

in report. 2. Submit next quarterly report by January 15, 2025.

October 14, 2024

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Third Quarter 2024 – SVE System Update

Sullivan GC D #1E

San Juan County, New Mexico Hilcorp Energy Company

NMOCD Incident Number: NCS1518952648

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this Third Quarter 2024 - SVE System Update report summarizing the soil vapor extraction (SVE) system performance at the Sullivan GC D #1E natural gas production well (Site), located in Unit F of Section 26, Township 29 North, Range 11 West in San Juan County, New Mexico (Figure 1). Specifically, this report summarizes Site activities performed in July, August, and September of 2024 to the New Mexico Oil Conservation Division (NMOCD).

SVE SYSTEM SPECIFICATIONS

The original SVE system was installed at the Site in April 2016 by XTO Energy, the previous Site owner, in response to a release originating from a broken fiberglass line used to transfer natural gas condensate. The original SVE system was purchased from Geotech Environmental Equipment, Inc. (Geotech) and operated successfully until the summer of 2018. Due to a broken SVE blower motor, the Site's SVE system did not operate between 2018 and March of 2022; however, a rental SVE system was brought onto the Site and began operation on December 2, 2021. The blower motor from the original Geotech system was replaced on March 21, 2022, and the Geotech SVE system was put back into service.

The current Geotech SVE system is configured with vacuum applied to wells PR-1, MW-01, MW-02, MW-05, and MW-06 (shown on Figure 2). The SVE system consists of a 3 horsepower Rotron Model EN656 regenerative blower capable of producing 212 standard cubic feet per minute (scfm) of flow and 73 inches of water column (IWC) vacuum. The layout of the SVE system and piping is shown on Figure 2.

THIRD QUARTER 2024 ACTIVITIES

During the third quarter of 2024, Ensolum and Hilcorp personnel performed bi-weekly operation and maintenance (O&M) visits to verify the system was operating as designed and to perform any required maintenance. Field notes taken during O&M visits are presented in Appendix A. During the third quarter of 2024, all SVE wells (PR-1, MW-01, MW-02, MW-05, and MW-06) were operated in order to induce air flow through impacted soil within the source area. Between June 26 and September 16, 2024, the SVE system operated for 1,949 hours, with a runtime efficiency of 99 percent (%). Appendix B presents Hilcorp Energy Company Third Quarter 2024 – SVE System Update Sullivan GC D#1E

photographs of the runtime meter for calculating the runtime efficiency. Table 1 presents the SVE system operational hours and percent runtime.

A third quarter 2024 vapor sample was collected on September 16, 2024, from a sample port located between the SVE piping manifold and the SVE blower using a high vacuum air sampler. Prior to collection, the vapor sample was field screened with a photoionization detector (PID) for organic vapor monitoring (OVM). The vapor sample was collected directly into two 1-Liter Tedlar® bags and submitted to Eurofins Environment Testing (Formerly Hall Environmental Analysis Laboratory), located in Albuquerque, New Mexico, for analysis of total volatile petroleum hydrocarbons (TVPH, also referred to as total petroleum hydrocarbons – gasoline range organics (TPH-GRO)) following United States Environmental Protection Agency (EPA) Method 8015D, volatile organic compounds (VOCs) following EPA Method 8260B, and fixed gas analysis of oxygen and carbon dioxide following Gas Processor Association (GPA) Method 2261. Table 2 presents a summary of analytical data collected during this sampling event and previous sampling events, with the full laboratory analytical report included in Appendix C.

Vapor sample data and measured stack flow rates are used to estimate total mass recovered and total emissions generated by the SVE system (Table 3). Based on these estimates, 91,581 pounds (46 tons) of TVPH have been removed by the system to date.

RECOMMENDATIONS

Bi-weekly O&M visits will continue to be performed by Ensolum and/or Hilcorp personnel to verify the SVE system is operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following quarterly report.

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely, **Ensolum, LLC**

Stuart Hyde, LG (licensed in WA & TX) Senior Managing Geologist

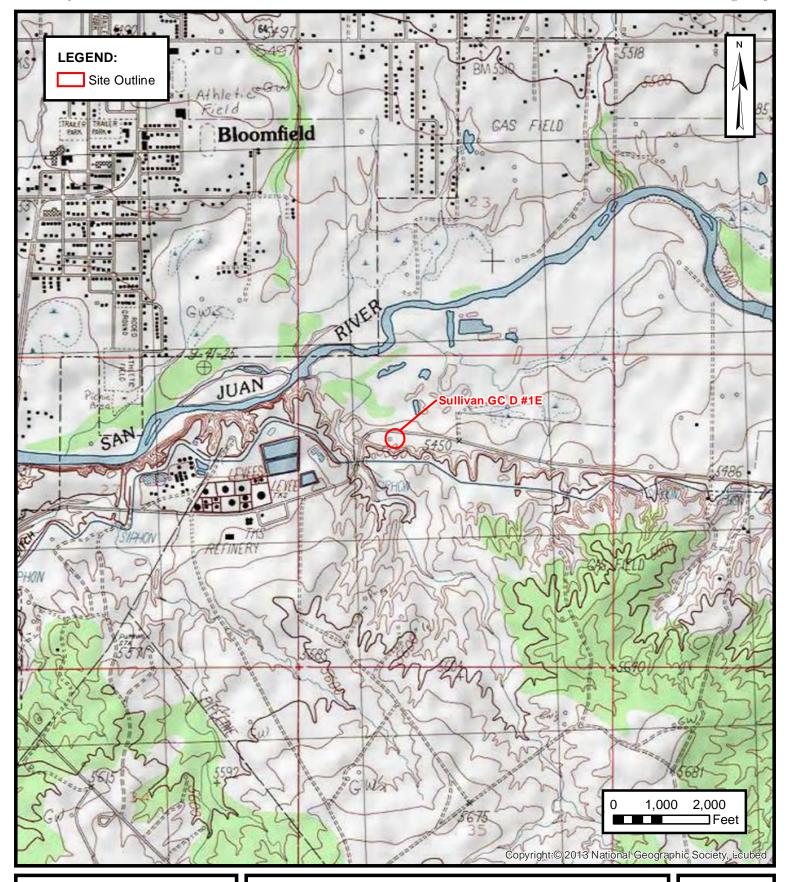
(970) 903-1607 shyde@ensolum.com Daniel R. Moir, PG (licensed in WY & TX) Senior Managing Geologist (303) 887-2946

dmoir@ensolum.com

Attachments:

Figure 1 Site Location
Figure 2 SVE System Layout

Table 1 Soil Vapor Extraction System Runtime Calculations
 Table 2 Soil Vapor Extraction System Emission Analytical Results
 Table 3 Soil Vapor Extraction System Mass Removal and Emissions

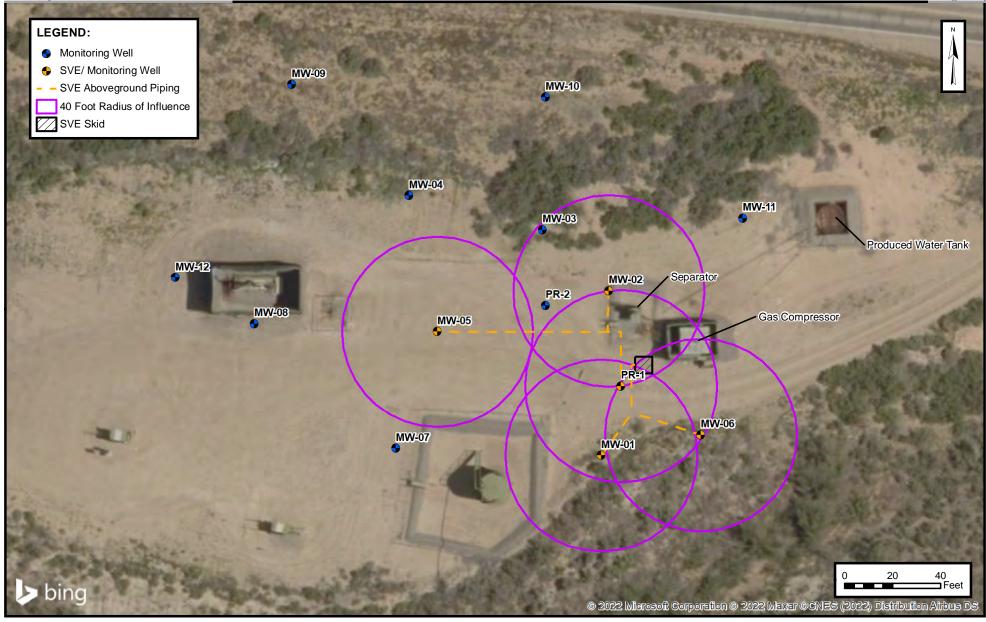

Appendix A Field Notes

Appendix B Project Photographs

Appendix C Laboratory Analytical Reports

Figures

SITE LOCATION


HILLCORP ENERGY COMPANY
SULLIVAN GC D #1E
San Juan County, New Mexico

36.885855° N, 107.899525° W

PROJECT NUMBER: 07A1988029

FIGURE

Received by OCD: 10/14/2024 3:44:24 PM

SVE SYSTEM LAYOUT

SULLIVAN GC D #1E

San Juan County, New Mexico 36.885855° N, 107.899525° W

PROJECT NUMBER:07A1988029

FIGURE

Tables

TABLE 1 SOIL VAPOR EXTRACTION SYSTEM RUNTIME CALCULATIONS

Sullivan GC D#1E Hilcorp Energy Company San Juan County, New Mexico

Permanent Geotech SVE Skid Runtime Operation

Date	Total Operational Hours	Delta Hours	Days	% Runtime
6/26/2024	19,570		-	
9/16/2024	21,519	1,949	82	99%

Ensolum 1 of 1

TABLE 2

SOIL VAPOR EXTRACTION SYSTEM EMISSIONS ANALYTICAL RESULTS

Sullivan GC D#1E

Hilcorp Energy Company San Juan County, New Mexico

Date	PID (ppm)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	TVPH/GRO (μg/L)	Oxygen (%)	Carbon Dioxide (%)
4/18/2016		840	1,900	87	840	140,000		-
4/20/2016	2,375	840	1,900	87	840	140,000		
4/29/2017	3,520	280	1,000	64	630	65,000		
8/11/2016	4,215	92	700	90	910	23,000		
1/24/2018	2,837	46	140	<5.0	410	21,000		
6/29/2018	3,000	63	210	<5.0	410	27,000		-
12/2/2021	741	15	<5.0	<5.0	99	33,000		
3/16/2022	982	<0.10	<0.10	<0.10	1.1	64	19.40	1.23
6/17/2022	327	<0.10	<0.10	<0.10	0.25	10	21.54	0.29
9/22/2022	266	<0.10	<0.10	<0.10	<0.15	<5.0	20.57	1.00
12/10/2022	68	0.75	4.9	0.49	9.0	490	21.02	0.65
3/13/2023	69	0.81	4.4	0.30	5.7	300	21.15	0.51
6/23/2023	139	5.9	12	3.0	6.7	840	21.01	0.55
8/18/2023	76	2.4	2.9	<1.0	1.8	340	20.83	0.68
11/21/2023	186	2.8	18	1.7	18	480	20.94	0.51
3/4/2024	212	4.0	29.0	2.7	31	580	21.41	0.51
6/14/2024	142	4.4	4.1	<1.0	2.1	340	20.44	0.72
9/16/2024	55	5.8	24	1.3	13	510	21.32	0.48

Notes:

Released to Imaging: 10/25/2024 11:48:04 AM

GRO: gasoline range hydrocarbons

μg/L: microgram per liter

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

%: percent

--: not sampled

gray indicates result less than the stated laboratory reporting limit (RL)

Ensolum 1 of 1

TABLE 3 SOIL VAPOR EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS Sullivan GC D#1E Hilcorp Energy Company San Juan County, New Mexico

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)
4/18/2016		840	1,900	87	840	140,000
4/20/2016	2,375	840	1,900	87	840	140,000
4/29/2017	3,520	280	1,000	64	630	65,000
8/11/2016	4,215	92	700	90	910	23,000
1/24/2018	2,837	46	140	5.0	410	21,000
6/29/2018	3,000	63	210	5.0	410	27,000
12/2/2021			Rental SVE S	System Startup		
12/2/2021	741	15	5.0	5.0	99	33,000
3/16/2022	982	0.10	0.10	0.10	1.1	64
3/21/2022			Permanent SVE	System Startup		
6/17/2022	327	0.10	0.10	0.10	0.25	10
9/22/2022	266	0.10	0.10	0.10	0.15	5.0
12/10/2022	68	0.75	4.9	0.49	9.0	490
3/13/2023	69	0.81	4.4	0.30	5.7	300
6/23/2023	139	5.9	12	3.0	6.7	840
8/18/2023	76	2.4	2.9	1.0	1.8	340
11/21/2023	186	2.8	18	1.7	18	480
3/4/2024	212	4.0	29.0	2.7	31	580
6/14/2024	142	4.4	4.1	1.0	2.1	340
9/16/2024	55	5.8	24	1.3	13	510
Average	1,130	122	331	20	235	25,164

Vapor Extraction Summary

Date	Flow Rate (cfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
4/18/2016	90	0	0	0.28	0.64	0.029	0.28	47
4/20/2016	109	313,920	313,920	0.34	0.77	0.035	0.34	57
4/29/2017	90	1,480,320	1,166,400	0.19	0.49	0.025	0.25	35
8/11/2016	70	6,923,520	5,443,200	0.049	0.22	0.020	0.20	12
1/24/2018	60			0.015	0.094	0.011	0.15	4.9
6/29/2018	41	53,246,160	46,322,640	0.0084	0.027	0.001	0.063	3.7
12/2/2021				Rental SVE S	ystem Startup			
12/2/2021	49	53,246,160	0	0	0	0	0	0
3/16/2022	49	60,581,754	7,335,594	0.0014	0.00047	0.00047	0.0092	3.0
3/21/2022				Permanent SVE	System Startup			
6/17/2022	80	70,724,634	10,142,880	0.000030	0.000030	0.000030	0.0002	0.011
9/22/2022	68	80,221,650	9,497,016	0.000025	0.000025	0.000025	0.000051	0.0019
12/10/2022	80	89,341,170	9,119,520	0.00013	0.00075	0.000088	0.0014	0.074
3/13/2023	75	99,328,020	9,986,850	0.00022	0.0013	0.00011	0.0021	0.11
6/23/2023	76	110,408,820	11,080,800	0.00095	0.0023	0.00047	0.0018	0.16
8/18/2023	80	116,845,620	6,436,800	0.00124	0.0022	0.00060	0.0013	0.18
11/21/2023	75	127,065,120	10,219,500	0.00073	0.0029	0.00038	0.0028	0.12
3/4/2024	110	143,512,320	16,447,200	0.00140	0.0097	0.00091	0.0101	0.22
6/14/2024	110	157,953,120	14,440,800	0.00173	0.0068	0.00076	0.0068	0.19
9/16/2024	105	172,046,220	14,093,100	0.00200	0.0055	0.00045	0.0030	0.17
			Average	0.050	0.127	0.007	0.074	9.06

				Mass Recovery				
Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
4/18/2016	0	0	0.0	0.0	0.0	0.0	0.0	0.0
4/20/2016	48	48	16	37	1.7	16	2,740	1.4
4/29/2017	264	216	41	105	5.5	53	7,452	3.7
8/11/2016	1,560	1,296	63	288	26	261	14,929	7.5
1/24/2018		-		-	-			-
6/29/2018	16,848	15,288	128	410	12	961	56,264	28
12/2/2021				Rental SVE S	ystem Startup			
12/2/2021	968	0	0.0	0.0	0.0	0.0	0.0	0.0
3/16/2022	3,463	2,495	3.5	1.2	1.2	23	7,559	3.8
3/21/2022				Permanent SVE	System Startup			
3/21/2022	0	0	0.0	0.0	0.0	0.0	0.0	0.0
6/17/2022	2,113	2,113	0.063	0.063	0.063	0.43	23	0.012
9/22/2022	4,441	2,328	0.059	0.059	0.059	0.12	4.4	0.0022
12/10/2022	6,341	1,900	0.24	1.4	0.17	2.6	141	0.070
3/13/2023	8,560	2,219	0.49	2.9	0.25	4.6	246	0.12
6/23/2023	10,990	2,430	2.3	5.7	1.1	4.3	394	0.20
8/18/2023	12,331	1,341	1.7	3.0	0.80	1.7	237	0.12
11/21/2023	14,602	2,271	1.7	6.7	0.86	6.3	261	0.13
3/4/2024	17,094	2,492	3.5	24.1	2.26	25.1	543	0.27
6/14/2024	19,282	2,188	3.8	14.9	1.67	14.9	414	0.21
9/16/2024	21,519	2,237	4.5	12.3	1.01	6.6	373	0.19
	Total Mass	Recovery to Date	270	914	54	1,382	91,581	46

Notes:

cf: cubic feet cfm: cubic feet per minute μg/L: micrograms per liter lb/hr: pounds per hour --: not sampled

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

gray: laboratory reporting limit used for calculating emissions

APPENDIX A

Field Notes

DATE: TIME ONSITE:	7-8	BIWEEKLY O&M FORM O&M PERSONNEL TIME OFFSITE	· B Sinclair	
SVE ALARMS: (check if applicable) Product Skimmer Hours (take photo) Volume in bbl Volume removed Volume removed to date		SVE SYSTEM - MONTHLY O&M HIGH/LOW VACUUM KO TANK HIGH LEVEL HIGH EXHAUST TEMPERATURE SVE SYSTEM Blower Hours (take photo Pre K/O Vacuum (IWC Post K/O Vacuum (IWC Total Flow (cfm	READING 19893	TIME 15 (S
HOUSEKEEPING Inline Filter Clean Clean tank level alarm on skimmer		Zone 1/ Leg A Flow (scfm Inlet PID Exhaust Post GAC PID Liquid in K/O Sight Tube (Y/N) K/O Liquid Drained (gallons)	59:8	
	SVI	F SVSTEM OUADTEDLY SAMPLING		
SAMPLE ID:		E SYSTEM - QUARTERLY SAMPLING SAMPLE TIME:		
OPERATING WELLS	TVPH (8015), VOCs (8260), I	Fixed Gas (CO/CO2/O2)		
ZONES				
Change in Well Operation:				
LOCATION MW-01	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS	
MW-02	7.73	54.4		
MW-05	7.57	58.41		
MW-06 PR-1	7.53	45.8		
Product Recovery LOCATION	Product thickness	Product removed from Sock (volume and color)	Volume removed total (gal or oz?)	Replace Sock? (Y/N0
LOCATION			(840:02.)	Replace Sock! (17N0
MENTS/OTHER MAINTENANCE:				

		BIWEEKLY O&M FORM		
DATE:	7-23	O&M PERSONNEL: TIME OFFSITE:		
	S	VE SYSTEM - MONTHLY O&M		
SVE ALARMS:		HIGH/LOW VACUUM		
(check if applicable)		KO TANK HIGH LEVEL		
		HIGH EXHAUST TEMPERATURE		
Product Skimmer				TDG
Hours (take photo)		SVE SYSTEM Player Hours (take photo)	And the control of the late of	TIME 1209
Volume in bbl		Blower Hours (take photo) Pre K/O Vacuum (IWC)		1201
Volume removed		Post K/O Vacuum (IWC)		
Volume removed to date		Total Flow (cfm)		
		Zone 1/ Leg A Flow (scfm)		
		Inlet PID Exhaust Post GAC PID		
		Liquid in K/O Sight Tube (Y/N)		
		K/O Liquid Drained (gallons)		
HOUSEKEEPING	Check			
Inline Filter Clean Clean tank level alarm on skimmer				
Clean tank level diarm on skinnier				
	SVE	SYSTEM - QUARTERLY SAMPLING		
SAMPLE ID:	TUDU (0015) NOG (00(0) E	SAMPLE TIME:		
OPERATING WELLS	TVPH (8015), VOCs (8260), Fix	xed Gas (CO/CO2/O2)		
OTERATING WEELS				
ZONES				
ZONES				
Change in Well Operation:				
Zone 1/ Leg A				
LOCATION	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS	
MW-01	7.26	59.9		
MW-02	7.68	81,2		
MW-05 MW-06	521	53.3		
PR-1	7.51	59.7		
Product Recovery				
Well		Product removed from Sock (volume and color)	Volume removed total (gal or oz?)	Damless C. 10 (Trare
LOCATION	Product thickness	Product removed from Book (volume and color)	volume removed total (gal of oz:)	Replace Sock? (Y/N0
				1
COMMENTS/OTHER MAINTENANCE:				

TIME ONSITE:		O&M PERSONNEL: TIME OFFSITE:	DJINCLAIR	
		SVE SYSTEM - MONTHLY O&M		
CYTE AV ADME		Innover on the order		
SVE ALARMS:		HIGH/LOW VACUUM		
(check if applicable)		KO TANK HIGH LEVEL HIGH EXHAUST TEMPERATURE		
		INION EXHAUST TEMPERATURE		
Product Skimmer		SVE SYSTEM	READING	TIME
Hours (take photo)		Blower Hours (take photo)		1523
Volume in bb		Pre K/O Vacuum (IWC)		
Volume removed		Post K/O Vacuum (IWC)		
Volume removed to date		Total Flow (cfm)		
		Zone 1/ Leg A Flow (scfm)		
		Inlet PID		建筑
		Exhaust Post GAC PID		
		Liquid in K/O Sight Tube (Y/N)		
		K/O Liquid Drained (gallons)		
HOUSEKEEPING				
Inline Filter Clea				
Clean tank level alarm on skimme	er [
		OVEREM OULDEDLY CAMPUDIC		
SAMPLE II):	E SYSTEM - QUARTERLY SAMPLING SAMPLE TIME:		
	s: TVPH (8015), VOCs (8260), H	Fixed Gas (CO/CO2/O2)		
OPERATING WELL	S			
ZONES				
Change in Well Operation:				
ne 1/ Leg A	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS	
LOCATION	7.85	19.5		
11-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-				
MW-01 MW-02	8.93	48.9		
MW-02	8.95	48.9		
	8.95 7.79 7.39	32.5		
MW-02 MW-05	7.79 7.39 7.15	32.5 38.7		
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Values	
MW-02 MW-05 MW-06 PR-1	Product thickness	Product removed from Sock (volume and color)	Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-05 MW-06 PR-1 Product Recovery Vell LOCATION	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-02 MW-05 MW-06 PR-1 Product Recovery	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-05 MW-06 PR-1 Product Recovery Vell LOCATION	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-05 MW-06 PR-1 Product Recovery Vell LOCATION	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-05 MW-06 PR-1 Product Recovery Vell LOCATION	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-05 MW-06 PR-1 Product Recovery Vell LOCATION	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-05 MW-06 PR-1 Product Recovery Vell LOCATION	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0
MW-05 MW-06 PR-1 Product Recovery Vell LOCATION	7.79 7.39 7.39 8.15		Volume removed total (gal or oz?)	Replace Sock? (Y/N0

Received by OCD: 10/14/2024 3:44:24 PM

		SVE SYSTEM - MONTHLY O&M		
SVE ALARMS: (check if applicable)		HIGH/LOW VACUUM KO TANK HIGH LEVEL HIGH EXHAUST TEMPERATURE		
Product Skimmer Hours (take photo) Volume in bbl Volume removed Volume removed to date HOUSEKEEPING Inline Filter Clean Clean tank level alarm on skimmer	Check		19 19 25 105 44.8	1425
SAMPLE ID:	SV ΓVPH (8015), VOCs (8260),	E SYSTEM - QUARTERLY SAMPLING SAMPLE TIME:		
OPERATING WELLS				
ZONES				
Change in Well Operation:				
Change in Well Operation: Leg A LOCATION MW-01	VACUUM (IWC)	PID HEADSPACE (PPM)	ADJUSTMENTS	
Change in Well Operation: Leg A LOCATION		PID HEADSPACE (PPM) 19.9 21.3 25.8 31.7 56.0	ADJUSTMENTS	
Change in Well Operation: Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-1	5.32	19.9 21.3 25.8 31.7	ADJUSTMENTS	
Change in Well Operation: Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-1	5.32	19.9 21.3 25.8 31.7	ADJUSTMENTS Volume removed total (gal or oz?)	Replace Sock? (Y/N0
Change in Well Operation: Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-1 Product Recovery	6.51 5.34 6.37 6.87	19.9		Replace Sock? (Y/NO
Change in Well Operation: Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-1 Product Recovery	6.51 5.34 6.37 6.87	19.9		Replace Sock? (Y/NO
Change in Well Operation: Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-1 Product Recovery	6.51 5.34 6.37 6.87	19.9		Replace Sock? (Y/N0
Change in Well Operation: Leg A LOCATION MW-01 MW-02 MW-05 MW-06 PR-1 Product Recovery	6.51 5.34 6.37 6.87	19.9		Replace Sock? (Y/NO

DATE: TIME ONSITE:	9-16	O&M PERSONNEL TIME OFFSITE		
		SVE SYSTEM - MONTHLY O&M		
SVE ALARMS: (check if applicable)		HIGH/LOW VACUUM KO TANK HIGH LEVEL HIGH EXHAUST TEMPERATURE		
Product Skimmer Hours (take photo) Volume in bbl Volume removed Volume removed to date		SVE SYSTEM Blower Hours (take photo) Pre K/O Vacuum (IWC) Post K/O Vacuum (IWC) Total Flow (cfin) Zone 1/ Leg A Flow (scfm) Inlet PID Exhaust Post GAC PID Liquid in K/O Sight Tube (Y/N)	17 22 105 54.5 31.1	TIME / 9.3 6
HOUSEKEEPING Inline Filter Clean Clean tank level alarm on skimmer		K/O Liquid Drained (gallons)		
	CVI	CVCTEM OULDTEDLY CAMPIUNG		
SAMPLE ID: Analytes: OPERATING WELLS	5 V E - VOCs (8260), F	SAMPLE TIME: Exed Gas (CO/CO2/O2)	1430	
ZONES				
Change in Well Operation:				
Zone 1/ Leg A LOCATION MW-01 MW-02 MW-05	VACUUM (IWC) 3.80 4.26 4.02	PID HEADSPACE (PPM) 59.3 29.1	ADJUSTMENTS	
MW-06 PR-1	3:39	32.6 54.8		
Product Recovery Well	Product thickness	Product removed from Sock (volume and color)	Volume removed total (column 2)	
LOCATION	Product thickness	1 Todact Tellio ved Ifolii Sock (voidine and color)	Volume removed total (gal or oz?)	Replace Sock? (Y/N0
TENANCE:				
COMMENTS/OTHER MAINTENANCE:				

APPENDIX B

Project Photographs

PROJECT PHOTOGRAPHS

Sullivan GC D #1E San Juan County, New Mexico Hilcorp Energy Company

Photograph 1

Runtime meter taken on June 26, 2024 at 2:27 PM Hours = 19,570

Photograph 2

Runtime meter taken on September 16, 2024 at 2:36 PM Hours = 21,519

APPENDIX C

Laboratory Analytical Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 10/4/2024 12:14:11 PM

JOB DESCRIPTION

Sullivan GC D 1E

JOB NUMBER

885-11900-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 10/4/2024 12:14:11 PM

Authorized for release by Michelle Garcia, Project Manager michelle.garcia@et.eurofinsus.com (505)345-3975

Page 2 of 24 10/4/2024

Client: Hilcorp Energy

Laboratory Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	13
Certification Summary	14
Subcontract Data	17
Chain of Custody	23
Receint Checklists	

4

6

8

9

TU

Definitions/Glossary

Job ID: 885-11900-1 Client: Hilcorp Energy

Project/Site: Sullivan GC D 1E

Glossary

CNF

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit

Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference)

Dilution Factor Dil Fac

DL Detection Limit (DoD/DOE)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DL, RA, RE, IN

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive

Quality Control QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Albuquerque

Case Narrative

Client: Hilcorp Energy Job ID: 885-11900-1 Project: Sullivan GC D 1E

Eurofins Albuquerque Job ID: 885-11900-1

> Job Narrative 885-11900-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 9/17/2024 7:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 18.7°C.

Subcontract Work

Method Fixed Gases: This method was subcontracted to Energy Laboratories, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

Client Sample Results

Client: Hilcorp Energy

Project/Site: Sullivan GC D 1E

Client Sample ID: SVE-1 Date Collected: 09/16/24 14:30 Lab Sample ID: 885-11900-1

Matrix: Air

Job ID: 885-11900-1

Date Received: 09/17/24 07:15 Sample Container: Tedlar Bag 1L

Method: SW846 8015M/D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

Result Qualifier Dil Fac Analyte RL Unit Prepared Analyzed 50 ug/L 09/25/24 16:27 Gasoline Range Organics [C6 -**510**

C10]

%Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac 86 52 - 172 09/25/24 16:27 10 4-Bromofluorobenzene (Surr)

Analyte	Result Qualifier	RL	Unit	D Prepa	ared Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND -	1.0	ug/L		09/25/24 16:27	1
1,1,1-Trichloroethane	ND	1.0	ug/L		09/25/24 16:27	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L		09/25/24 16:27	1
1,1,2-Trichloroethane	ND	1.0	ug/L		09/25/24 16:27	1
1,1-Dichloroethane	ND	1.0	ug/L		09/25/24 16:27	1
1,1-Dichloroethene	ND	1.0	ug/L		09/25/24 16:27	1
1,1-Dichloropropene	ND	1.0	ug/L		09/25/24 16:27	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L		09/25/24 16:27	1
1,2,3-Trichloropropane	ND	2.0	ug/L		09/25/24 16:27	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L		09/25/24 16:27	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L		09/25/24 16:27	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L		09/25/24 16:27	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L		09/25/24 16:27	1
1,2-Dichlorobenzene	ND	1.0	ug/L		09/25/24 16:27	1
1,2-Dichloroethane (EDC)	ND	1.0	ug/L		09/25/24 16:27	1
1,2-Dichloropropane	ND	1.0	ug/L		09/25/24 16:27	1
1,3,5-Trimethylbenzene	ND	1.0	ug/L		09/25/24 16:27	1
1,3-Dichlorobenzene	ND	1.0	ug/L		09/25/24 16:27	1
1,3-Dichloropropane	ND	1.0	ug/L		09/25/24 16:27	1
1,4-Dichlorobenzene	ND	1.0	ug/L		09/25/24 16:27	1
1-Methylnaphthalene	ND	4.0	ug/L		09/25/24 16:27	1
2,2-Dichloropropane	ND	2.0	ug/L		09/25/24 16:27	1
2-Butanone	ND	10	ug/L		09/25/24 16:27	1
2-Chlorotoluene	ND	1.0	ug/L		09/25/24 16:27	1
2-Hexanone	ND	10	ug/L		09/25/24 16:27	1
2-Methylnaphthalene	ND	4.0	ug/L		09/25/24 16:27	1
4-Chlorotoluene	ND	1.0	ug/L		09/25/24 16:27	1
4-Isopropyltoluene	ND	1.0	ug/L		09/25/24 16:27	1
4-Methyl-2-pentanone	ND	10	ug/L		09/25/24 16:27	1
Acetone	ND	10	ug/L		09/25/24 16:27	1
Benzene	5.8	1.0	ug/L		09/25/24 16:27	1
Bromobenzene	ND	1.0	ug/L		09/25/24 16:27	1
Bromodichloromethane	ND	1.0	ug/L		09/25/24 16:27	1
Dibromochloromethane	ND	1.0	ug/L		09/25/24 16:27	1
Bromoform	ND	1.0	ug/L		09/25/24 16:27	1
Bromomethane	ND	3.0	ug/L		09/25/24 16:27	1
Carbon disulfide	ND	10	ug/L		09/25/24 16:27	1
Carbon tetrachloride	ND	1.0	ug/L		09/25/24 16:27	1
Chlorobenzene	ND	1.0	ug/L		09/25/24 16:27	1
Chloroethane	ND	2.0	ug/L		09/25/24 16:27	1
Chloroform	ND	1.0	ug/L		09/25/24 16:27	1

Eurofins Albuquerque

Released to Imaging: 10/25/2024 11:48:04 AM

Job ID: 885-11900-1

Client: Hilcorp Energy Project/Site: Sullivan GC D 1E

Client Sample ID: SVE-1

Lab Sample ID: 885-11900-1

Matrix: Air

Date Collected: 09/16/24 14:30 Date Received: 09/17/24 07:15 Sample Container: Tedlar Bag 1L

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Chloromethane	ND -	3.0	ug/L		09/25/24 16:27	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		09/25/24 16:27	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		09/25/24 16:27	1
Dibromomethane	ND	1.0	ug/L		09/25/24 16:27	1
Dichlorodifluoromethane	ND	1.0	ug/L		09/25/24 16:27	1
Ethylbenzene	1.3	1.0	ug/L		09/25/24 16:27	1
Hexachlorobutadiene	ND	1.0	ug/L		09/25/24 16:27	1
Isopropylbenzene	ND	1.0	ug/L		09/25/24 16:27	1
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/L		09/25/24 16:27	1
Methylene Chloride	ND	3.0	ug/L		09/25/24 16:27	1
n-Butylbenzene	ND	3.0	ug/L		09/25/24 16:27	1
N-Propylbenzene	ND	1.0	ug/L		09/25/24 16:27	1
Naphthalene	ND	2.0	ug/L		09/25/24 16:27	1
sec-Butylbenzene	ND	1.0	ug/L		09/25/24 16:27	1
Styrene	ND	1.0	ug/L		09/25/24 16:27	1
tert-Butylbenzene	ND	1.0	ug/L		09/25/24 16:27	1
Tetrachloroethene (PCE)	ND	1.0	ug/L		09/25/24 16:27	1
Toluene	24	1.0	ug/L		09/25/24 16:27	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		09/25/24 16:27	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		09/25/24 16:27	1
Trichloroethene (TCE)	ND	1.0	ug/L		09/25/24 16:27	1
Trichlorofluoromethane	ND	1.0	ug/L		09/25/24 16:27	1
Vinyl chloride	ND	1.0	ug/L		09/25/24 16:27	1
Xylenes, Total	13	1.5	ug/L		09/25/24 16:27	1

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	88	70 - 130		09/25/24 16:27	1
Toluene-d8 (Surr)	107	70 - 130		09/25/24 16:27	1
4-Bromofluorobenzene (Surr)	97	70 - 130		09/25/24 16:27	1
Dibromofluoromethane (Surr)	92	70 - 130		09/25/24 16:27	1

Eurofins Albuquerque

2

4

6

8

10

11

QC Sample Results

Client: Hilcorp Energy Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

Client Sample ID: Method Blank

Method: 8015M/D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

Lab Sample ID: MB 885-13519/4

Matrix: Air

Analysis Batch: 13519

Prep Type: Total/NA MB MB

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Gasoline Range Organics [C6 - C10] ND 5.0 ug/L 09/25/24 10:44

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 52 - 172 4-Bromofluorobenzene (Surr) 82 09/25/24 10:44

Lab Sample ID: LCS 885-13519/3 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Air

Analysis Batch: 13519

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 4250 4280 ug/L 101 70 - 130 Gasoline Range Organics [C6 -

C10]

LCS LCS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 52 - 172 89

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-12987/1005 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Air

Analysis Batch: 12987

Released to Imaging: 10/25/2024 11:48:04 AM

MR MR

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L			09/25/24 12:46	1
1,1,1-Trichloroethane	ND		1.0	ug/L			09/25/24 12:46	1
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L			09/25/24 12:46	1
1,1,2-Trichloroethane	ND		1.0	ug/L			09/25/24 12:46	1
1,1-Dichloroethane	ND		1.0	ug/L			09/25/24 12:46	1
1,1-Dichloroethene	ND		1.0	ug/L			09/25/24 12:46	1
1,1-Dichloropropene	ND		1.0	ug/L			09/25/24 12:46	1
1,2,3-Trichlorobenzene	ND		1.0	ug/L			09/25/24 12:46	1
1,2,3-Trichloropropane	ND		2.0	ug/L			09/25/24 12:46	1
1,2,4-Trichlorobenzene	ND		1.0	ug/L			09/25/24 12:46	1
1,2,4-Trimethylbenzene	ND		1.0	ug/L			09/25/24 12:46	1
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L			09/25/24 12:46	1
1,2-Dibromoethane (EDB)	ND		1.0	ug/L			09/25/24 12:46	1
1,2-Dichlorobenzene	ND		1.0	ug/L			09/25/24 12:46	1
1,2-Dichloroethane (EDC)	ND		1.0	ug/L			09/25/24 12:46	1
1,2-Dichloropropane	ND		1.0	ug/L			09/25/24 12:46	1
1,3,5-Trimethylbenzene	ND		1.0	ug/L			09/25/24 12:46	1
1,3-Dichlorobenzene	ND		1.0	ug/L			09/25/24 12:46	1
1,3-Dichloropropane	ND		1.0	ug/L			09/25/24 12:46	1
1,4-Dichlorobenzene	ND		1.0	ug/L			09/25/24 12:46	1
1-Methylnaphthalene	ND		4.0	ug/L			09/25/24 12:46	1
2,2-Dichloropropane	ND		2.0	ug/L			09/25/24 12:46	1
2-Butanone	ND		10	ug/L			09/25/24 12:46	1
2-Chlorotoluene	ND		1.0	ug/L			09/25/24 12:46	1
2-Hexanone	ND		10	ug/L			09/25/24 12:46	1

Eurofins Albuquerque

QC Sample Results

Client: Hilcorp Energy Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

%Recovery Qualifier

100

101

94

103

Lab Sample ID: MB 885-12987/1005

Matrix: Air

Analysis Batch: 12987

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND ND	4.0	ug/L		09/25/24 12:46	1
4-Chlorotoluene	ND	1.0	ug/L		09/25/24 12:46	1
4-Isopropyltoluene	ND	1.0	ug/L		09/25/24 12:46	1
4-Methyl-2-pentanone	ND	10	ug/L		09/25/24 12:46	1
Acetone	ND	10	ug/L		09/25/24 12:46	1
Benzene	ND	1.0	ug/L		09/25/24 12:46	1
Bromobenzene	ND	1.0	ug/L		09/25/24 12:46	1
Bromodichloromethane	ND	1.0	ug/L		09/25/24 12:46	1
Dibromochloromethane	ND	1.0	ug/L		09/25/24 12:46	1
Bromoform	ND	1.0	ug/L		09/25/24 12:46	1
Bromomethane	ND	3.0	ug/L		09/25/24 12:46	1
Carbon disulfide	ND	10	ug/L		09/25/24 12:46	1
Carbon tetrachloride	ND	1.0	ug/L		09/25/24 12:46	1
Chlorobenzene	ND	1.0	ug/L		09/25/24 12:46	1
Chloroethane	ND	2.0	ug/L		09/25/24 12:46	1
Chloroform	ND	1.0	ug/L		09/25/24 12:46	1
Chloromethane	ND	3.0	ug/L		09/25/24 12:46	1
cis-1,2-Dichloroethene	ND	1.0	ug/L		09/25/24 12:46	1
cis-1,3-Dichloropropene	ND	1.0	ug/L		09/25/24 12:46	1
Dibromomethane	ND	1.0	ug/L		09/25/24 12:46	1
Dichlorodifluoromethane	ND	1.0	ug/L		09/25/24 12:46	1
Ethylbenzene	ND	1.0	ug/L		09/25/24 12:46	1
Hexachlorobutadiene	ND	1.0	ug/L		09/25/24 12:46	1
Isopropylbenzene	ND	1.0	ug/L		09/25/24 12:46	1
Methyl-tert-butyl Ether (MTBE)	ND	1.0	ug/L		09/25/24 12:46	1
Methylene Chloride	ND	3.0	ug/L		09/25/24 12:46	1
n-Butylbenzene	ND	3.0	ug/L		09/25/24 12:46	1
N-Propylbenzene	ND	1.0	ug/L		09/25/24 12:46	1
Naphthalene	ND	2.0	ug/L		09/25/24 12:46	1
sec-Butylbenzene	ND	1.0	ug/L		09/25/24 12:46	1
Styrene	ND	1.0	ug/L		09/25/24 12:46	1
tert-Butylbenzene	ND	1.0	ug/L		09/25/24 12:46	1
Tetrachloroethene (PCE)	ND	1.0	ug/L		09/25/24 12:46	1
Toluene	ND	1.0	ug/L		09/25/24 12:46	1
trans-1,2-Dichloroethene	ND	1.0	ug/L		09/25/24 12:46	1
trans-1,3-Dichloropropene	ND	1.0	ug/L		09/25/24 12:46	1
Trichloroethene (TCE)	ND	1.0	ug/L		09/25/24 12:46	1
Trichlorofluoromethane	ND	1.0	ug/L		09/25/24 12:46	1
Vinyl chloride	ND	1.0	ug/L		09/25/24 12:46	1
Xylenes, Total	ND	1.5	ug/L		09/25/24 12:46	1

70 - 130 09/25/24 12:46 70 - 130 09/25/24 12:46 70 - 130 09/25/24 12:46

Prepared

Eurofins Albuquerque

Analyzed

09/25/24 12:46

Limits

70 - 130

Dil Fac

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Dil Fac

QC Sample Results

Client: Hilcorp Energy Job ID: 885-11900-1

RL

1.0

Unit

ug/L

D

Prepared

Project/Site: Sullivan GC D 1E

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

Result Qualifier

Lab Sample ID: MB 885-12987/5 Matrix: Air

Analysis Batch: 12987

1,1,1,2-Tetrachloroethane

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Hexachlorobutadiene

Released to Imaging: 10/25/2024 11:48:04 AM

Chloroethane

Chloroform

Analyte

Client Sample ID: Method Blank

Analyzed

09/25/24 12:46

Prep Type: Total/NA

1, 1, 1,2-16114011101061114116	ND	1.0	ug/L	03/23/24 12.40	
1,1,1-Trichloroethane	ND	1.0	ug/L	09/25/24 12:46	1
1,1,2,2-Tetrachloroethane	ND	2.0	ug/L	09/25/24 12:46	1
1,1,2-Trichloroethane	ND	1.0	ug/L	09/25/24 12:46	1
1,1-Dichloroethane	ND	1.0	ug/L	09/25/24 12:46	1
1,1-Dichloroethene	ND	1.0	ug/L	09/25/24 12:46	1
1,1-Dichloropropene	ND	1.0	ug/L	09/25/24 12:46	1
1,2,3-Trichlorobenzene	ND	1.0	ug/L	09/25/24 12:46	1
1,2,3-Trichloropropane	ND	2.0	ug/L	09/25/24 12:46	1
1,2,4-Trichlorobenzene	ND	1.0	ug/L	09/25/24 12:46	1
1,2,4-Trimethylbenzene	ND	1.0	ug/L	09/25/24 12:46	1
1,2-Dibromo-3-Chloropropane	ND	2.0	ug/L	09/25/24 12:46	1
1,2-Dibromoethane (EDB)	ND	1.0	ug/L	09/25/24 12:46	1
1,2-Dichlorobenzene	ND	1.0	ug/L	09/25/24 12:46	1
1,2-Dichloroethane (EDC)	ND	1.0	ug/L	09/25/24 12:46	1
1,2-Dichloropropane	ND	1.0	ug/L	09/25/24 12:46	1
1,3,5-Trimethylbenzene	ND	1.0	ug/L	09/25/24 12:46	1
1,3-Dichlorobenzene	ND	1.0	ug/L	09/25/24 12:46	1
1,3-Dichloropropane	ND	1.0	ug/L	09/25/24 12:46	1
1,4-Dichlorobenzene	ND	1.0	ug/L	09/25/24 12:46	1
1-Methylnaphthalene	ND	4.0	ug/L	09/25/24 12:46	1
2,2-Dichloropropane	ND	2.0	ug/L	09/25/24 12:46	1
2-Butanone	ND	10	ug/L	09/25/24 12:46	1
2-Chlorotoluene	ND	1.0	ug/L	09/25/24 12:46	1
2-Hexanone	ND	10	ug/L	09/25/24 12:46	1
2-Methylnaphthalene	ND	4.0	ug/L	09/25/24 12:46	1
4-Chlorotoluene	ND	1.0	ug/L	09/25/24 12:46	1
4-Isopropyltoluene	ND	1.0	ug/L	09/25/24 12:46	1
4-Methyl-2-pentanone	ND	10	ug/L	09/25/24 12:46	1
Acetone	ND	10	ug/L	09/25/24 12:46	1
Benzene	ND	1.0	ug/L	09/25/24 12:46	1
Bromobenzene	ND	1.0	ug/L	09/25/24 12:46	1
Bromodichloromethane	ND	1.0	ug/L	09/25/24 12:46	1
Dibromochloromethane	ND	1.0	ug/L	09/25/24 12:46	1
Bromoform	ND	1.0	ug/L	09/25/24 12:46	1
Bromomethane	ND	3.0	ug/L	09/25/24 12:46	1
Carbon disulfide	ND	10	ug/L	09/25/24 12:46	1
Carbon tetrachloride	ND	1.0	ug/L	09/25/24 12:46	1

Eurofins Albuquerque

09/25/24 12:46

09/25/24 12:46

09/25/24 12:46

09/25/24 12:46

09/25/24 12:46

09/25/24 12:46

09/25/24 12:46

09/25/24 12:46

09/25/24 12:46

09/25/24 12:46

1.0

2.0

1.0

3.0

1.0

1.0

1.0

1.0

1.0

1.0

ug/L

QC Sample Results

Client: Hilcorp Energy Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-12987/5 Matrix: Air

Analysis Batch: 12987

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	ND		1.0	ug/L			09/25/24 12:46	1
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			09/25/24 12:46	1
Methylene Chloride	ND		3.0	ug/L			09/25/24 12:46	1
n-Butylbenzene	ND		3.0	ug/L			09/25/24 12:46	1
N-Propylbenzene	ND		1.0	ug/L			09/25/24 12:46	1
Naphthalene	ND		2.0	ug/L			09/25/24 12:46	1
sec-Butylbenzene	ND		1.0	ug/L			09/25/24 12:46	1
Styrene	ND		1.0	ug/L			09/25/24 12:46	1
tert-Butylbenzene	ND		1.0	ug/L			09/25/24 12:46	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			09/25/24 12:46	1
Toluene	ND		1.0	ug/L			09/25/24 12:46	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			09/25/24 12:46	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			09/25/24 12:46	1
Trichloroethene (TCE)	ND		1.0	ug/L			09/25/24 12:46	1
Trichlorofluoromethane	ND		1.0	ug/L			09/25/24 12:46	1
Vinyl chloride	ND		1.0	ug/L			09/25/24 12:46	1
Xylenes, Total	ND		1.5	ug/L			09/25/24 12:46	1

MB MB

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100	70 - 130		09/25/24 12:46	1
Toluene-d8 (Surr)	101	70 - 130		09/25/24 12:46	1
4-Bromofluorobenzene (Surr)	94	70 - 130		09/25/24 12:46	1
Dibromofluoromethane (Surr)	103	70 - 130		09/25/24 12:46	1

Lab Sample ID: LCS 885-12987/4

Matrix: Air

Analysis Batch: 12987

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	21.0		ug/L		104	70 - 130	
Benzene	20.1	22.2		ug/L		110	70 - 130	
Chlorobenzene	20.1	20.2		ug/L		101	70 - 130	
Toluene	20.2	20.5		ug/L		102	70 - 130	
Trichloroethene (TCE)	20.2	21.2		ug/L		105	70 - 130	

LCS	LCS
%Recovery	Qualifier
95	

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		70 - 130
Toluene-d8 (Surr)	99		70 - 130
4-Bromofluorobenzene (Surr)	94		70 - 130
Dibromofluoromethane (Surr)	98		70 - 130

QC Association Summary

Client: Hilcorp Energy Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

GC/MS VOA

Analysis Batch: 12987

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885	i-11900-1	SVE-1	Total/NA	Air	8260B	
MB	885-12987/1005	Method Blank	Total/NA	Air	8260B	
MB	885-12987/5	Method Blank	Total/NA	Air	8260B	
LCS	S 885-12987/4	Lab Control Sample	Total/NA	Air	8260B	

Analysis Batch: 13519

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-11900-1	SVE-1	Total/NA	Air	8015M/D	
MB 885-13519/4	Method Blank	Total/NA	Air	8015M/D	
LCS 885-13519/3	Lab Control Sample	Total/NA	Air	8015M/D	

-2

4

6

7

ŏ

1 N

11

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

Client Sample ID: SVE-1 Lab Sample ID: 885-11900-1

Date Collected: 09/16/24 14:30 Matrix: Air Date Received: 09/17/24 07:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015M/D		10	13519	СМ	EET ALB	09/25/24 16:27
Total/NA	Analysis	8260B		1	12987	CM	EET ALB	09/25/24 16:27

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59101, TEL (406)252-6325

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Eurofins Albuquerque

UJ 44

_

3

4

6

0

9

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program	Identification Number	Expiration Date		
New Mexico	State	NM9425, NM0901	02-26-25		

Analysis Method	Prep Method	Matrix	Analyte
3015M/D		Air	Gasoline Range Organics [C6 - C10]
3260B		Air	1,1,1,2-Tetrachloroethane
3260B		Air	1,1,1-Trichloroethane
3260B		Air	1,1,2,2-Tetrachloroethane
3260B		Air	1,1,2-Trichloroethane
3260B		Air	1,1-Dichloroethane
3260B		Air	1,1-Dichloroethene
3260B		Air	1,1-Dichloropropene
3260B		Air	1,2,3-Trichlorobenzene
3260B		Air	1,2,3-Trichloropropane
3260B		Air	1,2,4-Trichlorobenzene
3260B		Air	1,2,4-Trimethylbenzene
3260B		Air	1,2-Dibromo-3-Chloropropane
3260B		Air	1,2-Dibromoethane (EDB)
3260B		Air	1,2-Dichlorobenzene
3260B		Air	1,2-Dichloroethane (EDC)
3260B		Air	1,2-Dichloropropane
3260B		Air	1,3,5-Trimethylbenzene
3260B		Air	1,3-Dichlorobenzene
3260B		Air	1,3-Dichloropropane
3260B		Air	1,4-Dichlorobenzene
3260B		Air	1-Methylnaphthalene
3260B		Air	2,2-Dichloropropane
3260B		Air	2-Butanone
3260B		Air	2-Chlorotoluene
3260B		Air	2-Hexanone
3260B		Air	2-Methylnaphthalene
3260B		Air	4-Chlorotoluene
3260B		Air	4-Isopropyltoluene
3260B		Air	4-Methyl-2-pentanone
3260B		Air	Acetone
3260B		Air	Benzene
3260B		Air	Bromobenzene
3260B		Air	Bromodichloromethane
3260B		Air	Bromoform
3260B		Air	Bromomethane
3260B		Air	Carbon disulfide
3260B		Air	Carbon tetrachloride
3260B		Air	Chlorobenzene
3260B		Air	Chloroethane
3260B		Air	Chloroform
3260B		Air	Chloromethane
3260B		Air	cis-1,2-Dichloroethene
3260B		Air	cis-1,3-Dichloropropene
,		Air	Dibromochloromethane

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Program		Identification Number	Expiration Date
The following analytes a for which the agency do	•	ut the laboratory is not certif	ied by the governing authority. This li	st may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8260B		Air	Dibromomethane	
8260B		Air	Dichlorodifluoromethane	
8260B		Air	Ethylbenzene	
8260B		Air	Hexachlorobutadiene	
8260B		Air	Isopropylbenzene	
8260B		Air	Methylene Chloride	
8260B		Air	Methyl-tert-butyl Ether (M	ITBE)
8260B		Air	Naphthalene	
8260B		Air	n-Butylbenzene	
8260B		Air	N-Propylbenzene	
8260B		Air	sec-Butylbenzene	
8260B		Air	Styrene	
8260B		Air	tert-Butylbenzene	
8260B		Air	Tetrachloroethene (PCE)	
8260B		Air	Toluene	
8260B		Air	trans-1,2-Dichloroethene	
8260B		Air	trans-1,3-Dichloropropen	е
8260B		Air	Trichloroethene (TCE)	
8260B		Air	Trichlorofluoromethane	
8260B		Air	Vinyl chloride	
8260B		Air	Xylenes, Total	
Oregon	NELA	P	NM100001	02-26-25

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8015M/D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene

Eurofins Albuquerque

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-11900-1

Project/Site: Sullivan GC D 1E

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Program		Identification Number Expiration	on Date
The following analytes are i		ut the laboratory is not certif	ied by the governing authority. This list may include	e analyt
Analysis Method	Prep Method	Matrix	Analyte	
8260B	_ Top Moulou	Air	1-Methylnaphthalene	
8260B		Air	2,2-Dichloropropane	
8260B		Air	2-Butanone	
8260B		Air	2-Chlorotoluene	
8260B		Air	2-Hexanone	
8260B		Air	2-Methylnaphthalene	
8260B		Air	4-Chlorotoluene	
8260B		Air	4-Isopropyltoluene	
8260B		Air	4-Methyl-2-pentanone	
8260B		Air	Acetone	
8260B		Air	Benzene	
8260B		Air	Bromobenzene	
8260B		Air	Bromodichloromethane	
8260B		Air	Bromoform	
8260B		Air	Bromomethane	
8260B		Air	Carbon disulfide	
8260B		Air	Carbon tetrachloride	
8260B		Air	Chlorobenzene	
8260B		Air	Chloroethane	
8260B		Air	Chloroform	
8260B			Chloromethane	
		Air		
8260B		Air	cis-1,2-Dichloroethene	
8260B		Air	cis-1,3-Dichloropropene	
8260B		Air	Dibromochloromethane	
8260B		Air	Dibromomethane	
8260B		Air	Dichlorodifluoromethane	
8260B		Air	Ethylbenzene	
8260B		Air	Hexachlorobutadiene	
8260B		Air	Isopropylbenzene	
8260B		Air	Methylene Chloride	
8260B		Air	Methyl-tert-butyl Ether (MTBE)	
8260B		Air	Naphthalene	
8260B		Air	n-Butylbenzene	
8260B		Air	N-Propylbenzene	
8260B		Air	sec-Butylbenzene	
8260B		Air	Styrene	
8260B		Air	tert-Butylbenzene	
8260B		Air	Tetrachloroethene (PCE)	
8260B		Air	Toluene	
8260B		Air	trans-1,2-Dichloroethene	
8260B		Air	trans-1,3-Dichloropropene	
8260B		Air	Trichloroethene (TCE)	
8260B		Air	Trichlorofluoromethane	
8260B		Air	Vinyl chloride	
8260B		Air	Xylenes, Total	

Eurofins Albuquerque

2

J

5

9

4 4

Trust our People. Trust our Data. www.energylab.com

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

October 01, 2024

Hall Environmental 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Quote ID: B15626 Work Order: B24091689

Project Name: Sullivan GC D 1E

Energy Laboratories Inc Billings MT received the following 1 sample for Hall Environmental on 9/18/2024 for analysis.

• • • • • • • • • • • • • • • • • • • •	•	•		•
Lab ID	Client Sample ID	Collect Date Receive Date	Matrix	Test
B24091689-001	SVE-1 (885-11900-1)	09/16/24 14:30 09/18/24	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

ANALYTICAL SUMMARY REPORT

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 So. 27th Street, Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

Billings, MT 406.252.6325 • Casper, WY 307.235.0515

Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Hall Environmental **Report Date:** 10/01/24 Project: Sullivan GC D 1E Collection Date: 09/16/24 14:30 Lab ID: B24091689-001 DateReceived: 09/18/24 Client Sample ID: SVE-1 (885-11900-1) Matrix: Air

					MCL/		
Analyses	Result	Units	Qualifiers	RL	QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	REPORT						
Oxygen	21.32	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Nitrogen	77.69	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Carbon Dioxide	0.48	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Hydrogen Sulfide	< 0.01	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Methane	0.38	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Ethane	0.06	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Propane	0.02	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Isobutane	<0.01	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
n-Butane	0.01	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Isopentane	< 0.01	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
n-Pentane	< 0.01	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Hexanes plus	0.04	Mol %		0.01		GPA 2261-95	09/24/24 12:19 / jrj
Propane	0.006	gpm		0.001		GPA 2261-95	09/24/24 12:19 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-95	09/24/24 12:19 / jrj
n-Butane	0.003	gpm		0.001		GPA 2261-95	09/24/24 12:19 / jrj
Isopentane	< 0.001	gpm		0.001		GPA 2261-95	09/24/24 12:19 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-95	09/24/24 12:19 / jrj
Hexanes plus	0.017	gpm		0.001		GPA 2261-95	09/24/24 12:19 / jrj
GPM Total	0.026	gpm		0.001		GPA 2261-95	09/24/24 12:19 / jrj
GPM Pentanes plus	0.017	gpm		0.001		GPA 2261-95	09/24/24 12:19 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	8			1		GPA 2261-95	09/24/24 12:19 / jrj
Net BTU per cu ft @ std cond. (LHV)	7			1		GPA 2261-95	09/24/24 12:19 / jrj
Pseudo-critical Pressure, psia	547			1		GPA 2261-95	09/24/24 12:19 / jrj
Pseudo-critical Temperature, deg R	241			1		GPA 2261-95	09/24/24 12:19 / jrj
Specific Gravity @ 60/60F	0.999			0.001		D3588-81	09/24/24 12:19 / jrj
Air, % - The analysis was not corrected for air.	97.43			0.01		GPA 2261-95	09/24/24 12:19 / jrj
COMMENTS							

COMMENTS

09/24/24 12:19 / jrj

RL - Analyte Reporting Limit MCL - Maximum Contaminant Level Report

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

⁻ BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

⁻ GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

⁻ To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

⁻ Standard conditions: 60 F & 14.73 psi on a dry basis

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental Work Order: B24091689 Report Date: 10/01/24

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	GPA 2261-95									Batch:	R429440
Lab ID:	B24091689-001ADUP	12 Sar	mple Duplic	ate			Run: GCNG	GA-B_240924A		09/24/	24 13:08
Oxygen			21.4	Mol %	0.01				0.1	20	
Nitrogen			77.6	Mol %	0.01				0.1	20	
Carbon Di	ioxide		0.47	Mol %	0.01				2.1	20	
Hydrogen	Sulfide		<0.01	Mol %	0.01					20	
Methane			0.40	Mol %	0.01				5.1	20	
Ethane			0.06	Mol %	0.01				0.0	20	
Propane			0.02	Mol %	0.01				0.0	20	
Isobutane			<0.01	Mol %	0.01					20	
n-Butane			0.01	Mol %	0.01				0.0	20	
Isopentan	е		<0.01	Mol %	0.01					20	
n-Pentane)		<0.01	Mol %	0.01					20	
Hexanes p	olus		0.04	Mol %	0.01				0.0	20	
Lab ID:	LCS092424	11 Lab	oratory Co	ntrol Sample			Run: GCNG	SA-B_240924A		09/24/	24 15:15
Oxygen			0.62	Mol %	0.01	124	70	130			
Nitrogen			5.99	Mol %	0.01	100	70	130			
Carbon Di	ioxide		1.00	Mol %	0.01	101	70	130			
Methane			74.9	Mol %	0.01	100	70	130			
Ethane			6.04	Mol %	0.01	101	70	130			
Propane			5.04	Mol %	0.01	102	70	130			
Isobutane			1.54	Mol %	0.01	77	70	130			
n-Butane			2.00	Mol %	0.01	100	70	130			
Isopentan	е		1.08	Mol %	0.01	108	70	130			
n-Pentane)		1.00	Mol %	0.01	100	70	130			
Hexanes	olus		0.81	Mol %	0.01	101	70	130			

Qualifiers:

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

B24091689

Work Order Receipt Checklist

Hall Environmental

ogin completed by:	Date Received: 9/18/2024							
Reviewed by:	jmiller		Received by: CMJ					
Reviewed Date:	9/25/2024		Carrier name: FedEx NDA					
Shipping container/cooler in good condition?		Yes [√]	No 🖂	Not Present ☐				
Custody seals intact on all shipping container(s)/cooler(s)?		Yes √	No 🗌	Not Present				
Custody seals intact on all sa	ample bottles?	Yes	No 🗌	Not Present ✓				
Chain of custody present?		Yes √	No 🗌					
Chain of custody signed when relinquished and received?		Yes ✓	No 🗌					
Chain of custody agrees with sample labels?		Yes √	No 🗌					
Samples in proper container/bottle?		Yes 🗹	No 🗌					
Sample containers intact?		Yes √	No 🗌					
Sufficient sample volume for	indicated test?	Yes √	No 🗌					
All samples received within holding time? Exclude analyses that are considered field parameters such as pH, DO, Res Cl, Sulfite, Ferrous Iron, etc.)		Yes ✓	No 🗌					
emp Blank received in all shipping container(s)/cooler(s)?		Yes	No 🗸	Not Applicable				
Container/Temp Blank temperature:		16.3°C No Ice						
Containers requiring zero headspace have no headspace or ubble that is <6mm (1/4").		Yes	No 🗌	No VOA vials submitted ✓				
Vater - pH acceptable upon receipt?		Yes	No 🗌	Not Applicable 🔽				

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

None

Page 4 of 6 10/4/2024

Page 5 of 6 10/4/2024

_1

4 4

	None None		Method Comments	Tive of Coop	Fixed Gases	
		tions	Method Description	ii	SUB (Fixed Gases)/ Fixed Gases	
	Container Type Tedlar Bag 1L	Subcontract Method Instruction	Mothod	Notice of	SUBCONTRACT SU	
COLIMICS	Count 1	Subcontrac	Sample IDe	Sallpic ISS	-	

Page 23 of 24

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-11900-1

Login Number: 11900 List Source: Eurofins Albuquerque

List Number: 1

Creator: McQuiston, Steven

breator: McQuiston, Steven		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey neter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or ampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
here are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
flultiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 392555

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	392555
	Action Type:
	[REPORT] Alternative Remediation Report (C-141AR)

CONDITIONS

Created By	Condition	Condition Date
nvelez	1. Continue O&M & sampling as stated in report. 2. Submit next quarterly report by January 15, 2025.	10/25/2024