

November 26, 2024

Vertex Project #: 24E-04980-02

Spill Closure Report:	Todd 22 I Federal #009
	Unit I, Section 22, Township 23 South, Range 31 East
	API: 30-015-32730
	County: Eddy
	Incident ID: nAB1729753198, 2RP-4453

 Prepared For:
 Devon Energy Production Company, LP

 33 West Sheridan Ave
 Oklahoma City, Oklahoma 73102

New Mexico Oil Conservation Division 508 West Texas Avenue Artesia, New Mexico 88210

Devon Energy Production Company, LP (Devon) retained Vertex Resource Services Inc. (Vertex) to conduct a spill assessment for a release of produced water and crude oil from a flow line rupture at Todd 22 I Federal #009 API: 30-015-32730 (hereafter referred to as "Todd"). Devon provided notification to the New Mexico Oil Conservation Division (NMOCD) and the Bureau of Land Management (BLM), who own the property. The initial C-141 Notification of Release was approved on October 24, 2017 and is included in Attachment 1. The coordinates of the spill area are N 32.287855, W -103.758804. The NMOCD tracking and administrative work order numbers assigned to this incident are nAB1729753198 and 2RP-4453, respectively.

This letter provides a description of the Spill Assessment and demonstrates that closure criteria established in 19.15.29.12 and 19.15.29.13 *New Mexico Administrative Code* (NMAC; New Mexico Oil Conservation Division, 2018) have been met and all applicable regulations are being followed. This document is intended to serve as a final report to obtain approval from NMOCD and the BLM for closure of this release.

Incident Description

The spill occurred on October 9, 2017, due to a flow line rupture. The well and flow line were shut in to stop the release. The spill was reported immediately on October 9, 2017, and involved the release of approximately four barrels (bbl.) of produced water and oil, off-site, in the pasture near the pad entrance. Approximately three bbl. of free fluid was removed during initial spill clean-up. The release was off-site and did not affect any sensitive areas or waterways.

Background

The site is located approximately 18.5 miles west-southwest Malaga, New Mexico. The legal location for the site is Unit I, Section 22, Township 23 South and Range 31 East in Eddy County, New Mexico. The release area is located on BLM property. An aerial photograph and site schematic are presented on Figure 1 (Attachment 2).

vertex.ca

The Geological Map of New Mexico (New Mexico Bureau of Geology and Mineral Resources, 2024) indicates the site's surface geology is comprised primarily of Qep - Eolian and piedmont deposits (Holocene to middle Pleistocene) Interlayed eolian sands and piedmont-slope deposits. The Natural Resources Conservation Service *Web Soil Survey* characterizes the predominant soil textures on the site as Kermit-Berino fine sands. It tends to be well to excessively drained with negligible to low runoff and low to moderate available moisture levels in the soil profile (United States Department of Agriculture, Natural Resources Conservation Service, 2023). There is low potential for karst geology to be present near Todd, though some erosional karst is possible (United States Department of the Interior, Bureau of Land Management, 2018).

The surrounding landscape is associated with alluvial fans, plains, and fan piedmonts. The parent material consists of mixed alluvium and or eolian sands derived from sedimentary rock. Elevations range from 3,100 to 4,200 feet above sea level. The climate is semi-arid, with an annual precipitation ranging between 10 to 14 inches. Historically, the plant community was dominated by grasses, which stabilized the potentially erosive sandy soils; however, more recent conditions, resulting from fire suppression and extensive grazing, show increased woody plant abundance. The dominant grass species are dropseeds black grama, and bluestem interspersed with mesquite. Short grasses are a significant proportion of ground cover while shrubs, litter and, to a lesser extent, bare ground compose the remainder (United States Department of Agriculture, Natural Resources Conservation Service, 2023). Limited to no vegetation is allowed to grow on the compacted facility pad.

There is no surface water located at Todd. The nearest significant watercourse, as defined in Subsection P of 19.15.17.7 Mexico Administrative Code (NMAC; New Mexico Oil Conservation Division, 2018), is the intermittent stream located approximately 2.75 miles north of Todd (United States Fish and Wildlife Service, 2023). There are no continuous flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Closure Criteria Determination

Using site characterization information, a closure criteria determination table (Table 1) was completed to determine if the release was subject to any of the special case scenarios in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

Based on data included in the closure criteria determination worksheet, the release at the site is subject to the requirements of Paragraph (4) of Subsection C of 19.15.29.12 NMAC. As the nearest groundwater reference well is not within 0.5 miles of the release site, the depth to groundwater (DTGW) cannot be accurately determined and closure criteria defaults to the most stringent criteria. Further, as the release occurred off-pad, the most stringent closure criteria apply in order to meet restoration and reclamation requirements associated with releases into undisturbed areas, as outlined in Paragraph (1) of Subsection D of 19.15.29.13 NMAC. This regulation requires a minimum of four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations of less than 600 mg/kg. Documentation used in Closure Criteria Determination research is included in Attachment 4.

vertex.ca

Todd 22 I Federal #009, nAB1729753198, 2RP-4453

2017 Spill Assessment and Closure November 2024

	rdinates: 32.287855,-103.758804	X: 616874	Y: 3573019
	ific Conditions	Value	Unit
c opec	Depth to Groundwater (nearest reference)	>55	feet
		4,777	feet
1	Distance between release and nearest DTGW reference	0.90	miles
	Date of nearest DTGW reference measurement		ch 9, 2023
-	Within 300 feet of any continuously flowing watercourse		
2	or any other significant watercourse	14,537	feet
2	Within 200 feet of any lakebed, sinkhole or playa lake	40.022	()
3	(measured from the ordinary high-water mark)	10,832	feet
Δ	Within 300 feet from an occupied residence, school,	20.017	faat
4	hospital, institution or church	20,617	feet
	i) Within 500 feet of a spring or a private, domestic fresh		
	water well used by less than five households for	6,885	feet
5	domestic or stock watering purposes, or		
	ii) Within 1000 feet of any fresh water well or spring	5,444	feet
	Within incorporated municipal boundaries or within a		
	defined municipal fresh water field covered under a		
6	municipal ordinance adopted pursuant to Section 3-27-3	No	(Y/N)
	NMSA 1978 as amended, unless the municipality		
	specifically approves		
7	Within 300 feet of a wetland	16,706	feet
	Within the area overlying a subsurface mine	No	(Y/N)
8	Distance between release and nearest registered mine	45,593	feet
			Critical
			High
0	Within an unstable area (Karst Map)	Low	Medium
9			Low
	Distance between release and nearest	20.020	faat
	Critical/High/Medium Karst	20,029	feet
	Within a 100-year Floodplain	>500	year
10	Distance between release and nearest FEMA Zone A (100-	30,450	feet
	year Floodplain)	50,450	leet
11	Soil Type	Fine sand,	fine sandy loam
12	Ecological Classification	Loa	amy Sand
13	Geology	Eolian and p	iedmont deposits
			<50'
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50'	51-100'
			>100'

vertex.ca

The closure criteria determined for the site are associated with the following constituent concentration limits as presented in Table 2.

Table 2. Closure Criteria for Soils Impacted by a Minimum depth below any point within the horizontal boundary of the release to groundwater less than		
10,000 mg/l TDS	Constituent	Limit
	Chloride	600 mg/kg
< 50 fact	TPH (GRO+DRO+MRO)	100 mg/kg
< 50 feet	BTEX	50 mg/kg
	Benzene	10 mg/kg

Total Dissolved Solids (TDS)

Total petroleum hydrocarbons (TPH) = gasoline range organics (GRO) + diesel range organics (DRO) + motor oil range organics (MRO) Benzene, toluene, ethylbenzene, and xylenes (BTEX)

Initial Site Investigation

An initial site assessment of the spill area was completed on July 28, 2021, which identified the area of the spill specified in the Notification of Release. The impacted area was horizontally and vertically delineated using field screening and laboratory results. In total, 12 sample points were established, 18 samples were collected and 12 samples were sent for laboratory analysis. Vertical delineation was completed at two borehole locations (BH21-01 and BH21-07). Horizontal delineation was achieved at six borehole locations (BH21-02, BH21-04, BH21-06, BH21-08, BH21-11 and BH21-12). Field screening consisted of analysis using a Photo Ionization Detector (volatile hydrocarbons), Dexsil Petroflag using EPA SW-846 Method 9074 (extractable hydrocarbons) and an electrical conductivity (EC) meter to estimate chloride concentration. Samples submitted for lab analysis were submitted to a National Environmental Laboratory Accreditation Program-approved laboratory. The impacted area was determined to be approximately 510 square feet, as presented on Figure 1 (Attachment 2). Characterization sampling field screening and analytical data are summarized in Table 3 (Attachment 3).

Remedial Actions

Remediation activities began on February 21, 2022, and were completed on February 22, 2022. Vertex personnel supervised the excavation of impacted soils. Field screening results were used to identify areas requiring further remediation from those areas showing concentrations below determined closure criteria levels. Field screening consisted of analysis using a Photo Ionization Detector (volatile hydrocarbons), Dexsil Petroflag using EPA SW-846 Method 9074 (extractable hydrocarbons), and EC meter or titration for estimating chloride concentration. Soils were removed to a depth of 6 feet below ground surface (bgs). Impacted soil was transported by a licensed waste hauler and disposed of at an approved waste management facility. Daily Field Reports and their associated photographs for this release are included in Attachment 5.

vertex.ca

Notification that confirmatory samples were being collected was provided to the NMOCD on February 18, March 8 and March 11, 2022. Confirmatory composite samples were collected on February 22, 2022, from the base and walls of the excavation in 200 square foot increments. After mapping the sample points, eight additional composite confirmatory samples were needed to meet the 200 square foot rule, and these were collected on March 10, 2022. During transportation, seven of eight samples taken on March 10, 2022, were compromised by ice water entering the jars. Sample point WS22-05 was not compromised. NMOCD was notified of this incident and the seven compromised samples were re-collected on March 11, 2022. In total, 15 composite confirmatory sample points were established and collected for laboratory analysis following NMOCD soil sampling procedures. The 48-hour sampling notifications are included in Attachment 6.

All samples were placed in laboratory-provided containers, preserved on ice, and submitted to Hall Environmental Analysis Laboratory under chain-of-custody protocols and analyzed for BTEX (EPA Method 8021B), Total Petroleum Hydrocarbons (GRO, DRO, MRO – EPA Method 8015D and EPA Method 8015M) and Total Chlorides (EPA Method 300.0). Confirmatory sampling laboratory results are presented in Table 4 (Attachment 3). All laboratory data reports associated with this site are included in Attachment 7. All confirmatory samples collected and analyzed were below closure criteria for the site. The final confirmatory sampling locations are presented on Figure 2 (Attachment 2).

A GeoExplorer 7000 Series Trimble global positioning system (GPS) unit, or equivalent, was used to map the approximate center of the five-point composite samples.

Closure Request

Vertex recommends no additional remediation action to address the release at Todd 22 I Federal #009. Laboratory analyses of the final confirmatory samples showed constituent of concern concentration levels below NMOCD closure criteria for areas where depth to groundwater is less than 50 feet bgs as shown in Table 2. There are no anticipated risks to human, ecological or hydrological receptors associated with the release site.

The excavation was backfilled with non-waste-containing, uncontaminated, earthen material, sourced locally and placed to meet the site's existing grade to prevent ponding of water and erosion in accordance with 19.15.29.13 NMAC.

Vertex requests that this incident (nAB1729753198, 2RP-4453) be closed as all closure requirements set forth in Subsection E of 19.15.29.12 NMAC have been met. Devon certifies that all information in this report and the attachments is correct, and that they have complied with all applicable closure requirements and conditions specified in Division rules and directives to meet NMOCD requirements to obtain closure on the October 9, 2017, release at Todd 22 I Federal #009.

vertex.ca

Devon Energy Production Company, LP Todd 22 I Federal #009, nAB1729753198, 2RP-4453

Should you have any questions or concerns, please do not hesitate to contact Chad Hensley at 575.200.6167 or chensley@vertexresource.com.

Lakin Pullman

November 26, 2024

Date

Lakin Pullman, B.Sc. ENVIRONMENTAL SPECIALIST, REPORTING

SENIOR PROJECT MANAGER, REPORT REVIEW

November 27,2024

Date

Attachments

- Attachment 1. Initial C-141 Notification of Release
- Attachment 2. Figures

Chad Hensley, B. Sc., GCNR

- Attachment 3. Initial Characterization and Confirmatory Sampling Field Screening and Laboratory Results
- Attachment 4. Closure Criteria for Soils Impacted by a Release Research Determination Documentation
- Attachment 5. Daily Field Reports with Pictures
- Attachment 6. 48-hour Sampling Notification to the New Mexico Oil Conservation Division
- Attachment 7. Laboratory Data Reports and Chain of Custody Forms

vertex.ca

References

- New Mexico Bureau of Geology and Mineral Resources. (2024). *Interactive Geologic Map.* Retrieved from http://geoinfo.nmt.edu.
- New Mexico Energy, Minerals and Natural Resources Department, Mining and Minerals Division. (2024). *Registered Mines and Permits Search*. Retrieved from https://wwwapps.emnrd.state.nm.us/MMD/MMDWebInfo/.
- New Mexico Office of the State Engineer, New Mexico Water Rights Reporting System. (2024). Water Column/Average Depth to Water Report. Retrieved from http://nmwrrs.ose.state.nm.us/nmwrrs/waterColumn.html.
- New Mexico Oil Conservation Division. (2018). *New Mexico Administrative Code Natural Resources and Wildlife Oil and Gas Releases*. Santa Fe, New Mexico.
- United States Department of Agriculture, Natural Resources Conservation Service. (2022). *Web Soil Survey*. Retrieved from https://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.
- United States Department of the Interior, Bureau of Land Management. (2018). *CFO Karst Public*. https://www.nm.blm.gov/shapeFiles/cfo/carlsbad_spatial_data.html
- United States Fish and Wildlife Service. (2022). *National Wetlands Inventory*. Retrieved from https://www.fws.gov/wetlands/data/Mapper.html.

vertex.ca

Limitations

This report has been prepared for the sole benefit of Devon Energy Production Company, LP (Devon). This document may not be used by any other person or entity, with the exception of the New Mexico Oil Conservation Division and Bureau of Land Management, without the express written consent of Vertex Resource Services Inc. (Vertex) and Devon. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

vertex.ca

ATTACHMENT 1

Received by OCD: 3/10/2025 8:2	3:35 AM							Page 10 of 1
District I 1625 N French Dr. Hobbs, NM 88240 District II 1301 W Grand Avenue, Artesia, NM 8821	0			New Mexico nd Natural Resources	, RE(Ceivi	Re	Form C-141 vised March 17, 1999
District III 1000 Rio Brazos Road, Aztec. NM 87410	0			ation Division	SEM	0 2 200	Submit 2 Co District O	opies to appropriate office in accordance h Rule 116 on back
District IV 1220 S St Francis Dr, Santa Fe, NM 875	05	-		St. Francis Dr. , NM 87505	HOB	BSOCI	D wit	h Rule 116 on back side of form
	Relea			and Corrective				
		OPER	A]	TOR	I	nitial Rej	oort 🗌	Final Report
Name of Company Devon I	Energy		-	Contact□Roger Her				
Address P. O. Box 250 Artesia, NM 88211			[]	[elephone No.□575	-748-52	38		
Facility Name Mesa Verde	6 Fed #5	<u> </u>	Ī	Facility Type□Oil V	Vell			
Surface Owner FEDERAL		Mineral Ow	ne	r		Lease	No.□	
		LOCATIO		OF RELEASE	API #			04.00.00
Unit Letter Section Township	<u> </u>	Feet from the Nor	th/S	South Line Feet from th	e East/	West Line	County	
F 6 024S	032E	1980 - Nor	th	1980 -	East		Lea County	, NM
		NATUR	E	OF RELEASE				
Type of Release Oil and Produced W Source of Release Flowline	ater			Volume of Release 5 bb Date and Hour of Occur			lecovered □0	overy[]8-27-2009
				8-27-2009 2:30 PM	1	2.30 PM		5very [] 8-27-2009
Was Immediate Notice Given?	Yes 🗌	No 🗌 Not Require	d	If YES, To Whom? BL Trish BadBear	M – Lea Co	ounty, NM		
By Whom? Roger Hernandez	···.			Date and Hour 8-28-2				
Was a Watercourse Reached?]Yes 🛛	No		If YES, Volume Impacti	ng the wa	ercourse.		
If a Watercourse was Impacted, Des	cribe Fully.*	<u></u>	• • • • •	- <u></u>			<u> </u>	
N/A			ļ					
	-	· · ·		- ,		WATE	RG	335
Describe Cause of Problem and Rem Leak in buried flowline, shut well in			/ith	poly line			·····	
				poly mie.				
Describe Area Affected and Cleanup					• ••			
8' radious around wellhead, and an a	rea 1'x100',	back dragged the loca	tio	n.		· .		
I hereby certify that the information regulations all operators are required public health or the environment. The should their operations have failed to or the environment. In addition, NM federal, state, or local laws and/or re-	to report and a acceptance adequately OCD accept	d/or file certain release e of a C-141 report by investigate and remedi	e no the iate	tifications and perform co NMOCD marked as "Fin- contamination that pose a	rrective ac al Report" (threat to g	tions for rele does not reli round water	eases which n eve the opera , surface wat	nay endanger ator of liability er, human health
				<u>OIL CC</u>	<u>DNSERV</u>	ATION	DIVISIO	<u>N</u>
Signature: Rape Ate			╡.	ENV ENG	NEER	÷	•	
Printed Name: Roger Hernandez	*	· · · · · · · · · · · · · · · · · · ·	P	Approved by⊡⊡strict-Sup	ervisor: •	Jeeffre	istely u	ME
Title: Production Foreman		-	A	Approval Date: 09/03/	09	Expiration I	Date: 11031	09
Date August 31, 2009 Phone 575	-748-4238		0	Conditions of Approval:	AMPLINIG	CONFIRM	Attached	1.9.2288
* Attach Additional Sheets If	Necessar	у	ļr	VON CLEAN CONCE NAVE-BEEN-REA	MARNAM	ons		······
FG184092734199	\ ⊁es ⊡	<u>A</u> 17	÷	PERFORMED AN	DANAL	9515	.	
5 /, /	1 mil	· •	Ŀ,	RESULTS SUBP NMOCD	NINED	<u>'1</u>	·····	· · · · · · · · · · · · · · · · · · ·

ATTACHMENT 2

ATTACHMENT 3

Client Name: Devon Energy Production Company, LP Site Name: Todd 22 I Federal #009 NM OCD Tracking #: nAB1729753198 Project #: 24E-04980-02 Lab Report: 2107F48

	T	able 3. Initial Characte	rization Sa	mple Field	Screen and	d Laborato	ry Results	- Depth to	Groundwa	ter <50 fee	t bgs		
	Sample Desc	ription	Fi	eld Screeni	ng			Petrole	eum Hydroc	arbons			
			s			Vola	atile			Extractable			Inorganic
Sample ID	Depth (ft)	Sample Date	Volatile Organic Compounds (PID)	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(ppm)	(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	0-0.5	July 28, 2021	29	4,940	103	ND	ND	ND	2,800	2,200	2,800	5,000	230
BH21-01	2	July 28, 2021	107	-	-	-	-	-	-	-	-	-	-
_	4	July 28, 2021	360	-	-	ND	ND	69	5,400	2,600	5,469	8,069	730
	6	July 28, 2021	0	76	27	ND	ND	ND	ND	ND	ND	ND	ND
BH21-02	0-0.5	July 28, 2021	0	98	0	ND	ND	ND	13	ND	13	13	ND
BH21-03	0-0.5	July 28, 2021	0	350	0	-	-	-	-	-	-	-	-
BH21-04	0-0.5	July 28, 2021	0	12	0	ND	ND	ND	ND	ND	ND	ND	ND
BH21-05	0-0.5	July 28, 2021	0	40	147	-	-	-	-	-	-	-	-
BH21-06	0-0.5	July 28, 2021	0	29	0	ND	ND	ND	ND	ND	ND	ND	ND
	0-0.5	July 28, 2021	0	414	0	ND	ND	ND	75	110	75	185	ND
BH21-07	2	July 28, 2021	0	0	7	ND	ND	ND	ND	ND	ND	ND	ND
0121-07	4	July 28, 2021	0	29	25	-	-	-	-	-	-	-	-
	6	July 28, 2021	0	76	96	ND	ND	ND	11	ND	11	11	120
BH21-08	0-0.5	July 28, 2021	0	94	0	ND	ND	ND	15	ND	15	15	ND
BH21-09	0-0.5	July 28, 2021	0	231	0	-	-	-	-	-	-	-	-
BH21-10	0-0.5	July 28, 2021	0	326	165	-	-	-	-	-	-	-	-
BH21-11	0-0.5	July 28, 2021	0	18	0	ND	ND	ND	ND	ND	ND	ND	ND
BH21-12	0-0.5	July 28, 2021	0	39	0	ND	ND	ND	ND	ND	ND	ND	ND

"ND" Not Detected at the Reporting Limit "-" indicates not analyzed/assessed

Bold and grey shaded indicates exceedance outside of NMOCD Reclamation Closure Criteria

.

Client Name: Devon Energy Production Company, LP Site Name: Todd 22 I Federal #009 NM OCD Tracking #: nAB1729753198 Project #: 24E-04980-02 Lab Reports: 2202B36, 2203707, and 2203743

		Table 4. Confirmator	y Sample I	Field Scree	en and Lab	oratory R	esults - De	pth to Gro	oundwater	<50 feet	bgs		
	Sample Des	cription	Fi	eld Screeni	ng			Petrole	um Hydrod	arbons			
			ls			Vola	atile			Extractable	9		Inorganic
Sample ID	Depth (ft)	Sample Date	Volatile Organic Compounds (PID)	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(ppm)	(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BES22-01	6	February 22, 2022	0	17	190	ND	ND	ND	ND	ND	ND	ND	250
BES22-02	6	February 22, 2022	0	10	60	ND	ND	ND	ND	ND	ND	ND	ND
BES22-03	6	February 22, 2022	0	9	25	ND	ND	ND	ND	ND	ND	ND	ND
BES22-04	6	March 11, 2022	-	-	438	ND	ND	ND	31	ND	31	31	61
BES22-05	6	March 11, 2022	-	-	326	ND	ND	ND	30	ND	30	30	ND
BES22-06	6	March 11, 2022	-	-	308	ND	ND	ND	26	ND	26	26	ND
BES22-07	6	March 11, 2022	-	-	253	ND	ND	ND	27	ND	27	27	ND
WES22-01	0-6	February 22, 2022	0	21	350	ND	ND	ND	ND	ND	ND	ND	360
WES22-02	0-4	February 22, 2022	0	8	50	ND	ND	ND	ND	ND	ND	ND	ND
WES22-03	0-6	February 22, 2022	0	32	80	ND	ND	ND	ND	ND	ND	ND	ND
WES22-04	0-6	February 22, 2022	0	14	165	ND	ND	ND	ND	ND	ND	ND	290
WES22-05	0-6	March 10, 2022	0	12	100	ND	ND	ND	ND	ND	ND	ND	ND
WES22-06	0-6	March 11, 2022	-	-	151	ND	ND	ND	28	ND	28	28	61
WES22-07	0-6	March 11, 2022	-	-	131	ND	ND	ND	24	ND	24	24	60
WES22-08	0-6	March 11, 2022	-	-	287	ND	ND	ND	30	ND	30	30	ND

"ND" Not Detected at the Reporting Limit

"-" indicates not analyzed/assessed

Bold and grey shaded indicates exceedance outside of NMOCD Reclamation Closure Criteria

.

ATTACHMENT 4

Received by OCD: 3/10/2025 8:23:35 AM Todd 22 I Federal #009 OSE Map

Page 18 of 148

11/23/2024, 7:39:55 PM GIS WATERS PODs

- Active
- Pending
- Plugged

OSE District Boundary

Water Right Regulations
Artesian Planning Area
New Mexico State Trust Lands
Subsurface Estate
Both Estates

Esri, HERE, iPC, Esri, HERE, Garmin, iPC, Maxar

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)				ers are st to lar	gest)				(NAD83 UTM	1 in meters)			(In feet)	(In feet)	(In feet)
POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	x	Y	Мар	Distance	Well Depth	Depth Water	Water Column
<u>C 04712 POD4</u>		CUB	ED	NW	SE	SW	14	235	31E	617535.4	3574316.2		1456	55		
<u>C 02258</u>		С	ED		SW	NE	26	23S	31E	618055.0	3571853.0 *	•	1659	662		
<u>C 04774 POD1</u>		CUB	ED	SE	NE	NE	23	235	31E	618456.0	3573856.4		1789	105		
														Average	Depth to W	/ater: 0 feet
														Minimun	n Depth: 0 f	feet
														Maximur	n Depth: 0	feet
Record Count: 3	3															
JTM Filters (in Easting: 616874 Northing: 35730 Radius: 002000 * UTM location wa	019	LSS - see	Help													

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/23/24 6:55 PM MST

Water Column/Average Depth to Water

Received by OCD: 3/10/2025 8:23:35 AM

			•	re 1=NW 2=N rs are smallest		SE			NAD83 UTM	in meters	
Well Tag	POD	Nbr	Q64	Q16	Q4	Sec	Tws	Rng	х	Y	Мар
NA	C 047	12 POD4	NW	SE	SW	14	235	31E	617535.4	3574316.2	8
* UTM locatic	on was de	erived from F	PLSS - see H	elp							
Driller Lice	ense:	1833	Dri	ller Compa	ny:	VISION RI	ESOURC	Ces, Inc			
Driller Na	ne:	JASON N	IALEY								
Drill Start	Date:	2023-03-	-09 Dri	ll Finish Dat	te:	2023-03-0	09		Plug Dat	e: 20	23-03-14
Log File D	ate:	2023-04-	-04 PC	N Rcv Date	•				Source:		
Pump Typ	e:		Pip	e Discharge	e Size:				Estimate	d Yield:	
Casing Siz	e:	6.00	De	oth Well:		55			Depth W	ater:	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/23/24 7:07 PM MST

Point of Diversion Summary

<u>get image</u> <u>list</u>

Water Right Summary

		9		·	
WR File Number:	C 04712		Subbasin:	CUB	Cross Reference:
Primary Purpose:	MON MONITORING WELL				
Primary Status:	PMT Permit				
Total Acres:			Subfile:		Header:

Cause/Case:

 Owner:
 VERTEX RESOURCES

 Owner:
 HARVARD PETROLEUM COMPANY LLC

0.000

Contact: JUSTIN WARREN

Total Diversion:

Documents on File

4

									(acre-fee	et per annum)
Transaction Images	Trn #	Doc	File/Act	Status 1	Status 2	Transaction Desc.	From/To	Acres	Diversion	Consumptive
get images	<u>743189</u>	EXPL	2023-02-21	PMT	APR	C 04712 POD1-6	Т	0.000	0.000	

Current Points of Diversion

POD Number	Well Tag	Source	Q64	Q16	Q 4	Sec	Tws	Rng	х	Y	Мар	Other Location Desc
<u>C 04712 POD1</u>	NA		NW	SE	NW	31	235	32E	620917.2	3570289.2	•	SDE
<u>C 04712 POD2</u>	NA		SE	SE	SE	17	235	32E	623331.9	3574331.5	•	TOMCAT17
<u>C 04712 POD3</u>	NA		SE	NW	NE	24	235	31E	619650.7	3573877.9	•	TODD24
<u>C 04712 POD4</u>	NA		NW	SE	SW	14	235	31E	617535.4	3574316.2	•	TODD14
<u>C 04712 POD5</u>	NA		SE	SE	SW	09	235	31E	614392.9	3575754.4	•	NPG9
<u>C 04712 POD6</u>	NA		SW	SW	SE	08	235	31E	613146.6	3575740.1		NPG8

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/23/24 7:06 PM MST

Water Rights Summary

•

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

	OSE POD NO.	(WELL NO.)		WELL TAG ID NO.		OSE FILE NO(S	5).						
ION	E-047		04					712					
CAL	WELL OWNE	R NAME(S)	011	A		PHONE (OPTIC	DNAL)						
P	WELLOWNE	R MAILING A	Vetraleum	ampany		CITY		STATE	ZIP				
WELL	0		136			Res	well	NM 8	3820				
GENERAL AND WELL LOCATION	WELL	LATI	2	GREES MINUTES SECO	ness.	* ACCURACY	* ACCURACY REQUIRED: ONE TENTH OF A SECOND						
KA	(FROM GPS	5)	SITUDE /0.		117	* DATUM REC	UIRED: WGS 84						
I. GEN	DESCRIPTIO			3 45 05. STREET ADDRESS AND COMMON LAND		S (SECTION, TO	WNSHJIP, RANGE) WH	IERE AVAILABLE					
	LICENSE NO.		NAME OF LICENSED I	DRILLER			NAME OF WELL DR	ILLING COMPANY	_				
	183	3	Jas	ian Maley				Resource	-				
	DRILLING ST	ARTED	DRILLING ENDED	DEPTH OF COMPLETED WELL (FT)	BORE HOL	E DEPTH (FT)	DEPTH WATER FIR	ST ENCOUNTERED (F	Т)				
	COMPLETED	WELL IS:	ARTESIAN *add Centralizer info belo	DRY HOLE SHALLOW (UNC	CONFINED)		WATER LEVEL	DATE STATI	C MEASU				
OTT	DRILLING FL	UID:	AIR	MUD ADDITIVES - SP	ECIFY:								
KMA	DRILLING M	ETHOD: 🗗 I	ROTARY 🗌 HAMM	ER CABLE TOOL OTHER - SP	ECIFY:		CHECK INSTAL	HERE IF PITLESS AD. LED	APTER IS				
DRILLING & CASING INFORMATION	DEPTH (feet bgl)	BORE HOLE	CASING MATERIAL AND/OR	CA	SING	CASING	CASING WALL	SL				
SUNG	FROM	то	DIAM (inches)	GRADE (include each casing string, and note sections of screen)	CONN	ECTION YPE ing diameter)	INSIDE DIAM. (inches)	THICKNESS (inches)	SI (inc				
& C	0	45	6	2" pue sch 40	Th	read	2"	Sch 40	-				
FING	45	55	6	2" pre sch40	The	read	2"	Sch 40	.0				
DRIL													
2.							ACC For Par	0000					
							USE DII RPR	4 2023 #40 123					
				LIST ANNULAR SEAL MATERIAL A	ND CRAVE	DACK CIZE							
1	DEPTH (BORE HOLE DIAM. (inches)	RANGE BY INTE		TACK SILE-	AMOUNT (cubic feet)		OD OF				
LERIA	FROM	то	DATANI, (menes)	*(if using Centralizers for Artesian wells	- indicate the	spacing below)	(cubic feet)	FLACE	AVILAN I				
ANNULAR MATERIAL				None Pette	1 A	nd Pt	Laged		_				
NNUL					0.11		ω						
3. Al													
	OSE INTER		· · · · · · · · · · · · · · · · · · ·		. /		0 WELL RECORD	& LOG (Version 09/	/22/2022				
	ENO. C-4	1712	- POD4	POD NO.	4	TRN N	121	89					
OC	ATION (ner	23.5	1.14.143	1	WELL TAG II	D NO	PAG	E 1 OF				

	DEPTH (feet bgl)		COLOR AND TYPE OF MATERIAL ENCOUNTERED		ESTIMATED
	FROM	то	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES / NO)	YIELD FOR WATER- BEARING ZONES (gpm)
	D	25	25	White Caliche	Y N	
	25	55	30	Red Sand And Caliche	Y N	
					Y N	
					Y N	
					Y N	
E				+	Y N	_
WE					Y N	
OF					Y N	
FO		J			Y N	_
4. HYDROGEOLOGIC LOG OF WELL					Y N	
OLO	1				Y N	
GEC		5			Y N	
DRO					Y N	
HY.		h			Y N	1/
4					Y N	
-		1			Y N	
					Y N	
					Y N	
					Y N	
					Y N	
					Y N	
7	METHOD U				TAL ESTIMATED ELL YIELD (gpm):	Dry
z		P A	IR LIFT	BAILER OTHER – SPECIFY: W	TAL ESTIMATED ELL YIELD (gpm):	Dry Method,
VISION	UPUM WELL TES	P DA	IR LIFT	BAILER OTHER - SPECIFY:	TAL ESTIMATED ELL YIELD (gpm):	Dry Method, dd.
. TEST; RIG SUPERVISION	PUM WELL TES	P A	IR LIFT	BAILER OTHER – SPECIFY: WI ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUI ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER T	DING DISCHARGE N HE TESTING PERIC	₽ D. ML(23
5.	PUM WELL TES MISCELLA PRINT NAM	P A T TEST STAR NEOUS INI ME(S) OF D	IR LIFT	BAILER OTHER – SPECIFY: W	TAL ESTIMATED ELL YIELD (gpm): DING DISCHARGE N HE TESTING PERIC DIT APR 4 2023 P UCTION OTHER TH	MI 23 IAN LICENSE
5.	PUM WELL TES MISCELLA PRINT NAM	P A T TEST STAR NEOUS INI ME(S) OF D RESIGNED I RECORD O PERMIT HO	IR LIFT RESULTS - ATT, T TIME, END TIN FORMATION: RILL RIG SUPER HEREBY CERTIF F THE ABOVE D DLDER WITHIN 3	BAILER OTHER – SPECIFY: W	TAL ESTIMATED ELL YIELD (gpm): DING DISCHARGE N HE TESTING PERIC DIT APR 4 2023 P UCTION OTHER TH	MI 23 IAN LICENSE
04 6. SIGNATURE 5.	PUM WELL TES MISCELLA PRINT NAM	P A T TEST STAR NEOUS INF ME(S) OF D ERSIGNED I RECORD O PERMIT HO SIGNAT	IR LIFT RESULTS - ATT, T TIME, END TIN FORMATION: FORMATION: RILL RIG SUPER HEREBY CERTIF F THE ABOVE D DLDER WITHIN 3 URE OF DRILLE	BAILER OTHER - SPECIFY: W ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUI ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER T SPECIFIC AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER T SPECIFIC AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER T SPECIFIC AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER T SPECIFIC AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER T SPECIFIC AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER T SPECIFIC AND THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTR SPECIFIC AND THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTR SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLETION OF WELL DRILLING: SPECIFIC AND THAT HE OR SHE WILL FILE THIS WELL RECOMPLET ON THAT HE OR SHE WILL T	TAL ESTIMATED ELL YIELD (gpm): DING DISCHARGE N HE TESTING PERIC DIT APR 4 2023 P UCTION OTHER TH	D. MI 23 IAN LICENSE S A TRUE AN ATE ENGINER

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 743189 File Nbr: C 04712 Well File Nbr: C 04712 POD4

Apr. 04, 2023

VERTEX RESOURCES P.O. BOX 936 ROSWELL, NM 88202

Greetings:

The above numbered permit was issued in your name on 02/21/2023.

The Well Record was received in this office on 04/04/2023, stating that it had been completed on 03/09/2023, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 02/21/2024.

If you have any questions, please feel free to contact us.

Sincerely,

Maret Thompson (575)622-6521

drywell

Rece 2025 0.22 d by OCL

U.S. Fish and Wildlife Service

Page 25 of 148

August 17, 2021

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 3/10/2025 4:06:35 PM

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

National Wetlands Inventory

Todd 22 I Fed 9, Pond 10832 feet

August 17, 2021

Wetlands

- Estuarine and Marine Wetland

Estuarine and Marine Deepwater

- **Freshwater Pond**

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

National Wetlands Inventory (NWI) This page was produced by the NWI mapper

Received by OCD: 3/10/2025 8:23:35 AM 1000 22 I Federal #009

Residence

Proximity Map

Legend

- FEMA Zone A (100-year floodplain)
- High Karst
- Medium Karst
- Nearest FEMA Zone A (100-year floodplain) 30,450 feet (5.77 miles)
- Nearest High Karst 25,319 feet (4.8 miles)
- line state and the set the set (3.79 miles) line state and the set (3.79 miles) line state and the set of the
- Nearest Residence 20,617 feet (3.90 miles)
- Residence
- Todd 22 I Federal #009 Release

Residence

Todd 22 | Federal #009 Release

Page 27 of 148

Google Earth Released to Imaging: 3/10/2025 4:06:35 PM

Active & Inactive Points of Diversion

(with Ownership Information)

			(acre ft per annum)					and r	OD has been rep no longer serves 1 e file is closed)			ers are 1 ers are s			SW 4=SE		(NAD83 UTM	1 in meters)		(meters)
WR File Nbr	Sub basin	Use	Diversion	Owner	County	POD Number	Well Tag	Code	e Grant	Source	q64	q16	q4	Sec	Tws	Range	x	Y	Мар	Distance
<u>C 04712</u>	CUB	MON	0.000	HARVARD PETROLEUM COMPANY LLC	ED	<u>C 04712 POD4</u>	NA				NW	SE	SW	14	23S	31E	617535.4	3574316.2		1,456.1
<u>C 02258</u>	с	PRO	0.000	DEVON ENERGY CORP. (NEVADA)	ED	<u>C 02258</u>						SW	NE	26	235	31E	618055.0	3571853.0 *		1,659.6
<u>C 04774</u>	CUB	MON	0.000	DEVON ENGERGY RESOURCES	ED	<u>C 04774 POD1</u>	NA				SE	NE	NE	23	235	31E	618456.0	3573856.4	0	1,790.0
<u>C 02348</u>	с	STK	3.000	NGL NORTH RANCH LLC A TEXAS LIMITED LIABILITY CO	ED	<u>C 02348</u>				Shallow	NW	SE	SW	26	235	31E	617647.5	3571068.0	•	2,098.7
<u>C 04897</u>	CUB	MON	0.000	OXY USA INC.	ED	<u>C 04897 POD1</u>	NA				NW	NE	SW	21	235	31E	614374.0	3573036.6		2,500.1
<u>C 04709</u>	CUB	MON	0.000	DEVON ENERGY	ED	<u>C 04709 POD1</u>	NA				SW	NW	NW	15	235	31E	615508.8	3575262.4	0	2,626.1
<u>C 02777</u>	CUB	MON	0.000	US DEPT OF ENERGY WIPP	ED	<u>C 02777</u>					SE	SE	SE	10	235	31E	616973.8	3575662.1	•	2,645.0
<u>C 03749</u>	CUB	MON	0.000	US DEPARTMENT OF ENERGY	ED	<u>C 03749 POD1</u>				Shallow		NE	NE	15	235	31E	616973.8	3575662.1	0	2,645.0
<u>C 02602</u>	С	SAN	0.000	POGO PRODUC I NG COMPANY	ED	<u>C 02602</u>						NE	NE	35	235	31E	618471.0	3570650.0 *	•	2,857.0
<u>C 04712</u>	CUB	MON	0.000	HARVARD PETROLEUM COMPANY LLC	ED	<u>C 04712 POD3</u>	NA				SE	NW	NE	24	23S	31E	619650.7	3573877.9		2,906.5
<u>C 04724</u>	CUB	MON	0.000	DEVON ENERGY	ED	<u>C 04724 POD1</u>	NA				SE	SW	SW	10	235	31E	615709.7	3575738.3	•	2,958.1
<u>C 04855</u>	CUB	MON	0.000	DEVON ENERGY PRODUCTION	ED	<u>C 04855 POD1</u>	NA				NE	SW	SW	11	235	31E	617417.6	3575936.7	•	2,967.9
<u>C 04790</u>	CUB	MON	0.000	DEVON ENERGY RESOURCES	ED	<u>C 04790 POD1</u>	NA				SE	SE	SW	25	235	31E	619309.4	3570904.8	•	3,225.1
<u>C 04712</u>	CUB	MON	0.000	HARVARD PETROLEUM COMPANY LLC	ED	<u>C 04712 POD5</u>	NA				SE	SE	SW	09	235	31E	614392.9	3575754.4	0	3,693.0
<u>C 04877</u>	CUB	EXP	0.000	DEVON ENERGY CORP	LE	<u>C 04877 POD1</u>	NA				SE	NW	NW	30	235	32E	620540.4	3572234.6		3,749.4
<u>C 02954</u>	CUB	EXP	0.000	U.S. DEPARTMENT OF ENERGYCARLSBAD FIELD OFFICE, WIPP	ED	<u>C 02954 EXPL</u>				Shallow	SW	NW	SE	20	235	31E	613114.0	3572906.0 *		3,761.7
<u>C 04704</u>	CUB	MON	0.000	DEVON ENERGY	ED	<u>C 04704 POD1</u>	NA				SW	NE	NE	13	235	31E	619854.4	3575363.5	•	3,792.0
<u>C 04776</u>	CUB	MON	0.000	DEVON ENERGY RESOURCES	ED	<u>C 04776 POD1</u>	NA				SW	SW	SW	09	235	31E	613953.1	3575651.8		3,932.3
<u>C 04553</u>	CUB	MON	0.000	OXY USA INC	ED	<u>C 04553 POD1</u>	NA				SE	NW	SE	29	23S	31E	613255.5	3571369.8	•	3,976.6
<u>C 04746</u>	CUB	MON	0.000	DEVON ENERGY RESOURCES	ED	<u>C 04746 POD1</u>	NA				SW	SE	SW	36	235	31E	619225.7	3569417.8		4,301.1
<u>C 00225 A</u>	CUB	IRR	8.400	GREGORY ROCKHOUSE RANCH	ED	<u>C 02405</u>				Shallow		SE	NW	02	24S	31E	617690.0	3568631.0 *		4,463.2
<u>C 01246 AO</u>	CUB	IRR	47.820	CATHLEEN MC INTIRE	ED	<u>C 02405</u>				Shallow		SE	NW	02	245	31E	617690.0	3568631.0 *	0	4,463.2
<u>C 02405</u>	с	PRO	0.000	TEXACO EXPLORATION & PROD. IND	ED	<u>C 02405</u>				Shallow		SE	NW	02	245	31E	617690.0	3568631.0 *	•	4,463.2
<u>C 02452</u>	с	PRO	0.000	TEXACO EXPLORATION & PROD INC.	ED	<u>C 02405</u>				Shallow		SE	NW	02	24S	31E	617690.0	3568631.0 *	•	4,463.2
					ED	<u>C 02452</u>						SE	NW	02	245	31E	617690.0	3568631.0 *	0	4,463.2
<u>C 02576</u>	с	PRO	0.000	SONAT EXPLORATION COMPANY	ED	<u>C 02405</u>				Shallow		SE	NW	02	24S	31E	617690.0	3568631.0 *		4,463.2
<u>C 02464</u>	с	PRO	0.000	COMMISSIONER OF PUBLIC LANDS	ED	<u>C 02464</u>				Shallow	NE	SW	NW	02	24S	31E	617644.7	3568581.6	•	4,503.8
<u>C 02901</u>	с	PUB	0.000	B & H MAINTENANCE & CONST.	ED	<u>C 02901</u>	NA				SW	SE	NW	02	24S	31E	617585.7	3568531.4		4,543.7
<u>C 04859</u>	CUB	MON	0.000	BUREAU OF LAND MANAGEMENT	ED	<u>C 02901</u>	NA				SW	SE	NW	02	245	31E	617585.7	3568531.4	•	4,543.7
<u>C 04712</u>	CUB	MON	0.000	HARVARD PETROLEUM COMPANY LLC	ED	<u>C 04712 POD6</u>	NA				SW	SW	SE	08	235	31E	613146.6	3575740.1		4,615.0

Received by OCD: 3/10/2025 8:23:35 AM

			(acre ft per annum)					and n	DD has been replaced o longer serves this file, file is closed)			ers are 1 ers are si)	(NAD83 UTN	1 in meters)		(meter
WR File Nbr	Sub basin	Use	Diversion	Owner	County	POD Number	Well Tag	Code	Grant	Source	q64	q16	q4	Sec	Tws	Range	x	Y	Мар	Distar
<u>C 03389</u>	с	STK	3.000	JIMMY MILLS 2005 GST TRUST	ED	<u>C 03389</u>					NW	NW	SW	17	235	31E	612316.0	3574683.0	•	4,852.2
<u>C 03394</u>	С	PUB	0.000	JAMES HAMILTON CONSTRUCTION CO	ED	<u>C 03389</u>					NW	NW	SW	17	235	31E	612316.0	3574683.0	•	4,852.2
<u>C 04712</u>	CUB	MON	0.000	HARVARD PETROLEUM COMPANY LLC	LE	<u>C 04712 POD1</u>	NA				NW	SE	NW	31	235	32E	620917.2	3570289.2		4,878.4
<u>C 02773</u>	CUB	MON	0.000	U.S. DEPT. OF ENERGY - WIPP	ED	<u>C 02773</u>					SE	NW	SW	03	23S	31E	615668.0	3577762.0 *		4,893.9
<mark>lecord Count</mark> ilters Applie JTM Filters (i asting: 6168 lorthing: 357	d: i <u>n mete</u> 74 73019	<u>rs):</u>																		
Radius: 00500																				
Radius: 00500 Sorted By: Dis	stance																			

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/23/24 6:57 PM MST

Active & Inactive Points of Diversion

Received by OCD: 3/10/2025 8:23:35 AM

		quarters are 1=1 quarters are						NAD83 UTM	in meters			
Well Tag	POD Nbr	Q64 C	216	Q4	Sec	Tws	Rng	х	Y	Мар		
	C 02348	NW S	E	SW	26	23S	31E	617647.5	3571068.0	8		
UTM locatio	on was derived f	rom PLSS - see H	elp									
Driller License:	1654	Driller Company		NOT WORKI	NG FO	R HIRE-	-SIRMA	N DRILLING	AND CONSTR	RUC		
Driller Name:	JOHN SIRM	ΛΑΝ										
Drill Start Date:	2013-10-3	1 Drill Finis Date:	h	2013-11-01							Plug Date:	
Log File Date:	2013-11-0	7 PCW Rcv Date:									Source:	Shallo
Pump Type:		Pipe Discharge Size:	9								Estimated Yield:	10
Casing Size:	6.00	Depth We	ell:	700							Depth Water:	430

Water Bearing Stratifications:

Тор	Bottom	Description
15	125	Sandstone/Gravel/Conglomerate
315	700	Sandstone/Gravel/Conglomerate

Casing Perforations:

Тор	Bottom
560	620
680	700

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/23/24 7:30 PM MST

Water Right Summary

2	WR File Number:	C 02348	Subbasin:	С	Cross Reference:
g <u>et image</u> list	Primary Purpose:	STK 72-12-1 LIVESTOCK WATERING			
<u>1151</u>	Primary Status:	PMT Permit			
	Total Acres:		Subfile:		Header:
	Total Diversion:	3.000	Cause/Case:		
	Owner:	NGL NORTH RANCH LLC A TEXAS LIMITED LIABILITY CO			
	Contact:	JIM WINTER			

Documents on File

(acre-feet per annum)

Transaction Images	Trn #	Doc	File/Act	Status 1	Status 2	Transaction Desc.	From/To	Acres	Diversion	Consumptiv
	<u>755955</u>	COWNF	2024-01-31	CHG	PRC	C 02348	Т	0.000	0.000	
get images	<u>633178</u>	COWNF	2018-09-17	CHG	PRC	C 02348	Ţ		0.000	
🖗 <u>get images</u>	<u>491413</u>	72121	2011-12-14	PMT	LOG	C 02348: SUBSEQUENT STK PERMIT	Т		3.000	
	<u>422940</u>	COWNF	2009-02-02	CHG	PRC	C 02348	Т		0.000	
	<u>154822</u>	COWNF	1998-09-09	CHG	PRC	C 02348	Т	0.000	0.000	
	<u>154817</u>	DCL	1998-09-09	DCL	PRC	C 02348	Т	0.000	3.000	
٠										•

Current Points of Diversion

<u>C 02348</u> Shallow NW SE SW 26 23S 31E 617647.5 3571068.0	POD Number	Well Tag	Source	Q64	Q16	Q4	Sec	Tws	Rng	х	Y	Мар	Other Location Desc
	<u>C 02348</u>		Shallow	NW	SE	SW	26	235	31E	617647.5	3571068.0	•	

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/23/24 7:29 PM MST

Water Rights Summary

		•	are 1=NW 2=NI ers are smallest					NAD83 UTM i	in meters	
Well Tag POD	Nbr	Q64	Q16	Q4	Sec	Tws	Rng	х	Y	Мар
C 02	258		SW	NE	26	235	31E	618055.0	3571853.0 *	
* UTM location was o	derived	from PLSS -	- see Help							
Driller License:	421		Driller Co	mpany:	GLEN	NN'S W	ATER WI	ELL SERVICE		
Driller Name:	COF	RKY GLEN	N							
Drill Start Date:	199	2-09-18	Drill Finis	h Date:	1992	2-09-18			Plug Date:	
Log File Date:	199	2-09-25	PCW Rcv	Date:					Source:	
Pump Type:			Pipe Disch	narge Size:					Estimated Y	ield:
Casing Size:			Depth We	II:	662				Depth Wate	r:

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/23/24 7:18 PM MST

Point of Diversion Summary

Water Right Summary

WR File	Number:	C 022	258							Su	bbasin:	С	Cross Reference	:
Primary	/ Purpose:	: PRO	72-12-	-1 PROSI	PECTING	G OR D	EVELOP	MENT OF NA	TURAL RESOUF	CE				
Primary	/ Status:	PMT	Permit	t										
Total A	cres:									Su	bfile:		Header:	
Total Di	version:	0.000)							Ca	use/Case:			
Owner:		DEVC	ON EN	ERGY CC	RP.(NE	VADA)								
Contact	::	CHAR	RLES W	V. HORSI	MAN									
File Trn #	Doc	File/Act	t	Status 1	State 2		ransacti	on Desc.		From/To	Acres	Div		
<u>469242</u>	72121	1992-05	i - 27	EXP	EXP	С	02258			Т		3.00	00	
of Dive	rsion													
Well Tag	Source	Q64	Q16	Q4	Sec	Tws	Rng	x	Y	Мар	Other Lo	catio	n Desc	
			SW	NE	26	235	31E	618055.0	3571853.0 *	•				
			200	INE	20	255	JIL	010055.0	5571055.0					
	Primary Primary Total Ad Total Di Owner: Contact File Trn # 469242	Primary Purpose: Primary Status: Total Acres: Total Diversion: Owner: Contact: File Trn # Doc 469242 72121 of Diversion	Primary Purpose: PRO Primary Status: PMT Total Acres: 0.000 Owner: DEVO Contact: CHAR File File/Act 469242 72121 1992-05 of Diversion Char Char	Primary Purpose: PRO 72-12- Primary Status: PMT Permit Total Acres: 0.000 Owner: 0.000 Owner: DEVON EN Contact: CHARLES V File File/Act 469242 72121 0f Diversion Instant Status	Primary Purpose: PRO 72-12-1 PROSE Primary Status: PMT Permit Total Acres: 0.000 Total Diversion: 0.000 Owner: DEVON ENERGY CC Contact: CHARLES W. HORSE File Status Trn # Doc File/Act 469242 72121 1992-05-27 EXP of Diversion Lange Status Lange Status	Primary Purpose: PRO 72-12-1 PROSPECTING Primary Status: PMT Permit Total Acres: 0.000 Owner: DEVON ENERGY CORP.(NEW Contact: CHARLES W. HORSMAN File Status Status Trn # Doc File/Act 1 2 d69242 72121 1992-05-27 EXP EXP	Primary Purpose: PRO 72-12-1 PROSPECTING OR DI Primary Status: PMT Permit Total Acres: 0.000 Owner: DEVON ENERGY CORP.(NEVADA) Contact: CHARLES W. HORSMAN File Status Status for the prime status: File/Act Status Status of Diversion 1992-05-27 EXP EXP C	Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPM Primary Status: PMT Permit Total Acres:	Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NA Primary Status: PMT Permit Total Acres:	Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOUR Primary Status: PMT Permit Total Acres: 0.000 Owner: DEVON ENERGY CORP.(NEVADA) Contact: CHARLES W. HORSMAN File Status 1 Status 2 Transaction Desc. 469242 72121 1992-05-27 EXP EXP C 02258	Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE Primary Status: PMT Permit Total Acres: Su Total Diversion: 0.000 Owner: DEVON ENERGY CORP.(NEVADA) Contact: CHARLES W. HORSMAN File Status Status Trn # Doc File/Act 1 2 Transaction Desc. From/To 469242 72121 1992-05-27 EXP C 02258 T	Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE Primary Status: PMT Permit Total Acres: Subfile: Owner: DEVON ENERGY CORP.(NEVADA) Cause/Case: Owner: CHARLES W. HORSMAN From/To Acres File File/Act Status Status 2 Transaction Desc. From/To Acres 469242 72121 1992-05-27 EXP EXP C 02258 T T	Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE Primary Status: PMT Permit Total Acres: Subfile: Total Acres: 0.000 Cause/Case: DEVON ENERGY CORP.(NEVADA) Contact: CHARLES W. HORSMAN File Status Trn # Doc File/Act Status 2 Transaction Desc. File From/To Acres Diversion 0.002 EXP Contact: CHARLES W. HORSMAN	Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE Primary Status: PMT Permit Total Acres: 0000 Cause/Case: Owner: DEVON ENERGY CORP.(NEVADA) Contact: CHARLES W. HORSMAN File Status Trn # Doc Pie/Act Status Status Zause/Case: (are-feet per annum) 469242 72121 1992-05-27 EXP CO258 T Sold 3.000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

11/23/24 7:17 PM MST

Water Rights Summary

U.S. Fish and Wildlife Service

National Wetlands Inventory

Todd 22 I Fed 9 Wetlands

July 22, 2021

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- **Freshwater Pond**

Lake Other Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Potash Mine, 45,593 feet

Page 35 of 148

EMNRD MMD GIS Coordinator NM Energy, Minerals and Natural Resources Department (http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=1b5e577974664d689b47790897ca2795)

Received by OCD: 3(10/2025 8:23:35,AM National Flood Hazard Layer FIRMette

Legend

regulatory purposes.

Page 37 of 148

Releasea 40 Imaging: 3/10/2025 4906:35 PM 1,500 2.000

Basemap: USGS National Map: Orthoimagery: Data refreshed October, 2020

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Eddy Area, New Mexico

Page 39 of 148

Released to Imaging: 3/10/2025 4:06:35 PM

•

Custom Soil Resource Report

MAP L	EGEND	MAP INFORMATION	
Area of Interest (AOI) Area of Interest (AOI)	Spoil AreaStony Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.	
Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Saccial Baint Factures	 Very Stony Spot Wet Spot Other Special Line Features 	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of	
Special Point Features Blowout Borrow Pit Clay Spot	Water Features Streams and Canals Transportation	contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map	
Closed Depression Gravel Pit Gravelly Spot	 Rails Interstate Highways US Routes Major Roads 	measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	
 Landfill Lava Flow Marsh or swamp Mine or Quarry 	Local Roads Background Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	
 Miscellaneous Water Perennial Water Rock Outcrop Saline Spot 		This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 16, Jun 8, 2020	
Saline Spot Sandy Spot Severely Eroded Spot Sinkhole		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Feb 7, 2020—May	
Slide or SlipSodic Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

Map Unit Legend

			-
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
ВВ	Berino complex, 0 to 3 percent slopes, eroded	4.3	6.7%
КМ	Kermit-Berino fine sands, 0 to 3 percent slopes	56.3	88.5%
WK	Wink loamy fine sand, 0 to 3 percent slopes, eroded	3.0	4.7%
Totals for Area of Interest		63.6	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or

landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Eddy Area, New Mexico

BB—Berino complex, 0 to 3 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w43 Elevation: 2,000 to 5,700 feet Mean annual precipitation: 5 to 15 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 260 days Farmland classification: Not prime farmland

Map Unit Composition

Berino and similar soils: 60 percent Pajarito and similar soils: 25 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Berino

Setting

Landform: Fan piedmonts, plains Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 17 inches: fine sand H2 - 17 to 58 inches: sandy clay loam H3 - 58 to 60 inches: loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water capacity: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Description of Pajarito

Setting

Landform: Interdunes, plains, dunes Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 9 inches: loamy fine sand *H2 - 9 to 72 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water capacity: Moderate (about 8.0 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Minor Components

Cacique

Percent of map unit: 4 percent Ecological site: R042XC004NM - Sandy Hydric soil rating: No

Pajarito

Percent of map unit: 4 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Wink

Percent of map unit: 4 percent Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Kermit

Percent of map unit: 3 percent Ecological site: R042XC005NM - Deep Sand Hydric soil rating: No

KM—Kermit-Berino fine sands, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w4q Elevation: 3,100 to 4,200 feet Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 190 to 230 days Farmland classification: Not prime farmland

Map Unit Composition

Kermit and similar soils: 50 percent *Berino and similar soils:* 35 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kermit

Setting

Landform: Alluvial fans, plains Landform position (three-dimensional): Rise, talf Down-slope shape: Linear, convex Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 7 inches: fine sand *H2 - 7 to 60 inches:* fine sand

Properties and qualities

Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Drainage class: Excessively drained Runoff class: Negligible Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm) Sodium adsorption ratio, maximum: 1.0 Available water capacity: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R042XC005NM - Deep Sand Hydric soil rating: No

Description of Berino

Setting

Landform: Fan piedmonts, plains Landform position (three-dimensional): Riser Down-slope shape: Convex Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 17 inches: fine sand H2 - 17 to 50 inches: fine sandy loam H3 - 50 to 58 inches: loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Very slightly saline to slightly saline (2.0 to 4.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water capacity: Moderate (about 7.2 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Minor Components

Active dune land Percent of map unit: 15 percent Hydric soil rating: No

WK—Wink loamy fine sand, 0 to 3 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w6c Elevation: 2,700 to 5,000 feet Mean annual precipitation: 5 to 14 inches Mean annual air temperature: 57 to 70 degrees F

Custom Soil Resource Report

Frost-free period: 180 to 250 days *Farmland classification:* Not prime farmland

Map Unit Composition

Wink and similar soils: 98 percent *Minor components:* 2 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Wink

Setting

Landform: Depressions, swales Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Convex Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 8 inches: loamy fine sand *H2 - 8 to 38 inches:* fine sandy loam *H3 - 38 to 60 inches:* fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 30 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water capacity: Low (about 5.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: A Ecological site: R042XC003NM - Loamy Sand Hydric soil rating: No

Minor Components

Wink

Percent of map unit: 1 percent Ecological site: R042XC004NM - Sandy Hydric soil rating: No

Simona

Percent of map unit: 1 percent Ecological site: R042XC002NM - Shallow Sandy Hydric soil rating: No USDA Natural Resources Conservation Service

Ecological site R042XC003NM Loamy Sand

Accessed: 07/19/2021

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R042XC004NM	Sandy Sandy
R042XC005NM	Deep Sand Deep Sand

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site is on uplands, plains, dunes, fan piedmonts and in inter dunal areas. The parent material consists of mixed alluvium and or eolian sands derived from sedimentary rock. Slope range on this site range from 0 to 9 percent with the average of 5 percent.

Low stabilized dunes may occur occasionally on this site. Elevations range from 2,800 to 5,000 feet.

Table 2. Representative physiographic features

Landforms	(1) Fan piedmont(2) Alluvial fan(3) Dune
Elevation	2,800–5,000 ft
Slope	0–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity-short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is 207 to 220 days. The last killing frost being late March or early April and the first killing frost being in later October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. Strong winds blow from the southwest from January through June, which accelerates soil drying during a critical period for cool season plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are moderately deep or very deep. Surface textures are loamy fine sand, fine sandy loam, loamy very fine sand or gravelly sandy loam.

Subsurface is a loamy fine sand, coarse sandy loam, fine sandy loam or loam that averages less than 18 percent clay and less than 15 percent carbonates.

Substratum is a fine sandy loam or gravelly fine sandy loam with less than 15 percent gravel and with less than 40 percent calcium carbonate. Some layers high in lime or with caliche fragments may occur at depths of 20 to 30 inches.

These soils, if unprotected by plant cover and organic residue, become wind blown and low hummocks are formed.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are:

Released to Imaging: 3/10/2025 4:06:35 PM

Received by OCD: 3/10/2025 8:23:35 AM

Maljamar Berino Parjarito Palomas Wink Pyote

Table 4. Representative soil features

Surface texture	(1) Fine sand(2) Fine sandy loam(3) Loamy fine sand
Family particle size	(1) Sandy
Drainage class	Well drained to somewhat excessively drained
Permeability class	Moderate to moderately rapid
Soil depth	40–72 in
Surface fragment cover <=3"	0–10%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	5–7 in
Calcium carbonate equivalent (0-40in)	3–40%
Electrical conductivity (0-40in)	2–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0–2
Soil reaction (1:1 water) (0-40in)	6.6–8.4
Subsurface fragment volume <=3" (Depth not specified)	4–12%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

Overview

The Loamy Sand site intergrades with the Deep Sand and Sandy sites (SD-3). These sites can be differentiated by surface soil texture and depth to a textural change. Loamy Sand and Deep Sand sites have coarse textured (sands and loamy sand) surface soils while Sandy sites have moderately coarse textured (sandy loam and fine sandy loam) surfaces. Although Loamy Sand and Deep Sand sites have similar surface textures, the depth to a textural change is different—Loamy Sand sub-surface textures typically increase in clay at approximately 20 to 30 inches, and Deep Sand sites not until around 40 inches.

The historic plant community of Loamy Sand sites is dominated by black grama (*Bouteloua eriopoda*), dropseeds (*Sporobolus flexuosus*, *S. contractus*, *S. cryptandrus*), and bluestems (*Schizachyrium scoparium* and *Andropogon hallii*), with scattered shinnery oak (*Quercus havardii*) and sand sage (*Artemisia filifolia*). Perennial and annual forb abundance and distribution are dependent on precipitation. Litter and to a lesser extent, bare ground, are a significant proportion of ground cover while grasses compose the remainder. Decreases in black grama indicate a transition to either a grass/shrub or shrub-dominated state. The grass/shrub state is composed of grasses/honey mesquite (*Prosopis glandulosa*), grasses/broom snakeweed (*Gutierrezia sarothrae*), or grasses/sand sage. The shrub-dominated state occurs after a severe loss of grass cover and a prevalence of sand sage with secondary shinnery oak and mesquite. Heavy grazing intensity and/or drought are influential drivers in decreasing black grama and bluestems and subsequently increasing shrub cover, erosion, and bare patches. Historical fire suppression also

Released to Imaging: 3/10/2025 4:06:35 PM

encourages shrub pervasiveness and a competitive advantage over grass species (McPherson 1995). Brush and grazing management, however, may reverse grass/shrub and shrub-dominated states toward the grassland-dominated historic plant community.

State and transition model

Plant Communities and Transitional Pathways (diagram):

MLRA-42, SD-3, Loamy Sand

1a. Drought, over grazing, fire suppression.

1b. Brush control, prescribed grazing

Severe loss of grass cover, fire suppression, erosion.
 Brush control, seeding, prescribed grazing.

3. Continued loss of grass cover, erosion.

Figure 4.

State 1

Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: The historic plant community is a uniformly distributed grassland dominated by black grama, dropseeds, and bluestems. Sand sage and shinnery oak are evenly dispersed throughout the grassland due to the coarse soil surface texture. Perennial and annual forbs are common but their abundance and distribution are reflective of precipitation. Bluestems initially, followed by black grama, decrease with drought and heavy grazing intensity. Historical fire frequency is unknown but likely occurred enough to remove small shrubs to the competitive advantage of grass species. Fire suppression, drought conditions, and excessive grazing drive most grass species out of competition with shrub species.

Diagnosis: Grassland dominated by black grama, dropseeds, and bluestems. Shrubs, such as sand sage, shinnery oak, and mesquite are dispersed throughout the grassland. Forbs are present and populations fluctuate with precipitation variability.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	442	833	1224
Forb	110	208	306
Shrub/Vine	98	184	270
Total	650	1225	1800

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	28%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	22%

Figure 6. Plant community growth curve (percent production by month). NM2803, R042XC003NM-Loamy Sand-HCPC. SD-3 Loamy Sand - Warm season plant community .

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

Community 2.1 Grass/Shrub Received by OCD: 3/10/2025 8:23:35 AM

 Black grams/Mesquite community, with some dropseeds, threeovers, and scattered sund shimnery oak
 Ones cover low to moderate

Grass/Shrub State: The grass/shrub state is dominated by communities of grasses/mesquite, grasses/snakeweed, or grasses/sand sage. Decreases in black grama and bluestem species lead to an increase in bare patches and mesquite which further competes with grass species. An increase of dropseeds and threeawns occurs. Grass

mesquite which further competes with grass species. An increase of dropseeds and threeawns occurs. Grass distribution becomes more patchy with an absence or severe decrease in black grama and bluestems. Mesquite provides nitrogen and soil organic matter to co-dominant grasses (Ansley and Jacoby 1998, Ansley et al. 1998). Mesquite mortality when exposed to fire is low due to aggressive resprouting abilities. Herbicide application combined with subsequent prescribed fire may be more effective in mesquite reduction (Britton and Wright 1971).

Diagnosis: This state is dominated by an increased abundance of communities including grass/mesquite, grass/snakeweed, or grass/sand sage. Dropseeds and threeawns have a patchy distribution.

Transition to Grass/Shrub State (1a): The historic plant community begins to shift toward the grass/shrub state as drivers such as drought, fire suppression, interspecific competition, and excessive grazing contribute to alterations in soil properties and herbaceous cover. Cover loss and surface soil erosion are initial indicators of transition followed by a decrease in black grama with a subsequent increase of dropseeds, threeawns, mesquite, and snakeweed. Snakeweed has been documented to outcompete black grama especially under conditions of fire suppression and drought (McDaniel et al. 1984).

Key indicators of approach to transition:

- Loss of black grama cover
- Surface soil erosion
- Bare patch expansion
- Increased dropseed/threeawn and mesquite, snakeweed, or sand sage abundances

Transition to Historic Plant Community (1b): Brush and grazing management may restore the grassland component and reverse shrub or grass/shrub dominated states back toward the historic plant community.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated State: The shrub-dominated state results from a severe loss of grass cover. This state's primary species is sand sage. Shinnery oak and mesquite also occur; however, grass cover is limited to intershrub distribution. Sand sage stabilizes light sandy soils from wind erosion, which enhances protected grass/forb cover (Davis and Bonham 1979). However, shinnery oak also responds to the sandy soils with dense stands due to an aggressive rhizome system. Shinnery oak's extensive root system promotes competitive exclusion of grasses and forbs. Sand sage, shinnery oak, and mesquite can be controlled with herbicide (Herbel et al. 1979, Pettit 1986).

Transition to Shrub-Dominated (2a): Severe loss of grass species with increased erosion and fire suppression will result in a transition to a shrub-dominated state with sand sage, Shin oak, and honey mesquite directly from the grassland-dominated state.

Key indicators of approach to transition:

- · Severe loss of grass species cover
- Surface soil erosion
- Bare patch expansion
- · Increased sand sage, shinnery oak, and mesquite abundance

Transition to Historic Plant Community (2b): Brush and grazing management may restore the grassland component and reverse shrub or grass/shrub dominated states back toward the historic plant community. In addition, seeding with native grass species will augment the transition to a grassland-dominated state.

Transition to Shrub-Dominated (3): If the grass/shrub site continues to lose grass cover with soil erosion, the site will transition to a shrub-dominated state with sand sage, shinnery oak, and honey mesquite.

Key indicators of approach to transition:

- · Continual loss of dropseeds/threeawns cover
- Surface soil erosion
- Bare patch expansion
- Increased sand sage, shinnery oak, and mesquite/dropseed/threeawn and mesquite/snakeweed abundance

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike		•		
1	Warm Season			61–123	
	little bluestem	SCSC	Schizachyrium scoparium	61–123	_
2	Warm Season		•	37–61	
	sand bluestem	ANHA	Andropogon hallii	37–61	_
3	Warm Season			37–61	
	cane bluestem	BOBA3	Bothriochloa barbinodis	37–61	_
	silver bluestem	BOSA	Bothriochloa saccharoides	37–61	_
4	Warm Season		•	123–184	
	black grama	BOER4	Bouteloua eriopoda	123–184	_
	bush muhly	MUPO2	Muhlenbergia porteri	123–184	_
5	Warm Season			123–184	
	thin paspalum	PASE5	Paspalum setaceum	123–184	_
	-l-! !-#		Ostanialaiseta	400 404	

Released to Imaging: 3/10/2025 4:06:35 PM

Received by OCD: 3/10/2025 8:23:35 AM Todd 22 I Federal #009 Geology

Water—Perenial standing water

Qa—Alluvium (Holocene to upper Pleistocene)

0	1.25	2.5	5 mi
0	2.25	4.5	9 km

Esri, NASA, NGA, USGS, NMBGMR, USGS The National Map: National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset, and National Transportation Dataset; USGS Global Ecosystems; U.S. Census

Released to Imaging: 3/10/2025 4:06:35 PM
ArcGIS Web AppBuilder
USGS The National Boundaries Dataset, 3DEP Elevation Program, Geographic Names Information System, National Hydrography Dataset, National Land Cover Database, National Structures Dataset,

ATTACHMENT 5

Daily Site Visit Report

Client:	Devon Energy Corporation	Inspection Date:	7/28/2021	
Site Location Name:	Todd 22 I Fed 9	Report Run Date:	7/28/2021 8:50 PM	
Client Contact Name:	Wes Matthews	API #:	30-015-32730	
Client Contact Phone #:	(575) 748-0176			
Unique Project ID		Project Owner:		
Project Reference #		Project Manager:		
Summary of Times				
Arrived at Site	7/28/2021 7:46 AM			
Departed Site	7/28/2021 12:30 PM			

Field Notes

14:44 Arrived on site to delineate historic spill

14:44 Ran BH1 and got a hit on TPH. Used BH1 as vertical borehole

14:45 Stepped out from BH1. BH2, BH4-6, BH8, and BH11-12 came clean at 0.5ft to horizontally delineate the spill

14:46 Used BH7 as another vertical borehole

14:46 BH1 got clean at 6ft

Next Steps & Recommendations

1

Daily Site Visit Signature

Inspector: Chance Dixon

Signature:	CD
U	Signature

•

Client:	Devon Energy Corporation	Inspection Date:	2/22/2022	
Site Location Name:	Todd 22 I Fed 9	Report Run Date:	3/3/2022 11:05 PM	
Client Contact Name:	Wes Matthews		30-015-32730	
Client Contact Phone #:	(575) 748-0176	_		
Unique Project ID		Project Owner:		
Project Reference #		Project Manager:		
		Summary of	Times	
Arrived at Site	2/22/2022 8:45 AM			
Departed Site	2/22/2022 2:31 PM			

Field Notes

8:51 Collect and field screen base and wall samples

10:10 Base samples field screening high, taking excavation down another foot

14:23 Clean dirt reached and samples collected.

Next Steps & Recommendations

1 Send samples to lab and await results

Site Photos Viewing Direction: East Viewing Direction: East Excavation in progress Completed excavation Viewing Direction: North Viewing Direction: East Spoil pile Spoil pile

Completed and fenced off excavation

Daily Site Visit Signature

Inspector: Jason Crabtree Signature: Signat

•

Client:	Devon Energy Corporation	Inspection Date:	3/10/2022
Site Location Name:	Todd 22 I Fed 9	Report Run Date:	3/11/2022 12:56 AM
Client Contact Name:	Wes Matthews	API #:	30-015-32730
Client Contact Phone #:	(575) 748-0176		
Unique Project ID		Project Owner:	
Project Reference #		Project Manager:	
		Summary of	Times
Arrived at Site	3/10/2022 10:45 AM		
Departed Site	3/10/2022 4:33 PM		

Field Notes

16:28 Arrived on site to obtain further confirmation samples for closure.

16:29 Lots of blow over sand in excavation

Next Steps & Recommendations

1 Send samples to lab

Page 66 of 148

Daily Site Visit Signature

Inspector: Austin Harris

Signature:

•

Client:	Devon Energy Corporation	Inspection Date:	3/11/2022	
Site Location Name:	Todd 22 I Fed 9	Report Run Date:	3/12/2022 12:33 AM	
Client Contact Name:	Wes Matthews		30-015-32730	
Client Contact Phone #:	(575) 748-0176	_		
Unique Project ID		– Project Owner:		
Project Reference #		Project Manager:		
Summary of Times				
Arrived at Site	3/11/2022 2:15 PM			
Departed Site	3/11/2022 4:21 PM			

Field Notes

16:19 Return to site to recollect samples that were compromised in transporting.

16:20 Recollected WES22-06, 07, and 08. As well as BES22-04, 05, 06, and 07.

16:20 Did not recollect WES22-05 as it was not affected in transport.

Next Steps & Recommendations

1 Send samples to lab

Site Photos

Daily Site Visit Signature

Inspector: Austin Harris

Signature:

Signature

•

ATTACHMENT 6

Dhugal Hanton <vertexresourcegroupusa@gmail.com>

48-hour notice nAB1729753198 Todd 22 I Federal 9

1 message

Dhugal Hanton <vertexresourcegroupusa@gmail.com> To: "Enviro, OCD, EMNRD" <OCD.Enviro@state.nm.us>, "CFO_Spill, BLM_NM" <blm_nm_cfo_spill@blm.gov> Cc: "Bratcher, Mike, EMNRD" <Mike.Bratcher@state.nm.us>, dale.woodall@dvn.com, bschafer@vertex.ca

All,

Please accept this email as 48-hr notification that Vertex Resource Services has scheduled confirmation sampling to be conducted at Todd 22 I Federal 9 for the following releases:

NAB1729753198 DOR: 10/9/2017

This work will be completed on behalf of Devon Energy and Harvard Petroleum.

On Tuesday, February 22, 2022 at approximately 8:00 a.m., Jason Crabtree, will be onsite to guide remediation activities and conduct confirmatory sampling. Remedial activities and confirmatory sampling could continue through Wednesday, February 23, 2022. He can be reached at 432-250-3456. If you need directions to the site, please do not hesitate to contact him. If you have any questions or concerns regarding this notification, please give me a call at 701-301-1564.

Thank you,

Brandon Schafer Project Manager

Vertex Resource Services Inc. 1405 22nd Ave NW Watford City, ND 58854

P 701.645.3111 Ext. 706 C 701.301.1564 F 780.464.3731

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you. '%!%(

Dhugal Hanton <vertexresourcegroupusa@gmail.com>

48-hour notice nAB1729753198 Todd 22 | Federal 9

6 messages

Dhugal Hanton <vertexresourcegroupusa@gmail.com> Tue, Mar 8, 2022 at 11:02 AM To: "Enviro, OCD, EMNRD" <OCD.Enviro@state.nm.us>, "CFO Spill, BLM NM" <blm nm cfo spill@blm.gov> Cc: "Bratcher, Mike, EMNRD" < Mike.Bratcher@state.nm.us>, dale.woodall@dvn.com, bschafer@vertex.ca

All,

Please accept this email as 48-hr notification that Vertex Resource Services has scheduled confirmation sampling to be conducted at Todd 22 I Federal 9 for the following releases:

NAB1729753198 DOR: 10/9/2017

This work will be completed on behalf of Devon Energy and Harvard Petroleum.

On Tuesday, February 10, 2022 at approximately 11:15 a.m., Austin Harris, will be onsite to conduct confirmatory sampling. Remedial activities have concluded and additional confirmation samples are needed for the area. He can be reached at 432-250-5003. If you need directions to the site, please do not hesitate to contact him. If you have any questions or concerns regarding this notification, please give me a call at 701-301-1564.

Thank you,

Brandon Schafer

Project Manager

Vertex Resource Services Inc. 1405 22nd Ave NW Watford City, ND 58854

P 701.645.3111 Ext. 706 C 701.301.1564 F 780.464.3731

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you.

Dhugal Hanton <vertexresourcegroupusa@gmail.com>

Tue, Mar 8, 2022 at 11:42 AM To: "Enviro, OCD, EMNRD" <OCD.Enviro@state.nm.us>, "CFO Spill, BLM NM" <blm nm cfo spill@blm.gov> Cc: "Bratcher, Mike, EMNRD" < Mike.Bratcher@state.nm.us>, dale.woodall@dvn.com, bschafer@vertex.ca

All,

A correction to my previous email regarding confirmation sampling at the Todd 22 I Federal 9 (nAB1729753198); it will be THURSDAY (not Tuesday), February 10th, 2022.

Thank you,

Brandon Schafer

Project Manager

Vertex Resource Services Inc. 1405 22nd Ave NW Watford City, ND 58854

P 701.645.3111 Ext. 706 C 701.301.1564 F 780.464.3731

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you. [Quoted text hidden]

Enviro, OCD, EMNRD <OCD.Enviro@state.nm.us> Thu, Mar 10, 2022 at 8:11 AM To: Dhugal Hanton <vertexresourcegroupusa@gmail.com>, "Enviro, OCD, EMNRD" <OCD.Enviro@state.nm.us>, "CFO_Spill, BLM_NM" <blm_nm_cfo_spill@blm.gov> Cc: "Bratcher, Mike, EMNRD" <mike.bratcher@state.nm.us>, "dale.woodall@dvn.com" <dale.woodall@dvn.com>, "bschafer@vertex.ca" <bschafer@vertex.ca>

Thank you. Please copy this communication to report for file purposes.

Bradford Billings

EMNRD/OCD

From: Dhugal Hanton <vertexresourcegroupusa@gmail.com>
Sent: Tuesday, March 8, 2022 11:02 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@state.nm.us>; CFO_Spill, BLM_NM <blm_nm_cfo_spill@blm.gov>
Cc: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; dale.woodall@dvn.com; bschafer@vertex.ca
Subject: [EXTERNAL] 48-hour notice nAB1729753198 Todd 22 I Federal 9

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

[Quoted text hidden]

Enviro, OCD, EMNRD <OCD.Enviro@state.nm.us> To: Dhugal Hanton <vertexresourcegroupusa@gmail.com> Thu, Mar 10, 2022 at 8:12 AM

Thank you. Please copy this communication to report for file purposes.

Bradford Billings

EMNRD/OCD

From: Dhugal Hanton <vertexresourcegroupusa@gmail.com>
Sent: Tuesday, March 8, 2022 11:42 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@state.nm.us>; CFO_Spill, BLM_NM <blm_nm_cfo_spill@blm.gov>
Cc: Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; dale.woodall@dvn.com; bschafer@vertex.ca
Subject: [EXTERNAL] Re: 48-hour notice nAB1729753198 Todd 22 I Federal 9

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

[Quoted text hidden] [Quoted text hidden]

Dhugal Hanton <vertexresourcegroupusa@gmail.com> To: "Enviro, OCD, EMNRD" <OCD.Enviro@state.nm.us>, "CFO_Spill, BLM_NM" <blm_nm_cfo_spill@blm.gov> Cc: "Bratcher, Mike, EMNRD" <Mike.Bratcher@state.nm.us>, dale.woodall@dvn.com, bschafer@vertex.ca, "Billings, Bradford, EMNRD" <bradford.billings@state.nm.us>

Hi all,

Vertex collected confirmation samples as planned yesterday at Todd 22 I Federal 9 (NAB1729753198). During transport, sample integrity was compromised from ice water entering 7 of the 8 jarred samples.

We are requesting a variance to the 48-hr notification in order to re-collect these 7 samples, today.

Further, all field screens of the original samples were below the strictest criteria.

Thank you,

Brandon Schafer

Project Manager

Vertex Resource Services Inc. 1405 22nd Ave NW Watford City, ND 58854

P 701.645.3111 Ext. 706 C 701.301.1564 F 780.464.3731

www.vertex.ca

Confidentiality Notice: This message and any attachments are solely for the intended recipient and may contain confidential or privileged information. If you are not the intended recipient, any disclosure, copying, use, or distribution of the information included in

this message and any attachment is prohibited. If you have received this communication in error, please notify us by reply email and immediately and permanently delete this message and any attachments. Thank you. [Quoted text hidden]

Enviro, OCD, EMNRD <OCD.Enviro@state.nm.us>

Mon, Mar 14, 2022 at 8:36 AM To: Dhugal Hanton <vertexresourcegroupusa@gmail.com>, "Enviro, OCD, EMNRD" <OCD.Enviro@state.nm.us>, "CFO_Spill, BLM_NM" <blm_nm_cfo_spill@blm.gov> Cc: "Bratcher, Mike, EMNRD" <mike.bratcher@state.nm.us>, "dale.woodall@dvn.com" <dale.woodall@dvn.com>, "bschafer@vertex.ca" <bschafer@vertex.ca>

Request approved. Please include this communication in associated report. Thank you.

[Quoted text hidden]

ATTACHMENT 7

August 06, 2021

Wesley Mathews Devon Energy 6488 Seven Rivers Highway Artesia, NM 88210 TEL: (505) 350-1336 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

RE: Todd 22I Fed 9

OrderNo.: 2107F48

Dear Wesley Mathews:

Hall Environmental Analysis Laboratory received 12 sample(s) on 7/30/2021 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2107F48

Date Reported: 8/6/2021

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Devon Energy Client Sample ID: BH21-01 0.5' **Project:** Todd 22I Fed 9 Collection Date: 7/28/2021 8:00:00 AM Lab ID: 2107F48-001 Matrix: SOIL Received Date: 7/30/2021 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB mg/Kg **Diesel Range Organics (DRO)** 2800 85 10 8/3/2021 9:20:31 AM Motor Oil Range Organics (MRO) 2200 420 mg/Kg 10 8/3/2021 9:20:31 AM 70-130 Surr: DNOP S %Rec 10 8/3/2021 9:20:31 AM 0 **EPA METHOD 300.0: ANIONS** Analyst: VP Chloride 8/3/2021 12:38:39 PM 230 60 mg/Kg 20 **EPA METHOD 8260B: VOLATILES SHORT LIST** Analyst: JMR Benzene ND 0.12 mg/Kg 8/1/2021 10:29:28 AM D 5 Toluene ND 0.23 D mg/Kg 5 8/1/2021 10:29:28 AM 5 Ethvlbenzene ND 0.23 D mg/Kg 8/1/2021 10:29:28 AM Xylenes, Total ND 0.47 D mg/Kg 5 8/1/2021 10:29:28 AM Surr: 1.2-Dichloroethane-d4 101 70-130 D %Rec 5 8/1/2021 10:29:28 AM 5 Surr: 4-Bromofluorobenzene 96.6 70-130 D %Rec 8/1/2021 10:29:28 AM Surr: Dibromofluoromethane 70-130 D %Rec 5 8/1/2021 10:29:28 AM 102 Surr: Toluene-d8 102 70-130 D %Rec 5 8/1/2021 10:29:28 AM **EPA METHOD 8015D MOD: GASOLINE RANGE** Analyst: JMR Gasoline Range Organics (GRO) ND D 5 8/1/2021 10:29:28 AM 23 mg/Kg Surr: BFB 97.1 70-130 D %Rec 5 8/1/2021 10:29:28 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to MatrixH Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 16

Project:

Lab ID:

Todd 22I Fed 9

2107F48-002

Analytical Report Lab Order 2107F48

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/6/2021
Client Sample ID: BH21-01 4'

 Collection Date: 7/28/2021 8:10:00 AM

 Matrix: SOIL
 Received Date: 7/30/2021 8:00:00 AM

 Result
 RL Qual Lipits
 DE
 Date Analyzed

Analyses	Result	RL	Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS					Analyst: SB
Diesel Range Organics (DRO)	5400	91		mg/Kg	10	8/3/2021 9:44:15 AM
Motor Oil Range Organics (MRO)	2600	450		mg/Kg	10	8/3/2021 9:44:15 AM
Surr: DNOP	0	70-130	S	%Rec	10	8/3/2021 9:44:15 AM
EPA METHOD 300.0: ANIONS						Analyst: VP
Chloride	730	59		mg/Kg	20	8/3/2021 1:15:53 PM
EPA METHOD 8260B: VOLATILES SHORT LIST						Analyst: JMR
Benzene	ND	0.023		mg/Kg	1	8/2/2021 4:00:53 PM
Toluene	ND	0.047		mg/Kg	1	8/2/2021 4:00:53 PM
Ethylbenzene	ND	0.047		mg/Kg	1	8/2/2021 4:00:53 PM
Xylenes, Total	ND	0.093		mg/Kg	1	8/2/2021 4:00:53 PM
Surr: 1,2-Dichloroethane-d4	99.7	70-130		%Rec	1	8/2/2021 4:00:53 PM
Surr: 4-Bromofluorobenzene	111	70-130		%Rec	1	8/2/2021 4:00:53 PM
Surr: Dibromofluoromethane	103	70-130		%Rec	1	8/2/2021 4:00:53 PM
Surr: Toluene-d8	104	70-130		%Rec	1	8/2/2021 4:00:53 PM
EPA METHOD 8015D MOD: GASOLINE RANGE						Analyst: JMR
Gasoline Range Organics (GRO)	69	4.7		mg/Kg	1	8/2/2021 4:00:53 PM
Surr: BFB	101	70-130		%Rec	1	8/2/2021 4:00:53 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 16

Project: Todd 22I Fed 9

Analytical Report Lab Order 2107F48

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/6/2021 Client Sample ID: BH21-01 6' Collection Date: 7/28/2021 8:20:00 AM Dessived Date: 7/20/2021 8:00:00 AM

Lab ID: 2107F48-003	Matrix: SOIL Received Date: 7/30/2021 8:00:00 AM			021 8:00:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	8/3/2021 10:07:53 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/3/2021 10:07:53 AM
Surr: DNOP	107	70-130	%Rec	1	8/3/2021 10:07:53 AM
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	59	mg/Kg	20	8/3/2021 1:28:18 PM
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	8/1/2021 11:26:35 AM
Toluene	ND	0.047	mg/Kg	1	8/1/2021 11:26:35 AM
Ethylbenzene	ND	0.047	mg/Kg	1	8/1/2021 11:26:35 AM
Xylenes, Total	ND	0.094	mg/Kg	1	8/1/2021 11:26:35 AM
Surr: 1,2-Dichloroethane-d4	96.7	70-130	%Rec	1	8/1/2021 11:26:35 AM
Surr: 4-Bromofluorobenzene	96.1	70-130	%Rec	1	8/1/2021 11:26:35 AM
Surr: Dibromofluoromethane	96.6	70-130	%Rec	1	8/1/2021 11:26:35 AM
Surr: Toluene-d8	102	70-130	%Rec	1	8/1/2021 11:26:35 AM
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/1/2021 11:26:35 AM
Surr: BFB	95.9	70-130	%Rec	1	8/1/2021 11:26:35 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 16

Project:

Lab ID:

Todd 22I Fed 9

2107F48-004

Analytical Report Lab Order 2107F48

Hall Environmental Analysis Laboratory, Inc.

 Laboratory, Inc.
 Date Reported: 8/6/2021

 Client Sample ID: BH21-07 0.5'
 Collection Date: 7/28/2021 8:30:00 AM

 Matrix: SOIL
 Received Date: 7/30/2021 8:00:00 AM

 Result
 RL Qual Units
 DF
 Date Analyzed

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst: SB
Diesel Range Organics (DRO)	75	9.5	mg/Kg	1	8/3/2021 10:31:36 AM
Motor Oil Range Organics (MRO)	110	48	mg/Kg	1	8/3/2021 10:31:36 AM
Surr: DNOP	84.1	70-130	%Rec	1	8/3/2021 10:31:36 AM
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	8/3/2021 1:40:42 PM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.025	mg/Kg	1	8/1/2021 11:55:14 AM
Toluene	ND	0.049	mg/Kg	1	8/1/2021 11:55:14 AM
Ethylbenzene	ND	0.049	mg/Kg	1	8/1/2021 11:55:14 AM
Xylenes, Total	ND	0.098	mg/Kg	1	8/1/2021 11:55:14 AM
Surr: 1,2-Dichloroethane-d4	99.8	70-130	%Rec	1	8/1/2021 11:55:14 AM
Surr: 4-Bromofluorobenzene	99.7	70-130	%Rec	1	8/1/2021 11:55:14 AM
Surr: Dibromofluoromethane	99.5	70-130	%Rec	1	8/1/2021 11:55:14 AM
Surr: Toluene-d8	103	70-130	%Rec	1	8/1/2021 11:55:14 AM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/1/2021 11:55:14 AM
Surr: BFB	96.2	70-130	%Rec	1	8/1/2021 11:55:14 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 16

.

Project:

Todd 22I Fed 9

Analytical Report Lab Order 2107F48

Date Reported: 8/6/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH21-07 2' Collection Date: 7/28/2021 8:40:00 AM Received Date: 7/30/2021 8:00:00 AM

Lab ID: 2107F48-005	D: 2107F48-005 Matrix: SOIL Received Date: 7/2			7/30/2	//30/2021 8:00:00 AM		
Analyses	Result	RL Qual	Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	8/3/2021 10:55:17 AM		
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	8/3/2021 10:55:17 AM		
Surr: DNOP	84.6	70-130	%Rec	1	8/3/2021 10:55:17 AM		
EPA METHOD 300.0: ANIONS					Analyst: VP		
Chloride	ND	60	mg/Kg	20	8/3/2021 1:53:07 PM		
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR		
Benzene	ND	0.023	mg/Kg	1	8/1/2021 2:18:15 PM		
Toluene	ND	0.046	mg/Kg	1	8/1/2021 2:18:15 PM		
Ethylbenzene	ND	0.046	mg/Kg	1	8/1/2021 2:18:15 PM		
Xylenes, Total	ND	0.092	mg/Kg	1	8/1/2021 2:18:15 PM		
Surr: 1,2-Dichloroethane-d4	100	70-130	%Rec	1	8/1/2021 2:18:15 PM		
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	8/1/2021 2:18:15 PM		
Surr: Dibromofluoromethane	99.6	70-130	%Rec	1	8/1/2021 2:18:15 PM		
Surr: Toluene-d8	101	70-130	%Rec	1	8/1/2021 2:18:15 PM		
EPA METHOD 8015D MOD: GASOLII	NE RANGE				Analyst: JMR		
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	8/1/2021 2:18:15 PM		
Surr: BFB	96.2	70-130	%Rec	1	8/1/2021 2:18:15 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 16

Project: Todd 22I Fed 9

Analytical Report Lab Order 2107F48

Date Reported: 8/6/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH21-07 6' Collection Date: 7/28/2021 8:50:00 AM Received Date: 7/30/2021 8:00:00 AM

Lab ID: 2107F48-006	Matrix: SOIL Received Date: 7/30/2021 8:00:00			021 8:00:00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	11	9.8	mg/Kg	1	8/3/2021 2:28:42 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/3/2021 2:28:42 PM
Surr: DNOP	93.5	70-130	%Rec	1	8/3/2021 2:28:42 PM
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	120	60	mg/Kg	20	8/3/2021 2:05:31 PM
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	8/1/2021 2:46:51 PM
Toluene	ND	0.048	mg/Kg	1	8/1/2021 2:46:51 PM
Ethylbenzene	ND	0.048	mg/Kg	1	8/1/2021 2:46:51 PM
Xylenes, Total	ND	0.097	mg/Kg	1	8/1/2021 2:46:51 PM
Surr: 1,2-Dichloroethane-d4	99.5	70-130	%Rec	1	8/1/2021 2:46:51 PM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	8/1/2021 2:46:51 PM
Surr: Dibromofluoromethane	97.1	70-130	%Rec	1	8/1/2021 2:46:51 PM
Surr: Toluene-d8	103	70-130	%Rec	1	8/1/2021 2:46:51 PM
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	8/1/2021 2:46:51 PM
Surr: BFB	97.3	70-130	%Rec	1	8/1/2021 2:46:51 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- D Sample Diluted Due to Matrix
 H Holding times for preparation or analysis exceeds
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 16

Project: Todd 22I Fed 9

Analytical Report Lab Order 2107F48

Date Reported: 8/6/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH21-02 0.5' Collection Date: 7/28/2021 9:00:00 AM Received Date: 7/30/2021 8:00:00 AM

Lab ID: 2107F48-007 Matrix: SOIL			Received Date: 7/30/2021 8:00:00 AM			
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	13	8.8	mg/Kg	1	8/3/2021 2:52:25 PM	
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	8/3/2021 2:52:25 PM	
Surr: DNOP	83.4	70-130	%Rec	1	8/3/2021 2:52:25 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	ND	60	mg/Kg	20	8/3/2021 2:17:56 PM	
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR	
Benzene	ND	0.023	mg/Kg	1	8/1/2021 3:15:28 PM	
Toluene	ND	0.046	mg/Kg	1	8/1/2021 3:15:28 PM	
Ethylbenzene	ND	0.046	mg/Kg	1	8/1/2021 3:15:28 PM	
Xylenes, Total	ND	0.092	mg/Kg	1	8/1/2021 3:15:28 PM	
Surr: 1,2-Dichloroethane-d4	96.7	70-130	%Rec	1	8/1/2021 3:15:28 PM	
Surr: 4-Bromofluorobenzene	99.3	70-130	%Rec	1	8/1/2021 3:15:28 PM	
Surr: Dibromofluoromethane	99.3	70-130	%Rec	1	8/1/2021 3:15:28 PM	
Surr: Toluene-d8	103	70-130	%Rec	1	8/1/2021 3:15:28 PM	
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR	
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	8/1/2021 3:15:28 PM	
Surr: BFB	100	70-130	%Rec	1	8/1/2021 3:15:28 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

D н

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

Analyte detected in the associated Method Blank в

Е Value above quantitation range

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 7 of 16

Project: Todd 22I Fed 9

Analytical Report Lab Order 2107F48

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/6/2021 Client Sample ID: BH21-04 0.5' Collection Date: 7/28/2021 9:10:00 AM

Lab ID: 2107F48-008	Matrix: SOIL	Iatrix: SOIL Received Date			te: 7/30/2021 8:00:00 AM		
Analyses	Result	RL Qua	l Units	DF	Date Analyzed		
EPA METHOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB		
Diesel Range Organics (DRO)	ND	8.9	mg/Kg	1	8/3/2021 7:35:26 PM		
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	8/3/2021 7:35:26 PM		
Surr: DNOP	106	70-130	%Rec	1	8/3/2021 7:35:26 PM		
EPA METHOD 300.0: ANIONS					Analyst: VP		
Chloride	ND	60	mg/Kg	20	8/3/2021 2:30:21 PM		
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR		
Benzene	ND	0.024	mg/Kg	1	8/1/2021 3:44:07 PM		
Toluene	ND	0.048	mg/Kg	1	8/1/2021 3:44:07 PM		
Ethylbenzene	ND	0.048	mg/Kg	1	8/1/2021 3:44:07 PM		
Xylenes, Total	ND	0.096	mg/Kg	1	8/1/2021 3:44:07 PM		
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	8/1/2021 3:44:07 PM		
Surr: 4-Bromofluorobenzene	95.7	70-130	%Rec	1	8/1/2021 3:44:07 PM		
Surr: Dibromofluoromethane	100	70-130	%Rec	1	8/1/2021 3:44:07 PM		
Surr: Toluene-d8	100	70-130	%Rec	1	8/1/2021 3:44:07 PM		
EPA METHOD 8015D MOD: GASOLII	NE RANGE				Analyst: JMR		
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	8/1/2021 3:44:07 PM		
Surr: BFB	95.5	70-130	%Rec	1	8/1/2021 3:44:07 PM		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 16

.

Project: Todd 22I Fed 9

Analytical Report Lab Order 2107F48

Date Reported: 8/6/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH21-06 0.5' Collection Date: 7/28/2021 9:20:00 AM Received Date: 7/30/2021 8:00:00 AM

Lab ID: 2107F48-009 Matrix: SOIL Receive			eived Date: 7/30/2021 8:00:00 AM			
Analyses	Result	RL Qual	Units	DF	Date Analyzed	
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: SB	
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	8/3/2021 7:59:02 PM	
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/3/2021 7:59:02 PM	
Surr: DNOP	97.7	70-130	%Rec	1	8/3/2021 7:59:02 PM	
EPA METHOD 300.0: ANIONS					Analyst: VP	
Chloride	ND	60	mg/Kg	20	8/3/2021 6:13:45 PM	
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR	
Benzene	ND	0.023	mg/Kg	1	8/1/2021 4:12:52 PM	
Toluene	ND	0.046	mg/Kg	1	8/1/2021 4:12:52 PM	
Ethylbenzene	ND	0.046	mg/Kg	1	8/1/2021 4:12:52 PM	
Xylenes, Total	ND	0.091	mg/Kg	1	8/1/2021 4:12:52 PM	
Surr: 1,2-Dichloroethane-d4	95.0	70-130	%Rec	1	8/1/2021 4:12:52 PM	
Surr: 4-Bromofluorobenzene	99.5	70-130	%Rec	1	8/1/2021 4:12:52 PM	
Surr: Dibromofluoromethane	95.7	70-130	%Rec	1	8/1/2021 4:12:52 PM	
Surr: Toluene-d8	102	70-130	%Rec	1	8/1/2021 4:12:52 PM	
EPA METHOD 8015D MOD: GASOL	NE RANGE				Analyst: JMR	
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	8/1/2021 4:12:52 PM	
Surr: BFB	95.5	70-130	%Rec	1	8/1/2021 4:12:52 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 16

Project: Todd 22I Fed 9

Analytical Report Lab Order 2107F48

Date Reported: 8/6/2021

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BH21-08 0.5' Collection Date: 7/28/2021 9:30:00 AM Received Date: 7/30/2021 8:00:00 AM

Lab ID: 2107F48-010	Matrix: SOIL Received Date: 7/30/2021 8:00:00 A			021 8:00:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	15	9.5	mg/Kg	1	8/3/2021 8:22:49 PM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	8/3/2021 8:22:49 PM
Surr: DNOP	87.0	70-130	%Rec	1	8/3/2021 8:22:49 PM
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	8/3/2021 6:51:00 PM
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	ND	0.023	mg/Kg	1	8/1/2021 4:41:34 PM
Toluene	ND	0.047	mg/Kg	1	8/1/2021 4:41:34 PM
Ethylbenzene	ND	0.047	mg/Kg	1	8/1/2021 4:41:34 PM
Xylenes, Total	ND	0.093	mg/Kg	1	8/1/2021 4:41:34 PM
Surr: 1,2-Dichloroethane-d4	98.4	70-130	%Rec	1	8/1/2021 4:41:34 PM
Surr: 4-Bromofluorobenzene	97.8	70-130	%Rec	1	8/1/2021 4:41:34 PM
Surr: Dibromofluoromethane	97.5	70-130	%Rec	1	8/1/2021 4:41:34 PM
Surr: Toluene-d8	99.8	70-130	%Rec	1	8/1/2021 4:41:34 PM
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/1/2021 4:41:34 PM
Surr: BFB	94.1	70-130	%Rec	1	8/1/2021 4:41:34 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix
- D н
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit PQL
 - Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 10 of 16

2107F48-011

Project:

Lab ID:

Analyses

Analytical Report Lab Order 2107F48

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/6/2021 Client Sample ID: BH21-11 0.5' Todd 22I Fed 9 Collection Date: 7/28/2021 9:40:00 AM Matrix: SOIL Received Date: 7/30/2021 8:00:00 AM Result **RL** Qual Units DF **Date Analyzed**

EPA METHOD 8015M/D: DIESEL RANGE ORGA	NICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	8/3/2021 8:46:32 PM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/3/2021 8:46:32 PM
Surr: DNOP	92.8	70-130	%Rec	1	8/3/2021 8:46:32 PM
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	60	mg/Kg	20	8/3/2021 7:28:15 PM
EPA METHOD 8260B: VOLATILES SHORT LIST					Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	8/1/2021 5:10:20 PM
Toluene	ND	0.047	mg/Kg	1	8/1/2021 5:10:20 PM
Ethylbenzene	ND	0.047	mg/Kg	1	8/1/2021 5:10:20 PM
Xylenes, Total	ND	0.094	mg/Kg	1	8/1/2021 5:10:20 PM
Surr: 1,2-Dichloroethane-d4	96.3	70-130	%Rec	1	8/1/2021 5:10:20 PM
Surr: 4-Bromofluorobenzene	97.2	70-130	%Rec	1	8/1/2021 5:10:20 PM
Surr: Dibromofluoromethane	98.3	70-130	%Rec	1	8/1/2021 5:10:20 PM
Surr: Toluene-d8	104	70-130	%Rec	1	8/1/2021 5:10:20 PM
EPA METHOD 8015D MOD: GASOLINE RANGE					Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	8/1/2021 5:10:20 PM
Surr: BFB	98.5	70-130	%Rec	1	8/1/2021 5:10:20 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- Analyte detected in the associated Method Blank в
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 11 of 16

Project: Todd 22I Fed 9

Analytical Report Lab Order 2107F48

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 8/6/2021 Client Sample ID: BH21-12 0.5' Collection Date: 7/28/2021 9:50:00 AM Received Date: 7/20/2021 8:00:00 AM

Lab ID: 2107F48-012	Matrix: SOIL	Rece	021 8:00:00 AM		
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RA	NGE ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	8/4/2021 1:31:41 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	8/4/2021 1:31:41 AM
Surr: DNOP	89.8	70-130	%Rec	1	8/4/2021 1:31:41 AM
EPA METHOD 300.0: ANIONS					Analyst: VP
Chloride	ND	61	mg/Kg	20	8/3/2021 7:40:39 PM
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst: JMR
Benzene	ND	0.024	mg/Kg	1	8/1/2021 5:39:03 PM
Toluene	ND	0.049	mg/Kg	1	8/1/2021 5:39:03 PM
Ethylbenzene	ND	0.049	mg/Kg	1	8/1/2021 5:39:03 PM
Xylenes, Total	ND	0.097	mg/Kg	1	8/1/2021 5:39:03 PM
Surr: 1,2-Dichloroethane-d4	98.3	70-130	%Rec	1	8/1/2021 5:39:03 PM
Surr: 4-Bromofluorobenzene	95.5	70-130	%Rec	1	8/1/2021 5:39:03 PM
Surr: Dibromofluoromethane	97.2	70-130	%Rec	1	8/1/2021 5:39:03 PM
Surr: Toluene-d8	101	70-130	%Rec	1	8/1/2021 5:39:03 PM
EPA METHOD 8015D MOD: GASOLI	NE RANGE				Analyst: JMR
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/1/2021 5:39:03 PM
Surr: BFB	96.2	70-130	%Rec	1	8/1/2021 5:39:03 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
 Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 16

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	von Energy dd 22I Fed 9			
Sample ID: MB-61739		TestCode: EPA Method	1 200 0: Aniono	
	SampType: MBLK		1 300.0: Amons	
Client ID: PBS	Batch ID: 61739	RunNo: 80283		
Prep Date: 8/3/2021	Analysis Date: 8/3/2021	SeqNo: 2828261	Units: mg/Kg	
Analyte	Result PQL SPK value SPK	Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	ND 1.5			
Sample ID: LCS-61739	SampType: LCS	TestCode: EPA Method	1 300.0: Anions	
Client ID: LCSS	Batch ID: 61739	RunNo: 80283		
Prep Date: 8/3/2021	Analysis Date: 8/3/2021	SeqNo: 2828263	Units: mg/Kg	
Analyte	Result PQL SPK value SPK	Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	15 1.5 15.00	0 97.1 90	110	
Sample ID: MB-61743	SampType: MBLK	TestCode: EPA Method	1 300.0: Anions	
Client ID: PBS	Batch ID: 61743	RunNo: 80283		
Prep Date: 8/3/2021	Analysis Date: 8/3/2021	SeqNo: 2828305	Units: mg/Kg	
Analyte	Result PQL SPK value SPK	Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	ND 1.5			
Sample ID: LCS-61743	SampType: LCS	TestCode: EPA Method	1 300.0: Anions	
Client ID: LCSS	Batch ID: 61743	RunNo: 80283		
Prep Date: 8/3/2021	Analysis Date: 8/3/2021	SeqNo: 2828306	Units: mg/Kg	
Analyte	Result PQL SPK value SPK	Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	15 1.5 15.00	0 97.2 90	110	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 16

2107F48

06-Aug-21

Client:DevonProject:Todd 2	Energy 2I Fed 9									
Sample ID: MB-61687	SampTy	/pe: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Die	esel Rang	e Organics	
Client ID: PBS	Batch	ID: 61	687	F	unNo: 8	0245				
Prep Date: 7/31/2021	Analysis Da	ate: 8/	2/2021	S	eqNo: 2	827287	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.8		10.00		98.0	70	130			
Sample ID: LCS-61687	SampTy	/pe: LC	s	Tes	tCode: EF	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batch	ID: 61	687	F	unNo: 8	0245				
Prep Date: 7/31/2021	Analysis Da	ate: 8/	2/2021	S	eqNo: 2	827288	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	47	10	50.00	0	93.9	68.9	141			
Surr: DNOP	4.6		5.000		92.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 16

WO#: 2107F48 06-Aug-21

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	Devon	Energy	
Project:	Todd 2	22I Fed 9	
Sample ID: Ics-	-61676	SampType: LCS4	

	Campi	,po. _0	•	100		/ mounou	oloob. Tola		2101	
Client ID: BatchQC	Batch	n ID: 610	676	F	RunNo: 8	0239				
Prep Date: 7/30/2021	Analysis D	0ate: 8/	1/2021	S	SeqNo: 2	826297	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.025	1.000	0	100	80	120			
Toluene	0.99	0.050	1.000	0	98.5	80	120			
Ethylbenzene	0.99	0.050	1.000	0	99.3	80	120			
Xylenes, Total	3.0	0.10	3.000	0	98.7	80	120			
Surr: 1,2-Dichloroethane-d4	0.51		0.5000		102	70	130			
Surr: 4-Bromofluorobenzene	0.49		0.5000		98.0	70	130			
Surr: Dibromofluoromethane	0.49		0.5000		98.0	70	130			
Surr: Toluene-d8	0.50		0.5000		100	70	130			
Sample ID: mb-61676	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260B: Volat	iles Short	List	
Client ID: PBS	Batch	n ID: 610	676	F	RunNo: 8	0239				
Prep Date: 7/30/2021	Analysis D	0ate: 8/	1/2021	S	SeqNo: 2	826298	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 1,2-Dichloroethane-d4	0.48		0.5000		95.1	70	130			
Surr: 4-Bromofluorobenzene	0.50		0.5000		101	70	130			
Surr: Dibromofluoromethane	0.48		0.5000		96.5	70	130			
Surr: Toluene-d8	0.51		0.5000		101	70	130			

TestCode: EPA Method 8260B: Volatiles Short List

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 15 of 16

WO#: 2107F48

06-Aug-21

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	Devon Energy									
Project:	Todd 22I Fed	9								
Sample ID: Ics-6	61676 S	ampType:	LCS	Tes	tCode: EP	A Method	8015D Mod: 0	Gasoline I	Range	
Client ID: LCS	S	Batch ID:	61676	F	RunNo: 80 2	239				
Prep Date: 7/3	0/2021 Anal	ysis Date:	8/1/2021	S	SeqNo: 282	26329	Units: mg/Kg	9		
Analyte	Re	sult PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orga	anics (GRO)	26	5.0 25.00	0	105	70	130			
Surr: BFB		490	500.0		97.3	70	130			
Sample ID: mb-	61676 S	SampType:	MBLK	Tes	tCode: EP	A Method	8015D Mod: 0	Basoline I	Range	
Client ID: PBS	i	Batch ID:	61676	F	RunNo: 80 2	239				
Prep Date: 7/3	0/2021 Anal	ysis Date:	8/1/2021	S	SeqNo: 282	26331	Units: mg/Kg	9		
Analyte	Re	sult PC	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Orga	anics (GRO)	ND :	5.0							
Surr: BFB		490	500.0		97.5	70	130			
Sample ID: mb	S	ampType:	MBLK	Tes	tCode: EP	A Method	8015D Mod: 0	Basoline I	Range	
Client ID: PBS	i	Batch ID:	R80239	F	RunNo: 80 2	239				
Prep Date:	Anal	ysis Date:	7/31/2021	S	SeqNo: 283	30117	Units: %Rec			
Analyte	Re	sult PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: BFB		490	500.0		98.9	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 16

2107F48

06-Aug-21

WO#:

-

AN	VIRONMENT Alysis Boratory	AL	TE	ll Environmenta Al L: 505-345-393 'ebsite: clients.)	49) buqueri 75 FAX:	01 Haw) que. NM : 505-34	kins NE 1 87109 15-4107	Sa	mple Log-In Check List
Client Nam	e: Devon Ene	ergy	Work	Order Numbe	er: 210	7F48			RcptNo: 1
Received E	By: Sean Livi	ngston	7/30/20	21 8:00:00 AI	м		<	Sa-L	not
Completed	By: Sean Livi	ngston	7/30/20	21 8:37:48 AI	N		<	5. /	not-
Reviewed E	^{iy:} Jn 7/	30/2					-		
Chain of		0 /2 /							
1. Is Chain	of Custody comp	lete?			Yes		N	lo 🗌	Not Present
2. How was	the sample deliv	vered?			Cou	irier			
Log In									
3. Was an a	attempt made to o	cool the sampl	es?		Yes	~	N	lo 🗌	NA 🗌
4. Were all	samples received	l at a temperat	ure of >0° C	to 6.0°C	Yes	~	N	o 🗌	
5. Sample(s	s) in proper conta	iner(s)?			Yes		N	lo 🗌	
6. Sufficient	sample volume f	or indicated te	st(s)?		Yes		N	•	
7. Are samp	les (except VOA	and ONG) pro	perly preserve	ed?	Yes	\checkmark	N	•	
8. Was pres	ervative added to	bottles?			Yes		N	•	NA 🗌
9. Received	at least 1 vial wit	h headspace ·	<1/4" for AQ \	OA?	Yes		N	•	NA 🔽
10. Were any	sample containe	ers received b	oken?		Yes		N	• 🗸	# of preserved
	erwork match bol crepancies on cha				Yes	~	N	•	bottles checked for pH:
	ces correctly iden				Yes		N	•	Adjusted
13. Is it clear	what analyses we	ere requested	?		Yes	\checkmark	N	•	
	olding times able ify customer for a				Yes		N	o 🗌	Checked by: TML 7.30.21
Special Ha	ndling (if app	licable)							
15. Was clier	nt notified of all di	iscrepancies v	vith this order	2	Yes		N	o 🗌	NA 🗹
Per	son Notified:			Date:					
Ву	Whom:	[Via:	eM	ail 🗌	Phone [Fax	In Person
Re	garding:								
Clie	ent Instructions:	(
16. Addition	al remarks:								
17. <u>Cooler I</u>									
Coole	and the second of the	Condition	Seal Intact	Seal No	Seal D	ate	Signe	d By	
1 2	1.5 4.3	Good							

Page 1 of 1

Половни странит Де Standard Rush Project Name: ToJU Z 3 T FeJ 4 All Validation Project Name: ToJU Z 3 T FeJ 4 All Validation Ing Address: D. E.M. Project Name: ToJU Z 3 T E AD Ing Address: D. E.M. Project Name: ToJU Z 3 T E AD Address:		Chain	D-of-C	Chain-of-Custody Record	Turn-Around	Turn-Around Time: 5- Day	bay			1	-		1.1.1		
Ing Project Name: Project Name: Project Name: Tould 27 Tould 28 Tould 20 Toul	Clier		00		Z Standar			Л						APOP/	ATODY
Indext Todd C2 Fed 4 Information $\square F \neq I$ Sampler $\square E = O \square F \neq I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ Sampler $\square E = O \square F \neq I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ Sampler $\square E = O \square F \neq I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ Sampler $\square P = I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ Sampler $\square P = I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ $\square F \neq I$ Sampler $\square P = I$ $\square F \neq I$ $\square F \neq I$ $\square F \rightarrow I$ $\square F \rightarrow I$ Sampler $\square P = I$ $\square F \rightarrow I$ $\square F \rightarrow I$ $\square F \rightarrow I$ $\square F \rightarrow I$ Sampler $\square P = I$ $\square P = I$ $\square P = I$ $\square P \rightarrow I$ $\square P \rightarrow I$ Sampler $\square P = I$ $\square P = I$ $\square P = I$					Project Nam							enviro			
Project #: Project #: Tel. 605-435-937 Fax 505-435-51 Bit Frank: Dilor Frank: Project Manager: 21 E - 0273 L - 14 Tel. 605-435-937 Fax 505-435-937 Fax 505-435-75 Fax 505-435-75 Fax 5	Maili	ng Addres		Fill	Tod	22		4	901 Hs	wkins	NE -	Albug			
Перенали Перенали Перенали Пола Калаз Ала Уста Калаз Пог Гахи: Пог Гахи: Раувато и вали Пола Калаз Пола Калаз Ала Уста Калаз Пог Гахи: Пог Гахи: Пог Гахи: Пог Гахи: Пог Гахи: Пог Гахи: Ала Уста Калаз Bit France Пог Гахи: Пог Гахи: Пог Гахи: Пог Гахи: Пог Гахи: Ала Уста Калаз Bit France Scholer Scholer Scholer Scholer No., For., Sol. Ana Yst Rance Bit Rix Sampler Project Manager: Chon plance Scholer Ana Yst Rance Scholer Ana Yst Rance Bit Rix Sampler Project Manager: Chon plance Sampler Project Manager: Chon plance Bit Rix Sampler Prosenative HEAL Ool E EBU NOS, FOS, Sol E Construction Struct Relation Matrix Sampler Prosenative HEAL Construction Prosenative Struct Relation Relation Con Struction Con Struction	2/10		l		Project #:				Tel. 50	5-345-	3975	Ea	505	345-4107	
Biolof Fact: Project Manage: 5.0.49 FL Conclusion Conclusion A compliance Simulation A compliance A concolint A concolint </td <td>Phon</td> <td>e #:</td> <td>_</td> <td></td> <td>2</td> <td>1</td> <td>61-918</td> <td></td> <td></td> <td></td> <td>A</td> <td>nalysi</td> <td>s Req</td> <td>uest</td> <td></td>	Phon	e #:	_		2	1	61-918				A	nalysi	s Req	uest	
C Package: Similarid C C Package: Sch F L C C C Package: Similarid C C Package: Sch F L C C Compliance Sch F L C C Constance Sch R C Constance Sch F L C	emai	l or Fax#:			Project Man	1				-		*0		(tr	
reditation: $\square \lambda_2$ Compliance Sampler: $\square \lambda_2$ Compliance Sampler: $\square \lambda_2$ Compliance ItELAC Other Other On les: $\square \nabla V cos$ $\square N o$ Itelac Itelac Other On les: $\square \nabla V cos$ $\square N o$ Itelac Itelac Itelac Condition Restorators $I = 3 \pm 3 \pm 3 + 3$ Itelac Sample Name Condition Preservative $\square (3 \pm 3 \pm 3 \pm 3)$ $\square (3 \pm 3 \pm 3 \pm 3)$ $\square (3 \pm 3 \pm 3 \pm 3)$ Itelac Sample Name Condition Preservative $\square (3 \pm 3 \pm 3 \pm 3)$ $\square (3 \pm 3 \pm 3 \pm 3)$ $\square (3 \pm 3)$	QA/Q	C Package andard	ä	Level 4 (Full Validation)	ASAK	bre	COD		6	SMIS		PO₄, S		nəzdA\t	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		editation: ELAC	□ Az C(ompliance	2	ance Vac	NON D					' ⁷ ON	(\	nəsər	
Entime Time Matrix Sample Name Cooler Temponentors, I, 5 ± 0 = 1,5 (G) Total Collion 28 8 ± 0.00 8 ± 10 0.01 4,3 ± 0 = 4,3 RTEX Matrix 28 ± 0.00 8 ± 10 0.5 4,0 ± 179e 179e 80.61 Pestici 28 ± 0.00 8 ± 10 0.5 4,0 ± 179e 0.00 1 10.61 10.61 28 ± 0.00 8 ± 10 0.5 4,0 ± 179e 0.01 1 10.61 10.61 28 ± 0.00 8 ± 10 0.5 4,0 ± 179e 0.01 1 10.61 10.61 28 ± 0.00 8 ± 10 0.5 4,0 ± 10 0.01 1 10.61 10.61 28 ± 0.00 8 ± 10 0.5 0.05 1 10.60 10.61 <td< td=""><td></td><td>(Type)</td><td>1</td><td></td><td># of Coolers</td><td>1. 1. 1. 1. 1.</td><td>2</td><td></td><td>-</td><td></td><td>slsi</td><td>^{'E}O</td><td>0/0/</td><td>յ) ա</td><td></td></td<>		(Type)	1		# of Coolers	1. 1. 1. 1. 1.	2		-		slsi	^{'E} O	0/0/	յ) ա	
E Time Matrix Sample Name Container Preservative u.g. 3.t.o. Preservative </td <td></td> <td></td> <td></td> <td></td> <td>Cooler Temp</td> <td>O(including CF): /</td> <td></td> <td></td> <td></td> <td>(* 1 A.</td> <td>эM</td> <td></td> <td></td> <td>lifori</td> <td></td>					Cooler Temp	O(including CF): /				(* 1 A.	эM			lifori	
788:05 301 BH21-01 0.55 4 OZ ZCL 001 $\sqrt{1}$ $$	Date		Matrix	Sample Name	Container Type and #	Preservative Tvpe		/			8 ARDF			otal Col	
g_{120}	716	8 8:00	-	BH21-01	402	ICC	and the second second	V	1000		4			L	
8:20 $BHZI-01$ $6'$ 003 $BHZI-07$ $5'$ 004 $BHZI-07$ $6'$ $8:146$ $BHZI-07$ $2'$ 004 $BHZI-07$ $2'$ 004 $BHZI-07$ $2'$ $8:750$ $BHZI-07$ $2'$ 005 $BHZI-07$ $2'$ 005 $BHZI-07$ $0'$ $9:10$ $BHZI-02$ $0:5'$ $0:5'$ 005 100 100 100 100 $9:10$ $BHZI-02$ $0:5'$ $0:0$ 006 100 10	-	8:10		RH21-01	[200	1 1				-			
$x/32$ $BH21-07.6.5$ $BH21-07.6.5$ $BH21-07.6.5$ $BH21-07.6.5$ $BH21-07.6.5$ $BH21-07.6.5$ $BH21-07.6.5.5$ $D00_{6}$ $D10_{6}$ <td></td> <td>8120</td> <td>2</td> <td>16</td> <td></td> <td></td> <td>803</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		8120	2	16			803								
$\chi:U_{6}$ $RH21-67$ Z^{2} OO_{6} $RH21-67$ OO_{6} $RH21-67$ C^{2} $RH21-07$ Z^{2} $RH21-02$ O_{5}^{2} R^{2}	_	\$ 131	0				FCO								
χ (5.6 B H21- G (7.5) OO_{4} B H21- G (7.5) OO_{4} B H21- G (7.5) OO_{7} D H2		8:14	5	RH21-07 27			200								
9100 $8H21-02$ 0.5		X :50	0	BHZ1-076'			00%								
9,10 $8H21-0U$ 0.5		9:00	2	BH21-02 0.5'			tao								
q (20 $BHZI-06$ $O,5'$ $O,5'$ OOO $OOOO$ OOO $OOOO$ OOO $OOOO$ $OOOO$ $OOOO$ $OOOO$ </td <td></td> <td>01:6</td> <td>0</td> <td>3H21-04 0.5</td> <td></td> <td></td> <td>003</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		01:6	0	3H21-04 0.5			003								
$q:3C$ $RHZILOR 0.5$ $O.5$ $O.1$ $O.1$ $O.1$ $O.1$ $q:UO$ $RHZILI 0.5$ $O.5$ $O.1$ $O.1$ $O.1$ $O.1$ $q:SC$ $RHZILI 0.5$ $O.5$ $O.1$ $O.1$ $O.1$ $O.1$ $q:SC$ $RHZILI 0.5$ $O.5$ $O.1$ $O.1$ $O.1$ $O.1$ $Time:$ Relinquished by: $Via:$ Date $Time$ Remarks: $CCCDa 0.2$ $D.1 \times O.1$ Time: Relinquished by: $Via:$ $Date$ $Time$ Remarks: $CCCDa 0.2$ $D.1 \times O.1$ Time: Relinquished by: $Via:$ $Date$ $Time$ $S.0 \times O.0$ $S.0 \times O.0$ Time: Relinquished by: $Via:$ $Date$ $Time$ $S.0 \times O.0$ $S.0 \times O.0$	-	9:20	0				900			-					
$q_{z}U_{0}$ $RHZI-JI$ $G.S$ $O(I)$ $RHZI-JI$ $G.S$ $q_{z}SG$ $RHZI-JZ$ $G.S$ $O(I)$ $RHZI-JZ$ $G.S$ $Time:$ $Relinquished by:$ $Received by:$ $Via:$ $Date$ $Time$ Time: Relinquished by: $Received by:$ $Via:$ $Date$ $Time$ Time: Relinquished by: Received by: $Via:$ $Date$ $Time$ Time: Relinquished by: Received by: $Via:$ $Date$ $Time$ Time: Relinquished by: Received by: $Via:$ $Date$ $Time$	_	9:30	0	08			200				í.				
Q_2SC $RHZ^{1-1}Z$ O_1S' O_1Z D_1Z' D_1Z' Time: Relinquished by: Received by: Via: Date Time Remarks: $CC_2CDBACE$ D_1XON Time: Relinquished by: Nia: Date Time Remarks: $CC_2CDBACE$ D_1XON Time: Relinquished by: Nia: Date Time Remarks: $CC_2CDBACE$ D_1XON Time: Relinquished by: Nia: Date Time $Time$ $Time$	_	9:40	0	11			110								
Time: Relinquished by: Received by: Via: Date Time Remarks: CCCCDBACL DixON Image: I		9:50	_	21-121	_ (-	515	1 1		-					
Time: Relinquished by: Received by: Via: V Date Time JOAN HUNC	Date:	Time:	Relinquish	ed by:	Received by:	Via:		Remar	S: C	DA.	104	- 010	n, -	on, chocer	
1920 M. Su county 7/30/21 X:00 N. TANT PRID	Date:	Time:	Relinquish	ed by:	Received by:	Via:				ħ	140	4 4	100	t.	
	18/2	19:20	00	5	SULC	Lound 1	CO: \$ 12/02/2		Direc	7.1	118	_	SKO	perars n	66

March 04, 2022

Brandon Schafer Vertex Resources Services, Inc. 3101 Boyd Drive Carlsbad, NM 88220 TEL: (505) 506-0040 FAX:

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

RE: Todd 22I Fed 9

OrderNo.: 2202B36

Dear Brandon Schafer:

Hall Environmental Analysis Laboratory received 7 sample(s) on 2/24/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 2202B36 Date Reported: 3/4/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BES22-01 6' **Project:** Todd 22I Fed 9 Collection Date: 2/22/2022 1:15:00 PM Received Date: 2/24/2022 8:00:00 AM Lab ID: 2202B36-001 Matrix: SOIL Analyses Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** ND 9.5 mg/Kg 1 2/28/2022 11:58:03 PM ND Motor Oil Range Organics (MRO) 48 mg/Kg 1 2/28/2022 11:58:03 PM Surr: DNOP 89.6 51.1-141 %Rec 2/28/2022 11:58:03 PM 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: RAA Gasoline Range Organics (GRO) ND 2/26/2022 7:21:21 AM 4.9 mg/Kg 1 Surr: BFB 104 70-130 %Rec 1 2/26/2022 7:21:21 AM **EPA METHOD 8021B: VOLATILES** Analyst: RAA Benzene ND 0.024 2/26/2022 7:21:21 AM mg/Kg 1 Toluene ND 0.049 mg/Kg 1 2/26/2022 7:21:21 AM Ethylbenzene 0.049 mg/Kg 2/26/2022 7:21:21 AM ND 1 Xylenes, Total ND 0.097 mg/Kg 1 2/26/2022 7:21:21 AM Surr: 4-Bromofluorobenzene 98.8 70-130 %Rec 1 2/26/2022 7:21:21 AM **EPA METHOD 300.0: ANIONS** Analyst: JMT Chloride 250 60 3/3/2022 1:00:57 AM mg/Kg 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level D Sample Diluted Due to Matrix
- Н
- Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL
- Practical Quanitative Limit S
- % Recovery outside of range due to dilution or matrix interference
- В Analyte detected in the associated Method Blank
- Е Estimated value
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- RL Reporting Limit

Page 1 of 11

Project:

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Todd 22I Fed 9

2202B36-002

Analytical Report
Lab Order 2202B36

Hall Environmental Analysis Laboratory, Inc.

 Laboratory, Inc.
 Date Reported: 3/4/2022

 Client Sample ID: BES22-02 6'

 Collection Date: 2/22/2022 1:15:00 PM

 Matrix: SOIL
 Received Date: 2/24/2022 8:00:00 AM

 Result
 RL Qual Units DF
 Date Analyzed

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE OR	GANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	3/1/2022 12:08:40 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	3/1/2022 12:08:40 AM
Surr: DNOP	91.3	51.1-141	%Rec	1	3/1/2022 12:08:40 AM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	2/26/2022 7:44:35 AM
Surr: BFB	105	70-130	%Rec	1	2/26/2022 7:44:35 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.024	mg/Kg	1	2/26/2022 7:44:35 AM
Toluene	ND	0.048	mg/Kg	1	2/26/2022 7:44:35 AM
Ethylbenzene	ND	0.048	mg/Kg	1	2/26/2022 7:44:35 AM
Xylenes, Total	ND	0.097	mg/Kg	1	2/26/2022 7:44:35 AM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	2/26/2022 7:44:35 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	3/3/2022 1:38:10 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND
 Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 11

Project:

Lab ID:

CLIENT: Vertex Resources Services, Inc.

Todd 22I Fed 9

2202B36-003

Analytical Report Lab Order 2202B36

Hall Environmental Analysis Laboratory, Inc.

 Laboratory, Inc.
 Date Reported: 3/4/2022

 Client Sample ID: BES22-03 6'

 Collection Date: 2/22/2022 1:15:00 PM

 Matrix: SOIL
 Received Date: 2/24/2022 8:00:00 AM

 Result
 RL Qual Units DF
 Date Analyzed

Result	RL Qu	al Units	DF	Date Analyzed
GANICS				Analyst: SB
ND	9.6	mg/Kg	1	3/1/2022 12:19:17 AM
ND	48	mg/Kg	1	3/1/2022 12:19:17 AM
87.6	51.1-141	%Rec	1	3/1/2022 12:19:17 AM
				Analyst: RAA
ND	4.8	mg/Kg	1	2/26/2022 8:07:49 AM
103	70-130	%Rec	1	2/26/2022 8:07:49 AM
				Analyst: RAA
ND	0.024	mg/Kg	1	2/26/2022 8:07:49 AM
ND	0.048	mg/Kg	1	2/26/2022 8:07:49 AM
ND	0.048	mg/Kg	1	2/26/2022 8:07:49 AM
ND	0.097	mg/Kg	1	2/26/2022 8:07:49 AM
97.4	70-130	%Rec	1	2/26/2022 8:07:49 AM
				Analyst: JMT
ND	60	mg/Kg	20	3/3/2022 1:50:34 AM
	GANICS ND 87.6 ND 103 ND ND ND ND ND 97.4	MD 9.6 ND 48 87.6 51.1-141 ND 4.8 103 70-130 ND 0.024 ND 0.048 ND 0.048 ND 0.097 97.4 70-130	ND 9.6 mg/Kg ND 48 mg/Kg 87.6 51.1-141 %Rec ND 4.8 mg/Kg 103 70-130 %Rec ND 0.024 mg/Kg ND 0.048 mg/Kg ND 0.048 mg/Kg ND 0.048 mg/Kg ND 0.048 mg/Kg ND 0.097 mg/Kg 97.4 70-130 %Rec	ND 9.6 mg/Kg 1 ND 48 mg/Kg 1 87.6 51.1-141 %Rec 1 ND 4.8 mg/Kg 1 103 70-130 %Rec 1 ND 0.024 mg/Kg 1 ND 0.048 mg/Kg 1 ND 0.048 mg/Kg 1 ND 0.048 mg/Kg 1 ND 0.097 mg/Kg 1 97.4 70-130 %Rec 1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 11

Project: Todd 22I Fed 9

CLIENT: Vertex Resources Services, Inc.

Analytical Report Lab Order 2202B36

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/4/2022 Client Sample ID: WES22-01 6' Collection Date: 2/22/2022 1:50:00 PM Received Date: 2/24/2022 8:00:00 AM

Lab ID: 2202B36-004	Matrix: SOIL	Rece	ived Date:	2/24/2	022 8:00:00 AM
Analyses	Result	RL Qua	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	3/1/2022 12:29:56 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	3/1/2022 12:29:56 AM
Surr: DNOP	91.5	51.1-141	%Rec	1	3/1/2022 12:29:56 AM
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	2/26/2022 8:31:08 AM
Surr: BFB	102	70-130	%Rec	1	2/26/2022 8:31:08 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.024	mg/Kg	1	2/26/2022 8:31:08 AM
Toluene	ND	0.048	mg/Kg	1	2/26/2022 8:31:08 AM
Ethylbenzene	ND	0.048	mg/Kg	1	2/26/2022 8:31:08 AM
Xylenes, Total	ND	0.096	mg/Kg	1	2/26/2022 8:31:08 AM
Surr: 4-Bromofluorobenzene	97.5	70-130	%Rec	1	2/26/2022 8:31:08 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	360	60	mg/Kg	20	3/3/2022 2:02:59 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 11

Project:

CLIENT: Vertex Resources Services, Inc. Todd 22I Fed 9

Analytical Report Lab Order 2202B36

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/4/2022 Client Sample ID: WES22-02 4' Collection Date: 2/22/2022 1:50:00 PM Received Date: 2/24/2022 8:00:00 AM

Lab ID: 2202B36-005	Matrix: SOIL	Rece	eived Date:	2/24/2	022 8:00:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	3/1/2022 12:40:34 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	3/1/2022 12:40:34 AM
Surr: DNOP	98.3	51.1-141	%Rec	1	3/1/2022 12:40:34 AM
EPA METHOD 8015D: GASOLINE RANG	E				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	2/26/2022 8:54:20 AM
Surr: BFB	105	70-130	%Rec	1	2/26/2022 8:54:20 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.024	mg/Kg	1	2/26/2022 8:54:20 AM
Toluene	ND	0.048	mg/Kg	1	2/26/2022 8:54:20 AM
Ethylbenzene	ND	0.048	mg/Kg	1	2/26/2022 8:54:20 AM
Xylenes, Total	ND	0.097	mg/Kg	1	2/26/2022 8:54:20 AM
Surr: 4-Bromofluorobenzene	99.9	70-130	%Rec	1	2/26/2022 8:54:20 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	ND	60	mg/Kg	20	3/3/2022 2:15:24 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of range due to dilution or matrix interference
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 11

CLIENT: Vertex Resources Services, Inc.

Analytical Report Lab Order 2202B36

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/4/2022 Client Sample ID: WES22-03 6' Collection Date: 2/22/2022 1.50.00 DM

Project:	Todd 22I Fed 9		Collec	ction Date:	2/22/2	022 1:50:00 PM
Lab ID:	2202B36-006	Matrix: SOIL	Rece	eived Date:	2/24/2	022 8:00:00 AM
Analyses		Result	RL Qu	al Units	DF	Date Analyzed
EPA ME	THOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst: SB
Diesel R	ange Organics (DRO)	ND	9.2	mg/Kg	1	3/1/2022 12:51:11 AM
Motor O	il Range Organics (MRO)	ND	46	mg/Kg	1	3/1/2022 12:51:11 AM
Surr:	DNOP	95.1	51.1-141	%Rec	1	3/1/2022 12:51:11 AM
EPA ME	THOD 8015D: GASOLINE RA	NGE				Analyst: RAA
Gasoline	e Range Organics (GRO)	ND	4.9	mg/Kg	1	2/26/2022 10:27:22 AM
Surr:	BFB	104	70-130	%Rec	1	2/26/2022 10:27:22 AM
EPA ME	THOD 8021B: VOLATILES					Analyst: RAA
Benzene	9	ND	0.024	mg/Kg	1	2/26/2022 10:27:22 AM
Toluene		ND	0.049	mg/Kg	1	2/26/2022 10:27:22 AM
Ethylber	izene	ND	0.049	mg/Kg	1	2/26/2022 10:27:22 AM
Xylenes	, Total	ND	0.097	mg/Kg	1	2/26/2022 10:27:22 AM
Surr:	4-Bromofluorobenzene	98.7	70-130	%Rec	1	2/26/2022 10:27:22 AM
EPA ME	THOD 300.0: ANIONS					Analyst: JMT
Chloride		ND	60	mg/Kg	20	3/3/2022 2:52:37 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of range due to dilution or matrix interference
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 11

.

Project: Todd 22I Fed 9

CLIENT: Vertex Resources Services, Inc.

Analytical Report Lab Order 2202B36

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/4/2022 Client Sample ID: WES22-04 6' Collection Date: 2/22/2022 1:50:00 PM

Lab ID: 2202B36-007	Matrix: SOIL	Reco	eived Date:	2/24/2	022 8:00:00 AM
Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	9.4	mg/Kg	1	3/1/2022 1:01:46 AM
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	3/1/2022 1:01:46 AM
Surr: DNOP	96.9	51.1-141	%Rec	1	3/1/2022 1:01:46 AM
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst: RAA
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	2/26/2022 10:50:38 AM
Surr: BFB	105	70-130	%Rec	1	2/26/2022 10:50:38 AM
EPA METHOD 8021B: VOLATILES					Analyst: RAA
Benzene	ND	0.024	mg/Kg	1	2/26/2022 10:50:38 AM
Toluene	ND	0.047	mg/Kg	1	2/26/2022 10:50:38 AM
Ethylbenzene	ND	0.047	mg/Kg	1	2/26/2022 10:50:38 AM
Xylenes, Total	ND	0.095	mg/Kg	1	2/26/2022 10:50:38 AM
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	2/26/2022 10:50:38 AM
EPA METHOD 300.0: ANIONS					Analyst: JMT
Chloride	290	60	mg/Kg	20	3/3/2022 3:05:02 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of range due to dilution or matrix interference
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 11

	ertex Resources Services, Inc. odd 22I Fed 9								
Sample ID: MB-65909	SampType: mblk	TestCode: EPA Method 30	00.0: Anions						
Client ID: PBS	Batch ID: 65909	RunNo: 86196							
Prep Date: 3/2/2022	Analysis Date: 3/2/2022	SeqNo: 3038531	Units: mg/Kg						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual						
Chloride	ND 1.5								
Sample ID: LCS-6590	SampType: Ics	SampType: Ics TestCode: EPA Method 300.0: Anions							
Client ID: LCSS	Batch ID: 65909	RunNo: 86196							
Prep Date: 3/2/2022	Analysis Date: 3/2/2022	SeqNo: 3038532	Units: mg/Kg						
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual						
Chloride	14 1.5 15.00	0 92.8 90	110						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 11

2202B36

04-Mar-22

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:Vertex HProject:Todd 22	Resources S I Fed 9	ervices,	Inc.							
Sample ID: MB-65801	TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID: PBS Batch ID: 65801			F	RunNo: 86130						
Prep Date: 2/25/2022	Analysis Date: 2/28/2022			SeqNo: 3036104			Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	10		10.00		103	51.1	141			
Sample ID: LCS-65801	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID: LCSS	Batcl	h ID: 658	301	F	RunNo: 86	6130				
Prep Date: 2/25/2022	Analysis Date: 2/28/2022			SeqNo: 3036105			Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	50	10	50.00	0	99.9	68.9	135			
Surr: DNOP	5.2		5.000		103	51.1	141			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 11

2202B36

04-Mar-22

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	Resources So 2I Fed 9	ervices,	Inc.								
Sample ID: Ics-65787 SampType: LCS				TestCode: EPA Method 8015D: Gasoline Range							
Client ID: LCSS	Batch ID: 65787			F	RunNo: 8	6121					
Prep Date: 2/24/2022	Analysis Date: 2/26/2022			SeqNo: 3034390			Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	24	5.0	25.00	0	97.8	78.6	131				
Surr: BFB	1200		1000		119	70	130				
Sample ID: mb-65787	SampT	SampType: MBLK TestCode: EPA Method					8015D: Gasc	line Rang	e		
Client ID: PBS	Batch ID: 65787			RunNo: 86121							
Prep Date: 2/24/2022	Analysis D	Analysis Date: 2/26/2022			SeqNo: 3034392			(g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Gasoline Range Organics (GRO)	ND	5.0									
Surr: BFB	1000		1000		103	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 11

2202B36

04-Mar-22

=

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:		Resources S 2I Fed 9	ervices,	Inc.							
Sample ID: LCS-65787 SampType: LCS				TestCode: EPA Method 8021B: Volatiles							
Client ID: LCS	Batch ID: 65787			RunNo: 86121							
Prep Date: 2/24	4/2022	2022 Analysis Date: 2/26/2022			SeqNo: 3034456			Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.88	0.025	1.000	0	87.6	80	120			
Toluene		0.92	0.050	1.000	0	92.2	80	120			
Ethylbenzene		0.93	0.050	1.000	0	92.9	80	120			
Xylenes, Total		2.8	0.10	3.000	0	93.1	80	120			
Surr: 4-Bromofluoro	obenzene	1.0		1.000		101	70	130			
Sample ID: mb-6	65787	SampT	Гуре: МЕ	BLK	TestCode: EPA Method 8021B: Volatiles						
Client ID: PBS		Batch ID: 65787			RunNo: 86121						
Prep Date: 2/24	4/2022	Analysis Date: 2/26/2022			SeqNo: 3034458 Units:			Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromofluoro	obenzene	0.99		1.000		99.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

2202B36

04-Mar-22
ANAL	RONMENTAL	Hall Environmen TEL: 505-345-3 Website: client	49) Albuquer 975 FAX:	01 Hav que. N 505-3	vkins NE M 87109 845-4107	Sar	mple Log-In Check List
Client Name:	Vertex Resources Services, Inc.	Work Order Num	ber: 220	2B36			RcptNo: 1
Received By:	Joseph Alderette	2/24/2022 8:00:00	AM		J.F		
Completed By:	Sean Livingston	2/24/2022 9:06:06	AM		5	1	insta
Reviewed By:	JA2/24/22						
Chain of Cus	stody						
1. Is Chain of C	custody complete?		Yes	~	No		Not Present 🗌
2. How was the	sample delivered?		Cou	rier			
Log In 3. Was an atter	npt made to cool the sampl	es?	Yes		No		
4. Were all sam	ples received at a temperat	ure of $>0^\circ$ C to 6 0°C	Yes	~	No		
	proper container(s)?		Yes				
	nple volume for indicated te	et/c)2	Yes		No		
	(except VOA and ONG) pro		Yes		No		
	ative added to bottles?		Yes		No		
9. Received at le	east 1 vial with headspace <	<1/4" for AQ VOA?	Yes		No		NA 🗹
10. Were any sar	mple containers received br	oken?	Yes		No	\checkmark	
	ork match bottle labels? ancies on chain of custody)		Yes		No		# of preserved bottles checked for pH: (<2 or >12 unless noted)
	correctly identified on Chair		Yes	V	No		Adjusted?
	t analyses were requested?		Yes		No	-	
	ng times able to be met? ustomer for authorization.)		Yes	•	No		Checked by: 11 2/24/20
	ling (if applicable)					/	
Carl and a state	otified of all discrepancies w	ith this order?	Yes		No		NA 🗹
Person	Notified:	Date:	-		7. 7	-	
By Who Regard Client I	· · · · · · · · · · · · · · · · · · ·	Via:	eM	ail [] Phone [] Fax	In Person
16. Additional re			-				
17. <u>Cooler Infor</u> Cooler No	mation	Seal Intact Seal No	Seal D	ate	Signed	Ву	
1	1.4 Good						

Page 1 of 1

Received by OCD: 3/10/2025 8:23:35 AM

					23 0		:35 AN	1														. 110 of
	HALL ENVIRONMENTAL		4901 Hawkins NE - Alburnierrane NM 87109		Anal		S '⁺Oc	1 ' ^z (ог 8: ИС	10 (10 ³ , 03,	58 \ 9М (AO (AO	EDB (M PAHs by SCRA 8 3260 (V 3260 (V 5270 (Sd 5270 (Sd 5270 (Sd							>		Direct bill Deven Enersy	cc Branden Schafer
			4901 Ha	Tel. 505		(0		128	08/9	səp	oite	08:H9T 99 1808							2		Remarks: Dtre	Brand
			_			(1	.208) s	18,	11/	' 38 T		(XET8	X	-	-	-	-		7		Rem	CC
	5 Days	D				Schafer	4		ON D		·0.1=1.4 (°C)	HEAL No.	1	200	003	hop	Sa	204	400			2-24-72 8:00
Time:	I Ż Rush		LT Feb 9		B16 - 14	Project Manager: Brancon Schafe	BSchafter @Ventex. ca	2			Cooler Temp(including CF): /.S	Preservative Type	tre	_					^		Via: M.M. N	aurių
Turn-Around	XStandard	Project Name:	Todd 22	Project #:	21E-02816 - 14	Project Mana	Bscheler	Campler:		18	Cooler Temp	Container Type and #							+		Received by:	
Chain-of-Custody Record							Level 4 (Full Validation)	nliance				Sample Name	BES22-01 6'	BES 22- 02 6'	BES 22- 63 6'	WES 22-01 6'	1.1	WES 22-03 6'	WES 22- 64 6'			w.
-of-Cu	Ta							□ Az Comoliance	□ Other			Matrix	Soil						4		Relinquished W:	al date of
hain	Client: Vertex		Mailing Address:		#:	r Fax#:	QA/QC Package:	tation.	AC	(Type)		Time	13:15	71:61	13:15	05:El	13:50	13:50	13:50			1
U	Client:		Mailing		Phone #:	email or Fax#:	QA/QC Packa	Accreditation.		□ EDD (Type)		Date	2.22.2						+		12	Clean 1

Released to Imaging: 3/10/2025 4:06:35 PM

March 21, 2022

Brandon Schafer Vertex Resources Services, Inc. 3101 Boyd Drive Carlsbad, NM 88220 TEL: (505) 506-0040 FAX: Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: clients.hallenvironmental.com

OrderNo.: 2203707

RE: Todd 22 I Federal 9

Dear Brandon Schafer:

Hall Environmental Analysis Laboratory received 8 sample(s) on 3/12/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

ander

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: WES22-05 6.0' **Project:** Todd 22 I Federal 9 Collection Date: 3/10/2022 1:00:00 PM Lab ID: 2203707-001 Matrix: SOIL Received Date: 3/12/2022 8:34:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** ND 9.6 mg/Kg 1 3/15/2022 2:31:30 PM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 3/15/2022 2:31:30 PM Surr: DNOP 95.5 51.1-141 %Rec 3/15/2022 2:31:30 PM 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/14/2022 8:30:36 PM 4.9 mg/Kg 1 Surr: BFB 104 70-130 %Rec 1 3/14/2022 8:30:36 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.024 3/14/2022 8:30:36 PM mg/Kg 1 Toluene ND 0.049 mg/Kg 1 3/14/2022 8:30:36 PM Ethylbenzene ND 0.049 mg/Kg 1 3/14/2022 8:30:36 PM Xylenes, Total ND 0.098 mg/Kg 1 3/14/2022 8:30:36 PM Surr: 4-Bromofluorobenzene 96.7 70-130 %Rec 1 3/14/2022 8:30:36 PM **EPA METHOD 300.0: ANIONS** Analyst: LRN Chloride ND 59 3/17/2022 3:12:49 PM mg/Kg 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 13

Surr: 4-Bromofluorobenzene

EPA METHOD 300.0: ANIONS

Chloride

Analytical Report Lab Order 2203707 Date Reported: 3/21/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: WES22-06 6.0' **Project:** Todd 22 I Federal 9 Collection Date: 3/10/2022 1:10:00 PM Lab ID: 2203707-002 Matrix: SOIL Received Date: 3/12/2022 8:34:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** ND 9.0 mg/Kg 1 3/15/2022 2:42:25 PM ND Motor Oil Range Organics (MRO) 45 mg/Kg 1 3/15/2022 2:42:25 PM Surr: DNOP 91.0 51.1-141 %Rec 3/15/2022 2:42:25 PM 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/14/2022 10:04:27 PM 5.0 mg/Kg 1 Surr: BFB 101 70-130 %Rec 1 3/14/2022 10:04:27 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.025 3/14/2022 10:04:27 PM mg/Kg 1 Toluene ND 0.050 mg/Kg 1 3/14/2022 10:04:27 PM Ethylbenzene ND 0.050 mg/Kg 3/14/2022 10:04:27 PM 1 Xylenes, Total ND 0.099 mg/Kg 1 3/14/2022 10:04:27 PM

94.3

ND

70-130

60

%Rec

mg/Kg

1

20

3/14/2022 10:04:27 PM

3/17/2022 3:50:02 PM

Analyst: LRN

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level D Sample Diluted Due to Matrix
- Н
- Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL
- Practical Quanitative Limit S
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank В
- Е Estimated value
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- RL Reporting Limit

Page 2 of 13

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: WES22-07 6.0' **Project:** Todd 22 I Federal 9 Collection Date: 3/10/2022 1:20:00 PM Lab ID: 2203707-003 Matrix: SOIL Received Date: 3/12/2022 8:34:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** ND 9.6 mg/Kg 1 3/15/2022 2:53:18 PM Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 3/15/2022 2:53:18 PM Surr: DNOP 92.1 51.1-141 %Rec 3/15/2022 2:53:18 PM 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/14/2022 10:27:54 PM 4.9 mg/Kg 1 Surr: BFB 104 70-130 %Rec 1 3/14/2022 10:27:54 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.025 3/14/2022 10:27:54 PM mg/Kg 1 Toluene ND 0.049 mg/Kg 1 3/14/2022 10:27:54 PM Ethylbenzene ND 0.049 mg/Kg 3/14/2022 10:27:54 PM 1 Xylenes, Total ND 0.099 mg/Kg 1 3/14/2022 10:27:54 PM Surr: 4-Bromofluorobenzene 97.4 70-130 %Rec 1 3/14/2022 10:27:54 PM Analyst: LRN **EPA METHOD 300.0: ANIONS** Chloride 260 60 3/17/2022 4:27:15 PM mg/Kg 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL
- Practical Quanitative Limit S
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank В
- Е Estimated value
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 13

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: WES22-08 6.0' **Project:** Todd 22 I Federal 9 Collection Date: 3/10/2022 1:30:00 PM Lab ID: 2203707-004 Matrix: SOIL Received Date: 3/12/2022 8:34:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** ND 9.0 mg/Kg 1 3/15/2022 3:04:10 PM ND Motor Oil Range Organics (MRO) 45 mg/Kg 1 3/15/2022 3:04:10 PM Surr: DNOP 100 51.1-141 %Rec 3/15/2022 3:04:10 PM 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/14/2022 10:51:10 PM 4.9 mg/Kg 1 Surr: BFB 106 70-130 %Rec 1 3/14/2022 10:51:10 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.025 3/14/2022 10:51:10 PM mg/Kg 1 Toluene ND 0.049 mg/Kg 1 3/14/2022 10:51:10 PM Ethylbenzene ND 0.049 mg/Kg 3/14/2022 10:51:10 PM 1 Xylenes, Total ND 0.098 mg/Kg 1 3/14/2022 10:51:10 PM Surr: 4-Bromofluorobenzene 96.6 70-130 %Rec 1 3/14/2022 10:51:10 PM **EPA METHOD 300.0: ANIONS** Analyst: LRN Chloride 100 60 3/17/2022 4:39:39 PM mg/Kg 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 13

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BES22-04 6.0' **Project:** Todd 22 I Federal 9 Collection Date: 3/10/2022 2:00:00 PM Lab ID: 2203707-005 Matrix: SOIL Received Date: 3/12/2022 8:34:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** ND 8.2 mg/Kg 1 3/15/2022 3:15:02 PM ND Motor Oil Range Organics (MRO) 41 mg/Kg 1 3/15/2022 3:15:02 PM Surr: DNOP 101 51.1-141 %Rec 3/15/2022 3:15:02 PM 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/14/2022 11:14:38 PM 4.8 mg/Kg 1 Surr: BFB 108 70-130 %Rec 1 3/14/2022 11:14:38 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.024 3/14/2022 11:14:38 PM mg/Kg 1 Toluene ND 0.048 mg/Kg 1 3/14/2022 11:14:38 PM Ethylbenzene 0.048 mg/Kg 3/14/2022 11:14:38 PM ND 1 Xylenes, Total ND 0.095 mg/Kg 1 3/14/2022 11:14:38 PM Surr: 4-Bromofluorobenzene 99.4 70-130 %Rec 1 3/14/2022 11:14:38 PM **EPA METHOD 300.0: ANIONS** Analyst: LRN Chloride ND 60 3/17/2022 4:52:04 PM mg/Kg 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level D Sample Diluted Due to Matrix
- Н
- Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL
- Practical Quanitative Limit S
- % Recovery outside of range due to dilution or matrix interference
- Analyte detected in the associated Method Blank В
- Е Estimated value
- Analyte detected below quantitation limits J
- Р Sample pH Not In Range
- RL Reporting Limit

Page 5 of 13

Project: Lab ID:

CLIENT: Vertex Resources Services, Inc. Todd 22 I Federal 9

2203707-006

Analytical Report Lab Order 2203707

Date Reported: 3/21/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BES22-05 6.0' Collection Date: 3/10/2022 2:10:00 PM Matrix: SOIL Received Date: 3/12/2022 8:34:00 AM D - ----14 DI Qual Unita DE Data Analyzad

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	ANICS				Analyst: SB
Diesel Range Organics (DRO)	ND	8.8	mg/Kg	1	3/15/2022 3:25:54 PM
Motor Oil Range Organics (MRO)	ND	44	mg/Kg	1	3/15/2022 3:25:54 PM
Surr: DNOP	99.9	51.1-141	%Rec	1	3/15/2022 3:25:54 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	3/14/2022 11:38:05 PM
Surr: BFB	105	70-130	%Rec	1	3/14/2022 11:38:05 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	3/14/2022 11:38:05 PM
Toluene	ND	0.049	mg/Kg	1	3/14/2022 11:38:05 PM
Ethylbenzene	ND	0.049	mg/Kg	1	3/14/2022 11:38:05 PM
Xylenes, Total	ND	0.098	mg/Kg	1	3/14/2022 11:38:05 PM
Surr: 4-Bromofluorobenzene	98.9	70-130	%Rec	1	3/14/2022 11:38:05 PM
EPA METHOD 300.0: ANIONS					Analyst: LRN
Chloride	88	61	mg/Kg	20	3/17/2022 5:04:29 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of range due to dilution or matrix interference
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 6 of 13

3/17/2022 5:16:53 PM

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BES22-06 6.0' **Project:** Todd 22 I Federal 9 Collection Date: 3/10/2022 2:20:00 PM Lab ID: 2203707-007 Matrix: SOIL Received Date: 3/12/2022 8:34:00 AM Analyses Result **RL** Qual Units DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** ND 9.3 mg/Kg 1 3/15/2022 3:36:45 PM ND Motor Oil Range Organics (MRO) 46 mg/Kg 1 3/15/2022 3:36:45 PM Surr: DNOP 95.8 51.1-141 %Rec 3/15/2022 3:36:45 PM 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/15/2022 12:01:33 AM 4.9 mg/Kg 1 Surr: BFB 107 70-130 %Rec 1 3/15/2022 12:01:33 AM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.024 3/15/2022 12:01:33 AM mg/Kg 1 Toluene ND 0.049 mg/Kg 1 3/15/2022 12:01:33 AM Ethylbenzene ND 0.049 mg/Kg 3/15/2022 12:01:33 AM 1 Xylenes, Total ND 0.098 mg/Kg 1 3/15/2022 12:01:33 AM Surr: 4-Bromofluorobenzene 100 70-130 %Rec 1 3/15/2022 12:01:33 AM Analyst: LRN **EPA METHOD 300.0: ANIONS**

ND

60

mg/Kg

20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Chloride

- Value exceeds Maximum Contaminant Level
 Sample Diluted Due to Matrix
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 13

Project:

Lab ID:

Analyses

Analytical Report Lab Order 2203707

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/21/2022 Client Sample ID: BES22-07 6.0' **CLIENT:** Vertex Resources Services, Inc. Todd 22 I Federal 9 Collection Date: 3/10/2022 2:30:00 PM 2203707-008 Matrix: SOIL Received Date: 3/12/2022 8:34:00 AM Result DF **RL** Qual Units **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB M M M SB AM

Diesel Range Organics (DRO)	ND	8.4	mg/Kg	1	3/15/2022 3:47:33 PM
Motor Oil Range Organics (MRO)	ND	42	mg/Kg	1	3/15/2022 3:47:33 PM
Surr: DNOP	101	51.1-141	%Rec	1	3/15/2022 3:47:33 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	3/15/2022 12:24:56 AM
Surr: BFB	105	70-130	%Rec	1	3/15/2022 12:24:56 AM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.025	mg/Kg	1	3/15/2022 12:24:56 AM
Toluene	ND	0.049	mg/Kg	1	3/15/2022 12:24:56 AM
Ethylbenzene	ND	0.049	mg/Kg	1	3/15/2022 12:24:56 AM
Xylenes, Total	ND	0.099	mg/Kg	1	3/15/2022 12:24:56 AM
Surr: 4-Bromofluorobenzene	97.0	70-130	%Rec	1	3/15/2022 12:24:56 AM
EPA METHOD 300.0: ANIONS					Analyst: LRN
Chloride	ND	60	mg/Kg	20	3/17/2022 5:29:17 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded ND
- Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit S
 - % Recovery outside of range due to dilution or matrix interference
- в Analyte detected in the associated Method Blank
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 8 of 13

	x Resources Services, Inc. 22 I Federal 9			
Sample ID: MB-66233	SampType: mblk	TestCode: EPA Method	300.0: Anions	
Client ID: PBS	Batch ID: 66233	RunNo: 86570		
Prep Date: 3/17/2022	Analysis Date: 3/17/2022	SeqNo: 3055535	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	ND 1.5			
Sample ID: LCS-66233	SampType: Ics	TestCode: EPA Method	300.0: Anions	
Client ID: LCSS	Batch ID: 66233	RunNo: 86570		
Prep Date: 3/17/2022	Analysis Date: 3/17/2022	SeqNo: 3055536	Units: mg/Kg	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Chloride	14 1.5 15.00	0 90.5 90	110	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 13

2203707

21-Mar-22

WO#:

Released to Imaging: 3/10/2025 4:06:35 PM

-

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:	Vertex Re	esources Se	rvices,	, Inc.							
Project:	Todd 22 I	Federal 9									
Sample ID:	2203678-003AMS	SampTy	vpe: MS	3	Tes	tCode: E	PA Method	8015M/D: Die:	sel Range	e Organics	
	BatchQC		ID: 66			RunNo: 8			J	· J	
Prep Date:		Analysis Da		-		SeqNo: 3		Units: mg/Kg	1		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range (Organics (DRO)	46	9.8	49.21	0	93.1	36.1	154			
Surr: DNOP		4.5		4.921		91.9	51.1	141			
Sample ID:	2203678-003AMSE	D SampTy	/pe: MS	SD	Tes	tCode: E	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID:	BatchQC	Batch	ID: 66	161	F	RunNo: 8	6464				
Prep Date:	3/14/2022	Analysis Da	ate: 3/	15/2022	S	SeqNo: 3	051905	Units: mg/Kg	9		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	Organics (DRO)	55	9.6	47.98	0	114	36.1	154	17.7	33.9	
Surr: DNOP		4.3		4.798		90.2	51.1	141	0	0	
Sample ID:	LCS-66161	SampTy	vpe: LC	S	Tes	tCode: E	PA Method	8015M/D: Die	sel Range	e Organics	
Client ID:	LCSS	Batch	ID: 66	161	F	RunNo: 8	6464				
Prep Date:	3/14/2022	Analysis Da	ate: 3/	15/2022	S	SeqNo: 3	051926	Units: mg/Kg	J		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	Organics (DRO)	45	10	50.00	0	89.9	68.9	135			
Surr: DNOP		4.1		5.000		81.3	51.1	141			
Sample ID:	MB-66161	SampTy	vpe: ME	BLK	Tes	tCode: E	PA Method	8015M/D: Die:	sel Range	e Organics	
Client ID:	PBS	Batch	ID: 66	161	F	RunNo: 8	6464				
Prep Date:	3/14/2022	Analysis Da	ate: 3/	15/2022	S	SeqNo: 3	051927	Units: mg/Kg	9		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
-	Drganics (DRO)	ND	10								
Motor Oil Rang Surr: DNOP	e Organics (MRO)	ND 8.9	50	10.00		89.0	51.1	141			
		0.0		10.00			01.1				
	2203822-001AMS	SampTy						8015M/D: Die	sel Range	e Organics	
Client ID:	BatchQC	Batch	ID: 66	204		RunNo: 8					
Prep Date:	3/16/2022	Analysis Da	ate: 3/	16/2022	ç	SeqNo: 3	052638	Units: %Rec			
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.4		4.812		91.7	51.1	141			
Sample ID:	2203822-001AMSE	SampTy	pe: MS	SD	Tes	tCode: E	PA Method	8015M/D: Die:	sel Range	e Organics	
Client ID:	BatchQC	Batch	ID: 66	204	F	RunNo: 8	6505				
Prep Date:	3/16/2022	Analysis Da	ate: 3/	16/2022	S	SeqNo: 3	052639	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 13

2203707

21-Mar-22

Client:	Vertex Re	sources Ser	vices,	Inc.							
Project:	Todd 22 I	Federal 9									
Sample ID:	2203822-001AMSD	SampTyp	e: MS	SD	Tes	tCode: EF	PA Method	8015M/D: Die:	sel Range	e Organics	
Client ID:	BatchQC	Batch II	D: 662	204	R	unNo: 8	6505				
Prep Date:	3/16/2022	Analysis Dat	e: 3/	16/2022	S	eqNo: 3	052639	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.6		4.916		92.7	51.1	141	0	0	
Sample ID:	LCS-66204	SampTyp	e: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die:	sel Range	e Organics	
Client ID:	LCSS	Batch II	D: 662	204	R	unNo: 80	6505				
Prep Date:	3/16/2022	Analysis Dat	e: 3/	16/2022	S	eqNo: 3	052645	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		4.6		5.000		92.3	51.1	141			
Sample ID:	MB-66204	SampTyp	e: ME	BLK	Tes	tCode: EF	PA Method	8015M/D: Die:	sel Range	e Organics	
Client ID:	PBS	Batch II	D: 662	204	R	unNo: 8	6505				
Prep Date:	3/16/2022	Analysis Dat	e: 3/	16/2022	S	eqNo: 30	052646	Units: %Rec			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: DNOP		9.2		10.00		92.2	51.1	141			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 13

2203707

21-Mar-22

Client:	Vertex Re	esources Se	ervices,	Inc.							
Project:	Todd 22	I Federal 9									
Sample ID:	mb-66140	SampT	уре: МЕ	BLK	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID:	PBS	Batch	ID: 66	140	R	RunNo: 80	6458				
Prep Date:	3/13/2022	Analysis D	ate: 3/	14/2022	S	SeqNo: 30	050309	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	ND	5.0					-			
Surr: BFB		1100		1000		106	70	130			
Sample ID:	lcs-66140	SampT	ype: LC	S	Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	9	
Client ID:	LCSS	Batch	ID: 66	140	R	RunNo: 8	6458				
Prep Date:	3/13/2022	Analysis D	ate: 3/	14/2022	S	SeqNo: 30	050310	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	ge Organics (GRO)	25	5.0	25.00	0	102	78.6	131			
Surr: BFB		2100		1000		215	70	130			S
Sample ID:	0000705 004	SampT	vpe MS	5	Tes	tCode: F	PA Method	8015D: Gaso	line Rang	e	
1 1	2203705-001ams	eamp.	,po. mc	-							
Client ID:			D: 66			RunNo: 80					
	BatchQC		ID: 66	140	R		6458	Units: mg/K	g		
Client ID:	BatchQC	Batch	ID: 66	140 14/2022	R	RunNo: 8	6458	Units: mg/K HighLimit	g %RPD	RPDLimit	Qual
Client ID: Prep Date: Analyte	BatchQC	Batch Analysis D	alD: 66 [°] ate: 3/	140 14/2022	ਸ S	RunNo: 8(SeqNo: 3(6458 050312	•	0	RPDLimit	Qual
Client ID: Prep Date: Analyte	BatchQC 3/13/2022	Batch Analysis D Result	ID: 66 ate: 3/ PQL	140 14/2022 SPK value	R S SPK Ref Val	RunNo: 86 SeqNo: 36 %REC	5458 550312 LowLimit	HighLimit	0	RPDLimit	Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	BatchQC 3/13/2022	Batch Analysis D Result 29 6300	ID: 66 ate: 3/ PQL	140 14/2022 SPK value 24.93 4985	R S SPK Ref Val 0	RunNo: 86 SeqNo: 36 %REC 116 127	5458 050312 LowLimit 70 70	HighLimit 130	%RPD		Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB	BatchQC 3/13/2022 ge Organics (GRO)	Batch Analysis D Result 29 6300	ate: 3/ PQL 25	140 14/2022 SPK value 24.93 4985	R S SPK Ref Val 0 Tes	RunNo: 86 SeqNo: 36 %REC 116 127	5458 550312 LowLimit 70 70 PA Method	HighLimit 130 130	%RPD		Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID:	BatchQC 3/13/2022 ge Organics (GRO) 22203705-001amsd BatchQC	Batch Analysis D Result 29 6300	PQL 25 ype: MS 1D: 66	140 14/2022 SPK value 24.93 4985 SD 140	R S <u>PK Ref Val</u> 0 Tes R	RunNo: 8 GeqNo: 3 %REC 116 127 tCode: E	6458 050312 LowLimit 70 70 24 Method 6458	HighLimit 130 130	%RPD		Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID: Client ID:	BatchQC 3/13/2022 ge Organics (GRO) 22203705-001amsd BatchQC	Batch Analysis D Result 29 6300 I SampT Batch	PQL 25 ype: MS 1D: 66	140 14/2022 24.93 4985 5D 140 14/2022	R S <u>PK Ref Val</u> 0 Tes R	RunNo: 8 SeqNo: 3 %REC 116 127 tCode: EF	6458 050312 LowLimit 70 70 24 Method 6458	HighLimit 130 130 8015D: Gaso	%RPD		Qual
Client ID: Prep Date: Analyte Gasoline Rang Surr: BFB Sample ID: Client ID: Prep Date: Analyte	BatchQC 3/13/2022 ge Organics (GRO) 22203705-001amsd BatchQC	Batch Analysis D Result 29 6300 I SampT Batch Analysis D	PQL 25 ype: MS ate: 3/ 25	140 14/2022 24.93 4985 5D 140 14/2022	R SPK Ref Val 0 Tes R S	RunNo: 86 SeqNo: 36 %REC 116 127 tCode: EF RunNo: 86 SeqNo: 36	6458 050312 LowLimit 70 70 70 70 70 6458 050313	HighLimit 130 130 8015D: Gaso Units: mg/K	%RPD	e	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank

E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

2203707

21-Mar-22

	esources S I Federal 9		Inc.							
Sample ID: mb-66140	Samp	Туре: МЕ	BLK	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: PBS	Batc	h ID: 661	140	F	RunNo: 86	6458				
Prep Date: 3/13/2022	Analysis I	Date: 3/	14/2022	S	SeqNo: 3(050380	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.97		1.000		96.9	70	130			
Sample ID: LCS-66140	Samp	Type: LC	S	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: LCSS	Batc	h ID: 661	140	F	RunNo: 86	6458				
Prep Date: 3/13/2022	Analysis I	Date: 3/	14/2022	S	SeqNo: 3(050381	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	0.90	0.025	1.000	0	89.6	80	120			
Toluene	0.94	0.050	1.000	0	93.8	80	120			
Ethylbenzene	0.95	0.050	1.000	0	95.2	80	120			
Xylenes, Total	2.8	0.10	3.000	0	94.5	80	120			
Surr: 4-Bromofluorobenzene	0.98		1.000		97.6	70	130			
Sample ID: 2203705-002ams	Samp	Туре: МS	;	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: BatchQC	Batc	h ID: 661	140	F	RunNo: 86	6458				
Prep Date: 3/13/2022	Analysis [Date: 3/	14/2022	S	SeqNo: 3(050384	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.12	0.9794	0	103	68.8	120			
Toluene	1.1	0.24	0.9794	0	111	73.6	124			
Ethylbenzene	1.1	0.24	0.9794	0	111	72.7	129			
Xylenes, Total	3.3	0.49	2.938	0	112	75.7	126			
Surr: 4-Bromofluorobenzene	4.6		4.897		94.0	70	130			
Sample ID: 2203705-002amso	Samp	Type: MS	D	Tes	tCode: EF	PA Method	8021B: Volat	iles		
Client ID: BatchQC	Batc	h ID: 661	140	F	RunNo: 86	6458				
Prep Date: 3/13/2022	Analysis I	Date: 3/	14/2022	S	SeqNo: 3(050385	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.12	0.9852	0	103	68.8	120	0.880	20	
Toluene		0.25	0.9852	0	111	73.6	124	0.905	20	
loluene	1.1	0.25	0.0002	•						
Ethylbenzene	1.1 1.1	0.25	0.9852	0	110	72.7	129	0.272	20	
							129 126	0.272 1.76		

Qualifiers:

* Value exceeds Maximum Contaminant Level. D

Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix interference S

в Analyte detected in the associated Method Blank

Е Estimated value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit Page 13 of 13

2203707

21-Mar-22

Received by OCD: 3/10/2025 8:23:35 AM

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environm TEL: 505-345- Website: clier	4901 Albuquerqu 3975 FAX: 5	Hawkins N 2, NM 8710 05-345-410	e 9 Sa 7	mple Log-In Check Lis	st
Client Name: Vertex Resources Services, Inc.	Work Order Nun	nber: 22037	07		RcptNo: 1	
Received By: Cheyenne Cason	3/12/2022 8:34:00	АМ	(hal		
Completed By: Chevenne Cason Reviewed By: Vishwy 3122	3/12/2022 9:07:17 R	АМ	C	hal		
Chain of Custody						
1. Is Chain of Custody complete?		Yes	/	No 🗌	Not Present	
2. How was the sample delivered?		Courie	ŗ			
Log In						
3. Was an attempt made to cool the samples?		Yes		No 🗌	NA 🗌	
4. Were all samples received at a temperature of	of >0° C to 6.0°C	Yes		No 🗌		
5. Sample(s) in proper container(s)?		Yes		No 🗌		
6. Sufficient sample volume for indicated test(s)	?	Yes]	No 🗌		
7. Are samples (except VOA and ONG) properly	preserved?	Yes V]	No 🗌		
8. Was preservative added to bottles?		Yes 🗌]	No 🔽	NA 🗌	
9. Received at least 1 vial with headspace <1/4"	for AQ VOA?	Yes	1	No 🗌		
10. Were any sample containers received broken		Yes []	No 🔽		
					# of preserved bottles checked	
11. Does paperwork match bottle labels?		Yes 🔽]	No 🗌	for pH:	
(Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of C	untertu?		1		(<2 or >12 unless not Adjusted?	ed)
13. Is it clear what analyses were requested?	ustody?	Yes 🗹		No 🗌	Adjusted?	
14. Were all holding times able to be met?		Yes V		No 🗌	Checked by: CM 3/12	21-
(If no, notify customer for authorization.)		Yes 🔽		No 🗌	Checked by: M XI	42
Special Handling (if applicable)						
15. Was client notified of all discrepancies with th	is order?	Yes []	No 🗌	NA 🔽	
Person Notified:	Date	1				
By Whom:	Via:	eMail	Phone	e 🗌 Fax	In Person	
Regarding:				- <u></u> =n		
Client Instructions:						
16. Additional remarks:						
17. <u>Cooler Information</u> Cooler No Temp ºC Condition Sea	l Intact Seal No	Seal Date	C:	ned By		

Page 1 of 1

CECTET	d LRush le: 27 T	-		AN	ALY	SIS	ANALYSIS LABORATOR	
□ Level 4 (Full Validation)	7 T TC	-						5
□ Level 4 (Full Validation)	1.1	5 1 9		MMM	www.hallenvironmental.com	vironmants	l com	
Level 4 (Full Validation)	4 44 70%	s	4901	4901 Hawkins NE	NE - AI		- Albuquerque NM 87109	
:	Project #: 21E-02816-14	14	Tel.	505-345-3975	8975 Anal	Fax 505-345-	505-345-4107	10/2025
□ Level 4 (Full Validation)	Manager.				⊅(
	Branden Schafer	aler	N MKO				tnəsdA	
□ Az Compliance	r: AH		л рвс	(1.4		(Дuəsə.	
	plers: r	NO	ояє	'09 P	sls	AOV	ы д) и	
	Cooler Temp(Including CF); (, 3	-0.2 = 1.1 (°C)	12D(etho	teM 8		bitorr	
Date Time Matrix Sample Name Type and #	Preservative Type	HEAL No.	BOB1 PG	M) 803 A sHAc	SCRA E	S) 0728 V) 0928	otal Co	
WE522-65 6.0'	106) _	5 -	3		1		
1310 1 WES22-06 6.0' 1	1	200						
1320 WESZ2-07 6,0'	0	603						
1330 WES22-08 6,0'		Got						
1400 BESZ2-04 6.0'		675G						
1410 BES22-05 6.0'		DOK						
90-		707	111					
1430 V BES 22 - 07 6.0' V	V 0	008	NN		\geq			
				1				
3-1/-22 1100 Mustred by: Austral MARRS- Received by	by: Via: UUUUU	3 11/12 1100	Remarks:	:2	Brandlen		Schafer	
2) 1700 (Mainteed by: Concentration of the Time Concentration of the Time Concentration of the Time of	by: Via: Via Dat	Date Time						<u>e 126 o</u>

Page 126 of 148

March 30, 2022

Brandon Schafer Vertex Resources Services, Inc. 3101 Boyd Drive Carlsbad, NM 88220 TEL: (505) 506-0040 FAX

OrderNo.: 2203743

Hall Environmental Analysis Laboratory

TEL: 505-345-3975 FAX: 505-345-4107

Website: clients.hallenvironmental.com

4901 Hawkins NE

Albuquerque, NM 87109

RE: Todd 22 I Fed 9

Dear Brandon Schafer:

Hall Environmental Analysis Laboratory received 7 sample(s) on 3/15/2022 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 3/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: WES22-06 6.0' **CLIENT:** Vertex Resources Services, Inc. **Project:** Todd 22 I Fed 9 Collection Date: 3/11/2022 3:00:00 PM Lab ID: 2203743-001 Matrix: SOIL Received Date: 3/15/2022 7:30:00 AM Result **PQL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB Diesel Range Organics (DRO) 3/17/2022 7:07:12 PM 28 9.5 mg/Kg 1 Motor Oil Range Organics (MRO) ND 48 mg/Kg 1 3/17/2022 7:07:12 PM 51.1-141 Surr: DNOP 94.5 %Rec 1 3/17/2022 7:07:12 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/16/2022 1:16:30 PM 4.9 mg/Kg 1 Surr: BFB 106 70-130 %Rec 1 3/16/2022 1:16:30 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB 3/16/2022 1:16:30 PM Benzene ND 0.025 mg/Kg 1 Toluene ND 0.049 mg/Kg 1 3/16/2022 1:16:30 PM Ethylbenzene ND 0.049 mg/Kg 1 3/16/2022 1:16:30 PM Xylenes, Total ND 0.098 mg/Kg 1 3/16/2022 1:16:30 PM 3/16/2022 1:16:30 PM Surr: 4-Bromofluorobenzene 96.1 70-130 %Rec 1 **EPA METHOD 300.0: ANIONS** Analyst: LRN Chloride 61 60 3/17/2022 11:53:51 PM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 11

Date Reported: 3/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: WES22-07 6.0' **CLIENT:** Vertex Resources Services, Inc. **Project:** Todd 22 I Fed 9 Collection Date: 3/11/2022 3:10:00 PM Lab ID: 2203743-002 Matrix: SOIL Received Date: 3/15/2022 7:30:00 AM Result **PQL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB Diesel Range Organics (DRO) 24 9.7 mg/Kg 1 3/17/2022 7:17:42 PM Motor Oil Range Organics (MRO) ND 49 mg/Kg 1 3/17/2022 7:17:42 PM Surr: DNOP 96.6 51.1-141 %Rec 1 3/17/2022 7:17:42 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/16/2022 2:27:03 PM 4.8 mg/Kg 1 Surr: BFB 108 70-130 %Rec 1 3/16/2022 2:27:03 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 3/16/2022 2:27:03 PM 0.024 mg/Kg 1 Toluene ND 0.048 mg/Kg 1 3/16/2022 2:27:03 PM Ethylbenzene ND 0.048 mg/Kg 1 3/16/2022 2:27:03 PM Xylenes, Total ND 0.097 mg/Kg 1 3/16/2022 2:27:03 PM 3/16/2022 2:27:03 PM Surr: 4-Bromofluorobenzene 94.9 70-130 %Rec 1 **EPA METHOD 300.0: ANIONS** Analyst: LRN Chloride 60 60 3/18/2022 12:06:15 AM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 11

2203743-003

Project:

Lab ID:

Analyses

Analytical Report Lab Order 2203743

Date Reported: 3/30/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: WES22-08 6.0' Todd 22 I Fed 9 Collection Date: 3/11/2022 3:20:00 PM Matrix: SOIL Received Date: 3/15/2022 7:30:00 AM Result **PQL Qual Units** DF **Date Analyzed EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** 3/17/2022 7:28:14 PM 30 9.8 mg/Kg 1 Motor Oil Range Organics (MRO) ND mg/Kg 3/17/2022 7:28:14 PM 49 1

Surr: DNOP	106	51.1-141	%Rec	1	3/17/2022 7:28:14 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	3/16/2022 4:00:32 PM
Surr: BFB	103	70-130	%Rec	1	3/16/2022 4:00:32 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.024	mg/Kg	1	3/16/2022 4:00:32 PM
Toluene	ND	0.047	mg/Kg	1	3/16/2022 4:00:32 PM
Ethylbenzene	ND	0.047	mg/Kg	1	3/16/2022 4:00:32 PM
Xylenes, Total	ND	0.094	mg/Kg	1	3/16/2022 4:00:32 PM
Surr: 4-Bromofluorobenzene	93.6	70-130	%Rec	1	3/16/2022 4:00:32 PM
EPA METHOD 300.0: ANIONS					Analyst: LRN
Chloride	ND	60	mg/Kg	20	3/20/2022 1:52:38 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 3 of 11

Date Reported: 3/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BES22-04 6.0' **CLIENT:** Vertex Resources Services, Inc. **Project:** Todd 22 I Fed 9 Collection Date: 3/11/2022 3:30:00 PM Lab ID: 2203743-004 Matrix: SOIL Received Date: 3/15/2022 7:30:00 AM Result **PQL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB Diesel Range Organics (DRO) 3/17/2022 7:38:45 PM 31 9.2 mg/Kg 1 Motor Oil Range Organics (MRO) ND 46 mg/Kg 1 3/17/2022 7:38:45 PM 51.1-141 Surr: DNOP 108 %Rec 1 3/17/2022 7:38:45 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/16/2022 4:23:54 PM 4.6 mg/Kg 1 Surr: BFB 105 70-130 %Rec 1 3/16/2022 4:23:54 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 3/16/2022 4:23:54 PM 0.023 mg/Kg 1 Toluene ND 0.046 mg/Kg 1 3/16/2022 4:23:54 PM Ethylbenzene ND 0.046 mg/Kg 1 3/16/2022 4:23:54 PM Xylenes, Total ND 0.092 mg/Kg 1 3/16/2022 4:23:54 PM 3/16/2022 4:23:54 PM Surr: 4-Bromofluorobenzene 96.8 70-130 %Rec 1 **EPA METHOD 300.0: ANIONS** Analyst: LRN Chloride 61 59 3/20/2022 2:05:03 PM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 11

Date Reported: 3/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BES22-05 6.0' **CLIENT:** Vertex Resources Services, Inc. **Project:** Todd 22 I Fed 9 Collection Date: 3/11/2022 3:40:00 PM Lab ID: 2203743-005 Matrix: SOIL Received Date: 3/15/2022 7:30:00 AM Result **PQL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB Diesel Range Organics (DRO) 3/17/2022 7:49:15 PM 30 9.4 mg/Kg 1 Motor Oil Range Organics (MRO) ND 47 mg/Kg 1 3/17/2022 7:49:15 PM 51.1-141 Surr: DNOP 102 %Rec 1 3/17/2022 7:49:15 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/16/2022 4:47:13 PM 4.6 mg/Kg 1 Surr: BFB 105 70-130 %Rec 1 3/16/2022 4:47:13 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 3/16/2022 4:47:13 PM 0.023 mg/Kg 1 Toluene ND 0.046 mg/Kg 1 3/16/2022 4:47:13 PM Ethylbenzene ND 0.046 mg/Kg 1 3/16/2022 4:47:13 PM Xylenes, Total ND 0.093 mg/Kg 1 3/16/2022 4:47:13 PM 3/16/2022 4:47:13 PM Surr: 4-Bromofluorobenzene 96.2 70-130 %Rec 1 **EPA METHOD 300.0: ANIONS** Analyst: LRN Chloride ND 60 3/20/2022 3:07:07 PM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference

B Analyte detected in the associated Method Blank

- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 11

Date Reported: 3/30/2022

Hall Environmental Analysis Laboratory, Inc.

Client Sample ID: BES22-06 6.0' **CLIENT:** Vertex Resources Services, Inc. **Project:** Todd 22 I Fed 9 Collection Date: 3/11/2022 3:50:00 PM Lab ID: 2203743-006 Matrix: SOIL Received Date: 3/15/2022 7:30:00 AM Result **PQL** Qual Units DF **Date Analyzed** Analyses **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: SB **Diesel Range Organics (DRO)** 3/17/2022 7:59:44 PM 26 9.4 mg/Kg 1 Motor Oil Range Organics (MRO) ND 3/17/2022 7:59:44 PM 47 mg/Kg 1 Surr: DNOP 93.0 51.1-141 %Rec 1 3/17/2022 7:59:44 PM **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB Gasoline Range Organics (GRO) ND 3/16/2022 5:10:31 PM 4.8 mg/Kg 1 Surr: BFB 103 70-130 %Rec 1 3/16/2022 5:10:31 PM **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 3/16/2022 5:10:31 PM 0.024 mg/Kg 1 Toluene ND 0.048 mg/Kg 1 3/16/2022 5:10:31 PM Ethylbenzene ND 0.048 mg/Kg 1 3/16/2022 5:10:31 PM Xylenes, Total ND 0.096 mg/Kg 1 3/16/2022 5:10:31 PM 3/16/2022 5:10:31 PM Surr: 4-Bromofluorobenzene 94.3 70-130 %Rec 1 **EPA METHOD 300.0: ANIONS** Analyst: LRN Chloride ND 60 3/20/2022 3:19:31 PM ma/Ka 20

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level.
 D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 11

Project:

Lab ID:

Analytical Report Lab Order 2203743

Date Reported: 3/30/2022

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Vertex Resources Services, Inc. Client Sample ID: BES22-07 6.0' Todd 22 I Fed 9 Collection Date: 3/11/2022 4:00:00 PM 2203743-007 Matrix: SOIL Received Date: 3/15/2022 7:30:00 AM Result POL Qual Units DF Date Analyzed В

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015M/D: DIESEL RANGE ORG	GANICS				Analyst: SB
Diesel Range Organics (DRO)	27	9.9	mg/Kg	1	3/17/2022 8:10:12 PM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	3/17/2022 8:10:12 PM
Surr: DNOP	93.7	51.1-141	%Rec	1	3/17/2022 8:10:12 PM
EPA METHOD 8015D: GASOLINE RANGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	3/16/2022 5:33:51 PM
Surr: BFB	104	70-130	%Rec	1	3/16/2022 5:33:51 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.023	mg/Kg	1	3/16/2022 5:33:51 PM
Toluene	ND	0.046	mg/Kg	1	3/16/2022 5:33:51 PM
Ethylbenzene	ND	0.046	mg/Kg	1	3/16/2022 5:33:51 PM
Xylenes, Total	ND	0.091	mg/Kg	1	3/16/2022 5:33:51 PM
Surr: 4-Bromofluorobenzene	96.1	70-130	%Rec	1	3/16/2022 5:33:51 PM
EPA METHOD 300.0: ANIONS					Analyst: LRN
Chloride	ND	60	mg/Kg	20	3/20/2022 3:31:55 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix interference S
- Analyte detected in the associated Method Blank в
- Е Estimated value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

Page 7 of 11

Client: Project:	Vertex F Todd 22	lesources S I Fed 9	ervices	Inc.							
Sample ID:	MB-66250	SampT	ype: m t	olk	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	D: 66	250	F	lunNo: 8	6570				
Prep Date:	3/17/2022	Analysis D	ate: 3/	17/2022	S	eqNo: 3	055565	Units: mg/K	g		
Analyte Chloride		Result ND	PQL 1.5	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID:	LCS-66250	SampT	ype: Ics	;	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID:	LCSS	Batch	ID: 66	250	F	lunNo: 8	6570				
Prep Date:	3/17/2022	Analysis D	ate: 3/	17/2022	S	eqNo: 3	055566	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	91.5	90	110			
Sample ID:	MB-66279	SampT	ype: m t	olk	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	D: 66	279	F	unNo: 8	6610				
Prep Date:	3/20/2022	Analysis D	ate: 3/	20/2022	S	eqNo: 3	057325	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-66279	SampT	ype: Ics	;	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	ID: 66	279	F	lunNo: 8	6610				
Prep Date:	3/20/2022	Analysis D	ate: 3/	20/2022	S	eqNo: 3	057326	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		14	1.5	15.00	0	90.0	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 11

2203743

30-Mar-22

Client:Vertex IProject:Todd 22	Resources S 2 I Fed 9	ervices,	, Inc.							
Sample ID: LCS-66203	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics	
Client ID: LCSS	Batcl	n ID: 66	203	F	RunNo: 8	6542				
Prep Date: 3/16/2022	Analysis D	Date: 3/	17/2022	S	SeqNo: 3	055280	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	46	10	50.00	0	92.3	68.9	135			
Surr: DNOP	3.7		5.000		73.9	51.1	141			
Sample ID: MB-66203	SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics									
Client ID: PBS	Batcl	Batch ID: 66203 RunNo: 86542								
Prep Date: 3/16/2022	Analysis E	Date: 3/	17/2022	S	SeqNo: 3	055284	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	8.4		10.00		84.1	51.1	141			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 11

WO#: 2203743 30-Mar-22

	rtex Resources S dd 22 I Fed 9	Services	, Inc.							
Sample ID: mb-66178		Type: ME					8015D: Gasc	oline Rang	e	
Client ID: PBS	Bato	ch ID: 66	178	F	lunNo: 8	6522				
Prep Date: 3/15/2022	Analysis	Date: 3/	16/2022	S	eqNo: 3	053232	Units: mg/k	۲g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GF	RO) ND	5.0								
Surr: BFB	1000		1000		104	70	130			
Sample ID: Ics-66178	Samp	SampType: LCS TestCode: EPA Method 8015D: Gasoline Range								
Client ID: LCSS	Bato	ch ID: 66	178	F	unNo: 8	6522				
Prep Date: 3/15/2022	Analysis	Date: 3/	16/2022	S	eqNo: 3	053234	Units: mg/k	٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GF	RO) 26	5.0	25.00	0	105	78.6	131			
Surr: BFB	2200		1000		221	70	130			S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 11

2203743

30-Mar-22

Client: Project:	Vertex Re Todd 22	esources S I Fed 9	ervices,	Inc.							
Sample ID:	mb-66178	SampT	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	PBS	Batc	h ID: 66	178	F	RunNo: 8	6522				
Prep Date:	3/15/2022	Analysis E	Date: 3/	16/2022	5	SeqNo: 3	053274	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bromo	ofluorobenzene	0.95		1.000		95.1	70	130			
Sample ID:	LCS-66178	SampT	Гуре: LC	S	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	LCSS	Batcl	h ID: 66	178	F	RunNo: 8	6522				
Prep Date:	3/15/2022	Analysis E	Date: 3/	16/2022	S	SeqNo: 3	053275	Units: mg/k	٤g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.94	0.025	1.000	0	93.7	80	120			
Toluene		0.98	0.050	1.000	0	98.5	80	120			
Ethylbenzene		1.0	0.050	1.000	0	99.5	80	120			
Xylenes, Total		3.0	0.10	3.000	0	100	80	120			
Surr: 4-Bromo	ofluorobenzene	1.0		1.000		101	70	130			
Sample ID:	2203743-001ams	SampT	Гуре: МS	3	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	WES22-06 6.0'	Batc	h ID: 66	178	F	RunNo: 8	6522				
Prep Date:	3/15/2022	Analysis D	Date: 3/	16/2022	5	SeqNo: 3	053278	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.92	0.025	0.9814	0	94.0	68.8	120			
Toluene		1.0	0.049	0.9814	0	101	73.6	124			
Ethylbenzene		1.0	0.049	0.9814	0	103	72.7	129			
Xylenes, Total		3.1	0.098	2.944	0	104	75.7	126			
Surr: 4-Bromo	ofluorobenzene	1.0		0.9814		102	70	130			
Sample ID:	2203743-001amsd	I Samp1	Гуре: МS	SD	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID:	WES22-06 6.0'	Batcl	h ID: 66	178	F	RunNo: 8	6522				
Prep Date:	3/15/2022	Analysis E	Date: 3/	16/2022	S	SeqNo: 3	053279	Units: mg/k	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.94	0.025	0.9833	0	95.3	68.8	120	1.52	20	
Toluene		1.0	0.049	0.9833	0	102	73.6	124	0.364	20	
Ethylbenzene		1.0	0.049	0.9833	0	105	72.7	129	1.80	20	
Xylenes, Total		3.1	0.098	2.950	0	104	75.7	126	0.914	20	
Surr: 4-Bromo	ofluorobenzene	0.96		0.9833		97.9	70	130	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix interference
- B Analyte detected in the associated Method Blank
- E Estimated value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 11 of 11

2203743

30-Mar-22

Page	<i>139</i>	of 14	8

HALL ENVIE ANAL	10/2025 8:23:35 AM RONMENTAL YSIS RATORY	Hall Environm TEL: 505-345- Website: clier	49 Albuquer 3975 FAX	01 Hawkin que. NM 8 505-345	s NE 7109 Sai	mple Log-In Che	Pag eck List
Client Name:	Vertex Resources Services, Inc.	Work Order Nun	nber: 220	3743		RcptNo: 1	
Received By:	Tracy Casarrubias	3/15/2022 7:30:00	AM				
Completed By: Reviewed By:	Sean Livingston 3-15-22	3/15/2022 8:19:19	AM		S-L	ingot-	
Chain of Cus	tody						
1. Is Chain of C	ustody complete?		Yes		No 🗌	Not Present	
2. How was the	sample delivered?		Cou				
Log In							
and the second sec	pt made to cool the sample	es?	Yes		No 🗌		
4. Were all samp	oles received at a temperati	ure of >0° C to 6.0°C	Yes		No 🗌		
5. Sample(s) in p	proper container(s)?		Yes		No 🗌		
6. Sufficient sam	ple volume for indicated tes	st(s)?	Yes		No 🗆		
	except VOA and ONG) prop		Yes		No 🗌		
8. Was preservat	ive added to bottles?		Yes		No 🔽		
9. Received at lea	ast 1 vial with headspace <	1/4" for AQ VOA?	Yes		No 🗌	NA 🔽	
	ple containers received bro		Yes		No 🔽		/
	rk match bottle labels? ncies on chain of custody)		Yes	~	No 🗆	# of preserved bottles checked for pH:	/
	prrectly identified on Chain	of Custody2	N.S.	~		(<2 or >12 u Adjusted?	inless noted
	analyses were requested?	of Custody?	Yes Yes		No 🗌 No 🗌	Aujusica !	
14. Were all holding	g times able to be met? stomer for authorization.)		Yes			Checked by:	3/15/2
Special Handli	ng (if applicable)						
	ified of all discrepancies wit	h this order?	Yes		No 🗌	NA 🔽	
Person N	lotified:	Date:				101 22	
By Whon		Via:	□ eMa	I. 🗆 Ph	one 🗌 Fax	In Person	
Regardin	g:						
Client Ins	structions:						
16. Additional rem	arks:						
17. <u>Cooler Inform</u> Cooler No 1	and the second se	Seal Intact Seal No	Seal Dat	e S	igned By		

Page 1 of 1

CIIdill-OI-CUSIOOY RECORD
Project Name
Todd
Project #: 21E
Project Manager:
Ba
Sampler:
of Coolers:
Cooler Temp
Container Type and #
6 less Ver
Received by:
Received hv
1900 MALLULA

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 141 of 148

QUESTIONS

Action 437072

	QUESTIONS
Operator:	OGRID:
HARVARD PETROLEUM COMPANY, LLC	10155
P.O. Box 936	Action Number:
Roswell, NM 88202	437072
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

OLIECTIONS

QUESTIONS

Prerequisites	
Incident ID (n#)	nAB1729753198
Incident Name	NAB1729753198 TODD 22 I FEDERAL #009 @ 30-015-32730
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received
Incident Well	[30-015-32730] TODD 22 I FEDERAL #009

Location of Release Source

Please	answer all the questions in this group.	

Site Name	TODD 22 I FEDERAL #009
Date Release Discovered	10/09/2017
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Crude Oil Released: 2 BBL Recovered: 2 BBL Lost: 0 BBL.	
Produced Water Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Produced Water Released: 2 BBL Recovered: 1 BBL Lost: 1 BBL.	
Is the concentration of chloride in the produced water >10,000 mg/l	Yes	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

Action Type:

Page 142 of 148

QUESTIONS, Page 2

Action 437072

QUESTIONS (co	ntinued)
	OGRID:
HARVARD PETROLEUM COMPANY, LLC	10155
P.O. Box 936	Action Number:
Roswell, NM 88202	437072

QUESTIONS

Operator:

Nature and Volume of Release (continued)		
	Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.
	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Unavailable.
	Reasons why this would be considered a submission for a notification of a major release	Unavailable.
	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	. gas only) are to be submitted on the C-129 form.

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative or actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Roni Kidd Title: Business Manager Email: rkidd@buckhornproduction.com Date: 03/07/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
HARVARD PETROLEUM COMPANY, LLC	10155
P.O. Box 936	Action Number:
Roswell, NM 88202	437072
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release an	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Between 1 and 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1 and 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Between 1 and 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Between 1 and 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Yes		
ssociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.		
Yes		
No		
rams per kilograms.)		
730		
8069		
5469		
0		
0		
forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,		
02/21/2022		
03/11/2022		
03/11/2022		
1401		
312		
1401		
312		
me of submission and may (be) change(d) over time as more remediation efforts are completed.		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Action 437072

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 437072

QUESTIONS (continued)	
Operator:	OGRID:
HARVARD PETROLEUM COMPANY, LLC	10155
P.O. Box 936	Action Number:
Roswell, NM 88202	437072
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)

Kemediation Fian (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	fforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.	
I hereby agree and sign off to the above statement	Name: Roni Kidd Title: Business Manager Email: rkidd@buckhornproduction.com

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Date: 03/07/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Page 145 of 148

Action 437072

QUESTIONS (continued) Operator: HARVARD PETROLEUM COMPANY, LLC 0GRID: P.O. Box 936 10155 Roswell, NM 88202 Action Number: 437072 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 146 of 148

Action 437072

QUESTIONS (continued)

Operator:	OGRID:
HARVARD PETROLEUM COMPANY, LLC	10155
P.O. Box 936	Action Number:
Roswell, NM 88202	437072
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	437049
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/11/2022
What was the (estimated) number of samples that were to be gathered	7
What was the sampling surface area in square feet	1400

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all r	remediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	1401
What was the total volume (cubic yards) remediated	312
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	1401
What was the total volume (in cubic yards) reclaimed	312
Summarize any additional remediation activities not included by answers (above)	As detailed in the attached report.
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of
to report and/or file certain release notifications and perform corrective actions for release the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or tially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete.
I hereby agree and sign off to the above statement	Name: Roni Kidd Title: Business Manager

I hereby agree and sign off to the above statement	Title: Business Manager
	Email: rkidd@buckhornproduction.com
	Date: 03/07/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
HARVARD PETROLEUM COMPANY, LLC	10155
P.O. Box 936	Action Number:
Roswell, NM 88202	437072
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

Reclamation Report Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission No

QUESTIONS, Page 7

Action 437072

Page 147 of 148

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 148 of 148

CONDITIONS

Action 437072

CONDITIONS

Operator:	OGRID:
HARVARD PETROLEUM COMPANY, LLC	10155
P.O. Box 936	Action Number:
Roswell, NM 88202	437072
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
amaxwell	Remediation closure approved.	3/10/2025
amaxwell	The reclamation report will need to include: Executive Summary of the reclamation activities; Scaled Site Map including sampling locations; Analytical results including, but not limited to, results showing that any remaining impacts meet the reclamation standards and results to prove the backfill is non-waste containing; At least one (1) representative 5-point composite sample will need to be collected from the backfill material that will be used for the reclamation of the top four feet of the excavation. The OCD reserves the right to request additional sampling if needed; pictures of the backfilled areas showing that the area is back, as nearly as practical, to the original condition or the final land use and maintain those areas to control dust and minimize erosion to the extent practical; pictures of the top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater; and a revegetation plan.	3/10/2025