consistent with the previous monitoring events.

Apache proposes the following:

- Apache will continue groundwater monitoring on a quarterly (4 times per year) schedule.
- Gauge all monitoring wells for depth to groundwater and collect groundwater samples from monitoring wells with sufficient groundwater during each quarterly event.
- Analyze samples for BTEX, chloride and TDS.
- Report the laboratory results to NMOCD in quarterly reports, unless significant changes in analyte concentrations are detected, at which time Apache will immediately report the results to NMOCD.
- Apache will provide notice to the NMOCD in Hobbs and Santa Fe, New Mexico, at least 7 working days prior to each monitoring event.

2.0 INTRODUCTON

Larson & Associates, Inc. (LAI) has prepared this report on behalf of Apache Corporation (Apache) for submittal to the New Mexico Oil Conservation Division (NMOCD) District I in Hobbs and Santa Fe, New Mexico. This report presents 2022 quarterly groundwater monitoring results for the fourth (4th) quarter on December 14, 2022. During the quarterly event, groundwater samples were collected from four (4) monitor wells (MW-1 through MW-4) at the Northeast Drinkard Unit (NEDU) #829, 830, 922, 928, and 929 (Sites) located in Lea County, New Mexico. The legal description is Section 22, Township 21 South, Range 37 East. The geodetic coordinates are as follows:

Site	North (°)	West (°)
NEDU #829	32.462947	-103.151539
NEDU #830	32.463967	-103.155761
NEDU #922	32.457803	-103.151181
NEDU #928	32.458019	-103.155831
NEDU #929	32.458022	-103.151450

The NMOCD was notified prior to the groundwater monitoring event. Figure 1 presents a topographic map. Figure 2 presents an aerial map. Figure 3 presents a site map. Appendix A presents the NMOCD communications.

2.1 Background

On April 6, 2001, the landowner reported to the NMOCD that an Apache contractor was closing drilling pits at the Sites by disposing pit fluid in open trenches adjacent to the drilling pits. Apache was notified and submitted the initial C-141 on April 23, 2001. NMOCD assigned the trenches remediation permit 1RP-313.

On April 23, 2001, Apache submitted a work plan for remediating the trenches. NMOCD approved the work plan on May 8, 2001. The work plan stated that the trenches at wells #829, #830 and #929 would be excavated to approximately 19 feet bgs and to approximately 13 feet bgs at #928. There is no evidence that the trench was excavated at #922. An Apache contractor collected bottom and composite samples from the excavations and found chloride above the remediation closure limits in all excavations. Total petroleum hydrocarbons (TPH) were reported above the NMOCD closure limits in the excavation at #928. No documentation is available in NMOCD files to confirm the remediation.

On October 31, 2019, Apache submitted an administrative summary and path forward for remediating and closing the trenches. The plan requested approval from the NMOCD for a variance to excavate soil to a depth of approximately four (4) feet bgs at each trench and install a 20-mil polyethylene liner in the bottom of the excavations. Additionally, Apache committed to installing monitoring wells hydraulically down gradient (east - southeast) approximately 50 feet from the trench. On May 19, 2021, the NMOCD

approved the administrative summary and path forward for remediation but stated that "preapproval for monitor well locations on map before installation" was required. On July 14, 2021, NMOCD approved the monitor well locations. Appendix A presents the NMOCD communications.

3.0 GROUNDWATER INVESTIGATION

3.1 Monitoring Well Installation

On July 19 and 20, 2021, Scarborough Drilling, Inc. (SDI), under the supervision of LAI, installed monitoring wells MW-1, MW-2, MW-3, and MW-4 at locations specified in the New Mexico Office of the State Engineer (OSE) permits utilizing an air rotary drill rig. The wells were completed in 5-inch diameter borings advanced to 65 to 76 feet BGS. Monitoring wells MW-1, MW-2, MW-3, and MW-4 were completed to depths of approximately 74.08, 74.86, 65.35 and 76.01 feet bgs, respectively. The monitoring wells are completed with 2-inch schedule 40 threaded PVC casing and 20 feet of 0.010-inch factory slotted screen installed above and below the groundwater level observed during drilling. Graded silica sand is positioned around the well screens to a depth about 2 feet above the screen. Sodium bentonite chips extend around the PVC riser and above the sand to about 1-foot bgs. The wells are secured with locking steel sleeves anchored in concrete.

On July 27-30, 2021, the wells were developed by pumping with an electric submersible pump to remove sediment disturbed drilling and well installation. Approximately 40 gallons of water were removed from each well and disposed in 55-gallon drums.

West Company, a State of New Mexico licensed Professional Land Surveyor (PLS Number 23263) surveyed the monitoring wells for location and elevation including top of casing and natural ground surface. Figure 3 presents Site drawing showing the monitoring well locations. Table 1 presents the monitoring well completion and gauging summary. Appendix B presents the monitoring well boring logs and well completion records.

4.0 GROUNDWATER MONITORING

4.1 Depth to Groundwater and Groundwater Potentiometric Surface Elevation

On December 14, 2022, LAI personnel gauged monitoring wells MW-1 through MW-4 for depth to groundwater. Groundwater was gauged in monitoring wells MW-1, MW-2, MW-3, and MW-4 at 54.39, 52.08, 51.61, and 40.56 feet bgs, respectively. Groundwater potentiometric surface elevation was recorded at 3,371.38 above MSL at MW-4 (upgradient) to 3,355.11 feet above MSL at MW-3 (downgradient). The groundwater flow direction is from northwest to southeast at a gradient of about 0.013 ft/ft. Figure 4 presents the groundwater potentiometric surface map for December 14, 2022.

4.2 Groundwater Samples and Analysis

On December 14, 2022, LAI personnel collected groundwater samples from monitoring wells MW-1 through MW-4. The groundwater Samples were collected using the low stress or low flow method following EPA protocol (EQASOP-GW4, Revision 4, September 19, 2017) where an environmental pump is submerged near the middle of the water column and the well is pumped at a low flow rate until environmental parameters stabilize.

Samples were collected from the discharge of dedicated disposable Tygon[®] tubing. The tubing was discarded after each use and the pump was thoroughly cleaned with a solution of potable water and laboratory grade detergent (Alconox[®]) and rinsed with distilled water. The samples were transferred to labeled laboratory containers and delivered under chain of custody control and preservation to Euro-Xenco Laboratories (Xenco), a National Environmental Laboratory Accreditation Conference (NELAC) accredited laboratory, in Midland, Texas. A duplicate sample was collected from MW-2 for laboratory quality assurance and quality control (QA/QC).

Xenco analyzed the samples for benzene, toluene, ethylbenzene, xylene (BTEX) according to EPA SW-846 Method SW-8260D, total dissolved solids (TDS) by Method SM 2540C, and chloride by EPA Method 300. Table 2 presents the laboratory analytical summary. Appendix C presents the laboratory report.

4.2.1 Organic Analysis

BTEX concentrations were below the laboratory analytical RL and NMWQCC human health standards in all groundwater samples collected from monitoring wells, MW-1 through MW-4. The results are consistent with results from previous groundwater monitoring events.

4.2.2 Inorganic Analysis

Chloride concentrations were reported below the NMWQCC domestic water quality standard of 250 mg/L in monitoring wells MW-2 (167 mg/L), MW-3 (97.9 mg/L), and MW-4 (134 mg/L). The chloride concentration in the groundwater sample collected from monitoring well MW-1 (893 mg/L) was above the NMWQCC domestic water quality standard. The chloride concentration in the QA/QC sample (Dup-1) collected from monitoring well MW-2 was 171 mg/L and within 2.4 percent of the original chloride value for MW-2 (167 mg/L). No data exceptions were noted in the laboratory report case narratives. Figure 5 presents the chloride concentration map for December 14, 2022.

TDS concentrations in groundwater samples collected from monitoring wells MW-1 (2,520 mg/L) was above the NMWQCC domestic water quality standard of 1,000 mg/L. TDS concentrations were below the NMWQCC domestic water quality standard in groundwater samples collected from MW-2 (983 mg/L), MW-3 (381 mg/L), and MW-4 (327 mg/L). The TDS concentration in the QA/QC sample (Dup-1) was 1,100 mg/L and within 10.6 percent of the original TDS value for MW-2 (983 mg/L). No data exceptions were noted in the laboratory case narratives. Figure 6 presents the TDS concentration map for December 14, 2022.

5.0 CONCLUSIONS

The following observations are documented in this report:

- Groundwater flow direction is from northwest to southeast at a gradient of about 0.013 ft/ft.
- BTEX concentrations were below the analytical method RL and NMWQCC human health standards in all groundwater samples collected from monitoring wells MW-1 through MW-4.
- The chloride concentration in the groundwater sample collected from monitoring well MW-1 (893 mg/L) was above the NMWQCC domestic water quality standard of 250 mg/L.
- Chloride concentrations in groundwater samples from monitoring wells MW-2 (167 mg/L), MW-3 (97.9 mg/L), and MW-4 (134 mg/L) were below the NMWQCC domestic water quality standard of 250 mg/L.
- TDS concentrations in the groundwater samples collected from wells MW-1 (2,520 mg/L) and was above the NMWQCC domestic water quality standard of 1,000 mg/L.
- TDS concentrations were below the NMWQCC domestic water quality standard of 1,000 mg/L in groundwater samples collected from monitoring wells MW-2 (983 mg/L), MW-3 (645 mg/L), and MW-4 (797 mg/L).

6.0 RECOMMENDATIONS

Apache proposes the following:

- Continue groundwater monitoring on a quarterly (4 times per year).
- Gauge each well (MW-1 through MW-4) for depth to groundwater and collect groundwater samples from monitoring wells with sufficient groundwater during each quarterly event.
- Report the laboratory results to NMOCD in quarterly reports, unless significant changes in analyte concentrations are detected, at which time Apache will immediately report the results to NMOCD.
- Apache will provide notice to the NMOCD in Hobbs and Santa Fe, New Mexico, at least 7 working days prior to each monitoring event.

•

Tables

Table 1 1RP-313

Monitoring Well Completion and Gauging Summary

Apache Corportaion, NEDU Drill Pits

Lea County, New Mexico

			Well	Information							Groundwa	iter Data	
Well No.	Date Drilled	Well Depth (Feet TOC)	Drilled Depth (Feet BGS)	Well Diameter (Inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (Feet TOC)	Depth to Water (Feet BGS)	Water Column Height (Feet)	Groundwater Elevation (Feet AMSL)
MW-1	07/19/2021	74.08	71.08	2	3417.34	70.85-50.85	3.00	3,417.34	07/29/2021	57.40	54.40	16.68	3,359.94
									11/08/2021	57.40	54.40	16.68	3,359.94
									03/02/2022	57.36	54.36	16.72	3,359.98
									05/24/2022	57.32	54.32	16.76	3,360.02
									08/17/2022	57.40	54.40	16.68	3,359.94
									12/14/2022	57.39	54.39	16.69	3,359.95
MW-2	07/19/2021	74.86	71.86	2	3408.43	71.68-51.68	3.00	3,411.66	07/29/2021	54.81	51.81	20.05	3,356.85
									11/08/2021	54.85	51.85	20.01	3,356.81
									03/02/2022	54.91	51.91	19.95	3,356.75
									05/24/2022	54.91	51.91	19.95	3,356.75
									08/17/2022	55.04	52.04	19.82	3,356.62
									12/14/2022	55.08	52.08	19.78	3,356.58
MW-3	07/20/2021	65.35	62.75	2	3406.01	65.15-45.15	2.60	3,409.32	07/29/2021	53.55	50.95	11.80	3,355.77
									11/08/2021	53.67	51.07	9.68	3,355.65
									03/02/2022	53.83	51.23	11.52	3,355.49
									05/24/2022	53.88	51.28	11.47	3,355.44
									08/17/2022	54.08	51.48	11.27	3,355.24
									12/14/2022	54.21	51.61	11.14	3,355.11
MW-4	07/20/2021	76.01	72.93	2	3412.51	75.81-55.81	3.08	3,415.02	07/30/2021	44.38	41.30	31.63	3,370.64
									11/08/2021	43.44	40.36	32.57	3,371.58
									03/02/2022	43.44	40.36	32.57	3,371.58
									05/24/2022	43.50	40.42	32.51	3,371.52
									08/17/2022	42.63	39.55	33.38	3,372.39
									12/14/2022	43.64	40.56	32.37	3,371.38

Notes: monitoring wells installed by Environ-Drill, Albuquerque, New Mexico with 2 inch schedule 40 PVC casing and screen

1RP-313 Monitoring Well Completion and Gauging Summary Apache Corportaion, NEDU Drill Pits Lea County, New Mexico

Table 1

			Well	Information					Groundwater Data					
Well No.	Date Drilled	Well Depth (Feet TOC)	Depth (Feet	Well Diameter (Inches)	Surface Elevation (Feet AMSL)	Screen Interval (Feet BGS)	Casing Stickup (Feet)	TOC Elevation (Feet AMSL)	Date Gauged	Depth to Water (Feet TOC)	Depth to Water (Feet BGS)	Water Column Height (Feet)	Groundwater Elevation (Feet AMSL)	

bgs: below ground surface

TOC: top of casing

AMSL: denotes elevation in feet above mean sea level

Table 2

Groundwater Sample Analytical Data Summary Apache Corporation, NEDU #830, 922, 928, and 929 Lea County, New Mexico

Sample	Collection	Benzene	Toluene	Ethylbenzene	Xylenes	Chloride	TDS
	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
NMWQCC Standard		*0.005	* 1	*0.7	*0.62	**250	**1,000
MW-1	07/29/2021	<0.00200	<0.00200	<0.00200	< 0.00400	446	2,510
(NEDU #830)	11/08/2021	<0.00200	<0.00200	<0.00200	< 0.00400	1,270	2,490
	03/02/2022	<0.00200	<0.00200	<0.00200	< 0.00400	1,250	2,500
	05/24/2022	<0.00200	<0.00200	<0.00200	< 0.00400	912	2,500
	08/17/2022	<0.00200	<0.00200	<0.00200	< 0.00400	1,070	2,670
	12/14/2022	<0.00200	<0.00200	<0.00200	< 0.00400	893	2,520
	07/00/0004	0.0204				262	4.470
MW-2	07/29/2021	0.0391	< 0.00200	< 0.00219	< 0.00400	268	1,170
(NEDU #922)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	279	1,100
	02/02/2022	<0.00200	<0.00200	-0.00200	-0.00400	252	1 1 1 0
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	253 200	1,110
	05/24/2022	<0.00200 <0.00200	<0.00200 <0.00200	<0.00200 <0.00200	<0.00400 <0.00400	200 239	1,100
	08/17/2022 12/14/2022	<0.00200	<0.00200	<0.00200	<0.00400	167	<mark>1,080</mark> 983
	12/14/2022	<0.00200	<0.00200	<0.00200	<0.00400	107	905
MW-3	07/29/2021	0.00407	<0.00200	<0.00200	<0.00400	128	663
(NEDU #929)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	122	644
(11200 11020)	11,00,2021	0.00200	0.00200	.0100200	.0100100		011
	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	114	664
	05/24/2022	<0.00200	<0.00200	<0.00200	< 0.00400	114	647
	08/17/2022	<0.00200	<0.00200	<0.00200	< 0.00400	111	645
	12/14/2022	<0.00200	<0.00200	<0.00200	< 0.00400	97.9	381
MW-4	07/30/2021	<0.00200	<0.00200	<0.00200	< 0.00400	559	1,030
(NEDU #928)	11/08/2021	<0.00200	<0.00200	<0.00200	< 0.00400	203	832
	03/02/2022	<0.00200	<0.00200	<0.00200	< 0.00400	182	836
	05/24/2022	<0.00200	<0.00200	<0.00200	< 0.00400	171	827
	08/17/2022	<0.00200	<0.00200	<0.00200	< 0.00400	165	797
	12/14/2022	<0.00200	<0.00200	<0.00200	<0.00400	134	327
Dup-1 (MW-2)	07/29/2021	<0.00200	<0.00200	<0.00200	<0.00400	244	1,160
Dup-1 (NW-2) Dup-2 (MW-4)	07/30/2021	<0.00200	<0.00200	<0.00200	<0.00400	235	1,180
Dup-2 (MW-4) Dup-1 (MW-2)	11/08/2021	<0.00200	<0.00200	<0.00200	<0.00400	233	1,030
Dup-1 (10100-2)	11/00/2021	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	~0.00200	NU.00200	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	270	1,100
Dup-1 (MW-2)	03/02/2022	<0.00200	<0.00200	<0.00200	<0.00400	268	1,090
Dup-1 (MW-2)	05/24/2022	<0.00200	<0.00200	<0.00200	< 0.00400	189	1,100
Dup-1 (MW-2)	08/17/2022	<0.00200	< 0.00200	<0.00200	< 0.00400	246	1,090
Dup-1 (MW-2)	12/14/2022	< 0.00200	< 0.00200	< 0.00200	< 0.00400	171	1,100
·····-/	, ,						,
Notes:							

Notes:

analysis performed by Xenco-Eurofins Laboratories, Midland, Texas by EPA SW-846 Method 8021B (BTEX), Method 300 (chloride), Method 2540C

All values reported in milligrams per liter (mg/L); equivalent to parts per million (ppm)

< - concentration is less than analytical method reporting limit (RL).

* - NMWQCC human health standard

** - NMWQCC domestic water quality standard

bgs - below ground surface

•

Figures

Figure 1 - Topographic Map

Figure 2 - Aerial Map

Figure 4d - Groundwater Potentiometric Map, December 14, 2022

Figure 5d - Chloride Concentration in Groundwater, December 14, 2022

Figure 6d - TDS Concentration in Groundwater, December 14, 2022

Appendix A

NMOCD Communications

Robert Nelson

From:	Billings, Bradford, EMNRD <bradford.billings@state.nm.us></bradford.billings@state.nm.us>
Sent:	Wednesday, August 10, 2022 9:12 AM
То:	Robert Nelson; Bratcher, Mike, EMNRD
Cc:	'Larry.Baker@apachecorp.com'; Bole, Barrett; Mark Larson; Daniel St. Germain
Subject:	RE: [EXTERNAL] Apache Corp. NEDU 829, 830, 922, 928, &929
	(1RP-0313/nRM2031146817) Groundwater Sampling Notice

Hello,

Thank you for the notification. Please keep this email and include with allied report(s).

Bradford Billings EMNRD/OCD

From: Robert Nelson <rnelson@laenvironmental.com>

Sent: Tuesday, August 9, 2022 3:30 PM

To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>; Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us> Cc: 'Larry.Baker@apachecorp.com' <Larry.Baker@apachecorp.com>; Bole, Barrett <Barrett.Bole@apachecorp.com>; Mark Larson <Mark@laenvironmental.com>; Daniel St. Germain <dstgermain@laenvironmental.com> Subject: [EXTERNAL] Apache Corp. NEDU 829, 830, 922, 928, &929 (1RP-0313/nRM2031146817) Groundwater Sampling Notice

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Hello Mr. Billings and Mr. Bratcher,

This message is submitted to the New Mexico Oil Conservation Division (OCD) on behalf of Apache Corporation to provide notice that personnel from Larson & Associates, Inc. (LAI) will be at the Northeast Drinkard Unit (NEDU) Wells 829, 830, 922, 928, & 929 (1RP-0313/nRM2031146817), on August 17, 2022, at approximately 13:00 mst for the purpose of collecting groundwater samples from monitoring wells per the OCD approved plans. Please feel free to contact Bruce Baker with Apache at (432) 215-2284 or Larry.Baker@apache.com, Mark Larson at (432) 687-0901 or mark@laenvironmental.com, or me if you have any questions.

Thank you,

Robert Nelson Sr. Geologist Office – 432-687-0901 Cell – 432-664-4804 rnelson@laenvironmental.com

arson & ssociates, inc

Appendix B

Monitoring Well Completion Records

			BORING	RECORD		
		Start: 10:49 MST	NOI	00	Surface Elevation: TOC Elecation:	REMARKS
GEOLOGIC UNIT	DEPTH	Finish: 12:37 DESCRIPTION LITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	Vented Cap Riser Bentonite	
	_	Sand, 10YR 5/6, Yellowish Brown, Fine Grained Quartz	sw			
	_	<u>Sand, Well Sorted, Dry</u> Silty Sand, 10YR 5/6, Yellowish Brown, Fine Grained Quartz	SM			
	10	Sand, Well Sorted, Dry Sand, 7.5YR 7/6, Reddish				
	15	Yellow, Fine Grained Quartz Sand, Dry, Poorly Sorted				
	20					
	-	Sand, 7.5YR 7/6, Reddish Brown, Fine Grained Quartz	SW			
		Sand, Dry, 4.75mm Clasts, Poorly Sorted				
	35					
		Silty Sand, 7.5YR 8/6, Pink, Well Sorted, Fine Grained				
		Quartz Sand, Dry 10 YR 7/6, Yellowish Brown, Fine Grained Quartz Sand, We				
	50 —	Sorted Dry 10 YR 7/6, Yellowish Brown,				
57.88	55 -	Moderately Sorted, 2mm Quartz Clasts, Dry Water Injected at 55'	SM		57.88 Graded Silica Sand Depth- to 2" Sch. 40	
Depth to Water	60				Water PVC PVC Threaded 0.0.0"	
	65 -				Screw	
	70 -	TD: 71.08'			70.85 Cap 71.08	
	75					
		OUS AUGER SAMPLER	ABLE (TIME	OF BORING)	-22/ Apache
			ORY TEST L		HOLE DIAMETER : 5' LOCATION : NEDU #830	
	DISTURBED			NS/ SQ. FT)	LAI GEOLOGIST : R. Nelso	on
Aarson & ssociates, Ir Environmental Consulta		DRILL DATE : 07/19/2021	BORING	NUMBER :	DRILLING CONTRACTOR : DRILLING METHOD : Air Rota	SDI

Received by OCD: 8/14/2024 11:26:08 AM

		-			RECORD	Surface Elevation:			1
GEOLOGIC UNIT	DEPTH	Finish: 1	:17 MST 4:40 CRIPTION LITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	TOC Elecation: Vented Cap Riser Bentonite	NUMBER RECOVERY	EPTH	REMARKS BACKGROUND PID READING
	0	Fine Grai Sorted, D			C				
	15	Fine Grai Moderate Clasts 2r 7.5YR 6/	6, Reddish Yellow, Fine	SM					
	25 —	Moderate <u>Medium (</u> Sand, 7.5 Yellow, F Sand, Dr	Quartz Sand, ely Sorted, Dry, Fine to <u>Quartz Clasts</u> 5YR 7/6, Reddish Fine Grained Quartz y						
	35	7.5YR 7/	6, Reddish Yellow, Fine Quartz Sand, Quartz	e SW					
	-	Brown, F Sand, We	d, 7.5YR 5/6, Strong ine Grained Quartz ell Sorted, Dry						
57.88 Depth to	50 — 55 — 60 —	Grained Sorted, D Medium 1	6, Strong Brown, Fine Quartz Sand, Well Dry, Quartz Clasts to Coarse Grained ected at 55'	SM		57.88 Depth- to Water			
Water	65 — 70 —					Control Contro			
	75		TD: 71.86'			71.68 <u>****</u> Cap			
	ANDARD PI		EST LABORATC	RY TEST L	OF BORING OCATION NS/ SQ. FT)	HOLE DIAMETER : <u>5'</u> LOCATION : <u>NEDU #9</u>	22		/ Apache
WATER TABLE (24 HRS) NR NO RECOVERY LAI GEOLOGIST : R. Nelson Agrson & DRILL DATE : DRILL DATE : BORING NUMBER : DRILLING CONTRACTOR : SDI O7/19/2021 MW-2 DRILLING METHOD : Air Rotary									

				E	BORING	RECORD										
		Start: 13	:45		NO	ц		PID	RE/	DIN	IG	S	AMP	LE		REMARKS
GEOLOGIC	DEPTH	Finish: 14	4:50		DESCRIPTION USCS	GRAPHIC LOG	PP	мΧ	(- 2	ADING	/ERY	F	BACKGROUND PID READING
UNIT	•	DESC	CRIPTION LIT	HOLOGIC	DESC	GRAP	2 4	68	10 1	2 14	16_1	NUMBER	PID READING	RECOV	DEPT	BACKGROUND PID READING SOIL:PPM
	5	Quartz R Sorted, V Unconso Increase Remains to 2.5YR	6, Red, Find ich Sand, V Vell Rounde lidated in Depth Li Same Colo 7/3 to 7/4 L Brown at 13	/ery Well ed, thology or Changes .ight	SM							1			5	13:50 13:54 13:54 13:58
	20	5YR 7/4,	Pink, Fine	to Medium								4		:	20	14:03
	25	Grained	Quartz Rich ely Sorted, I		SM							5			25	14:10
	30 — - - 35 —											6			30	14:13 14:20
Depth to	40	Very Fine Quartz G Sorted, V Rounded 7.5YR 6/ Very Fine	e to Fine Gr rained San Vell Rounde 8, Reddish e to Fine Gr	d, Well ed to Sub Yellow, rained	SM							7 8 9			40	14:22 14:25 14:30
Water: 53.71		Quartz Sand, Well Sorted, Well Rounded										10 11 12			50	14:42 14:44
	65		TD: 65.35	,								13			65	- 14:50 - -
			EST	WATER TAE L LABORATOI + PENETROM NR NO RECOVE	RY TEST L ETER (TO		HO LO	LE I CAT	DIAN TION	ИЕТ :	= ER : <u>NE</u> ST :	DU	929	<u>5"</u>		
Aarson & ssociates, I Environmental Consulta	nc. Ints		DRILL DATE : 7/20/2	021		NUMBER : V- 3					ITRA HO				ry	SDI

	1			RECORD		1	
		Start: 9:35	NO	9 0	PID READING	SAMPLE	REMARKS
GEOLOGIC UNIT	DEPTH	Finish: 12:10 DESCRIPTION LITHOLOGIC	DESCRIPTION USCS	GRAPHIC LOG	PPM X	NUMBER PID READING RECOVERY DEPTH	BACKGROUND PID READING soil :
	0			В			SOIL :
Depth to Water: 41.05	10	Sand, 2.5YR 4/6, Red, Fine Grained Quart Sand, Very Well Sorted, Well Rounded, Unconsolidated, Quartz Rich Sand Sand, 2.5YR 7/4, Light Reddish Brown, Very Fine to Fine Grained Quartz Sand, Moderately Sorted, Sub Angular to Sub Rounded, with Depth Decrease in Grain Size and Becomes Well Sorted, Quartz Rich Sand 7.5YR 8/3, Pink, Fine to Medium Grained Quartz Sand, Sub Rounded to Sub Angular, Moderately Sorted, Quartz Rich Sand 7.5YR 6/4, Light Brown, Fine Grained Quartz Sand, Well Sorted, Rounded to Sub Rounded, with Depth Increase in Consolidation and Cementation, Quartz Rich Sand 7.5YR 7/4, Light Reddish Brown, Poorly Sorted, Fine to Coarse Grained Quartz Sand, Rounded to Angular, Very Consolidated with Red Sandstone Fragments in Cuttings, Quartz Rich Sand Introduced Water with Drilling	SM	GR Control of the second se		1 5 2 10 3 15 4 20 5 25 6 30 7 35 8 40	9:38 9:40 9:40 9:42 9:45 10:30
	70	TD: 76.01					
							0112.22
0	NE CONTINU	JOUS AUGER SAMPLER WATER TA	BLE (TIME	OF BORING)		Apache/ 19	-0112-22
ST	ANDARD PI		-	,	HOLE DIAMETER :	5"	
						DU 928	
		,		NS/ SQ. FT)			n
<u> </u>	ATER TABLI	E (24 HRS) NR NO RECOV	ERY		LAI GEOLOGIST :		
Aarson &		DRILL DATE :		NUMBER :	DRILLING CONTRAC	CTOR :	SDI
🗖 urauti 🔍 📂		7/20/2021		N-4	1		

Appendix C

Laboratory Report

Received by OCD: 8/14/2024 11:26:08 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 12/28/2022 10:02:45 AM

JOB DESCRIPTION

NEDU Pits SDG NUMBER 19-0112-22

JOB NUMBER

880-22819-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Received by OCD: 8/14/2024 11:26:08 AM

Eurofins Midland

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

ly Taylor

Generated 12/28/2022 10:02:45 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 30 of 48

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	13
Lab Chronicle	14
Certification Summary	16
Method Summary	17
Sample Summary	18
Chain of Custody	19
Receipt Checklists	20

EDL

LOD

LOQ MCL

MDA

MDC

MDL

ML MPN

MQL NC

ND NEG

POS

PQL PRES

QC

RER

RL RPD

TEF

TEQ

TNTC

Estimated Detection Limit (Dioxin)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)

Method Detection Limit Minimum Level (Dioxin)

Most Probable Number Method Quantitation Limit

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

	Definitions/Glossary		
	& Associates, Inc. Job ID: 880		
Project/Site: N	IEDU Pits SDG: 19	-0112-22	
Qualifiers			
GC VOA Qualifier	Qualifier Description		i
*1	LCS/LCSD RPD exceeds control limits.		2
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			2
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		
General Chen	nistry		
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		ï
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		

4

5

Job ID: 880-22819-1 SDG: 19-0112-22

Job ID: 880-22819-1

Project/Site: NEDU Pits

Laboratory: Eurofins Midland

Client: Larson & Associates, Inc.

Narrative

Job Narrative 880-22819-1

Receipt

The samples were received on 12/16/2022 9:34 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.6°C

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with analytical batch 880-42588 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for analytical batch 880-42346 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-22819-1 SDG: 19-0112-22

Lab Sample ID: 880-22819-1

Client Sample ID: MW-1 Date Collected: 12/14/22 11:35

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Date Received: 12/16/22 09:34

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/22 17:41	1
Toluene	<0.00200	U *1	0.00200	mg/L			12/24/22 17:41	1
Ethylbenzene	<0.00200	U *1	0.00200	mg/L			12/24/22 17:41	1
m,p-Xylenes	<0.00400	U *1	0.00400	mg/L			12/24/22 17:41	1
o-Xylene	<0.00200	U *1	0.00200	mg/L			12/24/22 17:41	1
Xylenes, Total	<0.00400	U *1	0.00400	mg/L			12/24/22 17:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130		-		12/24/22 17:41	1
()	106		70 - 130				12/24/22 17:41	1
1,4-Difluorobenzene (Surr)	otal BTEX Calo	culation Qualifier	70 - 130 RL	Unit	D	Prepared	12/24/22 17:41 Analyzed	,
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T Analyte	otal BTEX Calo	Qualifier		<mark>Unit</mark> mg/L	<u>D</u>	Prepared		1 1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T Analyte Total BTEX	otal BTEX Calc Result <0.00400	Qualifier U	RL		D	Prepared	Analyzed	,
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: MCAWW 300.0 - Anions	otal BTEX Calo Result <0.00400	Qualifier U	RL		<u>D</u>	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: MCAWW 300.0 - Anions Analyte	otal BTEX Calo Result <0.00400	Qualifier U graphy Qualifier	RL	mg/L			Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: MCAWW 300.0 - Anions Analyte Chloride	total BTEX Calc Result <0.00400 , Ion Chromato Result	Qualifier U graphy Qualifier	RL 0.00400 RL	mg/L Unit			Analyzed 12/26/22 16:25 Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T Analyte Total BTEX Method: MCAWW 300.0 - Anions Analyte Chloride General Chemistry Analyte	otal BTEX Calo Result <0.00400 , Ion Chromato Result 893	Qualifier U graphy Qualifier	RL 0.00400 RL	mg/L Unit			Analyzed 12/26/22 16:25 Analyzed	,

Client Sample ID: MW-2

Date Collected: 12/14/22 11:01

Date Received: 12/16/22 09:34

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/22 18:02	1
Toluene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:02	1
Ethylbenzene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:02	1
m,p-Xylenes	<0.00400	U *1	0.00400	mg/L			12/24/22 18:02	1
o-Xylene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:02	1
Xylenes, Total	<0.00400	U *1	0.00400	mg/L			12/24/22 18:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130		-		12/24/22 18:02	1
1,4-Difluorobenzene (Surr)	106		70 - 130				12/24/22 18:02	1
Method: TAL SOP Total BTEX - To	otal BTEX Calo	ulation						
Method: TAL SOP Total BTEX - To Analyte		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - To Analyte Total BTEX		Qualifier	RL 0.00400	Unit mg/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total BTEX	Result <0.00400	Qualifier U			<u>D</u>	Prepared	·	Dil Fac
Analyte	Result <0.00400	Qualifier U			<u>D</u>	Prepared	·	Dil Fac 1 Dil Fac
Analyte Total BTEX Method: MCAWW 300.0 - Anions,	Result <0.00400	Qualifier U	0.00400	mg/L		·	12/26/22 16:25	1
Analyte Total BTEX Method: MCAWW 300.0 - Anions, Analyte Chloride	Result <0.00400 Ion Chromato Result	Qualifier U	0.00400 RL	mg/L Unit		·	12/26/22 16:25 Analyzed	1 Dil Fac
Analyte Total BTEX Method: MCAWW 300.0 - Anions, Analyte	lon Chromato Result Result 167	Qualifier U	0.00400 RL	mg/L Unit		·	12/26/22 16:25 Analyzed	1 Dil Fac

Matrix: Water

5

Lab Sample ID: 880-22819-2

Matrix: Water

Eurofins Midland

Released to Imaging: 8/28/2024 4:24:43 PM

Client Sample Results

5

Job ID: 880-22819-1 SDG: 19-0112-22

Client Sample ID: MW-3 Date Collected: 12/14/22 09:40

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Date Received: 12/16/22 09:34

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/22 18:22	1
Toluene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:22	1
Ethylbenzene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:22	1
m,p-Xylenes	<0.00400	U *1	0.00400	mg/L			12/24/22 18:22	1
o-Xylene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:22	1
Xylenes, Total	<0.00400	U *1	0.00400	mg/L			12/24/22 18:22	1
Surrogate	%Recovery	Qualifier	Limits		_	Prepared	Analyzed	Dil Fac
Sunoyale					-		10/01/00 10 00	
4-Bromofluorobenzene (Surr)	92		70 - 130				12/24/22 18:22	7
•	92 103		70 - 130 70 - 130				12/24/22 18:22 12/24/22 18:22	1
4-Bromofluorobenzene (Surr)	103	culation						1
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	103 Total BTEX Cald	culation Qualifier		Unit	D	Prepared		1 1 Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX -	103 Total BTEX Cald	Qualifier	70 - 130	Unit mg/L	D	Prepared	12/24/22 18:22	,
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Analyte	103 Total BTEX Calc Result <0.00400	Qualifier U	70 - 130		<u> </u>	Prepared	12/24/22 18:22 Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Analyte Total BTEX	103 Total BTEX Calc Result <0.00400 s, Ion Chromato	Qualifier U	70 - 130		D	Prepared	12/24/22 18:22 Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Analyte Total BTEX Method: MCAWW 300.0 - Anior	103 Total BTEX Calc Result <0.00400 s, Ion Chromato	Qualifier	70 - 130 RL	mg/L		<u> </u>	12/24/22 18:22 Analyzed 12/26/22 16:25	Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Analyte Total BTEX Method: MCAWW 300.0 - Anior Analyte	103 Total BTEX Calc Result <0.00400 s, lon Chromato Result	Qualifier	70 - 130 RL	mg/L Unit		<u> </u>	12/24/22 18:22 Analyzed 12/26/22 16:25 Analyzed	Dil Fac
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - Analyte Total BTEX Method: MCAWW 300.0 - Anior Analyte Chloride	Total BTEX Cald Result <0.00400 s, lon Chromato Result 97.9	Qualifier	70 - 130 RL	mg/L Unit		<u> </u>	12/24/22 18:22 Analyzed 12/26/22 16:25 Analyzed	Dil Fac

Client Sample ID: MW-4

Date Collected: 12/14/22 10:15

Date Received: 12/16/22 09:34

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/22 18:43	1
Toluene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:43	1
Ethylbenzene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:43	1
m,p-Xylenes	<0.00400	U *1	0.00400	mg/L			12/24/22 18:43	1
o-Xylene	<0.00200	U *1	0.00200	mg/L			12/24/22 18:43	1
Xylenes, Total	<0.00400	U *1	0.00400	mg/L			12/24/22 18:43	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	112		70 - 130		-		12/24/22 18:43	1
1,4-Difluorobenzene (Surr)	96		70 - 130				12/24/22 18:43	1
•								
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation						
		culation Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX - T Analyte Total BTEX		Qualifier	RL 0.00400	Unit mg/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Analyte Total BTEX		Qualifier U			<u> </u>	Prepared		Dil Fac
Analyte Total BTEX Method: MCAWW 300.0 - Anions	Result <0.00400	Qualifier U			D	Prepared		Dil Fac
· · · · · · · · · · · · · · · · · · ·	Result <0.00400	Qualifier	0.00400	mg/L			12/26/22 16:25	1
Analyte Total BTEX Method: MCAWW 300.0 - Anions Analyte Chloride	Result <0.00400 , Ion Chromato Result	Qualifier	0.00400 RL	mg/L Unit			12/26/22 16:25 Analyzed	1 Dil Fac
Analyte Total BTEX Method: MCAWW 300.0 - Anions Analyte	, lon Chromato Result 134	Qualifier	0.00400 RL	mg/L Unit			12/26/22 16:25 Analyzed	1 Dil Fac

Eurofins Midland

Page 34 of 48

Matrix: Water

Matrix: Water

Lab Sample ID: 880-22819-3

Job ID: 880-22819-1 SDG: 19-0112-22

Client Sample ID: DUP-1 Date Collected: 12/14/22 00:00

Client: Larson & Associates, Inc.

Project/Site: NEDU Pits

Date Received: 12/16/22 09:34

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/L			12/24/22 19:03	1
Toluene	<0.00200	U *1	0.00200	mg/L			12/24/22 19:03	1
Ethylbenzene	<0.00200	U *1	0.00200	mg/L			12/24/22 19:03	1
m,p-Xylenes	<0.00400	U *1	0.00400	mg/L			12/24/22 19:03	1
o-Xylene	<0.00200	U *1	0.00200	mg/L			12/24/22 19:03	1
Xylenes, Total	<0.00400	U *1	0.00400	mg/L			12/24/22 19:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130		-		12/24/22 19:03	1
1,4-Difluorobenzene (Surr)	105		70 - 130				12/24/22 19:03	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cale	culation						
Analyte								
	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
,	Result <0.00400		RL	Unit mg/L	<u>D</u>	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U			<u>D</u>	Prepared		Dil Fac
Total BTEX Method: MCAWW 300.0 - Anions	<0.00400	U			<u>D</u>	Prepared Prepared		Dil Fac
Total BTEX Method: MCAWW 300.0 - Anions Analyte	<0.00400	U ography	0.00400	mg/L			12/26/22 16:25	1
Total BTEX Method: MCAWW 300.0 - Anions Analyte Chloride	<0.00400 s, Ion Chromato Result	U ography	0.00400	mg/L Unit			12/26/22 16:25 Analyzed	1 Dil Fac
Total BTEX Method: MCAWW 300.0 - Anions Analyte Chloride General Chemistry Analyte	<0.00400 s, Ion Chromato Result 171	U ography	0.00400	mg/L Unit			12/26/22 16:25 Analyzed	1 Dil Fac

Lab Sample ID: 880-22819-5 Matrix: Water

Client: Larson & Associates, Inc. Project/Site: NEDU Pits

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Water

Γ				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-22819-1	MW-1	99	106		- 11
880-22819-2	MW-2	98	106		
880-22819-3	MW-3	92	103		
880-22819-4	MW-4	112	96		
880-22819-5	DUP-1	105	105		
LCS 880-42588/2	Lab Control Sample	104	114		
LCSD 880-42588/3	Lab Control Sample Dup	110	112		
MB 880-42588/7	Method Blank	90	98		
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Page 36 of 48

Job ID: 880-22819-1 SDG: 19-0112-22

Prep Type: Total/NA

Eurofins Midland
QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-42588/7

Matrix: Water Analysis Batch: 42588

-	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200	mg/L			12/24/22 12:34	1
Toluene	<0.00200	U	0.00200	mg/L			12/24/22 12:34	1
Ethylbenzene	<0.00200	U	0.00200	mg/L			12/24/22 12:34	1
m,p-Xylenes	<0.00400	U	0.00400	mg/L			12/24/22 12:34	1
o-Xylene	<0.00200	U	0.00200	mg/L			12/24/22 12:34	1
Xylenes, Total	<0.00400	U	0.00400	mg/L			12/24/22 12:34	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130		-		12/24/22 12:34	1
1,4-Difluorobenzene (Surr)	98		70 - 130				12/24/22 12:34	1

Lab Sample ID: LCS 880-42588/2

Matrix: Water

Analysis	Batch:	42588
----------	--------	-------

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1073		mg/L		107	70 - 130	
Toluene	0.100	0.08696		mg/L		87	70 - 130	
Ethylbenzene	0.100	0.08294		mg/L		83	70 - 130	
m,p-Xylenes	0.200	0.1682		mg/L		84	70 - 130	
o-Xylene	0.100	0.08875		mg/L		89	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: LCSD 880-42588/3

Matrix: Water

Analysis Batch: 42588	

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1190		mg/L		119	70 - 130	10	20
Toluene	0.100	0.1099	*1	mg/L		110	70 - 130	23	20
Ethylbenzene	0.100	0.1121	*1	mg/L		112	70 - 130	30	20
m,p-Xylenes	0.200	0.2411	*1	mg/L		121	70 - 130	36	20
o-Xylene	0.100	0.1224	*1	mg/L		122	70 - 130	32	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	112		70 - 130

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

SDG: 19-0112-22

Prep Type: Total/NA

Client Sample ID: Method Blank

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: NEDU Pits Job ID: 880-22819-1 SDG: 19-0112-22

Method: 300.0 - Anions, Ion Chromatography

-														
Lab Sample ID: MB 880-42346/3											Client S	Sample ID: N		
Matrix: Water												Prep T	ype: To	otal/NA
Analysis Batch: 42346														
	_	MB							_	_				
Analyte			Qualifier		RL		Unit		<u>D</u>	P	repared	Analyze		Dil Fac
Chloride	<0	0.500	U		0.500		mg/L					12/27/22 1	5:23	
Lab Sample ID: LCS 880-42346/4									Cli	ient	Sample	e ID: Lab Co	ntrol S	Sample
Matrix: Water												Prep T	ype: To	otal/NA
Analysis Batch: 42346														
				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
Chloride				25.0		23.83		mg/L		-	95	90 - 110		
Lab Sample ID: LCSD 880-42346/5								C	lient s	sam	iple ID:	Lab Contro		
Matrix: Water												Prep T	ype: To	otal/NA
Analysis Batch: 42346														
				Spike		LCSD	LCSD					%Rec		RPD
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride				25.0		23.04		mg/L		_	92	90 - 110	3	20
Lab Sample ID: 880-22819-1 MS												Client Sam	iple ID	: MW- 1
Matrix: Water												Prep T	-	
Analysis Batch: 42346														
Analysis Baton: 42040	Sample	Sam	ole	Spike		MS	MS					%Rec		
Analyte	Result			Added			Qualifier	Unit		D	%Rec	Limits		
Chloride	893			500		1624		mg/L		-	146	90 - 110		
												0		
Lab Sample ID: 880-22819-1 MSD												Client Sam	-	
Matrix: Water												Prep T	ype: io	otal/NA
Analysis Batch: 42346														
	Sample			Spike			MSD					%Rec		RPD
Analyte	Result		ifier	Added			Qualifier	Unit		D	%Rec	Limits	RPD	Limi
Chloride	893	F1		500		1659	F1	mg/L			153	90 - 110	2	20
Method: SM 2540C - Solids, To	otal Dis	solv	ed (TD	S)										
Lab Sample ID: MB 880-42350/1											Client	Sample ID: N	lethor	Riant
Matrix: Water											Sherit			
												Prep T	ype: I	Jai/NF
Analysis Batch: 42350		МВ	мр											
• • •	_								_	_				
Analyte			Qualifier		RL		Unit		<u>D</u>	P	repared	Analyze		Dil Fac
Total Dissolved Solids	<	25.0	U		25.0		mg/L					12/20/22 1	7:32	
Lab Sample ID: LCS 880-42350/2									Cli	ient	Sample	e ID: Lab Co	ntrol S	Sample
Matrix: Water												Prep T	ype: To	otal/NA
Analysis Batch: 42350														
-				Spike		LCS	LCS					%Rec		
Analyte				Added		Result	Qualifier	Unit		D	%Rec	Limits		
							quannor	0			/01.000	Emilio		

Method: SM 2540C - Solids, Total Dissolved (TDS) (Continued)

Lab Sample ID: LCSD 880-42350/ Matrix: Water Analysis Batch: 42350	3					Clie	ent Sarr	ple ID:	Lab Contro Prep 1	l Sampl ype: To	
Analysis Balch. 42350			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Total Dissolved Solids			1000	983.0		mg/L		98	80 - 120	0	10
Lab Sample ID: 880-22819-1 DU Matrix: Water Analysis Batch: 42350									Client San Prep 1	nple ID: Type: To	
· · · · · · · · · · · · · · · · · · ·	Sample	Sample		DU	DU						RPD
Analyte	Result	Qualifier		Result	Qualifier	Unit	D			RPD	Limit
Total Dissolved Solids	2520			2636		mg/L				4	10

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: NEDU Pits

Job ID: 880-22819-1 SDG: 19-0112-22

GC VOA

Analysis Batch: 42588

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-22819-1	MW-1	Total/NA	Water	8021B	
380-22819-2	MW-2	Total/NA	Water	8021B	
380-22819-3	MW-3	Total/NA	Water	8021B	
380-22819-4	MW-4	Total/NA	Water	8021B	
880-22819-5	DUP-1	Total/NA	Water	8021B	
MB 880-42588/7	Method Blank	Total/NA	Water	8021B	
			1		
_CS 880-42588/2	Lab Control Sample	Total/NA	Water	8021B	
LCS 880-42588/2 LCSD 880-42588/3 nalysis Batch: 42608	Lab Control Sample Dup	Total/NA Total/NA	water Water	8021B 8021B	
_CSD 880-42588/3 nalysis Batch: 42608	Lab Control Sample Dup	Total/NA	Water	8021B	
LCSD 880-42588/3 nalysis Batch: 42608 Lab Sample ID	Lab Control Sample Dup B Client Sample ID	Total/NA Prep Type	Water Matrix	8021B Method	Prep Batch
LCSD 880-42588/3 nalysis Batch: 42608 Lab Sample ID 380-22819-1	Lab Control Sample Dup B Client Sample ID MW-1	Total/NA Prep Type Total/NA	Water Matrix Water	8021B Method Total BTEX	Prep Batch
LCSD 880-42588/3 nalysis Batch: 42608 Lab Sample ID 380-22819-1 380-22819-2	Lab Control Sample Dup	Total/NA Prep Type Total/NA Total/NA	Water Matrix Water Water	8021B Method Total BTEX Total BTEX	Prep Batch
LCSD 880-42588/3 nalysis Batch: 42608 Lab Sample ID 380-22819-1 380-22819-2 380-22819-3	Lab Control Sample Dup B Client Sample ID MW-1 MW-2 MW-3	Total/NA Prep Type Total/NA Total/NA Total/NA	Water Matrix Water Water Water	8021B Method Total BTEX Total BTEX Total BTEX	Prep Batch
LCSD 880-42588/3 nalysis Batch: 42608 Lab Sample ID 380-22819-1 380-22819-2	Lab Control Sample Dup	Total/NA Prep Type Total/NA Total/NA	Water Matrix Water Water	8021B Method Total BTEX Total BTEX	Prep Batch

Analysis Batch: 42608

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-22819-1	MW-1	Total/NA	Water	Total BTEX	
880-22819-2	MW-2	Total/NA	Water	Total BTEX	
880-22819-3	MW-3	Total/NA	Water	Total BTEX	
880-22819-4	MW-4	Total/NA	Water	Total BTEX	
880-22819-5	DUP-1	Total/NA	Water	Total BTEX	

HPLC/IC

Analysis Batch: 42346

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22819-1	MW-1	Total/NA	Water	300.0	
880-22819-2	MW-2	Total/NA	Water	300.0	
880-22819-3	MW-3	Total/NA	Water	300.0	
880-22819-4	MW-4	Total/NA	Water	300.0	
880-22819-5	DUP-1	Total/NA	Water	300.0	
MB 880-42346/3	Method Blank	Total/NA	Water	300.0	
LCS 880-42346/4	Lab Control Sample	Total/NA	Water	300.0	
LCSD 880-42346/5	Lab Control Sample Dup	Total/NA	Water	300.0	
880-22819-1 MS	MW-1	Total/NA	Water	300.0	
880-22819-1 MSD	MW-1	Total/NA	Water	300.0	

General Chemistry

Analysis Batch: 42350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-22819-1	MW-1	Total/NA	Water	SM 2540C	
880-22819-2	MW-2	Total/NA	Water	SM 2540C	
880-22819-3	MW-3	Total/NA	Water	SM 2540C	
880-22819-4	MW-4	Total/NA	Water	SM 2540C	
880-22819-5	DUP-1	Total/NA	Water	SM 2540C	
MB 880-42350/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 880-42350/2	Lab Control Sample	Total/NA	Water	SM 2540C	
LCSD 880-42350/3	Lab Control Sample Dup	Total/NA	Water	SM 2540C	
880-22819-1 DU	MW-1	Total/NA	Water	SM 2540C	

Client Sample ID: MW-1 Date Collected: 12/14/22 11:35

Date Received: 12/16/22 09:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	42588	12/24/22 17:41	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42608	12/26/22 16:25	AJ	EET MID
Total/NA	Analysis	300.0		20	50 mL	50 mL	42346	12/27/22 15:49	СН	EET MID
Total/NA	Analysis	SM 2540C		1	25 mL	200 mL	42350	12/20/22 17:32	SMC	EET MID

Client Sample ID: MW-2 Date Collected: 12/14/22 11:01 Date Received: 12/16/22 09:34

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	42588	12/24/22 18:02	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42608	12/26/22 16:25	AJ	EET MID
Total/NA	Analysis	300.0		10	50 mL	50 mL	42346	12/27/22 16:16	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	42350	12/20/22 17:32	SMC	EET MID

Client Sample ID: MW-3 Date Collected: 12/14/22 09:40

Date Received: 12/16/22 09:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	42588	12/24/22 18:22	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42608	12/26/22 16:25	AJ	EET MID
Total/NA	Analysis	300.0		5	50 mL	50 mL	42346	12/27/22 16:24	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	42350	12/20/22 17:32	SMC	EET MID

Client Sample ID: MW-4

Date Collected: 12/14/22 10:15

Date Received: 12/16/22 09:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	42588	12/24/22 18:43	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42608	12/26/22 16:25	AJ	EET MID
Total/NA	Analysis	300.0		5	50 mL	50 mL	42346	12/27/22 16:33	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	42350	12/20/22 17:32	SMC	EET MID

Client Sample ID: DUP-1

Date Collected: 12/14/22 00:00 Date Received: 12/16/22 09:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	42588	12/24/22 19:03	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			42608	12/26/22 16:25	AJ	EET MID
Total/NA	Analysis	300.0		10	50 mL	50 mL	42346	12/27/22 16:42	СН	EET MID
Total/NA	Analysis	SM 2540C		1	100 mL	200 mL	42350	12/20/22 17:32	SMC	EET MID

Eurofins Midland

Page 41 of 48

Job ID: 880-22819-1 SDG: 19-0112-22

Lab Sample ID: 880-22819-1 Matrix: Water

Lab Sample ID: 880-22819-3

Lab Sample ID: 880-22819-4

Lab Sample ID: 880-22819-5

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: NEDU Pits

Laboratory References: EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Larson & Associates, Inc. Project/Site: NEDU Pits

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pi	rogram	Identification Number	Expiration Date
Texas	N	ELAP	T104704400-22-25	06-30-23
The following analytes	are included in this report b	ut the laboratory is not certif	ied by the governing authority. This list ma	av include analytes f
the agency does not of	1 /		ied by the governing autionty. This ist ha	ay moldue analytes
0,	1 /	Matrix	Analyte	ay include analytes

10

Job ID: 880-22819-1

SDG: 19-0112-22

Received by OCD: 8/14/2024 11:26:08 AM

Method Summary

Client: Larson & Associates, Inc. Project/Site: NEDU Pits Job ID: 880-22819-1 SDG: 19-0112-22

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
SM 2540C	Solids, Total Dissolved (TDS)	SM	EET MID
5030B	Purge and Trap	SW846	EET MID

Protocol References:

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions.

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 8/28/2024 4:24:43 PM

Client: Larson & Associates, Inc. Project/Site: NEDU Pits Job ID: 880-22819-1 SDG: 19-0112-22

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-22819-1	MW-1	Water	12/14/22 11:35	12/16/22 09:34
880-22819-2	MW-2	Water	12/14/22 11:01	12/16/22 09:34
880-22819-3	MW-3	Water	12/14/22 09:40	12/16/22 09:34
880-22819-4	MW-4	Water	12/14/22 10:15	12/16/22 09:34
880-22819-5	DUP-1	Water	12/14/22 00:00	12/16/22 09:34

.

Received by OCD: 8/14/2024 11:26:08 AM

Page 46 of 48

5 6

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Login Number: 22819 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 880-22819-1 SDG Number: 19-0112-22

List Source: Eurofins Midland

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 373812

CONDITIONS Operator: OGRID: APACHE CORPORATION 873 303 Veterans Airpark Ln Action Number: Midland, TX 79705 373812 Action Type: [UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Apache - NEDU 829, 830, 922, 928, and 929, 2022 Fourth Quarter Groundwater Monitoring Report, App ID:373812, submitted and received by OCD on 08/14/2024	8/28/2024