Bratcher, Mike, EMNRD

From:	Mike Stubblefield <mike@rthicksconsult.com></mike@rthicksconsult.com>
Sent:	Monday, July 31, 2017 11:59 AM
То:	Weaver, Crystal, EMNRD
Cc:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD; 'Michael Barrett'; 'Jerry Smith'; 'Randall Hicks'; 'Kristin Pope'
Subject:	ASAU 150 Trunk line release monitor well sampling

Dear Ms. Weaver,

On Wednesday 8/2/2017 at 10:00am R.T. Hicks Consultants will be collecting water samples from monitor wells no.3 and no.4 located at the Lime Rock Resources ASAU 150 Trunk line release site. The water samples collected for laboratories analysis will be tested for BTEX only. Please contact me if further information is required.

Sincerely,

Mike Stubblefield RT Hicks Consultants Cell: 575-365-5034

Bratcher, Mike, EMNRD

From:	Weaver, Crystal, EMNRD
Sent:	Thursday, September 7, 2017 8:11 AM
То:	Kristin Pope
Cc:	mike@rthicksconsult.com; mbarrett@limerockresources.com; Randy Hicks; 'Jerry Smith'; Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Subject:	RE: Lime Rock ASAU #150

Hello gang,

I can not stress enough that when you email one of us here at the OCD and not all of us that are working on a project it creates communication issues. Please if you can make a point to any time there is something going on that you are talking to me about or Mike Bratcher about that is within District II jurisdiction please email both Mike and myself every time. He and I work here in District II as a team. Also in this case since it is a ground water impact project you would want to email Mike, Bradford Billings and myself on anything that you send in.

Thank you and I hope this helps to clarify a little more how things work on our side.

Crystal Weaver

Environmental Specialist OCD – Artesia District II 811 S. 1st Street Artesia, NM 88210 Office: 575-748-1283 ext. 101 Cell: 575-840-5963 Fax: 575-748-9720

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Wednesday, September 6, 2017 4:50 PM
To: Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>
Cc: mike@rthicksconsult.com; mbarrett@limerockresources.com; Randy Hicks <r@rthicksconsult.com>; 'Jerry Smith'
<JSmith@limerockresources.com>
Subject: Lime Rock ASAU #150

Crystal,

We are notifying OCD that we will sample the Lime Rock – ASAU #150 monitoring wells for hydrocarbon characterization on Monday, Sept. 11, 2017 at 9:00 am. As discussed during our Aug. 23 meeting, we will sample the top of the water column for laboratory analysis. You will receive the SOP for bailer sampling and the Sampling and Analysis Plan for this work before week's end.

Contact me if you have any questions. Thanks.

Kristin Pope

.

R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

Bratcher, Mike, EMNRD

From: Sent:	Michael Barrett <mbarrett@limerockresources.com> Thursday, September 7, 2017 8:21 AM</mbarrett@limerockresources.com>
То:	Weaver, Crystal, EMNRD
Cc:	Kristin Pope; mike@rthicksconsult.com; Randy Hicks; Jerry Smith; Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Subject:	Re: Lime Rock ASAU #150

Understood, thx!

Sent from my iPhone

On Sep 7, 2017, at 8:11 AM, Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us<mailto:Crystal.Weaver@state.nm.us>> wrote:

Hello gang,

I can not stress enough that when you email one of us here at the OCD and not all of us that are working on a project it creates communication issues. Please if you can make a point to any time there is something going on that you are talking to me about or Mike Bratcher about that is within District II jurisdiction please email both Mike and myself every time. He and I work here in District II as a team. Also in this case since it is a ground water impact project you would want to email Mike, Bradford Billings and myself on anything that you send in.

Thank you and I hope this helps to clarify a little more how things work on our side.

Crystal Weaver Environmental Specialist OCD – Artesia District II 811 S. 1st Street Artesia, NM 88210 Office: 575-748-1283 ext. 101 Cell: 575-840-5963 Fax: 575-748-9720

From: Kristin Pope [mailto:kristin@rthicksconsult.com] Sent: Wednesday, September 6, 2017 4:50 PM To: Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us<mailto:Crystal.Weaver@state.nm.us>> Cc: mike@rthicksconsult.com<mailto:mike@rthicksconsult.com>; mbarrett@limerockresources.com<mailto:mbarrett@limerockresources.com>; Randy Hicks <r@rthicksconsult.com<mailto:r@rthicksconsult.com>>; 'Jerry Smith' <JSmith@limerockresources.com<mailto:JSmith@limerockresources.com>> Subject: Lime Rock ASAU #150

Crystal,

We are notifying OCD that we will sample the Lime Rock – ASAU #150 monitoring wells for hydrocarbon characterization on Monday, Sept. 11, 2017 at 9:00 am. As discussed during our Aug. 23 meeting, we will sample the top of the water column for laboratory analysis. You will receive the SOP for bailer sampling and the Sampling and Analysis Plan for this work before week's end.

Contact me if you have any questions. Thanks.

Bratcher, Mike, EMNRD

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Friday, September 8, 2017 3:51 PM
То:	Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD; Billings, Bradford, EMNRD
Cc:	mike@rthicksconsult.com; mbarrett@limerockresources.com; Randy Hicks; 'Jerry Smith'
Subject:	RE: Lime Rock ASAU #150
Attachments:	SamplingPlanHydrocarbon.pdf

Crystal, Brad, and Mike,

Please find the attached sampling plan for the characterization of BTEX on Monday. Should you have any questions or any other comments, please call me any time. Thanks and have a good weekend.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Wednesday, September 06, 2017 4:50 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us)
Cc: mike@rthicksconsult.com; Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); Randy Hicks; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock ASAU #150

Crystal,

We are notifying OCD that we will sample the Lime Rock – ASAU #150 monitoring wells for hydrocarbon characterization on Monday, Sept. 11, 2017 at 9:00 am. As discussed during our Aug. 23 meeting, we will sample the top of the water column for laboratory analysis. You will receive the SOP for bailer sampling and the Sampling and Analysis Plan for this work before week's end.

Contact me if you have any questions. Thanks.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

September 8, 2017

Mr. Bradford Billings, Ms. Crystal Weaver, Mr. Mike Bratcher NMOCD District 2 811 S. First Street Artesia, New Mexico 88210 *VIA EMAIL*

RE: Sampling and Analysis Plan for Hydrocarbon Characterization Lime Rock – ASAU #150 Trunkline Release, #2RP-3893

Dear Ms. Weaver, Mr. Billings, and Mr. Bratcher,

As you requested at the meeting at the Artesia OCD office on August 23, 2017, we will sample the monitoring wells at the above-referenced location for the characterization of regulated hydrocarbon constituents in groundwater. As stated in an email on September 6, we will begin collecting these samples at 9:00 am on Monday, September 11, 2017.

On behalf of Lime Rock, please accept this submission is the Sampling and Analysis Plan for this event and will serve as characterization only. This method does not satisfy compliance monitoring requirements of OCD Rules. Generally, the sampling will follow our SOP for Sampling of Monitoring Wells Using a Bailer (attached), but with the following notable specifications and deviations:

- Three full bailers will be purged from the well prior to sample collection. If the sample is turbid, we will discard the sample, wait up to an hour and repeat.
- The analyzing laboratory will be Hall Environmental Analysis Laboratory in Albuquerque and will be delivered by its courier, Keynote Express, within two days of collection.
- Samples will be collected for BTEX analyses. At the time of sample collection, the bailer will be outfitted with a specialized nozzle tip to minimize agitation of VOC samples. Per laboratory specifications, containers will consist of three 40-mL glass VOAs with Teflon-lined, septum caps.
- Samples will be preserved with HgCl and ice¹.
- Approximately 6-inches of LNAPL was last measured on MW-1. Collection of a sample from MW-1 is *not* included in this Plan.

¹ http://www.hallenvironmental.com/samples/

September 8, 2017 Page 2

We plan to sample the wells later this month or in early October for quarterly compliance OCD will be notified of this event at least 48 hours in advance. After the receipt of analysis, we will submit summaries of data collected. Please contact me with any questions regarding these actions. Thank you for your help with this project. Sincerely,

R.T. Hicks Consultants

Knistin Pope

Kristin Pope Project Geologist

Enclosure: SOP for bailer sampling

Copy: Lime Rock Resources

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

September 8, 2017

Standard Operating Procedure for Sampling of Monitoring Wells by Bailer

This procedure applies to the use of a hand bailer for the purpose of monitoring groundwater quality. The reader should be familiar with relevant sections of the following document as it is the source of this field method:

Groundwater Sampling, U.S. EPA, Region 4, March 6, 2013 www.epa.gov/sites/production/files/2015-06/documents/Groundwater-Sampling.pdf

The sampler shall review the well construction and previous groundwater analyses (if applicable) prior to the field program. Begin with the well that exhibits the lowest degree of contamination and end with the most contaminated well. The sampler shall also check the laboratory's requirements for containers and sample handling according to the intended analyses. A new pair of disposable nitrile or latex gloves, bailer, and cord, shall be used for each sample. Data Quality Objectives and Quality Assurance protocols in the sampling plan must be followed.

Documentation and Preparation

- 1. This SOP is appended to the Health and Safety Plan associated with the field program. Don nitrile gloves prior to work.
- 2. Documentation of all sampling is imperative. Documentation prior to purging and sampling includes, at a minimum
 - a. Location (site name, well identification)
 - b. Sampler name, date, time sample was collected
 - c. Well diameter, total depth of well
 - d. Measure and record static depth to water (from the north side of the top of casing) and calculate and record volume of the water column in the casing: $\mathbf{V} = \mathbf{\pi} \mathbf{r}^2 \mathbf{h}$ $\mathbf{r} = \text{radius.}$ Radius is ½ of the inside diameter of casing. $\mathbf{h} = \text{height of column}$; total depth minus depth to water. Check units carefully and convert units for volume if needed. Decontamination of the portion of the measuring tape that entered the well should be done at this time.
 - e. Chain of Custody forms completed except for sample-specific data
 - f. Sample labels completed except for the sample-specific data
- 3. Prepare a sample preparation surface by using a clean drop cloth, plastic sheeting, or other non-reactive material. Stage all materials needed for sampling near the well (refer to checklist at the end of this document).

September 8, 2017 Page 2

Purging

This SOP purges three times the volume of standing water in the well. Well conditions and stability of water parameters may dictate a greater or lesser volume purged; this decision will be made by the project manager.

- 1. Using the water volume calculated above, calculate three times this volume to determine the purge volume goal and record in field notes.
- 2. Tie nylon cord (or other non-reactive twine) onto a new disposable bailer and slowly lower the bailer to the water level. Do not cause unnecessary turbidity by letting the empty bailer splash into the water. Slowly sink the bailer and allow it to fill. Avoid sinking the bailer farther than necessary to fill as withdrawal of the bailer may cause surging and cause turbidity of the sample.
- 3. Empty the bailer into a 1-gallon bucket in which is instrumentation to measure field parameters such as temperature, conductance, pH, etc.
- 4. Carefully retrieve the bailer and evacuate the contents into the waste container. Lower the bailer into the water again and repeat until the targeted purge volume is achieved.
- 5. After about 1 gallon is purged, empty this container into a larger waste container with a known volume to mark the targeted purge volume using tape, marker, etc.

Sampling

- 1. After appropriately purging and with pre-labeled containers staged for the expected samples, transfer the water from the bailer directly into the sample container(s), filling containers for VOC analyses first (if applicable). Preserve the sample according to the sampling plan and the requirements of the laboratory for the intended analyses.
- 2. Immediately cap the containers. Check condition of sample. If sampling for VOCs, ensure than no air bubbles are present in the capped container. Attach a custody seal to the cap, if required.
- 3. Complete sampling records in logbook or data sheets, including the appearance and odor of the sample water. Complete labels and custody forms.
- 4. After containers are completely labeled, place all containers for each sample into a zip-lock bag, pre-labeled with identifying information. Immediately place samples into a cooler with ice for transport to the laboratory.
- 5. Appropriately dispose of the drop cloth, bailer, cord or twine, and other disposable material used.
- 6. Secure the well before leaving the location.
- Appropriately dispose of the purged water and decontamination waste. Note the disposition of this material in the sample sheet or notebook. Disposal of waste shall follow federal, state, and/or municipal regulations.

September 8, 2017 Page 3

Equipment Checklist

- □ Site-specific plans (e.g, health and safety and sampling plan)
- □ Plastic zip-top bags to hold samples in cooler
- □ Field logbook
- □ Personal protective clothing (see HASP)
- □ Indelible black ink pens and markers
- □ Plastic sheeting as drop cloth for sample preparation area and other uses
- □ Clear, waterproof tape to cover sample labels
- □ Disposable nitrile or appropriate gloves
- □ Appropriate sample containers with labels
- □ Bags of ice
- Decontamination supplies: three buckets, Simple Green, Alconox, or equivalent
- detergent, fresh and/or distilled water
- $\hfill\square$ Chain of custody forms
- \Box Wipes or paper towels
- \Box Insulated cooler(s)
- □ Water level indicator tape
- □ Trash Bags
- □ New bailers in sealed containers
- \Box Nylon cord
- □ Waste containers
- $\hfill\square$ Non-reactive brush for decon.
- □ Monitoring/screening instruments as required by the health and safety plan

From:	Kristin Pope
To:	Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD; Billings, Bradford, EMNRD
Cc:	<pre>mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks; "Jerry Smith"</pre>
Subject:	Lime Rock - ASAU #150 Release
Date:	Monday, October 9, 2017 2:02:31 PM
Attachments:	BTEXSamplingReport.pdf

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266.0745 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

October 9, 2017

Mr. Bradford Billings Ms. Crystal Weaver, Mr. Mike Bratcher NMOCD District 2 811 S. First Street Artesia, New Mexico 88210

VIA EMAIL

RE: Report of Hydrocarbon Characterization and Proposed Actions Lime Rock – ASAU #150 Trunkline Release, #2RP-3893

Dear Ms. Weaver, Mr. Billings and Mr. Bratcher:

On behalf of Lime Rock Resources, R.T. Hicks Consultants, Ltd. submits this update of activities performed at the above-referenced release location. As requested by NMOCD during a meeting at the District office on August 28, 2017, samples were collected from the top of the water column as a means to characterize the extent and magnitude of hydrocarbon constituents. NMOCD was emailed notification of the scheduled sampling on September 6 and provided a Sampling and Analysis Plan (Plan) on September 8. We report the results of this characterization sampling herein.

Method and Observations

Witnessed by Ms. Weaver, we began at MW-3 and the procedure followed the submitted Plan.

MW-3

- Depth to water (from TOC) was measured at 47.95 feet.
- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- The third bailer for the sample was observed to be turbid/silty. As specified in the Plan, we waited at least two hours before sampling again.
- We returned to this well and repeated the procedure and obtained a sample at 12:08 pm. The sample was again observed to be silty, as shown in the adjacent photograph.

MW-2

• Depth to water (from TOC) was measured at 52.08 feet.

Silty samples from MW-3

- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- During bailing, the bailer was observed to have LNAPL sheen on the outside and the water had a sheen on the surface.
- The sample was collected at 10:40 am.

October 9, 2017 Page 2

MW-4

- Depth to water (from TOC) was measured at 48.87 feet.
- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- During bailing and sampling, the water was observed to be clear with no noticeable odor.
- The sample was collected at 11:08 am.

MW-1

- Ms. Weaver stated that NMOCD requests a product thickness measurement in this well.
- We explained that after consistently measuring approximately 6 inches of product thickness, alinch "measuring tube" was installed to facilitate accurate DTW measurements (adjacent photograph). Since installation of the sampling tube, we are unable to measure the product.
- DTW was measured in the sampling tube at 52.98 feet on September 11, 2017.

Installation of "Measuring tube" in MW-1

Samples were delivered to Hall Environmental Analysis Laboratory in Albuquerque via its courier service.

Analysis and Evaluation

The sampling data and BTEX analysis provided by Hall is summarized in the table below.

Well ID	DTW from TOC (ft)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	Observations
MW-2	52.08	370	0	51	66	487	Sheen; film on bailer
MW-3	47.95	41	0	0	0	41	Turbid at 1st attempt; waited 2 hrs, sample is silty
MW-4	48.87	3300	0	470	0	3770	Clear
MW-1	52.98						DTW only; measured from steel sampling tube
WQCC std		10	750	750	620		

all concentrations are µg/L

Table 1: BTEX characterization sampling (9/11/2017)

When compared to the concentrations from the last compliance sampling event for each well, the data show the following relationships:

- MW-2, approximately 60 feet southeast of MW-1, yielded 930 μ g/L benzene when sampled using a bailer-purge method soon after installation on June 12, 2017. Although the September 11 characterization sampling method is not comparable to the compliance sampling method, the characterization sampling revealed a decrease in benzene of more than 60% in this well.
- MW-3 was sampled for compliance on August 2, 2017 using a low-flow purge and sample method¹ which yielded benzene concentration of 61 μ g/L. When compared to the

¹ <u>https://www.epa.gov/sites/production/files/2015-06/documents/EQASOP-GW001.pdf</u>

October 9, 2017 Page 3

compliance sampling, the September characterization sampling shows a benzene decrease of approximately 33%.

• MW-4 displayed a marked increase when the characterization sampling is compared to the last compliance sampling which 1530 μ g/L benzene. The well was sampled for August 2, 2017 using a bailer-purge method instead of the low-flow method due to a problem with the pump. When compared to the recent characterization sampling, benzene in this well demonstrated an increase of 116%.

Additional Proposed Actions

VOC chemistry appears to demonstrate a southeastern groundwater gradient and DTW measurements from this event confirm a south-southeastern vector (Figure 1) of 0.214, significantly steeper gradient than was last measured in August. Benzene is the only regulated BTEX component in these samples that exceeded WQCC standards (Table 1). Concentrations of BTEX components, observations of the samples, and our experience, however, suggest that the concentrations are more indicative of a lighter product such as gasoline or natural gas condensate. We propose three additional actions to further characterize the groundwater impact at this site.

To provide clarity regarding the nature of the release and as an exercise of academic interest, we propose a **chemical comparison of product sample floating in MW-1 to the product in Lime Rock's system** following these steps:

- 1. Remove the measuring tube in MW-1 at least two days prior to the compliance sampling event to allow time for the water and LNAPL to return to an equilibrium state.
- 2. Measure and record DTW and thickness of LNAPL.
- 3. Collect a sample of only LNAPL using a bailer and preserve for analysis at Lime Rock's usual laboratory used for product analysis.
- 4. Collect a representative product sample from Lime Rock's system in accordance with the laboratory's instructions.
- 5. Submit both samples for comparative analysis for physical and chemical characteristics as defined by Lime Rock.

Given the contradictory nature of prior VOC chemistry at this site, we propose **additional samples to confirm the characterization samples** collected on September 11 using a bailer. **Compliance monitoring sampling of wells MW-2, -3, and -4** for the final 2017 quarter are planned for Wednesday, October 11, 2017. Because these wells were installed up to several months apart, this will be the first sampling event where all data from each well will be collected on the same day. We will employ the low-flow sampling procedure referenced in the previous page with the following addition:

- 1. After compliance sampling of the well for VOCs and inorganic constituents using the low-flow method, the pump rate will be reduced and the intake will be raised to a level of approximately 1 foot from the DTW level, the same interval from which the characterization sample was collected on September 11 using a bailer.
- 2. Collect sample during the low-flow pumping from the top of the column for BTEX analysis per the laboratory's requirements.
- 3. Since the shallower samples will also not fulfill the quarterly sampling requirement, these will be placed on a separate chain of custody form from the compliance samples collected previously on the same day.

October 9, 2017 Page 4

Thank you for your consideration of this data and your help with this project. NMOCD will be notified of significant events at least 48 hours in advance. Please consider this report written notice for the sampling activities planned for October 11, 2017 at 9:00 am.

A copy of this report will be provided to the surface owner. The data gathered thus far leads us to the opinion that there is minimal danger of hydrocarbon impact from this release to existing and future down-gradient water wells installed using contemporary construction standards, as domestic and irrigation wells pump from deeper zones of the aquifer. We acknowledge the exceedance of regulated hydrocarbon constituents at this site and recognize a likely requirement of 1-2 additional down-gradient monitoring wells in the future. We request that NMOCD allow the collection of the proposed data to facilitate the best assessment regarding the possible placement of future wells and the remediation of this release.

Sincerely, R.T. Hicks Consultants

Knistin Tope

Kristin Pope Project Geologist

Enclosures: Figure 1, laboratory report

Copy: Lime Rock Resources, Gray Holdings (surface owner)

M:\Lime Rock Resources\asau trunk\PitRuleTemplate_10_1\Figures\May 2017\Figure 1 gw direction sept 11 2017.mxd

September 21, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150 Release

OrderNo.: 1709837

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 9/14/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

10 9/20/2017 8:04:00 AM B45748

CLIENT: Project:	R.T. Hicks Consultants, LTD Lime Rock ASAU 150 Release		C	Client Samp Collection	le ID: M Date: 9/1	W-2 1/2017 10:40:00 AM	
Lab ID:	1709837-001	Matrix:	AQUEOUS	Received	Date: 9/1	4/2017 9:42:00 AM	
Analyses		Result	PQL Qual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8260: VOLATILES SHORT	LIST				Analyst	RAA
Benzene		370	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Toluene		ND	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Ethylben	zene	51	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Xylenes,	Total	66	10	µg/L	10	9/20/2017 8:04:00 AM	B45748
Surr: 1	1,2-Dichloroethane-d4	90.3	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748
Surr: 4	4-Bromofluorobenzene	95.8	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748
Surr: [Dibromofluoromethane	96.7	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748

70-130

%Rec

90.4

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

9/20/2017 8:28:00 AM B45748

CLIENT:	R.T. Hicks Consultants, LTD		(Client Samp	le ID: M	W-3	
Project:	Lime Rock ASAU 150 Release			Collection	Date: 9/1	1/2017 12:08:00 PM	
Lab ID:	1709837-002	Matrix:	AQUEOUS	Received	Date: 9 /1	4/2017 9:42:00 AM	
Analyses		Result	PQL Qual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8260: VOLATILES SHOR					Analyst	RAA
Benzene		41	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748
Toluene		ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748
Ethylben	zene	ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748
Xylenes,	Total	ND	1.5	µg/L	1	9/20/2017 8:28:00 AM	B45748
Surr: 2	1,2-Dichloroethane-d4	91.6	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748
Surr: 4	4-Bromofluorobenzene	96.1	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748
Surr: [Dibromofluoromethane	96.9	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748

70-130

%Rec

1

91.1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1709837

Date Reported: 9/21/2017

CLIENT:R.T. Hicks Consultants, LTDProject:Lime Rock ASAU 150 ReleaseLab ID:1709837-003	Matrix:	Client Sample ID: MW-4 Collection Date: 9/11/2017 11:28:00 AM Matrix: AQUEOUS Received Date: 9/14/2017 9:42:00 AM						
Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch		
EPA METHOD 8260: VOLATILES SHOR	T LIST				Analyst	RAA		
Benzene	3300	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765		
Toluene	ND	1.0	µg/L	1	9/20/2017 8:52:00 AM	B45748		
Ethylbenzene	470	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765		
Xylenes, Total	ND	1.5	µg/L	1	9/20/2017 8:52:00 AM	B45748		
Surr: 1,2-Dichloroethane-d4	97.0	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748		
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748		
Surr: Dibromofluoromethane	95.8	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748		
Surr: Toluene-d8	89.2	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 3 of 5 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: R.T. Hi Project: Lime R	icks Consult .ock ASAU	ants, LT 150 Rel	TD ease									
Sample ID 100ng lcs2	Samp	Гуре: LC	S	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist			
Client ID: LCSW	Batc	h ID: B4	5748	F	RunNo: 45748							
Prep Date:	Analysis [Date: 9/	20/2017	Ş	SeqNo: 1	453586						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	22	1.0	20.00	0	110	70	130					
Toluene	20	1.0	20.00	0	98.6	70	130					
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.6	70	130					
Surr: 4-Bromofluorobenzene	9.6		10.00		95.5	70	130					
Surr: Dibromofluoromethane	9.7		10.00		97.5	70	130					
Surr: Toluene-d8	8.9		10.00		89.0	70	130					
Sample ID rb2	Samp	Гуре: М	BLK	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist			
Client ID: PBW	Batc	h ID: B4	5748	F	RunNo: 4	5748						
Prep Date:	Analysis [Date: 9/	20/2017	Ś	SeqNo: 1	453587	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	1.0										
Toluene	ND	1.0										
Ethylbenzene	ND	1.0										
Xylenes, Total	ND	1.5										
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130					
Surr: 4-Bromofluorobenzene	9.5		10.00		94.8	70	130					
Surr: Dibromofluoromethane	9.6		10.00		96.4	70	130					
Surr: Toluene-d8	8.9		10.00		88.6	70	130					
Sample ID 100ng Ics	SampType: LCS			TestCode: EPA Method 8260: Volatiles Short List								
Client ID: LCSW	Batch ID: SL45765			F	5765							
Prep Date:	Analysis [Date: 9/	20/2017	Ś	SeqNo: 1	454013	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	21	1.0	20.00	0	107	70	130					
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130					
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130					
Surr: Dibromofluoromethane	9.5		10.00		95.5	70	130					
Surr: 1 oluene-d8	8.9		10.00		89.0	70	130					
Sample ID rb	SampType: MBLK TestCode: EPA Method 8260: Volatiles Short List											
Client ID: PBW	Batch ID: SL45765			F	RunNo: 4	5765						
Prep Date:	Analysis [Date: 9/	20/2017	S	SeqNo: 1	454014	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	1.0										
Ethylbenzene	ND	1.0				_						
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.9	70	130					

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 4 of 5

WO#: 1709837

Released to Imaging: 9/16/2024 1:48:57 PM

Client:	R.T. Hicks Consult	ants, L	.TD							
Project:	Lime Rock ASAU	150 Re	elease							
Sample ID rb	Samp	Гуре: N	IBLK	Test	Code: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: PBW	Batc	h ID: S	SL45765	R	unNo: 4	5765				
Prep Date:	Analysis [Date: 9	9/20/2017	S	eqNo: 1	454014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluoroben:	zene 9.6		10.00		95.6	70	130			
Surr: Dibromofluorometh	nane 9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		89.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1709837

21-Sep-17

WO#:

Page 5 of 5

•

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albuc TEL: 505-345-3975 I Website: www.halt	Laboratory Hawkins NE 9, NM 87109 95-345-4107 1mental.com	Sample Log-In Check List			
Client Name: RT HICKS	Work Order Number:	17098	37		RcptNo:	1
Received By: Isaiah Ortiz	9/14/2017 9:42:00 AM		П			
Completed By: Ashley Gallegos Reviewed By:	9/15/2017 9:43:33 AM 9/15/17		÷	F7		
Chain of Custody						
 Custody seals intact on sample bottles? 		Yes		No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?		Yes		No 🗋	Not Present	
3. How was the sample delivered?		<u>Couri</u>	er			
<u>Log In</u>						
4. Was an attempt made to cool the samples?	1	Yes		No 🗌	NA 🗌	
5. Were all samples received at a temperature	of >0° C to 6.0°C	Yes		No 🗆	NA 🗆	
6. Sample(s) in proper container(s)?				No 🗌		
7. Sufficient sample volume for indicated test()?	Yes		No 🗌		
8. Are samples (except VOA and ONG) proper	ly preserved?	Yes	\checkmark	No 🗆		
9. Was preservative added to bottles?		Yes		No 🔽	NA 🗌	
10.VOA vials have zero headspace?		Yes		No 🗌	No VOA Vials 🗌	
11, Were any sample containers received broke	en?	Yes		No 🗹 🛛		
					# of preserved bottles checked	
12. Does paperwork match bottle labels?			\checkmark	No 🗌	for pH:	
(Note discrepancies on chain of custody)					Adiusted?	or >12 unless noted)
13. Are matrices correctly identified on Chain of	Custody?	Yes				
14. Is it clear what analyses were requested?		Yes			Checked by:	
15. Were all holding times able to be met? (If no, notify customer for authorization.)						<u> </u>
Special Handling (if applicable)						
16 Was client notified of all discrepancies with	this order?	Yes		No 🗆	NA 🗹	
Person Notified:		_		. — F		
By Wilom.	via. L			е 🗌 гах		
Client Instructions:	an a			<u></u>		
17. Additional remarks:						
18. <u>Cooler Information</u>		Soci D		nod Bu		
1 1.0 Good Ye	earintact Seal No S S	bear Da	ne Sig	пеа Ву		
				··· ··· ··· ·		
Page 1 of 1						

(V to Y) selddug TiA Email results to R, kristin@rthicksconsult.com, 001 SWOJS (AOV-im92) 0728 mike@ " alysis Request (AOV) 80828 8081 Pesticides / 8082 PCB's Anions (FCLNO3, NO2, PO4, SO4) **RCRA 8 Metals** (HA9 10 AN9) 0168 (1.405 botteM) BOB (1.814 bodteM) H9T Tel. 505-(IeseiQ/seg) 82108 bonteM H91 Remarks: BTEX + MTBE + TPH (Gas only) BIEX + WIBE + TMB's (8021) 600 M. Stubblefiel -003 547 100 Release 28601 Time HEAL No. E. Date ON D Ø σ C Rush Preservativ Hocle Kristin Pope 5 e Type Sample Temperature: LYes und Time: 2 1 Project Manager: 8 RSAU ject Name: Standard 3 vor glass Type and # Container Project #: 9 Sampler: Received by: Received by On Ice: 2 1 Level 4 (Full Validation) Sample Request ID å COM. 13 in WILL 4 mar marcheon FM IN Relinquished by. Relinquished by D Other Matrix e. 210 11 Time 9-00-9-308 Rel, 040 EDD (Type) ocreditation. Time: Time: D NELAP LIS /2019 Date 1 1 Date: 0

If necessary, eampies submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report

00

From:	Kristin Pope
To:	Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD; Billings, Bradford, EMNRD
Cc:	<pre>mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks; "Jerry Smith"</pre>
Subject:	RE: Lime Rock - ASAU #150 Release
Date:	Tuesday, October 10, 2017 1:26:34 PM

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Monday, October 09, 2017 2:02 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us); Mike Bratcher; 'Billings, Bradford, EMNRD' (Bradford.Billings@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

Received by OCD: 9/16/2024 1:47:30 PM

From:	Billings, Bradford, EMNRD
To:	Kristin Pope
Cc:	Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Subject:	RE: Lime Rock - ASAU #150 Release
Date:	Tuesday, October 10, 2017 1:30:54 PM

Hi,

Your welcome. Please do not forget the forensic look at the product proper, against that supplied by well being serviced by the line that leaked.. and the purging of the wells post sampling. Pictures would be good. Also, what is the product thickness in MW-1. Thanks.

Brad Billings

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:26 PM
To: Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>; Bratcher, Mike, EMNRD
<mike.bratcher@state.nm.us>; Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>
Cc: mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks
<r@rthicksconsult.com>; 'Jerry Smith' <JSmith@limerockresources.com>
Subject: RE: Lime Rock - ASAU #150 Release

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Cc: Michael Barrett (<u>mbarrett@limerockresources.com</u>) (<u>mbarrett@limerockresources.com</u>); <u>mike@rthicksconsult.com</u>; Randy Hicks; 'Jerry Smith' (<u>JSmith@limerockresources.com</u>) Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

Kristin Pope
Billings, Bradford, EMNRD
Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
RE: Lime Rock - ASAU #150 Release
Tuesday, October 10, 2017 1:35:18 PM

Absolutely, we will. Thanks!

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Tuesday, October 10, 2017 1:31 PM
To: Kristin Pope
Cc: Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Subject: RE: Lime Rock - ASAU #150 Release

Hi,

Your welcome. Please do not forget the forensic look at the product proper, against that supplied by well being serviced by the line that leaked.. and the purging of the wells post sampling. Pictures would be good. Also, what is the product thickness in MW-1. Thanks.

Brad Billings

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:26 PM
To: Weaver, Crystal, EMNRD <<u>Crystal.Weaver@state.nm.us</u>>; Bratcher, Mike, EMNRD
<<u>mike.bratcher@state.nm.us</u>>; Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>;
Cc: mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks
<<u>r@rthicksconsult.com</u>>; 'Jerry Smith' <<u>JSmith@limerockresources.com</u>>
Subject: RE: Lime Rock - ASAU #150 Release

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will

reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Monday, October 09, 2017 2:02 PM
To: Crystal Weaver (<u>Crystal.Weaver@state.nm.us</u>); Mike Bratcher; 'Billings, Bradford, EMNRD' (<u>Bradford.Billings@state.nm.us</u>)
Cc: Michael Barrett (<u>mbarrett@limerockresources.com</u>) (<u>mbarrett@limerockresources.com</u>); mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith' (<u>JSmith@limerockresources.com</u>)
Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

Bratcher, Mike, EMNRD

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Friday, October 13, 2017 4:01 PM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Cc:	mbarrett@limerockresources.com; Randy Hicks; mike@rthicksconsult.com; 'Jerry Smith'
Subject:	RE: Lime Rock - ASAU #150 Release
Attachments:	IMG_3344.JPG; IMG_3351.JPG

Brad, Crystal, and Mike,

We attempted to sample these wells beginning with MW-3 on the morning of Wednesday, October 11, but due to the failure of our pump, we weren't able to sample any of the three.

We measured the LNAPL thickness on MW-1 to be approximately 1.5 inches (attached). We submitted a sample of the product to Laboratory Services in Hobbs for comparative analysis as stated in our plan.

We also purged 13.5 gallons from MW-3 by hand to attempt to clear the silt from the well. The attached photo is of the last bailer that shows the water did not clear up.

We ordered a new pump on the same day and it arrived today. We plan to return to sample the wells on Tuesday, October 17 beginning at 9:00 am. We plan to purge MW-3 after sampling on that same day. Please contact me with any questions or if we need to reschedule this to fit your availability. Thank you.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:35 PM
To: 'Billings, Bradford, EMNRD'
Cc: 'Bratcher, Mike, EMNRD'; 'Weaver, Crystal, EMNRD'
Subject: RE: Lime Rock - ASAU #150 Release

Absolutely, we will. Thanks!

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Tuesday, October 10, 2017 1:31 PM
To: Kristin Pope
Cc: Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Subject: RE: Lime Rock - ASAU #150 Release

Hi,

Your welcome. Please do not forget the forensic look at the product proper, against that supplied by well being serviced by the line that leaked.. and the purging of the wells post sampling. Pictures would be good. Also, what is the product thickness in MW-1. Thanks.

Brad Billings

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:26 PM
To: Weaver, Crystal, EMNRD <<u>Crystal.Weaver@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>;
Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>
Cc: mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks <<u>r@rthicksconsult.com</u>>; 'Jerry Smith'
<JSmith@limerockresources.com>
Subject: RE: Lime Rock - ASAU #150 Release

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Monday, October 09, 2017 2:02 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us); Mike Bratcher; 'Billings, Bradford, EMNRD' (Bradford.Billings@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

.

From:	Billings, Bradford, EMNRD
Sent:	Friday, October 13, 2017 4:08 PM
То:	Kristin Pope; Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Cc:	mbarrett@limerockresources.com; Randy Hicks; mike@rthicksconsult.com; 'Jerry Smith'
Subject:	RE: Lime Rock - ASAU #150 Release

Short point for the moment, as a thought, get a metal bailer and shock bail the well a bunch. Similar to like drill rigs dropping their heavy bailer in to develop a newly placed monitor well. By the by, was this done (the drill rig thing) on these wells when placed?

Di you also get a sample from the feeder well to do the comparison for product?

Is there a problem with the pump and fines content of the water in well? If this is a possibility, then serious consideration should be given to above suggestion I think.

Thank you for the update.

Brad

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, October 13, 2017 4:01 PM
To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>; Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>
Cc: mbarrett@limerockresources.com; Randy Hicks <r@rthicksconsult.com; mike@rthicksconsult.com; 'Jerry Smith'</p>
<JSmith@limerockresources.com>

Subject: RE: Lime Rock - ASAU #150 Release

Brad, Crystal, and Mike,

We attempted to sample these wells beginning with MW-3 on the morning of Wednesday, October 11, but due to the failure of our pump, we weren't able to sample any of the three.

We measured the LNAPL thickness on MW-1 to be approximately 1.5 inches (attached). We submitted a sample of the product to Laboratory Services in Hobbs for comparative analysis as stated in our plan.

We also purged 13.5 gallons from MW-3 by hand to attempt to clear the silt from the well. The attached photo is of the last bailer that shows the water did not clear up.

We ordered a new pump on the same day and it arrived today. We plan to return to sample the wells on Tuesday, October 17 beginning at 9:00 am. We plan to purge MW-3 after sampling on that same day. Please contact me with any questions or if we need to reschedule this to fit your availability. Thank you.

575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:35 PM
To: 'Billings, Bradford, EMNRD'
Cc: 'Bratcher, Mike, EMNRD'; 'Weaver, Crystal, EMNRD'
Subject: RE: Lime Rock - ASAU #150 Release

Absolutely, we will. Thanks!

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Tuesday, October 10, 2017 1:31 PM
To: Kristin Pope
Cc: Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Subject: RE: Lime Rock - ASAU #150 Release

Hi,

Your welcome. Please do not forget the forensic look at the product proper, against that supplied by well being serviced by the line that leaked.. and the purging of the wells post sampling. Pictures would be good. Also, what is the product thickness in MW-1. Thanks.

Brad Billings

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:26 PM
To: Weaver, Crystal, EMNRD <<u>Crystal.Weaver@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>;
Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>
Cc: mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks <<u>r@rthicksconsult.com</u>>; 'Jerry Smith'
Subject: RE: Lime Rock - ASAU #150 Release

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Monday, October 09, 2017 2:02 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us); Mike Bratcher; 'Billings, Bradford, EMNRD' (Bradford.Billings@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

From:	Billings, Bradford, EMNRD
Sent:	Friday, October 13, 2017 4:10 PM
То:	Kristin Pope; Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Cc:	mbarrett@limerockresources.com; Randy Hicks; mike@rthicksconsult.com; 'Jerry Smith'
Subject:	RE: Lime Rock - ASAU #150 Release

Oh, also, maybe consider a water oil interface probe for in hole measurement(s) of thickness.

Brad

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, October 13, 2017 4:01 PM
To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>; Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>
Cc: mbarrett@limerockresources.com; Randy Hicks <r@rthicksconsult.com>; mike@rthicksconsult.com; 'Jerry Smith'
<JSmith@limerockresources.com>
Subject: RE: Lime Rock - ASAU #150 Release

Brad, Crystal, and Mike,

We attempted to sample these wells beginning with MW-3 on the morning of Wednesday, October 11, but due to the failure of our pump, we weren't able to sample any of the three.

We measured the LNAPL thickness on MW-1 to be approximately 1.5 inches (attached). We submitted a sample of the product to Laboratory Services in Hobbs for comparative analysis as stated in our plan.

We also purged 13.5 gallons from MW-3 by hand to attempt to clear the silt from the well. The attached photo is of the last bailer that shows the water did not clear up.

We ordered a new pump on the same day and it arrived today. We plan to return to sample the wells on Tuesday, October 17 beginning at 9:00 am. We plan to purge MW-3 after sampling on that same day. Please contact me with any questions or if we need to reschedule this to fit your availability. Thank you.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:35 PM
To: 'Billings, Bradford, EMNRD'
Cc: 'Bratcher, Mike, EMNRD'; 'Weaver, Crystal, EMNRD'
Subject: RE: Lime Rock - ASAU #150 Release

Absolutely, we will. Thanks!

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Tuesday, October 10, 2017 1:31 PM
To: Kristin Pope
Cc: Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Subject: RE: Lime Rock - ASAU #150 Release

Hi,

Your welcome. Please do not forget the forensic look at the product proper, against that supplied by well being serviced by the line that leaked.. and the purging of the wells post sampling. Pictures would be good. Also, what is the product thickness in MW-1. Thanks.

Brad Billings

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:26 PM
To: Weaver, Crystal, EMNRD <<u>Crystal.Weaver@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>;
Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>
Cc: mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks <<u>r@rthicksconsult.com</u>>; 'Jerry Smith'
<<u>JSmith@limerockresources.com</u>>
Subject: RE: Lime Rock - ASAU #150 Release

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com] Sent: Monday, October 09, 2017 2:02 PM To: Crystal Weaver (<u>Crystal.Weaver@state.nm.us</u>); Mike Bratcher; 'Billings, Bradford, EMNRD' (<u>Bradford.Billings@state.nm.us</u>)
 Cc: Michael Barrett (<u>mbarrett@limerockresources.com</u>) (<u>mbarrett@limerockresources.com</u>); <u>mike@rthicksconsult.com</u>; Randy Hicks; 'Jerry Smith' (<u>JSmith@limerockresources.com</u>)
 Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Friday, October 13, 2017 4:24 PM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Cc:	mbarrett@limerockresources.com; 'Randy Hicks'; mike@rthicksconsult.com; 'Jerry Smith'
Subject:	RE: Lime Rock - ASAU #150 Release

Yes, we used our oil interface probe in MW-1. Depth to LNAPL was 52.23 ft. DTW was approximately 52.50 ft. Even though we lowered the probe slowly and tried to minimize turbity, the DTW measurement was difficult to ascertain and was not clear. So between the measurements in the well and observations in the bailer, LNAPL thickness is approximately 1.50-3.24 Inches. When we bailed the LNAPL down, moved to bail MW-3, and then returned to MW-1 after approximately 1 hour, the thickness in the first bailer was about the same as observed in the photo of the initial bailer trip.

We will measure MW-1 again next week when we are there sampling the other wells.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Friday, October 13, 2017 4:10 PM
To: Kristin Pope; Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Cc: mbarrett@limerockresources.com; Randy Hicks; mike@rthicksconsult.com; 'Jerry Smith'
Subject: RE: Lime Rock - ASAU #150 Release

Oh, also, maybe consider a water oil interface probe for in hole measurement(s) of thickness.

Brad

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, October 13, 2017 4:01 PM
To: Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>;
Weaver, Crystal, EMNRD <<u>Crystal.Weaver@state.nm.us</u>>
Cc: mbarrett@limerockresources.com; Randy Hicks <<u>r@rthicksconsult.com</u>>; mike@rthicksconsult.com; 'Jerry Smith'
<<u>JSmith@limerockresources.com</u>>
Subject: RE: Lime Rock - ASAU #150 Release

Brad, Crystal, and Mike,

We attempted to sample these wells beginning with MW-3 on the morning of Wednesday, October 11, but due to the failure of our pump, we weren't able to sample any of the three.

We measured the LNAPL thickness on MW-1 to be approximately 1.5 inches (attached). We submitted a sample of the product to Laboratory Services in Hobbs for comparative analysis as stated in our plan.

We also purged 13.5 gallons from MW-3 by hand to attempt to clear the silt from the well. The attached photo is of the last bailer that shows the water did not clear up.

We ordered a new pump on the same day and it arrived today. We plan to return to sample the wells on Tuesday, October 17 beginning at 9:00 am. We plan to purge MW-3 after sampling on that same day. Please contact me with any questions or if we need to reschedule this to fit your availability. Thank you.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:35 PM
To: 'Billings, Bradford, EMNRD'
Cc: 'Bratcher, Mike, EMNRD'; 'Weaver, Crystal, EMNRD'
Subject: RE: Lime Rock - ASAU #150 Release

Absolutely, we will. Thanks!

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Tuesday, October 10, 2017 1:31 PM
To: Kristin Pope
Cc: Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Subject: RE: Lime Rock - ASAU #150 Release

Hi,

Your welcome. Please do not forget the forensic look at the product proper, against that supplied by well being serviced by the line that leaked.. and the purging of the wells post sampling. Pictures would be good. Also, what is the product thickness in MW-1. Thanks.

Brad Billings

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:26 PM
To: Weaver, Crystal, EMNRD <<u>Crystal.Weaver@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>;
Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>
Cc: mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks <<u>r@rthicksconsult.com</u>>; 'Jerry Smith'
<JSmith@limerockresources.com>
Subject: RE: Lime Rock - ASAU #150 Release

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Monday, October 09, 2017 2:02 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us); Mike Bratcher; 'Billings, Bradford, EMNRD' (Bradford.Billings@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Monday, October 16, 2017 3:30 PM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Cc:	mbarrett@limerockresources.com; Randy Hicks; mike@rthicksconsult.com; 'Jerry Smith'
Subject:	RE: Lime Rock - ASAU #150 Release

Brad, Crystal, Mike,

Once again, we have to reschedule the quarterly sampling. There was a miscommunication and the pump did not arrive in Artesia as the order stated. Tracking info says it will arrive this afternoon but we will not schedule or notify OCD until it arrives, is set up, and is working properly. I apologize for any inconvenience this has caused. Thanks for understanding.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, October 13, 2017 4:01 PM
To: 'Billings, Bradford, EMNRD'; Mike Bratcher; Crystal Weaver (Crystal.Weaver@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); Randy Hicks; mike@rthicksconsult.com; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: RE: Lime Rock - ASAU #150 Release

Brad, Crystal, and Mike,

We attempted to sample these wells beginning with MW-3 on the morning of Wednesday, October 11, but due to the failure of our pump, we weren't able to sample any of the three.

We measured the LNAPL thickness on MW-1 to be approximately 1.5 inches (attached). We submitted a sample of the product to Laboratory Services in Hobbs for comparative analysis as stated in our plan.

We also purged 13.5 gallons from MW-3 by hand to attempt to clear the silt from the well. The attached photo is of the last bailer that shows the water did not clear up.

We ordered a new pump on the same day and it arrived today. We plan to return to sample the wells on Tuesday, October 17 beginning at 9:00 am. We plan to purge MW-3 after sampling on that same day. Please contact me with any questions or if we need to reschedule this to fit your availability. Thank you.

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:35 PM
To: 'Billings, Bradford, EMNRD'
Cc: 'Bratcher, Mike, EMNRD'; 'Weaver, Crystal, EMNRD'
Subject: RE: Lime Rock - ASAU #150 Release

Absolutely, we will. Thanks!

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Tuesday, October 10, 2017 1:31 PM
To: Kristin Pope
Cc: Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Subject: RE: Lime Rock - ASAU #150 Release

Hi,

Your welcome. Please do not forget the forensic look at the product proper, against that supplied by well being serviced by the line that leaked.. and the purging of the wells post sampling. Pictures would be good. Also, what is the product thickness in MW-1. Thanks.

Brad Billings

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:26 PM
To: Weaver, Crystal, EMNRD <<u>Crystal.Weaver@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>;
Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>
Cc: mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks <<u>r@rthicksconsult.com</u>>; 'Jerry Smith'
Subject: RE: Lime Rock - ASAU #150 Release

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Monday, October 09, 2017 2:02 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us); Mike Bratcher; 'Billings, Bradford, EMNRD' (Bradford.Billings@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Monday, October 23, 2017 7:23 AM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Cc:	mbarrett@limerockresources.com; Randy Hicks; mike@rthicksconsult.com; 'Jerry Smith'
Subject:	RE: Lime Rock - ASAU #150 Release
Attachments:	BTEXSamplingReport.pdf

Brad, Crystal, Mike,

Our pump has arrived and is working, and we have a backup on hand. We will sample MW-2, MW-3, and MW-4 tomorrow, **Tuesday, October 24, beginning at 9:00 am**. We will collect the quarterly compliance samples for each well using the low-flow procedure. Then we will collect a sample from the top of the column for hydrocarbon characterization as stated in the attached, previously-submitted report. As requested by NMOCD, we will analyze for the long list of Method 8260 and TPH 8015 on the characterization samples.

If this schedule is inconvenient for you, please let me know as soon as possible. Thank you.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Monday, October 16, 2017 3:30 PM
To: 'Billings, Bradford, EMNRD'; Mike Bratcher; Crystal Weaver (Crystal.Weaver@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); Randy Hicks; mike@rthicksconsult.com; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: RE: Lime Rock - ASAU #150 Release

Brad, Crystal, Mike,

Once again, we have to reschedule the quarterly sampling. There was a miscommunication and the pump did not arrive in Artesia as the order stated. Tracking info says it will arrive this afternoon but we will not schedule or notify OCD until it arrives, is set up, and is working properly. I apologize for any inconvenience this has caused. Thanks for understanding.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, October 13, 2017 4:01 PM
To: 'Billings, Bradford, EMNRD'; Mike Bratcher; Crystal Weaver (Crystal.Weaver@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); Randy Hicks;

mike@rthicksconsult.com; 'Jerry Smith' (<u>JSmith@limerockresources.com</u>)
Subject: RE: Lime Rock - ASAU #150 Release

Brad, Crystal, and Mike,

We attempted to sample these wells beginning with MW-3 on the morning of Wednesday, October 11, but due to the failure of our pump, we weren't able to sample any of the three.

We measured the LNAPL thickness on MW-1 to be approximately 1.5 inches (attached). We submitted a sample of the product to Laboratory Services in Hobbs for comparative analysis as stated in our plan.

We also purged 13.5 gallons from MW-3 by hand to attempt to clear the silt from the well. The attached photo is of the last bailer that shows the water did not clear up.

We ordered a new pump on the same day and it arrived today. We plan to return to sample the wells on Tuesday, October 17 beginning at 9:00 am. We plan to purge MW-3 after sampling on that same day. Please contact me with any questions or if we need to reschedule this to fit your availability. Thank you.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:35 PM
To: 'Billings, Bradford, EMNRD'
Cc: 'Bratcher, Mike, EMNRD'; 'Weaver, Crystal, EMNRD'
Subject: RE: Lime Rock - ASAU #150 Release

Absolutely, we will. Thanks!

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Billings, Bradford, EMNRD [mailto:Bradford.Billings@state.nm.us]
Sent: Tuesday, October 10, 2017 1:31 PM
To: Kristin Pope
Cc: Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD
Subject: RE: Lime Rock - ASAU #150 Release

Hi,

Your welcome. Please do not forget the forensic look at the product proper, against that supplied by well being serviced by the line that leaked.. and the purging of the wells post sampling. Pictures would be good. Also, what is the product thickness in MW-1. Thanks.

Brad Billings

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, October 10, 2017 1:26 PM
To: Weaver, Crystal, EMNRD <<u>Crystal.Weaver@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>>;
Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>
Cc: mbarrett@limerockresources.com; mike@rthicksconsult.com; Randy Hicks <<u>r@rthicksconsult.com</u>>; 'Jerry Smith'
<JSmith@limerockresources.com>
Subject: RE: Lime Rock - ASAU #150 Release

Brad,

Thanks for discussing this project with me today. As you requested, we will request analysis for the long list of volatiles using EPA method 8260. Since this event is our quarterly sampling, we will also analize for Chloride, TDS, and Sulfate for these samples.

You also requested TPH analysis so we'll also run the 8015 method on the characterization samples we collect near the top of the column.

You mentioned that OCD was unable to witness the sampling on Wednesday. Again, we would will reschedule if OCD wishes to witness these events. We can sample on Friday of this week and deliver to the lab on Monday, or we can sample M-W of next week. If you'd like us to re-schedule for any time other than tomorrow, please let us know asap. Thanks again for your help.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Monday, October 09, 2017 2:02 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us); Mike Bratcher; 'Billings, Bradford, EMNRD' (Bradford.Billings@state.nm.us)
Cc: Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock - ASAU #150 Release

Crystal, Mike, and Brad,

Please find the attached sampling report and proposal of additional actions for the Lime Rock ASAU#150 release. We planned to conduct additional sampling on Wednesday, October 11 but forgot that today was a holiday. If this is not enough notice for you, please let us know and we can reschedule. I will call Crystal in the morning to discuss. Thank you.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266.0745 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

October 9, 2017

Mr. Bradford Billings Ms. Crystal Weaver, Mr. Mike Bratcher NMOCD District 2 811 S. First Street Artesia, New Mexico 88210

VIA EMAIL

RE: Report of Hydrocarbon Characterization and Proposed Actions Lime Rock – ASAU #150 Trunkline Release, #2RP-3893

Dear Ms. Weaver, Mr. Billings and Mr. Bratcher:

On behalf of Lime Rock Resources, R.T. Hicks Consultants, Ltd. submits this update of activities performed at the above-referenced release location. As requested by NMOCD during a meeting at the District office on August 28, 2017, samples were collected from the top of the water column as a means to characterize the extent and magnitude of hydrocarbon constituents. NMOCD was emailed notification of the scheduled sampling on September 6 and provided a Sampling and Analysis Plan (Plan) on September 8. We report the results of this characterization sampling herein.

Method and Observations

Witnessed by Ms. Weaver, we began at MW-3 and the procedure followed the submitted Plan.

MW-3

- Depth to water (from TOC) was measured at 47.95 feet.
- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- The third bailer for the sample was observed to be turbid/silty. As specified in the Plan, we waited at least two hours before sampling again.
- We returned to this well and repeated the procedure and obtained a sample at 12:08 pm. The sample was again observed to be silty, as shown in the adjacent photograph.

MW-2

• Depth to water (from TOC) was measured at 52.08 feet.

Silty samples from MW-3

- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- During bailing, the bailer was observed to have LNAPL sheen on the outside and the water had a sheen on the surface.
- The sample was collected at 10:40 am.

October 9, 2017 Page 2

MW-4

- Depth to water (from TOC) was measured at 48.87 feet.
- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- During bailing and sampling, the water was observed to be clear with no noticeable odor.
- The sample was collected at 11:08 am.

MW-1

- Ms. Weaver stated that NMOCD requests a product thickness measurement in this well.
- We explained that after consistently measuring approximately 6 inches of product thickness, a1inch "measuring tube" was installed to facilitate accurate DTW measurements (adjacent photograph). Since installation of the sampling tube, we are unable to measure the product.
- DTW was measured in the sampling tube at 52.98 feet on September 11, 2017.

Installation of "Measuring tube" in MW-1

Samples were delivered to Hall Environmental Analysis Laboratory in Albuquerque via its courier service.

Analysis and Evaluation

The sampling data and BTEX analysis provided by Hall is summarized in the table below.

Well ID	DTW from TOC (ft)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	Observations
MW-2	52.08	370	0	51	66	487	Sheen; film on bailer
MW-3	47.95	41	0	0	0	41	Turbid at 1st attempt; waited 2 hrs, sample is silty
MW-4	48.87	3300	0	470	0	3770	Clear
MW-1	52.98						DTW only; measured from steel sampling tube
WQCC std		10	750	750	620		

all concentrations are µg/L

Table 1: BTEX characterization sampling (9/11/2017)

When compared to the concentrations from the last compliance sampling event for each well, the data show the following relationships:

- MW-2, approximately 60 feet southeast of MW-1, yielded 930 μ g/L benzene when sampled using a bailer-purge method soon after installation on June 12, 2017. Although the September 11 characterization sampling method is not comparable to the compliance sampling method, the characterization sampling revealed a decrease in benzene of more than 60% in this well.
- MW-3 was sampled for compliance on August 2, 2017 using a low-flow purge and sample method¹ which yielded benzene concentration of 61 μ g/L. When compared to the

¹ <u>https://www.epa.gov/sites/production/files/2015-06/documents/EQASOP-GW001.pdf</u>

October 9, 2017 Page 3

compliance sampling, the September characterization sampling shows a benzene decrease of approximately 33%.

• MW-4 displayed a marked increase when the characterization sampling is compared to the last compliance sampling which 1530 μ g/L benzene. The well was sampled for August 2, 2017 using a bailer-purge method instead of the low-flow method due to a problem with the pump. When compared to the recent characterization sampling, benzene in this well demonstrated an increase of 116%.

Additional Proposed Actions

VOC chemistry appears to demonstrate a southeastern groundwater gradient and DTW measurements from this event confirm a south-southeastern vector (Figure 1) of 0.214, significantly steeper gradient than was last measured in August. Benzene is the only regulated BTEX component in these samples that exceeded WQCC standards (Table 1). Concentrations of BTEX components, observations of the samples, and our experience, however, suggest that the concentrations are more indicative of a lighter product such as gasoline or natural gas condensate. We propose three additional actions to further characterize the groundwater impact at this site.

To provide clarity regarding the nature of the release and as an exercise of academic interest, we propose a **chemical comparison of product sample floating in MW-1 to the product in Lime Rock's system** following these steps:

- 1. Remove the measuring tube in MW-1 at least two days prior to the compliance sampling event to allow time for the water and LNAPL to return to an equilibrium state.
- 2. Measure and record DTW and thickness of LNAPL.
- 3. Collect a sample of only LNAPL using a bailer and preserve for analysis at Lime Rock's usual laboratory used for product analysis.
- 4. Collect a representative product sample from Lime Rock's system in accordance with the laboratory's instructions.
- 5. Submit both samples for comparative analysis for physical and chemical characteristics as defined by Lime Rock.

Given the contradictory nature of prior VOC chemistry at this site, we propose **additional samples to confirm the characterization samples** collected on September 11 using a bailer. **Compliance monitoring sampling of wells MW-2, -3, and -4** for the final 2017 quarter are planned for Wednesday, October 11, 2017. Because these wells were installed up to several months apart, this will be the first sampling event where all data from each well will be collected on the same day. We will employ the low-flow sampling procedure referenced in the previous page with the following addition:

- 1. After compliance sampling of the well for VOCs and inorganic constituents using the low-flow method, the pump rate will be reduced and the intake will be raised to a level of approximately 1 foot from the DTW level, the same interval from which the characterization sample was collected on September 11 using a bailer.
- 2. Collect sample during the low-flow pumping from the top of the column for BTEX analysis per the laboratory's requirements.
- 3. Since the shallower samples will also not fulfill the quarterly sampling requirement, these will be placed on a separate chain of custody form from the compliance samples collected previously on the same day.

October 9, 2017 Page 4

Thank you for your consideration of this data and your help with this project. NMOCD will be notified of significant events at least 48 hours in advance. Please consider this report written notice for the sampling activities planned for October 11, 2017 at 9:00 am.

A copy of this report will be provided to the surface owner. The data gathered thus far leads us to the opinion that there is minimal danger of hydrocarbon impact from this release to existing and future down-gradient water wells installed using contemporary construction standards, as domestic and irrigation wells pump from deeper zones of the aquifer. We acknowledge the exceedance of regulated hydrocarbon constituents at this site and recognize a likely requirement of 1-2 additional down-gradient monitoring wells in the future. We request that NMOCD allow the collection of the proposed data to facilitate the best assessment regarding the possible placement of future wells and the remediation of this release.

Sincerely, R.T. Hicks Consultants

Knistin Tope

Kristin Pope Project Geologist

Enclosures: Figure 1, laboratory report

Copy: Lime Rock Resources, Gray Holdings (surface owner)

M:\Lime Rock Resources\asau trunk\PitRuleTemplate_10_1\Figures\May 2017\Figure 1 gw direction sept 11 2017.mxd

September 21, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150 Release

OrderNo.: 1709837

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 9/14/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

9/20/2017 8:04:00 AM

B45748

CLIENT: Project:	R.T. Hicks Consultants, LTD Lime Rock ASAU 150 Release			Client Samp Collection	le ID: MV Date: 9/1	W-2 1/2017 10:40:00 AM	
Lab ID:	1709837-001	Matrix:	AQUEOUS	Received	Date: 9/1	4/2017 9:42:00 AM	
Analyses		Result	PQL Qua	d Units	DF	Date Analyzed	Batch
EPA MET	HOD 8260: VOLATILES SHORT					Analyst	RAA
Benzene		370	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Toluene		ND	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Ethylben	izene	51	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Xylenes,	Total	66	10	µg/L	10	9/20/2017 8:04:00 AM	B45748
Surr: 7	1,2-Dichloroethane-d4	90.3	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748
Surr: 4	4-Bromofluorobenzene	95.8	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748
Surr: I	Dibromofluoromethane	96.7	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748

70-130

%Rec

10

90.4

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *	Value exceeds Maximum	Contaminant Level.
---------------	-----------------------	--------------------

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1709837

Date Reported: 9/21/2017

CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Releas	e Motriva	Client Sample ID: MW-3 Collection Date: 9/11/2017 12:08:00 PM						
Analyses	Result	PQL Qua	l Units	Date: 9/1	Date Analyzed	Batch		
EPA METHOD 8260: VOLATILES SHOP					Analyst	RAA		
Benzene	41	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748		
Toluene	ND	1.0	μg/L	1	9/20/2017 8:28:00 AM	B45748		
Ethylbenzene	ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748		
Xylenes, Total	ND	1.5	µg/L	1	9/20/2017 8:28:00 AM	B45748		
Surr: 1,2-Dichloroethane-d4	91.6	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748		
Surr: 4-Bromofluorobenzene	96.1	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748		
Surr: Dibromofluoromethane	96.9	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748		
Surr: Toluene-d8	91.1	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 5 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

9/20/2017 8:52:00 AM B45748

Date Reported: 9/21/2017

CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Release Lab ID: 1709837-003	Client Sample ID: MW-4 Collection Date: 9/11/2017 11:28:00 AM Matrix: AQUEOUS Received Date: 9/14/2017 9:42:00 AM					
Analyses	Result	PQL (Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHOR	TLIST				Analyst	RAA
Benzene	3300	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765
Toluene	ND	1.0	µg/L	1	9/20/2017 8:52:00 AM	B45748
Ethylbenzene	470	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765
Xylenes, Total	ND	1.5	µg/L	1	9/20/2017 8:52:00 AM	B45748
Surr: 1,2-Dichloroethane-d4	97.0	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748
Surr: Dibromofluoromethane	95.8	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748

70-130

%Rec

1

89.2

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: R.T. Hi Project: Lime R	icks Consult .ock ASAU	ants, LT 150 Rel	TD ease								
Sample ID 100ng lcs2	Samp	Гуре: LC	S	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist		
Client ID: LCSW	Batch ID: B45748			F	RunNo: 45748						
Prep Date:	Analysis Date: 9/20/2017			SeqNo: 1453586 Un			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	22	1.0	20.00	0	110	70	130				
Toluene	20	1.0	20.00	0	98.6	70	130				
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.6	70	130				
Surr: 4-Bromofluorobenzene	9.6		10.00		95.5	70	130				
Surr: Dibromofluoromethane	9.7		10.00		97.5	70	130				
Surr: Toluene-d8	8.9		10.00		89.0	70	130				
Sample ID rb2	Samp	Гуре: М	BLK	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist		
Client ID: PBW	Batch ID: B45748			RunNo: 45748							
Prep Date:	Analysis Date: 9/20/2017			SeqNo: 1453587 l			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130				
Surr: 4-Bromofluorobenzene	9.5		10.00		94.8	70	130				
Surr: Dibromofluoromethane	9.6		10.00		96.4	70	130				
Surr: Toluene-d8	8.9		10.00		88.6	70	130				
Sample ID 100ng Ics	SampType: LCS			TestCode: EPA Method 8260: Volatiles Short List							
Client ID: LCSW	Batch ID: SL45765			RunNo: 45765							
Prep Date:	Analysis Date: 9/20/2017			SeqNo: 1454013			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	21	1.0	20.00	0	107	70	130				
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130				
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130				
Surr: Dibromofluoromethane	9.5		10.00		95.5	70	130				
Surr: 1 oluene-d8	8.9		10.00		89.0	70	130				
Sample ID rb	SampType: MBLK TestCode: EPA Method 8260: Volatiles Short List										
Client ID: PBW	Batch ID: SL45765			RunNo: 45765							
Prep Date:	Analysis Date: 9/20/2017		SeqNo: 1454014		Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Ethylbenzene	ND	1.0			·						
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.9	70	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 4 of 5

WO#: 1709837

Client:	R.T. Hicks Consult									
Project:	Lime Rock ASAU	150 Re	elease							
Sample ID rb	Samp	Гуре: N	IBLK	Test	Code: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: PBW	Batc	h ID: S	SL45765	R	unNo: 4	5765				
Prep Date:	Analysis [Date:	9/20/2017	S	eqNo: 1	454014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluoroben:	zene 9.6		10.00		95.6	70	130			
Surr: Dibromofluorometh	nane 9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		89.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1709837

21-Sep-17

WO#:

Page 5 of 5

•

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental . Albu TEL: 505-345-3975 Website: www.hai	Analysis Labor 4901 Hawkin querque, NM 8 FAX: 505-345- llenvironmenta	atory as NE 37109 Sam 4107 1.com	Sample Log-In Check List			
Client Name: RT HICKS	Work Order Number:	1709837		RcptNo:	1		
Received By: Isaiah Ortiz	9/14/2017 9:42:00 AM		IGht				
Completed By: Ashley Gallegos Reviewed By:	9/15/2017 9:43:33 AM 9/15/17		AJ				
Chain of Custody							
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹			
2. Is Chain of Custody complete?		Yes 🗹	No 🗔	Not Present			
3. How was the sample delivered?		<u>Courier</u>					
Log In							
4. Was an attempt made to cool the samples'	?	Yes 🗹	No 🗌	NA 🗌			
5. Were all samples received at a temperature	e of ≥0° C to 6.0°C	Yes 🗹	No 🗆				
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌				
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌				
8. Are samples (except VOA and ONG) prope	Yes 🔽	No 🗆					
9. Was preservative added to bottles?	Yes 🗌	No 🔽	NA 🗌				
0.VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials 🗌			
1, Were any sample containers received brok	en?	Yes └┘	No 🗹	# of preserved bottles checked			
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)			No 🗌	for pH: (<2 c	r >12 unless noted)		
3, Are matrices correctly identified on Chain of	Yes 🗹	No 🗌	Adjusted?				
4. Is it clear what analyses were requested?		Yes 🔽	No 🗌				
5. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by:			
pecial Handling (if applicable)							
6. Was client notified of all discrepancies with	this order?	Yes 🗌	No 🗆	NA 🗹	7		
Person Notified:	Date		****				
By Whom:	Via:	🗌 eMail 📋	Phone 🗌 Fax	In Person			
Regarding:							
Client Instructions:				· · · · · · · · · · · · · · ·			
7. Additional remarks:							
8. Cooler Information							
Cooler No Temp °C Condition S 1 1.0 Good Ye	eal Intact Seal No	Seal Date	Signed By				
		<u> </u>		<u></u>			

(V to Y) selddug TiA Email results to R, kristin@rthicksconsult.com, 001 SWOJS (AOV-im92) 0728 mike@ " alysis Request (AOV) 80828 8081 Pesticides / 8082 PCB's Anions (FCLNO3, NO2, PO4, SO4) **RCRA 8 Metals** (HA9 10 AN9) 0168 (1.405 botteM) BOB (1.814 bodieM) H9T Tel. 505-(IeseiQ/seg) 82108 bonteM H91 Remarks: BTEX + MTBE + TPH (Gas only) BIEX + WIBE + TMB's (8021) 600 M. Stubblefiel -003 547 100 Release 28601 Time HEAL No. E. Date ON D Ø σ C Rush Preservativ Hocle Kristin Pope 2 e Type Sample Temperature: LYes und Time: 2 1 Project Manager: 9 ASAU lect Name: Standard 3 vor glass Type and # Container Project #: 9 Sampler: Received by: Received by On Ice: 2 1 Level 4 (Full Validation) Sample Request ID å COM. 13 in WILL 4 mar marcheon Relinquished by. Relinquished by D Other Matrix e. 11 220 Time 9-00-9-308 Rel, 040 EDD (Type) ocreditation. Time: Time: D NELAP LIS /2019 Date 1 1 Date: 0

X

If necessary, eampies submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report

00

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Tuesday, November 14, 2017 6:57 AM
То:	Bratcher, Mike, EMNRD; Weaver, Crystal, EMNRD; Billings, Bradford, EMNRD
Cc:	mike@rthicksconsult.com; mbarrett@limerockresources.com; 'Jerry Smith'; Randy Hicks
Subject:	Lime Rock: ASAU #150

Wanted to give everyone a quick update about the ASAU #150 site. We sampled for hydrocarbon characterization and quarterly compliance last month. We also submitted a sample of the LNAPL in MW-1 for comparative analysis to the crude in Lime Rock's system. It appears that the static LNAPL thickness in MW-1 is now around 1.5 inches.

We received the last set of lab analysis late last week and we are working on report to be submitted OCD that includes a proposal of removal of LNAPL from MW-1. Thanks for your help.

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Friday, December 22, 2017 1:02 PM
То:	Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD
Cc:	Randy Hicks; mike@rthicksconsult.com; mbarrett@limerockresources.com; 'Jerry Smith'
Subject:	Lime Rock ASAU #150 Release #2RP-3893
Attachments:	ASAU150_SummaryAndProposal.pdf

Crystal and Mike,

Please find the attached report and proposal for the Lime Rock ASAU #150 Release . It includes:

- A summary of the compliance sampling performed to date
- A summary of the hydrocarbon characterization samples OCD required from the top of the water.
- A summary of the oil analysis on MW-1. Last measurement showed 1.5" thickness.
- A proposal for recovery of product on MW-1 using a sock. It was installed today and we will check it weekly.
- A proposal for at least one more well and possibly more after Q1 2018 analyses are received.

Let me know if you have any questions. Merry Christmas and enjoy your holiday.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266.0745 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

December 22, 2017

Mr. Bradford Billings Ms. Crystal Weaver, Mr. Mike Bratcher NMOCD District 2 811 S. First Street Artesia, New Mexico 88210

VIA EMAIL

RE: **Groundwater Sampling Report and Proposed Actions** Lime Rock – ASAU #150 Trunkline Release, #2RP-3893

Dear Ms. Weaver, Mr. Billings, and Mr. Bratcher:

On behalf of Lime Rock Resources, R.T. Hicks Consultants, Ltd. submits the report and proposal for the above-referenced site. The following report summarizes data collected thus far and proposes actions to characterize and mitigate potential environmental impact caused by this release with the aim of closure of the regulatory file.

Summary of Previous Actions, Site Conditions, & Submissions

- The initial response actions to the August 30, 2016 release and proposed monitoring wells were described in a December 2016 report to OCD.
- MW-1, nearest to the release, has exhibited measurable Light Non-Aqueous Phase Liquid (LNAPL) ranging in thickness from 6 inches soon after installation, to 1.5 inches most recently.
- Lime Rock and Hicks Consultants met with OCD on May 23, 2017 to discuss placement criteria of additional wells.
- A total of four 2-inch monitoring wells were installed at the site this year and three of them are sampled on a quarterly basis (Appendix A). Plate 1 is an aerial image that displays the location of the monitoring wells at the release site, in relation to the junction of Fanning (CR 44) and Thistle (CR 24) Roads.
- At a meeting with Lime Rock and Hicks Consultants on August 23, 2017, OCD requested sampling of the top of the water column for hydrocarbon analysis.
- A proposal for characterization sampling for hydrocarbon at the top of the water was submitted to OCD on September 8, 2017.
- On October 9, 2017, a report of the September characterization sampling was submitted to OCD, which included a proposal for further characterization sampling (Appendices B and C).

The monitoring wells were installed per New Mexico Guidance and OCD approval, with 10 feet of screen below the water table and 5-feet above groundwater. The wells were sampled no sooner than 48 hours after appropriate development. Most of the samples were collected using

December 21, 2017 Page 2

a low-flow sampling procedure¹ except when pump failure required sample collection using the conventional hand bail method with purging of three casing volumes.

Compliance Sampling of Monitoring Wells

Appendix A includes a summary of all monitoring events (Table 1) including depth to water measurements and analyses and laboratory reports from the fourth quarter (October 24) sampling. From these data, we make the following observations:

- LNAPL in MW-1 has diminished in thickness by 75% since initial installation. Compliance sampling of this well for dissolved constituents provides no value.
- MW-2 has exhibited a sheen and hydrocarbon odor since installation.
- Benzene concentrations in each well exceed WQCC standards (0.01 mg/L) at each sampling event. Benzene concentrations in each well show significant variation due to sampling methods and possibly other factors.
- Sulfate concentrations in each well exceed WQCC standards (600 mg/L) at each sampling event.
- Analyses of total dissolved solids (TDS) in each well exhibit concentrations that exceed WQCC standards (1000 mg/L), except MW-2. The TDS concentration of the first sampling event of MW-2 appears to be a laboratory error.
- Chloride concentrations of all monitoring samples are below the WQCC standard (250 mg/L).
- Groundwater elevation is decreasing from August to October. Plate 2, a map of October groundwater flow direction illustrations a relatively flat southeastern gradient. VOC groundwater chemistry from the October 24 sampling demonstrate a southeastern groundwater gradient from the pipeline release and g confirm a southeastern vector, but a significantly flatter gradient than was measured in August.

Additional Proposed Actions

Additional Monitoring Well

Characterization of the magnitude and extent of hydrocarbons in shallow groundwater is required by OCD and additional wells are necessary. In mid- January 2018, we will conduct the quarterly compliance sampling of the wells except for MW-1. We will continue to employ the low-stress, low-flow procedure and will analyze for BTEXN, chloride, sulfate, and TDS. OCD will be given at least 48 hours' notice of each sampling event. In February, we will present the first quarter sampling data to OCD in the form of a potentiometric surface map, updated data table and a benzene isocontour map of the plume. Unless these new data are unexpected, the observed benzene concentration gradient and the relatively constant groundwater flow vector, suggest a well in the vicinity of the area marked on Plate 1 and should define the concentration gradient within the impacted area. This next well, MW-5, will be installed and developed in early March 2018 in order to provide representative samples for the second quarterly compliance monitoring event in April 2018.

The submission of second quarter results in May 2018 will include a proposal for the additional monitoring well(s) which we anticipate will complete the groundwater monitoring network.

¹ <u>https://www.epa.gov/quality/low-stress-low-flow-purging-and-sampling-procedure-collection-groundwater-</u> samples-monitoring

December 21, 2017 Page 3

LNAPL Recovery in MW-1

Recovery of LNAPL in MW-1 will begin on December 22, 2017. We will employ a passive system using a stainless steel cage-like bailer containing an oil-absorbing sock² to be monitored on a weekly basis. Each week, depth to water and depth to LNAPL measurements will be recorded, as well as the condition of the sock (degree of oil soak). The sock will be changed on a weekly basis, or more frequently if needed, and used socks will be secured and disposed of properly. If the amount of LNAPL increases and causes this system to be inadequate, we will propose a more robust recovery method.

Thank you for your consideration of this data and meeting with us many times regarding this project. OCD will be notified of significant events at least 48 hours in advance.

A copy of this report is provided to the landowner. The data gathered thus far suggest that the potential of hydrocarbon impact from this release to existing, down-gradient water wells is so small as to be nil. We believe it also highly unlikely that the observed hydrocarbon concentrations would impair water quality in future water supply wells installed using contemporary construction standards. This opinion of a low risk to the environment and public health causes us to allow site data to guide the assessment of the impact and thence to determine the most appropriate response.

Sincerely,

R.T. Hicks Consultants

Knistin Pope

Kristin Pope Project Geologist

Enclosures: Plates 1 and 2, Appendices A-C

Copy: Lime Rock Resources, Gray Holdings (surface owner)

² http://www.geotechenv.com/pdf/free phase ground water remediation/geosorb.pdf


```
M:\Lime Rock Resources\asau trunk releases\PitRuleTemplate_10_1\Figures\yearEndReport2017\Plate 1 general location.mxd
```

M:\Lime Rock Resources\asau trunk releases\PitRuleTemplate_10_1\Figures\yearEndReport2017\Figure 2 gw direction with Benzene October 2017.mxd

Appendix A

Compliance Sampling Summary and Laboratory Report

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104
Lime Rock - ASAU #150 Release

.

Monitoring Well Analyses

Well ID	DTW ft (from TOC)	Sample Date	LNAPL in.	Benzene 0.01	Toluene	Ethyl benzene	Total Xylenes	Naphtha- lene 0.03	Total BTEX	Chloride 250	Sulfate 600	TDS 1000	Sampling method	Lab	Notes
MW-1	51.62	3/8/17	6.00	19.2	8.5	2.31	5.17		35.2	188	1460	2800	bail	Cardinal	by oil/water interface meter
	51.62		6.24												baildown test
	51.9	7/19/17													from nested measuring tube
	52.36	10/11/17	1.5										bail		sampled LNAPL
MW-2	51.11	6/12/17	none	0.93	0.0047	0.011	0.034		0.0497	200	2100	381	bail	Hall	
54	grab samples	7/13/17	none	ND	ND	ND	ND		ND				low-flow pump	Hall	sampled at 54'
59	comparison	7/13/17	none	0.0082	ND	ND	ND		0.0082				low-flow pump	Hall	sampled at 59'
	52.00	10/24/2017	none	0.35	0.0078	0.063	0.079	0.013		180	2200		low-flow pump	Hall	
MW-3	46.4	8/2/17	none	0.061	ND	ND	ND		0.061	212	2010	3920	low-flow pump	Cardinal	
	47.57	10/24/2017	none	0.02	ND	ND	ND	ND		190	2100		low-flow pump	Hall	
MW-4	46.8	8/2/17	none	1.53	< 0.020	0.101	< 0.060		1.64	200	1840	3460	bail	Cardinal	
	48.75	10/24/2017	none	0.13	ND	0.016	ND	0.0092		180	2000		low-flow pump	Hall	

all concentrations are mg/L

HALL ENVIRONMENTAL ANALYSIS LABORATORY

November 02, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150

OrderNo.: 1710F09

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1710F09

Hall Environmental Analysis Laboratory, Inc. Date Reported: 11/2/2017										
CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Lab ID: 1710F09-001	Client Sample ID: MW-2 Collection Date: 10/24/2017 11:53:00 AM Matrix: AQUEOUS Received Date: 10/26/2017 10:00:00 AM									
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analyst	MRA				
Chloride	180	50	mg/L	100	10/30/2017 1:19:10 PM	R46764				
Sulfate	2200	50 *	mg/L	100	10/30/2017 1:19:10 PM	R46764				
EPA METHOD 8260B: VOLATILES					Analyst	RAA				
Benzene	350	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Toluene	7.8	5.0	μg/L	5	11/1/2017 5:32:00 AM	A46777				
Ethylbenzene	63	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Methyl tert-butyl ether (MTBE)	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
1,2,4-Trimethylbenzene	29	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
1,3,5-Trimethylbenzene	9.8	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
1,2-Dichloroethane (EDC)	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
1,2-Dibromoethane (EDB)	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Naphthalene	13	10	µg/L	5	11/1/2017 5:32:00 AM	A46777				
1-Methylnaphthalene	ND	20	µg/L	5	11/1/2017 5:32:00 AM	A46777				
2-Methylnaphthalene	ND	20	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Acetone	ND	50	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Bromobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Bromodichloromethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Bromoform	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Bromomethane	ND	15	µg/L	5	11/1/2017 5:32:00 AM	A46777				
2-Butanone	ND	50	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Carbon disulfide	ND	50	µg/L	5	11/1/2017 5:32:00 AM	A46777				
Carbon Tetrachloride	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777				

4-Chlorotoluene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
cis-1,2-DCE	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
cis-1,3-Dichloropropene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
1,2-Dibromo-3-chloropropane	ND	10	µg/L	5	11/1/2017 5:32:00 AM
Dibromochloromethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
Dibromomethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
1,2-Dichlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
1,3-Dichlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
1,4-Dichlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
Dichlorodifluoromethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM
1,1-Dichloroethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM

5.0

10

5.0

15

5.0

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

5

5

5

5

5

11/1/2017 5:32:00 AM

A46777

ND

ND

ND

ND

ND

ND

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

5.0

Oualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В

5

- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 13 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Chlorobenzene

Chloromethane

2-Chlorotoluene

1,1-Dichloroethene

Chloroethane

Chloroform

.

Analytical Report
Lab Order 1710F09

Date Reported	11/2/2017
Date Reputieu.	11/4/401/

, i i i i i i i i i i i i i i i i i i i		Ŭ Ż		1
CLIENT: R.T. Hicks Consultants, LTD		C	Client Sa	mple ID: MW-2
Project: Lime Rock ASAU 150			Collection	on Date: 10/24/2017 11:53:00 AM
Lab ID: 1710F09-001	Matrix:	AQUEOUS	Receiv	ed Date: 10/26/2017 10:00:00 AM
Analyses	Result	PQL Qual	Units	DF Date Analyzed Batch
EPA METHOD 8260B: VOLATILES				Analyst: RAA
1,2-Dichloropropane	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
1,3-Dichloropropane	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
2,2-Dichloropropane	ND	10	µg/L	5 11/1/2017 5:32:00 AM A46777
1,1-Dichloropropene	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
Hexachlorobutadiene	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
2-Hexanone	ND	50	µg/L	5 11/1/2017 5:32:00 AM A46777
Isopropylbenzene	12	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
4-Isopropyltoluene	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
4-Methyl-2-pentanone	ND	50	µg/L	5 11/1/2017 5:32:00 AM A46777
Methylene Chloride	ND	15	µg/L	5 11/1/2017 5:32:00 AM A46777
n-Butylbenzene	ND	15	µg/L	5 11/1/2017 5:32:00 AM A46777
n-Propylbenzene	15	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
sec-Butylbenzene	5.1	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
Styrene	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
tert-Butylbenzene	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
1,1,1,2-Tetrachloroethane	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
1,1,2,2-Tetrachloroethane	ND	10	µg/L	5 11/1/2017 5:32:00 AM A46777
Tetrachloroethene (PCE)	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
trans-1,2-DCE	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
trans-1,3-Dichloropropene	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
1,2,3-Trichlorobenzene	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
1,2,4-Trichlorobenzene	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
1,1,1-Trichloroethane	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
1,1,2-Trichloroethane	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
Trichloroethene (TCE)	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
Trichlorofluoromethane	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
1,2,3-Trichloropropane	ND	10	µg/L	5 11/1/2017 5:32:00 AM A46777
Vinyl chloride	ND	5.0	µg/L	5 11/1/2017 5:32:00 AM A46777
Xylenes, Total	79	7.5	µg/L	5 11/1/2017 5:32:00 AM A46777
Surr: 1,2-Dichloroethane-d4	98.1	70-130	%Rec	5 11/1/2017 5:32:00 AM A46777
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	5 11/1/2017 5:32:00 AM A46777
Surr: Dibromofluoromethane	99.2	70-130	%Rec	5 11/1/2017 5:32:00 AM A46777
Surr: Toluene-d8	99.0	70-130	%Rec	5 11/1/2017 5:32:00 AM A46777

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 13
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1710F09

Inalignmental Analysis Laboratory, Inc. Date Reported: 11/2/2017									
CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Lab ID: 1710F09-002	Matrix: .	AQUEOUS	Client Samp Collection Received	ble ID: MV Date: 10/2 Date: 10/2	V-3 24/2017 9:52:00 AM 26/2017 10:00:00 AM				
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst:	MRA			
Chloride	190	50	mg/L	100	10/30/2017 1:44:00 PM	R46764			
Sulfate	2100	50 *	mg/L	100	10/30/2017 1:44:00 PM	R46764			
EPA METHOD 8260B: VOLATILES					Analyst:	RAA			
Benzene	20	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Toluene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Ethylbenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777			
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777			
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777			
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777			
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777			
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Naphthalene	ND	2.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1-Methylnaphthalene	ND	4.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
2-Methylnaphthalene	ND	4.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Acetone	ND	10	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Bromobenzene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Bromodichloromethane	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Bromoform	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Bromomethane	ND	3.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
2-Butanone	ND	10	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Carbon disulfide	ND	10	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Carbon Tetrachloride	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Chlorobenzene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Chloroethane	ND	2.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Chloroform	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Chloromethane	ND	3.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
2-Chlorotoluene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
4-Chlorotoluene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
cis-1,2-DCE	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Dibromochloromethane	ND	1.0	µq/L	1	11/1/2017 5:56:00 AM	A46777			

ND

ND

ND

ND

ND

ND

ND

Value exceeds Maximum Contaminant Level.

Holding times for preparation or analysis exceeded

% Recovery outside of range due to dilution or matrix

Sample Diluted Due to Matrix

PQL Practical Quanitative Limit

Not Detected at the Reporting Limit

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

Hall Environmental Analysis Laboratory Inc

В Analyte detected in the associated Method Blank Е Value above quantitation range

1

1

1

1

1

1

1

Analyte detected below quantitation limits Page 3 of 13 J

11/1/2017 5:56:00 AM

A46777

A46777

A46777

A46777

A46777

A46777

A46777

- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

Oualifiers:

Dichlorodifluoromethane

*

D

Н

ND

S

13

.

Analytical Report Lab Order 1710F09

Data Papartad	11/2/2017
Date Reputieu.	11/2/201/

Hall Environmental Analysis Laboratory, Inc. Date Reported: 11/2/2017									
CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Lab ID: 1710F09-002	Matrix:	AQUEOUS	Client Sampl Collection I Received I	e ID: M Date: 10 Date: 10	W-3)/24/2017 9:52:00 AM)/26/2017 10:00:00 AM	[
Analyses	Result	PQL (Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 8260B: VOLATILES					Analyst	RAA			
1,2-Dichloropropane	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,3-Dichloropropane	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777			
2,2-Dichloropropane	ND	2.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,1-Dichloropropene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Hexachlorobutadiene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
2-Hexanone	ND	10	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Isopropylbenzene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
4-Isopropyltoluene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
4-Methyl-2-pentanone	ND	10	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Methylene Chloride	ND	3.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
n-Butylbenzene	ND	3.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
n-Propylbenzene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
sec-Butylbenzene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Styrene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
tert-Butylbenzene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
trans-1,2-DCE	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Trichloroethene (TCE)	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Trichlorofluoromethane	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Vinyl chloride	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Xylenes, Total	ND	1.5	µg/L	1	11/1/2017 5:56:00 AM	A46777			
Surr: 1,2-Dichloroethane-d4	99.0	70-130	%Rec	1	11/1/2017 5:56:00 AM	A46777			
Surr: 4-Bromofluorobenzene	97.5	70-130	%Rec	1	11/1/2017 5:56:00 AM	A46777			
Surr: Dibromofluoromethane	102	70-130	%Rec	1	11/1/2017 5:56:00 AM	A46777			
Surr: Toluene-d8	96.2	70-130	%Rec	1	11/1/2017 5:56:00 AM	A46777			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 1
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report Lab Order 1710F09

Data Da stad. 11/0/0017

Han Environmental Analysi,		tor y, me.			Date Reported: 11/2/201	.7
CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Lab ID: 1710E00.002	Matrice		Client Samp Collection	ble ID: MV Date: 10/2	V-4 24/2017 10:46:00 AM	
Lab ID: 1/10F09-005	Matrix:	AQUEUUS	Received	Date: 10/2	20/2017 10:00:00 AM	
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	MRA
Chloride	180	50	mg/L	100	10/30/2017 2:08:48 PM	R46764
Sulfate	2000	50 *	mg/L	100	10/30/2017 2:08:48 PM	R46764
EPA METHOD 8260B: VOLATILES					Analyst:	RAA
Benzene	130	10	ua/L	10	11/1/2017 6:43:00 AM	A46777
Toluene	ND	1.0	µ9/⊏ ua/l	10	11/1/2017 3:37:00 PM	A46812
Ethylbenzene	16	1.0	µg/= ua/L	1	11/1/2017 3:37:00 PM	A46812
Methyl tert-butyl ether (MTBE)	ND	1.0	ua/L	1	11/1/2017 3:37:00 PM	A46812
1.2.4-Trimethylbenzene	2.1	1.0	ug/L	1	11/1/2017 3:37:00 PM	A46812
1,3,5-Trimethylbenzene	1.8	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	11/1/2017 3:37:00 PM	A46812
Naphthalene	9.2	2.0	μg/L	1	11/1/2017 3:37:00 PM	A46812
1-Methylnaphthalene	5.3	4.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
2-Methylnaphthalene	ND	4.0	μg/L	1	11/1/2017 3:37:00 PM	A46812
Acetone	ND	10	µg/L	1	11/1/2017 3:37:00 PM	A46812
Bromobenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Bromodichloromethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Bromoform	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Bromomethane	ND	3.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
2-Butanone	ND	10	µg/L	1	11/1/2017 3:37:00 PM	A46812
Carbon disulfide	ND	10	µg/L	1	11/1/2017 3:37:00 PM	A46812
Carbon Tetrachloride	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Chlorobenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Chloroethane	ND	2.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Chloroform	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Chloromethane	ND	3.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
2-Chlorotoluene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
4-Chlorotoluene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
cis-1,2-DCE	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
cis-1,3-Dichloropropene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Dibromochloromethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Dibromomethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,2-Dichlorobenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812

ND

ND

ND

ND

ND

Value exceeds Maximum Contaminant Level.

Holding times for preparation or analysis exceeded

% Recovery outside of range due to dilution or matrix

Sample Diluted Due to Matrix

PQL Practical Quanitative Limit

Not Detected at the Reporting Limit

1.0

1.0

1.0

1.0

1.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

µg/L

µg/L

µg/L

µg/L

µg/L

В

Hall Environmental Analysis Laboratory Inc.

Е Value above quantitation range

1

1

1

1

1

Analyte detected below quantitation limits Page 5 of 13 J

Analyte detected in the associated Method Blank

11/1/2017 3:37:00 PM A46812

11/1/2017 3:37:00 PM A46812

A46812 A46812

A46812

11/1/2017 3:37:00 PM

11/1/2017 3:37:00 PM

11/1/2017 3:37:00 PM

- Р Sample pH Not In Range
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

Oualifiers:

Dichlorodifluoromethane

*

D

Н

ND

S

Project:

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD

1710F09-003

Lime Rock ASAU 150

Analytical Report
Lab Order 1710F09

Hall Environmental Analysis I	Laboratory, Inc.
-------------------------------	------------------

Date Reported: 11/2/2017
Client Sample ID: MW-4

Collection Date: 10/24/2017 10:46:00 AM

Received Date: 10/26/2017 10:00:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
1,2-Dichloropropane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,3-Dichloropropane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
2,2-Dichloropropane	ND	2.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,1-Dichloropropene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Hexachlorobutadiene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
2-Hexanone	ND	10	µg/L	1	11/1/2017 3:37:00 PM	A46812
Isopropylbenzene	4.0	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
4-Isopropyltoluene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
4-Methyl-2-pentanone	ND	10	µg/L	1	11/1/2017 3:37:00 PM	A46812
Methylene Chloride	ND	3.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
n-Butylbenzene	ND	3.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
n-Propylbenzene	1.9	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
sec-Butylbenzene	1.4	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Styrene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
tert-Butylbenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
trans-1,2-DCE	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Trichloroethene (TCE)	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Trichlorofluoromethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Vinyl chloride	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812
Xylenes, Total	ND	1.5	µg/L	1	11/1/2017 3:37:00 PM	A46812
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	11/1/2017 3:37:00 PM	A46812
Surr: 4-Bromofluorobenzene	98.6	70-130	%Rec	1	11/1/2017 3:37:00 PM	A46812
Surr: Dibromofluoromethane	105	70-130	%Rec	1	11/1/2017 3:37:00 PM	A46812
Surr: Toluene-d8	98.6	70-130	%Rec	1	11/1/2017 3:37:00 PM	A46812

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 13
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Client: Project:		R.T. Hicks Consultants, Lime Rock ASAU 150	LTD)							
Sample ID	LCS	SampType:	lcs		Test	Code: EF	PA Method	300.0: Anions	;		
Client ID:	LCSW	Batch ID:	R467	764	R	unNo: 46	6764				
Prep Date:		Analysis Date:	10/3	30/2017	S	eqNo: 14	490509	Units: mg/L			
Analyte		Result PC	QL S	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.9 0	.50	5.000	0	98.9	90	110			
Sulfate		10 0	.50	10.00	0	100	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Page 7 of 13

Client: R.T. H Project: Lime F	icks Consult	ants, L'I 150	ľD							
Sample ID 100ng lcs2	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	h ID: A4	6777	F	RunNo: 4	46777				
Prep Date:	Analysis D	Date: 1	1/1/2017	S	SeqNo: 1	1491518	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	20	1.0	20.00	0	97.8	70	130			
Chlorobenzene	20	1.0	20.00	0	99.8	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	109	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	98.8	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	9.9		10.00		98.6	70	130			
Surr: Toluene-d8	9.7		10.00		97.1	70	130			
Sample ID rb3	SampT	уре: М	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	h ID: A4	6777	F	RunNo: 4	16777				
Prep Date:	Analysis D	Date: 1	1/1/2017	S	SeqNo: 1	1491520	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Client: R.T. H	Hicks Consulta	ants, LT 150	ΓD							
Sample ID rb?			BIK	Too	tCodo: E	DA Mothed	8260B: VO			
	Sampi	ype. w	DLN	Tes			0200B. VOL	AIILES		
Client ID: PBW	Batch	n ID: A 4	6777	F	RunNo: 4	6777				
Prep Date:	Analysis D	ate: 1	1/1/2017	\$	SeqNo: 1	491520	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1.3-Dichloropropane	ND	1.0								
2.2-Dichloropropane	ND	2.0								
1.1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
sonronylhenzene	ND	1.0								
	ND	1.0								
1-Methyl-2-nentanone	ND	1.0								
Mathylana Chlorida		30								
		3.0								
n Dropylbonzono		1.0								
		1.0								
Sec-Dulyiberizerie		1.0								
Styrene		1.0								
	ND	1.0								
	ND	1.0								
T, T, Z, Z-Tetrachioroethane	ND	2.0								
l etrachioroethene (PCE)	ND	1.0								
rans-1,2-DCE	ND	1.0								
rans-1,3-Dichloropropene	ND	1.0								
1,2,3-1richlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
Client: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Sample ID rb3 SampType: MBLK TestCode: EPA Method 8260B: A Client ID: PBW Batch ID: A46777 RunNo: A6777 Prep Date: Analysis Date: 11/1/2017 SeqNo: 1491520 Units: µ Analyte Result POL SPK value SPK Kef Val % REC LowLimit HighLim Chlorotohome ND 1.0 1.1 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <td></td> <td></td> <td></td> <td></td>										
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Page 9 of 13

Sample ID rb3 SampType: MBLK TestCode: EPA Method 8280B: VOLATLES Clent ID: PBW Batch ID: Ad6777 RunNo: 46777 Prep Date: Analysis Date: 11/1/2017 SeqNo: 1491520 Units:: µg/L Analyte Result POL SPK value SPK Ref Val ¼REC LouLinit HighLinit %RPD RPDLinit Qual Ving chords ND 1.5 Sam: 42-0000 98.7 70 130 Sam: 42-00000 98.7 70 130 96.6 70 130 Sam: 44-00000 96.6 70 130 96.6 70 130 Sam: 70-0000 96.6 70 130 96.6 70 130 Sample ID 1000g Ics SampType: LCS4 TestCode: EPA Method 8260B: VOLATILES Cleant ID: BatchQC Batch ID: Ad6812 RunNo: 46912 Prep Date: Analysis Date: 11/1/1/2017<	Client:R.T. HProject:Lime R	icks Consult Rock ASAU	ants, LT 150	D								
Client D: PBW Bath: D: k48777 Runku: 6777 Madysic Visit	Sample ID rb3	SampT	ype: M	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Prep Date:Analysis Dat:I II/I IZ017Seq No:I 491520Unit:II/IVAnalysisResultPOLPOLNP ValueSPK ref ValNR CLowLinitHighLinitMR PDQualUnit/sindiaND1.0V100097.4701300VVVSur: 12 Dichloredheared9.710.0097.4701300VVV	Client ID: PBW	Batcl	h ID: A4	6777	F	RunNo: 4	6777					
Analyte Result POL SPK value SPK Ref Val % REC LowLint HighLinit % RPD RPDLinit Qual Ving Cholidide ND 1.0 <th>Prep Date:</th> <th>Analysis E</th> <th>Date: 1</th> <th>1/1/2017</th> <th>S</th> <th>SeqNo: 1</th> <th>491520</th> <th>Units: µg/L</th> <th></th> <th></th> <th></th> <th></th>	Prep Date:	Analysis E	Date: 1	1/1/2017	S	SeqNo: 1	491520	Units: µg/L				
Viryl cholde ND 1.0 Xylenes, Tolal ND 1.5 Sur: 1-2.0 Echtoroethane-44 9.7 10.00 98.7 70 130 Sur: 1-2.0 Echtoroethane-48 9.7 10.00 98.7 70 130 Sur: Echtoromoutoroethane 10 10.00 102 70 130 Sur: Tolkione-48 9.7 10.00 96.6 70 130 Sur: Tolkione-48 9.7 10.00 96.6 70 130 Sur: Tolkione-48 9.7 10.00 96.6 70 130 Sur: Tolkione-48 9.7 10.00 96.5 70 130 Analysis Result POL SPK value SPK Ref Val %REC LowLint HighLint %RPD RPDLint Qual Toluene 19 1.0 20.00 0 95.5 70 130 12.4-Timethylenerke (INBE) 20 1.0 20.00 0 96.5 70 130 12.4-	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Nghenes, Tolai ND 1.5 Sur: 1.2.Dichionostane: 49,9 10.00 97.4 70 130 Sur: 1.2.Dichionostane: 9,9 10.00 98.7 70 130 Sur: Dicomostilucoromethane 10 10.00 102 70 130 Sur: Dicomostilucoromethane 9.7 10.00 96.6 70 130 Sample ID Mong IS Sample ID Materia Sample ID Batch ID: Actist 12 TestCoct: EPA Method Scoots VOLATILES Prep Date: Analysis Tats: 11/12017 SeqNo: 149249 Units: µg/L PDL in: 1 Qual Analyte Result PQL SPK Ref Val %REC LowLimit Might Method Met	Vinyl chloride	ND	1.0									
Sur: L2-Dichloredhane-44 9.7 10.00 97.4 70 130 Sur: 4-Bromofluoromethane 10 10.00 98.7 70 130 Sur: Followindhoromethane 10 10.00 96.6 70 130 Sur: Followindhoromethane 9.7 10.00 96.6 70 130 Sur: Followindhoromethane 9.7 10.00 96.6 70 130 Sur: Followindhoromethane 11/12017 Serie Code: EPA Method 2260B: VOLATILES Volational Method M	Xylenes, Total	ND	1.5									
Sur: Abrandluorobenzene Sur: Diomondluorobenzene Sur: Toluene d8 9.9 10.00 98.7 70 130 Sur: Diomondluorobenzene Sur: Toluene d8 9.7 10.00 96.6 70 130 Sur: Diomondluorobenzene Sur: Toluene d8 9.7 10.00 96.6 70 130 Sur: Toluene d8 9.7 No 46812 Fes/Ver Vol.ATILES Prep Date: Analysis Dat: 11/1/2017 SeqNo: 1492499 Units: µg/L Analyse Result POL SPK value SPK Value SPK 70 130 Toluene 19 1.0 20.00 0 95.9 70 130 Etybenzene 19 1.0 20.00 0 95.1 70 130 1.2.4 Trimethybenzene 19 1.0 20.00 0 95.1 70 130 1.2.4 Himethybenzene 19 1.0 20.00 0 96.3 70 130 1.2.4 Himethybenzene 19 2.0 20.00 0 162	Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.4	70	130				
Sur: Toluene-d8 10 10.00 102 70 130 Sur: Toluene-d8 9.7 10.00 96.6 70 130 Sample ID 100ng Ics SampType: ICS TestCode: EPA Method 8260B: VOLATILES VOLATILES Client ID: Batch ID: A46812 RunNo: 46812 VolATILES VolATILES Analysis Date: 11/1/2017 SeqNo: 149249 Units: µg/L Qual Toluene 19 1.0 20.00 0 95.5 70 130 Ehybenzene 19 1.0 20.00 0 95.1 70 130 12.4-Timethybenzene 19 1.0 20.00 0 95.1 70 130 12.4-Timethybenzene 19 1.0 20.00 0 97.6 22 143 12.bibromoehane (EDB) 20 1.0 20.00 0 160 140 2.bibrombehane (EDC) 20 1.0 20.00 0 161 140 2.bibrombehane (EDB)	Surr: 4-Bromofluorobenzene	9.9		10.00		98.7	70	130				
Sur: Toluene-d8 9.7 10.00 96.6 70 130 Sample ID 100ng Ics SampType: LCS4 TestCode: EPA Method 2260B: VOLATILES Client ID: Batch ID: Adatysis Dat: 11/1/2017 SeqNo: 1492499 Units: µg/L Analysis Result POL SPK value SPK Ref Val %REC LowLinit HighLinit %RPD RPDLinit Qual Toluene 19 1.0 20.00 0 95.5 70 130 Exhyberszene 19 1.0 20.00 0 95.1 70 130 12.4- Timethyberszene 19 1.0 20.00 0 93.6 70 130 12.3- Timethyberszene 19 1.0 20.00 0 93.7 62.2 143 12.0- Dichoroethane (EDC) 20 1.0 20.00 0 160 140 2.4- Enthethyberszene 19 2.0 20.00 0 161	Surr: Dibromofluoromethane	10		10.00		102	70	130				
Sample ID 100ng Ics SampType: LCS4 TestCode: EPA Method 8260B: VOLATILES Client ID: Batch ID: Ada8t32 RunNo: 46812 RunNo: 46812 Prep Date: Analysis Date: 11/1/2017 SeqNo: 1492499 Units: µg/L Analyte Result POL SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Toluene 19 1.0 20.00 0 95.7 70 130 Icitytecrene 19 1.0 20.00 0 95.1 70 130 12.4 Trimethylberzene 19 1.0 20.00 0 95.1 70 130 12.3 Erimethylberzene 19 1.0 20.00 0 96.3 70 130 12.4 Erimethylberzene 19 2.0 20.00 0 96.3 70 130 12.4 Erimethylberzene 19 2.0 20.00 0 160 <t< td=""><td>Surr: Toluene-d8</td><td>9.7</td><td></td><td>10.00</td><td></td><td>96.6</td><td>70</td><td>130</td><td></td><td></td><td></td><td></td></t<>	Surr: Toluene-d8	9.7		10.00		96.6	70	130				
Client ID: Batch ID: $k + 6812$ RunNo: $k = 12$ $k = 1/k = 1/$	Sample ID 100ng lcs	SampT	ype: LC	:S4	Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Prep Date:Analysis Date:It/It/2017SeqNo::It/29249Units:ug/LAnalyteResultPCLSPK ValuSPK Ref Val%RECLoukintHighLinit%RPDRPDLinitQualToluene191.020.00095.570130It/2CualEthytbenzene191.020.00095.570130It/2	Client ID: BatchQC	Batcl	h ID: A4	6812	F	RunNo: 4	6812					
Analyte Result PQL SPK value SPK Ref Val %REC LowLinit HighLinit %RPD RPDLinit Qual Toluene 19 1.0 20.00 0 95.9 70 130 Ehylbenzene 19 1.0 20.00 0 96.5 70 130 L2.4Trimethylbenzene 19 1.0 20.00 0 95.1 70 130 1.2.4Trimethylbenzene 19 1.0 20.00 0 95.1 70 130 1.2.0thoroethane (EDC) 20 1.0 20.00 0 95.3 70 130 1.2.0thoroethane (EDB) 20 1.0 20.00 0 96.3 70 130 1.4bethylnaphthalene 19 2.0 20.00 0 96.4 60 140 2Methylnaphthalene 19 2.0 20.00 0 97.8 70 130 Bromoderhane 20 1.0 20.00 0 101	Prep Date:	Analysis E	Date: 1	1/1/2017	S	SeqNo: 1	492499	Units: µg/L				
Toluene 19 1.0 20.00 0 95.9 70 130 Ethylbenzene 19 1.0 20.00 0 95.5 70 130 Methyl terh (MTBE) 42 1.0 40.00 0 95.1 70 130 1.2.4 Trimethylbenzene 19 1.0 20.00 0 95.1 70 130 1.2.5 Trimethylbenzene 19 1.0 20.00 0 99.7 62.2 143 1.2.0 Ichtoreothane (EDB) 20 1.0 20.00 0 96.3 70 130 1.4.0 Hylhylaphthalene 19 2.0 20.00 0 96.3 70 130 1.4.0 Hylhylaphthalene 19 2.0 20.00 0 96.3 70 130 1.4.0 Hylhylaphthalene 15 4.0 20.00 0 95.4 60 140 2.0.00 0 95.4 60 140 10 20.00 10 70 130 Bromodichloromethane 20 1.0 20.00 0 97.7 <t< td=""><td>Analyte</td><td>Result</td><td>PQL</td><td>SPK value</td><td>SPK Ref Val</td><td>%REC</td><td>LowLimit</td><td>HighLimit</td><td>%RPD</td><td>RPDLimit</td><td>Qual</td><td></td></t<>	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Ethylbenzene 19 1.0 20.00 0 96.5 70 130 Methylterbulyleher(MTBE) 42 1.0 40.00 0 95.1 70 130 1,2,4-Trimehylbenzene 19 1.0 20.00 0 95.1 70 130 1,2,5-Trimehylbenzene 19 1.0 20.00 0 93.6 70 130 1,2-Dichloroethane (EDC) 20 1.0 20.00 0 96.3 70 130 1,2-Dichloroethane (EDB) 20 1.0 20.00 0 96.3 70 130 Naphthalene 19 2.0 20.00 0 96.3 70 130 2-Methylnaphthalene 15 4.0 20.00 0 164.4 60 140 2-Methylnaphthalene 15 4.0 20.00 0 97.8 70 130 Bromodichloromethane 20 1.0 20.00 0 101 70 130 Bromodichloromethane 20 1.0 20.00 0 117 60 14	Toluene	19	1.0	20.00	0	95.9	70	130				
Methyl terbulyl ether (MTBE) 42 1.0 40.00 0 106 70 130 1.2.4.Timethylbenzene 19 1.0 20.00 0 95.1 70 130 1.3.5-Timethylbenzene 19 1.0 20.00 0 99.7 62.2 143 1.2-Ditchloroethane (EDB) 20 1.0 20.00 0 96.3 70 130 Naphthalene 19 2.0 20.00 0 96.3 70 130 1-Methylnaphthalene 15 4.0 20.00 0 70 130 2Methylnaphthalene 15 4.0 20.00 0 76.4 60 140 Bromoderzene 20 1.0 20.00 0 97.8 70 130 Bromodermethane 20 1.0 20.00 0 101 70 130 Bromodermethane 20 1.0 20.00 0 101 70 130 Bromodermethane 20 1.0 20.00 0 93.5 60 140 <td< td=""><td>Ethylbenzene</td><td>19</td><td>1.0</td><td>20.00</td><td>0</td><td>96.5</td><td>70</td><td>130</td><td></td><td></td><td></td><td></td></td<>	Ethylbenzene	19	1.0	20.00	0	96.5	70	130				
1,2,4-Trimethylbenzene 19 1.0 20.00 0 95.1 70 130 1,3,5-Trimethylbenzene 19 1.0 20.00 0 93.6 70 130 1,2-Dichloroethane (EDC) 20 1.0 20.00 0 99.7 62.2 143 1.2-Dichloroethane (EDB) 20 1.0 20.00 0 96.3 70 130 1.Aghthalene 19 2.0 20.00 0 96.3 70 130 1.Methylnaphthalene 20 4.0 20.00 0 76.4 60 140 2.Methylnaphthalene 20 1.0 20.00 0 97.8 70 130 Bromoberzene 20 1.0 20.00 0 101 70 130 Bromodichoromethane 20 1.0 20.00 0 101 70 130 Bromodichoromethane 20 1.0 20.00 0 117 60 140 2-Butanone 47 10 40.00 0 117 60 140 <td>Methyl tert-butyl ether (MTBE)</td> <td>42</td> <td>1.0</td> <td>40.00</td> <td>0</td> <td>106</td> <td>70</td> <td>130</td> <td></td> <td></td> <td></td> <td></td>	Methyl tert-butyl ether (MTBE)	42	1.0	40.00	0	106	70	130				
1,3,5-Trimethylbenzene191.020.00093.6701301,2-Dichloroethane (EDC)201.020.00099.762.21431,2-Dichloromethane (EDB)201.020.00096.370130Naphthalene192.020.00096.3701301-Methylnaphthalene154.020.00076.4601402-Methylnaphthalene201.020.00097.870130Bromobenzene201.020.00097.870130Bromobenzene201.020.00010170130Bromothane173.020.00010070130Bromothane173.020.000117601402-Butanone471040.00011760140Carbon disulfide411020.00099.370130Chlorobenzene201.020.00097.770130Chlorobenzene201.020.00097.770130Chlorobenzene201.020.00097.770130Chlorobenzene201.020.00097.770130Chlorobenzene201.020.00097.770130Chlorobenzene202.020.000 </td <td>1,2,4-Trimethylbenzene</td> <td>19</td> <td>1.0</td> <td>20.00</td> <td>0</td> <td>95.1</td> <td>70</td> <td>130</td> <td></td> <td></td> <td></td> <td></td>	1,2,4-Trimethylbenzene	19	1.0	20.00	0	95.1	70	130				
1.2. Dichloroethane (EDC) 20 1.0 20.00 0 99.7 62.2 143 1.2. Dibromoethane (EDB) 20 1.0 20.00 0 96.3 70 130 Naphthalene 19 2.0 20.00 0 96.3 70 130 1.4.Methylnaphthalene 20 4.0 20.00 0 76.4 60 140 2.4.Methylnaphthalene 15 4.0 20.00 0 97.4 60 140 Acetone 38 10 40.00 0 97.4 70 130 Bromoberzene 20 1.0 20.00 0 97.4 70 130 Bromoform 20 1.0 20.00 0 101 70 130 Bromoform 20 1.0 20.00 0 117 60 140 2.8unone 47 10 40.00 0 102 60 140 Carbon disulfide 41 10 40.00 99.3 70 130 Chloroethrane 20	1,3,5-Trimethylbenzene	19	1.0	20.00	0	93.6	70	130				
1.2. Dibromethane (EDB) 20 1.0 20.00 0 96.3 70 130 Naphthalene 19 2.0 20.00 0 96.3 70 130 1-Methylnaphthalene 20 4.0 20.00 0 101 60 140 2-Methylnaphthalene 15 4.0 20.00 0 76.4 60 140 Acetone 38 10 40.00 0 95.4 60 140 Bromobenzene 20 1.0 20.00 0 97.8 70 130 Bromodichloromethane 20 1.0 20.00 0 101 70 130 Bromodichloromethane 20 1.0 20.00 0 83.5 60 140 2-Butanone 47 10 40.00 0 117 60 140 Carbon Tetrachloride 20 1.0 20.00 97.7 70 130 Chlorobenzene 20 1.0 20.00 97.7 70 130 Chlorobrane 20 <t< td=""><td>1,2-Dichloroethane (EDC)</td><td>20</td><td>1.0</td><td>20.00</td><td>0</td><td>99.7</td><td>62.2</td><td>143</td><td></td><td></td><td></td><td></td></t<>	1,2-Dichloroethane (EDC)	20	1.0	20.00	0	99.7	62.2	143				
Naphthalene 19 2.0 20.00 0 96.3 70 130 1-Methylnaphthalene 20 4.0 20.00 0 101 60 140 2-Methylnaphthalene 15 4.0 20.00 0 76.4 60 140 Acetone 38 10 40.00 0 95.4 60 140 Bromobenzene 20 1.0 20.00 0 97.8 70 130 Bromodichloromethane 20 1.0 20.00 0 101 70 130 Bromodichloromethane 20 1.0 20.00 0 100 70 130 Bromodichloromethane 17 3.0 20.00 0 83.5 60 140 Carbon disulfide 41 10 40.00 0 102 60 140 Carbon disulfide 20 1.0 20.00 0 97.7 70 130 Chlorobenzene 20 1.0 20.00 0 98.7 60 140 Chloroform<	1,2-Dibromoethane (EDB)	20	1.0	20.00	0	102	70	130				
1-Methylnaphthalene204.020.000101601402-Methylnaphthalene154.020.00076.460140Acetone381040.00095.460140Bromobenzene201.020.00097.870130Bromodichloromethane201.020.00010170130Bromodichloromethane201.020.00010070130Bromodichloromethane173.020.00083.5601402-Butanone471040.00011760140Carbon disulfide411040.00099.370130Chlorobenzene201.020.00097.770130Chlorobenzene201.020.00097.770130Chlorobenzene201.020.00098.760140Chlorobenzene201.020.00098.760140Chlorobenzene213.020.00010170130Chlorobenzene191.020.00094.970130Chlorobluene191.020.00096.070130Chlorobluene191.020.00093.870130Cis-1,3-Dichloropropane191.020.000<	Naphthalene	19	2.0	20.00	0	96.3	70	130				
2-Methylnaphthalene 15 4.0 20.00 0 76.4 60 140 Acetone 38 10 40.00 0 95.4 60 140 Bromobenzene 20 1.0 20.00 0 97.8 70 130 Bromodichloromethane 20 1.0 20.00 0 101 70 130 Bromodichloromethane 17 3.0 20.00 0 83.5 60 140 2-Butanone 47 10 40.00 0 117 60 140 Carbon disulfide 41 10 40.00 0 112 60 140 Carbon disulfide 20 1.0 20.00 0 99.3 70 130 Chlorobenzene 20 1.0 20.00 0 97.7 70 130 Chlorobenzene 20 2.0 2.00 0 101 70 130 Chloroform 20 2.0 2.00 0 105 60 140 Chlorobluene 19 </td <td>1-Methylnaphthalene</td> <td>20</td> <td>4.0</td> <td>20.00</td> <td>0</td> <td>101</td> <td>60</td> <td>140</td> <td></td> <td></td> <td></td> <td></td>	1-Methylnaphthalene	20	4.0	20.00	0	101	60	140				
Action381040.00095.460140Bromobenzene201.020.00097.870130Bromodichloromethane201.020.00010170130Bromodichloromethane201.020.00010070130Bromomethane173.020.00083.5601402-Butanone471040.00011760140Carbon disulfide411040.00010260140Carbon Tetrachloride201.020.00099.370130Chlorobenzene201.020.00097.770130Chlorobenzene201.020.00098.760140Chlorobentane2020.00010170130Chlorobethane213.020.000105601402-Chlorotoluene191.020.00094.9701304-Chlorotoluene191.020.00096.070130cis-1.2-DCE211.020.00096.5701301.2-Dibromor-3-chloropropane202.020.00095.8701301.2-Dibromor-3-chloropropane191.020.00095.8701301.2-Dibromor-3-chloropropane191.020.00 <td>2-Methylnaphthalene</td> <td>15</td> <td>4.0</td> <td>20.00</td> <td>0</td> <td>76.4</td> <td>60</td> <td>140</td> <td></td> <td></td> <td></td> <td></td>	2-Methylnaphthalene	15	4.0	20.00	0	76.4	60	140				
Bromobenzene 20 1.0 20.00 0 97.8 70 130 Bromodichloromethane 20 1.0 20.00 0 101 70 130 Bromoform 20 1.0 20.00 0 100 70 130 Bromomethane 17 3.0 20.00 0 83.5 60 140 2-Butanone 47 10 40.00 0 102 60 140 Carbon disulfide 41 10 40.00 0 99.3 70 130 Chlorobenzene 20 1.0 20.00 0 97.7 70 130 Chlorobenzene 20 1.0 20.00 0 98.7 60 140 Chloroform 20 1.0 20.00 0 101 70 130 Chloroformethane 21 3.0 20.00 0 94.9 70 130 4-Chlorotoluene 19 1.0	Acetone	38	10	40.00	0	95.4	60	140				
Bromodichloromethane 20 1.0 20.00 0 101 70 130 Bromoform 20 1.0 20.00 0 100 70 130 Bromomethane 17 3.0 20.00 0 83.5 60 140 2-Butanone 47 10 40.00 0 117 60 140 Carbon disulfide 41 10 40.00 0 102 60 140 Carbon disulfide 20 1.0 20.00 0 99.3 70 130 Chlorobenzene 20 1.0 20.00 0 97.7 70 130 Chloroform 20 2.0 20.00 0 98.7 60 140 Chloroform 20 1.0 20.00 0 105 60 140 2-Chlorotoluene 19 1.0 20.00 0 94.9 70 130 4-Chlorotoluene 19 1.0	Bromobenzene	20	1.0	20.00	0	97.8	70	130				
Bromoform 20 1.0 20.00 0 100 70 130 Bromomethane 17 3.0 20.00 0 83.5 60 140 2-Butanone 47 10 40.00 0 117 60 140 Carbon disulfide 41 10 40.00 0 102 60 140 Carbon Tetrachloride 20 1.0 20.00 0 99.3 70 130 Chlorobenzene 20 1.0 20.00 0 97.7 70 130 Chlorotehane 20 2.0 20.00 0 98.7 60 140 Chlorotethane 20 1.0 20.00 0 98.7 60 140 Chlorotethane 21 3.0 20.00 0 105 60 140 2-Chlorotoluene 19 1.0 20.00 0 94.9 70 130 4-Chlorotoluene 19 1.0 20.00 0 96.0 70 130 cis-1,3-Dichloropropene <	Bromodichloromethane	20	1.0	20.00	0	101	70	130				
Bromomethane 17 3.0 20.00 0 83.5 60 140 2-Butanone 47 10 40.00 0 117 60 140 Carbon disulfide 41 10 40.00 0 102 60 140 Carbon disulfide 20 1.0 20.00 0 99.3 70 130 Chlorobenzene 20 1.0 20.00 0 97.7 70 130 Chlorobenzene 20 1.0 20.00 0 98.7 60 140 Chlorobenzene 20 1.0 20.00 0 98.7 60 140 Chloroform 20 1.0 20.00 0 101 70 130 Chlorotofume 21 3.0 20.00 0 94.9 70 130 2-Chlorotoluene 19 1.0 20.00 0 96.0 70 130 cis-1,2-DCE 21 1.0 20.00 0 93.8 70 130 1,2-Dibromo-3-chloropropane <td< td=""><td>Bromoform</td><td>20</td><td>1.0</td><td>20.00</td><td>0</td><td>100</td><td>70</td><td>130</td><td></td><td></td><td></td><td></td></td<>	Bromoform	20	1.0	20.00	0	100	70	130				
2-Butanone471040.00011760140Carbon disulfide411040.00010260140Carbon Tetrachloride201.020.00099.370130Chlorobenzene201.020.00097.770130Chloroethane202.020.00098.760140Chloroform201.020.00010170130Chlorototuene191.020.00094.9701304-Chlorotoluene191.020.00096.070130cis-1,2-DCE211.020.00093.8701301,2-Dibromo-3-chloropropane202.020.00010270130	Bromomethane	17	3.0	20.00	0	83.5	60	140				
Carbon disulfide411040.00010260140Carbon Tetrachloride201.020.00099.370130Chlorobenzene201.020.00097.770130Chloroethane202.020.00098.760140Chloroform201.020.00010170130Chloromethane213.020.000105601402-Chlorotoluene191.020.00094.9701304-Chlorotoluene191.020.00096.070130cis-1,2-DCE211.020.00093.8701301,2-Dibromo-3-chloropropane202.020.00010270130	2-Butanone	47	10	40.00	0	117	60	140				
Carbon Tetrachloride201.020.00099.370130Chlorobenzene201.020.00097.770130Chloroethane202.020.00098.760140Chloroform201.020.00010170130Chloromethane213.020.000105601402-Chlorotoluene191.020.00094.9701304-Chlorotoluene191.020.00096.070130cis-1,2-DCE211.020.00093.8701301,2-Dibromo-3-chloropropane202.020.00010270130	Carbon disulfide	41	10	40.00	0	102	60	140				
Chlorobenzene201.020.00097.770130Chloroethane202.020.00098.760140Chloroform201.020.00010170130Chloromethane213.020.000105601402-Chlorotoluene191.020.00094.9701304-Chlorotoluene191.020.00096.070130cis-1,2-DCE211.020.00093.8701301,2-Dibromo-3-chloropropane202.020.00010270130	Carbon Tetrachloride	20	1.0	20.00	0	99.3	70	130				
Chloroethane202.020.00098.760140Chloroform201.020.00010170130Chloromethane213.020.000105601402-Chlorotoluene191.020.00094.9701304-Chlorotoluene191.020.00096.070130cis-1,2-DCE211.020.00093.870130cis-1,3-Dichloropropene191.020.00093.8701301,2-Dibromo-3-chloropropane202.020.00010270130	Chlorobenzene	20	1.0	20.00	0	97.7	70	130				
Chloroform 20 1.0 20.00 0 101 70 130 Chloromethane 21 3.0 20.00 0 105 60 140 2-Chlorotoluene 19 1.0 20.00 0 94.9 70 130 4-Chlorotoluene 19 1.0 20.00 0 96.0 70 130 4-Chlorotoluene 19 1.0 20.00 0 96.0 70 130 cis-1,2-DCE 21 1.0 20.00 0 105 70 130 cis-1,3-Dichloropropene 19 1.0 20.00 0 93.8 70 130 1,2-Dibromo-3-chloropropane 20 2.0 20.00 0 102 70 130	Chloroethane	20	2.0	20.00	0	98.7	60	140				
Chloromethane 21 3.0 20.00 0 105 60 140 2-Chlorotoluene 19 1.0 20.00 0 94.9 70 130 4-Chlorotoluene 19 1.0 20.00 0 96.0 70 130 4-Chlorotoluene 19 1.0 20.00 0 96.0 70 130 cis-1,2-DCE 21 1.0 20.00 0 105 70 130 cis-1,3-Dichloropropene 19 1.0 20.00 0 93.8 70 130 1,2-Dibromo-3-chloropropane 20 2.0 20.00 0 102 70 130	Chloroform	20	1.0	20.00	0	101	70	130				
2-Chlorotoluene 19 1.0 20.00 0 94.9 70 130 4-Chlorotoluene 19 1.0 20.00 0 96.0 70 130 cis-1,2-DCE 21 1.0 20.00 0 105 70 130 cis-1,3-Dichloropropene 19 1.0 20.00 0 93.8 70 130 1,2-Dibromo-3-chloropropane 20 2.0 20.00 0 102 70 130	Chloromethane	21	3.0	20.00	0	105	60	140				
4-Chlorotoluene 19 1.0 20.00 0 96.0 70 130 cis-1,2-DCE 21 1.0 20.00 0 105 70 130 cis-1,3-Dichloropropene 19 1.0 20.00 0 93.8 70 130 1,2-Dibromo-3-chloropropane 20 2.0 20.00 0 102 70 130	2-Chlorotoluene	 19	1.0	20.00	0	94.9	70	130				
cis-1,2-DCE 21 1.0 20.00 0 105 70 130 cis-1,3-Dichloropropene 19 1.0 20.00 0 93.8 70 130 1,2-Dibromo-3-chloropropane 20 2.0 20.00 0 102 70 130	4-Chlorotoluene	19	1.0	20.00	0	96.0	70	130				
cis-1,3-Dichloropropene 19 1.0 20.00 0 93.8 70 130 1,2-Dibromo-3-chloropropane 20 2.0 20.00 0 102 70 130	cis-1.2-DCE	21	1.0	20.00	0	105	70	130				
1,2-Dibromo-3-chloropropane 20 2.0 20.00 0 102 70 130	cis-1,3-Dichloropropene	19	1.0	20.00	0	93.8	70	130				
	1,2-Dibromo-3-chloropropane	20	2.0	20.00	0	102	70	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 10 of 13

- WO#: 1710F09 02-Nov-17

Client: R.T. H Project: Lime F	icks Consulta Rock ASAU 1	ants, LT 50	٢D							
Sample ID 100ng lcs	SampT	ype: LC	S4	Tes	tCode: E	PA Method	8260B: VOL/	ATILES		
Client ID: BatchQC	Batch	1D: A 4	6812	F	RunNo: 4	6812				
Prep Date:	Analysis D	ate: 1	1/1/2017	ŝ	SeqNo: 1	492499	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Dibromochloromethane	19	1.0	20.00	0	92.9	70	130			
Dibromomethane	21	1.0	20.00	0	107	70	130			
1,2-Dichlorobenzene	19	1.0	20.00	0	94.4	70	130			
1,3-Dichlorobenzene	19	1.0	20.00	0	94.6	70	130			
1,4-Dichlorobenzene	19	1.0	20.00	0	95.1	67.2	141			
Dichlorodifluoromethane	23	1.0	20.00	0	115	60	140			
1,1-Dichloroethane	21	1.0	20.00	0	104	52.6	157			
1,1-Dichloroethene	20	1.0	20.00	0	100	70	130			
1,2-Dichloropropane	20	1.0	20.00	0	102	63.7	138			
1,3-Dichloropropane	20	1.0	20.00	0	99.0	70	130			
2,2-Dichloropropane	21	2.0	20.00	0	105	70	130			
1,1-Dichloropropene	20	1.0	20.00	0	101	70	130			
Hexachlorobutadiene	18	1.0	20.00	0	88.4	70	130			
2-Hexanone	42	10	40.00	0	104	60	140			
Isopropylbenzene	19	1.0	20.00	0	96.1	70	130			
4-Isopropyltoluene	19	1.0	20.00	0	95.6	70	130			
4-Methyl-2-pentanone	45	10	40.00	0	112	60	140			
Methylene Chloride	21	3.0	20.00	0	104	70	130			
n-Butylbenzene	18	3.0	20.00	0	90.7	70	130			
n-Propylbenzene	19	1.0	20.00	0	94.6	70	130			
sec-Butylbenzene	18	1.0	20.00	0	92.1	70	130			
Styrene	19	1.0	20.00	0	95.1	70	130			
tert-Butylbenzene	19	1.0	20.00	0	92.7	70	130			
1,1,1,2-Tetrachloroethane	19	1.0	20.00	0	94.6	70	130			
1,1,2,2-Tetrachloroethane	22	2.0	20.00	0	108	65.9	133			
Tetrachloroethene (PCE)	20	1.0	20.00	0	100	70	130			
trans-1,2-DCE	20	1.0	20.00	0	100	70	130			
trans-1,3-Dichloropropene	18	1.0	20.00	0	91.2	70	130			
1,2,3-Trichlorobenzene	19	1.0	20.00	0	94.9	70	130			
1,2,4-Trichlorobenzene	19	1.0	20.00	0	92.5	70	130			
1,1,1-Trichloroethane	20	1.0	20.00	0	98.6	70	130			
1,1,2-Trichloroethane	20	1.0	20.00	0	99.2	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	99.8	70	130			
Trichlorofluoromethane	21	1.0	20.00	0	104	70	130			
1,2,3-Trichloropropane	21	2.0	20.00	0	106	69.7	129			
Vinyl chloride	20	1.0	20.00	0	99.6	70	130			
Xylenes, Total	58	1.5	60.00	0	95.9	70	130			
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.0	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 11 of 13

WO#: 1710F09

02-Nov-17

Client: R.T. H	icks Consulta	nts, LT	ГD							
Project: Lime F	Rock ASAU 1	50								
Sample ID 100ng lcs	SampTy	ype: LC	S4	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: BatchQC	Batch	ID: A 4	6812	F	RunNo: 4	6812				
Prep Date:	Analysis Da	ate: 1	1/1/2017	S	SeqNo: 1	492499	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.8		10.00		98.2	70	130			
Sample ID rb	SampTy	уре: М І	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: A4	6812	F	RunNo: 4	6812				
Prep Date:	Analysis Da	ate: 1	1/1/2017	S	SeqNo: 1	492500	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Page 12 of 13

Client: R.T. H Project: Lime	Hicks Consulta	ants, LT 150	Ď								
Sample ID rb	SampT	ype: ME	BLK	Tes	stCode: E	PA Method	8260B: VOL	ATILES			=
Client ID: PBW	Batch	n ID: A4	6812	F	RunNo: 4	6812					
Prep Date:	Analysis D	ate: 11	/1/2017	:	SeqNo: 1	492500	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
1,4-Dichlorobenzene	ND	1.0									_
Dichlorodifluoromethane	ND	1.0									
1,1-Dichloroethane	ND	1.0									
1,1-Dichloroethene	ND	1.0									
1,2-Dichloropropane	ND	1.0									
1,3-Dichloropropane	ND	1.0									
2,2-Dichloropropane	ND	2.0									
1,1-Dichloropropene	ND	1.0									
Hexachlorobutadiene	ND	1.0									
2-Hexanone	ND	10									
Isopropylbenzene	ND	1.0									
4-Isopropyltoluene	ND	1.0									
4-Methyl-2-pentanone	ND	10									
Methylene Chloride	ND	3.0									
n-Butylbenzene	ND	3.0									
n-Propylbenzene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1.0									
tert-Butylbenzene	ND	1.0									
1 1 1 2-Tetrachloroethane	ND	1.0									
1 1 2 2-Tetrachloroethane	ND	2.0									
Tetrachloroethene (PCE)	ND	1.0									
trans-1 2-DCF	ND	1.0									
trans-1 3-Dichloropropene	ND	1.0									
1 2 3-Trichlorobenzene	ND	1.0									
1 2 1-Trichlorobenzene	ND	1.0									
1 1 1-Trichloroethane	ND	1.0									
1 1 2 Trichloroethane	ND	1.0									
Trichloroethene (TCE)		1.0									
		1.0									
1 2 2 Trichloronronano		2.0									
1,2,3-menioropropane Vinyl chlorida		2.0									
Viriyi Unionue Vulopos, Total		1.0									
Surry 1.2 Dichloroothano d		1.5	10.00		100	70	100				
Surr. 1,2-Dichioloethane-04			10.00		102	70	130				
	9.0		10.00		30.3	70	100				
			10.00		05.0	70	100				
	9.0		10.00		90.0	70	130				

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Page 13 of 13

1115 Re 10/30/17

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Albı TEL: 505-345-3975 Website: www.ha	Analysı 4901 Iquerqu FAX: 5 Ilenvira	s Lal Haw e, NI 05-3 onmer	voratory kins NE 1 87109 45-4107 ntal.com	⁷⁷ ⁷⁷ ⁷⁷ ⁷⁷					
Client Name: RT HICKS	Work Order Number:	1710	F09			RcptNo:	1			
Received By: Richie Eriacho	10/26/2017 10:00:00 A	М		12						
Completed By: Ashley Gallegos	10/27/2017 4:03:35 PM	1		A	Z					
Reviewed By: SRC 10/301	17				U.					
Chain of Custody										
1. Custody seals intact on sample bottles?		Yes		Ν	lo 🗌	Not Present 🗹				
2. Is Chain of Custody complete?		Yes	✓	N	lo 🗌	Not Present				
3. How was the sample delivered?		<u>Cou</u>	ier							
<u>Log In</u>										
4. Was an attempt made to cool the sample	s?	Yes	✓	1	No 🗀	NA 🗔				
5. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes	✓	N	o 🗆	NA 🗌				
6. Sample(s) in proper container(s)?		Yes	✓	1	10 🗆					
7. Sufficient sample volume for indicated tes	t(s)?	Yes	✓	N	lo 🗌					
8. Are samples (except VOA and ONG) prop	erly preserved?	Yes	✓	N	lo 🗀					
9. Was preservative added to bottles?		Yes		N	lo 🔽	NA 🗌				
10.VOA vials have zero headspace?		Yes		N	lo 🗆	No VOA Vials				
11. Were any sample containers received bro	ken?	Yes	X	Ņ	10 - 14 -	t of preserved				
10		5	ee	COMMENT	<u>ح</u>	bottles checked				
Client Name: RT HICKS Work Order Number: 1710F09 RoptNo: 1 Received By: Richie Erlacho 10/25/2017 10:00:00 AM Completed By: Achieved By: RoptNo: 1 Reviewed By: Richie Erlacho 10/25/2017 10:00:00 AM Completed By: Achieved By: Reviewed By: Reviewed By: State: No No Not Present No 1. Outdody seals intact on sample botilse? Yes No No Not Present No Not Present No 2. Is Chain of Custody complete? Yes No So No										
Chain of Custody 1. Custody seals intact on sample bottles? Yes No Not Present 2. Is Chain of Custody complete? Yes No Not Present 3. How was the sample delivered? Courier Loca In 4. Was an attempt made to cool the samples? Yes No NA 5. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA 6. Sample(s) in proper container(s)? Yes No NA 7. Sufficient sample volume for indicated test(s)? Yes No NA 9. Was preservative added to bottles? Yes No NA 10. VOA viais have zero headspace? Yes No No No 11. Were any sample containers received broken? Yes No No Vertex 12. Does paperwork match bottle labels? Yes No Adjusted? (13. Are matrices correctly identified on Chain of Custody? Yes No Adjusted? (14. Is it clear what analyses were requested? Yes No Checked by: Checked by: (15. Were all holding times able to										
14. Is it clear what analyses were requested?		Yes		N	io 🗆					
15. Were all holding times able to be met?	·	Yes	✓	N	lo 🗌	Checked by:				
(If no, notify customer for authorization.)						L				
Special Handling (if applicable)										
16. Was client notified of all discrepancies with	n this order?	Yes		N	o 🗌	NA 🗹				
Person Notified:	Date									
By Whom:	Via:	eMa	ail [Phone [_ Fax	In Person				
LABORATORY TEL: 303-343.375 FAX: 303-343.4107 Website: www.haldestromential.com Weint: www.haldestromential.com Bient Name: RT HICKS Work Order Number: 1710F09 ReptNo: 1 seceived By: Richle Erlacho 1022/2017 10:00:00 AM Cat-C provemed By: Shely Galleges 1022/2017 4:03:35 PM Cat-C provemed By: SPEL (D/30/17) Hand Custody maple bottles? Yes No Not Present Catatory seals inteat on ample bottles? Yes No Not Present How was the sample delivered? Counter No Not Present Def In No No Not Present ReptNet Were all samples received at a temperature of >0° C to 6.0°C Yes No Na A Sufficient samples wolume for indicated test(s)? Yes No Na A Sufficient sample volume for indicated test(s)? Yes No No No VOA Vials Were all samples received not obtites? Yes No No VOA Vials Ma Over any sample containers received toloken? Yes No										
APPUINTENTAL AND ALYSIS LABORATORY APPUINTENT WATCHING AND ALYSIS TEL: 195.345.395 FM: 195.345.395 FM: 195.345 FM: 1										

					•			
18	Cooler Inform	ation						
10.								
	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By	
							olgiloo by	
	[]	1.4	Good	Yes				

Page 1 of 1

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request		5-Bid/sr 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-)))))))))))))))))))	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TPH Method TPH Method TPH (Method TPH (Method EDB (Method B310 (PNA d 8310 (PNA d 8310 (PNA d 8200 (YOA 8260B (VOA 8200 (Semi- ine) 8270 (Semi- baldua	×	×	×	×	x				rks: Email to R@rthicksconsult.com, kristin, mike			sibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	X Standard D Rush	Project Name:	Lime Rock - ASAU #150	Project #.		Project Manager:	Krietin Done (575) 207 6755 ((8021	Sampler: M. Stubblefield	On loe K Yes INO +	Sample Temperature $1.2 \pm 0.2 \pm 1.4$	Container Preservativ HEAL No Type and # e Type	3 VOA HgCl, ice - 00 /	1 HDP ice	3 VOA HgCl, ice ~003	1 HDP ice	3 VOA HgCl, ice -003	1 HDP ice			Received by: Date Time Rel	10/2 10/2 10/2	Received by: Date Time	contracted to other accredited laboratories. This serves as notice of this provident of the providence
Custody Record	Consultants	Rio Grande Blvd NW	e F-142	iquerque, NM 87104) 266-5004	rthicksconsult.com	noitebile/(Eul) / Eul		ther		trix Sample Request ID	er MW-2	er MW-2	er MW-3	sr MW-3	er MW-4	er MW-4			l quished by:	e Studdied	juished by:	submitted to Hall Environmental may be subc
Chain-of-C	Client: R. T. Hicks C	901	Mailing Address: Suite	Albu	Phone #: (505)	email or Fax#: R@r	QA/QC Package: Distanciand	Accreditation:		🗆 EDD (Type)	ניי Date Time Mat	× \0/23/// //53 wate	1/12/17 //S3 wate	8 10 3/17 b95 2 wate	× 11/28/17 0953 wate	0/23/17 1046 wate	10/23/1 1046 wate			Date: Time: Reling	10/25/2019 2:15 A M.D.	Date: Time: Reling	If necessary, samples

Received by OCD: 9/16/2024 1:47:30 PM

Appendix B

Hydrocarbon Characterization Sampling Summary and Laboratory Reports

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Appendix B – Hydrocarbon Characterization Sampling

As requested by NMOCD at a meeting on August 23, 2017, samples were collected from the top of the water column as a means to characterize the extent and magnitude of hydrocarbon constituents. As specified by NMOCD and in accordance with the submitted plan, these samples were collected on September 11, 2017 using a bailer. Results of this characterization event were reported to NMOCD on October 9, 2017.

For further characterization and comparison, we informed NMOCD that after collecting the last quarterly samples, we would then collect samples from the top of the water column using a low-flow pump. During a phone discussion, Mr. Billings requested the full spectrum of Method 8260B analysis for volatiles and also TPH 8015B analysis of the characterization samples. A summary of the two characterization sampling events using the two collection methods are shown in Table 2 below and associated laboratory reports are in Appendix B. As mentioned in the laboratory report for the October 24 event, samples were collected for 8260 and 8015 analyses but the transport cooler was packed too tightly with ice and many of the containers arrived broken. The laboratory informed us that DRO and MRO analyses were not possible and GRO was only available for MW-3 and MW-4 samples.

Well ID	Method	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	Naph- thalene	GRO* mg/L	Observations
MW-2	bailer	9/11/2017	370	ND	51	66	487	not analyzed	not analyzed	Sheen; film on bailer
MW-2	low flow pump	10/24/2017	N	o analyses; S	Sample cont	ainers arrive	d at lab frozo	en and broke	en	Collected from top of column after low-flow sampling of well from middle of column
MW-3	bailer	9/11/2017	41	ND	ND	ND	41	not analyzed	not analyzed	Turbid at 1st attempt; waited 2 hrs, sample is silty
MW-3	low flow pump	10/24/2017	29	ND	ND	ND	not analyzed	ND	0.067	Collected from top of column after low-flow sampling of well from middle of column
MW-4	bailer	9/11/2017	3300	ND	470	ND	3770	not analyzed	not analyzed	Clear
MW-4	low flow pump	10/24/2017	300	ND	86	ND	not analyzed	56	2.5	Collected from top of column after low-flow sampling of well from middle of column

Hydrocarbon Characterization Samples from Top of Water Column

all concentrations are µg/L except GRO

* GRO, DRO, MRO analyses requested but containers arrived frozen and broken

Table 2

These comparative analyses suggest that low-flow sampling delivers considerably lower concentrations than those collected using a bailer; however, both methods confirm that MW-3 and MW-4 exceed the WQCC benzene standard.

September 21, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150 Release

OrderNo.: 1709837

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 9/14/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

10 9/20/2017 8:04:00 AM B45748

CLIENT: R.T	Γ. Hicks Consultants, LTD		(Client Samp	le ID: MV	W-2	
Project: Lin	ne Rock ASAU 150 Release			Collection	Date: 9/1	1/2017 10:40:00 AM	
Lab ID: 170	09837-001	Matrix:	AQUEOUS	Received	Date: 9/1	4/2017 9:42:00 AM	
Analyses		Result	PQL Qual	Units	DF	Date Analyzed	Batch
EPA METHO	D 8260: VOLATILES SHORT	LIST				Analyst	RAA
Benzene		370	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Toluene		ND	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Ethylbenzene	9	51	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Xylenes, Tota	al	66	10	µg/L	10	9/20/2017 8:04:00 AM	B45748
Surr: 1,2-D	ichloroethane-d4	90.3	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748
Surr: 4-Bro	omofluorobenzene	95.8	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748
Surr: Dibro	mofluoromethane	96.7	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748

70-130

%Rec

90.4

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1709837

Date Reported: 9/21/2017

9/20/2017 8:28:00 AM

1

B45748

CLIENT: Project:	R.T. Hicks Consultants, LTD Lime Rock ASAU 150 Release			Client Samp Collection	le ID: M Date: 9/1	W-3 1/2017 12:08:00 PM	
Lab ID:	1709837-002	Matrix:	AQUEOUS	Received	Date: 9/1	4/2017 9:42:00 AM	
Analyses		Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA MET	THOD 8260: VOLATILES SHORT	LIST				Analyst	RAA
Benzene	9	41	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748
Toluene		ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748
Ethylben	zene	ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748
Xylenes,	Total	ND	1.5	µg/L	1	9/20/2017 8:28:00 AM	B45748
Surr: 7	1,2-Dichloroethane-d4	91.6	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748
Surr: 4	4-Bromofluorobenzene	96.1	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748
Surr: I	Dibromofluoromethane	96.9	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748

70-130

%Rec

91.1

Qualifiers:	*
-------------	---

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 5 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

9/20/2017 8:52:00 AM

B45748

CLIENT: R.T. Hicks Consultant	s, LTD		Client Samp	le ID: MV	V-4	
Project: Lime Rock ASAU 150) Release		Collection	Date: 9/1	1/2017 11:28:00 AM	
Lab ID: 1709837-003	Matrix:	AQUEOUS	Received	Date: 9 /14	4/2017 9:42:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILE	S SHORT LIST				Analyst	RAA
Benzene	3300	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765
Toluene	ND	1.0	µg/L	1	9/20/2017 8:52:00 AM	B45748
Ethylbenzene	470	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765
Xylenes, Total	ND	1.5	µg/L	1	9/20/2017 8:52:00 AM	B45748
Surr: 1,2-Dichloroethane-d4	97.0	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748
Surr: Dibromofluoromethane	95.8	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748

70-130

%Rec

1

89.2

Qualifiers: *	Value exceeds Maximum	Contaminant Level.
---------------	-----------------------	--------------------

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: R.T. Hi Project: Lime R	icks Consult .ock ASAU	ants, LT 150 Rel	ГD lease							
Sample ID 100ng lcs2	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: LCSW	Batc	h ID: B 4	5748	F	RunNo: 45748					
Prep Date:	Analysis [Date: 9/	/20/2017	S	SeqNo: 1	453586	Units: µg/L			
Analyte	Result	POI	SPK value	SPK Rof Val	%REC	Lowl imit	Highl imit	%RPD	RPDI imit	Qual
Benzene	22	1.0	20.00	0	110	20wEimit 70	130			Quai
Toluene	20	1.0	20.00	0	98.6	70	130			
Surr: 1,2-Dichloroethane-d4	9.3	-	10.00	-	92.6	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		95.5	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.0	70	130			
Sample ID rb2	Samp	Гуре: МІ	BLK	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: PBW	Batc	h ID: B4	15748	F	RunNo: 4	5748				
Prep Date:	Analysis [Date: 9 /	/20/2017	S	SeqNo: 1	453587	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.8	70	130			
Surr: Dibromofluoromethane	9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		88.6	70	130			
Sample ID 100ng Ics	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: LCSW	Batc	h ID: SL	45765	F	RunNo: 4	5765				
Prep Date:	Analysis [Date: 9/	/20/2017	S	SeqNo: 1	454013	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.0	70	130			
Sample ID rb	Samp	Гуре: МІ	BLK	Tes	tCode: E	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Batc	h ID: SL	45765	F	RunNo: 4	5765				
Prep Date:	Analysis [Date: 9 /	/20/2017	S	SeqNo: 1	454014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Ethylbenzene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.9	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Page 4 of 5

WO#: 1709837

Client:	R.T. Hicks Consulta	ants, L	TD							
Project:	Lime Rock ASAU	150 Re	elease							
Sample ID rb	SampT	уре: М	IBLK	Test	Code: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: PBW	Batch	n ID: S	L45765	R	unNo: 4	5765				
Prep Date:	Analysis D	ate: 9	9/20/2017	S	eqNo: 1	454014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluoroben:	zene 9.6		10.00		95.6	70	130			
Surr: Dibromofluorometh	nane 9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		89.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Released to Imaging: 9/16/2024 1:48:57 PM

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1709837

21-Sep-17

WO#:

Page 5 of 5

•

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Albu TEL: 505-345-3975 Website: www.hal	Analysis Labora 4901 Hawkins querque, NM 87 FAX: 505-345-4 llenvironmental.	1007y 8 NE 7109 Sam 1107 com	ole Log-In Che	eck List
Client Name: RT HICKS	Work Order Number:	1709837		RcptNo: 1	
Received By: Isaiah Ortiz	9/14/2017 9:42:00 AM		IGht		
Completed By: Ashley Gallegos Reviewed By: M	9/15/2017 9:43:33 AM 9/15/17		AJ		
Chain of Custody					
1. Custody seals intact on sample bottles	?	Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗹	No 🗔	Not Present	
3. How was the sample delivered?		<u>Courier</u>			
Log In			_	_	
4. Was an attempt made to cool the sam	ples?	Yes 🔽	No 🗌	NA L	
5. Were all samples received at a temper	ature of >0° C to 6.0°C	Yes 🗹	No 🗆	NA 🗌	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated	test(s)?	Yes 🔽	No 🗍		
8. Are samples (except VOA and ONG) p	roperly preserved?	Yes 🔽	No 🗆		
9. Was preservative added to bottles?		Yes 🗌	No 🔽	NA 🗌	
0.VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials 🗌	
1. Were any sample containers received	broken?	Yes └┘	No 🗹	# of preserved bottles checked	
 Does paperwork match bottle labels? (Note discrepancies on chain of custod) 	у)	Yes 🗹	No 🗌	for pH: (<2 or >	12 unless noted)
3. Are matrices correctly identified on Cha	in of Custody?	Yes 🗹	No 🗆	Adjusted?	
4. Is it clear what analyses were requeste	d?	Yes 🗹	No 🗌		
5. Were all holding times able to be met? (If no, notify customer for authorization)	Yes 🔽	No 🗌	Checked by:	
pecial Handling (if applicable)					
6. Was client notified of all discrepancies	with this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified:	Date				
By Whom:	Via: [eMail	Phone 🗌 Fax	In Person	
Regarding:					
Client Instructions:					
1. Additional remarks:					
8. <u>Cooler Information</u> <u>Cooler No Temp °C Condition</u>	Seal Intact Seal No	Seal Date	Signed By		
1 1.0 Good	Yes				
Page 1 of 1	· <u></u>	<u></u>			

34 I	(N	vir Bubbles (X or	1			
		5000 2000				nsult.com
101	(AOV-ime2) 0728		+++		kscol
		(AOV) 80928		+++		Dithic
	8085 PCB's	sebioitseq 1808			-	tin@
	(*OS'*Od'ZON'E	Anions (FCDNO				, kris
2		RCRA 8 Metals				to the
12	(H)	49 10 AN9) 01 58				sults
	(1.4	EDB (Method 50				e lie
4	Pam/ (1.8	TPH (Method 41				Ĕ
	(IeseiQ\seQ) 831	TPH Method 80				1.
	(VINO 883) HAT	+ 38TM + X3T8				
1 mg	(1208) s'BMT	BIEX MTBE +	XX	$X \mid$		Rer
Horn Roll	- M.Stubblet	Lo HEAL No. 170983	-00	-00		Date Time
d a Rus ne: U # 150	Iager: Kristin Popi	perature: Preservativ e Type	ice, #gCle	te		ų
Project #	Project Man Sampler. On Ice:	Sample Ten Container Type and #	3 van glass	=		Received by: T. O. S. Received by:
	Level 4 (Full Validation)	Sample Request ID	MW-3 MW-3	MW-4		d by:
201 ES	D Other	Matrix	Wheter 11	111		Refinquishe
	Biu Biu	(Type)	10:00	8e11		S-22A
	D NEL	Date	11/12	=		8 13 Jane

November 07, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: ASAU 150 Characterization

OrderNo.: 1710E76

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Bromoform

2-Butanone

Bromomethane

Carbon disulfide

Chlorobenzene

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

cis-1,3-Dichloropropene

Dibromochloromethane

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

Dichlorodifluoromethane

1,2-Dibromo-3-chloropropane

cis-1,2-DCE

Chloroethane

Chloroform

Carbon Tetrachloride

Bromodichloromethane

W46875

Analytical Report Lab Order 1710E76

Hall Er	nvironmental Analysis	s Laborat	tory, Inc.			Date Reported: 11/7/201	.7		
CLIENT: Project: Lab ID:	R.T. Hicks Consultants, LTD ASAU 150 Characterization 1710E76-002	Matrix: 4	C AQUEOUS	Client Sample ID: MW-3 @ 49ft Collection Date: 10/24/2017 9:55:00 AM Received Date: 10/26/2017 10:00:00 AM					
Analyses		Result	PQL Qual	Units	DF	Date Analyzed	Batch		
EPA MET	HOD 8015D: GASOLINE RANG	θE				Analyst:	DJF		
Gasoline	Range Organics (GRO)	0.067	0.050	mg/L	1	11/3/2017 4:53:24 PM	G46875		
Surr: E	3FB	98.1	70-130	%Rec	1	11/3/2017 4:53:24 PM	G46875		
EPA MET	HOD 8260B: VOLATILES					Analyst:	DJF		
Benzene		29	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
Toluene		ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
Ethylben	zene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
Methyl te	ert-butyl ether (MTBE)	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
1,2,4-Trir	methylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
1,3,5-Trir	methylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
1,2-Dichl	oroethane (EDC)	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
1,2-Dibro	omoethane (EDB)	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
Naphthal	lene	ND	2.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
1-Methyli	naphthalene	ND	4.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
2-Methyli	naphthalene	ND	4.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		
Acetone		ND	10	µg/L	1	11/3/2017 4:53:24 PM	W46875		
Bromobe	enzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875		

1.0

1.0

3.0

10

10

1.0

1.0

2.0

1.0

3.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

µg/L

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

11/3/2017 4:53:24 PM

ND

Refer	to th	e QC Summary report and sample login check	list for flagg	ged QC data and preservation information.
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank

- D Sample Diluted Due to Matrix
 - Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- yte detected in the associated Method Blan
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 8 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD

Project: ASAU 150 Characterization

1710E76-002

Analytical Report
Lab Order 1710E76

Date Reported	11/7/2017
Date Reputieu.	11///401/

Hall Environmental Analysis Laborat	ory, Inc.

Client Sample ID: MW-3 @ 49ft Collection Date: 10/24/2017 9:55:00 AM Received Date: 10/26/2017 10:00:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,2-Dichloropropane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,3-Dichloropropane	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
2,2-Dichloropropane	ND	2.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1-Dichloropropene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Hexachlorobutadiene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
2-Hexanone	ND	10	µg/L	1	11/3/2017 4:53:24 PM	W46875
Isopropylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
4-Isopropyltoluene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
4-Methyl-2-pentanone	ND	10	µg/L	1	11/3/2017 4:53:24 PM	W46875
Methylene Chloride	ND	3.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
n-Butylbenzene	ND	3.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
n-Propylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
sec-Butylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Styrene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
tert-Butylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
trans-1,2-DCE	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46878
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Trichloroethene (TCE)	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Trichlorofluoromethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,2,3-Trichloropropane	ND	2.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Vinyl chloride	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Xylenes, Total	ND	1.5	µg/L	1	11/3/2017 4:53:24 PM	W46875
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	11/3/2017 4:53:24 PM	W46875
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	1	11/3/2017 4:53:24 PM	W46875
Surr: Dibromofluoromethane	105	70-130	%Rec	1	11/3/2017 4:53:24 PM	W46875
Surr: Toluene-d8	101	70-130	%Rec	1	11/3/2017 4:53:24 PM	W46875

Matrix: AQUEOUS

Qualifiers:	*	* Value exceeds Maximum Contaminant Level.		Analyte detected in the associated Method Blank
	D Sample Diluted Due to Matrix		E	Value above quantitation range
H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits Page 2 of 8	
ND Not Detected at the Reporting Limit P San		Sample pH Not In Range		
PQL Practical Quanitative Limit		RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Project:

CLIENT: R.T. Hicks Consultants, LTD

ASAU 150 Characterization

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1710E76

Date Ren	orted 1	1/7	/2017

Client Sample ID: MW-4 @ 50ft
Collection Date: 10/24/2017 10:50:00 AM
Becaived Date: 10/26/2017 10:00:00 AM

Lab ID: 1710E76-003	Matrix:	Received	Received Date: 10/26/2017 10:00:00 AM			
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RAM	NGE				Analyst	DJF
Gasoline Range Organics (GRO)	2.5	0.050	mg/L	1	11/3/2017 5:22:29 PM	G46875
Surr: BFB	94.9	70-130	%Rec	1	11/3/2017 5:22:29 PM	G46875
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Benzene	300	20	µg/L	20	11/6/2017 12:38:21 PM	W46900
Toluene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Ethylbenzene	86	20	μg/L	20	11/6/2017 12:38:21 PM	W46900
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,2,4-Trimethylbenzene	40	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,3,5-Trimethylbenzene	21	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Naphthalene	56	2.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1-Methylnaphthalene	34	4.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
2-Methylnaphthalene	ND	4.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Acetone	ND	10	μg/L	1	11/3/2017 5:22:29 PM	W46875
Bromobenzene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Bromodichloromethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Bromoform	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Bromomethane	ND	3.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
2-Butanone	ND	10	µg/L	1	11/3/2017 5:22:29 PM	W46875
Carbon disulfide	ND	10	μg/L	1	11/3/2017 5:22:29 PM	W46875
Carbon Tetrachloride	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Chlorobenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Chloroethane	ND	2.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Chloroform	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Chloromethane	ND	3.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
2-Chlorotoluene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
4-Chlorotoluene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
cis-1,2-DCE	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Dibromochloromethane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Dibromomethane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,2-Dichlorobenzene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,3-Dichlorobenzene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,4-Dichlorobenzene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Dichlorodifluoromethane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,1-Dichloroethane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,1-Dichloroethene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Project:

Lab ID:

Analytical Report
Lab Order 1710E76

Date Reported	11/7/2017
Date Reported.	11///401/

Hall Environmental Analysis Laboratory, Inc						
CLIENT:	R.T. Hicks Consultants, LTD					

ASAU 150 Characterization

1710E76-003

Client Sample ID: MW-4 @ 50ft Collection Date: 10/24/2017 10:50:00 AM Received Date: 10/26/2017 10:00:00 AM

Received Date: 10/26/2017 10:00:00 AM

Analyses	Result	PQL Qu	ual Units	DF Date Analyzed		
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,2-Dichloropropane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,3-Dichloropropane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
2,2-Dichloropropane	ND	2.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,1-Dichloropropene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Hexachlorobutadiene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
2-Hexanone	ND	10	μg/L	1	11/3/2017 5:22:29 PM	W46875
Isopropylbenzene	47	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
4-Isopropyltoluene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
4-Methyl-2-pentanone	ND	10	μg/L	1	11/3/2017 5:22:29 PM	W46875
Methylene Chloride	ND	3.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
n-Butylbenzene	ND	3.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
n-Propylbenzene	32	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
sec-Butylbenzene	7.5	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Styrene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
tert-Butylbenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
trans-1,2-DCE	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Trichloroethene (TCE)	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Trichlorofluoromethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Vinyl chloride	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Xylenes, Total	ND	1.5	µg/L	1	11/3/2017 5:22:29 PM	W46875
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	11/3/2017 5:22:29 PM	W46875
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	11/3/2017 5:22:29 PM	W46875
Surr: Dibromofluoromethane	99.9	70-130	%Rec	1	11/3/2017 5:22:29 PM	W46875
Surr: Toluene-d8	101	70-130	%Rec	1	11/3/2017 5:22:29 PM	W46875

Matrix: AQUEOUS

Qualifiers:	iers: * Value exceeds Maximum Contaminant Level.		В	Analyte detected in the associated Method Blank
D Sample Diluted Due to Matrix		Е	Value above quantitation range	
H Holding times for preparation or analysis exceeded		J	Analyte detected below quantitation limits Page 4 of 8	
ND Not Detected at the Reporting Limit		Р	Sample pH Not In Range	
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Client: R.T. H	licks Consulta	ants, LT	ΓD								
Project: ASAU	150 Charact	erizatio	n								
Sample ID rb	SampType: MBLK Batch ID: W46875			TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW				F	RunNo: 4	6875					
Prep Date:	Analysis Date: 11/3/2		1/3/2017	SeqNo: 1495595			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Toluene	ND	1.0									
Ethylbenzene	ND	1.0									
Methyl tert-butyl ether (MTBE)	ND	1.0									
1,2,4-Trimethylbenzene	ND	1.0									
1,3,5-Trimethylbenzene	ND	1.0									
1,2-Dichloroethane (EDC)	ND	1.0									
1,2-Dibromoethane (EDB)	ND	1.0									
Naphthalene	ND	2.0									
1-Methylnaphthalene	ND	4.0									
2-Methylnaphthalene	ND	4.0									
Acetone	ND	10									
Bromobenzene	ND	1.0									
Bromodichloromethane	ND	1.0									
Bromoform	ND	1.0									
Bromomethane	ND	3.0									
2-Butanone	ND	10									
Carbon disulfide	ND	10									
Carbon Tetrachloride	ND	1.0									
Chlorobenzene	ND	1.0									
Chloroethane	ND	2.0									
Chloroform	ND	1.0									
Chloromethane	ND	3.0									
2 Chlorotoluene		1.0									
		1.0									
		1.0									
cis 1.2 Dichloropropopo		1.0									
1 2 Dibromo 2 chloronronono		1.0									
		2.0									
		1.0									
		1.0									
1,2-Dichlorobenzene	ND	1.0									
1,3-DICNIORODENZENE	ND	1.0									
I,4-DICNIOrobenzene	ND	1.0									
Dichlorodifluoromethane	ND	1.0									
1,1-Dichloroethane	ND	1.0									
1,1-Dichloroethene	ND	1.0									
1,2-Dichloropropane	ND	1.0									
1,3-Dichloropropane	ND	1.0									
2,2-Dichloropropane	ND	2.0									

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

07-Nov-17

1710E76

WO#:

Page 5 of 8

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

R.T. Hicks Consultants, LTD

Project: ASAU 1	50 Characte	erizatio	n							
Sample ID rb	SampType: MBLK			Tes						
Client ID: PBW	Batch ID: W46875			F	RunNo: 4	6875				
Prep Date:	Analysis Da	ate: 1	1/3/2017	S	SeqNo: 1	495595	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1.1.1.2-Tetrachloroethane	ND	1.0								
1 1 2 2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1 2-DCF	ND	1.0								
trans-1 3-Dichloropropene	ND	1.0								
1 2 3-Trichlorohenzene	ND	1.0								
1.2.4 Trichlorobenzene		1.0								
1 1 1 Trichloroothano		1.0								
		1.0								
		1.0								
		1.0								
		1.0								
1,2,3-Thenioropropane	ND	2.0								
	ND	1.0								
Xylenes, I otal	ND	1.5	40.00		101		100			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		106	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			
Sample ID 100ng Ics	SampTy	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	ID: W	46875	F	6875					
Prep Date:	Analysis Da	ate: 1 '	1/3/2017	SeqNo: 1495597			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.8	70	130			
Toluene	20	1.0	20.00	0	102	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710E76

07-Nov-17

WO#:

Page 6 of 8

Client: R.T. H	licks Consult	ants, LT	D								
Project: ASAU	150 Charact	erizatio	n								
Sample ID 100ng Ics	SampType: LCS TestCode: EPA Method 8260B: VOLATILES										
Client ID: LCSW	Batch ID: W46875			F	RunNo: 46875						
Prep Date:	Analysis Date: 11/3/2017			5	SeqNo: 1	495597	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
1,1-Dichloroethene	23	1.0	20.00	0	114	70	130				
Trichloroethene (TCE)	18	1.0	20.00	0	91.7	70	130				
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130				
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130				
Surr: Dibromofluoromethane	10		10.00		104	70	130				
Surr: Toluene-d8	10		10.00		104	70	130				
Sample ID rb	ble ID rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES										
Client ID: PBW	Batch ID: W46900			RunNo: 46900							
Prep Date:	Analysis Date: 11/6/2017			SeqNo: 1496555			Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	ND	1.0									
Ethylbenzene	ND	1.0									
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.8	70	130				
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130				
Surr: Dibromofluoromethane	9.7		10.00		96.8	70	130				
Surr: Toluene-d8	10		10.00		102	70	130				
Sample ID 100ng Ics	SampT	SampType: LCS TestCode: EPA Method 8260B: VOLATILES									
Client ID: LCSW	Batch	Batch ID: W46900			RunNo: 46900						
Prep Date:	Analysis D	Date: 11	1/6/2017	S	SeqNo: 1	496556	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	18	1.0	20.00	0	89.5	70	130				
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.6	70	130				
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130				
Surr: Dibromofluoromethane	9.4		10.00		93.9	70	130				
Surr: Toluene-d8	9.8		10.00		97.9	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 8

WO#: **1710E76**

07-Nov-17

Client: R.T. Hie	cks Consultants	s, LTD								
Project: ASAU	50 Characteriz	zation								
Sample ID rb	SampType	: MBLK	TestCode: EPA Method 8015D: Gasoline Range							
Client ID: PBW	Batch ID	G46875	F	RunNo: 4	6875					
Prep Date:	Analysis Date	11/3/2017	SeqNo: 1495610			Units: mg/L				
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	ND 0.	050								
Surr: BFB	9.5	10.00		95.1	70	130				
Sample ID 2.5ug gro Ics	SampType: LCS TestCode: EPA Method 8015D: Gasoline F							e		
Client ID: LCSW	Batch ID	G46875	F	RunNo: 4	6875					
Prep Date:	Analysis Date	11/3/2017	SeqNo: 1495611			Units: mg/L				
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	0.54 0.	050 0.5000	0	108	70	130				
Surr: BFB	9.7	10.00		96.6	70	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

1710E76

07-Nov-17

WO#:

Page 8 of 8

Value above quantitation range
Received by OCD: 9/16/2024 1:47:30 PM

•

Client Name. RT HICKS Work Order Number: 1710E76 RcptNo: 1 Received By: Richie Eriacho 10/26/2017 10:00:00 AM Image: Completed By: Ashley Galleges 10/27/2017 12:45:56 PM Reviewed By: Image: Chain of Custody Image: Chain of Custody Image: Chain of Custody completer No No Not Present Image: Chain of Custody completer 1. Custody seals intact on sample bottles? Yes No No Not Present Image: Courier 2. Is Chain of Custody complete? Yes No No NA Image: Courier Jond In A. Was an attempt made to cool the samples? Yes No NA Image: Courier J. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA Image: Courier S. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA Image: Courier S. Were all samples volume for indicated test(s)? Yes No NA Image: Courier S. Were all samples (except VOA and ONG) property preserved? Yes No No Na Image: Courier No	k List
Received By: Richie Eriacho 10/26/2017 10:00:00 AM Completed By: Ashley Gallegos 10/27/2017 12:45:56 PM Reviewed By: Image: Complete C	
Completed By: Ashley Gallegos 10/27/2017 12:45:56 PM Reviewed By: Image: Complete P 10/27/2/17 Chain of Custody 1 Custody seals intact on sample bottles? Yes 1 Custody seals intact on sample bottles? Yes No Not Present 2 Is Chain of Custody complete? Yes No Not Present 3 How was the sample delivered? Courier Log In	
Reviewed By: Implies the sample bottles? Yes No Not Present 1. Custody seals intact on sample bottles? Yes No Not Present Not Present 2. Is Chain of Custody complete? Yes No No Not Present Not Present 3. How was the sample delivered? Courier Log In	
2. Aain of Custody 1. Custody seals intact on sample bottles? Yes No Not Present 2. Is Chain of Custody complete? Yes No Nol Present 3. How was the sample delivered? Courier Loca In 4. Was an attempt made to cool the samples? Yes No NA 5. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA 6. Sample(s) in proper container(s)? Yes No NA 7. Sufficient sample volume for indicated test(s)? Yes No NA 9. Was preservative added to bottles? Yes No NA Integration of the sample containers received broken? 10. VOA vials have zero headspace? Yes No No No Integration of the sample containers received broken? 12. Does paperwork match bottle labels? Yes No Integration of the sample containers of the sample	
1. Custody seals intact on sample bottles? Yes No Not Present ✓ 2, Is Chain of Custody complete? Yes No Nol Present ✓ 3. How was the sample delivered? Courier ✓ No Nol Present ✓ 4. Was an attempt made to cool the samples? Yes ✓ No NA ✓ 5. Were all samples received at a temperature of >0° C to 6.0°C Yes ✓ No NA ✓ 6. Sample(s) in proper container(s)? Yes ✓ No ✓ NA ✓ 7. Sufficient sample volume for indicated test(s)? Yes ✓ No ✓ NA ✓ 9. Was preservative added to bottles? Yes ✓ No ✓ NA ✓ 10. VOA vials have zero headspace? Yes ✓ No ✓ No ✓ No UVA Vials ✓ 11. Ware any sample containers received broken? Yes ✓ No ✓ ✓ Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø Ø	
2. Is Chain of Custody complete? Yes No Nol Present 3. How was the sample delivered? Courier Log In.	
3. How was the sample delivered? Courier Locr In 4. Was an attempt made to cool the samples? Yes No NA 4. Was an attempt made to cool the samples? Yes No NA NA 5. Were all samples received at a temperature of >0° C to 6.0° C Yes No NA NA 6. Sample(s) in proper container(s)? Yes No NA NA 7. Sufficient sample volume for indicated test(s)? Yes No No NA 8. Are samples (except VOA and ONG) property preserved? Yes No NA NA 9. Was preservative added to bottles? Yes No NA Integration of preserved processing of preserved processi	
4. Was an attempt made to cool the samples? Yes No NA 5. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA 5. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA 6. Sample(s) in proper container(s)? Yes No NA 7. Sufficient sample volume for indicated test(s)? Yes No No 8. Are samples (except VOA and ONG) property preserved? Yes No Na 9. Was preservative added to bottles? Yes No Na 0.VOA vials have zero headspace? Yes No No Was 1. Ware any semple containers received broken? Yes No Wo # of preserved bottles checked 2 Does peperwork match bottle labels? Yes Yes No (# of preserved bottles checked	
 4. Was an attempt made to cool the samples? Yes ☑ No. No. NA. Semple(s) in proper container(s)? Yes ☑ No. No. NA. NA.<	
5. Were all samples received at a temperature of >0° C to 6.0°C Yes No NA 6. Sample(s) in proper container(s)? Yes No No 7. Sufficient sample volume for indicated test(s)? Yes No Mo 8. Are samples (except VOA and ONG) property preserved? Yes No Mo 9. Was preservative added to bottles? Yes No Mo 10.VOA vials have zero headspace? Yes No No VOA Vials 11. Were any semple containers received broken? Yes No Image: # of preserved bottles checked for pH; 12 Does paperwork match bottle labels? Yes Yes No Image: # of preserved bottles checked for pH;	
6 Sample(s) in proper container(s)? Yes No 7. Sufficient sample volume for indicated test(s)? Yes No 7. Sufficient sample volume for indicated test(s)? Yes No 8. Are samples (except VOA and ONG) property preserved? Yes No 9. Was preservative added to bottles? Yes No NA 10. VOA vials have zero headspace? Yes No No VOA Vials 11. Ware any sample containers received broken? Yes No # of preserved bottles checked for pH; 12 Does paperwork match bottle labels? Yes No If or pH; (< or >12	
7. Sufficient sample volume for indicated test(s)? Yes No ✓ 8. Are samples (except VOA and ONG) property preserved? Yes No ✓ 9. Was preservative added to bottles? Yes No ✓ 10. VOA vials have zero headspace? Yes Yes No ✓ 11. Ware any sample containers received broken? Yes No ✓ ✓ 12 Does paperwork match bottle labels? Yes Yes No ✓ ✓ (Note discreptionagres on chain of oustory) (Yes Yes No ✓ (
8. Are samples (except VOA and ONG) property preserved? Yes No 9. Was preservative added to bottles? Yes No NA 9. Was preservative added to bottles? Yes No NA 10. VOA vials have zero headspace? Yes No No No 11. Wate any semple containers received broken? Yes No Image: Second added to bottle t	
9. Was preservative added to bottles? Yes No NA 10. VOA vials have zero headspace? Yes No No VOA Vials 1. Ware any sample containers received broken? Yes No Mo 2 Does paperwork match bottle labels? Yes Yes No # of preserved bottles checked 2 Does paperwork match bottle labels? Yes Yes No (
0. VOA vials have zero headspace? Yes No No VOA Vials 1. Ware any semple containers received broken? Yes No # of preserved bottles checked 2 Does paperwork match bottle labels? Yes Yes No # of preserved bottles checked (Note discrepances on chain of custority) Yes Yes No (
1. Ware any sample containers received broken? Yes No # of preserved bottle checked 2 Does paperwork match bottle labels? Yes Yes No for pH; (Note discrepances on check of custody) (<2 or >12)	
Z Does paperwork match bottle labels? Yes Yes Yes No tor pH: (<2 or >12	
2 Does paperwork match bottle labels? Yes ☑ No	
DADE DISCRETATIONS OF CONTRACT OF CONTRACT.	unlose notod
A rematrices correctly identified on Chain of Custoriu? Ves V No I Adjusted?	uniess nuteo
1 is it clear what analyses were requested? Yes V No	
5. Were all holding times able to be met? Yes V No Checked by:	
pecial Handling (if applicable)	
6. Was client notified of all discrepancies with this order? Yes Ves Volume No Volume NA V	
Person Notified: Date	
By Whom Via: eMail Phone Fax In Person	
Regarding:	
Client Instructions:	
7. Additional remarks:	
8 Cooler Information	
Copier mormation Copier No Temp C Condition Seal mart Seal No. Seal Date Summer Ru	
1 1.4 Good Yes	

Clarint Clarint <t< th=""><th></th><th>A REAL PROPERTY AND A REAL</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>1</th><th>2</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		A REAL PROPERTY AND A REAL						-		1	2						
Bol Rec Grantee End NW Project Name Methallenvironmentation Milling Address: Suite F.142 Absuratee End NW Absurate End NW Absuratee End NW Project Name Absuratee End NW Absurate End NW Absuratee End NW Project Name Absuratee End NW Absurate End NW Absuratee End NW Project Name Absuratee End NW Absurate End NW Project Name Absuratee End NW Project Name Absurate Absuratee End NW Project Name Project Name Absurate Data Project Name Project Name Project Name Absurate Data The Millin Project Name Project Name Project Name Absurate Data The Millin Project Name Project Name Project Name Absurate Absuratee Project Name Project Name Project Name Absurate Absuratee Project Name Project Name Project Name Absuratee Absuratee Project Name Project Name Project Name Absuratee Absuratee Project	Client: R.	T. Hicks C	Const	ultants	X Standard	C Rush		Π	Y			,	v	5	alo	D L C	i à
Mailling Address Saule F-142 ASNU #150 CHARACTERIZATION 4010 Heriorities (M. 67104) Flue Abbrowendue MIL 67104 Propert Marager Abbrowendue MIL 67104 Propert Marager Flue Exercise Saule F-142 AsNU #150 CHARACTERIZATION Flue Flue Abbrowendue MIL 67104 Propert Marager Flue Exercise Saule F-142 Abbrowendue MIL 67104 Propert Marager Abbrowendue MIL 67104 Propert Marager Abbrowendue MIL 7504 Bartel Mile Time Mark Sample Request ID Contrains Contrains Market Mile Mile Mile Mile Mile Mile Mile Mile		106	Rio C	Srande Blvd NW	Project Nam	a)			a	1	ed.ww	lenvin	Domen	tal co	5		
Altrouendue MM 67104 Altrouendue MM 67104 Tel. 565-365-5004 Tel. 565-365-5004 Amole #. (667) 365-5004 Free Regittine comments Free Regittine comments Free Regittine comments Amole #. (667) 365-5004 Free Regittine comments Free Regittine comments Free Regittine comments Free Regittine comments Amole #. (67) 365-5004 Free Regittine comments Kistingtine Kistingtine Free Register	Mailing Add	ess: Suite	e F-1	42	ASAU #150	CHARACTER	NOLLATION		4901 -	lawkin	NE	Albu	dueran	NN at	A 87109		
Prime # (EG) 265-5004 Prime # (EG) 265-5004 Prime # (EG) 265-5004 Prime # (EG) 265-5004 Amontal common		Albuc	uanbr	que, NM 87104	Project #				Tel. 5(05-345	-3975	Fa	x 505	-345-	4107		
Project Manager: Project Manager: And Bubbles (Y or N) CANCC Package Advice Package Advice Package CANCE Package Advice Package Advice Package Date Time Advice Package Advice Package MWY 2 @ 5/3 Mater MWY 2 @ 5/3 Advice Package MWY 2 @ 5/3 Mater MWY 2 @ 5/3 Advice Package MWY 2 @ 5/3 Mater MWY 2 @ 5/3 Advice Package MWY 2 @ 5/3 Mater MWY 2 @ 5/3 Advice Package	Phone #.	(505)	5) 266	5-5004							đ	nalys	is Req	uest			
Outoc Paskage Outoc Paskage Across Paskage Concorditation: Across Paskage Across Postage Across Paskage Across Postage Across Paskage Across Postage Across Paskage Across Postage Across Paskage Date Time Matrix Date Time Matrix Sampler, M. Subbler Across Postage Across Postage Across Postage	email or Fax	#. R@n	rthick	sconsult.com	Project Mana	1ger.		()	(jəs (Kiu	D	_		(Tr				
Restandid Level 4 Full Validation Kistin Pope (575) 302-6756 Kistin Pope (575) 302-6756 Accondition: Bampler: Mistin Pope (575) 302-6756 Mistin Pope (575) 302-6756 Accondition: Bampler: Mistin Pope (575) 302-6756 Mistin Pope (575) 302-6756 Accondition: Bampler: Mistin Pope (575) 302-6756 Mistin Pope (575) 302-6756 Accondition: Bampler: Mistin Pope (575) 302-6756 Mistin Pope (575) 302-6756 Accondition: Contrainer Preservativ HEAL Mistin Pope (575) 302-6756 Accondition: Mixel & Mixel Nicolopeee Proce Nicolopeee Proce	QA/QC Packa	ge						208	o se	YWI	-	13 0	5,80	1	-		
Date Time Mitthefield Date Time Matrix Sample: Mitting Sample: Mitting Sample: Mitting Sample: Sample: Mitting Sample: Container Freeserontiv Mitting Sample: Mitting Sample: Mitting Container Freeserontiv HEAL No. Presenced 4161) Container Freeserontiv HEAL No. Presenced 4161) Mitting Sample: Mitting Sample: Mitting Mitting Sample: Mitting Sample: Freeserontiv Mitting Sample: Mitting Sample: Mitting Mitting Sample: Mitting	X Standard			Level 4 (Full Validation)		Kristin Pope	(575) 302-6755) 5,8	ടജ്ഇ എ പ	,			2 P(51/	_		_
Date Time Matrix Sample Temperature Lot 2.1 (Lot 2.1) Date Time Matrix Sample Temperature Lot 2.1 (Lot 2.1) Note Date Time Matrix Sample Temperature Lot 2.1 (Lot 2.1) Note Time Matrix Sample Request ID container Peservative Lot 2.1 (Lot 2.1) Note Time Matrix Sample Request ID container Peservative Lot 2.1 (Not 2.1) Note Note <t< td=""><td>Accreditation</td><td></td><td></td><td></td><td>Sampler:</td><td>M. Stubblefie</td><td>ple</td><td>IWI</td><td>98</td><td>(1.</td><td>(H</td><td>OIN</td><td>808</td><td>ba</td><td>-</td><td></td><td></td></t<>	Accreditation				Sampler:	M. Stubblefie	ple	IWI	98	(1.	(H	OIN	808	ba	-		
Date Time Matrix Sample Request ID Container Preservativ HEAL No. Preservativ HEAL No. Alf Bubbles (Vo. Date Time Marin Sample Request ID Container Preservativ HEAL No. Preservativ Alf Bubbles (Vo. Undarity 255 water MW-2 © 5.3 ft 3 vOA HgCl tee - OO I BTEX + ATTBE BTEX + ATTBE BTEX + ATTBE RCMA 6 Medicate Vol BTEX + ATTBE Alf Bubbles (VOA) Undarity 255 water MW-3 © 4/9 ft atmote MW-3 © 4/9 ft Alf Bubbles (VOA) Undarity 255 water MW-3 © 5/9 ft a vOA HgCl tee - OO I BTEX + ATTBE RCMA 6 Reciected RC	D NELAP	O D	Olher		On Ice:	X Yes	ON E	+	510	811	HVc	s	15	1	(\(-	
Date Time Main Sample Request ID Type and # Freework HEAL No. HEAL No. VI2317 203 water MW*2 @ 5/3 ft 3 VOA H0CL toe - OO1 00 11 FEPH Method VI2317 203 water MW*2 @ 5/3 ft 3 VOA H0CL toe - OO1 0 11 FEPH Method VI2317 203 water MW*2 @ 5/3 ft 3 VOA H0CL toe - OO1 0 11 FEPH Method VI2317 203 water MW*2 @ 5/3 ft 1 amber 1 amber 1 amber 1 amber VI2317 205 water MW*2 @ 5/3 ft 1 amber 1 amber 1 amber 1 amber VI2317 250 water MW*2 @ 5/3 ft 1 amber 1 amber 1 amber 1 amber NV4 @ 5/2 ft 3 VOA Hgcl toe - DO2 1 x 1 n x 1 n NV4 @ 5/2 ft 1 amber 1 amber 1 amber 1 amber 1 n 1 n 1 n NV4 @ 5/2 ft 1 amber 1 amber 1 amber 1 amber 1 n 1 n 1 n NV4 @ 5/2 ft 1 amber 1 amber 1 amber 1 amber 1 n 1 n 1 n NV4 @ 5/2 ft 1 amber 1 amber 1 amber 1 n 1 n </td <td>D EDD (Typ</td> <td>(9)</td> <td></td> <td></td> <td>Sample Tem</td> <td>perature: -2</td> <td>47=2.04</td> <td>381</td> <td>8 p</td> <td>po</td> <td>00</td> <td>(B)</td> <td>api:</td> <td>(4</td> <td><u>مح</u></td> <td>_</td> <td>_</td>	D EDD (Typ	(9)			Sample Tem	perature: -2	47=2.04	381	8 p	po	00	(B)	api:	(4	<u>مح</u>	_	_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date Ti	Mat	trix	Sample Request ID	Container Type and #	Preservativ e Type	HEAL NO.	TIC + X318		TPH (Metho	AN9) 01:58	M B ARDR	o, 1) shoned 18081 Pestic	8260B (VO	ime2) 0728		
Participant MW-2 © 5.3 ft 1 amber ice × <t< td=""><td>N VOIZSIA 12</td><td>03 water</td><td>5</td><td>MW-2@ 53 #</td><td>3 VOA</td><td>HgCl, ice</td><td>100-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td></t<>	N VOIZSIA 12	03 water	5	MW-2@ 53 #	3 VOA	HgCl, ice	100-							×			
R MW-3 @ 4/9 ñ 3 VOA HgCl, ice - OO2 I X I X I X I X I X I X I X I X I X I I X <td>torsalt rea</td> <td>23 water</td> <td>L.</td> <td>MW-2@ 53 #</td> <td>1 amber</td> <td>ice</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	torsalt rea	23 water	L.	MW-2@ 53 #	1 amber	ice			×								
Structure MW-3 @ 4/9 ft 1 amber ice X <thx< td=""><td>tobelit one</td><td>5 water</td><td>St.</td><td>MW-3@ 49 R</td><td>3 VOA</td><td>HgCl, ice.</td><td>- 002</td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td></thx<>	tobelit one	5 water	St.	MW-3@ 49 R	3 VOA	HgCl, ice.	- 002							×			
Substration MW-4 @ 50 ft 3 vOA HgCl, ice - 003 N N X N X N	5 10/4/17/07S	5 water	St.	MW-3@49 A.	1 amber	ice			×			-			-		
Ability or Stor water MW-4 @ 50 1 amber ice X I X I	P 10/23/1/05	o water	2	MW-4@ 50 A	3 VOA	HgCl, ice	- 003							×	-		
Date Time Relinquished by Received by Date Time Remarks: Email to R@rthicksconsult.com kristin Date Time Reinquished by Date Time Remarks: Email to R@rthicksconsult.com kristin Date: Time Reinquished by Date Time Remarks: Email to R@rthicksconsult.com kristin Date: Time Reinquished by Date Time Reinquished by No No	Korzar V as	water	5	MW-4@50 #	1 amber	ice			×								
Date Titlet Relinquished by Received by Date Time Remarks: Email to R@rthicksconsult.com. kristinmike Date: Time: Relinquished by Received by Date Time Remarks: Email to R@rthicksconsult.com. kristinmike Date: Time: Relinquished by Received by Date Time Remarks: Email to R@rthicksconsult.com. kristinmike Date: Time: Relinquished by: Received by Date Time Remarks: Email to R@rthicksconsult.com. kristinmike										ttt							
Date Time Relimpuished by Received by Date Time Remarks: Email to R@rthicksconsult.com, kristin, mike Date Time Relimpuished by Received by Date Time No PKD But the Free Aurory Shifting years and years and years																	
Dates Time: Relinquished by: Received by Bate Time No PKD Bottler Frech dura by Shifting 4/10/27	Date: Time	i Reling.	quished	τάν.	Racewood By		Date Time 10/26/17 /000	Rema 82	tks: L(to)	Email ELL-	to R@	orthicks	Sconsu	IL.com	i, kristir	1m	ike
	Date: Time	Relingu	anished	d by:	Received by		Date Time	e	2 PK	4	4	なな	200 °	lund	y shell	hist	of ials

Released to Imaging: 9/16/2024 1:48:57 PM

Received by OCD: 9/16/2024 1:47:30 PM

Appendix C

LNAPL Analysis and Comparison

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

.

Appendix C – LNAPL Characterization & Comparison

We performed characterization of the floating oil in MW-1 by bailing a sample on October 24 according to the proposal submitted to NMOCD of October 9. The sample was submitted to Laboratory Services of Hobbs for LNAPL analysis. On October 26, Lime Rock collected three samples of crude from the same service line as the ASAU #150 release and submitted those samples to the same laboratory for specific gravity, sulfur percentage, and API gravity analyses. Table 3 summarizes the comparative analyses of these samples and full laboratory reports are located in Appendix C.

											Ca	culated b	y R.T. Hick	s Consulta	ants		
Well ID	Sample Date	Total Sulfer wt.%	API Gravity	Specific Gravity	Benzene wt %	Toluene wt %	Ethyl Benzene wt %	Xylenes wt %	BTEX %	Benzene mg/kg	Toluene mg/kg	Ethyl Benzene mg/kg	Xylenes mg/kg	Benzene /BTEX	T/BTEX	E/BTEX	X/BTEX
MW-1	10/24/2017	0.000	39.9	0.8254	0.5737	2.2494	0.5931	3.1928	6.609	5737	22494	5931	31928	9%	34%	9%	48%
Atoka San Andres #150	10/26/2017	0.811	39.2	0.8289													
Atoka San Andres #152	10/26/2017	0.995	38.8	0.8308						N	ot Analyze	ed					
Atoka San Andres #153	10/26/2017	0.797	39.0	0.8299													

Comparison of product in MW-1 to product in Lime Rock system

Table 3

API gravities and specific gravities of the Lime Rock samples are similar to those of the MW-1 LNAPL. When sulfur percentage is compared amongst the samples, sulfur in the MW-1 LNAPL is noticeably absent. No further analysis is planned.

www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240

Total Sulfur in Crude

Lime Rock Resources Attention: Jerry Smith 1111 Bagby Street, Suite 4700A Houston, Texas 77002

10/26/17

	Total Sulfur	API Gravity	Specific Gravity
Atoka San Andres #150	0.811 wt.%	39.2	0.8289
Atoka San Andres #152	0.995 wt.%	38.8	0.8308
Atoka San Andres #153	0.797 wt.%	39.0	0.8299

Test Method ASTM D4294 Sulfur Test Method ASTM D287 API Gravity

.

www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240 SUMMARY OF CHROMATOGRAPHIC ANALYSIS

COMPANY:				JOB #:	1710005
SAMPLE ID:	CRUDE OIL			SAMPLE #:	1710005-01
SAMPLE TYPE:	SPOT			DATE ON:	
STATION:	ASAU #150			DATE OFF:	
SAMPLE PRESS.,psig:	AMBIENT			TIME ON:	
SAMPLE TEMPERATURE, F	AMBIENT			TIME OFF:	
ANALYSIS DATE:	10/24/2017			SAMPLED BY	: CLIENT
ANALYSIS COMMENTS:				ANALYST:	JAMES R. PRITCHARD
COMPONENT	MOLE %	WEIGHT %	VOLUME %	CALCULAT	ED PARAMETERS
HYDROGEN SULFIDE	0.0000	0.0000	0.0000	TOTAL ANA	ALYSIS SUMMARY
NITROGEN	0.0000	0.0000	0.0000		
OXYGEN	0.0000	0.0000	0.0000	AVE MOLE WT	159.5593
METHANE	0.0000	0.0000	0.0000	SP GRAV, 60F/60	0.8254
CARBON DIOXIDE	0.0000	0.0000	0.0000	API GRAVITY	39.9
ETHANE	0.0005	0.0001	0.0002	REL DENS, AIR=1	5.5090
PROPANE	0.0057	0.0016	0.0024	VAPOR PRESS PSIA	3.83
ISO-BUTANE	0.0935	0.0341	0.0465		
N-BUTANE	1.6601	0.6047	0.7944	HEXANES	PLUS SUMMARY
ISO-PENTANE	4.6758	2.1143	2.5974		
N-PENTANE (C-5)	5.0364	2.2773	2.7687	AVE MOLE WT	171.1664
2,2 DIMETHYL BUTANE	0.6106	0.3298	0.3873	SP GRAV, 60F/60	0.8518
CYCLOPENTANE	0.1158	0.0509	0.0514	API GRAVITY	34.6
2-METHYLPENTANE	3.0578	1.6516	1.9266	LBS/GAL	6.815
3-METHYLPENTANE	1.5775	0.8520	0.9773	REL DENS, AIR=1	5.9097
N-HEXANE (C-6)	2.2729	1.2276	1.4191	VAPOR PRESS PSIA	1.30
METHYLCYCLOPENTANES	1.9131	1.0091	1.0270		
BENZENE	1.1719	0.5737	0.4986	BTEX	SUMMARY
CYCLOHEXANE	3.2994	1.7403	1.7044		
2-METHYLHEXANE	0.3896	0.2447	0.2752	WT % BENZENE	0.5737
3-METHYLHEXANE	1.2879	0.8088	0.8958	WT % TOLUENE	2.2494
DIMETHYLCYCLOPENTANES	0.5196	0.3198	0.3245	WT % E BENZENE	0.5931
HEPTANES	1.6775	1.0534	1.1744	WT % XYLENES	3.1928
N-HEPTANE (C-7)	1.8477	1.1603	1.2936		
METHYLCYCLOHEXANE	3.3898	2.0431	2.0236	DECANES	PLUS SUMMARY
2-2-4 TRIMETHYLPENTANE	0.5633	0.4033	0.3994		
TOLUENE	3.8953	2.2494	1.9742	AVE MOLE WT	240.8143
OCTANES	4.0178	2.8764	3.1220	SP GRAV, 60F/60	0.9443
N-OCTANE (C-8)	1.4068	1.0071	1.0931	API GRAVITY	18.4
ETHYL BENZENE	0.8914	0.5931	0.5205	LBS/GAL	7.555
P-M-XYLENE	3.5421	2.3569	2.0834	REL DENS, AIR=1	8.3144
O-XYLENE	1.2562	0.8359	0.7249	VAPOR PRESS PSIA	0.01
NONANES	3.9103	3.1433	3.3414		
N-NONANE (C-9)	1.2156	0.9771	1.0387		

ASAU #150 CRUDE OIL

				CRUDE OIL F	INGERPRINT
COMPONENT	MOLE %	WEIGHT %	VOLUME %	C-n/C-13 RATI	O SUMMARY
DECANES	4.8375	4.3136	4.5083	C-n	C-n/C-13
N-DECANE (C-10)	2.0498	1.8278	1.9103		
UNDECANES	3.3145	3.2470	3.3465	10.0	3.523
N-UNDECANE (C-11)	0.7495	0.7342	0.7567	11.0	1.415
DODECANES	1.8728	1.9993	2.0379	12.0	1.101
N-DODECANE (C-12)	0.5349	0.5710	0.5820	13.0	1.000
TRIDECANES	1.4069	1.6256	1.6374	14.0	0.912
N-TRIDECANE (C-13)	0.4490	0.5188	0.5226	15.0	0.757
TETRADECANES	1.0049	1.2495	1.2560	16.0	0.602
N-TETRADECANE (C-14)	0.3807	0.4733	0.4758	17.0	0.575
PENTADECANES	0.7394	0.9844	0.9782	18.0	0.458
N-PENTADECANE (C-15)	0.2948	0.3925	0.3900	19.0	0.505
HEXADECANES	0.4035	0.5726	0.5653	20.0	0.380
N-HEXADECANE (C-16)	0.2199	0.3121	0.3081		
HEPTADECANES	0.3733	0.5626	0.5537	BIO-MARKEF	SUMMARY
N-HEPTADECANE (C-17)	0.1980	0.2984	0.2937		
OCTADECANES	0.3563	0.5683	0.5577	Farnesane/C-14	0.128
N-OCTADECANE (C-18)	0.1490	0.2377	0.2333	Pristane/C-17	0.659
NONADECANES	0.1952	0.3285	0.3203	Phytane/C-18	0.679
N-NONADECANE (C-19)	0.1556	0.2619	0.2554		
EICOSANES	0.1232	0.2182	0.2116	Wt. % Sulfur	0.0000
N-EICOSANES (C-20)	0.1112	0.1969	0.1909		
HENEICOSANE + (C-21+)	24.7782	45.9661	43.6223	Gravity, API @ 60 F	0.0
TOTALS	100.0000	100.0000	100.0000		

CALCULATED PARAMETERS

www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240 SUMMARY OF CHROMATOGRAPHIC ANALYSIS

COMPANY:		JOB #:	1710005
SAMPLE ID:	CRUDE OIL	SAMPLE #:	1710005-01
SAMPLE TYPE:	SPOT	DATE ON:	
STATION:	ASAU #150	DATE OFF:	
SAMPLE PRESS.,psig:	AMBIENT	TIME ON:	
SAMPLE TEMPERATURE, F	AMBIENT	TIME OFF:	
ANALYSIS DATE:	10/24/2017	SAMPLED BY:	CLIENT
ANALYSIS COMMENTS:		ANALYST:	JAMES R. PRITCHARD

TANKS DATA INPUT REPORT

COMPONENT	MOLE %	WEIGHT %	VOLUME %		
				TOTAL ANALYSI	S SUMMARY
CARBON DIOXIDE	0.0000	0.0000	0.0000		
NITROGEN	0.0000	0.0000	0.0000		
METHANE	0.0000	0.0000	0.0000	AVE MOLE WT	159.5593
ETHANE	0.0005	0.0001	0.0002	SP GRAV, 60F/60	0.8254
PROPANE	0.0057	0.0016	0.0024	API GRAVITY	39.9
ISO-BUTANE	0.0935	0.0341	0.0465	REL DENS, AIR=1	5.5090
N-BUTANE	1.6601	0.6047	0.7944	VAPOR PRESS PSIA	3.83
ISO-PENTANE	4.6758	2.1143	2.5974	CU FT VAPOR/GAL	18.09
N-PENTANE	5.0364	2.2773	2.7687		
N-HEXANE	2.2729	1.2276	1.4191		
OTHER HEXANES	10.5742	5.6337	6.0740		
HEPTANES	9.1121	5.6301	5.9871	DECANES PLUS	SUMMARY
OCTANES	5.4246	3.8835	4.2151		
NONANES	5.1259	4.1204	4.3801	AVE MOLE WT	240.8143
BENZENE	1.1719	0.5737	0.4986	SP GRAV, 60F/60	0.9443
TOLUENE	3.8953	2.2494	1.9742	API GRAVITY	18.4
ETHYLBENZENE	0.8914	0.5931	0.5205	LBS/GAL	7.5550
XYLENES	4.7983	3.1928	2.8083	REL DENS, AIR=1	8.3144
2,2,4 TRIMETHYLPENTANE	0.5633	0.4033	0.3994	VAPOR PRESS PSIA	0.01
DECANES PLUS	44.6981	67.4603	65.5140		

100.0000 100.0000 100.0000

CHARACTERISTICS OF STOCK TANK OIL

API GRAVITY @ 60 F	(ASTM D287)	34.7
REID VAPOR PRESSURE, psia	(ASTM D323)	NA
WEIGHT % SULFUR	(ASTM D4294)	NA

TOTAL


```
ASAU #150
```


From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Friday, January 19, 2018 1:47 PM
То:	Billings, Bradford, EMNRD; Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD
Cc:	mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith'; mbarrett@limerockresources.com
Subject:	Notice of MW sampling: Lime Rock ASAU #150

Brad, Crystal, Mike,

We will sample MW-2, MW-3, and MW-4 on <u>Wednesday, January 24, beginning at 9:00 am</u>. We will collect the quarterly compliance samples for each well using the low-flow procedure. The samples will be shipped to Hall Env. Lab in Albuquerque the next day using their courier.

If this schedule is inconvenient for you, please let me know as soon as possible. Thank you.

From:	Weaver, Crystal, EMNRD
Sent:	Wednesday, March 14, 2018 11:54 AM
То:	Kristin Pope; Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Cc:	mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith'; mbarrett@limerockresources.com
Subject:	RE: Notice of MW sampling: Lime Rock ASAU #150

Kristin,

Just following up on this one. Where are the sample results at? Did they only go to Bradford or something?

Thanks in advance for addressing my questions.

Sincerely,

Crystal Weaver

Environmental Specialist OCD – Artesia District II 811 S. 1st Street Artesia, NM 88210 Office: 575-748-1283 ext. 101 Cell: 575-840-5963 Fax: 575-748-9720

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, January 19, 2018 1:47 PM
To: Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>; Weaver, Crystal, EMNRD
<Crystal.Weaver@state.nm.us>; Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>
Cc: mike@rthicksconsult.com; Randy Hicks <r@rthicksconsult.com>; 'Jerry Smith' <JSmith@limerockresources.com>;
mbarrett@limerockresources.com
Subject: Notice of MW sampling: Lime Rock ASAU #150

Brad, Crystal, Mike,

We will sample MW-2, MW-3, and MW-4 on <u>Wednesday, January 24, beginning at 9:00 am</u>. We will collect the quarterly compliance samples for each well using the low-flow procedure. The samples will be shipped to Hall Env. Lab in Albuquerque the next day using their courier.

If this schedule is inconvenient for you, please let me know as soon as possible. Thank you.

•

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Wednesday, March 14, 2018 1:20 PM
То:	Weaver, Crystal, EMNRD; Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Cc:	mike@rthicksconsult.com; 'Randy Hicks'; 'Jerry Smith'; mbarrett@limerockresources.com
Subject:	RE: Notice of MW sampling: Lime Rock ASAU #150

No, you didn't miss them. Lime Rock is working with the landowner to secure placement of another MW. Atkins has a busy schedule but the drilling scheduled for April. As soon as we can pin down an exact location and date, I'll submit a short report to OCD. The results were more of the same and recovery at MW-1 is ongoing.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Weaver, Crystal, EMNRD [mailto:Crystal.Weaver@state.nm.us]
Sent: Wednesday, March 14, 2018 11:54 AM
To: Kristin Pope; Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Cc: mike@rthicksconsult.com; Randy Hicks; 'Jerry Smith'; mbarrett@limerockresources.com
Subject: RE: Notice of MW sampling: Lime Rock ASAU #150

Kristin,

Just following up on this one. Where are the sample results at? Did they only go to Bradford or something?

Thanks in advance for addressing my questions.

Sincerely,

Crystal Weaver

Environmental Specialist OCD – Artesia District II 811 S. 1st Street Artesia, NM 88210 Office: 575-748-1283 ext. 101 Cell: 575-840-5963 Fax: 575-748-9720

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, January 19, 2018 1:47 PM
To: Billings, Bradford, EMNRD <<u>Bradford.Billings@state.nm.us</u>>; Weaver, Crystal, EMNRD

<<u>Crystal.Weaver@state.nm.us</u>>; Bratcher, Mike, EMNRD <<u>mike.bratcher@state.nm.us</u>> Cc: <u>mike@rthicksconsult.com</u>; Randy Hicks <<u>r@rthicksconsult.com</u>>; 'Jerry Smith' <<u>JSmith@limerockresources.com</u>>; <u>mbarrett@limerockresources.com</u> Subject: Notice of MW sampling: Lime Rock ASAU #150

Brad, Crystal, Mike,

We will sample MW-2, MW-3, and MW-4 on <u>Wednesday, January 24, beginning at 9:00 am</u>. We will collect the quarterly compliance samples for each well using the low-flow procedure. The samples will be shipped to Hall Env. Lab in Albuquerque the next day using their courier.

If this schedule is inconvenient for you, please let me know as soon as possible. Thank you.

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Tuesday, March 20, 2018 12:01 PM
То:	Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD; Billings, Bradford, EMNRD
Cc:	Randy Hicks; mike@rthicksconsult.com; mbarrett@limerockresources.com; 'Jerry Smith'
Subject:	RE: Lime Rock ASAU #150 Release #2RP-3893
Attachments:	ASAU150_MW-5location.pdf

Brad, Crystal, & Mike,

Please find the attached proposal for the installation of another well (MW-5) at the Lime Rock ASAU #150 site. The work is scheduled for April 10, 2018. Please let me know if you have any comments or questions. Thanks.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, December 22, 2017 1:02 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us); Mike Bratcher
Cc: Randy Hicks; mike@rthicksconsult.com; Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock ASAU #150 Release #2RP-3893

Crystal and Mike,

Please find the attached report and proposal for the Lime Rock ASAU #150 Release . It includes:

- A summary of the compliance sampling performed to date
- A summary of the hydrocarbon characterization samples OCD required from the top of the water.
- A summary of the oil analysis on MW-1. Last measurement showed 1.5" thickness.
- A proposal for recovery of product on MW-1 using a sock. It was installed today and we will check it weekly.
- A proposal for at least one more well and possibly more after Q1 2018 analyses are received.

Let me know if you have any questions. Merry Christmas and enjoy your holiday.

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266.0745 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

March 20, 2018

Mr. Bradford Billings Ms. Crystal Weaver, Mr. Mike Bratcher NMOCD District 2 811 S. First Street Artesia, New Mexico 88210

VIA EMAIL

RE: **Proposed Installation of MW-5** Lime Rock – ASAU #150 Trunkline Release, #2RP-3893

Dear Ms. Weaver, Mr. Billings, and Mr. Bratcher:

On behalf of Lime Rock Resources, R.T. Hicks Consultants, Ltd. submits a proposed monitoring well location as specified in the December 22, 2017 report:

Characterization and delineation of the plume is not complete and at least one additional downgradient monitoring well is needed. In mid- to late January 2018, we will conduct the quarterly compliance sampling of the wells except for MW-1. We will continue to employ the low-stress, low-flow procedure and will analyze for BTEXN, chloride, sulfate, and TDS. NMOCD will be given at least 48 hours' notice of each sampling event. We will employ the additional data gathered from the first quarter sampling to create a potentiometric surface map of the updated groundwater levels and chemistry and include isocontours of the plume. This data will be used to provide the best location for the new well. We anticipate this location to be in the vicinity of the area marked on Plate 1. A proposal for the additional monitoring well(s) will be submitted to NMOCD before the end of the first quarter of 2018.

Compliance samples for the 2018 first quarter were collected on January 23, 2018 using a bailer due to a failure of the low-flow pump. As presented in Table 1, benzene concentrations increased markedly in all three wells samples. Passive recovery of LNAPL in MW-1 is ongoing and observations and measurements are summarized in
 Table 2.
 Average thickness of LNAPL
 remains relatively consistent at 0.25 feet or 3 inches. We intend to continue this system of recovery unless the amount of LNAPL increases and causes this system to be inadequate. We will then propose a more suitable recovery method to NMOCD.

Stained sock removed from MW-1 on 2/20/2018

March 20, 2018 Page 2

Plate 1 displays the potentiometric surface of groundwater during the January sampling event. The water levels from this event formed a more southerly gradient than has been observed yet at the site. On the day of sampling, we observed that nearby fields directly south and southwest of the site were being watered and conjecture that pumping of irrigation wells may be influencing the gradient.

Plate 2 draws isocontours of benzene concentrations from the January sampling with an area marked for the proposed MW-5. Lime Rock discussed this location with the surface owner and tenant and conducted an on-site inspection and together, selected the location of MW-5 that will not interfere with the residence's septic tank, leach lines, or access to other facilities by the occupant. Atkins Engineering Associates is scheduled to install the 2-inch monitoring well on April 10, 2018 in accordance with New Mexico Environment Department guidelines¹ after modification of the screen length pursuant to OCD recommendations. After appropriate development of MW-5, we will then schedule sampling of all wells for second quarter compliance, giving at least 48 hours' notice to NMOCD.

Thank you for your consideration of this data and meeting with us many times regarding this project. Please consider this submission a notice of installation of MW-5 but if the schedule changes, we will notify NMOCD with a phone call and email.

A copy of this report is provided to the landowner. The data gathered thus far suggest that there is minimal potential of hydrocarbon impact from this release to existing and future down-gradient water wells installed using contemporary construction standards and placement in the aquifer.

Sincerely, R.T. Hicks Consultants

Knistin Tope

Kristin Pope Project Geologist

Enclosures: Table 1, Table 2, Plate 1, Plate 2

Copy: Lime Rock Resources, Gray Holdings (surface owner)

¹ www.env.nm.gov/gwb/documents/MonitoringWellGuidelinesFINAL-March2011.pdf

Lime Rock - ASAU #150 Release

.

Monitoring Well Analyses

Well ID	DTW ft (from TOC)	Sample Date	LNAPL in.	Benzene 0.01	Toluene	Ethyl benzene	Total Xylenes	Naphtha- lene 0.03	Total BTEX	Chloride 250	Sulfate 600	TDS 1000	Sampling method	Lab	Notes
MW-1	51.62	3/8/17	6.00	19.2	8.5	2.31	5.17		35.2	188	1460	2800	bail	Cardinal	by oil/water interface meter
	51.62		6.24												baildown test
	51.9	7/19/17													from nested measuring tube
	52.36	10/11/17	1.5										bail		sampled LNAPL
MW-2	51.11	6/12/17	none	0.93	0.0047	0.011	0.034		0.0497	200	2100	381	bail	Hall	Q2 2017
54	grab samples for	7/13/17	none	ND	ND	ND	ND		ND				low-flow pump	Hall	sampled at 54'
59	comparison	7/13/17	none	0.0082	ND	ND	ND		0.0082				low-flow pump	Hall	sampled at 59'
	52.00	10/24/2017	film	0.35	0.0078	0.063	0.079	0.013		180	2200		low-flow pump	Hall	Q4 2017
	49.43	1/23/2018	film	2.4	ND	0.17	0.027	0.048		180	1400	3040	hand bail	Hall	Q1 2018
MW-3	46.4	8/2/17	none	0.061	ND	ND	ND		0.061	212	2010	3920	low-flow pump	Cardinal	Q3 2017
	47.57	10/24/2017	none	0.02	ND	ND	ND	ND		190	2100		low-flow pump	Hall	Q4 2017
	44.88	1/23/2018	none	0.066	ND	ND	ND	ND		190	1900	3610	hand bail	Hall	Q1; silty
MW-4	46.8	8/2/17	none	1.53	< 0.020	0.101	< 0.060		1.64	200	1840	3460	bail	Cardinal	Q3 2017
	48.75	10/24/2017	none	0.13	ND	0.016	ND	0.0092		180	2000		low-flow pump	Hall	Q4 2017
	46.41	1/23/2018	none	0.95	ND	0.09	ND	0.022		190	1100	2560	hand bail	Hall	Q1 2018; silty

all concentrations are mg/L

Lime Rock - ASAU #150 Release

MW-1 LNAPL Recovery

Page	<i>127</i>	of 364
------	------------	--------

.

Date	Depth to Water ft	Depth to LNAPL ft	LNAPL thickness ft	Observations	Action
12/22/2017	51.83	51.58	0.25	Measured using interface probe	Installed oil-absorbing sock at interface
1/5/2018	51.04	50.87	0.17	sock appeared saturated	replaced sock
1/19/2018	50.75	50.25	0.50	Moderate stain on sock	replaced sock
1/23/2018				Moderate stain on sock	replaced sock
2/6/2018	49.85	49.70	0.15	Moderate stain on sock	replaced sock
2/20/2018	50.45	50.20	0.25	Heavy stain; very light film on probe	replaced sock
3/2/2018	50.85	50.62	0.23	Heavy stain; very light film on probe	replaced sock
3/19/2018	51.34	51.16	0.18	Heavy stain on bottom half of sock	replaced sock
		AVERAGE	0.25		

M:\Lime Rock Resources\asau trunk releases\PitRuleTemplate_10_1\Figures\May 2017\Figure 1 gw direction Jan 2018.mxd

M:\Lime Rock Resources\asau trunk releases\PitRuleTemplate_10_1\Figures\Figure 2 gw Benzene Jan 2018.mxd

Weaver, Crystal, EMNRD
Wednesday, March 21, 2018 10:33 AM
Billings, Bradford, EMNRD
Bratcher, Mike, EMNRD
RE: Lime Rock ASAU #150 Release #2RP-3893

Bradford,

I think we will leave it to your call on discussing with them on their proposed well placement for new MW-5. Seems really far away to me... but I am not really versed much on how this stuff works. If you have time and that placement makes sense to you could you possibly get a chance to let me know why, and let me know if you think that only one additional well is sufficient since their contamination numbers went up and plume doesn't appear to be defined as far as I could decipher.

Thank you kindly busy sir,

Crystal Weaver

Environmental Specialist OCD – Artesia District II 811 S. 1st Street Artesia, NM 88210 Office: 575-748-1283 ext. 101 Cell: 575-840-5963 Fax: 575-748-9720

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Tuesday, March 20, 2018 12:01 PM
To: Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>; Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>
Cc: Randy Hicks <r@rthicksconsult.com>; mike@rthicksconsult.com; mbarrett@limerockresources.com; 'Jerry Smith'
<JSmith@limerockresources.com>
Subject: RE: Lime Rock ASAU #150 Release #2RP-3893

Brad, Crystal, & Mike,

Please find the attached proposal for the installation of another well (MW-5) at the Lime Rock ASAU #150 site. The work is scheduled for April 10, 2018. Please let me know if you have any comments or questions. Thanks.

575.302.6755

From: Kristin Pope [mailto:kristin@rthicksconsult.com]
Sent: Friday, December 22, 2017 1:02 PM
To: Crystal Weaver (Crystal.Weaver@state.nm.us); Mike Bratcher
Cc: Randy Hicks; mike@rthicksconsult.com; Michael Barrett (mbarrett@limerockresources.com) (mbarrett@limerockresources.com); 'Jerry Smith' (JSmith@limerockresources.com)
Subject: Lime Rock ASAU #150 Release #2RP-3893

Crystal and Mike,

Please find the attached report and proposal for the Lime Rock ASAU #150 Release . It includes:

- A summary of the compliance sampling performed to date
- A summary of the hydrocarbon characterization samples OCD required from the top of the water.
- A summary of the oil analysis on MW-1. Last measurement showed 1.5" thickness.
- A proposal for recovery of product on MW-1 using a sock. It was installed today and we will check it weekly.
- A proposal for at least one more well and possibly more after Q1 2018 analyses are received.

Let me know if you have any questions. Merry Christmas and enjoy your holiday.

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Friday, August 10, 2018 4:20 PM
То:	Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD; Billings, Bradford, EMNRD
Cc:	Randy Hicks; mbarrett@limerockresources.com; 'Jerry Smith'; David Hamilton
Subject:	Lime Rock ASAU #150 Release #2RP-3893

Brad, Crystal, & Mike,

Please consider this email as notice that we'll be conducting quarterly compliance sampling of the MWs at the Lime Rock ASAU #150 site on Monday, August 13, 2018, no earlier than 12:00 noon. We will also be conducting additional testing to include recovery testing to help us design an appropriate abatement plan. Please let me know if you have any comments or questions or stop by and see us in the field. Thanks.

From:	Billings, Bradford, EMNRD
Sent:	Monday, August 13, 2018 4:19 PM
То:	Kristin Pope; Weaver, Crystal, EMNRD; Bratcher, Mike, EMNRD
Cc:	Randy Hicks; mbarrett@limerockresources.com; 'Jerry Smith'; David Hamilton
Subject:	RE: Lime Rock ASAU #150 Release #2RP-3893

Roger,

Keep in mind now to eliminate Crystal from email as she is no longer with OCD. Good idea to begin formulation of AP as new rule will push us to that.

Thanks.

Bradford Billings

From: Kristin Pope <kristin@rthicksconsult.com>
Sent: Friday, August 10, 2018 4:20 PM
To: Weaver, Crystal, EMNRD <Crystal.Weaver@state.nm.us>; Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Billings, Bradford, EMNRD <Bradford.Billings@state.nm.us>
Cc: Randy Hicks <r@rthicksconsult.com>; mbarrett@limerockresources.com; 'Jerry Smith'
<JSmith@limerockresources.com>; David Hamilton <david@rthicksconsult.com>
Subject: Lime Rock ASAU #150 Release #2RP-3893

Brad, Crystal, & Mike,

Please consider this email as notice that we'll be conducting quarterly compliance sampling of the MWs at the Lime Rock ASAU #150 site on Monday, August 13, 2018, no earlier than 12:00 noon. We will also be conducting additional testing to include recovery testing to help us design an appropriate abatement plan. Please let me know if you have any comments or questions or stop by and see us in the field. Thanks.

From:	David Hamilton <david@rthicksconsult.com></david@rthicksconsult.com>
Sent:	Tuesday, November 13, 2018 2:19 PM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Cc:	Michael Barrett; Jerry Smith; Randall Hicks
Subject:	[EXT] ASAU Releease Site #2RP-3893
Attachments:	Stage12APASSEMBLYred.pdf

Dear Mr. Billings and Mr. Bratcher,

Attached is the **entire** Stage 1/2 Abatement Submission for the above referenced site. Last week, on Nov 9, we sent a partial submission. This submission is complete so that there is nothing for you to join.

Please let us know of any questions or comments.

David Hamilton RT Hicks Consultants Office: 505-266-5004

November, 2018

Stage 1/2 Abatement Plan ASAU 150 Release Site #2RP-3893 Unit O of Section 14, T18S, R26E Eddy County, New Mexico

Prepared for: Lime Rock Resources

Prepared by: R.T. Hicks Consultants, Ltd. Albuquerque, New Mexico

Executive Summary

The September 3, 2017 release was initially assigned the tracking number #2RP-3893. This document is a voluntary submission of a Stage 1 and Stage 2 Abatement Plan.

The Stage 1 Abatement Plan presents the results of the site investigation that began with excavation, sampling and exportation of impacted soil in September of 2017. After removal to disposal of nearly all of the impacted soil to a depth of 10-15 feet, Lime Rock installed a liner on the base of the excavation and backfilled with clean soil to grade. Because impacted soil remained below the practical limit of excavation and "clean closure" was not possible, a series of subsurface investigative phases ensued. These phases included

- Installation and testing of a soil boring on February 9, 2017 that documented transport of hydrocarbons from the pipeline release source to the groundwater surface
- Conversion of the boring to a monitoring well (MW-1) that demonstrated the presence of floating hydrocarbons (light non-aqueous phase liquid or LNAPL)
- Installation of MW-2 on June 6, 2017, located about 45 feet east southeast (generally down gradient) from MW-1. In January of 2018, this well showed benzene concentration of 2.4 mg/L (0.1 mg/L is the standard) and naphthalene concentration of 0.048 mg/L (0.03 mg/L is the standard). Results from the August 2018 sampling detected 0.290 mg/L of benzene and 0.018 mg/L of ethylbenzene in this well.
- Installation of MW-3 and MW-4 on August 14, 2017 that are located about 150 feet west and 130 feet southeast (down gradient) from MW-1. The May 2018 and August 2018 analysis of MW-3 exhibited benzene concentrations below the 0.01 mg/L standard. The May 2018 benzene concentration in MW-4 was 1.7 mg/L. In August 2018, benzene concentrations were 1.2 mg/L (at 0.5 feet below the water table) and 0.710 mg/L (at 2.5 feet below the water table).
- Seven groundwater monitoring events from June 2017 to August 2018 provided better understanding of groundwater flow directions and benzene concentration trends. These data caused a high level of confidence in the selection of a location for MW-5, which is about 325 feet down gradient from release location (MW-1). Duplicate samples from this well in May of 2018 did not detect benzene or other regulated hydrocarbons. The August 2018 sample also did not detect benzene or other regulated hydrocarbons.

The apparent recent migration of LNAPL from the source area to MW-2 and the lack of any evidence of hydrocarbons in the down gradient well MW-5 convinced Lime Rock that a voluntary, robust groundwater remedy is prudent. The investigations described above provided sufficient information to allow the design of an appropriate abatement option.

30.11.13.

C. The stage 1 of the abatement plan's purpose is to design and conduct a site investigation that adequately defines site conditions, and provide the data necessary to select and design an effective abatement option....

30.11.13

D. (1) A responsible person shall submit a stage 2 abatement plan ... The responsible person may submit a stage 1 and 2 abatement plan proposal together. Stage 2 of the abatement plan's purpose is to select and design, if necessary, an abatement option that, when implemented, results in attainment of the abatement standards and requirements set forth in 19.15.30.9 NMAC, including post-closure maintenance activities.

The Stage 2 Plan describes a pump-and-dispose strategy to remove a significant mass of hydrocarbons that are dissolved in the uppermost portion of the groundwater zone. After hydrocarbon mass removal is complete, the last step of the remedy is monitored natural attenuation. The specific steps already completed or proposed to implement the remedy are listed below. \triangleright During the August 2018 sampling event, the measured thickness of the LNAPL on ground water in MW-1 was 0.6 inches. This depth has declined from 6.0 inches in March 2017. \geq The use of low-flow pumping allowed samples to be collected from 0.5 feet and 2.5 feet below the water table in MW-4. The sample concentrations show a benzene concentration gradient declining with depth. The shortness of the water column in MW-2 did not allow similar measurements. Through boring, install an impacted groundwater recovery system \triangleright between MW-1 and MW-4. The recovery system will be screened in a manner that will maximize removal of LNAPL and highly impacted groundwater and minimize the removal of groundwater that is amenable to natural restoration processes. \geq After a 2-4 month pilot testing program of the installed remediation system, additional remediation wells may be installed to accelerate the abatement process. We anticipate the completed system may operate for 1-2 years followed by a period of monitored natural attenuation. Closure of the regulatory file will be requested when the requirements of the Rule are met. 1.0 Stage 1 Abatement Plan LOCATION, NEARBY LAND USE AND DIRECTIONS TO THE SITE Stage 1 of the abatement The crude oil pipeline release is plan may include the latitude 32.74266, longitude -104.34846 \geq following information Section 14, T18S, R26E, Unit letter O (990 FSL, 1650 FEL), \geq depending on the media \triangleright about 9.25 miles south and east of Artesia, NM affected, and as needed to select and implement on private property belonging to Gray Holdings, LLC \triangleright an expeditious abatement option: Plate 1 is a topographic map that shows the pipeline release relative to the Pecos River, Rio Peñasco and nearby water supply wells. The land (1) descriptions of use surrounding the site is displayed on Plate 2, which is a recent aerial the site. photograph at the same scale as Plate 1. Irrigated agriculture, pasture, including a site map, and of site residences and oil and gas production are obvious in this image. history including the To access the site from downtown Artesia nature of the Head south on S 1st St/US Hwy 285 N for 6.0 mi release that \triangleright Turn left onto NM-229 N and proceed east for 2.0 mi caused the water pollution, Continue straight onto E Four Dinkus Rd for an additional 0.7 mi

•

 Turn right onto Fanning Rd and proceed south for The site is on the east side of the road after crossin Rio Peñasco 	o.8 mi g the typically dry and a summary of previous investigations;
1.1 SITE HISTORY AND NATURE OF RELEASE	
As described in the 10/7-2016 Release Notification (For described the 9/30/2016 release: "A 3" below grade FG flow line developed a leak the line was immediately shut-in, and the line w then repaired. The volume of the release caused grade flow line was unknown."	orm C-141) that due to corrosion, vas excavated and l by the below
The flow line that released petroleum hydrocarbons an installed prior to Lime Rock's ownership. It moves flui wells to a tank battery located about 3,600 feet to the r	id water was ds from multiple northeast.
1.2 RECENT RELEASE EVENTS AND SUMMARY OF RESP	PONSE ACTIONS
January 2, 2017 Remediation Plan (Appendix A) In addition to shut in of the flow line, Lime Rock initia and removal program in an attempt to "clean close" the excavation program commenced immediately after Lim the release. This report describes the results of sampli the horizontal extent of soil impairment as well as a so to define the vertical extent. The report concluded that monitoring well would be necessary to identify any imp groundwater quality.	ted an excavation e release site. The ne Rock detected ng that defined il boring designed t a groundwater pact to
<i>May 30, 2017 Notice of Groundwater Impact (Append</i> The monitoring well located adjacent to the flow line re floating hydrocarbons on groundwater (aka light non-a liquid, LNAPL). This report describes the sampling ev proposed installation of three additional monitoring w the horizontal extent of groundwater impairment.	<i>dix B).</i> elease detected aqueous phase ents and ells to help define
October 9, 2017 Hydrocarbon Characterization of Gra (Appendix C) All three of the newly-installed monitoring wells detect concentrations of benzene that exceeded the standards 3.300 mg/L benzene. This report proposed several qui monitoring prior to the installation of one or more add define the magnitude and extent of hydrocarbon impact	<i>oundwater</i> ted 5. MW-4 exhibited arters of litional wells to ct.
December 22, 2017 Groundwater Sampling Report (A This report summarizes the findings of several monitor provided information regarding groundwater flow dire magnitude of the impact at and near the release point. we selected a down gradient monitoring well (MW-5) I approval by OCD.	<i>ppendix D)</i> ring events that ection and From these data, ocation for

Appendix E of this Stage 1 Abatement Plan presents the lithologic logs, monitor well construction details of all borings (MW-1 to MW-5) as well as the analytical results of the August 2018 sampling event. During this sampling, there was no detection of hydrocarbon s in MW-5, the downgradient monitoring well approximately 350 feet directly down gradient of the release point. At this time, we are confident that the magnitude and extent of hydrocarbon impairment of groundwater is sufficiently characterized to permit the recommended remedial response that is described in the attached Stage 2 Abatement Plan.

1.3 SITE VICINITY GEOLOGY

Two good sources of geologic data for the area are the Geologic Map of the Spring Lake Quadrangle¹ (and the accompanying report²) and the Geologic Map of the Lake McMillan North quadrangle³. A portion of this geologic map is reproduced as Plate 3. The release site is located on the Older Lakewood Terrace unit (Qlt1), which is described in both reports as:

Comprised of occasional gravels and pebbles, brown (10YR5/3) to dark yellowish brown (10YR3/4), unconsolidated, moderately sorted, coarse- to fine- grained sand, silty sand, silt and sandy clay. Pedogenic carbonate increases from stage I to stage II+ (occasionally III) from Qlt3 to Qlt1. Mostly non-gypsiferous.

Although the cross section in the Lake McMillan North Quadrangle Map displays only the bedrock units, the mapped cross section of the Spring Lake Quadrangle, which is about 4 miles north of the release site, suggests the Lakewood Terrace deposits are approximately 300 feet thick. However the text of both reports state that the thickness of the Older Terrace is 2-12 meters (about 6-40 feet). The cross section thickness obviously represents the total thickness of the alluvium overlying the Permian bedrock, which we believe is called the Pecos River braided alluvial deposits (upper Pleistocene to lower Holocene, Qabp). This unit is described as

Gravels and pebbles of dolomite, limestone, sandstone, chert, and quartzite in a reddish brown (2.5YR4/6) to light reddish-brown (5YR6/4), unconsolidated, poorly to moderately sorted, coarseto fine-grained sand, silty sand, sandy clay, and clay. Thicknesses vary (based upon Lyford, 1973) from about 5 to 30 m.

The 30 meter thickness of Qabp plus 20 meters of the terrace deposit does not sum to the 300-foot thickness shown on the cross section. Moreover, driller's logs from nearby water supply wells suggest a total thickness of alluvium of about 200 feet (see Appendix E).

¹ <u>https://geoinfo.nmt.edu/publications/maps/geologic/ofgm/downloads/214/SpringLake.pdf</u>

² https://geoinfo.nmt.edu/publications/maps/geologic/ofgm/downloads/214/SpringLakeReport.pdf

(2) site investigationwork plan that defines:(a) site geology andhydrogeology;

³ See <u>https://geoinfo.nmt.edu/publications/maps/geologic/ofgm/details.cfml?volume=167</u>

For the purpose of this Abatement Plan, we will assume that about 200 feet of alluvial fill overlie the bedrock in the area of the release site and the permeable alluvium is composed of material similar to that described above for the Lakewood Terrace and the braided alluvial deposits. This lithology is consistent with the monitor well boring logs provided in Appendix E.	
The saturated alluvium throughout the area is locally called the shallow aquifer and is used extensively for irrigation and domestic use.	2(a) continued
1.4 Site Hydrology	subsurface hydraulic
On a regional scale, the shallow aquifer is not under confining pressure and is a water-table aquifer. Thus, we believe that static measurements of water supply wells (as deep as 225 feet) and shallow monitoring wells can be used to construct a reasonable estimate of the groundwater surface elevation. A map of the potentiometric surface of the nearby area is displayed in Plate 4. The data presented in Plate 4 show a southeast groundwater flow direction with a gradient of (20/8400=) 0.002.	conductivity; transmissivity, storativity and rate and direction of contaminant migration;
Plate 5 is a potentiometric surface map of the release site that employs only the four monitoring wells that do not exhibit LNAPL. This plate also shows groundwater flow to the southeast, a measured gradient of 0.002, and groundwater elevations that conform with those on Plate 4.	
The Stage 2 Abatement Plan provides for tests to determine the hydraulic conductivity and storativity of the uppermost groundwater zone in order to develop an appropriate remedy. The northwest- southeast cross section through MW-1 to MW-4, shown as Plate 6, identifies the uppermost groundwater zone as a sand and gravel zone with some silt and clay. We anticipate a relatively high hydraulic conductivity and storativity within the more permeable sand and gravel layers and lower conductivity within clay/silt layers. The transmissivity of the uppermost water bearing unit obviously varies with the total thickness of the more permeable layers.	2(a) continued inventory of water wells inside and within one mile from the perimeter of the three-dimensional body where the standards set forth in Subsection C of 19.15.30.9 NMAC are exceeded; and location and number of wells the pollution actually or notentially affects
The water supply wells listed on the database of the Office of the State Engineer are shown on Plate 7 and satisfy the requirement for an inventory of water wells. No water supply wells are impaired by the release that is the subject of this Abatement Plan.	2(a) the vertical and horizontal
1.5 MAGNITUDE AND EXTENT OF GROUNDWATER IMPAIRMENT Plate 8 shows an estimated extent of benzene in excess of the 0.01 mg/L	extent and magnitude of vadose-zone and ground- water contamination;

in the uppermost 10-feet of groundwater.

Table 1 (at the end of the text) presents the laboratory data for all constituents upon which Plate 8 is based. The area of impairment lies up gradient (northwest) from the pipeline release point (essentially

•

MW-1 is located at the release point) because the excavation remedy identified soil impacts to the north and east of the release point. The eastern extent is defined by recent benzene concentrations observed in MW-3, which have formerly exceeded the 0.01 mg/L standard but are currently below the standard. Soil impairment also extended beneath Fanning Road to the west, which justifies the western extent of groundwater impairment. The estimate of the western extent also makes use of the observed eastern horizontal spread of impairment defined by MW-3.	
 The 250-foot down gradient extent of impairment is an estimate based upon ▶ the decline in benzene concentrations between MW-2 and MW-4, 	
 the lack of detected benzene in MW-5 and the knowledge that dissolved hydrocarbons decrease in concentration during groundwater transport and 	2(a) continued
an obvious conclusion that the pipeline release occurred many years prior to the September 2016 discovery of oil at the ground surface above the pipeline release	and rate and direction of contaminant migration;
For the purpose of designing a remedy, we conclude the data are sufficient to define the horizontal extent of groundwater impairment and the southeastern flow direction of groundwater and dissolved hydrocarbons. At this time, we believe that contaminant migration to the southeast (down gradient) is limited by natural restoration processes such as biodegradation and dispersion. Thus, we hypothesize that the cessation of input of hydrocarbons to the vadose zone and thence to groundwater will cause the hydrocarbon plume shown in Plate 8 to diminish over time. Thus, we believe Plate 8 represents the maximum extent of hydrocarbon impairment of groundwater under current groundwater flow conditions.	
As Table 1 shows, limited low-flow sampling data from MW-2 and MW-4 suggest that the vertical extent of impairment does not extend more than 5-feet below the water table. However, the clay/silt layers observed in the boring logs provide a significant permeability contrast with the sand and gravel layers and thereby retard downward migration of hydrocarbons. It would not be surprising if additional testing shows that, near the source area, the vertical extent of impairment is limited.	
The impact to groundwater presents no imminent threat to public health, because there is no water supply well between the release source area and the "clean" down gradient well, MW-5. The release poses no threat to the environment because the nearest source of surface water, the Pecos River, is about 2.5 miles down gradient and natural processes will remove any hydrocarbons from groundwater long before they could migrate this distance. The impact has caused impairment of fresh water and abatement is required by NM OCD Rules.	2(a) the vertical and horizontal extent and magnitude of <u>vadose-zone a</u> nd ground- water contamination;

1.6 MAGNITUDE AND EXTENT OF VADOSE ZONE CONDITIONS

The January 2, 2017 submission (Appendix A) presents the results of the investigation of vadose zone impacts. One boring near the release documented hydrocarbon impact to the water table.

As described in the January submission, the extent of the impact caused Lime Rock to remove more than 200 cubic yards of impacted earth and place a liner over all areas within the excavation. Hydrocarbons below the 15-foot reach of excavation equipment exist underneath the liner in an area north of and directly beneath the pipeline release.

1.7 IMPACTS TO SURFACE WATER

Although the channel of the Rio Peñasco is about 150 feet north of the pipeline release location, there exists no evidence that the release did or will impact surface water of this drainage. More than 8,000 feet separate the release location and the Pecos River. We believe that this distance precludes any possibility of impairment of surface water in the Pecos River.

Thus, we respectfully request that a discussion of surface water hydrology be omitted from this plan.

1.8 PROPOSED MONITORING AND REMEDIATION TESTING

Over the past year, Lime Rock conducted quarterly sampling of the five (5) monitoring wells as they were installed. All wells were gauged for water levels and thickness of LNAPL. We obtained groundwater samples from all wells that did not exhibit LNAPL. Results are presented in Table 1. We propose to continue quarterly monitoring using hand-bailing protocols or low-flow protocols of all wells that do not exhibit measurable LNAPL. The proposed quarterly groundwater sampling is:

- > August
- > November
- > February
- ≻ May

As described in the Stage 2 Abatement Plan, the presumptive remedy is removal of a large mass of LNAPL along with removal of highlyimpacted groundwater in the uppermost portion of the groundwater zone via one or two extraction wells. After the hydrocarbon mass removal via pumping, monitored natural attenuation may be employed as a final remediation strategy.

Lime Rock will recover LNAPL if possible and transfer the hydrocarbons for sale. We anticipate the pumping rate for extracted groundwater will be less than 2 GPM for about 12 hours each day. The resulting 35 bbls/day of groundwater will be added to the salt water disposal system

30.11.13.C

2(b) surface water hydrology, seasonal stream flow characteristics, ground water/surface water relationships, the vertical and horizontal extent and magnitude of contamination and impacts to surface water and stream sediments...

(3) monitoring program, including sampling stations and frequencies, for the abatement plan's duration that may be modified, after the director's approval, as the responsible person creates additional sampling stations;

of Lime Rock.

In order to properly design the remedy, we have performed or will be completing these activities:

- the August 2018 sampling event demonstrates that the possibility of removing LNAPL directly from the water table is not practical given the current thickness of LNAPL in MW-1 (0.6 in.), the well exhibiting the greatest thickness of LNAPL.
- An estimate of the hydraulic conductivity of the uppermost groundwater zone through a recovery test at MW-4 suggests that the upper 5-feet of the aquifer have a hydraulic conductivity on the order of hundreds of feet/day
- low-flow sampling of MW-4 resulted in samples showing a decreasing benzene concentration with depth. (We elected not to sample MW-2 in an identical manner as there was concern that the high sediment load in the lower water column would disrupt the pump.)
- perform pilot-scale testing over several weeks of groundwater extraction in the first remediation wells to be placed southeast of MW-1 as shown on Plates 6 and 8.

Appendix F presents the recovery test used to estimate the hydraulic conductivity of the groundwater zone adjacent to MW-4. Appendix G provides the low flow sampling protocol employed by Hicks Consultants at MW-4.

The design of the remediation well is based upon the results of the testing performed at MW-1 and MW-4. The objective of the initial testing program is to determine the pumping rates and depths that will efficiently extract the greatest mass of hydrocarbon from the saturated zone within shortest time. The pumping of the hydrocarbon-impacted groundwater will continue as the first phase of the proposed remedy.

1.9 QUALITY ASSURANCE PLAN FOR SAMPLING AND TESTING

Appendix H includes the Health and Safety Plan for the proposed groundwater sampling and other work conducted at the Site. Groundwater sampling will follow the protocol in Appendix G.

1.10 Schedule for Stage 1 Abatement Plan Work

August 2018 (Completed work)

- > Quarterly sampling of all monitor wells
- Low-flow sampling of MW-4 to estimate benzene concentration profile (similar sampling of MW-2 was not practical)
- ▶ Hydraulic testing of MW-4
- LNAPL recovery testing of MW-1 was planned, but was not practical due to the LNAPL thickness, 0.6 inches.

(4) quality assurance plan, consistent with the sampling and analytical techniques listed in Subsection B of 20.6.2.3107 NMAC and with 20.6.4.14 NMAC of the water quality standards for interstate and intrastate surface waters in New Mexico, for all work to be conducted pursuant to the abatement plan;

(5) a schedule for stage 1 abatement plan activities, including the submission of summary

•

 November 2018 – Quarterly Report Laboratory results and groundwater surface map Proposed design of first remediation well(s) Routine sampling of monitoring wells 	quarterly progress reports, and the submission, for the director's approval, of a detailed final site investigation report;
 December 2018 - Quarterly Report Laboratory results and groundwater surface map Installation of Remediation well Pilot testing of -remediation well. 	and
2.0 Stage 2 Abatement Plan

The apparent recent migration of LNAPL from the source area to MW-2 and the lack of any evidence of hydrocarbons in the down gradient well MW-5 convinced Lime Rock that a voluntary, robust groundwater remedy is prudent. The Stage 2 Plan describes a LNAPL recovery program combined with a pump-and-dispose strategy to remove a significant mass of hydrocarbons that are dissolved in the uppermost portion of the groundwater zone. After hydrocarbon mass removal is complete, the last step of the remedy is monitored natural attenuation.

2.1 DESCRIPTION OF CURRENT VADOSE ZONE CONDITIONS

Section 1.6 of the Stage 1 Abatement Plan describes the current conditions of vadose zone impact. The presumptive vadose zone remedy is complete and includes:

- abandonment of the pipeline that caused the vadose zone impact,
- excavation and removal of impacted soils to a depth of 15 feet,
- placement of liner in the bottom of the excavation, and
- backfilling of the excavation with clean soil.

2.2 DESCRIPTION OF CURRENT GROUNDWATER CONDITIONS Section 1.5 describes the current groundwater conditions.

2.3 DESCRIPTION OF ABATEMENT OPTIONS – VADOSE ZONE

Proposed quarterly evaluation of the groundwater remedy during the next 12-18 months may demonstrate that the remedy described above meets the criteria of Section 19.15.30.9 of the Rule, which states:

A. The responsible person shall abate the vadose zone so that water contaminants in the vadose zone will not with reasonable probability contaminate ground water or surface water, in excess of the standards in Subsections B and C of 19.15.30.9 NMAC, through leaching, percolation or other transport mechanisms, or as the water table elevation fluctuates.

We know that released hydrocarbons will continue to migrate to groundwater for several years after abandonment of the pipeline. We suspect that the continued migration to groundwater is the cause of the more recently-measured LNAPL in MW-2. We also know that pipeline abandonment and the placement of the liner will cause the flux of hydrocarbons to groundwater to decrease over time. What is unknown is <u>when</u> the rate of hydrocarbon input to groundwater is negligible with respect to rate of natural restoration processes. We believe that monitoring LNAPL thickness and benzene concentration in MW-1 during the groundwater remediation program will provide useful data to D. Stage 2 abatement plan.

(1) A responsible person shall submit a stage 2 abatement plan ... Stage 2 of the abatement plan's purpose is to select and design, if necessary, an abatement option that, when implemented, results in attainment of the abatement standards and requirements set forth in 19.15.30.9 NMAC, including post-closure maintenance activities.

(2) Stage 2 of the abatement plan should include, at a minimum, the following information:(a) a brief description of the current situation at the site;

•

determine if additional vadose zone remedial efforts might be necessary	
The conversion of MW-1 to a Soil Vapor Extraction (SVE) well and/or the placement of additional SVE well(s) within the footprint of the vadose zone impact remains under consideration as an additional vadose zone remedy.	
 2.4 DESCRIPTION OF ABATEMENT OPTIONS – GROUNDWATER The preferred abatement option for groundwater is LNAPL removal via a skimming pump system Removal to disposal of the most highly-impacted groundwater from the uppermost 1-3 feet of the groundwater zone to the Lime Rock salt water disposal system Install the LNAPL skimming and groundwater pumping systems in large diameter borings to minimize well efficiency effects Monitored natural attenuation (MNA) after sufficient hydrocarbon mass is removed from groundwater to allow for effective and time-efficient natural restoration. 	(b) development and assessment of abatement options;
We evaluated each of the three actions (Nos. 1, 2, and 4) independently and we determined that combining all three to the extent possible made the most sense in terms of cost and schedule. MNA by itself may require decades. Employing only LNAPL removal plus MNA would probably require less than 20 years but more than 5 years before standards are met in all wells for more than two consecutive quarters of monitoring. Removal to disposal of highly-impacted groundwater and entrained LNAPL may create some logistical problems associated with potential emulsification of hydrocarbons in the transport lines and pumps. LNAPL skimming alone does allow recovery of the hydrocarbon resource.	
 After 1-year of operation of the preferred option, we will examine the data and may propose an alternative to disposal of groundwater into the Lime Rock SWD system. Based upon our current knowledge of the site, the following options may be viable: A. Pump groundwater from the uppermost 10-feet of the groundwater zone to storage in a lined containment where aerobic processes will reduce dissolved hydrocarbons concentrations. B. Use the water for a. hydraulic stimulation of oil wells b. dust suppression on oilfield lease roads c. Irrigation of pasture to cause additional polishing of water quality via phytoremediation but with limited infiltration. 	
Pumping and treating the water to discharge standards is not a cost- effective alternative remedy.	

•

2.5 DESCRIPTION, JUSTIFICATION AND DESIGN OF THE PREFERRED ABATEMENT OPTION The final design of the abatement system will be established after the series of tests and reports described below	
series of tests and reports described below.	
A. An LNAPL recovery test in MW-1 to provide an estimate of the LNAPL migration rate was not possible due to lack of LNAPL thickness in August, 2018.	
B. Low flow pumping was used to collect samples from different depths in MW-4 in the August sampling. A benzene concentration gradient declining with depth was observed.	
 C. To maximize the removal of only the highly-impacted groundwater, the groundwater removal system will consist of two wells. One well will be screened such that the bottom of its screen will be five feet below the high water elevation observed in MW-1 and MW-4. The other well will be screened such that the bottom of its screen will be five feet below the low water elevation observed in MW-1 and MW-4. These planned wells are shown as RMW-1 and RMW-2 on Plate 6 and their proposed location is shown on Plate 8. Depending upon the water table elevation, 	
pumping will occur in the well offering best access to the highly-	
D. Upon installation of the groundwater removal system, begin a 2-4 month pilot testing program of the remediation system.	(c) a description, justification and
E. In the unlikely event that the November sampling finds a sufficient thickness of LNAPL, a design for a large-diameter boring LNAPL recovery system will be submitted. Such a system would be placed in a 30- or 36-inch diameter boring located between MW-1 and MW-2 and would have an LNAPL recovery system in a 6-12 inch wall casing	design, if necessary, of the preferred abatement option;
 F. Such an LNAPL recovery system will be screened in a manner that will maximize LNAPL recovery and provide for the SVE option if necessary. The top of the screen would be 5-10 feet above the high LNAPL elevation in MW-1 and the bottom of the screen would be about 1 foot below the low water elevation observed in MW-1 and MW-2. 	(d) modification, if necessary, of the monitoring program
G. Evaluate efficacy of the system as proposed in the monitoring plan and report findings to OCD and the surface owner (January- March). This report will provide any necessary modifications to the abatement system and provide the justification of the final design as required by the Rule.	the director approved pursuant to stage 1 of the abatement plan, including the designation of pre- and post-abatement- completion sampling
Depending upon results, additional borings may be installed to accelerate	stations and sampling

the abatement process.

We anticipate the completed system may operate for 1-2 years followed by a period of monitored natural attenuation. Closure of the regulatory file will be requested when the requirements or the Rule are met.

2.6 PROPOSED MONITORING PLAN

Quarterly groundwater monitoring of all five wells will continue.

As stated above, a plan to measure the efficacy of the remediation system during pilot testing will be submitted to the OCD in September.

2.7 OPERATION AND MAINTENANCE PLAN

An O&M plan will be submitted to the OCD with the final system design plan, which is scheduled for submission after the pilot testing is complete (December-February)

2.8 Schedule of Activities and Reporting

The schedule of the abatement activities will be presented in the final design report in the first quarter of 2019.

2.9 PUBLIC NOTIFICATION

The public notification process will be implemented pursuant to the Rule.

frequencies to be used to demonstrate compliance with the standards and requirements set forth in 19.15.30.9 NMAC;

(e) site maintenance activities, if needed, the responsible person proposes to perform after abatement activities terminate; (f) a schedule for the duration of abatement activities, including the submission of summary quarterly progress reports; (g) a public notification proposal designed to satisfy the requirements of Subsections B and C of 19.15.30.15 NMAC; and (h) additional information that may be reasonably required to select, describe, justify and design an effective abatement option.

Table 1

•

Well ID	DTW ft (from TOC)	Sample Date	LNAPL in.	Benzene 0.01	Toluene 0.75	Ethylbenzene 0.75	Total Xylene 0.62	Naphthalene 0.03	Total BTEX	Chloride 250	Sulfate 600	TDS 1000	Sampling method	Lab	Notes
MW-1	51.62	3/8/17	6.00	19.2	8.5	2.31	5.17		35.2	188	1460	2800	bail	Cardinal	by oil/water interface meter
	51.62	3/8/17	6.24												baildown test
	51.9	7/19/17													from nested measuring tube
	52.55	8/22/17													"
	52.36	10/11/17	1.5										bail		sampled LNAPL
	55.15	8/14/18	0.6	12	.022	.410	.290	.089					bail		by oil/water interface meter
MW-2	51.11	6/12/17	none	0.93	0.0047	0.011	0.034		0.0497	200	2100	381	bail	Hall	
54	grab samples for	7/13/17	none	ND	ND	ND	ND		ND				low-flow pump	Hall	sampled at 54'
59	comparison	7/13/17	none	0.0082	ND	ND	ND		0.0082				low-flow pump	Hall	sampled at 59'
	51.0	7/19/17	none												DTW only
	51.69	8/22/17	none												DTW only
	52.00	10/24/2017	lt. film	0.35	0.0078	0.063	0.079	0.013		180	2200		low-flow pump	Hall	Q4 2017
	49.43	1/23/2018	film	2.4	ND	0.17	0.027	0.048		180	1400	3040	hand bail	Hall	Q1 2018
	52.65	5/14/2018	0.72		n		No	Sample; mea	surable LNA	APL	r			1	Q2 2018
	54.35	8/13/2018	none	0.290	ND	.018	ND	ND					low-flow pump		Q3 2018
MW-3	46.4	8/2/17	none	0.061	ND	ND	ND		0.061	212	2010	3920	low-flow pump	Cardinal	
	47.22	8/22/17	none												DTW only
	47.57	10/24/2017	none	0.02	ND	ND	ND	ND		190	2100		low-flow pump	Hall	Q4 2017
	44.88	1/23/2018	none	0.066	ND	ND	ND	ND		190	1900	3610	hand bail	Hall	Q1; silty
	48.10	5/14/2018	none	0.0017	ND	ND	ND	ND		180	1900	3570	hand bail	Hall	Q2 2018; slow recovery during bailing
	49.94	8/13/2018	none	ND	ND	ND	ND	ND		190	2000	3900	low-flow pump		Q3 2018
MW-4	46.8	8/2/17	none	1.53	< 0.020	0.101	<0.060		1.64	200	1840	3460	bail	Cardinal	Q3 2017
	48.47	8/22/17	none												DTW only
	48.75	10/24/2017	none	0.13	ND	0.016	ND	0.0092		180	2000		low-flow pump	Hall	Q4 2017
	46.41	1/23/2018	none	0.95	ND	0.09	ND	0.022		190	1100	2560	hand bail	Hall	Q1; silty
	49.35	5/14/2018	none	1.7	ND	0.096	ND	0.033		190	1400	3060	hand bail	Hall	Q2 2018
	52.05	8/14/2018	none	1.2	ND	.260	ND	.034					low-flow pump		Q3 2018, Pump set at 52.5 feet
	52.05	8/14/2018	none	0.710	ND	.110	ND	.016					low-flow pump		Q3 2018, Pump set at 54.5 feet
MW-5	51.72	5/14/2018	none	ND	ND	ND	ND	ND	ND				hand bail	Hall	NO PURGE; characterization only
	51.72	5/14/2018	none	ND	ND	ND	ND	ND	ND	180	1900	3710	hand bail	Hall	Q2 2018
	53.48	8/13/2018	none	ND	ND	ND	ND	ND	ND	200	2200	4200	low-flow pump		Q3 2018

All concentrations are mg/L

Plates Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104 M:\Lime Rock Resources\asau trunk releases\Draft Reports\Stage1&2AP\Figures&Plates\Plate 1.mxd

M:\Lime Rock Resources\asau trunk releases\Draft Reports\Stage1&2AP\Figures&Plates\Plate 2.mxd

M:\Lime Rock Resources\asau trunk releases\Draft Reports\Stage1&2AP\Figures&Plates\Plate 3.mxd

M:\Lime Rock Resources\asau trunk releases\Draft Reports\Stage1&2AP\Figures&Plates\Plate 4.mxd

•

	Leger	nd				
(† 1010 a 1200 9)		Dolostone Gravel				
		Clay				
0000	20	Gravel in Silt				
		Gravel in Sand				
		Limestone or Dolostone Silty Sand Silty Clay				
	a a	Conglomerate				
R.T. Hicks Consultants, Ltd 901 Rio Grande Blvd NW	Lithology Le	Plate b				
Albuquerque, NM 87104 505-266-5004	Lime Rock Re	November, 2018				

Z:\Shared\Documents\Projects\Lime Rock Resources\asau trunk releases\Draft Reports\Stage1&2AP\Figures&Plates\Plate 7.mxd

Appendix A Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Since 1996 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

January 2, 2017

Mr. Bradford Billings and Mr. Mike Bratcher New Mexico Oil Conservation Division 811 S. 1st Street Artesia, NM 88210 Via E-Mail

RE: Lime Rock – ASAU 150 Trunk Line Release Remediation Plan #2RP-3893

Mr. Billings and Mr. Bratcher:

On behalf of Lime Rock Resources, R.T. Hicks Consultants, Ltd. is pleased to submit the remediation plan for the above-referenced release. Plate 1 is a Google Earth image showing the location of the release relative to the junction of Fanning Road (CR 44) and Thistle Road (CR 24).

Initial Response Actions

The initial excavation and disposal response was an effort to create a "clean closure" for this release. Soil sampling, summarized in the next section, shows that this effort effectively defined the horizontal extent of subsurface impact. The reach of the excavation equipment was not sufficient to delineate the vertical extent of petroleum hydrocarbons. The data demonstrate that chloride concentrations are not a material concern at this release site.

Following excavation and removal of 223 cubic yards of impacted material, Lime Rock installed a 20-mil LLDPE six feet below grade within the footprint of the 6-15 foot deep excavation:

North	32.74325-104.34811
South	32.74313, -104.34815
West	32.74319,-104.34818
East 32.74321	,-104.34807

Lime Rock imported clean fill to restore grade. As the release is adjacent to an Eddy County Road, restoration of grade in a short time frame was necessary to maintain safety.

The purpose of the liner was twofold:

- 1. Minimization of water infiltration over residual impacted earth material, thereby reducing any moisture flux that could mobilize the hydrocarbons downward to groundwater.
- 2. Creation of a vapor barrier between the residual impacted earth below the liner and the clean fill (and atmosphere) that lay above the liner. Soil Vapor Extraction (SVE) is often a successful hydrocarbon remedial measure and planning for potentially employing SVE was prudent.

Because the vertical impact of the release was not sufficiently delineated by excavation, Lime Rock installed a boring near the center of the excavated area and collected samples at regular intervals from below the liner to the capillary fringe of the shallow water table.

Figure 1 is a scale sketch map showing the general extent of the excavation the location of the soil boring and general location of samples. Figures 2-4 at the end of this submission are photographs of the extent of excavation and the placement of the liner.

Figure 1: Scaled drawing of release excavation (red), location of pipeline (dark blue), Eddy County Road (yellow) and edge of lease road (dashed light blue). General location of samples and boring are shown. The blue star is the proposed location of a groundwater monitoring well discussed later in this submission.

Sampling and Results

All the data are summarized in Table 1. Table 1 consists of samples from the bottom of the excavation <u>after removal of obvious hydrocarbon impact</u>. Sidewall samples S-3, S-14, S15 and S-16 were taken after the horizontal extent of obvious hydrocarbon impairment was removed to a landfill. The yellow highlighted data comes from below the active pipeline and was not excavated and removed due to safety concerns. The data demonstrate that:

- The horizontal extent of impacts to earth material from the line release is well-defined by the four sidewall samples described above, all of which show BTEX concentrations below laboratory detection limits.
- The residual chloride concentration from the sidewalls and base of the final excavation is less than 600 mg/kg.
- The average BTEX concentration at the base of the excavation is 329 mg/kg, demonstrating that the vast majority of earth material impacted by the release was removed to the landfill

	Table 1 - Soll Sampling Results (mg/kg)									
Sample Name	Depth	BTEX	Benzene	GRO	DRO	MRO	TPH	Chloride		
S-1 12' deep	12'	< 0.300	< 0.50	<10.0	14.7	10.2	14.7	160		
S-2 15' deep	15'	503	25.3	2750	8130	1020	10880	144		
S-3 N. sidewall 6' bgs	6'	< 0.300	< 0.050	<10.0	<10.0	<10.0	<10.0	160		
S-4 15' deep	15'	812	75.7	5310	11000	1440	16300	48		
S-5 East wall 6' bgs	6'	0.346	0.104	<10.0	<10.0	<10.0	<10.0	576		
S-6 below P.L. 5'	5'	1550	192	14400	21600	2900	36000	2520		
S-7 below P.L. 7'	7'	542	43.2	3900	8460	1260	12360	13200		
S-8 below PL 9' bgs	9'	824	82.7	4290	9520	1350	13810	11200		
S-9 below P.L. 10'	10'	1380	151	9470	15000	2040	24470	3120		
S-10 W.wall 6' bgs	6'	703	44.6	6300	12800	1860	19100	640		
S-11 S. wall 6' bgs	6'	0.676	0.133	< 0.10	< 0.10	< 0.10	< 0.10	576		
S-12 Trench 10' bgs	10'	0.728	0.094	<10.0	85.4	13.3	85.4	32		
S-13 6' deep	6'	< 0.300	< 0.50	<10.0	<10.0	<10.0	<10.0	896		
S-14 S. Wall 5' bgs	5'	< 0.300	< 0.50	<10.0	<10.0	<10.0	<10.0	416		
S-15 W. Wall 5' bgs	5'	< 0.300	< 0.50	<10.0	19.9	<10.0	19.9	224		
S-16 E. Wall 5' bgs	5'	< 0.300	< 0.50	<10.0	<10.0	<10.0	<10.0	608		
Average impact below pip	beline	1074						7510		
Average Final Sidewall		< 0.300						352		
Average excavation base		329						256		
Expanded	excavation	removed	these samp	le locations	5					

Sail Sampling Posults (mg/kg) Table 1

The data from the boring is summarized in the log attached at the end of this submission. These data show that BTEX concentration in the boring decreases from 995 mg/kg at the 15foot depth interval to average concentration of 150 mg/kg for the interval from 20 feet to 45 feet. The boring data also show that BTEX concentrations do not decrease with depth.

Discussion of Data

The data from the boring and the excavation show that chloride is not a material threat to groundwater quality at this release site. A narrow zone of high chloride impact does exist below the pipeline. This soil could not be removed for obvious reasons associated with the support of the active line. Moreover, the area beneath the pipeline represents a small mass of salt.

Excavation and removal of impacted earth material removed a significant mass of hydrocarbons to a landfill. However, a relatively small residual hydrocarbon mass exists between 15 feet below grade to the capillary fringe. As presented in the boring log BTEX is 995 mg/kg at the 15-foot sample and average BTEX concentrations below this depth are:

	5	
142 mg/kg		20-30 feet below grade (3 samples)
159 mg/kg		35-45 feet below grade (3 samples)

Although the BTEX concentrations are relatively low from 20-45 feet below grade, the proximity of groundwater to obvious hydrocarbon impact requires an evaluation of groundwater quality down gradient from the release. Additionally, the BTEX concentrations and the lithology of the

boring log suggests that SVE may be an effective remedy to further minimize the potential of vertical migration of hydrocarbons from the unsaturated zone to ground water.

Proposed Actions

Monitor Well Installation

Plate 2 is a topographic and geologic map of the general area showing the locations of shallow wells (less than 150 feet deep) from the Office of the State Engineer database. Also plotted is the water table elevation based upon

- selected driller's data from the OSE database,
- Four wells that were measured by Hicks Consultants in December of 2016,
- one well measured in 1959 from a published report, and
- two USGS wells gauged by a professional.

From this potentimetric surface map, we estimated the groundwater flow direction in the area of the release is to the southeast. The data suggest a groundwater mound west and north of the release site and south of the release site is a groundwater trough. The reason for the mound may be irrigation recharge. The groundwater trough corresponds to an area without irrigation, which permits a speculation that valley fill topsoil derived from the ancestral Pecos River is not present and groundwater in this area comes principally from the underlying Artesia Group bedrock.

Based upon the presumed groundwater flow path, we propose to install a groundwater monitoring well within 5 feet of the down gradient edge of the area subject to the excavation and removal initial response. The construction of the well will follow New Mexico Guidance (attached).

In order to make full use of the mobilized drilling rig during installation of the monitoring well, Lime Rock will use the existing open soil boring near the center of the excavated area as the conduit to install two Soil Vapor Extraction wells.

Soil Vapor Extraction Well #1d

The proposed completion design is

- Total depth is 49 feet, which the original depth of the soil boring
- Two-inch PVC pipe with screened interval between 46-49 feet
- Two-inch threaded PVC casing from 46 feet to ground surface
- Clean sand filter pack in annular space from total depth to 40 feet
- Neat cement grout from 40 feet to 20 feet below grade
- Sub grade well vault for surface completion

Vapor Extraction Well #1s

In the same boring as SVE Well 1d, the completion design is

- Total depth of 19-20 feet
- Two-inch pipe with screened interval between 16-19 feet
- Two-inch threaded PVC casing from 16 feet to ground surface
- Clean sand filter pack in annular space from total depth to 15 feet
- Neat cement grout from 15 feet to grade
- Sub grade well vault for surface completion

One week after development of the well, Hicks Consultants will collect a groundwater sample using EPA/ASTM methods that require appropriate purging of standing water in the casing. Sixty days after the initial groundwater sampling event, the well will be re-sampled and the results compared to the initial sampling. Within 5 days after receipt of the laboratory report for the second sampling event, we will submit the results to OCD. Within 120 days from the submission of this document, we will submit a plan for further action.

Please contact me if you have any questions. Please accept this letter as our notification per the approved CAP. Lime Rock has alerted the surface owner of regarding this proposed action.

Sincerely, R.T. Hicks Consultants

Randall Hicks

Copy: Lime Rock

Released to Imaging: 9/16/2024 1:48:57 PM

M:\Lime Rock Resources\asau trunk\PitRuleTemplate_10_1\Figures\Figure2_topographyGW.mxd

Excavated area before placing liner looking to north

Excavated area before placing liner looking to south

Excavated area after placing liner looking to north

Excavated area after placing liner looking to south

September 22, 2016

RANDALL HICKS R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE, NM 87104

RE: ASAU TRUNK LINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 09/21/16 12:30.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-16-8. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 1 - 12' DEEP (H602118-01)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/21/2016	ND	2.24	112	2.00	0.900	
Toluene*	<0.050	0.050	09/21/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	<0.050	0.050	09/21/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	<0.150	0.150	09/21/2016	ND	6.68	111	6.00	1.74	
Total BTEX	<0.300	0.300	09/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.7	% 73.6-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	14.7	10.0	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	10.2	10.0	09/21/2016	ND					
Surrogate: 1-Chlorooctane	78.7	% 35-147	,						
Surrogate: 1-Chlorooctadecane	90.1	% 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 2 - 15' DEEP (H602118-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	25.3	2.00	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	133	2.00	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	103	2.00	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	242	6.00	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	503	12.0	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS						S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	2750	100	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	8130	100	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	1020	100	09/21/2016	ND					
Surrogate: 1-Chlorooctane	179 9	35-147	,						
Surrogate: 1-Chlorooctadecane	210 9	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 3 - N SIDEWALL 6' BGS (H602118-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/21/2016	ND	2.24	112	2.00	0.900	
Toluene*	0.060	0.050	09/21/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	0.067	0.050	09/21/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	0.163	0.150	09/21/2016	ND	6.68	111	6.00	1.74	
Total BTEX	<0.300	0.300	09/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0 %	% 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	<10.0	10.0	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	<10.0	10.0	09/21/2016	ND					
Surrogate: 1-Chlorooctane	72.7 %	% 35-147	,						
Surrogate: 1-Chlorooctadecane	82.0 %	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 4 - 15' (H602118-04)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	75.7	2.00	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	247	2.00	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	149	2.00	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	341	6.00	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	812	12.0	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	5310	100	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	11000	100	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	1440	100	09/21/2016	ND					
Surrogate: 1-Chlorooctane	200 9	% 35-147	7						
Surrogate: 1-Chlorooctadecane	286 9	28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 5 - E SIDEWALL 6' (H602118-05)

BTEX 8021B	mg/l	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.104	0.050	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	0.170	0.050	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	0.072	0.050	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	<0.150	0.150	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	0.346	0.300	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.3 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	576	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/l	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	<10.0	10.0	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	<10.0	10.0	09/21/2016	ND					
Surrogate: 1-Chlorooctane	75.5 %	6 35-147	,						
Surrogate: 1-Chlorooctadecane	88.0%	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 6 - 5' BGS @ LEAK (H602118-06)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	192	2.00	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	493	2.00	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	268	2.00	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	601	6.00	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	1550	12.0	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2520	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	14400	100	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	21600	100	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	2900	100	09/21/2016	ND					
Surrogate: 1-Chlorooctane	364 %	6 35-147	,						
Surrogate: 1-Chlorooctadecane	571 %	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 7 - 7' BGS @ LEAK (H602118-07)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	43.2	2.00	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	153	2.00	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	104	2.00	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	242	6.00	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	542	12.0	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 9	73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	13200	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	3900	100	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	8460	100	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	1260	100	09/21/2016	ND					
Surrogate: 1-Chlorooctane	180 9	% 35-147	7						
Surrogate: 1-Chlorooctadecane	220 9	28-171	,						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 8 - 9' BGS @ LEAK (H602118-08)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	82.7	2.00	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	247	2.00	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	152	2.00	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	342	6.00	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	824	12.0	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	11200	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	4290	100	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	9520	100	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	1350	100	09/21/2016	ND					
Surrogate: 1-Chlorooctane	185 %	6 35-147	7						
Surrogate: 1-Chlorooctadecane	243 %	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 9 - 10' BGS @ LEAK (H602118-09)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	151	2.00	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	435	2.00	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	245	2.00	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	548	6.00	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	1380	12.0	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3120	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS					S-06	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	9470	100	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	15000	100	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	2040	100	09/21/2016	ND					
Surrogate: 1-Chlorooctane	250 %	6 35-147	7						
Surrogate: 1-Chlorooctadecane	372 %	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 10 - W SIDEWALL 6' (H602118-10)

BTEX 8021B	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	44.6	2.00	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	198	2.00	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	136	2.00	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	324	6.00	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	703	12.0	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	640	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/kg		Analyzed By: MS					S-06	
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	6300	100	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	12800	100	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	1860	100	09/21/2016	ND					
Surrogate: 1-Chlorooctane	216 9	% 35-147	,						
Surrogate: 1-Chlorooctadecane	330 9	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 11 - S SIDEWALL 6' (H602118-11)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.113	0.050	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	0.219	0.050	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	0.120	0.050	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	0.225	0.150	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	0.676	0.300	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	576	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	<10.0	10.0	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	<10.0	10.0	09/21/2016	ND					
Surrogate: 1-Chlorooctane	77.3 %	% 35-147	,						
Surrogate: 1-Chlorooctadecane	91.0%	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

R T HICKS CONSULTANTS RANDALL HICKS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/21/2016	Sampling Date:	09/20/2016
Reported:	09/22/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	NOT GIVEN	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S 12- S TRENCH 10' (H602118-12)

BTEX 8021B	mg/l	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	0.094	0.050	09/22/2016	ND	2.24	112	2.00	0.900	
Toluene*	0.211	0.050	09/22/2016	ND	2.28	114	2.00	1.29	
Ethylbenzene*	0.118	0.050	09/22/2016	ND	2.20	110	2.00	1.49	
Total Xylenes*	0.304	0.150	09/22/2016	ND	6.68	111	6.00	1.74	
Total BTEX	0.728	0.300	09/22/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.8 %	6 73.6-14)						
Chloride, SM4500Cl-B	mg/l	٨g	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	09/22/2016	ND	432	108	400	0.00	
TPH 8015M	mg/l	٨g	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/21/2016	ND	196	98.2	200	2.00	
DRO >C10-C28	85.4	10.0	09/21/2016	ND	204	102	200	0.832	
EXT DRO >C28-C35	13.3	10.0	09/21/2016	ND					
Surrogate: 1-Chlorooctane	71.2 %	6 35-147							
Surrogate: 1-Chlorooctadecane	81.8 %	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside if QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Laboratories

PILL 10 Linne ARTELA

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

CARDINAL Laboratories

INVOICE

0

AIME

auch Annesit

September 26, 2016

R T HICKS CONSULTANTS R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE, NM 87104

RE: ASAU TRUNK LINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 09/23/16 11:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-16-8. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Sush

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

R T HICKS CONSULTANTS R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/23/2016	Sampling Date:	09/21/2016
Reported:	09/26/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	** (See Notes)
Project Number:	30.015.0028N	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S-13 6' DEEP BOTTOM (H602140-01)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2016	ND	2.26	113	2.00	1.18	
Toluene*	<0.050	0.050	09/25/2016	ND	2.30	115	2.00	1.47	
Ethylbenzene*	<0.050	0.050	09/25/2016	ND	2.20	110	2.00	1.07	
Total Xylenes*	<0.150	0.150	09/25/2016	ND	6.63	110	6.00	1.11	
Total BTEX	<0.300	0.300	09/25/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.4	% 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	896	16.0	09/23/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/24/2016	ND	199	99.4	200	2.82	
DRO >C10-C28	<10.0	10.0	09/24/2016	ND	212	106	200	5.31	
EXT DRO >C28-C35	<10.0	10.0	09/24/2016	ND					
Surrogate: 1-Chlorooctane	81.5	% 35-147	,						
Surrogate: 1-Chlorooctadecane	96.5	% 28-171							

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/23/2016	Sampling Date:	09/21/2016
Reported:	09/26/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	** (See Notes)
Project Number:	30.015.0028N	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S-14 S. SIDEWALL 5' BGS (H602140-02)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2016	ND	2.26	113	2.00	1.18	
Toluene*	<0.050	0.050	09/25/2016	ND	2.30	115	2.00	1.47	
Ethylbenzene*	0.069	0.050	09/25/2016	ND	2.20	110	2.00	1.07	
Total Xylenes*	0.190	0.150	09/25/2016	ND	6.63	110	6.00	1.11	
Total BTEX	<0.300	0.300	09/25/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.8 9	73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	09/23/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/24/2016	ND	199	99.4	200	2.82	
DRO >C10-C28	<10.0	10.0	09/24/2016	ND	212	106	200	5.31	
EXT DRO >C28-C35	<10.0	10.0	09/24/2016	ND					
Surrogate: 1-Chlorooctane	82.4 9	% 35-147	,						
Surrogate: 1-Chlorooctadecane	95.9 %	28-171							

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/23/2016	Sampling Date:	09/21/2016
Reported:	09/26/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	** (See Notes)
Project Number:	30.015.0028N	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S-15 W. SIDEWALL 5' BGS (H602140-03)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2016	ND	2.26	113	2.00	1.18	
Toluene*	<0.050	0.050	09/25/2016	ND	2.30	115	2.00	1.47	
Ethylbenzene*	<0.050	0.050	09/25/2016	ND	2.20	110	2.00	1.07	
Total Xylenes*	<0.150	0.150	09/25/2016	ND	6.63	110	6.00	1.11	
Total BTEX	<0.300	0.300	09/25/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	09/23/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/24/2016	ND	199	99.4	200	2.82	
DRO >C10-C28	19.9	10.0	09/24/2016	ND	212	106	200	5.31	
EXT DRO >C28-C35	<10.0	10.0	09/24/2016	ND					
Surrogate: 1-Chlorooctane	86.8 %	6 35-147	,						
Surrogate: 1-Chlorooctadecane	101 %	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	09/23/2016	Sampling Date:	09/21/2016
Reported:	09/26/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	** (See Notes)
Project Number:	30.015.0028N	Sample Received By:	Jodi Henson
Project Location:	ARTESIA		

Sample ID: S-16 E. SIDEWALL 5' BGS (H602140-04)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	09/25/2016	ND	2.26	113	2.00	1.18	
Toluene*	<0.050	0.050	09/25/2016	ND	2.30	115	2.00	1.47	
Ethylbenzene*	<0.050	0.050	09/25/2016	ND	2.20	110	2.00	1.07	
Total Xylenes*	<0.150	0.150	09/25/2016	ND	6.63	110	6.00	1.11	
Total BTEX	<0.300	0.300	09/25/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7 9	73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	608	16.0	09/23/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	09/24/2016	ND	199	99.4	200	2.82	
DRO >C10-C28	<10.0	10.0	09/24/2016	ND	212	106	200	5.31	
EXT DRO >C28-C35	<10.0	10.0	09/24/2016	ND					
Surrogate: 1-Chlorooctane	79.3 9	% 35-147	,						
Surrogate: 1-Chlorooctadecane	94.2 9	28-171							

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

whe Sigh

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 9/16/2024 1:47:30 PM

Released to Imaging: 9/16/2024 1:48:57 PM

Page 192 of 364

October 21, 2016

MIKE STUBBLEFIELD R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE, NM 87104

RE: ASAU TRUNK LINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 10/20/16 12:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-16-8. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

R T HICKS CONSULTANTS MIKE STUBBLEFIELD 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	10/20/2016	Sampling Date:	10/19/2016
Reported:	10/21/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	30.015.0028N	Sample Received By:	Celey D. Keene
Project Location:	UT P SEC 14-T18S-R26E		

Sample ID: BH - 1 15' (H602353-01)

BTEX 8021B	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	132	2.00	10/21/2016	ND	1.99	99.4	2.00	1.67	
Toluene*	319	2.00	10/21/2016	ND	2.24	112	2.00	1.57	
Ethylbenzene*	169	2.00	10/21/2016	ND	2.24	112	2.00	1.80	
Total Xylenes*	375	6.00	10/21/2016	ND	6.76	113	6.00	1.70	
Total BTEX	995	12.0	10/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	112	% 73.6-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	10/20/2016	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	7990	50.0	10/21/2016	ND	192	95.9	200	3.20	
DRO >C10-C28	9410	50.0	10/21/2016	ND	210	105	200	12.0	
EXT DRO >C28-C35	1430	50.0	10/21/2016	ND					
Surrogate: 1-Chlorooctane	197	% 35-147	,						
Surrogate: 1-Chlorooctadecane	211	% 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS MIKE STUBBLEFIELD 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	10/20/2016	Sampling Date:	10/19/2016
Reported:	10/21/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	30.015.0028N	Sample Received By:	Celey D. Keene
Project Location:	UT P SEC 14-T18S-R26E		

Sample ID: BH - 1 20' (H602353-02)

BTEX 8021B	mg/	'kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	2.30	0.500	10/21/2016	ND	1.99	99.4	2.00	1.67	
Toluene*	11.0	0.500	10/21/2016	ND	2.24	112	2.00	1.57	
Ethylbenzene*	14.3	0.500	10/21/2016	ND	2.24	112	2.00	1.80	
Total Xylenes*	38.1	1.50	10/21/2016	ND	6.76	113	6.00	1.70	
Total BTEX	65.7	3.00	10/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	10/20/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	544	50.0	10/21/2016	ND	192	95.9	200	3.20	
DRO >C10-C28	1670	50.0	10/21/2016	ND	210	105	200	12.0	
EXT DRO >C28-C35	243	50.0	10/21/2016	ND					
Surrogate: 1-Chlorooctane	144 9	% 35-147							
Surrogate: 1-Chlorooctadecane	127 9	28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS MIKE STUBBLEFIELD 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	10/20/2016	Sampling Date:	10/19/2016
Reported:	10/21/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	30.015.0028N	Sample Received By:	Celey D. Keene
Project Location:	UT P SEC 14-T18S-R26E		

Sample ID: BH - 1 25' (H602353-03)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	14.7	0.500	10/21/2016	ND	1.99	99.4	2.00	1.67	
Toluene*	54.9	0.500	10/21/2016	ND	2.24	112	2.00	1.57	
Ethylbenzene*	42.5	0.500	10/21/2016	ND	2.24	112	2.00	1.80	
Total Xylenes*	104	1.50	10/21/2016	ND	6.76	113	6.00	1.70	
Total BTEX	216	3.00	10/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	121 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	10/20/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: CK					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	1310	50.0	10/21/2016	ND	192	95.9	200	3.20	
DRO >C10-C28	2220	50.0	10/21/2016	ND	210	105	200	12.0	
EXT DRO >C28-C35	378	50.0	10/21/2016	ND					
Surrogate: 1-Chlorooctane	156%	6 35-147	,						
Surrogate: 1-Chlorooctadecane	98.3 9	28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS MIKE STUBBLEFIELD 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	10/20/2016	Sampling Date:	10/19/2016
Reported:	10/21/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	30.015.0028N	Sample Received By:	Celey D. Keene
Project Location:	UT P SEC 14-T18S-R26E		

Sample ID: BH - 1 30' (H602353-04)

BTEX 8021B	mg	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	14.6	0.500	10/21/2016	ND	1.99	99.4	2.00	1.67	
Toluene*	41.8	0.500	10/21/2016	ND	2.24	112	2.00	1.57	
Ethylbenzene*	26.9	0.500	10/21/2016	ND	2.24	112	2.00	1.80	
Total Xylenes*	63.7	1.50	10/21/2016	ND	6.76	113	6.00	1.70	
Total BTEX	147	3.00	10/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 73.6-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	10/20/2016	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	565	50.0	10/21/2016	ND	192	95.9	200	3.20	
DRO >C10-C28	1030	50.0	10/21/2016	ND	210	105	200	12.0	
EXT DRO >C28-C35	162	50.0	10/21/2016	ND					
Surrogate: 1-Chlorooctane	134	% 35-147	,						
Surrogate: 1-Chlorooctadecane	123	% 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS MIKE STUBBLEFIELD 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	10/20/2016	Sampling Date:	10/19/2016
Reported:	10/21/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	30.015.0028N	Sample Received By:	Celey D. Keene
Project Location:	UT P SEC 14-T18S-R26E		

Sample ID: BH - 1 35' (H602353-05)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	32.9	0.500	10/21/2016	ND	1.99	99.4	2.00	1.67	
Toluene*	81.8	0.500	10/21/2016	ND	2.24	112	2.00	1.57	
Ethylbenzene*	46.9	0.500	10/21/2016	ND	2.24	112	2.00	1.80	
Total Xylenes*	108	1.50	10/21/2016	ND	6.76	113	6.00	1.70	
Total BTEX	270	3.00	10/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	10/20/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyzed By: CK						S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	1730	50.0	10/21/2016	ND	192	95.9	200	3.20	
DRO >C10-C28	2340	50.0	10/21/2016	ND	210	105	200	12.0	
EXT DRO >C28-C35	393	50.0	10/21/2016	ND					
Surrogate: 1-Chlorooctane	165 9	% 35-147	,						
Surrogate: 1-Chlorooctadecane	110 9	6 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS MIKE STUBBLEFIELD 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	10/20/2016	Sampling Date:	10/19/2016
Reported:	10/21/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	30.015.0028N	Sample Received By:	Celey D. Keene
Project Location:	UT P SEC 14-T18S-R26E		

Sample ID: BH - 1 40' (H602353-06)

BTEX 8021B	mg/kg		Analyze	Analyzed By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	1.98	0.200	10/21/2016	ND	1.99	99.4	2.00	1.67	
Toluene*	5.32	0.200	10/21/2016	ND	2.24	112	2.00	1.57	
Ethylbenzene*	3.32	0.200	10/21/2016	ND	2.24	112	2.00	1.80	
Total Xylenes*	7.65	0.600	10/21/2016	ND	6.76	113	6.00	1.70	
Total BTEX	18.3	1.20	10/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 73.6-14	0						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	10/20/2016	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: CK						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	56.0	10.0	10/21/2016	ND	192	95.9	200	3.20	
DRO >C10-C28	83.2	10.0	10/21/2016	ND	210	105	200	12.0	
EXT DRO >C28-C35	18.3	10.0	10/21/2016	ND					
Surrogate: 1-Chlorooctane	73.3	% 35-147	,						
Surrogate: 1-Chlorooctadecane	71.3	% 28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS MIKE STUBBLEFIELD 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104 Fax To: NONE

Received:	10/20/2016	Sampling Date:	10/19/2016
Reported:	10/21/2016	Sampling Type:	Soil
Project Name:	ASAU TRUNK LINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	30.015.0028N	Sample Received By:	Celey D. Keene
Project Location:	UT P SEC 14-T18S-R26E		

Sample ID: BH - 1 45' (H602353-07)

BTEX 8021B	mg/	kg	Analyze	d By: CK					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	20.8	0.500	10/21/2016	ND	1.99	99.4	2.00	1.67	
Toluene*	60.2	0.500	10/21/2016	ND	2.24	112	2.00	1.57	
Ethylbenzene*	32.8	0.500	10/21/2016	ND	2.24	112	2.00	1.80	
Total Xylenes*	76.6	1.50	10/21/2016	ND	6.76	113	6.00	1.70	
Total BTEX	190	3.00	10/21/2016	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 %	6 73.6-14	0						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/20/2016	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyzed By: CK						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	626	50.0	10/21/2016	ND	192	95.9	200	3.20	
DRO >C10-C28	1140	50.0	10/21/2016	ND	210	105	200	12.0	
EXT DRO >C28-C35	192	50.0	10/21/2016	ND					
Surrogate: 1-Chlorooctane	113 %	6 35-147							
Surrogate: 1-Chlorooctadecane	93.7 9	28-171							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 9/16/2024 1:47:30 PM

M QelSLOPC Relinquished By: Sampler - UPS -Relinquished By: Delivered By: (Circle One) Project Location: City: Sampler Name: Project Name: Project Manager: Hoads 3 Project #: Phone #: vice. In no event shall Cardinal be liable for Address: Company Name: FOR LAB USE ONLY Lab I.D. † Cardinal cannot accept verbal changes. Please fax written changes to (575) 393-2326 All claims including those for NOTE: Lis 92660 200 BH-BH. 8H-1 84-1 3H-1 DH . Bus BH - 1 (575) 393-2326 FAX (575) 393-2476 101 East Marland, Hobbs, NM 88240 ASAU Trunk Line Iclease R.J. Hidde Consultants UT. P Man S man 525-365-5034 Fax #: Aitesin 2411 South 18th mike Stubblefield -(Other: Sample I.D. nce and any 35' 40 30 25 2 NO 51 SCC Date: 14-T185-R26E Time: ntal damages Project Owner: Line Roct Ref. State: NM ever shall be deemed including **Received By:** Rece 2000 2 2 2 (G)RAB OR (C)OMP Zip: # CONTAINERS 88210 GROUNDWATER Sample Condition Cool Intact Yes Ves WASTEWATER SOIL MATRIX OIL SLUDGE loss of use, or loss of profits OTHER City: Phone #: Fax #: State: P.O. #: Attn: . Mike Barrett Company: Line Rock Re Address: Ag pa ACID/BASE PRESERV CHECKED BY: Cardinal within 30 days after con ICE / COOL (Initials) OTHER BILL TO 61/01 10/19/16 2:33 8 10/19/18 2:050 10/19/16 S 0/12/11/10:210 Zip: 10/19/16 11:53A 11/16 DATE SAMPLING ed by client, its subsidiaries 11 3:07 12:52 Fax Result: REMARKS: Phone Result: 11418 TIME tion of the app MRO GRO DRO **IICaDIe** 8015m Yes B 8020 -B Total Chloride No lush Add'I Fax #: Add'I Phone #: ANALYSIS REQUEST

Page 202 of 364

Laboratories

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Appendix B Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266.0745 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

May 30, 2017

Mr. Bradford Billings NMOCD District 2 811 S. First Street Artesia, New Mexico 88210 *VIA EMAIL to bradford.billing@state.nm.us*

RE: Lime Rock Resources – ASAU 150 Trunkline Release, #2RP-3893

Dear Mr. Billings:

On behalf of Lime Rock Resources, thank you for your feedback after our submission of a draft on May 16 and subsequent phone call and meeting between OCD, Lime Rock, and Hicks Consultants regarding this release to groundwater. In accordance with NMAC 19.15.29.8, we now submit this notice of groundwater impact and propose three additional wells to reflect our discussions.

On February 8, 2017, a 2-inch monitoring well was installed at the release location within the excavation footprint and in the same location as the investigative soil boring installation last year. Total depth of the well is 61.54 feet and the top of screen is at 46 feet. The surface completion is flush-mount and the construction was completed by Adkins Engineering in accordance with New Mexico Environment Department guidelines¹ after modification of the screen length pursuant to OCD recommendations.

3/23/2017: LNAPL at MW-1

The well was developed and then sampled; however, light non-aqueous

phase liquids (LNAPL) was observed on the water surface during the first sampling event and since installation. On March 23 Hicks Consultants measured approximately 6 inches of LNAPL in the well as shown in the photograph above. Evaluation of nearby wells suggests an east-southeast groundwater gradient as depicted on Figure 1. On May 2 Hicks Consultants performed a baildown test² at the monitoring well to determine LNAPL transmissivity within the well and the surrounding groundwater. At the time of the test, we used an electronic oil/water indicator and found the depth to LNAPL was 51.1 feet below surface and depth to water was 51.62 feet. Thus, equilibrium LNAPL thickness is 0.52 feet or 6.24 inches. Results of this test will be used to evaluate treatment/remediation

¹ www.env.nm.gov/gwb/documents/MonitoringWellGuidelinesFINAL-March2011.pdf

² www.api.org/~/media/4762%20LNAPL%20Tn%20wkbk%20Baildown%20userguide%20Apr2016%20(2).pdf

options. Initial assessment of the test suggests that LNAPL in the well returns to equilibrium thickness in approximately 2 hours.

We propose the installation of 3 additional wells to determine an appropriate remedy:

- Install an initial down-gradient monitoring well (MW-2) approximately 50 feet from MW-1 as shown on Figure 2 on June 9, 2017. The exact location of all wells will be determined in the field and based upon the distance from MW-1, logistics such as steep slopes or pipelines, OCD guidance, and more accurate groundwater flow vectors based upon site data.
- If LNAPL or elevated aromatics resulting from heated headspace analysis using a photoionization detector (PID>100 ppm) are present on groundwater or capillary fringe of MW-2, two additional wells will be installed down gradient during the week of June 26. The approximate location of MW-3 in this scenario is shown on Figure 2. The location of MW-4 is dependent on the presence or absence of impact observed in MW-3 during installation and will determined jointly with the District.
- If MW-2 shows no obvious signs of impact (odor or LNAPL), then the well will be developed, sampled, and surveyed to determine the placement of 2 additional wells (MW-3, MW-4) to be installed the week of June 26, 2017. The locations of MW-3, -4 will be proposed to NMOCD after analytical results are returned and before installation.

The 2-inch monitoring wells will be drilled by Atkins Engineering using the same standards and construction specifications as MW-1. We will employ low-flow sampling in accordance with the EPA procedure. Water elevations and LNAPL thickness will also be determined during each sampling event. Samples will be analyzed for BTEX, TDS, chloride, and sulfate. MW-1 will now only be monitored for LNAPL thickness and will only be sampled as needed.

Thank you for your help regarding this release. Upon OCD's concurrence, the outlined work will begin during the first week of June. OCD will be notified at least 48 hours prior to the commencement of significant events and we will maintain real-time contact with the District during field programs. Should you have any questions or comments regarding this proposed work, please contact me.

Sincerely,

R.T. Hicks Consultants

Knistin Pope

Kristin Pope

Copy:

Lime Rock

M:\Lime Rock Resources\asau trunk\PitRuleTemplate_10_1\gw_vectors.mxd

Y:\Shared\Documents\Projects\LocoHillsPermPit2016\Communications\gw_vectorsRTH.mxd

March 21, 2017

MIKE STUBBLEFIELD R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE, NM 87104

RE: ASAU 150 TRUNK LINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 03/08/17 16:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-16-8. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE ALBUQUERQUE NM, 87104	F-142	Project: Project Number: Project Manager: Fax To:	ASAU 150 TRUNK LINE RELEASE NONE GIVEN MIKE STUBBLEFIELD NONE	Reported: 21-Mar-17 11:52		
Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received		
S-1 MONITOR WELL	H700605-01	Water	08-Mar-17 11:37	08-Mar-17 16:55		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104	Project: Project Number: Project Manager: Fax To:	ASAU 150 TRUNK LINE RELEASE NONE GIVEN MIKE STUBBLEFIELD NONE	Reported: 21-Mar-17 11:52
---	--	--	------------------------------

S-1 MONITOR WELL

H700605-01 (Water)

Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardin	al Laborat	ories					
Inorganic Compounds										
Alkalinity, Bicarbonate	573		5.00	mg/L	1	7022210	AC	10-Mar-17	310.1	
Alkalinity, Carbonate	<1.00		1.00	mg/L	1	7022210	AC	10-Mar-17	310.1	
Chloride*	188		4.00	mg/L	1	7030902	AC	09-Mar-17	4500-Cl-B	
Conductivity*	3070		1.00	uS/cm	1	7030904	AC	10-Mar-17	120.1	
pH*	7.10		0.100	pH Units	1	7030903	AC	09-Mar-17	150.1	
Sulfate*	1460		250	mg/L	25	7031002	AC	10-Mar-17	375.4	QM-07
TDS*	2800		5.00	mg/L	1	7022808	AC	13-Mar-17	160.1	
Alkalinity, Total*	470		4.00	mg/L	1	7022210	AC	10-Mar-17	310.1	
Volatile Organic Compounds	by EPA Method	8021								
Benzene*	19.2		0.500	mg/L	500	7030901	MS	10-Mar-17	8021B	
Toluene*	8.50		0.500	mg/L	500	7030901	MS	10-Mar-17	8021B	
Ethylbenzene*	2.31		0.500	mg/L	500	7030901	MS	10-Mar-17	8021B	
Total Xylenes*	5.17		1.50	mg/L	500	7030901	MS	10-Mar-17	8021B	
Total BTEX	35.2		3.00	mg/L	500	7030901	MS	10-Mar-17	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		101 %	81.3-	-128	7030901	MS	10-Mar-17	8021B	
Petroleum Hydrocarbons by C	GC FID									S-04
GRO C6-C10	274		1.00	mg/L	0.1	7031302	MS	14-Mar-17	8015B	
DRO >C10-C28	435		1.00	mg/L	0.1	7031302	MS	14-Mar-17	8015B	
EXT DRO >C28-C36	73.7		1.00	mg/L	0.1	7031302	MS	14-Mar-17	8015B	
Surrogate: 1-Chlorooctane			143 %	37.1-	-138	7031302	MS	14-Mar-17	8015B	
Surrogate: 1-Chlorooctadecane			148 %	44.6-	-151	7031302	MS	14-Mar-17	8015B	

Green Analytical Laboratories

Total Recoverable Metals by ICP (E200.7) Calcium* 1600 2.50 mg/L 25 B703116 LLG 15-Mar-17 EPA200.7 25 B703116 LLG 15-Mar-17 EPA200.7 Magnesium* 240 2.50 mg/L

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any daim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by Cardinal, regardless of whether su claim is based bove stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Jooratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

*=Accredited Analyte

R T HICKS CONSUL 901 RIO GRANDE BI ALBUQUERQUE NM,	TANTS LVD SUITE F-142 87104		Project Project Number Project Manager Fax To	ASAU NONE MIKE NONE	150 TRU GIVEN STUBBLE	ink line r Field	ELEASE	2	Reported: 1-Mar-17 11	:52
			S-1 MONIT H700605-0	OR W 1 (Wate	ELL er)					
Analyte	Result	MDL	Reporting Limit U	nits	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Green Analytica	ıl Laboı	ratories					
Total Recoverable Met	als by ICP (E200.7)									
Potassium*	<25.0		25.0 m	ıg/L	25	B703116	LLG	15-Mar-17	EPA200.7	
Sodium*	150		25.0 m	ıg/L	25	B703116	LLG	15-Mar-17	EPA200.7	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Project: Project Number: Project Manager: Fax To:	ASAU 150 TRUNK LINE RELEASE NONE GIVEN MIKE STUBBLEFIELD NONE	Reported: 21-Mar-17 11:52
Fax To:	NONE	
	Project: Project Number: Project Manager: Fax To:	Project: ASAU 150 TRUNK LINE RELEASE Project Number: NONE GIVEN Project Manager: MIKE STUBBLEFIELD Fax To: NONE

Inorganic Compounds - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
						,				
Batch 7022210 - General Prep - Wet Chem										
Blank (7022210-BLK1)				Prepared &	& Analyzed:	22-Feb-17				
Alkalinity, Carbonate	ND	1.00	mg/L							
Alkalinity, Bicarbonate	5.00	5.00	mg/L							
Alkalinity, Total	4.00	4.00	mg/L							
LCS (7022210-BS1)				Prepared 8	à Analyzed:	22-Feb-17				
Alkalinity, Carbonate	ND	1.00	mg/L				80-120			
Alkalinity, Bicarbonate	127	5.00	mg/L				80-120			
Alkalinity, Total	104	4.00	mg/L	100		104	80-120			
LCS Dup (7022210-BSD1)				Prepared 8	à Analyzed:	22-Feb-17				
Alkalinity, Carbonate	ND	1.00	mg/L				80-120		20	
Alkalinity, Bicarbonate	127	5.00	mg/L				80-120	0.00	20	
Alkalinity, Total	104	4.00	mg/L	100		104	80-120	0.00	20	
Batch 7022808 - Filtration										
Blank (7022808-BLK1)				Prepared: 2	28-Feb-17 A	analyzed: 0	2-Mar-17			
TDS	ND	5.00	mg/L							
LCS (7022808-BS1)				Prepared: 2	28-Feb-17 A	Analyzed: 0	2-Mar-17			
TDS	215	5.00	mg/L	213		101	80-120			
Duplicate (7022808-DUP1)	Sou	rce: H700474-	04	Prepared: 2	28-Feb-17 A	analyzed: 0	2-Mar-17			
TDS	992	5.00	mg/L		1010			2.19	20	
Batch 7030902 - General Prep - Wet Chem										
Blank (7030902-BLK1)				Prepared 8	k Analyzed:	09-Mar-17	,			
Chloride	ND	4.00	mg/L							

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104		ا Project N Project Ma ا	Project: A umber: N anager: N Fax To: N	asau 150 T None give 1ike stube None	RUNK LIN N BLEFIELD	e release	Reported: 21-Mar-17 11:52			
	Inor	rganic Com	pounds	- Quality	Control					
		Cardi	nal Lab	oratories						
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7030902 - General Prep - Wet Chem										
LCS (7030902-BS1)				Prepared &	Analyzed:	09-Mar-17				
Chloride	100	4.00	mg/L	100		100	80-120			
LCS Dup (7030902-BSD1)	Prepared & Analyzed: 09-Mar-17									
Chloride	100	4.00	mg/L	100		100	80-120	0.00	20	
Batch 7030903 - General Prep - Wet Chem										
LCS (7030903-BS1)				Prepared &	Analyzed:	09-Mar-17				
pH	7.11		pH Units	7.00		102	90-110			
Duplicate (7030903-DUP1)	Sou	rce: H700605	-01	Prepared &	Analyzed:	09-Mar-17				
pH	7.12	0.100	pH Units		7.10			0.281	20	
Batch 7030904 - General Prep - Wet Chem										
LCS (7030904-BS1)				Prepared: 0	9-Mar-17 /	Analyzed: 10)-Mar-17			
Conductivity	491		uS/cm	500		98.2	80-120			
Duplicate (7030904-DUP1)	Sou	rce: H700605	-01	Prepared: 09-Mar-17 Analyzed: 10-Mar-17						
Conductivity	3060	1.00	uS/cm		3070			0.326	20	

Batch 7031002 - General Prep - Wet Chem

 Blank (7031002-BLK1)
 Prepared & Analyzed: 10-Mar-17

 Sulfate
 ND
 10.0
 mg/L

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

901 RIO GRANDE BLVD SUITE F-142 Project Number: NONE GIVEN 21-Mar-17 11:52 ALBUQUERQUE NM, 87104 Project Manager: MIKE STUBBLEFIELD Fax To: NONE	R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104	Project: Project Number: Project Manager: Fax To:	ASAU 150 TRUNK LINE RELEASE NONE GIVEN MIKE STUBBLEFIELD NONE	Reported: 21-Mar-17 11:52	
--	---	--	--	------------------------------	--

Inorganic Compounds - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7031002 - General Prep - Wet Chem										
LCS (7031002-BS1)	Prepared & Analyzed: 10-Mar-17									
Sulfate	23.4	10.0	mg/L	20.0		117	80-120			
LCS Dup (7031002-BSD1)				Prepared &	Analyzed:	10-Mar-17				
Sulfate	24.4	10.0	mg/L	20.0		122	80-120	4.18	20	BS1

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ALBUQUERQUE NM, 87104 Project Manager: MIKE STUBBLEFIELD	R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104	Project: Project Number: Project Manager: Fax To:	ASAU 150 TRUNK LINE RELEASE NONE GIVEN MIKE STUBBLEFIELD NONE	Reported: 21-Mar-17 11:52
--	---	--	--	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal Laboratorie

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 7030901 - Volatiles										
Blank (7030901-BLK1)				Prepared: (9-Mar-17 A	Analyzed: 1	0-Mar-17			
Benzene	ND	0.001	mg/L							
Toluene	ND	0.001	mg/L							
Ethylbenzene	ND	0.001	mg/L							
Total Xylenes	ND	0.003	mg/L							
Total BTEX	ND	0.006	mg/L							
Surrogate: 4-Bromofluorobenzene (PID)	0.0500		mg/L	0.0500		100	81.3-128			
LCS (7030901-BS1)				Prepared: (9-Mar-17 A	Analyzed: 1	0-Mar-17			
Benzene	0.020	0.001	mg/L	0.0200		101	86.6-118			
Toluene	0.020	0.001	mg/L	0.0200		97.5	84.5-122			
Ethylbenzene	0.020	0.001	mg/L	0.0200		101	83.9-122			
Total Xylenes	0.059	0.003	mg/L	0.0600		98.5	81.8-124			
Surrogate: 4-Bromofluorobenzene (PID)	0.0507		mg/L	0.0500		101	81.3-128			
LCS Dup (7030901-BSD1)				Prepared: (9-Mar-17 A	Analyzed: 1	0-Mar-17			
Benzene	0.020	0.001	mg/L	0.0200		101	86.6-118	0.0298	7.71	
Toluene	0.020	0.001	mg/L	0.0200		97.6	84.5-122	0.0769	8.86	
Ethylbenzene	0.020	0.001	mg/L	0.0200		101	83.9-122	0.391	11.8	
Total Xylenes	0.059	0.003	mg/L	0.0600		97.9	81.8-124	0.602	11.9	
Surrogate: 4-Bromofluorobenzene (PID)	0.0504		mg/L	0.0500		101	81.3-128			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ALDOQUERQUE NM, 67104 Fax To: NONE	R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142 ALBUQUERQUE NM, 87104	Project: Project Number: Project Manager: Fax To:	ASAU 150 TRUNK LINE RELEASE NONE GIVEN MIKE STUBBLEFIELD NONE	Reported: 21-Mar-17 11:52
------------------------------------	---	--	--	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

<u> </u>	T 1	•
(ordinal	Iahora	LUK100
Caruman		

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 7031302 - General Prep - Organics										
Blank (7031302-BLK1)				Prepared:	13-Mar-17 A	Analyzed: 1	4-Mar-17			
GRO C6-C10	ND	1.00	mg/L							
DRO >C10-C28	ND	1.00	mg/L							
EXT DRO >C28-C35	ND	1.00	mg/L							
EXT DRO >C28-C36	ND	1.00	mg/L							
Surrogate: 1-Chlorooctane	4.16		mg/L	5.00		83.2	37.1-138			
Surrogate: 1-Chlorooctadecane	4.82		mg/L	5.00		96.3	44.6-151			
LCS (7031302-BS1)				Prepared &	analyzed:	13-Mar-17	,			
GRO C6-C10	45.1	1.00	mg/L	50.0		90.2	72.8-108			
DRO >C10-C28	46.6	1.00	mg/L	50.0		93.1	77.5-117			
EXT DRO >C28-C35	ND	1.00	mg/L	0.00			0-0			
Surrogate: 1-Chlorooctane	5.03		mg/L	5.00		101	37.1-138			
Surrogate: 1-Chlorooctadecane	4.78		mg/L	5.00		95.7	44.6-151			
LCS Dup (7031302-BSD1)				Prepared: 1	13-Mar-17 A	Analyzed: 1	4-Mar-17			
GRO C6-C10	46.2	1.00	mg/L	50.0		92.5	72.8-108	2.42	12	
DRO >C10-C28	48.0	1.00	mg/L	50.0		96.0	77.5-117	2.98	12.1	
EXT DRO >C28-C35	ND	1.00	mg/L	0.00			0-0		20	
Surrogate: 1-Chlorooctane	5.16		mg/L	5.00		103	37.1-138			
Surrogate: 1-Chlorooctadecane	5.26		mg/L	5.00		105	44.6-151			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

R T HICKS CONSULTANTS 901 RIO GRANDE BLVD SUITE F-142	Project: Project Number: Project Manager:	ASAU 150 TRUNK LINE RELEASE NONE GIVEN	Reported: 21-Mar-17 11:52
ALBUQUERQUE NM, 87104	Project Manager:	MIKE STUBBLEFIELD	
	Fax To:	NONE	

Total Recoverable Metals by ICP (E200.7) - Quality Control

Green Analytical Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B703116 - EPA 200.2 Total Rec.										
Blank (B703116-BLK1)				Prepared &	Analyzed:	15-Mar-17				
Magnesium	ND	0.100	mg/L							
Calcium	ND	0.100	mg/L							
Potassium	ND	1.00	mg/L							
Sodium	ND	1.00	mg/L							
LCS (B703116-BS1)				Prepared &	Analyzed:	15-Mar-17				
Magnesium	19.0	0.100	mg/L	20.0		94.8	85-115			
Potassium	7.40	1.00	mg/L	8.00		92.5	85-115			
Calcium	3.69	0.100	mg/L	4.00		92.2	85-115			
Sodium	6.21	1.00	mg/L	6.48		95.9	85-115			
LCS Dup (B703116-BSD1)				Prepared &	Analyzed:	15-Mar-17				
Sodium	6.12	1.00	mg/L	6.48		94.4	85-115	1.54	20	
Potassium	7.21	1.00	mg/L	8.00		90.2	85-115	2.56	20	
Magnesium	18.6	0.100	mg/L	20.0		93.2	85-115	1.72	20	
Calcium	3.62	0.100	mg/L	4.00		90.6	85-115	1.78	20	
Matrix Spike (B703116-MS2)	Sou	rce: 1703076-()1	Prepared & Analyzed: 15-Mar-17						
Calcium	18.6	0.100	mg/L	4.00	14.9	92.1	70-130			

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitstoewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Lobaratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Liboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 219 of 364

CARDINAL Laboratories

Page 12 of

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Released to Imaging: 9/16/2024 1:48:57 PM

Page 12 of 12

Appendix C Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266.0745 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

October 9, 2017

Mr. Bradford Billings Ms. Crystal Weaver, Mr. Mike Bratcher NMOCD District 2 811 S. First Street Artesia, New Mexico 88210

VIA EMAIL

RE: Report of Hydrocarbon Characterization and Proposed Actions Lime Rock – ASAU #150 Trunkline Release, #2RP-3893

Dear Ms. Weaver, Mr. Billings and Mr. Bratcher:

On behalf of Lime Rock Resources, R.T. Hicks Consultants, Ltd. submits this update of activities performed at the above-referenced release location. As requested by NMOCD during a meeting at the District office on August 28, 2017, samples were collected from the top of the water column as a means to characterize the extent and magnitude of hydrocarbon constituents. NMOCD was emailed notification of the scheduled sampling on September 6 and provided a Sampling and Analysis Plan (Plan) on September 8. We report the results of this characterization sampling herein.

Method and Observations

Witnessed by Ms. Weaver, we began at MW-3 and the procedure followed the submitted Plan.

MW-3

- Depth to water (from TOC) was measured at 47.95 feet.
- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- The third bailer for the sample was observed to be turbid/silty. As specified in the Plan, we waited at least two hours before sampling again.
- We returned to this well and repeated the procedure and obtained a sample at 12:08 pm. The sample was again observed to be silty, as shown in the adjacent photograph.

MW-2

• Depth to water (from TOC) was measured at 52.08 feet.

Silty samples from MW-3

- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- During bailing, the bailer was observed to have LNAPL sheen on the outside and the water had a sheen on the surface.
- The sample was collected at 10:40 am.

October 9, 2017 Page 2

MW-4

- Depth to water (from TOC) was measured at 48.87 feet.
- Two full bailers were purged by slowly lowering the bailer into the top 1 foot of column.
- During bailing and sampling, the water was observed to be clear with no noticeable odor.
- The sample was collected at 11:08 am.

MW-1

- Ms. Weaver stated that NMOCD requests a product thickness measurement in this well.
- We explained that after consistently measuring approximately 6 inches of product thickness, a1inch "measuring tube" was installed to facilitate accurate DTW measurements (adjacent photograph). Since installation of the sampling tube, we are unable to measure the product.
- DTW was measured in the sampling tube at 52.98 feet on September 11, 2017.

Installation of "Measuring tube" in MW-1

Samples were delivered to Hall Environmental Analysis Laboratory in Albuquerque via its courier service.

Analysis and Evaluation

The sampling data and BTEX analysis provided by Hall is summarized in the table below.

Well ID	DTW from TOC (ft)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	Observations
MW-2	52.08	370	0	51	66	487	Sheen; film on bailer
MW-3	47.95	41	0	0	0	41	Turbid at 1st attempt; waited 2 hrs, sample is silty
MW-4	48.87	3300	0	470	0	3770	Clear
MW-1	52.98						DTW only; measured from steel sampling tube
WQCC std		10	750	750	620		

all concentrations are µg/L

Table 1: BTEX characterization sampling (9/11/2017)

When compared to the concentrations from the last compliance sampling event for each well, the data show the following relationships:

- MW-2, approximately 60 feet southeast of MW-1, yielded 930 μ g/L benzene when sampled using a bailer-purge method soon after installation on June 12, 2017. Although the September 11 characterization sampling method is not comparable to the compliance sampling method, the characterization sampling revealed a decrease in benzene of more than 60% in this well.
- MW-3 was sampled for compliance on August 2, 2017 using a low-flow purge and sample method¹ which yielded benzene concentration of 61 μ g/L. When compared to the

¹ <u>https://www.epa.gov/sites/production/files/2015-06/documents/EQASOP-GW001.pdf</u>

October 9, 2017 Page 3

compliance sampling, the September characterization sampling shows a benzene decrease of approximately 33%.

• MW-4 displayed a marked increase when the characterization sampling is compared to the last compliance sampling which 1530 μ g/L benzene. The well was sampled for August 2, 2017 using a bailer-purge method instead of the low-flow method due to a problem with the pump. When compared to the recent characterization sampling, benzene in this well demonstrated an increase of 116%.

Additional Proposed Actions

VOC chemistry appears to demonstrate a southeastern groundwater gradient and DTW measurements from this event confirm a south-southeastern vector (Figure 1) of 0.214, significantly steeper gradient than was last measured in August. Benzene is the only regulated BTEX component in these samples that exceeded WQCC standards (Table 1). Concentrations of BTEX components, observations of the samples, and our experience, however, suggest that the concentrations are more indicative of a lighter product such as gasoline or natural gas condensate. We propose three additional actions to further characterize the groundwater impact at this site.

To provide clarity regarding the nature of the release and as an exercise of academic interest, we propose a **chemical comparison of product sample floating in MW-1 to the product in Lime Rock's system** following these steps:

- 1. Remove the measuring tube in MW-1 at least two days prior to the compliance sampling event to allow time for the water and LNAPL to return to an equilibrium state.
- 2. Measure and record DTW and thickness of LNAPL.
- 3. Collect a sample of only LNAPL using a bailer and preserve for analysis at Lime Rock's usual laboratory used for product analysis.
- 4. Collect a representative product sample from Lime Rock's system in accordance with the laboratory's instructions.
- 5. Submit both samples for comparative analysis for physical and chemical characteristics as defined by Lime Rock.

Given the contradictory nature of prior VOC chemistry at this site, we propose **additional samples to confirm the characterization samples** collected on September 11 using a bailer. **Compliance monitoring sampling of wells MW-2, -3, and -4** for the final 2017 quarter are planned for Wednesday, October 11, 2017. Because these wells were installed up to several months apart, this will be the first sampling event where all data from each well will be collected on the same day. We will employ the low-flow sampling procedure referenced in the previous page with the following addition:

- 1. After compliance sampling of the well for VOCs and inorganic constituents using the low-flow method, the pump rate will be reduced and the intake will be raised to a level of approximately 1 foot from the DTW level, the same interval from which the characterization sample was collected on September 11 using a bailer.
- 2. Collect sample during the low-flow pumping from the top of the column for BTEX analysis per the laboratory's requirements.
- 3. Since the shallower samples will also not fulfill the quarterly sampling requirement, these will be placed on a separate chain of custody form from the compliance samples collected previously on the same day.

October 9, 2017 Page 4

Thank you for your consideration of this data and your help with this project. NMOCD will be notified of significant events at least 48 hours in advance. Please consider this report written notice for the sampling activities planned for October 11, 2017 at 9:00 am.

A copy of this report will be provided to the surface owner. The data gathered thus far leads us to the opinion that there is minimal danger of hydrocarbon impact from this release to existing and future down-gradient water wells installed using contemporary construction standards, as domestic and irrigation wells pump from deeper zones of the aquifer. We acknowledge the exceedance of regulated hydrocarbon constituents at this site and recognize a likely requirement of 1-2 additional down-gradient monitoring wells in the future. We request that NMOCD allow the collection of the proposed data to facilitate the best assessment regarding the possible placement of future wells and the remediation of this release.

Sincerely, R.T. Hicks Consultants

Knistin Tope

Kristin Pope Project Geologist

Enclosures: Figure 1, laboratory report

Copy: Lime Rock Resources, Gray Holdings (surface owner)

M:\Lime Rock Resources\asau trunk\PitRuleTemplate_10_1\Figures\May 2017\Figure 1 gw direction sept 11 2017.mxd

September 21, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150 Release

OrderNo.: 1709837

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 9/14/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1709837

Date Reported: 9/21/2017

9/20/2017 8:04:00 AM

B45748

CLIENT: Project:	R.T. Hicks Consultants, LTD Lime Rock ASAU 150 Release			Client Samp Collection	le ID: MV Date: 9/1	W-2 1/2017 10:40:00 AM	
Lab ID:	1709837-001	Matrix:	AQUEOUS	Received	Date: 9/1	4/2017 9:42:00 AM	
Analyses		Result	PQL Qua	al Units	DF	Date Analyzed	Batch
EPA MET	HOD 8260: VOLATILES SHORT					Analyst	RAA
Benzene		370	5.0	μg/L	10	9/20/2017 8:04:00 AM	B45748
Toluene		ND	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748
Ethylben	zene	51	5.0	μg/L	10	9/20/2017 8:04:00 AM	B45748
Xylenes,	Total	66	10	μg/L	10	9/20/2017 8:04:00 AM	B45748
Surr: 2	1,2-Dichloroethane-d4	90.3	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748
Surr: 4	4-Bromofluorobenzene	95.8	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748
Surr: [Dibromofluoromethane	96.7	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748

70-130

%Rec

10

90.4

Qualifiers:	*

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 5 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

9/20/2017 8:28:00 AM B45748

CLIENT: Project:	R.T. Hicks Consultants, LTD Lime Rock ASAU 150 Release	Client Sample ID: MW-3 Collection Date: 9/11/2017 12:08:00 PM								
Lab ID:	1709837-002	Matrix:	AQUEOUS	Received	Date: 9/1	4/2017 9:42:00 AM				
Analyses		Result	PQL Qual	Units	DF	Date Analyzed	Batch			
EPA MET	HOD 8260: VOLATILES SHORT	LIST				Analyst	RAA			
Benzene		41	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748			
Toluene		ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748			
Ethylben	zene	ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748			
Xylenes,	Total	ND	1.5	µg/L	1	9/20/2017 8:28:00 AM	B45748			
Surr: 1	I,2-Dichloroethane-d4	91.6	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748			
Surr: 4	1-Bromofluorobenzene	96.1	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748			
Surr: [Dibromofluoromethane	96.9	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748			

70-130

%Rec

1

91.1

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

CLIENT: R.T. Hicks Consultants, LTD

Lime Rock ASAU 150 Release

1

Project:

Analytical Report
Lab Order 1709837

Hall	Environmental	Ana	lysis	Laboratory,	Inc.
------	---------------	-----	-------	-------------	------

Date Reported: 9/21/2017

Client Sample ID: MW-4 Collection Date: 9/11/2017 11:28:00 AM Received Date: 9/14/2017 9:42:00 AM

Lab ID: 1709837-003	Matrix:	Matrix: AQUEOUS			Received Date: 9/14/2017 9:42:00 AM					
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch				
EPA METHOD 8260: VOLATILES S	SHORT LIST				Analyst	RAA				
Benzene	3300	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765				
Toluene	ND	1.0	µg/L	1	9/20/2017 8:52:00 AM	B45748				
Ethylbenzene	470	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765				
Xylenes, Total	ND	1.5	µg/L	1	9/20/2017 8:52:00 AM	B45748				
Surr: 1,2-Dichloroethane-d4	97.0	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748				
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748				
Surr: Dibromofluoromethane	95.8	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748				
Surr: Toluene-d8	89.2	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748				

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: R.T. H	icks Consult	ants, L'I	D							
Project: Lime R	ock ASAU	150 Rel	ease							
Sample ID 100ng Ics2	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: LCSW	Batch	h ID: B4	5748	F	RunNo: 4	5748				
Prep Date:	Analysis D	Date: 9/	20/2017	S	SeqNo: 1	453586	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	110	70	130			
Toluene	20	1.0	20.00	0	98.6	70	130			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.6	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		95.5	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.0	70	130			
Sample ID rb2	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	h ID: B4	5748	F	RunNo: 4	5748				
Prep Date:	Analysis D	Date: 9/	20/2017	5	SeqNo: 1	453587	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.8	70	130			
Surr: Dibromofluoromethane	9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		88.6	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: LCSW	Batch	h ID: SL	.45765	RunNo: 45765						
Prep Date:	Analysis D	Date: 9/	20/2017	S	SeqNo: 1	454013	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.0	70	130			
Sample ID rb	SampT	уре: М	BLK	TestCode: EPA Method 8260: Volatiles Short List						
Client ID: PBW	Batch	h ID: SL	.45765	RunNo: 45765						
Prep Date:	Analysis D	Date: 9/	20/2017	5	SeqNo: 1	454014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Ethylbenzene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.9	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 230 of 364

WO#:	1709837

Page 4 of 5

21-Sep-17

Client:	R.T. Hicks Consulta	nts, L'	ГD							
Project:	Lime Rock ASAU 1	50 Re	lease							
Sample ID rb	SampT	уре: М	BLK	Test	Code: E	PA Method	8260: Volatil	es Short L	.ist	
Client ID: PBW	Batch	ID: SI	L45765	R	unNo: 4	5765				
Prep Date:	Analysis D	ate: 9	/20/2017	S	eqNo: 1	454014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluoroben:	zene 9.6		10.00		95.6	70	130			
Surr: Dibromofluorometh	nane 9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		89.3	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W

1709837

21-Sep-17

WO#:

Page 5 of 5

Sample container temperature is out of limit as specified

•

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental , Albu TEL: 505-345-3975 , Website: www.hal	Analysis Laborat 4901 Hawkins querque, NM 87 FAX: 505-345-4 llenvironmental.c	ory NE 109 Sam j 107 rom	ole Log-In Che	ck List
Client Name: RT HICKS	Work Order Number:	1709837		RcptNo: 1	
Received By: Isaiah Ortiz	9/14/2017 9:42:00 AM		IGht		
Completed By: Ashley Gallegos Reviewed By:	9/15/2017 9:43:33 AM 9/15/17		AJ		
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗹	No 🗋	Not Present	
3. How was the sample delivered?		<u>Courier</u>			
<u>Log In</u>			_	_	
4. Was an attempt made to cool the samples	5?	Yes 🗹	No 🗌	NA 🗌	
5. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes 🗹	No 🗆	NA 🗌	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated test	t(s)?	Yes 🔽	No 🗀		
8. Are samples (except VOA and ONG) prop	erly preserved?	Yes 🗹	No 🗆		
9. Was preservative added to bottles?		Yes 🗌	No 🔽	NA 🗌	
10.VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials 🗌	
11. Were any sample containers received bro	ken?	Yes 🗀	No 🗹	# of preserved	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗔	for pH: (<2 or >	12 unless noted)
13. Are matrices correctly identified on Chain	of Custody?	Yes 🗹	No 🗆	Adjusted?	
14. Is it clear what analyses were requested?		Yes 🔽	No 🗌		
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🔽	No 🗌	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies wit	h this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified: By Whom: Regarding:	Date Via: [🗋 eMail 🛄 F	Phone 🗌 Fax	In Person	
Client Instructions:					
18. <u>Cooler Information</u> <u>Cooler No</u> Temp °C Condition 1 1 1.0 Good Y	Seal Intact Seal No	Seal Date	Signed By		
Page 1 of 1					

	r Bubbles (Y or N)	V	
	54000000		insult.com
TO TOT	(AOV-ime2) 075	8	#
	(AOA) 8092	8	Cé Out
	081 Pesticides / 8082 PCB's	B	mistin
	CKA 8 INEGIS		Y
100	(HA9 10 AN9) 015		ults to
	(1.408 botteM) BD		Lesi
4	CH (Method 418.1) HR		Emai
	(IeseiO/260) 82108 botteM H9		
	TEX + MTBE + TPH (Gas only)		- Hand
hard	TEX # MTRE + TMB's (8021)		a l
Hore Rock	-M.Stubbitu	100-	Date Time
1 D Rust 6: 1 # /50	ager: Kristin Pope Katetin Pope IL/Yes Iperature: Preservativ e Type	ice, #gele	
Project #	Project Man Sampler, On Ice: Sample Tem Container Type and #	3 van glass	Received ty:
	evel 4 (Full Validation) mple Request ID	1-3	Teat
	Sa	WWW WWWW	à Si
	D Other Matrix	91d	Relinquished
	are AP (Type) Time	aton Sale	Time: 7-22,4-5 Time:
alla	Date	11/11/10	Date: B <u>Lis Jour</u> Date:

Appendix D Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

R. T. HICKS CONSULTANTS, LTD.

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266.0745 Artesia ▲ Carlsbad ▲ Durango ▲ Midland

December 22, 2017

Mr. Bradford Billings Ms. Crystal Weaver, Mr. Mike Bratcher NMOCD District 2 811 S. First Street Artesia, New Mexico 88210

VIA EMAIL

RE: **Groundwater Sampling Report and Proposed Actions** Lime Rock – ASAU #150 Trunkline Release, #2RP-3893

Dear Ms. Weaver, Mr. Billings, and Mr. Bratcher:

On behalf of Lime Rock Resources, R.T. Hicks Consultants, Ltd. submits the report and proposal for the above-referenced site. The following report summarizes data collected thus far and proposes actions to characterize and mitigate potential environmental impact caused by this release with the aim of closure of the regulatory file.

Summary of Previous Actions, Site Conditions, & Submissions

- The initial response actions to the August 30, 2016 release and proposed monitoring wells were described in a December 2016 report to OCD.
- MW-1, nearest to the release, has exhibited measurable Light Non-Aqueous Phase Liquid (LNAPL) ranging in thickness from 6 inches soon after installation, to 1.5 inches most recently.
- Lime Rock and Hicks Consultants met with OCD on May 23, 2017 to discuss placement criteria of additional wells.
- A total of four 2-inch monitoring wells were installed at the site this year and three of them are sampled on a quarterly basis (Appendix A). Plate 1 is an aerial image that displays the location of the monitoring wells at the release site, in relation to the junction of Fanning (CR 44) and Thistle (CR 24) Roads.
- At a meeting with Lime Rock and Hicks Consultants on August 23, 2017, OCD requested sampling of the top of the water column for hydrocarbon analysis.
- A proposal for characterization sampling for hydrocarbon at the top of the water was submitted to OCD on September 8, 2017.
- On October 9, 2017, a report of the September characterization sampling was submitted to OCD, which included a proposal for further characterization sampling (Appendices B and C).

The monitoring wells were installed per New Mexico Guidance and OCD approval, with 10 feet of screen below the water table and 5-feet above groundwater. The wells were sampled no sooner than 48 hours after appropriate development. Most of the samples were collected using

December 21, 2017 Page 2

a low-flow sampling procedure¹ except when pump failure required sample collection using the conventional hand bail method with purging of three casing volumes.

Compliance Sampling of Monitoring Wells

Appendix A includes a summary of all monitoring events (Table 1) including depth to water measurements and analyses and laboratory reports from the fourth quarter (October 24) sampling. From these data, we make the following observations:

- LNAPL in MW-1 has diminished in thickness by 75% since initial installation. Compliance sampling of this well for dissolved constituents provides no value.
- MW-2 has exhibited a sheen and hydrocarbon odor since installation.
- Benzene concentrations in each well exceed WQCC standards (0.01 mg/L) at each sampling event. Benzene concentrations in each well show significant variation due to sampling methods and possibly other factors.
- Sulfate concentrations in each well exceed WQCC standards (600 mg/L) at each sampling event.
- Analyses of total dissolved solids (TDS) in each well exhibit concentrations that exceed WQCC standards (1000 mg/L), except MW-2. The TDS concentration of the first sampling event of MW-2 appears to be a laboratory error.
- Chloride concentrations of all monitoring samples are below the WQCC standard (250 mg/L).
- Groundwater elevation is decreasing from August to October. Plate 2, a map of October groundwater flow direction illustrations a relatively flat southeastern gradient. VOC groundwater chemistry from the October 24 sampling demonstrate a southeastern groundwater gradient from the pipeline release and g confirm a southeastern vector, but a significantly flatter gradient than was measured in August.

Additional Proposed Actions

Additional Monitoring Well

Characterization of the magnitude and extent of hydrocarbons in shallow groundwater is required by OCD and additional wells are necessary. In mid- January 2018, we will conduct the quarterly compliance sampling of the wells except for MW-1. We will continue to employ the low-stress, low-flow procedure and will analyze for BTEXN, chloride, sulfate, and TDS. OCD will be given at least 48 hours' notice of each sampling event. In February, we will present the first quarter sampling data to OCD in the form of a potentiometric surface map, updated data table and a benzene isocontour map of the plume. Unless these new data are unexpected, the observed benzene concentration gradient and the relatively constant groundwater flow vector, suggest a well in the vicinity of the area marked on Plate 1 and should define the concentration gradient within the impacted area. This next well, MW-5, will be installed and developed in early March 2018 in order to provide representative samples for the second quarterly compliance monitoring event in April 2018.

The submission of second quarter results in May 2018 will include a proposal for the additional monitoring well(s) which we anticipate will complete the groundwater monitoring network.

¹ <u>https://www.epa.gov/quality/low-stress-low-flow-purging-and-sampling-procedure-collection-groundwater-samples-monitoring</u>

December 21, 2017 Page 3

LNAPL Recovery in MW-1

Recovery of LNAPL in MW-1 will begin on December 22, 2017. We will employ a passive system using a stainless steel cage-like bailer containing an oil-absorbing sock² to be monitored on a weekly basis. Each week, depth to water and depth to LNAPL measurements will be recorded, as well as the condition of the sock (degree of oil soak). The sock will be changed on a weekly basis, or more frequently if needed, and used socks will be secured and disposed of properly. If the amount of LNAPL increases and causes this system to be inadequate, we will propose a more robust recovery method.

Thank you for your consideration of this data and meeting with us many times regarding this project. OCD will be notified of significant events at least 48 hours in advance.

A copy of this report is provided to the landowner. The data gathered thus far suggest that the potential of hydrocarbon impact from this release to existing, down-gradient water wells is so small as to be nil. We believe it also highly unlikely that the observed hydrocarbon concentrations would impair water quality in future water supply wells installed using contemporary construction standards. This opinion of a low risk to the environment and public health causes us to allow site data to guide the assessment of the impact and thence to determine the most appropriate response.

Sincerely,

R.T. Hicks Consultants

Knistin Tope

Kristin Pope Project Geologist

Enclosures: Plates 1 and 2, Appendices A-C

Copy: Lime Rock Resources, Gray Holdings (surface owner)

² http://www.geotechenv.com/pdf/free phase ground water remediation/geosorb.pdf


```
M:\Lime Rock Resources\asau trunk releases\PitRuleTemplate_10_1\Figures\yearEndReport2017\Plate 1 general location.mxd
```

M:\Lime Rock Resources\asau trunk releases\PitRuleTemplate_10_1\Figures\yearEndReport2017\Figure 2 gw direction with Benzene October 2017.mxd

Appendix A

Compliance Sampling Summary and Laboratory Report

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104 Lime Rock - ASAU #150 Release

.

Monitoring Well Analyses

Well ID	DTW ft (from TOC)	Sample Date	LNAPL in.	Benzene 0.01	Toluene	Ethyl benzene	Total Xylenes	Naphtha- lene 0.03	Total BTEX	Chloride 250	Sulfate 600	TDS 1000	Sampling method	Lab	Notes
MW-1	51.62	3/8/17	6.00	19.2	8.5	2.31	5.17		35.2	188	1460	2800	bail	Cardinal	by oil/water interface meter
	51.62		6.24												baildown test
	51.9	7/19/17													from nested measuring tube
	52.36	10/11/17	1.5										bail		sampled LNAPL
MW-2	51.11	6/12/17	none	0.93	0.0047	0.011	0.034		0.0497	200	2100	381	bail	Hall	
54	grab samples	7/13/17	none	ND	ND	ND	ND		ND				low-flow pump	Hall	sampled at 54'
59	comparison	7/13/17	none	0.0082	ND	ND	ND		0.0082				low-flow pump	Hall	sampled at 59'
	52.00	10/24/2017	none	0.35	0.0078	0.063	0.079	0.013		180	2200		low-flow pump	Hall	
MW-3	46.4	8/2/17	none	0.061	ND	ND	ND		0.061	212	2010	3920	low-flow pump	Cardinal	
	47.57	10/24/2017	none	0.02	ND	ND	ND	ND		190	2100		low-flow pump	Hall	
MW-4	46.8	8/2/17	none	1.53	< 0.020	0.101	<0.060		1.64	200	1840	3460	bail	Cardinal	
	48.75	10/24/2017	none	0.13	ND	0.016	ND	0.0092		180	2000		low-flow pump	Hall	

all concentrations are mg/L

November 02, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150

OrderNo.: 1710F09

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1710F09

Date Reported: 11/2/2017

		• /				I	
CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Lab ID: 1710F09-001	Matrix:	AQUEOUS	С 5	lient Samp Collection Received	ble ID: MV Date: 10/2 Date: 10/2	V-2 24/2017 11:53:00 AM 26/2017 10:00:00 AM	[
Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	MRA
Chloride	180	50		mg/L	100	10/30/2017 1:19:10 PM	R46764
Sulfate	2200	50	*	mg/L	100	10/30/2017 1:19:10 PM	R46764
EPA METHOD 8260B: VOLATILES						Analyst	RAA
Benzene	350	5.0		µg/L	5	11/1/2017 5:32:00 AM	A46777
Toluene	7.8	5.0		µg/L	5	11/1/2017 5:32:00 AM	A46777
Ethylbenzene	63	5.0		µg/L	5	11/1/2017 5:32:00 AM	A46777
Methyl tert-butyl ether (MTBE)	ND	5.0		µg/L	5	11/1/2017 5:32:00 AM	A46777
1,2,4-Trimethylbenzene	29	5.0		µg/L	5	11/1/2017 5:32:00 AM	A46777
1,3,5-Trimethylbenzene	9.8	5.0		µg/L	5	11/1/2017 5:32:00 AM	A46777
1,2-Dichloroethane (EDC)	ND	5.0		µg/L	5	11/1/2017 5:32:00 AM	A46777
1,2-Dibromoethane (EDB)	ND	5.0		µg/L	5	11/1/2017 5:32:00 AM	A46777
Naphthalene	13	10		µg/L	5	11/1/2017 5:32:00 AM	A46777

Naphthalene	13	10	µg/L	5	11/1/2017 5:32:00 AM	A46777
1-Methylnaphthalene	ND	20	µg/L	5	11/1/2017 5:32:00 AM	A46777
2-Methylnaphthalene	ND	20	µg/L	5	11/1/2017 5:32:00 AM	A46777
Acetone	ND	50	µg/L	5	11/1/2017 5:32:00 AM	A46777
Bromobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Bromodichloromethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Bromoform	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Bromomethane	ND	15	µg/L	5	11/1/2017 5:32:00 AM	A46777
2-Butanone	ND	50	µg/L	5	11/1/2017 5:32:00 AM	A46777
Carbon disulfide	ND	50	µg/L	5	11/1/2017 5:32:00 AM	A46777
Carbon Tetrachloride	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Chlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Chloroethane	ND	10	µg/L	5	11/1/2017 5:32:00 AM	A46777
Chloroform	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Chloromethane	ND	15	µg/L	5	11/1/2017 5:32:00 AM	A46777
2-Chlorotoluene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
4-Chlorotoluene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
cis-1,2-DCE	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
cis-1,3-Dichloropropene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,2-Dibromo-3-chloropropane	ND	10	µg/L	5	11/1/2017 5:32:00 AM	A46777
Dibromochloromethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Dibromomethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,2-Dichlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,3-Dichlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,4-Dichlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Dichlorodifluoromethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,1-Dichloroethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,1-Dichloroethene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 13
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Project:

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD

1710F09-001

Lime Rock ASAU 150

Analytical Report
Lab Order 1710F09

Hall Environmental Analysis Laboratory, Inc.	
--	--

Date Reported: 11/2/2017

Client Sample ID: MW-2 Collection Date: 10/24/2017 11:53:00 AM

Received Date: 10/26/2017 10:00:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
1,2-Dichloropropane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,3-Dichloropropane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
2,2-Dichloropropane	ND	10	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,1-Dichloropropene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Hexachlorobutadiene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
2-Hexanone	ND	50	µg/L	5	11/1/2017 5:32:00 AM	A46777
Isopropylbenzene	12	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
4-Isopropyltoluene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
4-Methyl-2-pentanone	ND	50	µg/L	5	11/1/2017 5:32:00 AM	A46777
Methylene Chloride	ND	15	µg/L	5	11/1/2017 5:32:00 AM	A46777
n-Butylbenzene	ND	15	µg/L	5	11/1/2017 5:32:00 AM	A46777
n-Propylbenzene	15	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
sec-Butylbenzene	5.1	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Styrene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
tert-Butylbenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,1,1,2-Tetrachloroethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,1,2,2-Tetrachloroethane	ND	10	µg/L	5	11/1/2017 5:32:00 AM	A46777
Tetrachloroethene (PCE)	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
trans-1,2-DCE	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
trans-1,3-Dichloropropene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,2,3-Trichlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,2,4-Trichlorobenzene	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,1,1-Trichloroethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,1,2-Trichloroethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Trichloroethene (TCE)	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Trichlorofluoromethane	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
1,2,3-Trichloropropane	ND	10	µg/L	5	11/1/2017 5:32:00 AM	A46777
Vinyl chloride	ND	5.0	µg/L	5	11/1/2017 5:32:00 AM	A46777
Xylenes, Total	79	7.5	µg/L	5	11/1/2017 5:32:00 AM	A46777
Surr: 1,2-Dichloroethane-d4	98.1	70-130	%Rec	5	11/1/2017 5:32:00 AM	A46777
Surr: 4-Bromofluorobenzene	99.1	70-130	%Rec	5	11/1/2017 5:32:00 AM	A46777
Surr: Dibromofluoromethane	99.2	70-130	%Rec	5	11/1/2017 5:32:00 AM	A46777
Surr: Toluene-d8	99.0	70-130	%Rec	5	11/1/2017 5:32:00 AM	A46777

Matrix: AQUEOUS

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 13
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report Lab Order 1710F09

Date Reported	11/2/2017
Date Reported.	11/2/201/

Han Environmental Analysis	S Laborat	<i>ory</i> , me.		Date Reported: 11/2/2017
CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Lab ID: 1710F09-002	Matrix: A	AQUEOUS	Client Samp Collection Received	le ID: MW-3 Date: 10/24/2017 9:52:00 AM Date: 10/26/2017 10:00:00 AM
Analyses	Result	PQL Q	ual Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS				Analyst: MRA
Chloride	190	50	mg/L	100 10/30/2017 1:44:00 PM R46764
Sulfate	2100	50	* mg/L	100 10/30/2017 1:44:00 PM R46764
EPA METHOD 8260B: VOLATILES				Analyst: RAA
Benzene	20	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Toluene	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Ethylbenzene	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1 11/1/2017 5:56:00 AM A46777
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Naphthalene	ND	2.0	µg/L	1 11/1/2017 5:56:00 AM A46777
1-Methylnaphthalene	ND	4.0	µg/L	1 11/1/2017 5:56:00 AM A46777
2-Methylnaphthalene	ND	4.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Acetone	ND	10	µg/L	1 11/1/2017 5:56:00 AM A46777
Bromobenzene	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Bromodichloromethane	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Bromoform	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Bromomethane	ND	3.0	µg/L	1 11/1/2017 5:56:00 AM A46777
2-Butanone	ND	10	µg/L	1 11/1/2017 5:56:00 AM A46777
Carbon disulfide	ND	10	µg/L	1 11/1/2017 5:56:00 AM A46777
Carbon Tetrachloride	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Chlorobenzene	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Chloroethane	ND	2.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Chloroform	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
Chloromethane	ND	3.0	µg/L	1 11/1/2017 5:56:00 AM A46777
2-Chlorotoluene	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
4-Chlorotoluene	ND	1.0	μg/L	1 11/1/2017 5:56:00 AM A46777
cis-1,2-DCE	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
cis-1,3-Dichloropropene	ND	1.0	µg/L	1 11/1/2017 5:56:00 AM A46777
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1 11/1/2017 5:56:00 AM A46777

Hall Environmental Analysis Laboratory Inc

Analyte detected in the associated Method Blank В Е Value above quantitation range

1

1

1

1

1

1

1

1

Sample Diluted Due to Matrix

ND

ND

ND

ND

ND

ND

ND

ND

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

J Р

Н Holding times for preparation or analysis exceeded

Value exceeds Maximum Contaminant Level.

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- RL Reporting Detection Limit

Sample pH Not In Range

W Sample container temperature is out of limit as specified

Analyte detected below quantitation limits Page 3 of 13

11/1/2017 5:56:00 AM

A46777

A46777

A46777

A46777

A46777

A46777

A46777

A46777

Dibromochloromethane

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

Oualifiers:

Dichlorodifluoromethane

*

D

13

.

Analytical Report Lab Order 1710F09

Date Reported:	11/2/2017
----------------	-----------

Hall Environmental Analysi	с.	Date Reported: 11/2/2017				
CLIENT:R.T. Hicks Consultants, LTDProject:Lime Rock ASAU 150Lab ID:1710F09-002	Matrix:	AQUEOUS	Client Sampl Collection 1 5 Received 1	e ID: M Date: 10 Date: 10	W-3)/24/2017 9:52:00 AM)/26/2017 10:00:00 AM	[
Analyses	Result	PQL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	RAA
1,2-Dichloropropane	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777
1,3-Dichloropropane	ND	1.0	µg/L	1	11/1/2017 5:56:00 AM	A46777
2,2-Dichloropropane	ND	2.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
1,1-Dichloropropene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
Hexachlorobutadiene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
2-Hexanone	ND	10	μg/L	1	11/1/2017 5:56:00 AM	A46777
Isopropylbenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
4-Isopropyltoluene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
4-Methyl-2-pentanone	ND	10	μg/L	1	11/1/2017 5:56:00 AM	A46777
Methylene Chloride	ND	3.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
n-Butylbenzene	ND	3.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
n-Propylbenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
sec-Butylbenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
Styrene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
tert-Butylbenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
1,1,2,2-Tetrachloroethane	ND	2.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
Tetrachloroethene (PCE)	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
trans-1,2-DCE	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
trans-1,3-Dichloropropene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
1,2,3-Trichlorobenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
1,2,4-Trichlorobenzene	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
1,1,1-Trichloroethane	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
1,1,2-Trichloroethane	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
Trichloroethene (TCE)	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
Trichlorofluoromethane	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
1,2,3-Trichloropropane	ND	2.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
Vinyl chloride	ND	1.0	μg/L	1	11/1/2017 5:56:00 AM	A46777
Xylenes, Total	ND	1.5	μg/L	1	11/1/2017 5:56:00 AM	A46777
Surr: 1,2-Dichloroethane-d4	99.0	70-130	%Rec	1	11/1/2017 5:56:00 AM	A46777
Surr: 4-Bromofluorobenzene	97.5	70-130	%Rec	1	11/1/2017 5:56:00 AM	A46777
Surr: Dibromofluoromethane	102	70-130	%Rec	1	11/1/2017 5:56:00 AM	A46777
Surr: Toluene-d8	96.2	70-130	%Rec	1	11/1/2017 5:56:00 AM	A46777

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 1
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Released to Imaging: 9/16/2024 1:48:57 PM

A46812

Analytical Report Lab Order 1710F09

Date Reported:	11	12/2	01'

	Date Reported: 11/2/20						
CLIENT: R.T. Hicks Consultants, LTD Project: Lime Rock ASAU 150 Lab ID: 1710F09-003	Matrix:	AQUEOUS	Client Samp Collection Received	le ID: MW-4 Date: 10/24/2 Date: 10/26/2	2017 10:46:00 AM 2017 10:00:00 AM		
Analyses	Result	PQL Qual	Units	DF Dat	te Analyzed	Batch	
EPA METHOD 300.0: ANIONS					Analyst:	MRA	
Chloride	180	50	mg/L	100 10/	'30/2017 2:08:48 PM	R46764	
Sulfate	2000	50 *	mg/L	100 10/	'30/2017 2:08:48 PM	R46764	
EPA METHOD 8260B: VOLATILES			-		Analyst:	RAA	
Benzene	130	10	µg/L	10 11/	1/2017 6:43:00 AM	A46777	
Toluene	ND	1.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
Ethylbenzene	16	1.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1 11/	'1/2017 3:37:00 PM	A46812	
1,2,4-Trimethylbenzene	2.1	1.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
1,3,5-Trimethylbenzene	1.8	1.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
Naphthalene	9.2	2.0	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
1-Methylnaphthalene	5.3	4.0	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
2-Methylnaphthalene	ND	4.0	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
Acetone	ND	10	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
Bromobenzene	ND	1.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
Bromodichloromethane	ND	1.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
Bromoform	ND	1.0	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
Bromomethane	ND	3.0	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
2-Butanone	ND	10	µg/L	1 11/	1/2017 3:37:00 PM	A46812	
Carbon disulfide	ND	10	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
Carbon Tetrachloride	ND	1.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
Chlorobenzene	ND	1.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
Chloroethane	ND	2.0	µg/L	1 11/	'1/2017 3:37:00 PM	A46812	
Chloroform	ND	1.0	µq/L	1 11/	'1/2017 3:37:00 PM	A46812	

ND

3.0

1.0

1.0

1.0

1.0

2.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

µg/L

Hall Environmental Analysis Laboratory Inc

Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank В

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- Value above quantitation range

1

1

1

1

1

1

1

1

1

1

1

1

1

1

- Е
- Analyte detected below quantitation limits Page 5 of 13 J

11/1/2017 3:37:00 PM

- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Chloromethane

2-Chlorotoluene

4-Chlorotoluene

cis-1,3-Dichloropropene

Dibromochloromethane

Dibromomethane

1,2-Dichlorobenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,1-Dichloroethane

1,1-Dichloroethene

Oualifiers:

Dichlorodifluoromethane

*

1,2-Dibromo-3-chloropropane

cis-1,2-DCE

Project:

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD

1710F09-003

Lime Rock ASAU 150

Analytical Report
Lab Order 1710F09

Matrix: AQUEOUS

Date Reported: 11/2/2017
Client Sample ID: MW-4

Collection Date: 10/24/2017 10:46:00 AM

Received Date: 10/26/2017 10:00:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch	
EPA METHOD 8260B: VOLATILES					Analyst	RAA	
1,2-Dichloropropane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,3-Dichloropropane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
2,2-Dichloropropane	ND	2.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,1-Dichloropropene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Hexachlorobutadiene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
2-Hexanone	ND	10	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Isopropylbenzene	4.0	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
4-Isopropyltoluene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
4-Methyl-2-pentanone	ND	10	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Methylene Chloride	ND	3.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
n-Butylbenzene	ND	3.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
n-Propylbenzene	1.9	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
sec-Butylbenzene	1.4	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Styrene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
tert-Butylbenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
trans-1,2-DCE	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Trichloroethene (TCE)	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Trichlorofluoromethane	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Vinyl chloride	ND	1.0	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Xylenes, Total	ND	1.5	µg/L	1	11/1/2017 3:37:00 PM	A46812	
Surr: 1,2-Dichloroethane-d4	103	70-130	%Rec	1	11/1/2017 3:37:00 PM	A46812	
Surr: 4-Bromofluorobenzene	98.6	70-130	%Rec	1	11/1/2017 3:37:00 PM	A46812	
Surr: Dibromofluoromethane	105	70-130	%Rec	1	11/1/2017 3:37:00 PM	A46812	
Surr: Toluene-d8	98.6	70-130	%Rec	1	11/1/2017 3:37:00 PM	A46812	

Qı	ualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
		D	Sample Diluted Due to Matrix	Е	Value above quantitation range
		Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 13
		ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	1	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
		S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Client: Project:	R.T. Hicks Consultants Lime Rock ASAU 150	, LTD							
Sample ID LCS	SampType	TestCode: EPA Method 300.0: Anions							
Client ID: LCSV	Batch ID:	R46764	RunNo: 46764						
Prep Date:	Analysis Date:	10/30/2017	S	eqNo: 14	90509	Units: mg/L			
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.9 (.50 5.000	0	98.9	90	110			
Sulfate	10 0	.50 10.00	0	100	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

Released to Imaging: 9/16/2024 1:48:57 PM

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

elow quantitation limits

Page 7 of 13

DT IIII C

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Project: R. 1. H	Rock ASAU	ants, L1 150	D							
Sample ID 100ng lcs2	SampT	ype: LC	s	Tes	estCode: EPA Method 8260B: VOLATILES					
Client ID: LCSW	Batch ID: A46777			F	RunNo: 46777					
Prep Date:	Analysis D	Date: 1	1/1/2017	S	SeqNo: 1	491518	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	20	1.0	20.00	0	97.8	70	130			
Chlorobenzene	20	1.0	20.00	0	99.8	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	109	70	130			
Trichloroethene (TCE)	20	1.0	20.00	0	98.8	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	9.9		10.00		98.6	70	130			
Surr: Toluene-d8	9.7		10.00		97.1	70	130			
Sample ID rb3	SampT	ype: MI	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch ID: A46777			F	RunNo: 46777					
Prep Date:	Analysis D	Date: 1	1/1/2017	S	SeqNo: 1491520 Uni					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone		10								
Carbon disulfide		10								
Carbon Totrachloride		10								
		1.0								
Chloroothono		1.0								
Chloroform		2.0								
Chloremethere		1.0								
Chioromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Page 8 of 13

Client: R.T. F Project: Lime	HICKS CONSULTA	nts, LT 50	D									
Sample ID rb3	SampTy	ype: MB	LK	Tes	TestCode: EPA Method 8260B: VOLATILES							
Client ID: PBW	Batch ID: A46777			F	RunNo: 4	6777						
Prep Date:	Analysis Da	ate: 11	/1/2017	S	SeqNo: 1	491520	Units: µg/L					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
4-Chlorotoluene	ND	1.0										
cis-1,2-DCE	ND	1.0										
cis-1,3-Dichloropropene	ND	1.0										
1,2-Dibromo-3-chloropropane	ND	2.0										
Dibromochloromethane	ND	1.0										
Dibromomethane	ND	1.0										
1,2-Dichlorobenzene	ND	1.0										
1,3-Dichlorobenzene	ND	1.0										
1,4-Dichlorobenzene	ND	1.0										
Dichlorodifluoromethane	ND	1.0										
1,1-Dichloroethane	ND	1.0										
1,1-Dichloroethene	ND	1.0										
1,2-Dichloropropane	ND	1.0										
1,3-Dichloropropane	ND	1.0										
2,2-Dichloropropane	ND	2.0										
1,1-Dichloropropene	ND	1.0										
Hexachlorobutadiene	ND	1.0										
2-Hexanone	ND	10										
Isopropylbenzene	ND	1.0										
4-Isopropyltoluene	ND	1.0										
4-Methyl-2-pentanone	ND	10										
Methylene Chloride	ND	3.0										
n-Butylbenzene	ND	3.0										
n-Propylbenzene	ND	1.0										
sec-Butylbenzene	ND	1.0										
Styrene	ND	1.0										
tert-Butylbenzene	ND	1.0										
1,1,1,2-Tetrachloroethane	ND	1.0										
1,1,2,2-Tetrachloroethane	ND	2.0										
Tetrachloroethene (PCE)	ND	1.0										
trans-1,2-DCE	ND	1.0										
trans-1,3-Dichloropropene	ND	1.0										
1,2,3-Trichlorobenzene	ND	1.0										
1,2,4-Trichlorobenzene	ND	1.0										
1,1,1-Trichloroethane	ND	1.0										
1,1,2-Trichloroethane	ND	1.0										
Trichloroethene (TCE)	ND	1.0										
Trichlorofluoromethane	ND	1.0										
1,2,3-Trichloropropane	ND	2.0										

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Page 9 of 13

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: R.T. H	icks Consult	ants, LT	TD.								
Project: Lime F	Rock ASAU	150									
Sample ID rb3	SampT	ype: M	BLK	Tes	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	Batch ID: A46777			RunNo: 4	6777					
Prep Date:	Analysis D	Analysis Date: 11/1/2017		S	SeqNo: 1	491520	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Vinyl chloride	ND	1.0									
Xylenes, Total	ND	1.5									
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.4	70	130				
Surr: 4-Bromofluorobenzene	9.9		10.00		98.7	70	130				
Surr: Dibromofluoromethane	10		10.00		102	70	130				
Surr: Toluene-d8	9.7		10.00		96.6	70	130				
Sample ID 100ng Ics	SampT	ype: LC	S4	Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Client ID: BatchQC	Batch	h ID: A4	6812	F	RunNo: 4	6812					
Prep Date:	Analysis Date: 11/1/2017			S	SeqNo: 1492499 Units						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Toluene	19	1.0	20.00	0	95.9	70	130				
Ethylbenzene	19	1.0	20.00	0	96.5	70	130				
Methyl tert-butyl ether (MTBE)	42	1.0	40.00	0	106	70	130				
1,2,4-Trimethylbenzene	19	1.0	20.00	0	95.1	70	130				
1,3,5-Trimethylbenzene	19	1.0	20.00	0	93.6	70	130				
1,2-Dichloroethane (EDC)	20	1.0	20.00	0	99.7	62.2	143				
1,2-Dibromoethane (EDB)	20	1.0	20.00	0	102	70	130				
Naphthalene	19	2.0	20.00	0	96.3	70	130				
1-Methylnaphthalene	20	4.0	20.00	0	101	60	140				
2-Methylnaphthalene	15	4.0	20.00	0	76.4	60	140				
Acetone	38	10	40.00	0	95.4	60	140				
Bromobenzene	20	1.0	20.00	0	97.8	70	130				
Bromodichloromethane	20	1.0	20.00	0	101	70	130				
Bromoform	20	1.0	20.00	0	100	70	130				
Bromomethane	17	3.0	20.00	0	83.5	60	140				
2-Butanone	47	10	40.00	0	117	60	140				
Carbon disulfide	41	10	40.00	0	102	60	140				
Carbon Tetrachloride	20	1.0	20.00	0	99.3	70	130				
Chlorobenzene	20	1.0	20.00	0	97.7	70	130				
Chloroethane	20	2.0	20.00	0	98.7	60	140				
Chloroform	20	1.0	20.00	0	101	70	130				
Chloromethane	20	3.0	20.00	0	105	60	140				
2-Chlorotoluene	10	1.0	20.00	0	9 <u>4</u> 9	70	130				
4-Chlorotoluene	10	1.0	20.00	0	06 N	70	130				
ris-1 2-DCF	21	1.0	20.00	0	105	70	130				
cis-1 3-Dichloronronona	۲ <u>۲</u>	1.0	20.00	0	02 8	70	130				
1 2 Dibromo 3 chloropropano	20	20	20.00	0	102	70	130				
1,2-DINIOITIO-3-CHIOLOPIOPAHE	20	2.0	20.00	U	102	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 10 of 13

WO#: **1710F09**

Released to Imaging: 9/16/2024 1:48:57 PM
Client: R.T. H Project: Lime H	licks Consulta Rock ASAU 1	nts, L7 50	٢D								
Sample ID 100ng lcs	SampT	ype: LC	S4	Tes	tCode: E	PA Method	8260B: VOL	ATILES			
Client ID: BatchQC	Batch	ID: A4	6812	F	RunNo: 46812						
Prep Date:	Analysis D	ate: 1	1/1/2017	ç	SeqNo: 1	492499	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Dibromochloromethane	19	1.0	20.00	0	92.9	70	130				
Dibromomethane	21	1.0	20.00	0	107	70	130				
1,2-Dichlorobenzene	19	1.0	20.00	0	94.4	70	130				
1,3-Dichlorobenzene	19	1.0	20.00	0	94.6	70	130				
1,4-Dichlorobenzene	19	1.0	20.00	0	95.1	67.2	141				
Dichlorodifluoromethane	23	1.0	20.00	0	115	60	140				
1,1-Dichloroethane	21	1.0	20.00	0	104	52.6	157				
1,1-Dichloroethene	20	1.0	20.00	0	100	70	130				
1,2-Dichloropropane	20	1.0	20.00	0	102	63.7	138				
1,3-Dichloropropane	20	1.0	20.00	0	99.0	70	130				
2,2-Dichloropropane	21	2.0	20.00	0	105	70	130				
1,1-Dichloropropene	20	1.0	20.00	0	101	70	130				
Hexachlorobutadiene	18	1.0	20.00	0	88.4	70	130				
2-Hexanone	42	10	40.00	0	104	60	140				
Isopropylbenzene	19	1.0	20.00	0	96.1	70	130				
4-Isopropyltoluene	19	1.0	20.00	0	95.6	70	130				
4-Methyl-2-pentanone	45	10	40.00	0	112	60	140				
Methylene Chloride	21	3.0	20.00	0	104	70	130				
n-Butylbenzene	18	3.0	20.00	0	90.7	70	130				
n-Propylbenzene	19	1.0	20.00	0	94.6	70	130				
sec-Butylbenzene	18	1.0	20.00	0	92.1	70	130				
Styrene	19	1.0	20.00	0	95.1	70	130				
tert-Butylbenzene	19	1.0	20.00	0	92.7	70	130				
1,1,1,2-Tetrachloroethane	19	1.0	20.00	0	94.6	70	130				
1,1,2,2-Tetrachloroethane	22	2.0	20.00	0	108	65.9	133				
Tetrachloroethene (PCE)	20	1.0	20.00	0	100	70	130				
trans-1,2-DCE	20	1.0	20.00	0	100	70	130				
trans-1,3-Dichloropropene	18	1.0	20.00	0	91.2	70	130				
1,2,3-Trichlorobenzene	19	1.0	20.00	0	94.9	70	130				
1,2,4-Trichlorobenzene	19	1.0	20.00	0	92.5	70	130				
1,1,1-Trichloroethane	20	1.0	20.00	0	98.6	70	130				
1,1,2-Trichloroethane	20	1.0	20.00	0	99.2	70	130				
Trichloroethene (TCE)	20	1.0	20.00	0	99.8	70	130				
Trichlorofluoromethane	21	1.0	20.00	0	104	70	130				
1,2,3-Trichloropropane	21	2.0	20.00	0	106	69.7	129				
Vinyl chloride	20	1.0	20.00	0	99.6	70	130				
Xylenes, Total	58	1.5	60.00	0	95.9	70	130				
Surr: 1,2-Dichloroethane-d4	9.9		10.00		99.0	70	130				
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130				

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 11 of 13

WO#: 1710F09

02-Nov-17

Client: R.T. H	licks Consult	ants, L7	TD.							
Project: Lime l	Rock ASAU	150								
Sample ID 100ng Ics	SampT	ype: LC	S4	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: BatchQC	Batch	n ID: A4	6812	F	RunNo: 4	6812				
Prep Date:	Analysis D	Date: 1	1/1/2017	S	SeqNo: 1	492499	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.8		10.00		98.2	70	130			
Sample ID rb	SampT	ype: MI	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: A4	6812	F	RunNo: 4	6812				
Prep Date:	Analysis D	Date: 1	1/1/2017	S	SeqNo: 1	492500	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Page 12 of 13

Client: R.T. H Project: Lime F	licks Consulta	ants, LT 150	Ď										
Sample ID rb	SampT	ype: ME	BLK	TestCode: EPA Method 8260B: VOLATILES									
Client ID: PBW	Batch	n ID: A4	6812	F	RunNo: 4	6812							
Prep Date:	Analysis D	ate: 11	/1/2017	5	SeqNo: 1	492500	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
1,4-Dichlorobenzene	ND	1.0											
Dichlorodifluoromethane	ND	1.0											
1,1-Dichloroethane	ND	1.0											
1,1-Dichloroethene	ND	1.0											
1,2-Dichloropropane	ND	1.0											
1,3-Dichloropropane	ND	1.0											
2,2-Dichloropropane	ND	2.0											
1,1-Dichloropropene	ND	1.0											
Hexachlorobutadiene	ND	1.0											
2-Hexanone	ND	10											
Isopropylbenzene	ND	1.0											
4-Isopropyltoluene	ND	1.0											
4-Methyl-2-pentanone	ND	10											
Methylene Chloride	ND	3.0											
n-Butylbenzene	ND	3.0											
n-Propylbenzene	ND	1.0											
sec-Butylbenzene	ND	1.0											
Styrene	ND	1.0											
tert-Butylbenzene	ND	1.0											
1 1 1 2-Tetrachloroethane	ND	1.0											
1 1 2 2-Tetrachloroethane	ND	2.0											
Tetrachloroethene (PCF)	ND	1.0											
trans_1 2-DCF	ND	1.0											
trans-1,2-DCE	ND	1.0											
1 2 3 Trichlorobonzono	ND	1.0											
	ND	1.0											
1 1 1 Trichloroethane	ND	1.0											
1,1,1-Trichloroethane		1.0											
		1.0											
		1.0											
		2.0											
1,2,3-munioropropane		2.0											
Viriyi chiolide Vulopos Total		1.0											
Ayieries, Tulai		1.5	10.00		100	70	100						
	10		10.00		102	70	130						
	9.8		10.00		98.3	70	130						
	10		10.00		105	70	130						
Suit: Toluene-08	9.6		10.00		95.8	70	130						

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710F09

02-Nov-17

WO#:

Page 13 of 13

.

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albua TEL: 505-345-3975 I Website: www.hal	Analysis La 4901 Hav querque, N. FAX: 505-3 lenvironme	boratory vkins NE M 87109 S 45-4107 ntal.com	amı	ole Log-In Ci	neck List
Client Name: RT HICKS	Work Order Number:	1710F09			RcptNo:	1
Received By: Richie Eriacho	10/26/2017 10:00:00 AM	M	12	- <	×	
Completed By: Ashley Gallegos	10/27/2017 4:03:35 PM	ļ	A	-		
Reviewed By: SRC 10/301	17			1		
Chain of Custody						
1. Custody seals intact on sample bottles?		Yes 🗌	No		Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗹	No		Not Present	
3. How was the sample delivered?		<u>Courier</u>				
<u>Log In</u>						
4. Was an attempt made to cool the samples	\$?	Yes 🗹	No		NA 🗔	
5. Were all samples received at a temperatur	re of >0° C to 6.0°C	Yes 🗹	No		NA 🗌	
6. Sample(s) in proper container(s)?		Yes 🔽	No			
7. Sufficient sample volume for indicated test	(s)?	Yes 🗹	No			
8. Are samples (except VOA and ONG) prope	erly preserved?	Yes 🔽	No			
9. Was preservative added to bottles?		Yes 🗌	No	\checkmark	NA	
10.VOA vials have zero headspace?		Yes 🗹	No		No VOA Vials 🗌	
11. Were any sample containers received brok	ken?	Yes X	(amounts		# of preserved	
12. Does paperwork match bottie labels?		Yes 🗹	No		for pH:	>12 uplace noted)
13 Are matrices correctly identified on Chain of	of Custody?	Ves 🔽	No		Adjusted?	>12 unless hoteu)
14. Is it clear what analyses were requested?		Yes 🗹	No			
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No		Checked by:	
Special Handling (if applicable)						
16. Was client notified of all discrepancies with	this order?	Yes 🗌	No		NA 🗹	
Person Notified: By Whom: Regarding: Client Instructions:	Date Via:] eMail	Phone	Fax	☐ In Person	
17. Additional remarks: VOA from	lach sample +	ms le	ceived br	oker	trom being	frozen
18. <u>Cooler Information</u> <u>Cooler No</u> Temp ^o C Condition S 1 1.4 Good Ye	Seal Intact Seal No S es	eal Date	Signed E	ly	V	1115 R 10/30/17

Page 1 of 1

		www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request		5-Bid/sr 2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-)))))))))))))))))))	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TPH Method TPH Method TPH (Method TPH (Method TPH (Method EDB (Method S310 (PNA d S310 (PNA d S310 (PNA d S310 (PNA d S310 (Semi- ines) 0728 S200 (Semi- d S200 (Semi-	×	×	×	×	x				rks: Email to R@rthicksconsult.com, kristin, mike			sibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	X Standard D Rush	Project Name:	Lime Rock - ASAU #150	Project #.		Project Manager:	Krietin Done (575) 207 6755 ((8021	Sampler: M. Stubblefield	On loe K Yes INO +	Sample Temperature $1.2 \pm 0.2 \pm 1.4$	Container Preservativ HEAL No Type and # e Type	3 VOA HgCl, ice - 00 /	1 HDP ice	3 VOA HgCl, ice ~003	1 HDP ice	3 VOA HgCl, ice -003	1 HDP ice			Received by: Date Time Rel	10/2 10/2 10/2	Received by: Date Time	contracted to other accredited laboratories. This serves as notice of this providence of this providence of the providen
Custody Record	Consultants	Rio Grande Blvd NW	e F-142	iquerque, NM 87104) 266-5004	rthicksconsult.com	noitebile/(Eul) / Eul		ther		trix Sample Request ID	er MW-2	er MW-2	er MW-3	sr MW-3	er MW-4	er MW-4			l quished by:	e Studdied	juished by:	submitted to Hall Environmental may be subc
Chain-of-C	Client: R. T. Hicks C	901	Mailing Address: Suite	Albu	Phone #: (505)	email or Fax#: R@r	QA/QC Package: Distanciand	Accreditation:		🗆 EDD (Type)	of the Mat	× \0/23/// //53 wate	1/123/17 //S3 wate	8 10 3/17 b95 2 wate	× 11/28/17 0953 wate	0/23/17 1046 wate	10/23/1 1046 wate			Date: Time: Reling	10/25/2019 2:15 A M.D.	Date: Time: Reling	If necessary, samples

Appendix B

Hydrocarbon Characterization Sampling Summary and Laboratory Reports

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Appendix B – Hydrocarbon Characterization Sampling

As requested by NMOCD at a meeting on August 23, 2017, samples were collected from the top of the water column as a means to characterize the extent and magnitude of hydrocarbon constituents. As specified by NMOCD and in accordance with the submitted plan, these samples were collected on September 11, 2017 using a bailer. Results of this characterization event were reported to NMOCD on October 9, 2017.

For further characterization and comparison, we informed NMOCD that after collecting the last quarterly samples, we would then collect samples from the top of the water column using a low-flow pump. During a phone discussion, Mr. Billings requested the full spectrum of Method 8260B analysis for volatiles and also TPH 8015B analysis of the characterization samples. A summary of the two characterization sampling events using the two collection methods are shown in Table 2 below and associated laboratory reports are in Appendix B. As mentioned in the laboratory report for the October 24 event, samples were collected for 8260 and 8015 analyses but the transport cooler was packed too tightly with ice and many of the containers arrived broken. The laboratory informed us that DRO and MRO analyses were not possible and GRO was only available for MW-3 and MW-4 samples.

Well ID	Method	Date	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Total BTEX	Naph- thalene	GRO* mg/L	Observations
MW-2	bailer	9/11/2017	370	ND	51	66	487	not analyzed	not analyzed	Sheen; film on bailer
MW-2	low flow pump	10/24/2017	N	o analyses; S	Sample conte	ainers arrive	d at lab froz	en and broke	en	Collected from top of column after low-flow sampling of well from middle of column
MW-3	bailer	9/11/2017	41	ND	ND	ND	41	not analyzed	not analyzed	Turbid at 1st attempt; waited 2 hrs, sample is silty
MW-3	low flow pump	10/24/2017	29	ND	ND	ND	not analyzed	ND	0.067	Collected from top of column after low-flow sampling of well from middle of column
MW-4	bailer	9/11/2017	3300	ND	470	ND	3770	not analyzed	not analyzed	Clear
MW-4	low flow pump	10/24/2017	300	ND	86	ND	not analyzed	56	2.5	Collected from top of column after low-flow sampling of well from middle of column

Hydrocarbon Characterization Samples from Top of Water Column

all concentrations are µg/L except GRO

* GRO, DRO, MRO analyses requested but containers arrived frozen and broken

Table 2

These comparative analyses suggest that low-flow sampling delivers considerably lower concentrations than those collected using a bailer; however, both methods confirm that MW-3 and MW-4 exceed the WQCC benzene standard.

September 21, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150 Release

OrderNo.: 1709837

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 9/14/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

9/20/2017 8:04:00 AM

B45748

CLIENT: R.T. H Project: Lime F	icks Consultants, LTD Rock ASAU 150 Release	Client Sample ID: MW-2 Collection Date: 9/11/2017 10:40:00 AM											
Lab ID: 17098	37-001	Matrix: AQUEOUS Received Date: 9/14/2017 9:42:00											
Analyses		Result	PQL	Qual Units	DF	Date Analyzed	Batch						
EPA METHOD 82	260: VOLATILES SHORT	LIST				Analysi	RAA						
Benzene		370	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748						
Toluene		ND	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748						
Ethylbenzene		51	5.0	µg/L	10	9/20/2017 8:04:00 AM	B45748						
Xylenes, Total		66	10	µg/L	10	9/20/2017 8:04:00 AM	B45748						
Surr: 1,2-Dichle	proethane-d4	90.3	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748						
Surr: 4-Bromof	luorobenzene	95.8	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748						
Surr: Dibromof	luoromethane	96.7	70-130	%Rec	10	9/20/2017 8:04:00 AM	B45748						

70-130

%Rec

10

90.4

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*
-------------	---

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Surr: Toluene-d8

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

9/20/2017 8:28:00 AM B45748

CLIENT: Project:	R.T. Hicks Consultants, LTD Lime Rock ASAU 150 Release	client Sample ID: MW-3 Collection Date: 9/11/2017 12:08:00 PM											
Lab ID:	1709837-002	Matrix:	AQUEOUS	Received	Date: 9/1	4/2017 9:42:00 AM							
Analyses		Result	PQL Qual	Units	DF	Date Analyzed	Batch						
EPA MET	HOD 8260: VOLATILES SHORT	LIST				Analyst	RAA						
Benzene		41	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748						
Toluene		ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748						
Ethylben	zene	ND	1.0	µg/L	1	9/20/2017 8:28:00 AM	B45748						
Xylenes,	Total	ND	1.5	µg/L	1	9/20/2017 8:28:00 AM	B45748						
Surr: 1	I,2-Dichloroethane-d4	91.6	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748						
Surr: 4	1-Bromofluorobenzene	96.1	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748						
Surr: [Dibromofluoromethane	96.9	70-130	%Rec	1	9/20/2017 8:28:00 AM	B45748						

70-130

%Rec

1

91.1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Project:

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD

1709837-003

Lime Rock ASAU 150 Release

Analytical Report
Lab Order 1709837

Date Reported: 9/21/2017

Client Sample ID: MW-4 Collection Date: 9/11/2017 11:28:00 AM

Received Date: 9/14/2017 9:42:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst	: RAA
Benzene	3300	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765
Toluene	ND	1.0	µg/L	1	9/20/2017 8:52:00 AM	B45748
Ethylbenzene	470	100	µg/L	100	9/20/2017 8:01:00 PM	SL45765
Xylenes, Total	ND	1.5	µg/L	1	9/20/2017 8:52:00 AM	B45748
Surr: 1,2-Dichloroethane-d4	97.0	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748
Surr: 4-Bromofluorobenzene	96.5	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748
Surr: Dibromofluoromethane	95.8	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748
Surr: Toluene-d8	89.2	70-130	%Rec	1	9/20/2017 8:52:00 AM	B45748

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Client: R.T. H	icks Consult	ants, L'I	D							
Project: Lime R	ock ASAU	150 Rel	ease							
Sample ID 100ng Ics2	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: LCSW	Batch	h ID: B4	5748	F	RunNo: 4	5748				
Prep Date:	Analysis D	Date: 9/	20/2017	S	SeqNo: 1	453586	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	110	70	130			
Toluene	20	1.0	20.00	0	98.6	70	130			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.6	70	130			
Surr: 4-Bromofluorobenzene	9.6		10.00		95.5	70	130			
Surr: Dibromofluoromethane	9.7		10.00		97.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.0	70	130			
Sample ID rb2	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	h ID: B4	5748	F	RunNo: 4	5748				
Prep Date:	Analysis D	Date: 9/	20/2017	5	SeqNo: 1	453587	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.0		10.00		89.7	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		94.8	70	130			
Surr: Dibromofluoromethane	9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		88.6	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: LCSW	Batch	h ID: SL	.45765	F	RunNo: 45765					
Prep Date:	Analysis D	Date: 9/	20/2017	S	SeqNo: 1	454013	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	9.5		10.00		95.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.0	70	130			
Sample ID rb	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8260: Volatil	es Short L	_ist	
Client ID: PBW	Batch	h ID: SL	.45765	F	RunNo: 4	5765				
Prep Date:	Analysis D	Date: 9/	20/2017	5	SeqNo: 1	454014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Ethylbenzene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.9	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 5

Page 264 of 364

WO#:	1709837

21-Sep-17

Client: H Project: I	R.T. Hicks Consult Lime Rock ASAU	tants, L 150 Re	LTD elease							
Sample ID rb	Samp	Type: N	MBLK	Test	tCode: E	PA Method	8260: Volatile	es Short L	.ist	
Client ID: PBW	Bato	h ID: S	SL45765	R	unNo: 4	5765				
Prep Date:	Analysis I	Date:	9/20/2017	S	eqNo: 1	454014	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenz	ene 9.6		10.00		95.6	70	130			
Surr: Dibromofluorometh	ane 9.6		10.00		96.4	70	130			
Surr: Toluene-d8	8.9		10.00		89.3	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

1709837

21-Sep-17

WO#:

Page 5 of 5

Р Sample pH Not In Range

Released to Imaging: 9/16/2024 1:48:57 PM

•

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental , Albu TEL: 505-345-3975 , Website: www.hal	Analysis Laborat 4901 Hawkins querque, NM 87 FAX: 505-345-4 llenvironmental.c	ory NE 109 Sam j 107 rom	ole Log-In Che	ck List
Client Name: RT HICKS	Work Order Number:	1709837		RcptNo: 1	
Received By: Isaiah Ortiz	9/14/2017 9:42:00 AM		IGht		
Completed By: Ashley Gallegos Reviewed By:	9/15/2017 9:43:33 AM 9/15/17		AJ		
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗹	No 🗋	Not Present	
3. How was the sample delivered?		<u>Courier</u>			
<u>Log In</u>			_	_	
4. Was an attempt made to cool the samples	5?	Yes 🗹	No 🗌	NA 🗌	
5. Were all samples received at a temperatu	re of >0° C to 6.0°C	Yes 🗹	No 🗆	NA 🗌	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated test	t(s)?	Yes 🔽	No 🗀		
8. Are samples (except VOA and ONG) prop	erly preserved?	Yes 🗹	No 🗆		
9. Was preservative added to bottles?		Yes 🗌	No 🔽	NA 🗌	
10.VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials 🗌	
11. Were any sample containers received bro	ken?	Yes 🗀	No 🗹	# of preserved	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗔	for pH: (<2 or >	12 unless noted)
13. Are matrices correctly identified on Chain	of Custody?	Yes 🗹	No 🗆	Adjusted?	
14. Is it clear what analyses were requested?		Yes 🔽	No 🗌		
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies wit	h this order?	Yes 🗌	No 🗆	NA 🗹	
Person Notified: By Whom: Regarding:	Date Via: [🗋 eMail 🛄 F	Phone 🗌 Fax	In Person	
Client Instructions:					
TT AUUUONAI TEMAINS.					
18. <u>Cooler Information</u> <u>Cooler No</u> Temp °C Condition 1 1 1.0 Good Y	Seal Intact Seal No	Seal Date	Signed By		
Page 1 of 1					

	Bubbles (Y or N)	×	
	500 2000		nsult.com
400	(AOV-ime2) 075	8	= cksco
	(AOV) 8093	8	C O H
Rec	esticides / 8082 PCB's	8	mistin
IN ISA	nions (FCDAOs, NOs, POA, SOA)		
	(HAY 10 ANY) UR		lits to
	(1.405 bonteM) BO		Lesu
	(1.814 bottem) Ha		mail
	(IseiOlage) 82108 botteM H9		W
e e e	TEX + MTBE + TPH (Gas only)		narks
	TEX WITBE + TMB's (8021)		Ren
Hone Roll	In. Stubbletia	-001	Date Time
1 Rusi 16: 1/ #/50	ager: Kristin Pope Katatin Pope Katatin Pope ILYes Iperature: Preservativ e Type	11 11	
Project #.	Project Man Sampler, On Ice: Sample Tem Container Type and #	3 von glass	Received try: T.O.J. Received by:
	Level 4 (Full Validation)	W-3 W-4	Bert
	S S	N N N N N N N N N N N N N N N N N N N	A Dy.
	Matrix	910 11 11 11	Relinquishe P3.e C Relinquishe
	Time	ation Sec.	Time: 7-20.4-9 Time:
	Date	11/12	Date: 3 113 /2017 Date:

November 07, 2017

Kristin Pope R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: ASAU 150 Characterization

OrderNo.: 1710E76

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear Kristin Pope:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Project:

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD

1710E76-002

ASAU 150 Characterization

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1710E76

Date Reported: 11/7/2017

Client Sample ID: MW-3 @ 49ft Collection Date: 10/24/2017 9:55:00 AM

Received Date: 10/26/2017 10:00:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	DJF
Gasoline Range Organics (GRO)	0.067	0.050	mg/L	1	11/3/2017 4:53:24 PM	G46875
Surr: BFB	98.1	70-130	%Rec	1	11/3/2017 4:53:24 PM	G46875
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Benzene	29	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Toluene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Ethylbenzene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Naphthalene	ND	2.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
1-Methylnaphthalene	ND	4.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
2-Methylnaphthalene	ND	4.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Acetone	ND	10	μg/L	1	11/3/2017 4:53:24 PM	W46875
Bromobenzene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Bromodichloromethane	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Bromoform	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Bromomethane	ND	3.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
2-Butanone	ND	10	μg/L	1	11/3/2017 4:53:24 PM	W46875
Carbon disulfide	ND	10	μg/L	1	11/3/2017 4:53:24 PM	W46875
Carbon Tetrachloride	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Chlorobenzene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Chloroethane	ND	2.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Chloroform	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Chloromethane	ND	3.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
2-Chlorotoluene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
4-Chlorotoluene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
cis-1,2-DCE	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Dibromochloromethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Dibromomethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,2-Dichlorobenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,3-Dichlorobenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,4-Dichlorobenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Dichlorodifluoromethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1-Dichloroethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1-Dichloroethene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report Lab Order 1710E76

Date Reported: 11/7/2017

CLIENT:R.T. Hicks Consultants, LTDProject:ASAU 150 CharacterizationLab ID:1710E76-002	Matrix:	AQUEOUS	Client Samp Collection Received	ole ID: M Date: 10, Date: 10,	W-3 @ 49ft /24/2017 9:55:00 AM /26/2017 10:00:00 AM	[
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,2-Dichloropropane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,3-Dichloropropane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
2,2-Dichloropropane	ND	2.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
1,1-Dichloropropene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
Hexachlorobutadiene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
2-Hexanone	ND	10	μg/L	1	11/3/2017 4:53:24 PM	W46875
Isopropylbenzene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
4-Isopropyltoluene	ND	1.0	μg/L	1	11/3/2017 4:53:24 PM	W46875
4-Methyl-2-pentanone	ND	10	µg/L	1	11/3/2017 4:53:24 PM	W46875
Methylene Chloride	ND	3.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
n-Butylbenzene	ND	3.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
n-Propylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
sec-Butylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Styrene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
tert-Butylbenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
trans-1,2-DCE	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Trichloroethene (TCE)	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Trichlorofluoromethane	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Vinyl chloride	ND	1.0	µg/L	1	11/3/2017 4:53:24 PM	W46875
Xylenes, Total	ND	1.5	µg/L	1	11/3/2017 4:53:24 PM	W46875
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	11/3/2017 4:53:24 PM	W46875
Surr: 4-Bromofluorobenzene	109	70-130	%Rec	1	11/3/2017 4:53:24 PM	W46875
Surr: Dibromofluoromethane	105	70-130	%Rec	1	11/3/2017 4:53:24 PM	W46875

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

70-130

%Rec

101

- * Value exceeds Maximum Contaminant Level.
 - D Sample Diluted Due to Matrix
 - Н Holding times for preparation or analysis exceeded
 - ND Not Detected at the Reporting Limit
 - PQL Practical Quanitative Limit
 - S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank

1

- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 8 J

11/3/2017 4:53:24 PM

W46875

- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Surr: Toluene-d8

Oualifiers:

Project:

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD

1710E76-003

ASAU 150 Characterization

Hall Environmental Analysis Laboratory, Inc.

Analytical Report
Lab Order 1710E76

Data Danastadu	11/7/2017	,
Date Reported:	11///2017	

Client Sample ID: MW-4 @ 50ft Collection Date: 10/24/2017 10:50:00 AM

Received Date: 10/26/2017 10:00:00 AM

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 8015D: GASOLINE RAM	IGE				Analyst	DJF
Gasoline Range Organics (GRO)	2.5	0.050	mg/L	1	11/3/2017 5:22:29 PM	G46875
Surr: BFB	94.9	70-130	%Rec	1	11/3/2017 5:22:29 PM	G46875
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Benzene	300	20	μg/L	20	11/6/2017 12:38:21 PM	W46900
Toluene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Ethylbenzene	86	20	µg/L	20	11/6/2017 12:38:21 PM	W46900
Methyl tert-butyl ether (MTBE)	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,2,4-Trimethylbenzene	40	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,3,5-Trimethylbenzene	21	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,2-Dichloroethane (EDC)	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,2-Dibromoethane (EDB)	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Naphthalene	56	2.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1-Methylnaphthalene	34	4.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
2-Methylnaphthalene	ND	4.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Acetone	ND	10	μg/L	1	11/3/2017 5:22:29 PM	W46875
Bromobenzene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Bromodichloromethane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Bromoform	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Bromomethane	ND	3.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
2-Butanone	ND	10	μg/L	1	11/3/2017 5:22:29 PM	W46875
Carbon disulfide	ND	10	μg/L	1	11/3/2017 5:22:29 PM	W46875
Carbon Tetrachloride	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Chlorobenzene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Chloroethane	ND	2.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Chloroform	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Chloromethane	ND	3.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
2-Chlorotoluene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
4-Chlorotoluene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
cis-1,2-DCE	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
cis-1,3-Dichloropropene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,2-Dibromo-3-chloropropane	ND	2.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Dibromochloromethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Dibromomethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,2-Dichlorobenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,3-Dichlorobenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,4-Dichlorobenzene	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
Dichlorodifluoromethane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,1-Dichloroethane	ND	1.0	μg/L	1	11/3/2017 5:22:29 PM	W46875
1,1-Dichloroethene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Oualifiers:

Analytical Report
Lab Order 1710E76

Date Reported: 11/7/2017

11/3/2017 5:22:29 PM

1

W46875

CLIENT: R T Hicks Consultants I TD			Client Samn	ole ID• MV	N-4 @ 50ft	
Decional ACAU 150 Characterization				Dote: 104	77 + 3011	r
Project: ASAU 150 Characterization			Conection	Date: 10/	24/2017 10:50:00 AM	
Lab ID: 1710E76-003	Matrix:	AQUEOUS	Received	Date: 10/	26/2017 10:00:00 AM	[
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
1,2-Dichloropropane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,3-Dichloropropane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
2,2-Dichloropropane	ND	2.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1-Dichloropropene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Hexachlorobutadiene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
2-Hexanone	ND	10	µg/L	1	11/3/2017 5:22:29 PM	W46875
Isopropylbenzene	47	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
4-Isopropyltoluene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
4-Methyl-2-pentanone	ND	10	µg/L	1	11/3/2017 5:22:29 PM	W46875
Methylene Chloride	ND	3.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
n-Butylbenzene	ND	3.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
n-Propylbenzene	32	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
sec-Butylbenzene	7.5	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Styrene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
tert-Butylbenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1,1,2-Tetrachloroethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1,2,2-Tetrachloroethane	ND	2.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Tetrachloroethene (PCE)	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
trans-1,2-DCE	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
trans-1,3-Dichloropropene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,2,3-Trichlorobenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,2,4-Trichlorobenzene	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1,1-Trichloroethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,1,2-Trichloroethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Trichloroethene (TCE)	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Trichlorofluoromethane	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
1,2,3-Trichloropropane	ND	2.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Vinyl chloride	ND	1.0	µg/L	1	11/3/2017 5:22:29 PM	W46875
Xylenes, Total	ND	1.5	µg/L	1	11/3/2017 5:22:29 PM	W46875
Surr: 1,2-Dichloroethane-d4	102	70-130	%Rec	1	11/3/2017 5:22:29 PM	W46875
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	11/3/2017 5:22:29 PM	W46875
Surr: Dibromofluoromethane	99.9	70-130	%Rec	1	11/3/2017 5:22:29 PM	W46875

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

70-130

%Rec

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 8
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	PQL	Practical Quanitative Limit	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

101

Surr: Toluene-d8

Client: R.T. H Project: ASAU	licks Consulta	ants, LT erizatio	`D n							
Sample ID rb	SampT	ype: ME	BLK	Tes	stCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ייי חור W 4	16875	F	RunNo 4	16875				
Prep Date:	Analysis D	ate: 11	/3/2017	:	SeqNo: 1	495595	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
,3,5-Trimethylbenzene	ND	1.0								
I,2-Dichloroethane (EDC)	ND	1.0								
I,2-Dibromoethane (EDB)	ND	1.0								
Vaphthalene	ND	2.0								
I-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
P-Chlorotoluene	ND	1.0								
I-Chlorotoluene	ND	1.0								
ris-1 2-DCF	ND	1.0								
ris-1 3-Dichloropropene	ND	1.0								
2-Dibromo-3-chloropropane	ND	2.0								
)ibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
2-Dichlorobenzene	ND	1.0								
3-Dichlorobenzene	ND	1.0								
4-Dichlorobenzene		1.0								
Jichlorodifluoromethane		1.0								
1-Dichloroethane		1.0								
1 1-Dichloroethene		1.0								
1 2-Dichloronronane		1.0								
		1.0								
		1.0								
.,z-Dichloropropane	ND	2.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710E76

07-Nov-17

WO#:

Page 5 of 8

Client:

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

R.T. Hicks Consultants, LTD

Project: ASA	U 150 Charact	erizatio	n							
Sample ID rb	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	n ID: W4	46875	F	RunNo: 4	46875				
Prep Date:	Analysis D	ate: 1	1/3/2017	S	SeqNo: 1	495595	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butvlbenzene	ND	1.0								
1.1.1.2-Tetrachloroethane	ND	1.0								
1.1.2.2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCF)	ND	1.0								
trans-1 2-DCF	ND	1.0								
trans-1 3-Dichloropropene	ND	1.0								
1 2 3-Trichlorobenzene	ND	1.0								
1.2.4 Trichlorobenzene		1.0								
1,2,4-Trichloroothano		1.0								
1,1,1-Trichloroethane		1.0								
Trichloroothono (TCE)		1.0								
		1.0								
1.2.2 Trichloronronano	ND	1.0								
1,2,3-Tricnioropropane	ND	2.0								
Vinyi chionde	ND	1.0								
Xylenes, Total	ND	1.5	40.00				100			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		106	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	10		10.00		100	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: W4	46875	F	RunNo: 4	46875				
Prep Date:	Analysis D	ate: 1	1/3/2017	S	SeqNo: 1	495597	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.8	70	130			
Toluene	20	1.0	20.00	0	102	70	130			
Chlorobenzene	21	1.0	20.00	0	105	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710E76

07-Nov-17

WO#:

Page 6 of 8

Client: R.T. H	icks Consult	ants, LT	D							
Project: ASAU	150 Charact	erizatio	n							
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	h ID: W4	46875	F	aunNo: 4	6875				
Prep Date:	Analysis D	Date: 11	1/3/2017	5	SeqNo: 1	495597	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	23	1.0	20.00	0	114	70	130			
Trichloroethene (TCE)	18	1.0	20.00	0	91.7	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130			
Surr: Dibromofluoromethane	10		10.00		104	70	130			
Surr: Toluene-d8	10		10.00		104	70	130			
Sample ID rb	ample ID rb SampType: MBLK TestCode: EPA Method 8260B: VOLATILES									
Client ID: PBW	Batch	h ID: W4	46900	F	RunNo: 4	6900				
Prep Date:	Analysis D	Date: 11	1/6/2017	5	SeqNo: 1	496555	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Ethylbenzene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.5		10.00		94.8	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		108	70	130			
Surr: Dibromofluoromethane	9.7		10.00		96.8	70	130			
Surr: Toluene-d8	10		10.00		102	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	h ID: W4	46900	F	RunNo: 4	6900				
Prep Date:	Analysis D	Date: 11	1/6/2017	S	SeqNo: 1	496556	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	89.5	70	130			
Surr: 1,2-Dichloroethane-d4	9.3		10.00		92.6	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		105	70	130			
Surr: Dibromofluoromethane	9.4		10.00		93.9	70	130			
Surr: Toluene-d8	9.8		10.00		97.9	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 8

WO#:	1710E76

07-Nov-17

Client:R.T. HiProject:ASAU	cks Consultant 150 Characteri	rs, L7 zatio	TD n								
Sample ID rb	SampTyp	e: MI	BLK	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e		
Client ID: PBW	Batch II): G 4	6875	R	RunNo: 4	6875					
Prep Date:	Analysis Date	Analysis Date: 11/3/2017 SeqNo: 1495610 Units: mg/L									
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO) Surr: BFB	ND (9.5	0.050	10.00		95.1	70	130				
Sample ID 2.5ug gro Ics	SampTyp	e: LC	s	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e		
Client ID: LCSW	Batch II): G 4	6875	R	RunNo: 4	6875					
Prep Date:	Analysis Date	e: 1	1/3/2017	S	SeqNo: 1	495611	Units: mg/L				
Analyte	Result I	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	0.54 (0.050	0.5000	0	108	70	130				
Surr: BFB	9.7		10.00		96.6	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1710E76

07-Nov-17

WO#:

Page 8 of 8

Received by OCD: 9/16/2024 1:47:30 PM

•

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Holl Environmental Analysis Labor 4901 Hawki Albuquerque, NM 8 7115 505-345-3975 FAX: 505-345- Websue: www kallenvironmanta	alon; 15 NE 7109 Sam 4107 I com	ple Log-In Check List
Client Name. RT HICKS V	Vork Order Number: 1710E76		ReptNo: 1
Received By: Richie Eriacho 10/	26/2017 10:00:00 AM	14-6	
Completed By: Ashley Gallegos 10/	27/2017 12:45:56 PM	A	
leviewed By: IMO 10/1	12/17	ų	
hain of Custody			
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present 🗹
is Chain of Custody complete?	Yes 🔽	No	Nol Fresent
How was the sample delivered?	Courier		
<u>oa In</u>			
Was an attempt made to cool the samples?	Yes 🗹	No.	NA 🗔
. Were all samples received at a temperature of	>0° C to 6.0°C Yes 🗹		
Sample(s) in proper container(s)?	Yes M	No 🗔	
. Sufficient sample volume for indicated test(s)?	Yes 🗌	No 🗹	
Are samples (except VOA and ONG) property pr	eserved? Yes M	No 🗌	
Was preservative added to bottles?	Yes 🗔	No 🗹	NA 🗔
0.VOA vials have zero headspace?	Yes 🗹		No VOA Vials
, Ware any sample containers received broken?	Yes 🗔	Na 🔽	a second a
			# of preserved bottles checked
Does paperwork match bottle labels?	Yes M	No 🖃	tor pH: (<2 or >12 unless noter
Are matrices correctly identified on Chain of Cus	tody? Yes V	No	Adjusted?
Is it clear what analyses were requested?	Yes V	No	
). Were all ho ding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 🗔	Checked by:
6. Was client notified of all discrepancies with this of	order? Yes 🗌	No	NA 🗹
Person Notified:	Date		
By Whom	Via: CeMail C	Phone E Fax	In Person
Regarding:			
Client Instructions:			
. Additional remarks:			
3. Cooler Information	The Design of some set	1	
Copler No Temp*C Condition Seal in	tact Seal No Seal Date	Signed By	
1.4 Good Yes			

Clarint Clarint <t< th=""><th></th><th>A REAL PROPERTY AND A REAL</th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th>1</th><th>2</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		A REAL PROPERTY AND A REAL						-		1	2						
Bol Rec Grantee End NW Project Name Methallenvironmentation Milling Address: Suite F.142 Absuratee End NW Absurate End NW Absuratee End NW Project Name Absuratee End NW Absurate End NW Absuratee End NW Project Name Absuratee End NW Project Name Absurate End NW Project Name Absuratee End NW Project Name Absuratee End NW Project Name Absuratee Name Absurate Absuratee End NW Project Name Project Name Absurate Data Project Name Project Name Project Name Absurate Data The Millin Project Name Project Name Project Name Absurate Data The Millin Project Name Project Name Project Name Absurate Name NNV-2 B S 3 1 1 Annow No Absurate NNV-2 B S 3 1 1 Annow No No No Absurate NNV-2 B S 3 1 1 Annow No No No No No <t< th=""><th>Client: R.</th><th>T. Hicks C</th><th>Const</th><th>ultants</th><th>XStandard</th><th>C Rush</th><th></th><th>Π</th><th>Y</th><th></th><th></th><th>,</th><th>v</th><th>5</th><th>alo</th><th>D L C</th><th>i à</th></t<>	Client: R.	T. Hicks C	Const	ultants	X Standard	C Rush		Π	Y			,	v	5	alo	D L C	i à
Mailling Address Saule F-142 ASNU #150 CHARACTERIZATION 4010 Heriorities (M. 67104) Flue Abbrowendue MIL 67104 Propert Marager Abbrowendue MIL 67104 Propert Marager Flue Exercise Saule F-142 AsNU #150 CHARACTERIZATION Flue Flue Abbrowendue MIL 67104 Propert Marager Flue Exercise Saule F-142 Abbrowendue MIL 67104 Propert Marager Abbrowendue MIL 67104 Propert Marager Abbrowendue MIL 7504 Bartel Mile Mirkin Sample Request ID Contrainer Marades Regener Abbrowendue MIL 7005 Abbrowendue MIL 7005 Abbrowendue Mile Contrainer Mile Minition 2000 Sample Request ID Contrainer Marades Regener Abbrowendue Mile Time Mile Mile Mile Mile Mile Mile Mile Mile		106	Rio C	Srande Blvd NW	Project Nam	a)			a	1	ed.ww	lenvin	Domen	tal co	5		
Altrouendue MM 67104 Altrouendue MM 67104 Tel. 565-365-5004 Tel. 565-365-5004 Amole #. (667) 365-5004 Free Regittine comments Free Regittine comments Free Regittine comments Amole #. (667) 365-5004 Free Regittine comments Free Regittine comments Free Regittine comments Free Regittine comments Amole #. (67) 365-5004 Free Regittine comments Kistingtine Kistingtine Free Register	Mailing Add	ess: Suite	e F-1	42	ASAU #150	CHARACTER	NOLLATION		4901 H	lawkin	NE	Albu	dueran	NN at	A 87109		
Prime # (EG) 265-5004 Prime # (EG) 265-5004 Prime # (EG) 265-5004 Prime # (EG) 265-5004 Amontal common		Albuc	uanbr	que, NM 87104	Project #				Tel. 5(05-345	-3975	Fa	x 505	-345-	4107		
Project Manager: Project Manager: And Bubbles (Y or N) CANCC Package Advice Package Advice Package CANCE Package Advice Package Advice Package Date Time Advice Package Advice Package MWY 2 @ 5/3 Mater MWY 2 @ 5/3 Advice Package MWY 2 @ 5/3 Mater MWY 2 @ 5/3 Advice Package MWY 2 @ 5/3 Mater MWY 2 @ 5/3 Advice Package MWY 2 @ 5/3 Mater MWY 2 @ 5/3 Advice Package	Phone #.	(505)	5) 266	5-5004							đ	nalys	is Req	uest			
Outoc Paskage Outoc Paskage Across Paskage Concorditation: Across Paskage Across Postage Across Paskage Across Postage Across Paskage Across Postage Across Paskage Across Postage Across Paskage Date Time Matrix Date Time Matrix Sampler, M. Subbler (S15) 302-6756 Sampler, M. Subpler (S15) 302-6756 Sampler, M. Subpler (S15) 302-6756 Across Postage Mater MWV2 (B, S, A) MMV2 (B, S, A) MMV4 (B, S)	email or Fax	#. R@n	rthick	sconsult.com	Project Mana	1ger.		()	(jəs (Kiu	D	_		(Tr				
Restandid Level 4 Full Validation Kistin Pope (575) 302-6756 Kistin Pope (575) 302-6756 Accondition: Bampler: Mistin Pope (575) 302-6756 Mistin Pope (575) 302-6756 Accondition: Bampler: Mistin Pope (575) 302-6756 Mistin Pope (575) 302-6756 Accondition: Bampler: Mistin Pope (575) 302-6756 Mistin Pope (575) 302-6756 Accondition: Bampler: Mistin Pope (575) 302-6756 Mistin Pope (575) 302-6756 Accondition: Contrainer Preservativ HEAL Mistin Pope (575) 302-6756 Accondition: Mixel & Mixel Nicolopicic Poic Poic <t< td=""><td>QA/QC Packa</td><td>ge</td><td></td><td></td><td></td><td></td><td></td><td>208</td><td>o se</td><td>YWI</td><td>-</td><td>13 0</td><td>5,80</td><td>1</td><td>-</td><td></td><td></td></t<>	QA/QC Packa	ge						208	o se	YWI	-	13 0	5,80	1	-		
Date Time Mitthefield Date Time Matrix Sample: Mitting Sample: Mitting Sample: Mitting Sample: Sample: Mitting Sample: Container Freeserontiv Mitting Sample: Mitting Sample: Mitting Sample: Mitting Sample: Mitting Sample: Mitting Mitting Sample: Miting Sample: Miting Sample: Miting Miting Sample: Miting Sample: Miting Sample: Miting Miting Sample: Miting Sample: Miting Sample: Miting Miting Miting Sample: Miting Sample: Miting Sample: Miting Miting Miting Sample: Miting Sample: Miting Sample: Miting Miting Miting Sample: Miting Sample: Miting Sample: Miting	X Standard			Level 4 (Full Validation)		Kristin Pope	(575) 302-6755) 5,8	ടജ്ഇ എ പ	,			2 P(51/	_		_
Date Time Matrix Sample Temperature Lot 2.1 (Lot 2.1 (Lo	Accreditation				Sampler:	M. Stubblefie	ple	IWI	98	(1.	(H	OIN	808	ba	-		
Date Time Matrix Sample Request ID Container Preservativ HEAL No. Preservativ HEAL No. Alf Bubbles (Vo. Date Time Marin Sample Request ID Container Preservativ HEAL No. Preservativ Alf Bubbles (Vo. Undarity 255 water MW-2 © 5.3 ft 3 vOA HgCl tee - OO I BTEX + ATTBE BTEX + ATTBE BTEX + ATTBE RCMA 6 Medicate Vol BTEX + ATTBE Alf Bubbles (VOA) Undarity 255 water MW-3 © 4/9 ft atmote MW-3 © 4/9 ft Alf Bubbles (VOA) Undarity 255 water MW-3 © 5/9 ft a vOA HgCl tee - OO I BTEX + ATTBE RCMA 6 ft	D NELAP	O D	Olher		On Ice:	X Yes	ON E	+	510	811	HVc	s	15	1	(\(-	
Date Time Main Sample Request ID Type and # Freework HEAL No. HEAL No. VI2317 203 water MW*2 @ 5/3 ft 3 VOA H0CL toe - OO1 00 11 FEH Metho VI2317 203 water MW*2 @ 5/3 ft 3 VOA H0CL toe - OO1 01 FFH Metho VI2317 203 water MW*2 @ 5/3 ft 3 VOA H0CL toe - OO1 01 FFH Metho VI2317 203 water MW*2 @ 5/3 ft 1 amber 1 amber 1 amber 1 amber VI2317 205 water MW*2 @ 5/3 ft 1 amber 1 amber 1 amber 1 amber VI2317 250 water MW*2 @ 5/3 ft 1 amber 1 amber 1 amber 1 amber NV4 @ 5/0 ft 1 amber 1 amber 1 amber 1 amber 1 amber 1 amber NV4 @ 5/0 ft 1 amber 1 amber 1 amber 1 amber 1 amber 1 amber NV4 @ 5/0 ft 1 amber 1 amber 1 amber 1 amber 1 amber 1 amber NV4 @ 5/0 ft 1 amber 1 amber 1 amber 1 amber 1 amber 1 amber NV4 @ 5/0 ft 1 amber 1 amber 1 amber 1 amber 1 amber 1 amber </td <td>D EDD (Typ</td> <td>(e)</td> <td></td> <td></td> <td>Sample Tem</td> <td>perature: -2</td> <td>47=2.04</td> <td>381</td> <td>8 p</td> <td>po</td> <td>00</td> <td>(B)</td> <td>api:</td> <td>(4</td> <td><u>م</u></td> <td>_</td> <td></td>	D EDD (Typ	(e)			Sample Tem	perature: -2	47=2.04	381	8 p	po	00	(B)	api:	(4	<u>م</u>	_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Date Ti	Mat	trix	Sample Request ID	Container Type and #	Preservativ e Type	HEAL NO.	TIC + X318		TPH (Metho	AN9) 01:58	M B ARDR	o, 1) shoned 18081 Pestic	8260B (VO	ime2) 0728		
Participant MW-2 © 5.3 ft 1 amber ice × <t< td=""><td>N VOIZSIA 12</td><td>03 water</td><td>5</td><td>MW-2@ 53 #</td><td>3 VOA</td><td>HgCl, ice</td><td>100-</td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td></t<>	N VOIZSIA 12	03 water	5	MW-2@ 53 #	3 VOA	HgCl, ice	100-							×			
R MW-3 @ 4/9 ñ 3 VOA HgCl, ice - OO2 I X I X I X I X I X I X I X I X I X I I X <td>torsalt rea</td> <td>23 water</td> <td>L.</td> <td>MW-2@ 53 #</td> <td>1 amber</td> <td>ice</td> <td></td> <td></td> <td>×</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	torsalt rea	23 water	L.	MW-2@ 53 #	1 amber	ice			×								
Structure MW-3 @ 4/9 ft 1 amber ice X <thx< td=""><td>tobelit by</td><td>5 water</td><td>St.</td><td>MW-3@ 49 R</td><td>3 VOA</td><td>HgCl, ice.</td><td>- 002</td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td></td><td></td><td></td></thx<>	tobelit by	5 water	St.	MW-3@ 49 R	3 VOA	HgCl, ice.	- 002							×			
Substrate MW-4 @ 50 ft 3 vOA HgCl, ice - 003 N N X N X N	5 10/4/17/07S	5 water	St.	MW-3@49 A.	1 amber	ice			×			-			-		
Ability or Stor water MW-4 @ 50 1 amber ice X I X I	P 10/23/1/05	o water	2	MW-4@ 50 A	3 VOA	HgCl, ice	-003							×	-		
Date Time Relinquished by Received by Date Time Remarks: Email to R@rthicksconsult.com kristin Date Time Relinquished by Date Time Remarks: Email to R@rthicksconsult.com kristin Date: Time Relinquished by Date Time Remarks: Email to R@rthicksconsult.com kristin Date: Time Relinquished by Date Time Remarks: Email to R@rthicksconsult.com kristin	Korzar V as	water	5	MW-4@50 #	1 amber	ice			×								
Date Titlet Relinquished by Received by Date Time Remarks: Email to R@rthicksconsult.com. kristinmike Date: Time: Relinquished by Received by Date Time Remarks: Email to R@rthicksconsult.com. kristinmike Date: Time: Relinquished by Received by Date Time Remarks: Email to R@rthicksconsult.com. kristinmike Date: Time: Relinquished by: Received by Date Time Remarks: Email to R@rthicksconsult.com. kristinmike										ttt							
Date Time Relimpuished by Received by Date Time Remarks: Email to R@rthicksconsult.com, kristin, mike Date Time Relimpuished by Received by Date Time No PKD But the Free Aunity Shifting y 10/27 Date Time No PKD But the Free Aunity Shifting y 10/27																	
Dates Time: Relinquished by: Received by Bate Time No PKD Bottler Frech dura by Shifting 4/10/27	Date: Time	i Reling.	quished	τάν.	Racewood By		Date Time 10/26/17 /000	Rema 82	tks: L(to)	Email ELL-	to R@	orthicks	Sconsu	IL.com	i, kristir	1m	ike
	Date: Time	Relingu	anished	d by:	Received by		Date Time	e	2 PK	4	4	なな	200 °	lund	y shell	hist	of ials

Released to Imaging: 9/16/2024 1:48:57 PM

Appendix C

LNAPL Analysis and Comparison

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

.

Appendix C – LNAPL Characterization & Comparison

We performed characterization of the floating oil in MW-1 by bailing a sample on October 24 according to the proposal submitted to NMOCD of October 9. The sample was submitted to Laboratory Services of Hobbs for LNAPL analysis. On October 26, Lime Rock collected three samples of crude from the same service line as the ASAU #150 release and submitted those samples to the same laboratory for specific gravity, sulfur percentage, and API gravity analyses. Table 3 summarizes the comparative analyses of these samples and full laboratory reports are located in Appendix C.

					,						Ca	culated b	y R.T. Hick	s Consulta	ints		
Well ID	Sample Date	Total Sulfer wt.%	API Gravity	Specific Gravity	Benzene wt %	Toluene wt %	Ethyl Benzene wt %	Xylenes wt %	BTEX %	Benzene mg/kg	Toluene mg/kg	Ethyl Benzene mg/kg	Xylenes mg/kg	Benzene /BTEX	T/BTEX	E/BTEX	X/BTEX
MW-1	10/24/2017	0.000	39.9	0.8254	0.5737	2.2494	0.5931	3.1928	6.609	5737	22494	5931	31928	9%	34%	9%	48%
Atoka San Andres #150	10/26/2017	0.811	39.2	0.8289													
Atoka San Andres #152	10/26/2017	0.995	38.8	0.8308						N	ot Analyz	ed					
Atoka San Andres #153	10/26/2017	0.797	39.0	0.8299													

Comparison of product in MW-1 to product in Lime Rock system

Table 3

API gravities and specific gravities of the Lime Rock samples are similar to those of the MW-1 LNAPL. When sulfur percentage is compared amongst the samples, sulfur in the MW-1 LNAPL is noticeably absent. No further analysis is planned.

www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240

Total Sulfur in Crude

Lime Rock Resources Attention: Jerry Smith 1111 Bagby Street, Suite 4700A Houston, Texas 77002

10/26/17

	Total Sulfur	API Gravity	Specific Gravity
Atoka San Andres #150	0.811 wt.%	39.2	0.8289
Atoka San Andres #152	0.995 wt.%	38.8	0.8308
Atoka San Andres #153	0.797 wt.%	39.0	0.8299

Test Method ASTM D4294 Sulfur Test Method ASTM D287 API Gravity

.

www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240 SUMMARY OF CHROMATOGRAPHIC ANALYSIS

COMPANY:				JOB #:	1710005
SAMPLE ID:	CRUDE OIL			SAMPLE #:	1710005-01
SAMPLE TYPE:	SPOT			DATE ON:	
STATION:	ASAU #150			DATE OFF:	
SAMPLE PRESS.,psig:	AMBIENT			TIME ON:	
SAMPLE TEMPERATURE, F	AMBIENT			TIME OFF:	
ANALYSIS DATE:	10/24/2017			SAMPLED BY	: CLIENT
ANALYSIS COMMENTS:				ANALYST:	JAMES R. PRITCHARD
COMPONENT	MOLE %	WEIGHT %	VOLUME %	CALCULAT	ED PARAMETERS
HYDROGEN SULFIDE	0.0000	0.0000	0.0000	TOTAL ANA	ALYSIS SUMMARY
NITROGEN	0.0000	0.0000	0.0000		
OXYGEN	0.0000	0.0000	0.0000	AVE MOLE WT	159.5593
METHANE	0.0000	0.0000	0.0000	SP GRAV, 60F/60	0.8254
CARBON DIOXIDE	0.0000	0.0000	0.0000	API GRAVITY	39.9
ETHANE	0.0005	0.0001	0.0002	REL DENS, AIR=1	5.5090
PROPANE	0.0057	0.0016	0.0024	VAPOR PRESS PSIA	3.83
ISO-BUTANE	0.0935	0.0341	0.0465		
N-BUTANE	1.6601	0.6047	0.7944	HEXANES	PLUS SUMMARY
ISO-PENTANE	4.6758	2.1143	2.5974		
N-PENTANE (C-5)	5.0364	2.2773	2.7687	AVE MOLE WT	171.1664
2,2 DIMETHYL BUTANE	0.6106	0.3298	0.3873	SP GRAV, 60F/60	0.8518
CYCLOPENTANE	0.1158	0.0509	0.0514	API GRAVITY	34.6
2-METHYLPENTANE	3.0578	1.6516	1.9266	LBS/GAL	6.815
3-METHYLPENTANE	1.5775	0.8520	0.9773	REL DENS, AIR=1	5.9097
N-HEXANE (C-6)	2.2729	1.2276	1.4191	VAPOR PRESS PSIA	1.30
METHYLCYCLOPENTANES	1.9131	1.0091	1.0270		
BENZENE	1.1719	0.5737	0.4986	BTEX	SUMMARY
CYCLOHEXANE	3.2994	1.7403	1.7044		
2-METHYLHEXANE	0.3896	0.2447	0.2752	WT % BENZENE	0.5737
3-METHYLHEXANE	1.2879	0.8088	0.8958	WT % TOLUENE	2.2494
DIMETHYLCYCLOPENTANES	0.5196	0.3198	0.3245	WT % E BENZENE	0.5931
HEPTANES	1.6775	1.0534	1.1744	WT % XYLENES	3.1928
N-HEPTANE (C-7)	1.8477	1.1603	1.2936		
METHYLCYCLOHEXANE	3.3898	2.0431	2.0236	DECANES	PLUS SUMMARY
2-2-4 TRIMETHYLPENTANE	0.5633	0.4033	0.3994		
TOLUENE	3.8953	2.2494	1.9742	AVE MOLE WT	240.8143
OCTANES	4.0178	2.8764	3.1220	SP GRAV, 60F/60	0.9443
N-OCTANE (C-8)	1.4068	1.0071	1.0931	API GRAVITY	18.4
ETHYL BENZENE	0.8914	0.5931	0.5205	LBS/GAL	7.555
P-M-XYLENE	3.5421	2.3569	2.0834	REL DENS, AIR=1	8.3144
O-XYLENE	1.2562	0.8359	0.7249	VAPOR PRESS PSIA	0.01
NONANES	3.9103	3.1433	3.3414		
N-NONANE (C-9)	1.2156	0.9771	1.0387		

ASAU #150	
CRUDE OIL	

				CRUDE OIL F	INGERPRINT
COMPONENT	MOLE %	WEIGHT %	VOLUME %	C-n/C-13 RAT	O SUMMARY
DECANES	4.8375	4.3136	4.5083	C-n	C-n/C-13
N-DECANE (C-10)	2.0498	1.8278	1.9103		
UNDECANES	3.3145	3.2470	3.3465	10.0	3.523
N-UNDECANE (C-11)	0.7495	0.7342	0.7567	11.0	1.415
DODECANES	1.8728	1.9993	2.0379	12.0	1.101
N-DODECANE (C-12)	0.5349	0.5710	0.5820	13.0	1.000
TRIDECANES	1.4069	1.6256	1.6374	14.0	0.912
N-TRIDECANE (C-13)	0.4490	0.5188	0.5226	15.0	0.757
TETRADECANES	1.0049	1.2495	1.2560	16.0	0.602
N-TETRADECANE (C-14)	0.3807	0.4733	0.4758	17.0	0.575
PENTADECANES	0.7394	0.9844	0.9782	18.0	0.458
N-PENTADECANE (C-15)	0.2948	0.3925	0.3900	19.0	0.505
HEXADECANES	0.4035	0.5726	0.5653	20.0	0.380
N-HEXADECANE (C-16)	0.2199	0.3121	0.3081		
HEPTADECANES	0.3733	0.5626	0.5537	BIO-MARKER	R SUMMARY
N-HEPTADECANE (C-17)	0.1980	0.2984	0.2937		
OCTADECANES	0.3563	0.5683	0.5577	Farnesane/C-14	0.128
N-OCTADECANE (C-18)	0.1490	0.2377	0.2333	Pristane/C-17	0.659
NONADECANES	0.1952	0.3285	0.3203	Phytane/C-18	0.679
N-NONADECANE (C-19)	0.1556	0.2619	0.2554		
EICOSANES	0.1232	0.2182	0.2116	Wt. % Sulfur	0.0000
N-EICOSANES (C-20)	0.1112	0.1969	0.1909		
HENEICOSANE + (C-21+)	24.7782	45.9661	43.6223	Gravity,	0.0
TOTALS	100.0000	100.0000	100.0000		

CALCULATED PARAMETERS

www.permianls.com 575.397.3713 2609 W Marland Hobbs NM 88240 SUMMARY OF CHROMATOGRAPHIC ANALYSIS

COMPANY:		JOB #:	1710005
SAMPLE ID:	CRUDE OIL	SAMPLE #:	1710005-01
SAMPLE TYPE:	SPOT	DATE ON:	
STATION:	ASAU #150	DATE OFF:	
SAMPLE PRESS.,psig:	AMBIENT	TIME ON:	
SAMPLE TEMPERATURE, F	AMBIENT	TIME OFF:	
ANALYSIS DATE:	10/24/2017	SAMPLED BY:	CLIENT
ANALYSIS COMMENTS:		ANALYST:	JAMES R. PRITCHARD

TANKS DATA INPUT REPORT

COMPONENT	MOLE %	WEIGHT %	VOLUME %			
				TOTAL ANALYSIS SUMMARY		
CARBON DIOXIDE	0.0000	0.0000	0.0000			
NITROGEN	0.0000	0.0000	0.0000			
METHANE	0.0000	0.0000	0.0000	AVE MOLE WT	159.5593	
ETHANE	0.0005	0.0001	0.0002	SP GRAV, 60F/60	0.8254	
PROPANE	0.0057	0.0016	0.0024	API GRAVITY	39.9	
ISO-BUTANE	0.0935	0.0341	0.0465	REL DENS, AIR=1	5.5090	
N-BUTANE	1.6601	0.6047	0.7944	VAPOR PRESS PSIA	3.83	
ISO-PENTANE	4.6758	2.1143	2.5974	CU FT VAPOR/GAL	18.09	
N-PENTANE	5.0364	2.2773	2.7687			
N-HEXANE	2.2729	1.2276	1.4191			
OTHER HEXANES	10.5742	5.6337	6.0740			
HEPTANES	9.1121	5.6301	5.9871	DECANES PLUS SUMMARY		
OCTANES	5.4246	3.8835	4.2151			
NONANES	5.1259	4.1204	4.3801	AVE MOLE WT	240.8143	
BENZENE	1.1719	0.5737	0.4986	SP GRAV, 60F/60	0.9443	
TOLUENE	3.8953	2.2494	1.9742	API GRAVITY	18.4	
ETHYLBENZENE	0.8914	0.5931	0.5205	LBS/GAL	7.5550	
XYLENES	4.7983	3.1928	2.8083	REL DENS, AIR=1	8.3144	
2,2,4 TRIMETHYLPENTANE	0.5633	0.4033	0.3994	VAPOR PRESS PSIA	0.01	
DECANES PLUS	44.6981	67.4603	65.5140			

100.0000 100.0000 100.0000

CHARACTERISTICS OF STOCK TANK OIL

API GRAVITY @ 60 F	(ASTM D287)	34.7
REID VAPOR PRESSURE, psia	(ASTM D323)	NA
WEIGHT % SULFUR	(ASTM D4294)	NA

TOTAL


```
ASAU #150
```


Appendix E Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Released to Imaging: 9/16/2024 1:48:57 PM

•

Logger: Kristin Pope		Client:			Well ID:					
Drillin	Driller: Atkins Engineering Associates, Inc.		Lime Rock Resources							
	Start Date:	6	6/2017	borenole	ASAU #150 T	runkline Release		MW-2		
	End Date:	6	6/2017		Location:	Sec. 14, T18S, R2	26E			
East	side of Fanr	ning Road, south of	f Artesia, I	NM (Atoka)		32.743127°, -104.34	7963°			
Denth	[[Denth	
(feet)		Description		Lithology	Comments	Well Co	onstru	uction	(feet)	
0.0					0-5 ft			Subsurface vault	0.0	
1.0	1.0								1.0	
3.0 Surface, dark brown soil						neat cement	3.0			
4.0							4.0			
5.0									5.0	
6.0	fine san	d brown 25% fine	aravel		5-10 ft				6.0 7.0	
8.0	poorl	y sorted, sub-round	ded,			8.0				
9.0		0.5-3 cm			9-12 ft core				9.0	
10.0					PID =0.8 ppm				10.0	
12.0					10-1511				12.0	
13.0	Medium sa	and, light brown, 20 dolostone)% brown						13.0	
14.0	4								14.0	
15.0 16.0	Gravel o	oorly corted angular d	ark-oray		15-17 ft				15.0 16.0	
17.0	dolostor	e clasts, 15% silt, pink	-brown						17.0	
18.0	Silt, ligh	nt tan, 50% gravel,	poorly		17-20 ft				18.0	
19.0	sortec	l, sub-rounded, incl dolostone claste	ludes			e.			19.0	
20.0		UNUSIONE URSIS			20-28 ft	C Lis			20.0	
22.0									22.0	
23.0	Gra	vel, moderately sor	ted			5h. 4			23.0	
24.0 25.0	(2.5-5 cm),	moderately rounde	ed, mostly			h, Sc			24.0 25.0	
26.0		dolostone				2-inc			26.0	
27.0									27.0	
28.0					28-35 ft				28.0	
30.0	-				20-33 10				30.0	
31.0	Clay, ta	in, globular (~3 cm)), 40%						31.0	
32.0	gravel, mo	derately sorted, m	oderately						32.0	
34.0		Tourided							33.0	
35.0									35.0	
36.0	Medium cl	ay, pink-brown, soft, 5 ^o	% gravel,		35-37 ft				36.0	
37.0	poorly				37-40 ft				37.0 38.0	
39.0	Coarse	sand, light pink-tan "sugar sand"	, loose,						39.0	
40.0		Sugar Sana			40-41 ft core				40.0	
41.0					40-48 ft			bentonite seal	41.0	
43.0	Medium	n sand, tan, gravel,	poorly						43.0	
44.0	sorted	(2mm-2cm), mode	rately						44.0	
45.0 46.0	l rounded, r	nosuy dark-brown (clasts	LOIOSTONE		hard drilling				45.0 46.0	
47.0		5.5.5.6			45-48 ft; no returns in			2-in. Sch. 40 PVC	47.0	
48.0								0.020 screen	48.0	
49.0 50.0	4				48-53 ft 50 ft core			47-62 ft	49.0 50.0	
51.0	Fine sar	nd, tan, 5% gravel (~2mm)		PID = 14 ppm	51.41 ft			51.0	
52.0]	_	-						52.0	
53.0 54.0					PID = 1.3 ppm	۹			53.0 54.0	
55.0	Clay,	tan, 30% medium s	sand;		wet				55.0	
56.0	mo	เรเ al วง II; Wel 54+	· IL						56.0	
57.0	-						_	12/20 ailian	57.0	
58.0	1							sand pack	59.0	
60.0	1								60.0	
61.0	-								61.0	
62.0 63.0	4						J		62.0 63.0	
					1	00.0				
R.T. Hicks Consultants, Ltd Lime Rock Resources										
901 Rio Grande Blvd NW Suite F-142 Albuquerque, NM 87104					+					
505-266-5004Monitoring Well Log and Well Completion DrawingJune 2017										
i by OC.	Logger:	24 1. Kristin Por	e/Randall I	Hicks	Client:			Well ID:	rag	
--------------------------------------	--------------------------	--	-------------	-------------	---	---------------------	--------	-----------------	--------------	--
Drilling	Driller:	Atkins Enginee	Auger: 8" h	lates, Inc.	Lime Ro Project Name:	ck Resources		┥		
Start Date: 6/27/2017 - 6/30/2017 (r		olugged)	ASAU #150		MW-3					
	End Date:	Re-enter 7/12	and compl	lete 7/14	Location:	Sec. 14, T18S, R	26E	1		
East s	ide of Fann	ing Road, south of	Artesia, N	M (Atoka)		32.743166°, -104.34	47632°			
Depth		Description		Lithology	Comments	Well Co	nstruc	ction	Depth	
					0-7 ft					
1.0					0 m			Subgrade vault	1.0	
2.0					trash at 1-5 ft				2.0	
3.0	Surf	ace dark brown s	oil		(glass, pipe fittings,				3.0	
4.0	Cun		011		tile pieces, etc.)				4.0	
5.0					4-6 ft core				5.0	
7.0					PID =0.0 ppm				7.0	
8.0					7-11 ft				8.0	
9.0	Clay, dark	black-brown, tack	y, some		9-11 ft core				9.0	
10.0		moisture			PID =0.0 ppm				10.0	
11.0					11 10 ft				11.0	
13.0					1 I ⁻ I J IL				12.0	
14.0	Date	o (1 1 cm) of -11	FOLLIE		thin layers of light				14.0	
15.0	Pepple dolostone	s (1+cm) of dark b , hard, poorly-sorte	ed. mod		brown silt w/loose				15.0	
16.0	rounde	d; 30% dark browr	n clay		gravel				16.0	
17.0								Grout	17.0	
18.0								Clout	19.0	
20.0					19-22 ft				20.0	
21.0	Clay, li	ight brown; 40% g	ravel		19-21 ft core				21.0	
22.0					PID =0.1 ppm				22.0	
23.0					22-31 ft 24-26 ft core				23.0	
25.0					PID =0.1 ppm				25.0	
26.0	Silty clay	red-brown 10% s	soft tan						26.0	
27.0		evaporitic lenses							27.0	
20.0					29-31 ft core				20.0	
30.0					PID =0.0 ppm				30.0	
31.0									31.0	
32.0	Dolos	tone, dark brown-g	gray		31-32 ft				32.0	
33.0 34.0	Coarse sa	nd pink-tan, globula	ar sugar		32-33 ft 33-35 ft				33.0 34.0	
35.0	000100 00	sand"	, ougui		PID @ 34 ft = 0.0 ppm				35.0	
36.0					35-40 ft				36.0	
37.0	Gravel (0.6	60-2 cm), unconsol	idated in					l lu alucita al	37.0	
39.0		silty matrix			caused auger to			Bentonite	38.U 39.0	
40.0					get stuck			41.3-35.3	40.0	
41.0	Open hole	to 31 feet, clearing	slough,						41.0	
42.0	at 41 feet v	ery hard drilling, no	o returns,						42.0	
44.0	"caliche" . :	39-44' drilled 30 m	inutes-		32-25 ppm (wroing?)			2" P\/C fluch	44.0	
45.0	1251-1319				·			joint 0.02 size	45.0	
46.0								screen 58.3-	46.0	
47.0	Very ha	rd drilling, "feels" li	ke the					43.3 feet	47.0	
40.0 49.0	caliche fron 2 inches	n 45-53. Will drill (then hard no ret	easy for 1-		Dropped mud packet and water @47' to cause			12/20 silica	48.0 49.0	
50.0	surfac	e. 49-54' = 1535-1	1541		returns and at 50 '			sand from 58.3	50.0	
51.0	5	4-59 = 1544-1548						to 41.3 feet	51.0	
52.0		TD=58.3				-			52.0	
53 feet					Note change in depth				51 feet	
55 feet					State				55 feet	
57 feet	53-59	drilling feels like g	ravel		Good penetration rate				57 feet	
59 feet					but no returns		-		59 feet	
R.T.	Hicks Cons	ultants. Ltd		lim	e Rock Resources	5				
901 Rio (Grande Blvd	NW Suite F-142				·				
Al	buquerque, N	NM 87104	<u> </u>		an and Commission					
	303-266-3	5004	50	DI BORING L	log and Completion			July 2017		

Drilling Method: Start Date: End Date: East side of Fann Depth (feet)	Hollow-Stem Au 7/13/	ger; 8" borehole	Project Name:			
Start Date: End Date: East side of Fani Depth (feet)	7/13/	2017				
End Date: East side of Fani	7/4 4/	ASAU #150 Trunkline Release		MW-4		
Depth	//14/	2017 tesia NM (Δtoka)	Location:	Sec. 14, 1185, R26	0⊑ ∕967°	
Depth (feet)	ing itodu, south of Af	(Cola, INIVI (ALUKA)		<u>52.142103</u> , -104.347		
	Description	Lithology	Comments	Well Con	struction	Depth (feet)
0.0					Subgrade vault	0.0
1.0						1.0
3.0						3.0
4.0 Brown/L	ight Brown sand with	soil,				4.0
5.0 som	ne gravel clsts 1-2 mm		Added mud packet at			5.0
6.0			7 feet to ease drilling			6.0
7.0						7.0
9.0						9.0
10.0						10.0
11.0						11.0
12.0	1. I. J.		7			12.0
13.0 Gravel w	/ith clasts 1/2 inch +/-,	light				13.0
14.0 brown, 15.0 depth -	clasts at 14-19 re 1/2-	1/5				14.0
16.0	inches					16.0
17.0						17.0
18.0						18.0
19.0					Grout	19.0
21.0					Giout	20.0
22.0						22.0
23.0						23.0
24.0						24.0
25.0 26.0 Muddy	returns light brown to	buff				25.0
27.0 color. a	ppears finer grained th	nan				20.0
28.0 at	ove, but hard to tell					28.0
29.0						29.0
30.0						30.0
31.0						31.0
33.0						33.0
34.0						34.0
35.0						35.0
36.0 Darker	brown, muddy returns,	as				36.0
38.0	above					38.0
39.0						39.0
40.0	with algoria 4/4 + 4/0	.ah			Hydrated	40.0
41.0 Gravel	with clasts 1/4 to 1/2 in an above still light bro	icn, own.			Bentonite	41.0
43.0 Gainer II	muddy	·····,			42.0-39.0	43.0
44.0	-					44.0
45.0 poor return	n, sand and gravel. It. I	prown,	Split spoon @ 45'			45.0
46.0 1/2·	1 inch clasts, no odor	,	PID= 60			46.0
48.0 Wet sar	nd, no gravel, med san	d at	Clean hole, no returns		2" PVC flush joint 0.02 size	47.0
49.0 base o	f core, fining upward, t	hin	Split Spooon @ 49'		screen 58.3-	49.0
50.0	bedding, It brown		PID= 5.2		44.8 feet	50.0
51.0					Filter Pack	51.0
52.0 Drilled to	o 60 feet, flowing sand	into			12/20 silica	52.0
4 feet hole obse	rved from pulling out b	pit, no			to 41.3 feet	53 feet
6 feet returns, dr	illed to 64 feet and set	auger	note change of depth			55 feet
8 feet	minimize nowing sand		scaie			57 feet
U feet	Γ					59 feet
R T Hicks Con	sultants I td	Lim	A Rock Resources			
901 Rio Grande Blv	NW Suite F-142	LIII				
	NM 87104					
Albuquerque,	•			July 2017		

Logger: K		K. Pope	Client: Well ID:					
Driller: Atkins		Engineering	Lime Rock Resource	-				
Drilling Method:		Auger	Name: MW-5					
5	End Date:	4/	10/2018					
	End Date:	4/	10/2018	Location:	D 26E	32 7/3100	-10/ 3/8130	
					, K 20L	02.14015	, 104.04010	
Depth		Descrip	41 a.m.	Little e le suu			and a the se	Depth
(feet)		Descrip	tion	Lithology		well Con	npletion	(feet)
0.0				_			Quikrete	0.0
1.0								1.0
2.0				° 2000				2.0
3.0								3.0
4.0	Sand and	l gravel, large cobb	les, brown, dry, 0-9 feet	<u> </u>				4.0
5.0				h				5.0
6.0								6.0
7.0								7.0
8.0								8.0
9.0								9.0
11.0		Clav brown dr	v. 9-14 feet					11.0
12.0		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					12.0
13.0								13.0
14.0								14.0
15.0				°°3080				15.0
16.0	Clay co	mo calicho stroaks	brown dry 14-20 foot					16.0
17.0	Ciay, 501	The calicite streaks,	biowii, uiy, 14-20 ieei	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				17.0
18.0				0000				18.0
19.0							Type i/II Neat	19.0
20.0							Cement	20.0
21.0								21.0
22.0								22.0
23.0								23.0
24.0								24.0
25.0								25.0
26.0	Silty clay	v, slightly tacky, lightly	nt red, dry, 20-34.5 feet	Iry, 20-34.5 feet				26.0
27.0								27.0
20.0								20.0
30.0								30.0
31.0								31.0
32.0								32.0
33.0								33.0
34.0				~				34.0
35.0	Clavevs	ilt with 10% suban	gular cobbles tan dry	° ° ° ° ° °				35.0
36.0	Clayby c	34.5-39	feet	0.00				36.0
37.0								37.0
38.0				<u>2</u>				38.0
39.0				•			Paraid Hala Dlug	39.0
40.0	Coarse "	sugar" quartz sand	, light tan, 10% red clay	0			Daroiu noie Fiug	40.0
41.0 42.0		nodules, dry, 3	39-44 feet	_ _ ^				41.0
43.0				• •				43.0
44.0								44.0
45.0								45.0
46.0				- OVAO				46.0
47.0								47.0
48.0								48.0
49.0							12/20 Silica	49.0
50.0				0000			Sand	50.0
51.0	Sand and	gravel, large cobble	es, prown, dry, 44-59 feet	0400			-	51.0
52.0								52.0
53.0				° BOXO				53.0
54.0								54.0
56.0				or a Ola				56.0
57.0				0000				57.0
58.0								58.0
59.0								59.0
<u>R.T.</u>	. Hicks Con	<u>sultants, Ltd</u>	Lime Roc	k Resources			Plate 5	
901 Rio	Grande Blvc	NW Suite F-142						
A	Ibuquerque,	NM 87104		rilling Log		N.	mbor 2049	
	303-266-	-3004	IVI VV-5 D	LUY		NOV	ember, 2018	
					1			

August 23, 2018

David Hamilton R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150

OrderNo.: 1808A80

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear David Hamilton:

Hall Environmental Analysis Laboratory received 5 sample(s) on 8/15/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report	
Lab Order 1808A80	

Date Reported: 8/23/2018

CLIENT:	R.T. Hicks Consultants, LTD		Client Sample ID: MW-4 @ 52.5ft
Project:	Lime Rock ASAU 150		Collection Date: 8/13/2018 3:22:00 PM
Lab ID:	1808A80-001	Matrix: AQUEOUS	Received Date: 8/15/2018 9:22:00 AM

Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	RAA
Benzene	1200	50	µg/L	50	8/22/2018 4:09:00 PM	SL53645
Toluene	ND	2.5	µg/L	5	8/21/2018 7:50:00 PM	SL53604
Ethylbenzene	260	2.5	µg/L	5	8/21/2018 7:50:00 PM	SL53604
Naphthalene	34	5.0	µg/L	5	8/21/2018 7:50:00 PM	SL53604
1-Methylnaphthalene	18	10	µg/L	5	8/21/2018 7:50:00 PM	SL53604
2-Methylnaphthalene	ND	10	µg/L	5	8/21/2018 7:50:00 PM	SL53604
Xylenes, Total	ND	5.0	µg/L	5	8/21/2018 7:50:00 PM	SL53604
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	5	8/21/2018 7:50:00 PM	SL53604
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	5	8/21/2018 7:50:00 PM	SL53604
Surr: Dibromofluoromethane	98.0	70-130	%Rec	5	8/21/2018 7:50:00 PM	SL53604
Surr: Toluene-d8	97.0	70-130	%Rec	5	8/21/2018 7:50:00 PM	SL53604

- * Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 7 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Ethylbenzene

Naphthalene

Xylenes, Total

1-Methylnaphthalene

2-Methylnaphthalene

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

SL53604

SL53604

SL53604

SL53604

SL53604

SL53604

SL53604

SL53604

SL53604

Analytical Report Lab Order 1808A80

Date Reported: 8/23/2018

8/21/2018 8:14:00 PM

Hall Environmental	Analysis	Laboratory,	Inc.
--------------------	----------	-------------	------

CLIENT:	R.T. Hicks Consultants, LTD	Client Sample ID: MW-4 @ 54.5ft							
Project:	Lime Rock ASAU 150	Collection Date: 8/13/2018 3:25:00 PM							
Lab ID:	1808A80-002	Matrix: AQUEOUS	5	Receiv	ved Dat	e: 8/1	5/2018 9:22:00 AM		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	Batch	
EPA MET	THOD 8260: VOLATILES SHOR	T LIST					Analys	t: RAA	
Benzene)	710	50		µg/L	50	8/22/2018 4:33:00 PM	SL53645	
Toluene		ND	2.5		µg/L	5	8/21/2018 8:14:00 PM	SL53604	

110

16

ND

ND

ND

99.6

105

98.8

96.8

2.5

5.0

10

10

5.0

70-130

70-130

70-130

70-130

µg/L

µg/L

µg/L

µg/L

µg/L

%Rec

%Rec

%Rec

%Rec

5

5

5

5

5

5

5

5

5

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 7 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Toluene

Ethylbenzene

Naphthalene

Xylenes, Total

1-Methylnaphthalene

2-Methylnaphthalene

Surr: Toluene-d8

Surr: 1,2-Dichloroethane-d4

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

SL53604

Analytical Report
Lab Order 1808A80

Date Reported: 8/23/2018

8/21/2018 8:38:00 PM

CLIENT:	R.T. Hicks Consultants, LTD		Clie	ent Sample II	D: M	W-2 @ 55.5ft	
Project:	Lime Rock ASAU 150		C	ollection Dat	e: 8/	13/2018 4:30:00 PM	
Lab ID:	1808A80-003	Matrix: AQUEOU	5 1	Received Dat	e: 8/	15/2018 9:22:00 AM	
Analyses	1	Result	PQL	Qual Units	DF	Date Analyzed	Batch
	THOD 8260: VOLATILES SHOR	LIST				Analys	t: RAA
Benzene	9	290	2.5	µg/L	5	8/21/2018 8:38:00 PM	SL53604

2.5

2.5

5.0

10

10

5.0

70-130

70-130

70-130

70-130

µg/L

µg/L

µg/L

µg/L

µg/L

µg/L

%Rec

%Rec

%Rec

%Rec

5

5

5

5

5

5

5

5

5

5

ND

18

ND

ND

ND

ND

98.4

104

96.1

97.5

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 7
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Project:

Lab ID:

CLIENT: R.T. Hicks Consultants, LTD

1808A80-004

Lime Rock ASAU 150

Analytical Report Lab Order 1808A80

Date Reported: 8/23/2018

Client Sample ID: MW-1 @ 56 ft Collection Date: 8/14/2018 9:40:00 AM Matrix: AQUEOUS Received Date: 8/15/2018 9:22:00 AM

Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT LIST					Analyst	RAA
Benzene	12000	500	µg/L	500	8/22/2018 4:57:00 PM	SL53645
Toluene	22	2.5	µg/L	5	8/21/2018 9:02:00 PM	SL53604
Ethylbenzene	410	2.5	µg/L	5	8/21/2018 9:02:00 PM	SL53604
Naphthalene	89	5.0	µg/L	5	8/21/2018 9:02:00 PM	SL53604
1-Methylnaphthalene	57	10	µg/L	5	8/21/2018 9:02:00 PM	SL53604
2-Methylnaphthalene	44	10	µg/L	5	8/21/2018 9:02:00 PM	SL53604
Xylenes, Total	290	5.0	µg/L	5	8/21/2018 9:02:00 PM	SL53604
Surr: 1,2-Dichloroethane-d4	107	70-130	%Rec	5	8/21/2018 9:02:00 PM	SL53604
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	5	8/21/2018 9:02:00 PM	SL53604
Surr: Dibromofluoromethane	98.5	70-130	%Rec	5	8/21/2018 9:02:00 PM	SL53604
Surr: Toluene-d8	97.4	70-130	%Rec	5	8/21/2018 9:02:00 PM	SL53604

- * Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix D
- Н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 4 of 7 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Surr: Toluene-d8

SL53645

Analytical Report Lab Order 1808A80

Hall I	Environmental	Analysis	Laboratory, Inc.	
--------	---------------	----------	------------------	--

Date Reported: 8/23/2018

8/22/2018 5:22:00 PM

CLIENT: R.T. Hicks Consultants, LTD		Clie	nt Sample II	D: Tr	ip Blank	
Project: Lime Rock ASAU 150		Co	llection Dat	e:		
Lab ID: 1808A80-005	Matrix: AQUEC	DUS R	eceived Dat	e: 8/	15/2018 9:22:00 AM	
Analyses	Result	PQL (Qual Units		Date Analyzed	Batch
EPA METHOD 8260: VOLATILES SHORT	T LIST				Analyst	RAA
Benzene	ND	1.0	µg/L	1	8/22/2018 5:22:00 PM	SL53645
Toluene	ND	1.0	µg/L	1	8/22/2018 5:22:00 PM	SL53645
Ethylbenzene	ND	1.0	µg/L	1	8/22/2018 5:22:00 PM	SL53645
Naphthalene	ND	2.0	µg/L	1	8/22/2018 5:22:00 PM	SL53645
1-Methylnaphthalene	ND	4.0	µg/L	1	8/22/2018 5:22:00 PM	SL53645
2-Methylnaphthalene	ND	4.0	µg/L	1	8/22/2018 5:22:00 PM	SL53645
Xylenes, Total	ND	1.5	µg/L	1	8/22/2018 5:22:00 PM	SL53645
Surr: 1,2-Dichloroethane-d4	106	70-130	%Rec	1	8/22/2018 5:22:00 PM	SL53645
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	8/22/2018 5:22:00 PM	SL53645
Surr: Dibromofluoromethane	101	70-130	%Rec	1	8/22/2018 5:22:00 PM	SL53645

97.9

70-130

%Rec

1

- * Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 5 of 7 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	R.T. Hicks Co	nsultants	, LTD								
Project:	Lime Rock AS	SAU 150									
	1				Tee				o Chort I	int	
		ampiype	. LUS		Tes			ozou: voiauie	es Short L	ist	
Client ID: LCSW		Batch ID:	SL536	604	R	unNo: 5	53604				
Prep Date:	Anal	ysis Date:	8/21/	2018	S	eqNo: 1	767606	Units: µg/L			
Analyte	Re	sult P	QL SF	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		20	1.0	20.00	0	99.5	70	130			
Toluene		19	1.0	20.00	0	95.8	70	130			
Surr: 1,2-Dichloroetha	ne-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobe	enzene	10		10.00		101	70	130			
Surr: Dibromofluorom	ethane	10		10.00		99.6	70	130			
Surr: Toluene-d8		9.7		10.00		97.1	70	130			
Sample ID rb	S	ampType	MBLK	K	Test	Code: E	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW		Batch ID:	SL536	604	R	unNo: 5	3604				
Prep Date:	Anal	ysis Date:	8/21/2	2018	S	eqNo: 1	767607	Units: µg/L			
Analyte	Re	sult P		PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Naphthalene		ND	2.0								
1-Methylnaphthalene		ND	4.0								
2-Methylnaphthalene		ND	4.0								
Xylenes, Total		ND	1.5								
Surr: 1,2-Dichloroetha	ne-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobe	enzene	10		10.00		104	70	130			
Surr: Dibromofluorom	ethane	9.9		10.00		98.8	70	130			
Surr: Toluene-d8		9.7		10.00		96.7	70	130			
Sample ID 100ng	lcs S	ampType	LCS		Test	Code: E	PA Method	8260: Volatile	s Short List %RPD RPDLimit Qual		
Client ID: LCSW		Batch ID:	SL536	645	R	unNo: 5	53645				
Prep Date:	Anal	ysis Date:	8/22/	2018	S	eqNo: 1	769151	Units: µg/L			
Analyte	Re	sult P		PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		20	1.0	20.00	0	98.2	70	130			
Toluene		19	1.0	20.00	0	94.1	70	130			
Surr: 1,2-Dichloroetha	ne-d4	10		10.00		103	70	130			
Surr: 4-Bromofluorobe	enzene	10		10.00		103	70	130			
Surr: Dibromofluorom	ethane	10		10.00		99.6	70	130			
Surr: Toluene-d8		9.7		10.00		96.7	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 6 of 7

WO#: **1808A80**

Released to Imaging: 9/16/2024 1:48:57 PM

Client: F Project: I	R.T. Hicks Consul Lime Rock ASAU	tants, L7 150	ΓD							
Sample ID rb	Samp	туре: М	BLK	Tes	tCode: EF	PA Method	8260: Volatile	es Short L	ist	
Client ID: PBW	Bat	ch ID: SL	.53645	RunNo: 53645						e: EPA Method 8260: Volatiles Short List 5: 53645 5: 1769152 Units: μg/L EC LowLimit HighLimit %RPD RPDLimit Qual 103 70 130 101 70 130 101 70 130 101 70 130 102 70 130
Prep Date:	Analysis	Date: 8	22/2018	S	SeqNo: 17	769152	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane	-d4 10		10.00		103	70	130			
Surr: 4-Bromofluorobenz	ene 10		10.00		101	70	130			
Surr: Dibromofluorometh	ane 10		10.00		101	70	130			
Surr: Toluene-d8	9.6		10.00		96.2	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Practical Quanitative Limit PQL
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

1808A80

23-Aug-18

WO#:

Page 7 of 7

Received by OCD: 9/16/2024 1:47:30 PM

•

HALL ENVII ANAL LABO	RONMENTAL YSIS RATORY	-	Hall Environmental Albi TEL: 505-345-3975 Website: www.ha	Analysis I 4901 Ha iquerque, FAX: 505 llenvironn	aboratory awkins NE NM 87109 -345-4107 iental.com	Sar	nple Log-In C	heck List
Client Name:	RT HICKS		Work Order Number:	1808A8	0		RcptNo:	1
Received By: Completed By: Reviewed By:	Ashley Galla Ashley Galla ENH	egos egos	8/15/2018 9:22:00 AM 8/16/2018 3:57:37 PM 8/17/18	La	A A beled	P	1: JAB	18/17/18
Chain of Cus 1. Is Chain of C 2. How was the	s tody Custody complet a sample delivere	e? ed?		Yes ⊻ <u>Client</u>	N	lo 🗆	Not Present	
<u>Log In</u> 3. Was an atter	npt made to coo	I the samples?		Yes 🗹	N	o 🗆	NA 🗆	
4. Were all sam	ples received at	a temperature o	f >0° C to 6.0°C	Yes 🗹	N	o 🗆	NA 🗆	
5. Sample(s) in	proper containe	r(s)?		Yes 🗹	Ν	o 🗆		
6. Sufficient san	nple volume for i	indicated test(s)?	1	Yes 🔽	N	• 🗆		
7. Are samples ((except VOA and	d ONG) properly	preserved?	Yes 🗹	Ne	b		
8. Was preserva	ative added to bo	ottles?		Yes 🗌	N		NA 🗌	<i>z</i> ,
9. VOA vials hav	ve zero headspa	ce?		Yes 🔽	No	b 🗌	No VOA Vials	118
10. Were any sar	mple containers	received broken'	?	Yes 🗌	N	o 🔽	# of preserved	-SHAN
11. Does paperwo (Note discreps	ork match bottle ancies on chain	labels? of custody)		Yes 🗹	N	b 🗌	for pH:	>12 unless noted)
12. Are matrices of	correctly identifie	ed on Chain of C	ustody?	Yes 🗹	No	» □	Adjusted?	<u>} </u>
13. Is it clear wha	it analyses were	requested?		Yes 🗹	No	∍□	/-TH	7
14. Were all holdi (If no, notify c	ing times able to sustomer for auth	be met? norization.)		Yes 🗹	No	b []	Checked by:	
Special Handi	lina (if applic	cable)						
15. Was client no	otified of all disci	repancies with th	is order?	Yes 🗌	N	o 🗌	NA 🗹	
Person	Notified:		Date					
By Who	om:		Via:] eMail	Phone [Fax	in Person	
Regard	ling:							
Client I	nstructions:			<u></u>				
16. Additional re	marks:							
17. <u>Cooler Infor</u> Cooler No 1	Temp °C 2.1 G	Condition Sea	l Intact Seal No S Present	eal Date	Signe	1 By	ļ	

Page 1 of 1

			ō						(N)	o 人) s∋ldubles (· · · · · · · · · · · · · · · · · · ·				0, david@	
		Ē	M 8710	-4107					()	101	/-imə2) 0728												kristin@	
	<u> </u>	ntal.c	ue, N	5-345	dues			N	XII	<i>a</i> (AOV) 80828	\ge	\boxtimes	X	\ge								com,	
ļ	<u>ז</u> ע		buerq	× 20	s Re	(70	S,80		7808 /	səp	8081 Pesticid												nsult.	
		envire	Albu	ц	alysi				UN 1	SIS	PCRA 8 Met												cksco	
	Į	/.hall	, Ц	975	An				(н∀	'H J	o AN9) 0168												(Brthic	
		, MAN	cins N	45-3((1.4() s p	EDB (Metho												to 2	
		۱ 	Haw	505-3					(1.8	14 P	odteM) H9T	:											imail	
			4901	Tel.		(jəs (Au	ND 25	SB5	וצפ (כ 198 (כ	. = 0													Ч. Ч. Ч. Ч. Ч. Ч. Ч. Ч. Ч. Ч. Ч. Ч. Ч. Ч	
			N			(1,10	1208) s,	8MT +	- 36	BTEX + MTE												emai	
	-		J #150								HEAL No 5 (08 Å 8()	100-	-002	-003	-004	-005							te Time R	
			ASAL					uo	on N		4													
Time:	□ Rush		Lime Rock -			ger:		David Hamilt	David Hamilt	nerature.	Preservativ e Type	1ce, HC/	êC .	11	ħ	HCC		-					08/	_
Turn-Around	K Standard	Project Name		Project #:		Project Mana			Sampler: On Ioe	Sample Term	Container Type and #	3400	н	u	1					·		:	Received by:	/
Record		NV PNR		87104		com		4 (Full Validation)			ole Request ID	4 @52 5 A	1054.5 A	2 25.5 4	-1056+ ft	o Blank	21/21/20 CU	•					am lla	
istody	sultants) Grande E	-142	erque, NM	66-5004	cksconsult					Samp	- MW	Mh/- 4	-MM	-MM	4	N.							
-of-CL	licks Con	901 Ric	Suite F	Albuqu	(505) 2	R@rthi			□ Othe		Matrix	water	¥	*	:								Refinquish	
hain	R. Т. F		Address		*	r Fax#:	^D ackage:	dard	tation: A P	(Type)_	Time	2232	1525	1630	0460								Time:	
0	Client:		Mailing		Phone 3	email o	QAQC	X Stan	Accredi		Date	8/13/18	=	1132/14/13	2/14/18	•							B-15-18 Date:	

.

Released to Imaging: 9/16/2024 1:48:57 PM

August 22, 2018

David Hamilton R.T. Hicks Consultants, LTD 901 Rio Grande Blvd. NW Suite F-142 Albuquerque, NM 87104 TEL: (505) 266-5004 FAX (505) 266-0745

RE: Lime Rock ASAU 150

OrderNo.: 1808A15

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

Dear David Hamilton:

Hall Environmental Analysis Laboratory received 2 sample(s) on 8/15/2018 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Hall	Environmental	Analysis	Laboratory,	Inc.
------	---------------	----------	-------------	------

Lab Order 1808A15

Date Reported: 8/22/2018

CLIENT:	R.T. Hicks Consultants, LTD		Client Sample ID: MW-3
Project:	Lime Rock ASAU 150		Collection Date: 8/13/2018 1:48:00 PM
Lab ID:	1808A15-001	Matrix: AQUEOUS	Received Date: 8/15/2018 9:22:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	MRA
Chloride	190	50		mg/L	100	8/16/2018 3:51:19 PM	R53517
Sulfate	2000	50	*	mg/L	100	8/16/2018 3:51:19 PM	R53517
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst	sat
Total Dissolved Solids	3900	20.0	*	mg/L	1	8/21/2018 8:39:00 AM	39858
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst	RAA
Benzene	ND	1.0		µg/L	1	8/18/2018 12:44:00 AM	SL53547
Toluene	ND	1.0		µg/L	1	8/18/2018 12:44:00 AM	SL53547
Ethylbenzene	ND	1.0		µg/L	1	8/18/2018 12:44:00 AM	SL53547
Naphthalene	ND	2.0		µg/L	1	8/18/2018 12:44:00 AM	SL53547
Xylenes, Total	ND	1.5		µg/L	1	8/18/2018 12:44:00 AM	SL53547
Surr: 1,2-Dichloroethane-d4	100	70-130		%Rec	1	8/18/2018 12:44:00 AM	SL53547
Surr: 4-Bromofluorobenzene	101	70-130		%Rec	1	8/18/2018 12:44:00 AM	SL53547
Surr: Dibromofluoromethane	104	70-130		%Rec	1	8/18/2018 12:44:00 AM	SL53547
Surr: Toluene-d8	90.8	70-130		%Rec	1	8/18/2018 12:44:00 AM	SL53547

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 5 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1808A15

Date Reported: 8/22/2018

Hall Environmental Analysis Laboratory, Inc.

CLIENT:R.T. Hicks Consultants, LTDClient Sample ID: MW-5Project:Lime Rock ASAU 150Collection Date: 8/13/2018 2:33:00 PMLab ID:1808A15-002Matrix: AQUEOUSReceived Date: 8/15/2018 9:22:00 AM

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst:	MRA
Chloride	200	5.0		mg/L	10	8/16/2018 4:28:32 PM	R53517
Sulfate	2200	50	*	mg/L	100	8/16/2018 4:40:57 PM	R53517
SM2540C MOD: TOTAL DISSOLVED SOLIDS						Analyst:	sat
Total Dissolved Solids	4200	20.0	*	mg/L	1	8/21/2018 8:39:00 AM	39858
EPA METHOD 8260: VOLATILES SHORT LIST						Analyst:	RAA
Benzene	ND	1.0		µg/L	1	8/18/2018 1:08:00 AM	SL53547
Toluene	ND	1.0		µg/L	1	8/18/2018 1:08:00 AM	SL53547
Ethylbenzene	ND	1.0		µg/L	1	8/18/2018 1:08:00 AM	SL53547
Naphthalene	ND	2.0		µg/L	1	8/18/2018 1:08:00 AM	SL53547
Xylenes, Total	ND	1.5		µg/L	1	8/18/2018 1:08:00 AM	SL53547
Surr: 1,2-Dichloroethane-d4	97.4	70-130		%Rec	1	8/18/2018 1:08:00 AM	SL53547
Surr: 4-Bromofluorobenzene	101	70-130		%Rec	1	8/18/2018 1:08:00 AM	SL53547
Surr: Dibromofluoromethane	104	70-130		%Rec	1	8/18/2018 1:08:00 AM	SL53547
Surr: Toluene-d8	90.3	70-130		%Rec	1	8/18/2018 1:08:00 AM	SL53547

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Client: Project:		R.T. Hicks Consultar Lime Rock ASAU 15	ts, L7 0	TD								
Sample ID	MB	SampTy	be: m l	olk	Tes	tCode: E	EPA Method	300.0: Anions	;			
Client ID:	PBW	Batch ID: R53517 RunNo: 53517										
Prep Date:		Analysis Da	e: 8	16/2018	5	SeqNo:	1763915	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND	0.50									
Sulfate		ND	0.50									
Sample ID	LCS	SampTy	be: Ics	5	Tes	tCode: E	EPA Method	300.0: Anions	;			
Client ID:	LCSW	Batch I	D: R5	3517	F	RunNo:	53517					
Prep Date:		Analysis Da	:e: 8	16/2018	S	SeqNo:	1763916	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		4.7	0.50	5.000	0	93.7	90	110				
Sulfate		9.3	0.50	10.00	0	92.7	90	110				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1808A15

22-Aug-18

WO#:

Page 3 of 5

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	R.T. Hicks Consul	tants, L7	D										
Project:	Lime Rock ASAU	150											
Sample ID 100ng lo	s Samp	Type: LC	s	TestCode: EPA Method 8260: Volatiles Short List									
Client ID: LCSW	Bate	ch ID: SL	.53547	R	unNo: 5	3547							
Prep Date:	Analysis	Date: 8	17/2018	S	eqNo: 1	764898	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	23	1.0	20.00	0	117	70	130						
Toluene	20	1.0	20.00	0	101	70	130						
Surr: 1,2-Dichloroethan	e-d4 9.8		10.00		98.0	70	130						
Surr: 4-Bromofluoroben	zene 10		10.00		101	70	130						
Surr: Dibromofluoromet	hane 10		10.00		103	70	130						
Surr: Toluene-d8	9.1		10.00		91.5	70	130						
Sample ID rb	Samp	Туре: МІ	BLK	Test	Code: E	PA Method	8260: Volatile	es Short L	.ist				
Client ID: PBW	Bate	ch ID: SL	.53547	R	unNo: 5	3547							
Prep Date:	Analysis	Date: 8	17/2018	S	eqNo: 1	764899	Units: µg/L						
Analyte													
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	Result ND	PQL 1.0	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene Toluene	Result ND ND	PQL 1.0 1.0	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene Toluene Ethylbenzene	Result ND ND ND	PQL 1.0 1.0 1.0	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene Toluene Ethylbenzene Naphthalene	Result ND ND ND ND	PQL 1.0 1.0 1.0 2.0	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene Toluene Ethylbenzene Naphthalene Xylenes, Total	Result ND ND ND ND ND	PQL 1.0 1.0 2.0 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene Toluene Ethylbenzene Naphthalene Xylenes, Total Surr: 1,2-Dichloroethan	Result ND ND ND ND e-d4 9.6	PQL 1.0 1.0 2.0 1.5	SPK value 10.00	SPK Ref Val	%REC 96.0	LowLimit 70	HighLimit 130	%RPD	RPDLimit	Qual			
Benzene Toluene Ethylbenzene Naphthalene Xylenes, Total Surr: 1,2-Dichloroethan Surr: 4-Bromofluoroben	Result ND ND ND e-d4 9.6 zene 10	PQL 1.0 1.0 2.0 1.5	SPK value 10.00 10.00	SPK Ref Val	%REC 96.0 102	LowLimit 70 70	HighLimit 130 130	%RPD	RPDLimit	Qual			
Benzene Toluene Ethylbenzene Naphthalene Xylenes, Total Surr: 1,2-Dichloroethan Surr: 4-Bromofluoroben Surr: Dibromofluoromet	Result ND ND ND e-d4 9.6 zene 10 hane 10	PQL 1.0 1.0 2.0 1.5	SPK value 10.00 10.00 10.00	SPK Ref Val	%REC 96.0 102 102	LowLimit 70 70 70	HighLimit 130 130 130	%RPD	RPDLimit	Qual			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 5

WO#:	1808A15

Client: Project:	R.T. H Lime I	licks Consulta Rock ASAU 1	ants, LT 150	D									
Sample ID	MB-39858	SampT	ype: MI	BLK	TestCode: SM2540C MOD: Total Dissolved Solids								
Client ID:	D: PBW Batch ID: 39858 RunNo: 53576												
Prep Date:	8/17/2018	Analysis D	ate: 8	21/2018	S	SeqNo: 1	766280	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Total Dissolved	l Solids	ND	20.0										
Sample ID	LCS-39858	SampT	ype: LC	s	Tes	tCode: SI	M2540C MC	DD: Total Diss	olved So	lids			
Client ID:	LCSW	Batch	n ID: 39	858	F	RunNo: 5	3576						
Prep Date:	8/17/2018	Analysis D	ate: 8/	21/2018	5	SeqNo: 1	766281	Units: mg/L					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Total Dissolved	d Solids	991	20.0	1000	0	99.1	80	120					

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

1808A15

22-Aug-18

WO#:

Page 5 of 5

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com	Sample Log-In Check List
Client Name: RT HICKS	Work Order Number: 1808A15	RcptNo: 1
Received By: Ashley Gallegos Completed By: Ashley Gallegos Reviewed By: TAR as///////	8/15/2018 9:22:00 AM S 8/15/2018 5:49:21 PM S Iabeleol	ty by: IO 08/16/18
Chain of Custody 1. Is Chain of Custody complete? 2. How was the sample delivered?	Yes √ <u>Client</u>	No 🗍 Not Present 🗌
Log In 3. Was an attempt made to cool the samples?	Yes 🗹	
4. Were all samples received at a temperature of	F>0° C to 6.0°C Yes ☑	
5. Sample(s) in proper container(s)?	Yes 🔽	No 🗆
 6. Sufficient sample volume for indicated test(s)? 7 Are samples (except VOA and ONG) property 	Yes ✔ preserved? Yes ✔	No 🗆
8. Was preservative added to bottles?	Yes 🗋	No 🗹 NA 🗌
9. VOA vials have zero headspace?10. Were any sample containers received broken?	Yes ☑ ? Yes □	No No VOA Vials
11. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No for pH: (<2 or >12 unless noted)
 12. Are matrices correctly identified on Chain of C 13. Is it clear what analyses were requested? 14. Were all holding times able to be met? (If no, notify customer for authorization.) 	ustody? Yes ☑ Yes ☑ Yes ☑	No □ Adjusted? No □ ∅/6/18 No □ ℃hecked by:
Special Handling (if applicable) 15. Was client notified of all discrepancies with th	is order? Yes 🗔	
Person Notified: By Whom: Regarding: Client Instructions:	Date Via: eMail Phone	
16. Additional remarks: 17. <u>Cooler Information</u> <u>Cooler No Temp °C Condition Sea</u> 1 2.1 Good Not F	I Intact Seal No Seal Date Sig Present	ned By

Page 1 of 1

	ENVIRONMENTAL STS I ABORATORY	ivironmental.com	Ibuquerque, NM 87109	Fax 505-345-4107	lysis Request		5.8: S.8:	оч, Х Х	л (N) 8082 А) А) А) А)	о Д) /ОЛ (səp	Anions (الرَّّادَا 808 ا Pestici 8260B (VOA 8270 (Semi- الماك لماك	XXX							sconsult.com, knsun@, uavia@		will be clearly notated on the analytical report.
		www.halle	4901 Hawkins NE -	Tel. 505-345-3975	An	261) 261) 21)	12021 Dies	/se; 39) 3) s,	+ TMB + TPH 15B (C 18.1) (1.1) (1.1)	- 3E -	TPH + X3T8 TPH Method TPH Method Metho (Metho AM9) 0158								elliars. Eiliail tu Koluinu		is possibility. Any sub-contracted dat
Time:	- Rush		Lime Rock - ASAU #150			Jer:		David Hamilton	David Hamilton X Yes	erature 21	Preservativ e Type	tce. Hart, - 001	ii J -002					1 1 1 1 1 1 1 1	08/15/18 0333	Date Time	redited laboratories. This serves as notice of th
Tum-Around	A standard	Project Name		Project #:		Project Mana			Sampler: On tee 1	Sample demp	Container Type and #	3 VOA.1L	11					Doodhod bur		Received by:	ontracted to other acc
of-Custody Record	cks Consultants	901 Rio Grande Blvd NW	Suite F-142	Albuquerque, NM 87104	(505) 266-5004	R@rthicksconsult.com		Level 4 (Full Validation)	□ Other		Matrix Sample Request ID	water MN-3	" MW-5			- -		Jalimutiehad hv.	Onul Hamilten 9	Relinquished by:	mples submitted to Hall Environmental may be subc
Chain-c	Client: R. T. Hic		Mailing Address:		Phone #:	email or Fax#:	QA/QC Package:	X Standard	Accreditation:	🗆 EDD (Type)	Date Time	8/13/18 1348 V	11 1433					Date:	8-15-19 9:22	Date: Time: F	If necessary, san

Appendix F Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104 Drawdown Test of MW-4 – August 14 2018 ASAU 150 Release Site, Eddy County, NM

MW-4 Drawdown Test Results

R.T. Hicks Consultants, Ltd., (Hicks Consultants) conducted a drawdown/recovery test of MW-4 at the ASAU release site in Eddy County, New Mexico on August 14, 2018.

Conditions of the well at the beginning of the test were:

Depth to water:	51.21 feet
Total Depth of well:	56.10 feet
Water column:	4.89

The pump was set at a depth of 3 feet below the water table surface so as to keep the pump submersed and to keep the intake clear of sediment in the lower water column.

The pump test was started at 11:05 am. The pump was turned off at 11:21 am.

The pumping rate was set at the maximum rate possible for the Proactive Tempest pump. This resulted in an average withdrawal of 1.25 gal/min (20 gallons in 16 minutes).

Table 1, below, presents time, depth to water, and drawdown after the pump was turned off.

Seconds after Pump Turned Off	Converted to Minutes	Depth to Water [feet]	Drawdown from Initial Depth of 51.21 feet	
35	0.58	51.30	0.09	
80	1.33	51.28	0.07	
105	1.75	51.27	0.06	
130	2.17	51.26	0.05	
135	2.25	51.26	0.05	
180	3.00	51.26	0.05	
230	3.83	51.26	0.05	
295	4.92	51.25	0.04	
368	6.13	51.25	0.04	
485	8.08	51.25	0.04	
572	9.53	51.25	0.04	
1344	22.40	51.24	0.03	
1650	27.50	51.23	0.02	
2530	42.17	51.23	0.02	
2565	42.75	51.22	0.01	

Table 1

© 2018 R.T. Hicks Consultants, Ltd.

Drawdown Test of MW-4 – August 14 2018 ASAU 150 Release Site, Eddy County, NM

Figure 1 shows the fluid level as a function of time (plotted as blue diamonds) since pumping ended. Note that total drawdown was 0.09 feet and that water level could not be measured more finely than).01 feet.

Figure 1

The dashed, red line is a logarithmic trendline fitted to the data. The R^2 value of 0.92 is much closer to 1.0 than to 0.0. An R^2 value close to 1.0 means that the trendline is a "good fit" compared to an R^2 value of 0.0.

A semi log method of pump-test interpretation was applied to the data. Because there was so little drawdown (and insufficient ability to measure the small changes - note the step like nature of the data points in Figure 1), the method did not yield results that we consider highly accurate. The calculated hydraulic conductivity was on the order of hundreds of feet/day. These are consistent with reported hydraulic conductivities for gravels and sands and in agreement with materials observed in the boring logs.

Drawdown Test of MW-4 – August 14 2018 ASAU 150 Release Site, Eddy County, NM

Observations and Conclusions

- Hydraulic conductivity in the upper water table is relatively high at the release site. A pumping rate of 1.25 gallons/minute resulted in a near steady state drawdown of less than 0.1 feet.
- While the pump test interpretation method did not yield a robust value for hydraulic conductivity, the trendline fitted well to the drawdown data confirming that the hydraulic conductivity is "high", consistent with lithology observed in the wells.
- Wells with small casings (2-inch or 4 inch diameter) will be sufficient.
- The planned remediation pumping rates (about 1.0 gal /minute) will not cause a large area drawdown
- Based upon experience with the planned remediation wells, additional wells maybe necessary to create a sufficient capture zone.

Appendix G Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

Standard Operating Procedure for Low-Stress (Low-Flow)/ Minimal Drawdown Ground-W ater Sample Collection

INTRODUCTION

The collection of "representative" water samples from wells is neither straightforward nor easily accomplished. Ground-water sample collection can be a source of variability through differences in sample personnel and their individual sampling procedures, the equipment used, and ambient temporal variability in subsurface and environmental conditions. Many site inspections and remedial investigations require the sampling at ground-water monitoring wells within a defined criterion of data confidence or data quality, which necessitates that the personnel collecting the samples are trained and aware of proper samplecollection procedures.

The purpose of this standard operating procedure (SOP) is to provide a method that minimizes the impact the purging process has on the ground-water chemistry and the volume of water that is being purged and disposed of during sample collection. This will take place by placing the pump intake within the screen interval and by keeping the drawdown at a minimal level (0.33 feet) (Puls and Barcelona, 1996) until the water quality parameters have stabilized and sample collection is complete. The flow rate at which the pump will be operating will depend upon both hydraulic conductivity of the aquifer and the drawdown with the goal of minimizing the drawdown. The flow rate from the pump during purging and sampling will be at a rate that will not compromise the integrity of the analyte that is being sampled. This sampling procedure may or may not provide a discrete groundwater sample at the location of the pump intake. The flow of ground-water to the pump intake will be dependent on the distribution of the hydraulic conductivity (K) of the aquifer within the screen interval. In order to minimize the drawdown in the monitoring well, a lowflow rate must be used. "Low-Flow" refers to the velocity with which water enters the pump intake from the surrounding formation in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface, which can be affected by flow regulators or restrictions (Puls and Barcelona, 1996). This SOP was developed by the Superfund/RCRA Ground Water Forum and draws from an USEPA's Ground Water Issue Paper, Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure, by Robert W. Puls and Michael J. Barcelona. Also, available USEPA Regional SOPs

regarding Low-Stress (Low-Flow) Purging and Sampling were used for this SOP.

SCOPE AND APPLICATION

This SOP should be used primarily at monitoring wells that have a screen or an open interval with a length of ten feet or less and can accept a sampling device that minimizes the disturbance to the aquifer or the water column in the well casing. The screen or open interval should have been optimally located to intercept an existing contaminant plume(s) or along flowpaths of potential contaminant releases. Knowledge of the contaminant distribution within the screen interval is highly recommended and is essential for the success of this sampling procedure. The ground-water samples that are collected using this procedure are acceptable for the analyses of ground-water contaminants that may be found at Superfund and RCRA contamination sites. The analytes may be volatile, semi-volatile organic compounds, pesticides, PCBs, metals, and other inorganic compounds. The screened interval should be located within the contaminant plume(s) and the pump intake should be placed at or near the known source of the contamination within the screened interval. It is critical to place the pump intake in the exact location or depth for each sampling event. This argues for the use of dedicated, permanently installed, sampling devices whenever possible. If this is not possible, then the placement of the pump intake should be positioned with a calibrated sampling pump hose sounded with a weighted-tape or using a pre-measured hose. The pump intake should not be placed near the bottom of the screened interval to avoid disturbing any sediment that may have settled at the bottom of the well.

Water-quality-indicator parameters and water levels must be measured during purging, prior to sample collection. Stabilization of the water-quality-indicator parameters as well as monitoring water levels are a prerequisite to sample collection. The water-qualityindicator parameters that are recommended include the following: specific electrical conductance, dissolved oxygen, turbidity, oxidation-reduction potential, pH, and temperature. The latter two parameters are useful data, but are generally insensitive as purging parameters. Oxidation-reduction potential may not always be appropriate stabilization parameter, and will depend on site-specific conditions. However, readings should be recorded because of its value as a double check for oxidation conditions and for fate and transport issues.

Also, when samples are collected for metals, semivolatile organic compounds, and pesticides, every effort must be made to reduce turbidity to 10 NTUs or less (not just the stabilization of turbidity) prior to the collection of the water sample. In addition to the measurement of the above parameters, depth to water must be measured during purging (U.S. Environmental Protection Agency, 1995).

Proper well construction, development, and maintenance are essential for any ground-water sampling procedure. Prior to conducting the field work, information on the construction of the well and well development should be obtained and that information factored into the site specific sampling procedure. The Sampling Checklist at the end of this attachment is an example of the type of information that is useful.

Stabilization of the water-quality-indicator parameters is the criterion for sample collection. But if stabilization is not occurring and the procedure has been strictly followed, then sample collection can take place once three (minimum) to six (maximum) casing volumes have been removed (Schuller et al., 1981 and U.S. Environmental Protection Agency., 1986; Wilde et al., 1998; Gibs and Imbrigiotta., 1990). The specific information on what took place during purging must be recorded in the field notebook or in the groundwater sampling log.

This SOP is not to be used where non-aqueous phase liquids (NAPL) (immiscible fluids) are present in the monitoring well.

EQUIPMENT

- Depth-to-water measuring device An electronic water-level indicator or steel tape and chalk, with marked intervals of 0.01 foot. Interface probe for determination of liquid products (NAPL) presence, if needed.
- Steel tape and weight Used for measuring total depth of well. Lead weight should not be used.
- Sampling pump Submersible or bladder pumps with adjustable rate controls are preferred. Pumps are to be constructed of inert materials, such as

stainless steel and Teflon®. Pump types that are acceptable include gear and helical driven, centrifugal (low-flow type), and air-activated piston. An adjustable rate, peristaltic pump can be used when the depth to water is 20 feet or less.

- Tubing Teflon® or Teflon®-lined polyethylene tubing is preferred when sampling for organic compounds. Polyethylene tubing can be used when sampling inorganics.
- Power source If a combustion type (gasoline or diesel-driven) generator is used, it must be placed downwind of the sampling area.
- Flow measurement supplies flow meter, graduated cylinder, and a stop watch.
- Multi-parameter meter with flow-through cell This • can be one instrument or more contained in a flow-through cell. The water-quality-indicator parameters that are monitored are pH, ORP/Eh, (ORP) dissolved oxygen (DO), turbidity, specific conductance, and temperature. Turbidity readings must be collected before the flow cell because of the potential for sediment buildup, which can bias the turbidity measurements. Calibration fluids for all instruments should be NIST-traceable and there should be enough for daily calibration throughout the sampling event. The inlet of the flow cell must be located near the bottom of the flow cell and the outlet near the top. The size of the flow cell should be kept to a minimum and a closed cell is preferred. The flow cell must not contain any air or gas bubbles when monitoring for the water-gualityindicator parameters.
- Decontamination supplies Including a reliable and documented source of distilled water and any solvents (if used). Pressure sprayers, buckets or decontamination tubes for pumps, brushes and non-phosphate soap will also be needed.
- Sample bottles, sample preservation supplies, sample tags or labels, and chain-of-custody forms.
- Approved Field Sampling and Quality Assurance Project Plan.
- Well construction, field, and water quality data from the previous sampling event.
- Well keys and map of well locations.
- Field notebook, ground-water sampling logs, and calculator. A suggested field data sheet (groundwater sampling record or ground-water sampling log) are provided at the end of this attachment.

- Filtration equipment, if needed. An in-line disposable filter is recommended.
- Polyethylene sheeting placed on ground around the well head.
- Personal protective equipment as specified in the site Health and Safety Plan.
- Air monitoring equipment as specified in the Site Health and Safety Plan.
- Tool box All needed tools for all site equipment used.
- A 55-gallon drum or container to contain the purged water.

Construction materials of the sampling equipment (bladders, pumps, tubing, and other equipment that comes in contact with the sample) should be limited to stainless steel, Teflon®, glass, and other inert material. This will reduce the chance that sampling materials alter the ground-water where concentrations of the site contaminants are expected to be near the detection limits. The sample tubing diameter should be maximized and the tubing length should be minimized so that the loss of contaminants into and through the tubing walls may be reduced and the rate of stabilization of ground-water parameters is maximized. The tendency of organics to sorb into and out of material makes the appropriate selection of sample tubing material critical for trace analyses (Pohlmann and Alduino, 1992; Parker and Ranney, 1998).

PURGING AND SAMPLING PROCEDURES

The following describes the purging and sampling procedures for the Low-Stress (Low-Flow)/ Minimal Drawdown method for the collection of ground-water samples. These procedures also describe steps for dedicated and non-dedicated systems.

Pre-Sampling Activities (Non-dedicated and dedicated system)

1. Sampling must begin at the monitoring well with the least contamination, generally up-gradient or farthest from the site or suspected source. Then proceed systematically to the monitoring wells with the most contaminated ground water.

2. Check and record the condition of the monitoring well for damage or evidence of tampering. Lay out polyethylene sheeting around the well to minimize the likelihood of contamination of sampling/purging equipment from the soil. Place monitoring, purging and sampling equipment on the sheeting.

3. Unlock well head. Record location, time, date, and appropriate information in a field logbook or on the ground-water sampling log (See attached groundwater sampling record and ground-water sampling log as examples).

4. Remove inner casing cap.

5. Monitor the headspace of the monitoring well at the rim of the casing for volatile organic compounds (VOC) with a photo-ionization detector (PID) or flame ionization detector (FID) and record in the logbook. If the existing monitoring well has a history of positive readings of the headspace, then the sampling must be conducted in accordance with the Health and Safety Plan.

6. Measure the depth to water (water level must be measured to nearest 0.01 feet) relative to a reference measuring point on the well casing with an electronic water level indicator or steel tape and record in logbook or ground-water sampling log. If no reference point is found, measure relative to the top of the inner casing, then mark that reference point and note that location in the field logbook. Record information on depth to ground water in the field logbook or groundwater sampling log. Measure the depth to water a second time to confirm initial measurement; measurement should agree within 0.01 feet or re-measure.

7. Check the available well information or field information for the total depth of the monitoring well. Use the information from the depth of water in step six and the total depth of the monitoring well to calculate the volume of the water in the monitoring well or the volume of one casing. Record information in field logbook or ground-water sampling log.

Purging and Sampling Activities

8A. Non-dedicated system - Place the pump and support equipment at the wellhead and slowly lower the pump and tubing down into the monitoring well until the location of the pump intake is set at a predetermined location within the screen interval. The placement of the pump intake should be positioned with a calibrated sampling pump hose, sounded with a weighted-tape, or using a pre-measured hose. Refer to the available monitoring well information to determine the depth and length of the screen interval. Measure the depth of the pump intake while lowering the pump into location. Record pump location in field logbook or ground-water sampling log.

8B. Dedicated system - Pump has already been installed, refer to the available monitoring well information and record the depth of the pump intake in the field logbook or ground-water sampling log.

9. Non-dedicated system and dedicated systems -Measure the water level (water level must be measured to nearest 0.01 feet) and record information on the ground-water sampling log, leave water level indicator probe in the monitoring well.

10. Non-dedicated and dedicated systems - Connect the discharge line from the pump to a flow-through cell. A "T" connection is needed prior to the flowthrough cell to allow for the collection of water for the turbidity measurements. The discharge line from the flow-through cell must be directed to a container to contain the purge water during the purging and sampling of the monitoring well.

11. Non-dedicated and dedicated systems - Start pumping the well at a low flow rate (0.2 to 0.5 liter per minute) and slowly increase the speed. Check water

level. Maintain a steady flow rate while maintaining a drawdown of less than 0.33 feet (Puls and Barcelona, 1996). If drawdown is greater than 0.33 feet, lower the flow rate. 0.33 feet is a goal to help guide with the flow rate adjustment. It should be noted that this goal may be difficult to achieve under some circumstances due to geologic heterogeneities within the screened interval, and may require adjustment based on site-specific conditions and personal experience (Puls and Barcelona, 1996).

12. Non-dedicated and dedicated systems - Measure the discharge

rate of the pump with a graduated cylinder and a stop watch. Also, measure the water level and record both flow rate and water level on the ground-water sampling log. Continue purging, monitor and record water level and pump rate every three to five minutes during purging. Pumping rates should be kept at minimal flow to ensure minimal drawdown in the monitoring well.

13. Non-dedicated and dedicated systems - During the purging, a minimum of one tubing volume (including the volume of water in the pump and flow cell) must be purged prior to recording the water-quality indicator parameters. Then monitor and record the water-quality- indicator parameters every three to five minutes. The water-quality indicator field parameters are turbidity, dissolved oxygen, specific electrical conductance, pH, redox potential, and temperature. Oxidation-reduction potential may not always be an appropriate stabilization parameter, and will depend on site-specific conditions. However, readings should be recorded because of its value as a double check for oxidizing conditions. Also, for the final dissolved oxygen measurement, if the readings are less than 1 milligram per liter, it should be collected and analyze with the spectrophotometric method (Wilde et al., 1998 Wilkin et al., 2001), colorimetric or Winkler titration (Wilkin et al., 2001). The stabilization criterion is based on three successive readings of the water quality field parameters; the following are the criteria which must be used:

Parameter	Stabilization Criteria	Reference		
рН	+/- 0.1 pH units	Puls and Barcelona, 1996; Wilde et al. 1998		
specific electrical	+/- 3% S/cm	Puls and Barcelona, 1996		
conductance (SEC)				
oxidation-reduction	+/- 10 millivolts	Puls and Barcelona, 1996		
potential (ORP)				
turbidity	+/- 10% NTUs (when turbidity	Puls and Barcelona, 1996;		
	is greater than 10 NTUs)	Wilde et al., 1998		
dissolved oxygen	+/- 0.3 milligrams per liter	Wilde et al., 1998		

Once the criteria have been successfully met indicating that the water quality indicator parameters have stabilized, then sample collection can take place.

14. If a stabilized drawdown in the well can't be maintained at 0.33 feet and the water level is approaching the top of the screened interval, reduce the flow rate or turn the pump off (for 15 minutes) and allow for recovery. It should be noted whether or not the pump has a check valve. A check valve is required if the pump is shut off. Under no circumstances should the well be pumped dry. Begin pumping at a lower flow rate, if the water draws down to the top of the screened interval again, turn pump off and allow for recovery. If two tubing volumes (including the volume of water in the pump and flow cell) have been removed during purging, then sampling can proceed next time the pump is turned on. This information should be noted in the field notebook or ground-water sampling log with a recommendation for a different purging and sampling procedure.

15. Non-dedicated and dedicated systems - Maintain the same pumping rate or reduce slightly for sampling (0.2 to 0.5 liter per minute) in order to minimize disturbance of the water column. Samples should be collected directly from the discharge port of the pump tubing prior to passing through the flow-through cell. Disconnect the pump's tubing from the flow-through cell so that the samples are collected from the pump's discharge tubing. For samples collected for dissolved gases or VOC analyses, the pump tubing needs to be completely full of ground water to prevent the ground water from being aerated as it flows through the tubing. The sequence of the samples is immaterial unless filtered (dissolved) samples are collected and they must be collected last (Puls and Barcelona, 1996). All sample containers should be filled with minimal turbulence by allowing the ground water to flow from the tubing gently down the inside of the container. When filling the VOC samples, a meniscus must be formed over the mouth of the vial to eliminate the formation of air bubbles and head space prior to capping. In the event that the ground water is turbid, (greater then 10 NTUs), a filtered metal (dissolved) sample also should be collected.

If filtered metal sample is to be collected, then an inline filter is fitted at the end of the discharge tubing and the sample is collected after the filter. The in-line filter must be pre-rinsed following manufacturer's recommendations and if there are no recommendations for rinsing, a minimum of 0.5 to 1 liter of ground water from the monitoring well must pass through the filter prior to sampling.

16A. Non-dedicated system - Remove the pump from the monitoring well. Decontaminate the pump and dispose of the tubing if it is non-dedicated.

16B. Dedicated system - Disconnect the tubing that extends from the plate at the wellhead (or cap) and discard after use.

17. Non-dedicated system - Before locking the monitoring well, measure and record the well depth (to 0.1 feet).

Measure the total depth a second time to confirm initial measurement; measurement should agree within 0.01 feet or re-measure.

18. Non-dedicated and dedicated systems - Close and lock the well.

DECONTAMINATION PROCEDURES

Decontamination procedures for the water level meter and the water quality field parameter sensors. The electronic water level indicator probe/steel tape and the water-quality field parameter sensors will be decontaminated by the following procedures:

1. The water level meter will be hand washed with phosphate-free detergent and a scrubber, then thoroughly rinsed with distilled water.

2. Water quality field parameter sensors and flowthrough cell will be rinsed with distilled water between sampling locations. No other decontamination procedures are necessary or recommended for these probes since they are sensitive. After the sampling event, the flow cell and sensors must be cleaned and maintained per the manufacturer's requirements.

Decontamination Procedure for the Sampling Pump

Upon completion of the ground water sample collection the sampling pump must be properly decontaminated between monitoring wells. The pump and discharge line including support cable and electrical wires which were in contact with the ground water in the well casing must be decontaminated by the following procedure:

- 1. The outside of the pump, tubing, support cable and electrical wires must be pressure-sprayed with soapy water, tap water, and distilled water. Spray outside of tubing and pump until water is flowing off of tubing after each rinse. Use bristle brush to help remove visible dirt and contaminants.
- 2. Place the sampling pump in a bucket or in a short PVC casing (4-in. diameter) with one end capped. The pump placed in this device must be completely submerged in the water. A small amount of phosphate-free detergent must be added to the potable water (tap water).
- 3. Remove the pump from the bucket or 4-in. casing and scrub the outside of the pump housing and cable.
- 4. Place pump and discharge line back in the 4-in. casing or bucket, start pump and recirculate this soapy water for 2 minutes (wash).
- 5. Re-direct discharge line to a 55-gallon drum. Continue to add 5 gallons of potable water (tap water) or until soapy water is no longer visible.
- 6. Turn pump off and place pump into a second bucket or 4-in. casing that contains tap water. Continue to add 5 gallons of tap water (rinse).
- Turn pump off and place pump into a third bucket or 4-in. casing which contains distilled/deionized water, continue to add 3 to 5 gallons of distilled/ deionized water (final rinse).
- 8. If a hydrophobic contaminant is present (such as separate phase, high levels of PCBs, etc.), an additional decontamination step, or steps, may be added. For example, an organic solvent, such as reagent-grade isopropanol alcohol may be added as a first spraying/bucket prior to the soapy water rinse/bucket.

FIELD QUALITY CONTROL

Quality control (QC) samples must be collected to verify that sample collection and handling procedures were performed adequately and that they have not compromised the quality of the ground-water samples. The appropriate EPA program guidance must be consulted in preparing the field QC sample requirements for the site-specific Quality Assurance Project Plan (QAPP). There are five primary areas of concern for quality assurance (QA) in the collection of representative ground-water samples:

- Obtaining a ground-water sample that is representative of the aquifer or zone of interest in the aquifer. Verification is based on the field log documenting that the field water-quality parameters stabilized during the purging of the well, prior to sample collection.
- 2. Ensuring that the purging and sampling devices are made of materials, and utilized in a manner that will not interact with or alter the analyses.
- Ensuring that results generated by these procedures are reproducible; therefore, the sampling scheme should incorporate co-located samples (duplicates).
- Preventing cross-contamination. Sampling should proceed from least to most contaminated wells, if known. Field equipment blanks should be incorporated for all sampling and purging equipment, and decontamination of the equipment is therefore required.
- 5. Properly preserving, packaging, and shipping samples.

All field QC samples must be prepared the same as regular investigation samples with regard to sample volume, containers, and preservation. The chain-ofcustody procedures for the QC samples will be identical to the field ground-water samples. The following are QC samples that must be collected during the sampling event:

- Sample TypeFrequencyField duplicates1 per 20 samplesMatrix spike1 per 20 samplesMatrix spike duplicate1 per 20 samplesEquipment blankper Regionalrequire-
- Trip blank (VOCs)
- Temperature blank
- ments or policy
- 1 per sample cooler
- 1 per sample cooler

•

.

HEALTH AND SAFETY CONSIDERATIONS

Depending on the site-specific contaminants, various protective programs must be implemented prior to sampling the first well. The site Health and Safety Plan should be reviewed with specific emphasis placed on the protection program planned for the sampling tasks. Standard safe operating practices should be followed, such as minimizing contact with potential contaminants in both the liquid and vapor phase through the use of appropriate personal protective equipment.

Depending on the type of contaminants expected or determined in previous sampling efforts, the following safe work practices will be employed:

Particulate or metals contaminants

- 1. Avoid skin contact with, and incidental ingestion of, purge water.
- 2. Use protective gloves and splash protection.

Volatile organic contaminants

- 1. Avoid breathing constituents venting from well.
- 2. Pre-survey the well head space with an appropriate device as specified in the site Health and Safety Plan.
- If monitoring results indicate elevated organic constituents, sampling activities may be conducted in level C protection. At a minimum, skin protection will be afforded by disposable protective clothing, such as Tyvek®.

General practices should include avoiding skin contact with water from preserved sample bottles, as this water will have pH less than 2 or greater than 10. Also, when filling pre-acidified VOA bottles, hydrochloric acid fumes may be released and should not be inhaled.

POST-SAMPLING ACTIVITIES

Several activities need to be completed and documented once ground-water sampling has been completed. These activities include, but are not limited to the following:

1. Ensuring that all field equipment has been decontaminated and returned to proper storage location. Once the individual field equipment has been decontaminated, tag it with date of cleaning, site name, and name of individual responsible.

- 2. Processing all sample paperwork, including copies provided to the Regional Laboratory, Sample Management Office, or other appropriate sample handling and tracking facility.
- 3. Compiling all field data for site records.
- 4. Verifying all analytical data processed by the analytical laboratory against field sheets to ensure all data has been returned to sampler.

REFERENCES

Gibs, J. and T.E. Imbrigiotta, 1990, Well-Purging Criteria for Sampling Purgeable Organic Compounds; Ground Water, Vol. 28, No. 1, pp 68-78.

Pohlmann, K.F. and A.J. Alduino, 1992, GROUND-WATER ISSUE PAPER: Potential Sources of Error in Ground-Water Sampling at Hazardous Waste Sites, US Environmental Protection Agency. EPA/540/S-92/ 019.

Puls, R.W. and M.J. Barcelona, 1996, GROUND-WATER ISSUE PAPER: Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedure, US Environmental Protection Agency. EPA/540/S-95/504, 12 pp.

Schuller, R.M., J.P. Gibb and R.A Griffin, 1981, Recommended Sampling Procedures for Monitoring Wells; Ground Water Monitoring Review, Spring 1981, pp. 42-46.

Parker, L.V. and T.A. Ranney, 1998, Sampling Trace-Level Organic Solutes with Polymeric Tubing: Part 2, Dynamic Studies; Ground Water Monitoring and Remediation, Vol. 18, No. 1, pp. 148-155.

U.S. Environmental Protection Agency, 1986, RCRA Ground-Water Monitoring Technical Enforcement Guidance Document; OSWER-9950.1, U.S. Government Printing Office, Washington, D.C., 208 pp., appendices.

U.S. Environmental Protection Agency, 1995, Ground Water Sampling - A Workshop Summary, Texas, November 30-December 2, 1993, EPA/600/R-94/205, 146 pp. U.S. Environmental Protection Agency Region 1, 1996, Low Stress (low flow) Purging and Sampling Prodedure for the Collection of Ground water Samples From Monitoring Wells, SOP#: GW 0001, July 30, 1996.

U.S. Environmental Protection Agency Region 2, 1998, Ground Water Sampling Procedure Low Stress (Low Flow) Purging and Sampling, GW Sampling SOP Final, March 16, 1998.

Wilde, F.D., D.B. Radtke, J.Gibs and R.T. Iwatsubo, eds., 1998, National Field Manual for the Collection of Water-Quality Data; U.S. Geological Survey Techniques of Water-Resources Investigations, Book 9, Handbooks for Water-Resources Investigations, variously paginated.

Wilkin, R.T., M.S. McNeil, C.J. Adair and J.T. Wilson, 2001, Field Measurement of Dissolved Oxygen: A Comparison of Methods, Ground Water Monitoring and Remediation, Vol. 21, No. 4, pp. 124-132.

SAMPLING CHECKLIST

Well Identification:_____

Map of Site Included: Y or N Wells Clearly Identified with Roads: Y or N Well Construction Diagram Attached: Y or N

Well Construction:

Diameter of Borehole:	Diameter of Casing:
Casing Material:	Screen Material:
Screen Length:	Total Depth:

Approximate Depth to Water:_____ Maximum Well Development Pumping Rate:_____ Date of Last Well Development:_____

Previous Sampling Information:

Was the Well Sampled Previously: Y or N (If Sampled, Fill Out Table Below)

	Table of Previous Sampling Information						
Parameter	Previously Sampled	Number of Times Sampled	Maximum Concentration	Notes (include previous purge rates)			

Ground Water Sampling Log

Site Name: Well Depth(Ft-BTOC ¹):	Well #: Screen Interval(Ft):	Date:
Well Dia.:	Casing Material:	Sampling Device:
Pump placement(Ft from TOC ²):		
Measuring Point:	Water level (static)(Ft):	
Water level (pumping)(Ft):	Pump rate(Liter/min):	
Sampling Personnel:		

Other info: (such as sample numbers, weather conditions and field notes)

Time	Pumping rates (L/Min)	Water level (ft)	DO (mg/L)	ORP (mv)	Turb. (NTU)	SEC ³ (S/cm)	рН	Temp. (C ⁰)	Volume pumped (L)
					_				

Water Quality Indicator Parameters

Type of Samples collected:

1 casing volume was:	Stabilization Criteria		
Total volume purged prior to sample collection:	D.O. Turb. S.C.	+/- 0.3 mg/l +/- 10% +/- 3%	
¹ BTOC-Below Top of Casing ² TOC-Top of Casing ³ Specific Electrical Conductance	ORP pH	+/- 10 mV +/- 0.1 unit	
Appendix H Stage 1/2 Abatement Plan

R.T. Hicks Consultants, Ltd.

901 Rio Grande Blvd. NW, Suite F-142 Albuquerque, NM 87104

HEALTH AND SAFTEY PLAN: Monitoring Well Sampling and Maintenance

Lime Rock Resources ASAU #150 Release – Abatement Plan

Eddy County, NM

November 2018

R.T. Hicks Consultants Ltd. 901 Rio Grande Blvd NW, Suite F-142 Albuquerque, NM 87104

•

R.T. HICKS CONSULTANTS, LTD.

1.0	EMERGENCY CONTACTS:1
2.0	ROUTE TO HOSPITAL1
3.0	SITE LOCATION
4.0	SITE TYPE AND SURROUNDING POPULATION
5.0	SCOPE OF WORK
6.0	REGULATORY STATUS2
7.0	WASTE TYPES AND CHARACTERISTICS
8.0	SITE AND PROJECT PERSONNEL
9.0	ADDITIONAL PERSONNEL
10.0	PERSONAL PROTECTIVE EQUIPMENT AND GENERAL FIELD WORK RULES3
11.0	PHYSICAL HAZARDS4
12.0	CHEMICAL HAZARDS
13.0	OPERATIONAL PROTECTIVE EQUIPMENT1
14.0	COMMUNICATION1
15.0	ALCOHOL/DRUG USE/FIREARMS1
16.0	SOIL AND SEDIMENT SAMPLING
17.0	SITE HEALTH AND SAFETY PLAN APPROVALS2
ATTA	CHMENT A. HEAT AND COLD STRESSA
ATTA	CHMENT B. BIOLOGICAL HAZARDSB
ATTA	CHMENT C. MATERIAL SAFETY SHEETSC
ATTA	CHMENT D. EMPLOYEE INCIDENT REPORT D
ATTA	CHMENT E. SIGNATURE PAGEE

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

1.0 EMERGENCY CONTACTS:

In the event of an accident:

- 1. Stop all activities;
- 2. Go to the designated safe zone as determined in the health and safety briefing,
- 3. Verify every worker is present and is not injured,
- 4. If an accidental release occurred, take remedial actions as appropriate.
- 5. Contact the personnel listed below as appropriate cell phone coverage may be spotty:

Ambulance	911
Fire Department	911
Police Department	911
State Police	911
Hospital: Artesia General Hospital 702 N 13 th Street, Artesia, NM	575-748-3333
Eddy County Sherriff	575-887-7551
NM Environment Department Occupational Health and Safety Bureau Santa Fe, NM	505-827-4230
Hicks Consultants Health and Safety Manager	505-238-9515 (mobile); Randall Hicks
Hicks Consultants Principal	505-238-9515 (mobile); Randall Hicks
Lime Rock Resources contact: Mike Barrett, Production Superintendent	505-353-2644 (mobile) 575-365-9724 (office)

2.0 ROUTE TO HOSPITAL

The closest hospital with an emergency room is the Artesia General Hospital. The total distance to the hospital is approximately 11 miles, and the drive time is approximately 20 minutes. Map and directions to the medical center is attached at the end of this HASP, which will be located in the RT Hicks Consultants work vehicle.

3.0 SITE LOCATION

The work is to occur on the east side of Fanning Road (CR-44), just south of the Peñasco Draw, south of Artesia, NM. The site coordinates are latitude 32.74266°, longitude 104.34846°. Approximate street location is 86 Fanning Road, Artesia, NM.

4.0 SITE TYPE AND SURROUNDING POPULATION

The area is a mixture of farm and oilfield use. Paved county roads service the area from US Highway 285 between Carlsbad and Artesia. An occupied residence is located due south of the Site.

5.0 SCOPE OF WORK

The scope of work will involves regular sampling of groundwater from and routine maintenance of monitoring wells and recovery wells in accordance with communications with NMOCD and Lime Rock, the Abatement Plan, and the sampling protocol.

6.0 REGULATORY STATUS

The site is under regulation by NMOCD.

7.0 WASTE TYPES AND CHARACTERISTICS

Waste consists of purged groundwater removed during the sampling of monitoring wells. Groundwater will also be removed through the recovery well(s). The groundwater removed will likely include elevated concentrations of dissolved hydrocarbon components, chloride, and sulfate, as well as floating hydrocarbon associated with the pipeline release. This waste will be secured on site and monitored by Lime Rock personnel until it will be disposed of into a salt water disposal well.

8.0 SITE AND PROJECT PERSONNEL

David Hamilton

Site Health and Safety Officer

9.0 ADDITIONAL PERSONNEL

10.0 PERSONAL PROTECTIVE EQUIPMENT AND GENERAL FIELD WORK RULES

R.T. Hicks Consultants, Ltd. considers all field activities to be potentially hazardous and have a <u>high</u> level of risk. The risk of serious injury or death is <u>always</u> present. If there is any discomfort or apprehension in performing the activities required, or if any concern arises, inform the Site Health and Safety Officer (SHSO). If there is any discomfort or apprehension in performing a task, immediately <u>stop</u> that activity, stabilize the situation (if safely possible) and contact the SHSO. As a policy, normal fieldwork with Hicks Consultants will not involve work in level C PPE. We will make every effort to modify the work environment to permit work in level D PPE.

Level D Personal Protection Equipment (PPE) includes but is not limited to the following:

- Hard Hats
- Gloves
- Steel-Toed Boots
- Safety Glasses
- Hearing Protection (when near operating equipment)
- Fire Resistant Coveralls (optional)
- 1) The SHSO will determine required PPE. Consideration must be given to H₂S, dusts, vapors, fumes, corrosive materials, flying objects, high-noise levels, slippery footing, trip hazards, temperature extremes, weather conditions and other known or suspected hazards.
- 2) Level C PPE requirements include all level D equipment as well as the following.
 - Coveralls (material depends on specific conditions)
 - Under-gloves
 - Respiratory Protection (APR with appropriate cartridge based on known contaminants)
- 3) Workers must be aware of, and carefully monitored for, heat stress and/or hypothermia (See Attachment A).
- 4) No persons will enter any excavations over four (4) feet in depth unless the excavation has been sloped, shored, or braced in accordance with OSHA requirements. Special fall arresting and retrieval equipment may be required where the potential of a fall hazard of over four (4) feet exists.
- 5) All persons must wash hands and face before hand-mouth contact and at the end of the task.
- 6) Decontaminate clothing (such as gloves and boots) that have come into contact with sources of contamination.
- 7) All work operations shall cease at sunset unless proper auxiliary light has been provided and approved by the Site Health and Safety Officer.

- 8) Eating, drinking, smoking, chewing and application of makeup shall be done only in areas designated by the Site Health and Safety Officer.
- 9) Each day, all personnel will attend a safety meeting prior to beginning work on site. They will sign a form stating their understanding of site hazards and agreement to abide by provisions of the Site Health and Safety Plan.
- 10) Please notify the Site Health and Safety Officer, as well as co-workers, to any allergies to insects, plants, or medications.
- 11) Waste groundwater will only be disposed of into secure containers approved by Lime Rock. Only waste groundwater from the on-site sampling and recovery wells will be put into the containers.

11.0 PHYSICAL HAZARDS

- Utilities: Contact with overhead power lines on the site may result in shock, electrocution or burns. Special work procedures are required for any work under overhead power lines. Before any ground intrusive activities are initiated, the location(s) of any buried utilities shall be determined. Digging in the vicinity of buried utilities will require special work procedures to prevent contact with the utilities and/or stabilize utility lines.
- 2) Water Impoundments: Water impoundments present a potential drowning hazard. OSHA requirements for working over or near water must be followed (29 CFR 1926.106).
- Hazardous Energy Sources: Energy sources associated with the site may consistute a hazard. A "Zero-Energy" or "Lockout-Tagout" program will protect site workers from hazardous sources (29 CFR 1926.146).
- 4) Ladders: Ladders present a potential fall hazard. Any inplace ladders shall not be used until a competent person certifies their structural integrity. Portable ladders shall comply with OSHA requirements (29 CFR 1926, Subpart X).
- 5) Slips, Trips and Falls: Poor housekeeping, topography and weather conditions are some of the factors that may expose worker to injury from slips, trips or falls.
- 6) Solar Exposure: Project worker should be aware that solar irradiation is possible. Contact with petroleum hydrocarbon can intensify solar irradiation and can cause serious burns. Protection is necessary to prevent sunburn and reduce the risk of skin cancer.
- 7) Topography: The topography of the site may present hazards or contribute to other listed hazards. For example, work on a hillside or gradually sloped surface may increase the potential of slips, trips and falls, or the potential for vehicles or equipment to move unexpectedly.

- 8) Unstable Structures and Materials: Some site structures, piles of materials and scrap may be unstable. Personnel should not enter such structures or work on such piles without adequate precautions to control hazards.
- 9) Sharps: Protruding nails, wire, sheet metal, scrap metal, lumber and natural trees and plants may present cut, puncture and abrasion hazards.
- 10) Fire and Explosion: Refined petroleum products as well as natural vegetation present a fire and/or explosion hazard. Extreme caution must be observed when performing work involving potential sources of ignition. OSHA fire protection and prevention requirements are addressed in 29 CFR 1926.24 and 29 CFR, subpart F.
- 11) Power and Hand Tool Operation: The operation of power and hand tools will expose worker to the possibility of cuts, pinches, crushing of extremities, punctures, eye injuries, shock and electrocution (29 CFR 1926, Subpart I).
- 12) Vehicle Operation: The operation of vehicles to access the site and perform tasks may subject workers to hazards associated with improper vehicle operation, slick roads, narrow bridges, construction traffic and livestock and wildlife on the road.
- 13) Heavy Equipment Operation: Some of the hazards that may be associated with the operation of heavy equipment include: noise, crushing, pinch points, collisions, rollovers, electrocution and fire. Carefully designed and followed traffic patterns for heavy equipment, proper inspection and maintenance and worker awareness are crucial requirements for controlling these hazards (29 CFR 1926.602).
- 14) Working at Elevation: Project site work may involve work at some distance above the ground or other surfaces. Falls can result in serious injury or death if adequate fall protection is not used (29 CFR 1926, Subpart M).
- 15) Sampling groundwater: Some sample containers may include a liquid preservative chemical compound provided by the laboratory. Consult Safety Data Sheets for the material named on the container label.
- 16) Biological: Indigenous wildlife posses potential human health hazards. Appendix B contains further information on this topic.

12.0 CHEMICAL HAZARDS

Potential chemical hazards and exposure information are provided in Appendix C. Workers must constantly be aware of the possibility of chemical exposure. Always work in a well-ventilated area and be aware of the physiological effects of chemical exposure. Some symptoms of exposure are:

- Irritation of eyes, nose, throat and/or skin
- Lightheadedness
- Nausea

- Headache
- Dizziness
- Confusion
- Difficulty Breathing

901 Rio Grande Blvd NW ▲ Suite F-142 ▲ Albuquerque, NM 87104 ▲ 505.266.5004 ▲ Fax: 505.266-0745

The primary known chemical hazards associated with this site are volital organic compounds. Appendix C contains Material Safety Sheets for the chemical hazards suspected at this site.

13.0 OPERATIONAL PROTECTIVE EQUIPMENT

Operational Protective Equipment will be used to secure the work site if necessary. Examples of Operational Protective Equipment include:

- Warning Signs
- Barricade Traps
- Fire Protection Equipment

14.0 COMMUNICATION

While constructing the boreholes or water wells with a drilling rig heavy equipment operators must be able to communicate with persons within the restricted areas at all times. Communication methods include:

- Visual Hand Signals
- Sound (Voice)
- Tactile (Touching)

Means of communication must be readily available in the event of emergency conditions such as personnel injury, fire or severe weather conditions. Mobile phones or two-way radios typically provide this capability.

15.0 ALCOHOL/DRUG USE/FIREARMS

The use of alcohol and/or other drugs (including prescription and non-prescription medications) endangers the safety of yourself and others around you. Please inform the SHOS of any medications in use. Anyone under the influence of alcohol and/or other drugs will not be allowed on site.

Alcohol consumption during working hours is strictly forbidden by Hicks Consultants. Employees are subject to immediate termination. Contractors will be terminated from the assignment.

Cigarette smoking is also not permitted on site.

Firearms are not permitted on site.

16.0 SAMPLING

Sampling of cuttings during the drilling of a well will be conducted in accordance with a Sampling Plan. Routine sampling of grounddwater from monitoring or recovery wells will be conducted in accordance with the Sampling Protocol.

17.0 SITE HEALTH AND SAFETY PLAN APPROVALS

Prepared by: Kristin Pope

Signature: Knistin Pope_____

Site Health and Safety Officer:

David Hamilton

Signature: David J_ Hamilton

ATTACHMENT A. HEAT AND COLD STRESS

ATTACHMENT A

HEAT AND COLD STRESS

Introduction

Stress can contribute significantly to accidents or harm workers in other ways.

The term stress denotes the physical (gravity, mechanical force, heat, cold, pathogen, injury) and psychological (fear, anxiety, joy) forces that are experienced by individuals.

The body's response to stress occurs in three stages:

- Alarm reaction in which the body recognizes the stressor and the pituitary-adreno-cortical system responds by increasing the heart rate and blood sugar level, decreasing digestive activity and dilating the pupils.
- Adaptive stage in which the body repairs the effects of stimulation and the stress symptoms disappear.
 - Exhaustion stage in which the body can no longer adapt to stress and individuals may develop emotional disturbances and/or cardiovascular and renal diseases.

The most common types of stress that affect field personnel are heat stress and cold stress. Current thinking is that heat and cold stress may be the most serious hazards to workers at waste sites with low chemical or radiological hazard levels.

Heat Stress

For field workers, heat stress usually is a result of protective clothing decreasing natural body ventilation, although it may occur at any time work is being performed at elevated temperatures.

If the body's physiological processes fail to maintain a normal body temperature because of excessive heat, a number of physical reactions can occur ranging from mild (such as fatigue, irritability, anxiety, and decreased concentration, dexterity, or movement) to fatal. Because heat stress is one of the most common and potentially serious illnesses at hazardous waste sites, regular monitoring and other preventative measures are vital.

Site workers must learn to recognize and treat the various forms of heat stress. The best approach is preventative heat stress management. In general:

- Have workers drink 16 ounces of water before beginning work, such as in the morning or after lunch. Provide disposable 4-ounce cups and water that is maintained at 50 60 degrees Fahrenheit (°F). Urge workers to drink 1 2 of these cups of water every 20 minutes, for a total of 1 2 gallons per day. Provide a cool, preferably air-conditioned area for rest breaks. Discourage the use of alcohol in non-working hours, and discourage the intake of coffee during working hours. Monitor for signs of heat stress.
- Acclimate workers to site work conditions by slowly increasing workloads, ic., do not begin site work activities with extremely demanding activities.
- Provide cooling devices to aid natural body ventilation. These devices, however, add weight, and their use should be balanced against worker efficiency. An example of a cooling aid is long cotton underwear which acts as a wick to help absorb moisture and protect the skin from direct contact with heat-absorbing protective clothing.
- Install mobile showers and/or hose-down facilities to reduce body temperature and cool protective clothing.
- In hot weather, conduct field activities in the early morning or evening.

ATTACH_AHCS

ĩ.

Attachment A-I

Attachment A (continued).

- Ensure that adequate shelter is available to protect personnel against heat, cold, rain, snow, etc., which can
 decrease physical efficiency and increase the probability of both heat and cold stress. If possible, set up the
 command post in the shade.
- In hot weather, rotate shifts of workers wearing impervious clothing.
- Good hygienic standards must be maintained by frequent changes of clothing and by showering. Clothing should be permitted to dry during rest periods. Persons who notice skin problems should immediately consult medical personnel.

Heat Stroke

Heat stroke is an acute and dangerous reaction to heat stress caused by a failure of heat-regulating mechanisms of the body the individual's temperature control system that causes sweating stops working correctly. Body temperature rises so high that brain damage and death will result if the person is not cooled quickly.

- Symptoms: Red, hot, dry skin, although person may have been sweating earlier, nausea; dizziness; confusion; extremely high body temperature, rapid respiratory and pulse rate; unconsciousness or coma.
- Treatment: Cool the victim quickly. If the body temperature is not brought down fast, permanent brain damage
 or death will result. Seak the victim in cool bit not cold water, sponge the body with cool water, or pour water on
 the body to reduce the temperature to a safe level (102 °F). Observe the victim and obtain medical help. Do not
 give coffee, tea or alcoholic beverages.

at Exhaustion

Heat exhaustion is a state of very definite weakness or exhaustion caused by the loss of fluids from the body. This condition is much less dangerous than heat stroke, but it nonetheless must be treated.

- Symptoms: Pale, clammy, moist skin, profuse perspiration and extreme weakness. Body temperature is normal, pulse is weak and rapid, breathing is shallow. The person may have a headache, may vomit, and may be dizzy.
- Treatment: Remove the person to a cool, air conditioned place, loosen clothing, place in a head-low position, and
 provide bed rest. Consult physician, especially in severe cases. The normal thirst mechanism is not sensitive
 enough to ensure body fluid replacement. Have patient drink 1 2 cups water immediately, and every 20-minutes
 thereafter, until symptoms subside. Total water consumption should be about 1 2 gallons per day.

Heat Cramps

Heat cramps are caused by perspiration that is not balanced by adequate fluid intake. Heat cramps are often the first sign of a condition that can lead to heat stroke.

- Symptoms: Acute painful spasms of voluntary muscles, e.g., abdomen and extremities.
- Treatment: Remove victim to a cool area and loosen clothing. Have patient drink 1 2 cups of water immediately, and every 20 minutes thereafter, until symptoms subside. Total water consumption should be 1 - 2 gallons per day. Consult with physician.

ATTACH_AHCS

1

Attachment A-2

Attachment A (continued)

Heat Rash

Heat rash is caused by continuous exposure to heat and humid air and aggravated by chafing clothes. The condition decreases ability to tolerate heat.

- Symptoms: Mild red rash, especially in areas of the body in contact with protective gear.
- Treatment: Decrease amount of time in protective gear, and provide powder to help absorb moisture and decrease chafing.

Heat Stress Monitoring and Work Cycle Management

For strenuous field activities that are part of on-going site work activities in hot weather, the following procedures shall be used to monitor the body's physiological response to heat and to manage the work cycle, even if workers are not wearing impervious clothing.

These procedures are to be instituted when the temperature exceeds 70 °F.

If these procedures are required, a qualified Site Health and Safety Coordinatory (SHSC) will perform and record them.

- Measure Heart Rate (HR). Heart rate should be measured by the radial pulse for 30 seconds as early as possible in the resting period. The HR at the beginning of the rest period should not exceed 110 beats/minute. If the HR is higher, the next work period should be shortened by 33%, while the length of the rest period stays the same. If the pulse rate still exceeds 110 beats/minute at the beginning of the next rest period, the following work cycle should be further shortened by 33%. The procedure is continued until the rate is maintained below 110 beats/minute.
- Measure Body Temperature. Body temperature should be measured orally with a clinical thermometer as early as
 possible in the resting period. Oral temperature (OT) at the beginning of the rest period should not exceed 99.6 "F.
 If it does, the next work period should be shortened by 33%, while the length of the rest period stays the same. If
 the OT exceeds 99.6 "F at the beginning of the next period, the following work cycle should be further shortened by
 33%. The procedure is continued until the body temperature is maintained below 99.6 "F.
- Temperature and pulse can be simultaneously recorded using an oral/temp probe.
- Manage Work/Rest Schedule. The following work/rest schedule shall be used as a guideline.

Attachment A-3

Attachment A (continued)

Adjusted Temperature (°F)	Work Time (min/hr) Using Level B/C Gear
75 or less	50
80	- 40
85	30
90	20
95	10
100	0

Measure the air temperature with standard thermometer. Estimate fraction of sunshine by judging what percent the sun is out: 100% sunshine = no cloud cover = 1.0; 50% sunshine = 50% cloud cover = 0.5; 0% sunshine = full cloud cover = 0.0).

Reduce or increase the work cycle according to the guidelines under heart rate and body temperature.

Cold Stress

Persons working outdoors in low temperatures, especially at or below freezing, are subject to cold stress. Exposure to extreme cold for a short time causes severe injury to the surface of the body, or results in profound generalized cooling, causing death. Areas of the body which have high surface area-to-volume ratio, such as fingers, toes, and ears, are the most susceptible.

Protective clothing generally does not afford protection against cold stress. In many instances, it increases susceptibility.

Two factors influence the development of a cold injury: ambient temperature and the velocity of the wind. Wind chill is used to describe the chilling effect of moving air in combination with low temperature.

As a general rule, the greatest incremental increase in wind chill occurs when a wind of 5 mph increases to 10 mph. Additionally, water conducts heat 240 times faster than air. Thus, the body cools suddenly when chemical-protective equipment is removed if the clothing underneath is perspiration soaked.

Frostbite

Local injury resulting from cold is included in the generic term frostbite. Frostbite of the extremities can be categorized into:

- Frost nip or incipient frostbite is characterized by sudden blanching or whitening of skin.
- Superficial frostbite is characterized by skin with a waxy or white appearance and is firm to the touch, but tissue beneath is resilient.

11

Attachment A (continued)

Deep frostbite is characterized by tissues that are cold, pale, and solid.

To administer first aid for frostbite: Take the victim indoors and rewarm the areas quickly in water that is between 39 °C and 41 °C (102 °F - 105 °F). Give a warm drink - not coffee, tea or alcohol. The victim must not smoke. Keep the frozen parts in warm water or covered with warm clothes for 30 minutes, even though the tissue will be very painful as it thaws. Then elevate the injured area and protect it from injury. Do not allow blisters to be broken. Use sterile, soft, dry material to cover the injured areas. Keep victim warm and get immediate medical care.

After thawing, the victim should try to move the injured areas a little, but no more than can be done alone, without help.

Note: .

- Do not rub the frostbitten part (this may cause gangrene)
- Do not use ice, snow, gasoline or anything cold on the frostbitten area.
- Do not use heat lamps or hot water bottles to rewarm the part.
- Do not place the part near a hot stove.

Hypothermia

Systemic hypothermia is caused by exposure to freezing or rapidly dropping temperature. Its symptoms are usually exhibited in five stages:

- Shivering
- Apathy, listlessness, sleepiness, and (sometimes) rapid cooling of the body to less than 95 °F
- Unconsciousness, glassy stare, slow pulse, and slow respiratory rate
- Freezing of the extremities
- Death

As a general rule, field activities shall be curtailed if equivalent chill temperature as defined in Table 1 is below zero (0 °F) unless the activity is of an emergency nature.

ATTACH_AHCS

Attachment A-5

Table 1	Cooling Power On Exposed Flesh Expressed As An Equivalent Temperature Under Calm Conditions "
---------	--

Released to Imaging: 9/16/2024 1:48:57 PM

41.

					AC	TUAL TEN	MPERATU	RE READIN	(G (°F)			
Estimated Wind	50	40	30	20	10	0	-10	-20	-30	40	-50	-60
Speed [miles per hour (moh)]						Equivale	nt Chill Tem	perature (°F	6			
calm	50	40	30	20	10	0	-10	-20	-30	40	-50	-60
5	48	37	27	16	9	ę	-15	-26	-36	4	15-	-68
10	40	28	16	4	6-	-24	-33	46	-58	01-	-83	-95
15	36	22	6	\$	-18	-32	45	-58	-72	-85	66-	-112
20	32	18	4	-10	-25	-39	-53-	67	-82	-96-	-110	-121
25	30	16	0	-15	-29	4	-59	-74	-88	-104	-118	EE1-
30	28	13	-2	-18	-33	89 1	-63	64-	+6-	-109	-125	-140
35	27	11	4	-20	-35	-51	19-	-82	86-	-113	-129	+I45
40	26	10	9	-21	-37	-53	-69	-85	-100	-116	-132	-148
(Wind speeds greater than 40 mph have little additional	LITTI dry sk fa	dn. Max dise sense	GER in < dimum da	hr with nger of ty.	INCRU Dang expos	EASING D er from free ed flesh wit minute.	ANGER zing of hin one	GREAT I	DANGER F	lesh may fre	eze within 3) seconds.
· ·		5		Trend	chfoot and	immersion	t foot may oc	cur at any p	oint on this	chart.		
a second second		A.C.M.	The second second	- C Durde	Interest	Madinina N	Totick MAA					
*Developed by U	S. Army	Rescarci	h Institute	COLEUNIN	Unincritat I	Medicine, 1	VALICH, MICH.		A TANK A PARTY			

SOURCE: ACGIH, Threshold Limit Values for Chemical Substances in the Work Environment for 1984-1985.

ATTACHMENT B. BIOLOGICAL HAZARDS

ATTACHMENT B

BIOLOGICAL / BIOTA HAZARDS

Snakes and venomous arthropods, including insects, spiders, ticks, scorpions, centipedes, and others, create a hazard when their habitats are disturbed. Wasp and bee stings account for a number of fatalities each year. In the United States, snake bites rarely kill because effective treatments have been developed. The best defense is to understand where these creatures may be found and avoid them. Should a bite or sting occur, first aid should be applied immediately and medical treatment sought as indicated below.

Black Widow Spider (*Latrodectus* spp.) is a sedentary web spider found in most warm parts of the world. Only the females bite and then only if threatened or molested. The spider's perception of threat may be different than your intent. The bite may go unnoticed and may not hurt, but the subsequent severe abdominal pain from a black widow's bite resembles appendicitis. There is pain also in muscles and in the soles of the feet but usually no swelling at the site of the bite. Alternately, the saliva flows freely, then the mouth is dry. The bite victim sweats profusely. The eyelids are swollen. The patient usually recovers after several days of agony. Physicians can relieve the severe pain by injection of calcium gluconate. Antivenin is available; however, there is no first-aid treatment for any spider bite. Black widows are common throughout New Mexico, except perhaps at high altitudes.

Brown Spider (also known as brown recluse spider, violin spider) (*Loxosceles* spp.) commonly lives in houses or on the floor or behind furniture. Bites occur when a spider rests in clothing or in a towel or when a human reaches "o or walks closely by one of the spiders remote hiding places. Bites may cause no harm at all. In very severe uses, a red zone appears around the bite, then a crust forms and falls off. The wound grows deeper and does not heal for several months. The spider's venom may cause destruction of red blood cells and other blood changes. The victim may develop chills, fever, joint pains, nausea, and vomiting. In some cases, a generalized rash develops one to two days after the bite. Victim should consult a physician as soon as signs of illness appear. Brown recluse bites and suspected bites have been reported from various parts of New Mexico, especially the southeastern part of the state. However, a specimen of the spider has yet to be collected from the state.

Scorpions of the family Vejovidae are common throughout the desert regions of the southwestern United States and southern California. Vejovid scorpions rarely exceed three inches in length. Scorpions feed at night on insects and spiders, catching them with their pincers and sometimes stinging them. The stinger is in the tip of the tail. Vejovid scorpions burrow in the earth and are sometimes found under rocks and other objects lying on the ground. Scorpions sting in self-defense. Most stings are not serious, but may produce excruciating pain at the site of the sting. The victim may develop nausea, vomiting, and severe abdominal pain. First aid consists of applying cold to the site of the sting and possibly a soothing lotion, such as calamine.

Black Scorpion, Centruroides exilacauda (once known as Centruroides soulpturatus) of the Buthidae family, is found along the Colorado River and the pine forests in Arizona and southwestern New Mexico. It is the only dangerous scorpion found in the continental United States. They are typically only an inch in length and are a translucent straw color. Its poison affects the nerves, causing severe pain. The sting from this scorpion has been "sponsible for deaths of small children,

Ticks (suborder *loxdides*) are external parasites of reptiles, birds, and mammals. Most drop off their host after feeding. They molt and then wait on the tips of leaves, forelegs outstretched, ready to attach to any animal brushing past. The bites of some soft-bodied ticks may cause mild paralysis to man. Ticks transmit many

seases, most important, Rocky Mountain spotted fever and Lyme Disease. Ticks attach themselves to the host only with their mouth parts and feed on blood. In removing a tick, take care not to leave mouth parts behind. Ticks are best removed by pulling them off with steady, gentle pressure. The pull must be light enough to not injure the tick. It may take more than 10 minutes of pulling to remove the tick. Be patient! After tick is removed, wash area thoroughly with soap and water, gently scrubbing the area of the tick bite.

Fleas (order Siphonaptera) in central New Mexico can be carriers of bubonic plague. The plague is usually limited to rodent populations, including squirrels and various species of wild mice and rats. The fleas that parasitize rodents will rarely parasitize people; however, contact with freshly dead or ill animals should be avoided. Fleas from these animals will bite humans providing a pathway for the plague bacillus to enter the body.

Ants, bees, wasps, hornets, and yellow jackets (order Hymenoptera) occasionally cause death. Death from the sting of such creatures is almost always due to acute allergic reaction. The stinging apparatus and venom sac sometimes remain at the site of the sting and must be removed. Some relief from the pain can be obtained by applying cold. Soothing lotions, such as calamine, may reduce itching.

If the victim has a history of allergic reactions to insect bites or is subject to attacks of hay fever or asthma, or if he is not promptly relieved of symptoms, call a physician or take the victim immediately to the nearest location where medical treatment is available. In a highly sensitive person, do not wait for symptoms to appear, since delay can be "ata". If a site worker knows he is sensitive to Hymenoptera stings or bites, he is responsible for notifying the ugency responsible for his medical surveillance, the taskleader, and the site safety officer.

Rattlesnakes are common in the wilder parts of the United States and New Mexico. Rattlesnakes belong to the family of pit vipers (*Crotalinae*). These snakes have a pit between the eye and nostril on each side of the head, elliptical pupils, from one to six fangs (but usually two well-developed fangs), and one row of plates beneath the tail. The head is triangular and wider than the neck and body. The venom of these snakes affects the circulatory system. All reactions from snakebites are aggravated by acute fear and anxiety. Nonpoisonous snakes have two round pupils, no fangs or pit, a double row of plates beneath the tail, and the head is not wider than the neck and body.

Some of the pit vipers found in New Mexico are described below. These are the only poisonous snakes found in New Mexico

Timber rattlesnake, Crotalus horridus (also called banded rattlesnake, mountain rattler, and black rattler), is found in uplands and mountains. Adults range 36 to 60 inches in length.

Western Diamondback rattlesnakes, Crolalus alrox and C. ruber, are found in the desert areas of New Mexico, as far north as Albuquerque. They can grow to 72 inches in length.

Western or Prairie rattlesnakes, Crotalus viridis, are found almost everywhere in New Mexico, Adult snakes range 30 to 60 inches in length.

Attachment B (continued)

Blacktail Rattlesnake, Crotalus viridis, is typically found in mountains and canyons of southern New Mexico. It can reach 60 inches in length.

First Aid

The bite of a rattlesnake is extremely painful and swells rapidly. The bite is marked by one or more puncture wounds created by fangs. Within hours after the venom is injected, the skin becomes discolored and ecchymosis develops and progresses to petechiae and hemorrhagic vesiculation. Weakness, sweating, faintness, nausea, tender lymph nodes, and tingling or numbness of the tongue, mouth, or scalp are common.

The objective of the first aid to the snake bite victim is to:

- Reduce circulation of blood through the bite area Delay absorption of venom
 - Prevent aggravation of the local wound
- Sustain respiration.

The most important step is to get the victim to the hospital quickly. Meanwhile, take the following first-aid measures:

- Keep the victim from moving around.
- Keep the victim as calm as possible and preferably lying down.
 - Immobilize the bitten extremity and keep it at or below the heart level. If the victim can reach a hospital within 4 or 5 hours and if no symptoms develop, no further first-aid measures need be applied.
- If mild to moderate symptoms develop, apply a constricting band 2 to 4 inches above the bite but not around a joint (elbow, wrist, knee, or ankle) and not around the neck, head, or trunk. The band should be 3/4 to 1/2 inches wide, not thin like a rubber band. The band should be snug but loose enough for a finger to be slipped undemeath. Watch out for swelling. Loosen the band if it becomes too light, but do not remove it. Periodically check the pulse in the extremity beyond the bite to ensure the blood flow has not stopped.
- Treat for shock. Keep the victim lying down and comfortable. Maintain his body temperature.
 - If breathing stops, give mouth-to-mouth resuscitation. If breathing stops and there is no pulse, perform CPR.
 - Identify the snake. If the snake can be killed without risk or delay, bring it to the hospital for identification. Use extreme caution when handling the snake, even when presumed dead. Postmortem nerve reactions can cause a deadly strike.
 - Wash the area of the bite with soap and water. Blot dry with sterile gauze,
 - Do not give alcohol, sedatives, aspinn, or any medicine containing aspinn.

Cold therapy is not recommended.

Attachment B (continued)

ANTAVIRUS The Four Corner's Mystery Illness is an unexplained respiratory disease that has claimed

eral lives in New Mexico. Preliminary evidence has shown that the illness may be caused by a hantavirus that y be carried in the urine, saliva, and feces of rodents (particularly rats and mice). With the current concerns over the illness, field personnel, especially those who work in remote locations, should be aware of the presence of any rodents and to take precautions when cleaning or otherwise disturbing areas where rodents may have been. The State of New Mexico Department of Health's preliminary recommendations, as of June 5, 1993, for rodent control follow. Some of the recommendations are geared towards living quarters but have been supplied here for your general information. Wherever possible, these recommendations should be applied to activities at SNL.

CONTROLLING EXPOSURES TO RODENT POPULATIONS

- Reduce the amount of food that is available for the rodents.
 - Food should be kept covered or in refrigerators.
 - Dirty dishes should not be left for long periods of time or left to soak in water.
 - Keep all bulk grains and animal foods outside the house in secure containers.
 - Do not overfeed birds.

Whenever possible, do not sleep on the floor.

INDOOR AREAS

Rodent droppings;

- Use bleach (diluted as 1 part bleach to 10 parts water), alcohol, Lysol (or other diphenols) diluted as recommended on the bottle, or hospital disinfectants (benzalkonium chloride) to kill the virus.
- Apply these cleaning solutions liberally (pour or spray them on the material) before sweeping or mopping floors.

Animal bedding or nests:

- First, fumigate with any commercially available insecticide that is indicated for fleas. It is not necessary to use more than the recommended amount. [NOTE: SNL employees and contractors are <u>not</u> permitted to apply their own pesticides. If you have a need for pesticide application, please contact Michael Vickers in Department 7816 at 844-7387.]
- Bedding and nests should then be soaked in one of the solutions mentioned above. After they are thoroughly soaked, but before they have dried, these materials may be removed. Preferably, use a long-handled shovel to remove the materials. Rubber gloves must be wom.

Attachment B (concluded)

OUTDOOR AREAS

Any possible rodent harborages, such as wood piles or pinon caches,

SHOULD NOT be moved or cleared of rodents at this time. There is probably more danger if they are disturbed than if they are left alone.

7

Attachment B (concluded)

DISPOSAL OF CONTAMINATED MATERIALS

- Rural Areas:
 - The bedding, nests, or dead animals should be taken outside and buried in a two foot deep hole. They may be safely burned prior to burial.
 - Following disposal of the rodent material, gloves should be washed in the solutions mentioned above before discarding them.
- Urban Areas:
 - Contaminated materials should be soaked with the disinfectants mentioned above and then double bagged for refuse collection.

BUBONIC PLAGUE has returned to Albuquerque's mountain area. The plague is an illness that is caused by bacteria and is most often transmitted to humans by the fleas of rodents. The recommendations provided above for controlling exposures to rodent populations should be followed and all dead rodents, including rabbits and squirrels, should be avoided.

Industrial Hygiene personnel are available at 844-3665 for consultation and evaluation if you feel that your work area has a rodent problem. As mentioned previously, SNL employees and contractors are not permitted to apply their own pesticides. Michael Vickers in Department 7816 should be contacted at 844-7387 if you have a need for rodent control and/or pesticide application. If you have medical concerns, contact Dr. Sara Snider of Department 130 at 845-8159.

TI

ATTACHMENT C. Material Safety Sheets

BELL FUELS -- LEAD-FREE GASOLINE; NO-LEAD GASOLINE - GASOLINE, UNL. Page 1 of 4

BELL FUELS -- LEAD-FREE GASOLINE; NO-LEAD GASOLINE - GASOLINE, UNLEADED MATERIAL SAFETY DATA SHEET NSN: 9130012084172 Manufacturer's CAGE: 82539 Part No. Indicator: A Part Number/Trade Name: LEAD-FREE GASOLINE; NO-LEAD GASOLINE General Information Item Name: GASOLINE, UNLEADED Company's Name: BELL FUELS, INC Company's Streat: 4116 WEST PATERSON AVE Company's City: CHICAGO Company's State: IL Company's Country: US Company's Zip Code: 60646 Company's Emerg Ph #: 312-286-0200 Company's Info Ph #: 312-286-0200 Record No. For Safety Entry: 060 Tot Safety Entries This Stk#: 064 Status: SP Date MSDS Prepared: 23FEB90 Safety Data Review Date: 210CT94 Supply Item Manager: KY MSDS Serial Number: BVHJT Specification Number: VV-G-1690 Spec Type, Grade, Class: CIVGAS Hazard Characteristic Code: F2 Unit Of Issue: DR Unit Of Issue Container Qty: 55 GALLONS Type Of Container: DRUM, 18 GAGE Net Unit Weight: 325.2 LBS Ingredients/Identity Information Proprietary: NO Ingredient: HYDROCARBONS, AROMATIC Ingredient Sequence Number: 01 Percent: 15-35 NIOSH (RTECS) Number: 1000732HA OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED Other Recommended Limit: NONE RECOMMENDED -----Proprietary: NO Ingredient: SATURATED HYDROCARBONS Ingredient Sequence Number: 02 Percent: 60-75 NIOSH (RTECS) Number: 10068965H OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED Other Recommended Limit: NONE RECOMMENDED Proprietary: NO Ingredient: UNSATURATED HYDROCARBONS Ingredient Sequence Number: 03 Percent: 1-15 NIOSH (RTECS) Number: 10068870H OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED Other Recommended Limit: NONE RECOMMENDED

Ū.

BELL FUELS -- LEAD-FREE GASOLINE; NO-LEAD GASOLINE - GASOLINE, UNL. Page 2 of 4

```
Proprietary: NO
Ingredient: DYE AND OTHER ADDITIVES
Ingredient Sequence Number: 04
Percent: 0.02
NIOSH (RTECS) Number: 1003746AD
OSHA PEL: NOT ESTABLISHED
ACGIH TLV: NOT ESTABLISHED
Other Recommended Limit: NONE RECOMMENDED
Physical/Chemical Characteristics
Appearance And Odor: BLUE OR CLEAR, TYPICAL HYDROCARBON ODOR.
Boiling Point: 90.0F, 32.2C
Vapor Pressure (MM Hg/70 F): 414 @100C
Vapor Density (Air=1): 3-4
Specific Gravity: 0.71-0.77
 Solubility In Water: NEGLIGIBLE.
 Fire and Explosion Hazard Data
 Flash Point: -50F, -46C
 Flash Point Method: TCC
 Lower Explosive Limit: 1.3
 Upper Explosive Limit: 6
 Extinguishing Media: ANY UL APPROVED CLASS & MEDIA SUCH AS FOAM, CARBON
 DIOXIDE, DRY CHEMICAL.
 Special Fire Fighting Proc: NONE SPECIFIED BY MFG; HOWEVER USE APPROPRIATE
 PROTECTIVE EQPMT INCLUDING SELF-CONTAINED BREATHING APPARATUS.
 Unusual Fire And Expl Hazrds: NONE SPECIFIED BY MFG; HOWEVER MATL IS
 HEAVIER THAN AIR AND WILL TRAVEL LONG DISTANCES & FLASHBACK. EXPLOSIVE
 MIXTURE FORMS W/GASOLINE & AIR.
 Reactivity Data
 Stability: YES
 Cond To Avoid (Stability): NONE SPECIFIED BY MFG; HOWEVER AVOID OPEN
 FLAMES/HEAT/SPARKS/OTHER IGNITION SOURCES.
 Materials To Avoid: OXIDIZERS.
 Hazardous Decomp Products: NONE SPECIFIED BY MFG.
 Hazardous Poly Occur: NO
 Conditions To Avoid (Boly): NOT RELEVANT.
 Health Hazard Data
 LD50-LC50 Mixture: UNKNOWN
 Route Of Entry - Inhalation: YES
'Route Of Entry - Skin: YES
 Route Of Entry - Ingestion: YES
 Health Haz Acute And Chronic: ACUTE: EYE: IRRIT @ HIGH VAP LEVELS OR DIRECT
 CONTACT W/FLUID. SKIN: IRRIT ON PROLONG CONTACT W/LIQ, DERM RESULTING FROM
 DEFATTING NATURE OF LIQ. SYSTEMATIC: CNS EFFECTS (NARCOSIS) @ HIGH VAP
 LEVELS; MUC MEMBRANE IRRIT, PNEUMONIA. INGEST: GASTROINTESTINAL
 DISTRUBANCES. CHRONIC: PERIPERAL NERVOUS SY EFFECTS, BLOOD ALTERATIONS
 Carcinogenicity - NTP: NO
 Carcinogenicity - IARC: YES
 Carcinogenicity - OSHA: NO
 Explanation Carcinogenicity: PER MSDS:NONE STATED; HOWEVER CONTAINS
 GASOLINE WHICH IS CONSIDERED BY IARC TO BE POTENTIAL CARCINOGEN.
 Signs/Symptoms Of Overexp: EYE & SKIN IRRITATION. DERMATITIS, NARCOSIS, GI
 DISTURBANCES: NAUSEA, DIARRHEA, STOMACH PAINS.
 Med Cond Aggravated By Exp: NONE SPECIFIED BY MFG.
 THOROUGHLY WASH AREA W/SOAP & WATER, INHAL: REMOVE FROM CONTAMINATED AREA.
 ADMINISTER ARTIFICIAL RESP IF NECESSARY, CALL PHYSICIAN. INGEST: GIVE A
```

Released to Imaging: 9/16/2024 1:48:57 PM

a second and a second sec

Received by OCD: 9/16/2024 1:47:30 PM

BELL FUELS -- LEAD-FREE GASOLINE; NO-LEAD GASOLINE - GASOLINE, UNL. Page 3 of 4

VEGETABLE OIL TO RETARD ABSORPTION. DO NOT INDUCE VOMITING. CALL PHYSICIAN. FATAL DOSE ADULT HUMAN APPROX 350G, CHILD APPROX 10-13G. Precautions for Safe Handling and Use Steps If Matl Released/Spill: KEEP PUBLIC AWAY, SHUT OFF SOURCE W/O RISK. ADVISE POLICE & NAT RESP CENTER 800-424-8802 IF SUBSTANCE HAS ENTERED A WATER COURSE OR SEWER. CONTAIN LIQ W/EARTH, SAND. RECOVER FREE LIQ BY PPUMPING OR W/SUITABLE ABSORBENT. Neutralizing Agent: NONE SPECIFIED BY MFG. Waste Disposal Method: UNDER MANY SPILL SITUATIONS LIQ CAN BE RECOVERED & RECLAIMED. WHERE SOLID ABSORBENTS ARE USED THEY SHOULD BE INCINERATED PER. APPLICABLE STATE & LOCAL REGULATIONS. Precautions-Handling/Storing: USE APPROPRIATE GROUNDING-DISPENSING PROCEDURES, STORE IN RELATIVELY COOL PLACE. DO NOT EXPOSE TO HEAT, OPEN FLAME OR OXIDANTS. Other Frecautions: NONE SPECIFIED BY MFG. Control Measures Respiratory Protection: FOR EXPOSURES IN EXCESS OF EXPOSURE LIMITS CHEMICAL CARTRIDGE RESPIRATOR OR AIR SUPPLIED EQUIPMENT. Ventilation: LOCAL EXHAUST REQUIRED & EXPLOSION PROOF EQUIPMENT. Protective Gloves: IMPERMEABLE GLOVES. Eye Protection: NONE SPECIFIED HOWEVER SAF GLASSES/GOGG Other Protective Equipment: NONE SPEICFIED BY MFG. Work Hygienic Practices: WASH HANDS AFTER HANDLING & PRIOR TO EAT/DRINK/ SMOKE/USE OF TOILET FACILITIES. FOLLOW GOOD WORK HYGIENE PRACTICES. Transportation Data Trans Data Review Date: 94294 DOT PSN Code: GTN DOT Proper Shipping Name: GASOLINE DOT Class: 3 DOT ID Number: UN1203 DOT Pack Group; II DOT Label: FLAMMABLE LIQUID IMO PSN Code: HRV IMO Proper Shipping Name: GASOLINE IMO Regulations Page Number: 3141 IMO UN Number: 1203 IMO UN Class: 3.1 IMO Subsidiary Risk Label: -TATA PSN Code: MUC IATA UN ID Number: 1203 : IATA Proper Shipping Name: GASOLINE IATA UN Classi 3 IATA Label: FLAMMABLE LIQUID AFI PSN Code: MUC AFI Prop. Shipping Name: GASOLINE AFI Class: 3 AFI ID Number: UN1203 AFI Pack Group: II AFI Basic Pac Ref: 7-7 Disposal Data Label Data Label Required: YES Technical Review Date: 210CT94

Received by OCD: 9/16/2024 1:47:30 PM

BELL FUELS -- LEAD-FREE GASOLINE; NO-LEAD GASOLINE - GASOLINE, UNL. Page 4 of 4

Label Status: F Common Name: LEAD-FREE GASOLINE; NO-LEAD GASOLINE Signal Word: DANGER! Acute Health Hazard-Moderate: X Contact Hazard-Moderate: X Fire Hazard-Severe: X Reactivity Hazard-None: X Special Hazard Precautions: ACUTE:EYE:IRRIT @ HIGH VAP LEVELS OR DIRECT CONTACT W/FLUID. SKIN: IRRIT ON PROLONG CONTACT W/LIQ, DERM RESULTING FROM DEFATTING NATURE OF LIQ. SYSTEMATIC: CNS EFFECTS (NARCOSIS) @ HIGH VAP LEVELS; MUC MEMBRANE IRRIT, PNEUMONIA. INGEST: GASTROINTESTINAL DISTRUBANCES. CHRONIC: PERIPERAL NERVOUS SYS EFFECTS, BLOOD ALTERATIONS. 1STAID: EYE: FLUSH FOR @ LEAST 15MINS W/WATER. SKIN: THOROUGHLY WASH AREA W/ SOAP & WATER. INHAL: REMOVE FROM CONTAMINATED AREA. ADMINISTER ARTIFICIAL RESP IF NECESSARY. CALL PHYSICIAN. INGEST: GIVE A VEGETABLE OIL TO RETARD ABSORPTION. DO NOT INDUCE VOMITING. CALL PHYSICIAN. FATAL DOSE ADULT HUMAN APPROX 350G, CHILD APPROX 10-13G. Protect Eye: Y Protect Skin: Y Protect Respiratory: Y Label Name: B3L1 FUELS, INC Label Street: 4116 WEST PATERSON AVE Label City: CHICAGO Label State: 1L Label Zip Code: 60646 Label Country: US Label Emergency Number: 312-286-0200

Released to Imaging: 9/16/2024 1:48:57 PM

10/22/00

ATTACHMENT D. EMPLOYEE INCIDENT REPORT

.

Name:	SSN:
Site Name/Client:	
Date of Report:	Task/Phase:
Incident Type: [] Possibl	e Excessive Exposure [] Excessive Exposure [] Injury
Date of Incident:	Time of Incident:
Site Conditions at the Tim	e of the Incident
Temperature:	Relative Humidity: Precipitation:
Cloud Cover %:	Wind Speed & Direction:
Other Factors That May F	lave Impacted the Site:
Nature of Exposure/Injury	2
Material Exposed To:	Concentration
Matrix:	Physical State:
Part(s) of Body Exposed of	or Injured:
Type or Extent of Injury of	or Exposure:
Medical Care Received	
When:	Where:
Name of Physician:	
Result of Exposure/Injury	1
[] Death [] Permanent [Disability [] Temporary Disability [] Loss of Work Time
[] Other Explain:	
Was Operation Conducted	d According to an Approved Health and Safety Plan
[] yes [] no Explain: _	
Who Witnessed the Injury	y/Incident:
Was the Injury/Incident d	ue to the Failure of Protective Equipment [] yes [] no
Possible Cause of Injury/	Incident:
Possible Prevention of th	e Injury/Incident:
Signature of Person Com	pleting Report:

Employee Injury/Exposure Incident Report

In the event of an injury or incident:

- decontaminate the individual as much as possible without inflicting further injury
- if decontamination is not possible, wrap the individual in a tarp to prevent the contamination of the vehicle and medical treatment facility
- transport the victim to a medical treatment facility

The decision to use an ambulance or to use a vehicle from the site will depend upon the nature and severity of the injury. Minor injuries can usually be treated faster at a free-standing medical emergency center (Lovelace Urgent Care Center, Family Medical Center, etc.) than at a hospital emergency room. A more serious injury will often be referred to a hospital emergency room from a free-standing emergency center, this will of course result in additional delay, discomfort for the victim, and cost.

This form should be filled out by the site supervisor as soon as they have knowledge of a potential over-exposure or injury. Return the completed form to the Health and Safety Manager as soon as possible.

.

R.T. Hicks Consultants, Ltd.

ATTACHMENT E. SIGNATURE PAGE

DAILY HEALTH AND SAFETY MEETING SIGN-IN SHEET

Date	Name – Printed	Name - Signature	Company

Driving routes to **Artesia General Hospital** 702 N 13th Street, Artesia, New Mexico

Head NORTH on Fanning Rd	0.9 mi
Turn LEFT onto E Four Dinkus Rd	2.7 mi
Turn RIGHT onto US Hwy 285 N	4.3 mi
Turn LEFT onto W Castleberry Rd	1.0 mi
Turn RIGHT onto S 13th St	2.2 mi
Turn RIGHT onto W Memorial Dr	476 ft

Bratcher, Mike, EMNRD

From:	David Hamilton <david@rthicksconsult.com></david@rthicksconsult.com>
Sent:	Tuesday, November 27, 2018 10:22 AM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Cc:	Michael Barrett; Jerry Smith; kristin@rthicksconsult.com
Subject:	[EXT] FW: Lime Rock ASAU #150 Release #2RP-3893

Brad and Mike,

As Mr. Barrett kindly notes, Wednesday and Nov. 29 are not the same time period. We will be sampling on **Wednesday**, **November 28**, **2018**, and continuing on Thursday if necessary.

David Hamilton RT Hicks Consultants Office: 505-266-5004

From: Michael Barrett [mailto:mbarrett@limerockresources.com]
Sent: Tuesday, November 27, 2018 9:37 AM
To: David Hamilton
Cc: Jerry Smith; Randall Hicks; kristin@rthicksconsult.com
Subject: RE: Lime Rock ASAU #150 Release #2RP-3893

FYI The 29th is on Thursday...

From: David Hamilton [mailto:david@rthicksconsult.com]
Sent: Monday, November 26, 2018 11:34 AM
To: bradford.billings@state.nm.us; mike.bratcher@state.nm.us
Cc: Michael Barrett; Jerry Smith; Randall Hicks; kristin@rthicksconsult.com
Subject: Lime Rock ASAU #150 Release #2RP-3893

Brad and Mike,

Please consider this email as notice that we'll be conducting quarterly compliance sampling of the MWs at the Lime Rock ASAU #150 site on Wednesday, November 29, 2018, no earlier than 12:00 noon. Should we need additional time, we'll resume work on Thursday morning, November 30, 2018. Please let me know if you have any comments or questions or stop by and see us in the field. Thanks.

David Hamilton RT Hicks Consultants Office: 505-266-5004

Bratcher, Mike, EMNRD

From:	Kristin Pope <kristin@rthicksconsult.com></kristin@rthicksconsult.com>
Sent:	Monday, February 25, 2019 1:38 PM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Cc:	Randy Hicks; 'Jerry Smith'; mbarrett@limerockresources.com; David Hamilton
Subject:	[EXT] Notice of MW sampling: Lime Rock ASAU #150 (2RP-3893)

Brad & Mike,

Hicks Consultants will sample the 5 monitoring wells at the Lime Rock – ASAU #150 (2RP-3893) on <u>Thursday, February</u> <u>28</u>. We will collect the quarterly compliance samples for each well using the low-flow pumping procedure. Please let us know if you have any questions. Thank you.

Kristin Pope R.T. Hicks Consultants Carlsbad Field Office 575.302.6755
Bratcher, Mike, EMNRD

From:	David Hamilton <david@rthicksconsult.com></david@rthicksconsult.com>
Sent:	Wednesday, January 2, 2019 3:17 PM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Cc:	Michael Barrett; Jerry Smith; kristin@rthicksconsult.com
Subject:	[EXT] Recovery Well location for ASAU 150 Release Site #2RP3893
Attachments:	Plate8WithLatLong.pdf

Brad and Mike,

As we have an opportunity to install a recovery well at this site soon, we are calling/emailing to inform you of the recovery well plans for this site. Please let us know of any requests or questions that NMOCD has regarding this action. The attached plate shows the location of the proposed recovery well as presented in the previously submitted Stage1/2 Abatement Plan (November 2018).

David Hamilton RT Hicks Consultants Office: 505-266-5004

Bratcher, Mike, EMNRD

From:	David Hamilton <david@rthicksconsult.com></david@rthicksconsult.com>
Sent:	Tuesday, May 7, 2019 11:39 AM
То:	Billings, Bradford, EMNRD; Bratcher, Mike, EMNRD
Cc:	Michael Barrett; Jerry Smith; kristin@rthicksconsult.com; Randall Hicks
Subject:	[EXT] Notice of Monitoring well sampling at the ASAU #150 site (2RP-3893)

Brad & Mike,

Hicks Consultants will sample the 5 monitoring wells at the Lime Rock – ASAU #150 (2RP-3893) on <u>Thursday, May 9</u>. We will collect the quarterly compliance samples for each well using the low-flow pumping procedure. Please let us know if you have any questions. Thank you.

Dave Hamilton RT Hicks Consultants Office: 505-266-5004

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
RILEY PERMIAN OPERATING COMPANY, LLC	372290
29 E Reno Avenue, Suite 500	Action Number:
Oklahoma City, OK 73104	383999
	Action Type:
	[IM-SD] Incident File Support Doc (ENV) (IM-BNF)

CONDITIONS

Created By	Condition	Condition
		Date
amaxwell	Historical document upload.	9/16/2024